)
N
H 5
e8]
=<2
BR.m
o ¥
Ofe
W o5
c S
=
=
e

A BETTER BARSIC DEBUGGER

T 1
4 1

1

ALTERNATE

T
1 1

S@URC

STOPPER
The BASIC Breakpointer

(c) 1981 by Roxton Baker
Box 8272, APO San Francisco 96555

This documentation assumes that you have STOPPER in a loadahle form
for your system (tape or disk). To transfer STOPPER from tape to
disk, see the instructions near the end.

I hope that you find STOPPER to be a genuinely useful program. A
great deal of time has gone into its development. If you have
problems, or suggestions for improvement, please write.

STARTING STOPPER

Note that there are two steps to both the disk and tape loading
procedures!

Disk Systems:
1) From DOS READY, type:
STOPPER <Enter>

This will cause STOPPER to determine the current setting of memory
size (from location 4049H) and locate itself just under that. The
value at 4049H is then reset lower to protect STOPPER. Ahout 3.1K of
high-memory RAM space is required by STOPPER.

This method of loacding STOPPER will work with other high-memory
utilities, provided that you load them first and that they set memory
size (at 4049H) to protect themselves. There is a way around these
two requirements. You may force STOPPER to load helow any high memory
location mmmmm by typing:

STOPPER mmmmm <Enter>

So 1t for example you have some other utility program for which you
would normally set memory size at 60000, you would use 'STOPPER 60000’
instead. Another time you might use this entry method is 1f you have
entered and left Basic, and then tried to reload STOPPER. In this
case STOPPER may detect its own previous memory size setting at 4049H,
and load below that - which of course is not necessary. The solution
is to use 'STOPPER 65535 <(Enter>'. This forces STOPPER to load at the
top of memory.

In the process of relocating itself, STOPPER briefly resides in the
area 5500H-6500H, and will overwrite anything there. This should not
be a problem with a disk system.

2) When STOPPER has been relocated, the program logo will be
displayed. Just helow that will he the program entry point (shown as
"/eeeee"). Go into Disk Basic without setting memory size. It will
automatically be set just below STOPPER's entry point. At the Basic
READY prompt, type:

SYSTEM <Enter)> /eeeee <Enter>
to activate STOPPER (you should receive the response "“STOPPER <(ON>").
Typing 1t again will deactivate STOPPER, as will STOPPER's 'Q'
command. If you forget it, this "eeeee" value may be found under
Basic by typing:

PRINT PEEK(16457) + 256 * PEEK(16458) + 2

precision variable value compari-
sons. Range of 'tt' is 0-15.

H Display tolerance on SP and DP com-
parisons.

J Reinitialize STOPPER completely.

Q Turn STOPPER off.

In addition to these direct commands, there are several keys active
during the execution of your program. These are described below.

BREAKPOINTS

The most important command is '<', to set a breakpoint. This command
allows you to stop at selected points and times in a Basic program
without having to edit the program (and thereby lose all of your
variables). Briefly, you may set a breakpoint to be taken when a
certain line numhber has been reached, or when any variable has hecome
equal or unequal to a specified value. Further details on these two
distinct types of breakpoints are provided below. Again, note that
all commands are entered at Basic's READY prompt, and all commands
must be followed hy <Enter>. Any active breakpoint may be turned off
by 'F'. Any inactive breakpoint may be reactivated by '<'.

LINE NUMBER BREAKPOINTS

A line number breakpoint is set by the command '<nnnnn,ccccc', or a
variation on it. The numbers nnnnn and ccccc are decimal integers
with a maximum value of 65529. The lower 1limit on nnnnn is 0. The
lower 1limit on the "hit count™ ccccc is 1. Leading zeros need not bhe
entered. When such a breakpoint has been set, and a Basic program is
executing, STOPPER will halt the program just bhefore the specified
line (nnnnn) is executed for the specified (ccccc) time. STOPPER
initializes with nnnnn = 0, ccccc=1. This is the default line number
breakpoint. The 'M' command may be used to see how many "hits" remain
to be taken on a line number breakpoint.

As an example, suppose that in a program you wish to break just before
line 210 is executed. You would enter:

<210

and you would then RUN or CONTinue the program. If you wish instead
to wait until line 210 is about to be executed for the fifth time, you
would enter:

<210,5

When STOPPER hits a line numbher breakpoint, it restores the breakpoint
hit count to its original value, but it leaves the breakpoint OFF.
(You may easily reactivate any breakpoint with '<'). Then STOPPER
freezes the program as i1f CLEAR had been pressed. The "*'" hold
indicator will appear in the lower right corner. Now, if you press
BREAK, STOPPER will display the number of the line last executed
followed by the number of the line about to be executed (the
breakpoint 1line). This shows you just how the program arrived at the
breakpoint, and can be quite useful in troubleshooting.

Line number breakpoints will not work on lines jumped to by an ON
ERROR GOTO statement, because the ROM allows no opportunity to
intercept such a jump. The best you can do here is to break on the
second line (if any) of the error handling code. In this case,
STOPPER will still show you which line caused the error.

{variable

<(=value

Htt

If a variable breakpoint has prev-
iously been defined, restore it
exactly.

If a line number breakpoint has prev-
iously been defined, restore it
exactly. Otherwise, activate the
default line number breakpoint.

Define this variahle to be the one of
interest. This will be the var-
iable whose value is subsequently
displayed by the '?' command or
is directed as a trace to screen
or printer.

Set a breakpoint to be taken when the
last specified variable (if any)
becomes equal (or, on "*", unequal)
to the specified value.

Show status of current breakpoint.

Fix (clear) any active breakpoint.

Show current value of variable of
interest (if any).

Delay 1 second, then CONTinue.

Same as 'C', but go into "hold"
immediately, awaiting keyboard
input to proceed.

Execute next statement.

Execute to beginning of next line.

Same as '>', but go into "hold"
immediately, awaiting keyboard
input to proceed.

Display current line from current
statement to end. This important
command is also used to locate
errors in a long line, as described
below.

NRUN " .

TRON (1line number is displayed in
lower right corner).

TRON to printer in one column.

TRON to printer in eight columns.
This cannot be used simultaneously
with 'O'.

Trace variable value to screen. It
is displayed on the bottom line.

Trace variable value to printer.
This cannot bhe used simultaneously
with 'U'.

TROFF (all traces).

"LIST".

Set tolerance on single and double

Tape Systems:

1) From Basic READY, use the SYSTEM command to load the machine
language file STOPPR. When the *? prompt reappears, type '/<Enter)>'.
This will cause STOPPER to determine the current setting of memory
size (from location 40B1H) and locate itself Jjust under that. The
value at 40B1H is then reset lower to protect STOPPER. This means
that you can use STOPPER with other high-memory utilities, provided
that you load them first, and that either they set their own memory
size or you set it for them. You may force STOPPER to load into the
very top of memory by turning power off and then on before loading it.

While relocating itself STOPPER briefly resides in the area
5500H-6500H, and will overwrite anything there. It will not affect
code below that, however. Thus you may load STOPPER even if you
already have a short (less than 4K) Basic program in memory. It is
best, though, to load and initialize STOPPER before loading or
creating any Basic text. About 3.1K of high-memory RAM space is
required by STOPPER.

2) When STOPPER has relocated itself, the program logo will be
displayed. Just below that will be the program entry point (shown as
"/eeeee"). Now type:

SYSTEM <(Enter> /eeeee <Enter>

to activate STOPPER (you should receive the response "STOPPER <ON>").
Typing it again will deactivate STOPPER, as will STOPPER's 'Q'
command. If you forget it, this "eeeee'" value may be found by typing:

PRINT PEEK(16561) + 256 * PEEK(16562) + 4

STOPPER’S COMMANDS

With STOPPER active, you have a number of commands available to be
entered at Basic's READY prompt. You must press <Fnter> after any
command. These commands include:

Command Meaning

<{nnnnn Set a breakpoint at line nnnnn, to
be taken the first time the line
is hit. The program will halt
BEFORE any of the line is executed.
<{nnnnn,ccccce Set a breakpoint in line nnnnn, to
be taken when it is hit ccccce
times. See below for more infor-
mation on these numbers.

<nnnnn, Set a breakpoint at line nnnnn, keep-
ing the previous hit count.

<,ccccc Set a breakpoint at the same line as
was previously used, but change the
hit count to this new ccccc value.

<variable=value Set a breakpoint to be taken when the
specified variable becomes equal to
the specified value.

<variable*value Set a breakpoint to be taken when the
specified variable becomes unequal
to the specified value.

< Restore previous breakpoint exactly,
whether a line number or a variable
value breakpoint.

<, Restore previous line breakpoint, bhut
with a hit count of one.

for display. If no variable has been named, the '?' key will just
pause the program, without affecting the display. Since pressing '?'
requires the use of the shift key, any tracing to printer will bhe
temporarily disabled (see below).

Pressing BREAK during program execution will cause the program to
break and STOPPER to print out the current line number.

SINGLE STEPPING A PROGRAM

From any point at which you have pressed BREAK you may continue via
tC', 'X', '+', '>', or 'Z', as listed earlier. The latter three
commands will single-step through your program, stopping completely
between each statement or line. These commands differ from CLEAR key
stepping in that they force the program to break, rather than Jjust
freezing its execution. Note that the '+' and '>' commands may be
entered conveniently by holding down the left shift key while pressing
the command key and then <Enter> on the right.

While stepping in this manner, whenever STOPPER reaches a line end (as
distinct from a statement end) it will print out the next line to be
executed. If a variable value breakpoint is active, and you step
through it using '>', it will be taken as if it had been hit at full
speed; that is, the program will freeze with the "*'" bhold indicator
on. This will not occur with line number breakpoints, or with any
statement stepping using '+'.

Another point to remember in the use of '>' is that stepping will
continue until the start of the next line IN PROGRAM FLOW ORDER. Thus
if you use '>' to step through Line 10 in this example:

10 GOSUB 30 : GOTO 100

the program will halt next at Line 30.

Statements using Basic's INKEY$ command will require some care when
single-stepping. In order to handle them, the 'X' and 'Z' commands
have bheen provided. The 'X' command is identical to 'C', except that
you are immediately put into a "hold" state with the "*" indicator
showing - just as if you had hit a breakpoint or had pressed CLEAR.
Similarly, the 'Z' key 1is identical to '>', except that here too you
immediately enter the "hold" state.

Thus 1f you wished to step through the following code, and later watch
what happens when '2' is the INKEY$ value, you might use '<110' to
break cleanly at a recognizable place:

100 PRINT"ENTER NUMBER OF TORPEDOS!!!!"
110 I$=INKEY$: IF I$="" THEN 110
120 T=VAL(I$) : GOSUB 2100

etc.

(It is an exclusive and valuable feature of STOPPER to ignore all
misspellings in Star Trek programs.)

Next you will want to input a value into the INKEY$ loop. The command
'+' will step through the INKEY$ statement, but will not input a value
to 1t. Therefore you would instead use 'Z' which, after you press
<Enter>, will put the system into "hold" awaiting further keyboard
entry. The "*" hold indicator will appear to confirm this. Then you
would press '2', which is how many "torpedos" you wanted to fire. Or
phazers'". Line 110 will now he executed in full, and the program
will stop again at line 120. You may now continue to single-step via
'+' or '>'. Had you wished to continue normal execution after
pressing '2', you could in this case have used 'X' rather than 'Z'.

Long lines with FOR-NEXT loops in them can cause problems for both
breakpointing and single-stepping. Consider this line, where we
assume that N has been defined as an integer:

compared exactly). When you say "break if A!=1.234567", do you mean
EXACTLY 1.234567, or close to it? If the requirement is for exact
equality, then use the 'Htt' command (in this case 'HO') to set a zero
tolerance (STOPPER initializes with tolerance tt=4). However, if the
value you are concerned with has been calculated in the program =~
which 18 the most likely case - rather than having been read in as a
data item or stated explicitly, then an "exact'" comparison may fail,
due to round-off errors in the machine arithmetic. What you really
want to do is break when A! is approximately 1.234567. Since there is
no way for STOPPER to know beforehand just how loose this
approximation may be, the 'Htt' command will let you specify the
required tolerance on the breakpoint comparison. The syntax of this
command was shown in the command list. The tolerance value 'tt' may
range from 0 through 15. The effect of this value is to cause STOPPER
to ignore the last tt bits in its comparisons of SP and DP variable
values. Ignoring zero bits means that the values must match exactly.
Ignoring fifteen bits means that they may differ by a great deal (the
actual effect varies between SP and DP numbers). You may never need
the 'Htt' command, and should only be concerned with it if you set an
SP or DP breakpoint that should have been taken, but wasn't, or if the
program is breaking on values close to, but not quite, the one you
wanted. If you change the tolerance 'tt' it will remain at its new
value until STOPPER is reinitialized. You may use the 'H' command to
display the current value of 'tt', and it will be shown whenever the
status of an SP or DP breakpoint is displayed.

THE “P* COMMAND

Whenever you press BREAK while your program is running, STOPPER will
print out the current line number. The 'P' command may then be used
to show you exactly where in the line you stopped. Normally, 'P' will
display the remainder of the current line, beginning with the next
statement to be executed. However, if the program has just hit a
variabhle value breakpoint or if it has halted on an error, then the
'P' command will display THE STATEMENT THAT CAUSED THE HALT (followed
by the rest of the line). This will be the statement LAST executed,
not the one next to be executed. This allows you to instantly
determine, even in long, multiple-statement lines, exactly where an
error occurred or a value chanped.

DURING PROGRAM EXECUTION: CLEAR,?,>

When your program is running you may slow it or single-step 1t using
the CLEAR key (or shift/CLEAR, if your DOS does not prevent 1it).
Pressing and releasing CLEAR will freeze the program at the current
statement. To confirm this action, the "*" hold indicator will appear
in the bottom right corner of the screen. Pressing and releasing
CLEAR again will allow the next statement to be executed. Holding
CLEAR down will allow the program to continue at about three
statements (not lines!) per second. You can tell when each statement
executes by the flicker of the "*" indicator. Pressing <Enter> or
most any other key will start the program running at full speed again.

Whenever the "*" hold indicator is showing, you may press '<(' to reset
the most recent breakpoint. This is generally Jjust a convenience, but
it is useful when you do not wish to disturb the video display.
Consider the case where a breakpoint is to be enabled only after a
certain point in the program has been reached. Define the breakpoint,
disable it using 'F', and RUN the program. At the point of interest,
press CLEAR to stop the program and display the "*'" hold indicator.
Then press '<' and this same "<" symbhol will appear in place of the
"*", This tells you that the last breakpoint has been reset. It is
exactly the same as using the '<' command at the READY prompt.

If a variable has been defined via '<variable', then you may, while
your program is running, press '?' to observe the value of the
variable. This value will appear on the bottom line, just as if the
'I' key were active. The value will remain, with program execution
paused, as long as '?' is held down. If the total length of the
variable name and value exceeds 22 characters, it will be truncated

VARIABLE VALUE BREAKPOINTS

A variable value breakpoint is set by the command '<variahle=value' or
a variation on 1t. You may specify any type of variahle (integer,
single or double precision, or string) and the variable may be
subscripted. The only limitation is that the variable's name must be
no more than fourteen characters long. You may specify any reasonable
'break' value for this variable, as long as the value is no more than
23 characters long. You must take care to have a decimal point in any
floating point value, and double precision (DP) numbers must either
have more than seven digits or must end with the 'D' exponent
identifier. Also, you may specify that you wish the program to halt
when the named variable becomes unequal to the given value. For this,
simply use "*" instead of "=". Example variahle value breakpoints
are:

<X1=21, (note decimal point for SP)

<L%=724 (note no decimal point for integer)
<VK#=43.17833069212

<WP$(8)="BAD MESSAGE"

<QQ$*"GOOD MESSAGE"

<NS!(7,6)=-0.03274 (note negative value)
<J2#(4,4)*+29.1145D0 (note optional "+")

It is always safest to use %,!,#, or $ to specify the variable type
explicitly, as was done in these examples. Making a practice of this
will avoid the possibility of having to reenter the breakpoint spec,
as well as the chance of setting a breakpoint on a nonexistent
variable. As shown in the command list earlier, you may change the
break value on a previously specified variahle by entering only the
value. Thus, if TMT$(6,1,9) had been the most recent variabhle
specified, you could modify its break value with:

<="BREAK HERE INSTEAD"
or with:
<*"BOUND TO BE!"

When STOPPER hits a variable value breakpoint, it turns the breakpoint
OFF. Then it freezes the program just as if CLEAR had been pressed.
The "*" hold indicator will appear in the lower right corner. Now, 1if
you press BREAK, STOPPER will print out the number of the line that
caused the variable value to change. If the line contains many
Statements, you may display exactly the one that caused the break hy
using the 'P' command, as described below.

Variable breakpoints require a bit of care in thelr use. First
consider the problem of breaking when A% becomes unequal to 12, by
entering the command '<A%*12'. Obviously, when the first statement of
the program is about to be executed, A% will be O - causing a break.
To avoid this you must not activate the breakpoint until the program
has set A% to 12. The simplest way to accomplish this is to first set
a breakpoint at A%=12. When this is hit, Break and type '<*12' to
reset the breakpoint for the inequality. Then use 'C' to continue.

Another place to be careful is in the use of subscripted variables.

If the number of subscripts is three or less, and if each of the
subscripts you specify is 10 or less, then it is possible to set up
the breakpoint before running the program. The only remaining problem
will be if, somewhere in the program, the array in question is used in
a DIM statement. This will cause a "Redimensioned Array" error when
hit with the breakpoint active. The solution here 1s to set a line
breakpoint right after the DIM statement; when the "*" hold indicator
appears, BREAK and then type 'B' to reactivate the variable break, and
'C' to continue. Incidentally, you will also get this "Redimensioned
Array error if you are tracing such a variable when the DIM statement
is hit.

If the number of subscripts is more than three, or 1if any of them
exceed 10, you will have to wait until the array has heen DIMensioned
by the program before specifying your variable break. Use a line
number breakpoint to accomplish this.

Finally there is the question of exactness in single and double
precision variable value comparisons (integers and strings are always

100 FOR N=1 TO 50 : NEXT N : X=SIN(V) : etc.

You may want to break on the X=SIN(V) statement, but can't because it
doesn't have a line number. And it is not practical to step (with
'+') through the fifty FOR-NEXT loops that precede this statement.

One solution would be to set a line breakpoint at 100 with '<100°'.
When it's hit, step into the first execution of the FOR-NEXT loop with
'+', Now BREAK, set a breakpoint at N=51 with '<N%¥=51', and continue
with 'C'. At the break you will be positioned Just before X=SIN(V),
as desired.

TRACE FACILITIES

STOPPER provides some enhancements to Basic's program trace
capability. You may now trace line numbers or variahle values, and
you may direct either or both traces to screen or printer. The Ty Vs
U, I, 0, and G commands are used for this, as mentioned in the command
l1ist above. 'T' is just 1like TRON, except that the line numhers are
shown in the bottom right-—hand corner of the screen. 'Y' sends these
numbers to the printer, in one column. If you want a more compact
printout, perhaps for a long trace, 'U' causes a line number printout
in eight columns. If a variable has been defined via '<variahle', you
may direct a continual trace of its value to the bottom line of the
screen (with 'I') or to the printer (with 'O'). This screen display
will be limited to 22 characters total. The printer output will
comprise the full name, and up to 24 characters of the variable's
value. Note that the 'O' and 'U' commands may not be used
simultaneously. Also, you should not use 'Y', 'U', or '0O' if you
don't have a printer! To maintain compatibhility with the widest
possible variety of printers, some of which do not provide a "ready"
signal, STOPPER does not check for printer availability. Just as with
an LLIST command, your system will hang if you use these commands
without a printer.

Sometimes, especially within delay loops, you will want to temporarily
disable all printer tracing. This may be done by pressing SHIFT.

When you release SHIFT, any printer tracing will resume. This key was
chosen for convenience; obviously, you must press SHIFT to use the '?’
f nction during execution, meaning that you will briefly lose any
printer traces. This should not be a problem.

The 'G' command clears all traces.

STOPPER AND SPEED

Whenever STOPPER is ON, it will affect to some degree the speed of
your program. If no breakpoint is active, the slowdown is about 5%.
If a line number breakpoint is set, the slowdown increases to ahout
10%. Variable value breakpoints will consume more time, especially 1if
the current value of the variable 1is close to the specified break
value. Figure on a 25% slowdown, roughly, except in the case of
double precision. DP math is so slow to begin with that the
additional delay due to STOPPER is not perceptible. If you are
directing a trace of variable value to the screen (the 'I' command},
an overall slowdown of about 50% will result. Of course, if you
direct any trace to your printer ('Y', 'U', or 'O' commands), program
execution will be reduced to printer speed.

MISCELLANEOUS
Some of the commands provided (such as 'C', 'R', and 'L') are for
convenience only, and are not really important to the use of STOPPER.

They simply invoke their assoclated Basic functions.

STOPPER will respond to invalid entries or impossible requests with
the "** NO GOOD! **" message-.

The commands '<=' and '<*' are not valid unless followed by a value.

Whenever NEW, LOAD, or CLOAD is entered, STOPPER is reinitialized -
just as if the command 'J' had been used.

STOPPER talks to the printer via the standard DCB. Any printer that
works with Basic should work with STOPPER.

If you press BREAK while waiting at an INPUT statement, STOPPER will
think that the program halted on an error. This means that stepping
via '+' and '>' will not bhe allowed.

For those of you who wish to create custom copies of STOPPER once it
has heen relocated: the Start address is the same as the 'eeeee'
Entry address mentioned earlier. The Stop address will vary with the
version of STOPPER that you have, but may always be determined in this
way: load STOPPER at the very top of memory, and subtract the Entry
address that results from 65536. This will give you STOPPER's total
length, including all workspaces, once relocated. Add this to the
current Start address to get the current Stop address.

STOPPER AND THE SYSTEM

Because it does not patch into the keyboard DCB, STOPPER will not
interfere with standard keybhoard utilities. And it should be
compatihle with any DOS. I have found that under DOSPLUS Basic, the
TRON single-stepping feature of that Basic will not work when STOPPER
is on. It will work if you turn STOPPER off. STOPPER's command keys
have been carefully chosen to avoid conflict with this and other new
DOSs. That is why so many of these commands had to be shifted keys.
Remember that if you are entering a shifted key command, you do not
need to release SHIFT before pressing ENTER.

STOPPER appears to be compatihble with many of the aftermarket Basic
enhancement packages, but this cannot be guaranteed. I would
appreciate hearing of your experiences with STOPPER in combination
with any other products.

TRANSFERRING STOPPER TO DISK

If you received STOPPER on tape, and wish to run it from a disk
system, you must create a /CMD file on disk. You may do this directly
using the TRSDOS standard TAPEDISK utility, Apparat's LMOFFSET,
Misosys' CMDFILE, Acorn's FLEXL, or any of a number of monitor
programs. On tape, STOPPER is a plain-vanilla SYSTEM file with
filename 'STOPPR'. One way to create a /CMD file is to use TAPEDISK
as follows:

From DOS READY, execute TAPEDISK. Make sure that drive O has at least
4 grans of free space on its disk. At the Tapedisk '?' prompt, enter
'C' to start loading the tape. When this is complete, enter:

F STOPPER/CMD:0 5500 6500 5500

Note the required blanks following 'F' and the filespec!

CREDITS

I could not have begun writing this program without the guidance of
David Cornell's excellent article on Label Basic (80-Micro, Dec. 1980,
ppl60-184). I would have been unable to finish without continual
reference to James Farvour's superb book '"Microsoft Basic Decoded".
Bruce Hansen's powerful TASMON monitor was used extensively in the
program dehugging, and STOPPER is relocatable thanks to Jack Decker's
articles on that subject (TAS Issue Nos. 6 and 10). All programming
was done under Misosys' EDAS Editor Assemhler, an indispensible tool
for large files. Thanks to all these people.

STOPPER

The BASIC Breakpointer
by Roxton Baker, author of "TRAKCESS”

Now: debug your BASIC programs with ease. NO MORE editing
STOP statements in and out, and NO MORE losing your variables!
NO MORE wondering how a variable got changed, or where in the
line an error occurred. STOPPER will save you hours of mental
frustration by adding commands like these to BASIC:

SET BREAKPOINTS. Specify which line number and how many
times it should be executed before breaking.

RESTORE BREAKPOINTS. Restore previous breakpoints with

the same parameters, or specify new hit counts.

DEFINE VARIABLES OF INTEREST. Specify certain variables
whose value will be displayed by the ? command. Also permits tra-
cing to screen or printer.

SHOW STATUS of breakpoints.

CLEAR active breakpoints.

SLOW STEP or SINGLE STEP with spacebar.
TRON to printer in one or eight columns.

And there’s much more! STOPPER is the most powerful BASIC
programming tool available. Completely relocatable; requires just

3.1 K of memory. Works under Level 11 BASIC or Disk BASIC.

