AY

(C) COPYRIGHT SOUTHERN SOFTWARE 1982

%\
_ v\
ACLEL3 COPILER for ‘gfs-m BASIC v
%

A\
ACCELD is Skhern Softuare’s latest compiler for TRS-88 BASIC, ACCEL3 produces more compact code than ACCEL
and ACCEL2, it compiles faster, its treatment of FOR-NEXT allows for badly-structured loops, it optiaises nore
- language constructs, and it supports SAVE, LOAD, RUN, CSAVE and CLOAD of compiled programs, It will corpile the
full DISK BASIC language, and will tolerate mamy nonTandy language extensions (though not all),

ACTEL3 occupies less than 5632 bytes. This relatively low size is achieved by 8 technique of selective
corpilation. For instance 1/0 statements such as LPRINT or INPUT are not translated at all but remain in the
corpiled program in their source form, and are executed by the resident BASIC interpreter, Statesents involving
INTEGERs and flow—of-control statesents (GOTO, GOSUB, RETURN) are, by contrast, translated to directly-executed
180 machine-instructions. Other, more complex statements are translated into calls to RON routines, ACCEL3
selects more statements for translation than ACCEL, notably those imvolving STRINGs and SINGLE and DOUBLE
data-types, ACCEL3 alsc translates references to array elements (even when the array has dunamic bounds), and it
translates more functions than ACCEL and ACCEL2,

ACCEL3, including all programs and files provided, and all documentation, including this manual, is
copyrighted by the author and all rights are reserved. Copying of nachine-readable material is pernitied for
backup purposes by the original purchaser only, Copying of programs for others users is an infringement of the
copyright, ard is illegal,

ACCEL3 SUPFLIED ON TAPE,

If you have purchased ACCEL3 on disketie, skip the next four sections.

The tape supplied is self-relocating. This gives you the freedom to load the compiler anuwhere in memory you
please, It also pfovides the freedom to make mistakes, so please check all address arithmetic carefully. You reed
only perfora the installation operation once, and then you can take wour oun back-up copies on tape or disk, for
subsequent direct loading.

For both Model T and Model III you must load the tape supplied urder Levell (not DISK PRASIC) using the
SYSTEN command, and at the low casselte data rate. (On Model IIT specify L at bring-up), It will load itself at
locations 18944 and w, and then, under our control, will relocate itself %o any chosen location abave this, The
compiler will not ron correctly unless it is loaded in PROTECTED aemory. Depending on how much RAM you have, and
on vhat other machine-language programs you want resident, decide where you want to locate it, The table averleaf
qives addresses that are suitable if you want to load the compiler as high in memory as passible. For the main
text, we will assume as an example that ACCEL3 is loaded on a 32K machine. In this case your answer to the
initial MEMORY SIZE? question will be calculated as follows-

49152 (Upper limit of memary on a 3ZK machine)
~5632 (Size of ACCELI compiler)
4352 = "SA", starting address of the cospiler.

1) On Ui@et) Genie (FHC-80) yous don’t get the MEMORY SIZE? proset. However, on power up the machine gives you the
opportunity to enter 3 number after the first READY?, This is exactly the same number referred to as “SA" in
these evarples. .

2) If you are goirg to use TSAVE to make either a tape backup copy of ACCEL3, ar to save the compiled program,
then allow a further 512 bytes of protected memory, i.e. set SA=13008 instead.
1

Y

PO Box 39, Eastlelgii, Hants, England, 505 5WQ

|

st

TABLE OF USEFUL MCMORY ADDRESSES.

The first table gives values of addresses you can use in order to locate ACCEL3 as high in your machine as
possible, (assuning you have no other aachine—code programs above it).

16 IN 48K
767 9151 4553 Top-of -menory address
¥ 13320 59904 Start of ACCEL], and MEM SIZE
26624 43008 59392 HEM SIZE,(leaving 512 bytes for TSAVE)
13632787 43528-49151 59904-45535 BACKUP range to save ACCEL3
2713428671 4352045053 59904-61439 Rur-tine routines

This second table gives address ranges you can use vhen compiling programs to sell on a swaller machine.
ACCELT has 3 run-time cosponent of only 1536 bytes, and this table shows wou how to ersure that only the mintmm
amount of ACCEL resides in the end-user’s smaller memorys

1K 3K Tarqet machine sire
N732-24843 | 47414-53247 | ACCEL] address range, on your nachine
2232-32767 | 47614-49151 | Run-time routines, in end-user ‘s machine

LOADING THE TAPE SUPPLIED.

1) MOMORY STZE? 43528 lenter) (or wour value of "SA")
RADIO SHACK LEVEL IT BASIC
READY

2) SYSTEM (enter)

3) &2 ACCEL3 (enter)

4) Tape loads.ss

5) 17 / (enter)

4) TARGET ADDR? (enter)
READY

{or any chosen protected address).

Notes.

1) The tape loading process at step 4 is a standard core-inage tape load, and is subject to the ususl variability
on volume, head alignwent, etc. A pair of asterisks will blink on the display, If ro asterisks appear, or if 3 (o
is displaved, then there has been 3 loading error. Retry from step 2 with 3 different volume setting, (Southern
Software tapes are recorded at a lower voluse than is generally common, since this gives a wider tolerance to
fluctuations), Tuo copies are supplied on the tape, in case one gets damaged, Damage is almost invariably due to
either 3 tape kink {3 tiny fold in the tape) or to recorded noise, caused by RESETTING the computer in the middle
of a tape load. (Aluays stop the cassetie plager before hitling RESET on a bad load).

2) Step 4 lets you relocate the compiler amsdere in protected memory. If you just hil enter, then it relocates
to SA, the answer to the MHEMORY SIZE question. If you have other nachine-code programs you wWant to hold
corcurrently in memory, then you may wish to respond with 3 value different from SA.

3) On Video Cenmie, for (enter) read NEN LINE key.

4) Some other products, e.q. the EXATRON stringy floepy; actually modify the FROTECTED MEMORY valve. Hhile rot

causing an error this can be very confusing, sirce it could cause ACCELD to relocate Lo a different address than
you expect. If in doubt use an explicit target address at step 4.

PO Box 39, Eastleigh, Hants, England, 5055WQ

e

SAVING A BACK-UP,
— e .t

) You can now save your own, fixed-location back-up copy of ACCELI, This can be on tape, disk, or wafer, It
will be shorter than the original file, but nore important, it will load under either Leve] 2 or DISK BASIC, and

it will load directly at its final location, without corrupting location 18944 and w. The loading process can
also afomatically activate the compiler,

A) Backie on tape.

To prepare a core inage tape, on Level 2 or DISK BASIC, you will need either the Southern Software utility
TSAVE, or TRS TBUG. TSAVE is recommended, because it allows you to work in decinal, not HEX, and to check the
saved tapes In this example the memory range you need to save is 42528 to 49151

Using TS&VE, respond as follows!

FILENAME? BACKUP (enter)
RANGE? 43520,49151 (enter)
RANGE? (enter)

START? 43520 (enter)

R (enter)

Tape records..,
Reposition, and twe C, to check tape.

(or your own file name)

(start address, Lo activate cospiler)

This tape can be reloaded by}

SYSTEM (enter)

1?7 BACKUP (enter) (or your own filename)

Tape loads. ..

x? / (enter) (ACCEL3 is now activated, see later)
READY

Note, On Hodel ITI, under DISK BASIC, the

SYSTEM comsand does not function correctly, In effect you camnot load
SYSTEM tapes while in DISK BASIC. :

B) Backwp on Disk.

Co into TRSDOS (or NEWDOS, etc,) fram Level 2 by hittifng RESET. (This will not destroy the stored image of
the compiler),

Tope DUMP ACCEL3/CIM (START=43520,EMD=49151,TRA=43520) i.e, SA to SA ¢+ length of ACCEL3,
(For Model III, these ardresses must be converted to hex).

This file can be reloaded urder TRSDOS by twping LOAD ACCELI/CIN, When you enter Disk BASIC after loading

ggym/cm set HEMORY SIZE to 43520, or to your value of SA, See also later section on LOADING THE COMFILER FROM

C) Backip on Kafer, (EXATRON Stringy Floppy commands assumed).

The address ta save is 43528, with length 5432, and with autostart 43528, Because 43520 is not representable
35 an INTEGER, you will have to tupe it in modulo 45534, i.e, as -22014.

So type BSAVEN,-72014,5432,-22014

This can be reloaded (under Level 2 or DISK BASIC) by PLOADn

i

PO Box 39, Eastieigh, Hants, England, SO5 5WQ

<artware) L

ACCEL3 SUFFLIED OM DISKETTE,

ACCEL] is supplied on disk in relocatable format. You mst use the .disk appropriate to your systes, i.e.
Model I (including Video Genie), or Model III. If you have received the wrorg one, return it imsediately for a
replacement, The final relocated program is the same on all machines, it is only the disk format that differs,
Orce installed, wou can COMERT the saved file from Model I to Model III, but you cannot COMVERT the product
disk. If you have been supplied with a double—sided disk, then the HModel I format is on the front (the labelled
side), while the Model ITI fornat is on the back,

1)Put the ACCEL3 disk in drive §.

2)Press the RESET but¥on (i.e. BOOT the sysiesm),

. 3)The COPYRIGHT notice will appear, Press "ENTER" to install ACCEL3,

4)Answer the address relocation question, To load ACCEL] at the highest suitable address on your systea, simply
hit ENTER, You need only bother with an explicit address if you have other nachine-language routines you want to
have loaded at the same time as ACCEL3, or if you are preparing programs compiled under ACCEL3 to run on a system
with 3 snaller memory size than yours,

S)Note down the address at which the computer says ACCEL] is loaded. Use this as MEMORY SIZE under BASIC.
6)Renove the ACCELI disk and place in drive § your own system disk, i.e. one containing TRSDOS or NEMDOS, etc.
7)Press ENTER. (Do not REBOOT!)

B)The system will now appear o REBOOT, i.e, the operating system will load.
effect; this will be displaved on the screen, but it will NOT have been executed,

It you have an AUTD commend in

9)The relocated core-image file, named ACCEL3/CIM, will be DUMFed autonatically on your system disk. The size
will be slightly smaller than 5632, which is a published upper linit.

10)The DU command has an incompatible format on many operating systems, e.q, DOSFLUS, If OUMP fails at this
point, or wour operating system is incompatible with TRSDOS and DU fails to appear, simply tupe the DU
commard by hand, using the correct address formats, Alternatively, do the OUMF on to a TRSDOS disk, and then COFY
or COMERT the file to your DOSFLUS or NEWDOSB0 disk, etc,

LOADING THE COMFILER FROM DISK,

To use ACCEL3 on future reboots, you can type LOAD ACCEL3/CIM urder TRSDOS (or NEWDOS, etc.) and then enter
DISK BASIC in the normal way, specifying MEMORY SIZE to protect ACCEL3, Orce in DISK PASIC you will have to
activate the compiler, by branching to its first location, as described later. Although the duwped file,
ACCEL3/CIM, specified a TRAnsfer address, it’s no good executing this branch urder DOS (by using the file as a
command), Hheri gou enter BASIC the compiler would get deactivateds Unforiunately, loading the compiler urder D0S
has the danger that the invocation of BASIC itself may corrupt high memory, destroying what you've jist loaded,
TRSO0S on Model I corrupts the tor 64 bytes, while TRSDOS on Model III is even worse, The DO command, if used,
erdangers the top 308 byles, but also there is a charce that if the timer interrupt fires while PASIC is setting
up its stack, then even lower bytes may be corrupted, Ard of course other D0S’s may have their owr quirks,

1) If on TRSDOS, on Model I, always leave the top 64 bytes urwsed, LOAD the compiler urder D0S, enter PASIC, and
then activate it by branchirg to its first location.

2) If on TRSDOS, on Model I1I, do not risk loading uder DOS. Instead enter BASIC (setting the correct protected
merory address) and then load the compiler by CMD “I","ACCEL3/CIM" which loads and brarches to the compiler’s
first location, thus activating it automatically.

ez

PO Box 39. Eastleigh, Hants, England, S05 5WQ

CREATING A SAMFLE PROCRAM,

% ’
) Despite the triviality of the following exaeple, it does illusirate nost of the mechanics of compiling and
saving 3 corpiled prograd, and it should be followed through to corpletion,

Urder Level 2 or DISK BASIC type

AUTD

18 'SAFLE

20 DEFINT I-J

30 FOR I=1 TO 1000:NEXT
40 A8 = A8+ "

58 PRINT J;i A$}

4 J=J+1

78 IF K3 THEN 30

80 S0P

List the program, check it, run it, and change it, if necessary,

Once wou have corpiled i i
longer be able to EDIT it. So SAVE it on tape, or disk. S R

COMFILING THE FROGRAM,

You've got to this point in the scenario after first installing ACCELI from a3 Sout
) hern Software tape or
disk, and you 3y have nade your own backwp copy on tape, disk, or wafer, If you are starting from scratch after
a reboctni., thez, E;dven ? baut.;:w on tape, fodel III disk, or wafer, you should get into BASIC first, with memory
correctiy protected, (either Level 2 PASIC or DISK BASIC), Mow load b i i
avtonatically activated becavse! e M ST e
L3

1) / (enter) after tape load brarches to the START .ackiress.
2) CMD "I","ACCEL3/CIN" branches ta the TRAnsfer address,
3) PLOADn branches to the autostari address,

Alternatively 90U A3y be running directly from the product tape, i.e, you loaded the tape under Level 2, and
90U now want Lo corpile the sarple program, Or, you may have loaded ACCELI/CIN from disk urder DOS on Model I

and you have now entered DISK RASIC, both these cases: t first ” # i i
s T 1'5 you must first "activate” the cospiler by branching to

SYSTEM (enter)

37 /43520 (or your value of SA)
READY

The SYSTEN comsard does not work on Hode] III, under disk PASIC, An alternative is

DEFUSR=4Hstarting-address-in-hex

(or DEFUSR=43520-65534, i,e.
vk 36, 1.e. SA-45534)

Orce ACCEL3 is activated you can execule its builtin commands which are BASIC kewwords, preceded by 3 slash

(/)s (Under NEWDOSSO or DOSPLUS, precede the slash by a blank), To compile, type!

/FIX lenter) (i.e, FIX program in machine-code)

ACTEL3 (C) COPYRIGHT SOUTHERN SOFTHARE 1982

;éf\o:a 141 (These three values are the changing progran size)

i

PO Box 39, Eastieigh, Hants, England, SO5 5 wQ

Use of the word FIX is intended to remind you that your BASIC program has now been irreversibly converted to
machine—code. You cant EDIT it in any way, but you can LIST it. Shown in comparison with the original, it will
look like this!

Corpiled by ACCEL3
10!
20 DEFINTI-J!

Before Corpilation

10 ‘SAPLE

28 DEFINT I-J

30 FOR I=1 TO 18001NEXT
40 A8 = A$ 4 1"

50 PRINT Jj A$}
FEFER!

70 TF JG THN

80 S0P 8¢ ST0P

Notes,

1) Llines in the progras that have been converted to machine-code do not appear in the listing, (The actual
machine—code itself follows the dangling !, but is wprintable),

2) T and J were defined as INTEGERs in line 20, and as 3 result the machire—code compiled by ACCEL3 will be auch
faster than if they had been float variables (SINGLE or DOUBLE),

3) ACCELI compiles line 40, the STRING assignment, although ACCEL would not,

4) DEFINT, and STOP were not corpiled, but the run-time enviromment is smart enough to ensure that the PASIC
interpreter is passed control for these statements, and that its undersianding of any variables they refer to is
the same as that of the compiled code,

RUMNING THE COMPILED FROGRAM.

RN (enter)

021 1x 2 xxx J xxxx 4 ax0xx {program runs)
EREAK IN 80

READY

A second RUN will rerun the progras. GOTO 10 or GOTO 20 will reenter the program without resetting J to § or
A% to rwll, GOTO 30, or a reference to any of the lires that have disappeared will result in an NDEFINED LINE
MUATER message, RUN it aqain, but hit BREAK to interrupl the program before cospletion. Note that this Lhrows you
into READY, without the EREAK IN N nessage. Tgpe ?I;JjA$ to interrogate the current values of the variables, CONT
will not work after BREAK, In a larger program the BREAK hey may arbitrarily "take® in a compiled line, or in an
interpreted line, In the lstter case, CONT will work, In either case the variable values are correct, Type J=2,
and then GOTO 10 to restart execution, with a modified value of J. Turn trace on by tying TRON, and rerun the
programs Only the uncorpiled lires are traced, Turn trace off again with TROFF,

Orce you have cospiled a program, you can ro longer use the commards EDIT, AUTO, DELETE, NAME (renueber), or
HERGE, This is because the machire-code in the compiled lines may contain byles that are treated as control codes
by the interpreter, So use of these commards may cause an infinite loop, or a machire reboot, To get the machire
back to its normal, editable state, you must use NEH or CLOAD, or in DISK PASIC, LOAD or RUN “program-rame". All
of these destroy the compiled program, .

PO Box 39, Eastleigh, Hants, England. S05 5WQ

i

[
SAVING THE COMPILED PROGRAM.

A) On taped

D)Tupe CSWE A" (or any other file nane,

2)Rewind the tape, and check it with CLOAD?

3)Twe CLOAD, and RUN to reload, now, or at a later date,

Notes.

1)To CSAVE or CLOAD 3 compiled program, ACCELI must be active, Otherwise the results will be ueredictable.

2)You can CSAVE or CLOAD an uncoepiled progras, with ACCELI active, without ary restrictions.

3You mst have exactly the same environment in effect when you reload a compiled program, #s when you saved it.

ACCELI must be in the same place, you must be running under the same
operating systen (TRSDOS, NEWDOS
etc), and you must have specified the same number of disk 1/0 buffers. e . i

B)On disk!

1)Type SAE "PROG" (or any other FILESPEC),

2)Type LOAD “FROG* to reload.

3)Twe RN "PROG" to load and run.

Notes, ‘

1)You must have ACCELY active to SAVE or LOAD a compiled program.

2)You must have exactly the same envirorment in effect when wou reload 3 program, as when you saved it, ACCELD

must be in the same place, you must be ruming under the same i
e operating systes (TRSDOS '
nust have specified the same number of disk 1/0 buffers. o i) i

3)File error handling is done by the opd;atinq susten, -m'ch M3y produce messages, !Tq- FILE NOT FOUND,
4)The source file of a program, and the SAVEd compiled program are two very different things. It’s easy to

inadvertently SAVE 3 compiled program using the same name as the source, If i i
3 SAE « If you do this sour
ever, As 3 discipline, use "FROG/BAS" for the source file, and PROG/ACC™ for the mil;d :lj:. FamiE

MEMIRY 1P,

e

1)ROM AND SYSTEN CODE. This includes the 1X ROM supplied with
muduhmhdivlunih@rdmymdw.
systan control blocks, and the Disk Dpersting Systes, it used,
The wper address lies betueen 17880 (under Level2) and 28000
(under TRIDOS, depending on number of 1/0 buffers).

2)BASIC PROCRAM, The program is conpiled in-place by ACCELI,
Depending on the number of coments and blanks, you ATy tind
that wour progran either ooands durimg copilation, or
contracts. An expansion is the norm.

J)SCALARS, This is & table of non-srrey varisbles, including
the names of the vasriables, their twes, and their values
(except STRING values), For an uncorpiled progran, the SCALARS
sre destroved by RN or CLEAR, and then rebuilt incrementally,
as used. But comeilation builds this table pernanently, and
corpiles references to it. This srea effectively becomes 8 part
of the program, and it is ssved on tape or disk, when the
progran is saved,

4)ARRAYS, This is a table of array variables, and it is built
increnentally both by the interpreter and the run-tine routines
in ACCEL3, But ACTEL3 remenbers the address of each array,
after the first reference to it,

S)FREE SPACE, This is what’'s left between the top of the
arrays, and the botton of the stack. khen they neet, OUT OF
MEMORY resulls, Note that compiled code may fail to diagnose
OUT OF MEMORY correctly,

4)STACK, This is used for expression temporary results, for
calls within the run-time routines, for FOR-NEXT and for
COSUB-RETURN, The corpiled code gererally uses less stack than
the interpreter, although neither uses 2 great amount ¢

7)STRING SPACE, This is where strinq valves go. It’s the same
size (the value set by CLEAR N) {n either 3 coepiled or an
interpreted program. However its use is not identical, and
ACCEL] will generally reduce the frequency at which garbage
collection is necessary when strings of equal length are used.

8)RUN-TIME ROUTINES. These must be in protected nmenory, and
they must be in the same place when you atiempt to load and
rerun 3 compiled program, since the program contains direct
references to this code. If you sell or give away corpiled
prograss Lo a third party, wou aust include these routines.

9)COMPTLE-TIME ROUTINES, These routines convert the BASIC
statements into nachine—code., They are not necessary at
rur-tise, and indeed must not be sold or given to any third
party, If wou compile a program on 2 48K machine to run ona
14K or X machine, then you should arrange that these routines
lie just above 12748 and 19152 respectively, This will maxinise
the space available to the rumning program.

SYSTEN

BASIC

ARRAYS

STACK

STRING
SPACE

RUN-TIHE
ROUTINES

COMPTLE-TIME
ROUTIMES

PROTECTED

HIGH

S ES)

PO Box 38, Eastleigh, Hants, England, SO55WQ PO Box 39, Eastleigh, Hants, England, SO5 5WQ

MOFE ON COMPILER ACTTATION.

The TRS-80 LevelZ code in ROM provides a table of transfer addresses through which flow passes at certain
key points in execution. ACCEL3 uses 3 of these to get control in the following situations}

1) At the beginning of execution of each program statement,
2) At the beginnirg of execution of each direct command.
3) After execution of RUN, NEN, CLEAR, LDAD, and END,

Hhen you branch to the starting address of ACCEL3 it enables these traps by putting its own addresses in the
transfer slots. Because ACCELD then gets control on each command or statenent, it is able to swpport new commands
of its own, which it chooses to distinquish with a / prefix. Many other products use 3 similar technique, ACCEL3
atienpis to coexist with these products by preserving the original transfer address, during activation, and
branchirq to it, when it has finished its oun work. Other products wou may want Lo use in conjunction with ACCEL3
nay rot be 5o kind, but may simply overwrite the original transfer address with their owny thus "disabling” any
other product playing the same trick, If you encounter this problem, solve it by activating ACCELI last,

Inadvertent reactivation is ignored by the compiler. Houever, once 3 switch has been enabled, it would be a
disaster if the compiler were destroved in mewory while the switch was still active, So ACCELI suwpporis 3
conmard, /RESTORE, which will reset the transfer values to their original values, i.e, will deactivate itself,
Use this before you overwrite ACCEL3 with another program. Otherwise you can leave it active indefinitely, You
can switch back into TRSDOS, and then re-enter BASIC without destroying ACCEL3, However you will have to
resctivate it, oven if wyou use BASIC % o preserve a comiled or uncorpiled program. You can 3lso load the
core-image of ACCEL3 from within PASIC, if you are running under MEWDOS or HModel III TRSOOS, provided it loads
into protected memory,

At run-tise ACCEL3 determires whether or not the resident program is compiled by looking for a first line
corsisting only af a single colon (3), S0 no source program nay start in this way, When ACCEL3 gets control at
the begimnirg of a PASIC statement, the decision to execute in-line code, rather than to leave a statement to the
interpreter is based on detection of a colon, followed by line—end. Once ACCEL3 has made the switch to in-line
code, this code runs uninterpreted through one or more statements or lines, wntil the next urncompiled statement
is encountered, INTEGER operations, GOTO, GOSUB, and RETURM are therefore uninterrwptable, except by reboat,
However, ror-integer assigny MEXT, array referencing, SET, RESET, POINT, and PRINT, all contsin a "fast” test for
the EREAK key, This throws execution back to READY, and the prograa is not CONTinuable, This trap is not affected
by EREAK disable, and if you want to sippress ity then you should POKE byte S5A#7 with a RETURN instruction
(X'C3"y decimal 201), where 54 is the Starting Address of ACCELD,

Y

CHAINING PROGRAMS FROM DISK,

ACCEL3 allows you Yo chain programs together, i.e. to proceed through 3 sequence of routines, each invoking
the rext from disk, and being overlaid by it, (It does not support the NENDOSB0 option which preserves variable
valves aross RUN), The chaired programs may be either copiled or interpreted, or 2 mixiure, You will need io
detug these segments in an arbitrary order, compiling each ore after it is checked out, and you will not wart to
charge the chaining program, when the program it chains to is compiled,

The best way to achieve this is as follows. Adopt the convention that source programs are named €.q,
FROG1/BAS, while the dmpiled version of the same program is FROGI/ACC, Since you want your final set-up to run
corpiled, use RUN "FROGI/ACC" etc. anwwhere 3 chaining statement appears in a program. While debugging, simely
store @ double copy of each source program, one as PAS and one as ACC. So initially the whole system rurs
nconpiled. MNow, when FROGI is debugged, save its conpiled version aver the top of FROGI/ACC, Your total systea

ill rin as 3 mixtire of copiled and uncompiled routines, while gou gradually check out and corpile the various
sections,

SELLING COMPILED PROGRANS.

One of the major attractions of a BASIC compiler is that it ensbles you to write BASIC programs for sale
which, uith care and tuning, can be comparable in performance with machine-code prograss. Secondly, and no less
important, » compiled program is very difficult to steal, It can be copied, of course, since ary file can be
copied byte for byte, but it cannot be modified, except by the owner of the original source BASIC, And of course
you dont have to release this when you sell 8 compiled progran.

Although tape is an unpopular medium, it has a number of very significant advantages. Casseties are very
cheap, and therefore mpendable or replacesbles They are small and light to post, and will survive violent
handling, unlike diskettes which need a lat of protection, Finally the TRS-88 built in SYSTEM comwmand is palft of
ROM, and therefore consistent on 3ll machines, and it is powerful enough to load any mwber of core-image
segrents directly into RAN, without restriction.

So if you can ship on tape, do so. To produce a self-contained tape you have to save the three address
ranges

a) Control storage, (including program size, memory size, etc). ‘
b) The progras itself, including its dictionsry of scalar (non-array) varlables..
c) The ACCEL3 run-time routines which interface the rumning program to interpretive BASIC.

To save these ranges you will need Southern Software’s TSAVE utility (TBUG is not satisfactory). Relocate
TSAVE in a separate area of protected remory, or betier, prepare an absolute-address copy whi;h will load on top
of the compile-time roustines, after compilation is complete. Invoke TSAVE and give the following responses-

FILENAME? NYPROG
RANGE? 16512,16843
RANGE? 1465484,14435¢
RANGE? 43520,45055

{save control storage)
{save the compiled program)
(save the run-time routines, i.e, 54 to 5A+1534)

RANGE? (enter)
START? 4481 {dumy start address)
R (record)

Notes.

{)locations 14512 to 14843 contain control information such as program start and erd addresses, dictionary size,
MEMORY SIZE, etc. So when the tape is reloaded MEMORY SIZE is automatically set to what it was when the tape was
saved, Also, ACCEL3 is atomatically activated,

2)145981 to 166351 means save the range defined by the valves contained in these locations. This includes the
progran itself, and its dictionary of scalar variables, but not the array varisbles.

To rn the compiled program aou must have the ACCEL run-time routines available, and in the same place as uhen
the program was compiled, These routines constitute the first 13534 bytes of ACCEL3, So the values in this third
range depend on where you originally decided to load the corpiler.

4)If you want the final program to run on a smaller machine than yours, then wou should arrange that the 153%
bytes of rn-time routines fall just within that smaller memory. See the earlier table,

5)0n Video Genie, use the ESCAPE key for upward arrow.
Rether on tape or disk, do MOT save the whole of ACCEL3, or you will be reqarded as infrinqing the

copyright, Also, you must give an acknowledgement in your program documentation that it was cormpiled by Southern
Softuare’s ACCEL, ACCELZ, or ACCEL3.

9 10

W sarware) st

PO Box 39, Eastleigh, Hants, England, SO5 5WQ PO Box 39, Eastleigh, Hants, England, 505 5WQ

' On disi‘n the situation is not so simple, The DU routine provided under TRSDOS (or NEWDOS) will only save 2
single contiguous core image, and it cannot save any range below HEX*7888°. These two restrictions mnake it more
difficult to sell a compiled program 3s 3 single file on disk, What you must do instead is Lo SAVE the compiled
program as described earlier, as a sinqle file, "PROG/ACC" say, and also to DUMP on the sale diskette the
core-inage of the run-time component of ACCEL3, ss a3 separate file, LOADER/CIN, says (Again, do not save the
whole copiler)s This core inage is the first 1534 bytes of wherever you have located ACCEL3,

#s an exarple sppose you want to sell 3 program "PROG/ACC™ to run on a 14K machine (although you have # 3%
nachine), The full sequence is as follows!

“. The required location for ACCELY is 32748-1536 = 31232, Under Level? set this as MEWORY SIZE, load the
original self-relocating version of ACCEL3, and locate it at 3122,

2) Return to TRSDOS and DU this version of ACCELY a3s & core-inage file for wour own use.

g:z;'t" !?19(BASIC setting the MUIBER OF FILES to whatever will be required by PROG/ACC, and the MEMORY SIZE to
a931n.

) LOAD the source for PROG/BAS, compile it, and then SAVE the compiled program as PROG/ACC as described earlier,
but onto a new master disk,

5} Return to TRSDOS and DUMP the run-time companent of ACCELI (just the first 153 bytes) on this new naster

3;&. 35 3 file called LOADER/CTH, say. I.e, DUMP LOWDER/CIM (START=31232,END=327647). Use Mex addresses on Model

8 This.naster disk will now contain two files PROC/ACC and LOADER/CIN, not the full core-inage of ACCEL3, TRS
BACKUP is now a convenient way of naking coples of this disk for sale,

Tour operating instructions must now include the following directions to the end-use! i
r. (Alternatively, you can
automate the procedure with the use of Southern Softuare’s Command-List processor, EXEC), '

1) From TRSDOS load the run-tise routines by LOAD LOADER/CIN,
2) Enter DISK BASIC setting MMEER OF FILES to N (the number you used earlier) and NOORY SIZE to 31232,
3) Activate the loader by SYSTEM (enter) and X? /31232 (or DEFUSR under Model ITI).

»
4) Run the compiled program by RUN "PROG/ACC",

Cautions!

Yqu nay want to provide different instructions for Model III users, e.q. to load and activate LOADER/CIN
from within BASIC using CHD"I", Also, depending on which operating system your end user will have, you nay need
Lo leave e.9, 44 bytes free at the top of memory, to avoid overwriting,

PO Box 39, Eastlelgh, Hants, England, SO5 5SWQ

EXECUTION PERFORMANCE.

The aim of vsing 2 copiler is to improve execution speed, But the compiler cannot do better than the
nachine on which the program runs. The 280 CPU chip is remarkably cheap, relisble, and fast, bt it lacks many
cowon operations (such as multiply and divide), These have to be executed via calls to ROM routines which
provide the required function (e.q. multiply by successive additions), and this is of course relatively slow, The
corplex table at the end of this section is a quide to what features can be inproved by corpilation, and by how
mch, It remains one of the programmer’s tasks (unfortunately), to match the requirements of the problen to the
capabilities of the underlying computing sustem, The extra effort needed to optimise performance could be thought
of as a form of machine—code prograaming. It can produce results comparable in perfornance with real assembler
lanquage coding, but it s incomparably easier; because debugaing is in BASIC, using PRINT statements, TRACE,
(17

The result of compilation is 2 program which is a nixture of BASIC statements and directly executing 188
machine—code instructions, The 780 can execute branches and subroutine calls, and can perform logic and
arithmetic l(excluding multiply and divide) on INTEGERs, but not on SINGLE or DOUBLE precision floating-point
mumbers, Nor can it directly manipulate the internal form of BASIC strings, although it can move sirips of bytes
from one variable to another quite efficiently, (The difficulty with strings is that their lergths vary
dynanically). So ACCELI translates many statements to sequences of calls to routines in ROM, or to its own
rurtine component,

In addition to the actual execution of the program operations, there is the "resolution” of the variable
names and lineruebers, Here 3 compiler comes into its own, The BASIC interpreter resolves each name by 3
sequential search through its dictionary (table of variables), every time the varisble is referenced during
erecution. In contrast the compiler allocates storage for the variable once during compilation, and then replaces
each conpiled reference by a direct sachine address, rather than a dictionary search. Similarly each refererce to
2 line number in COTD or GOSUB translates to a simele branch address, whereas the PASIC interpreter has to search
the program sequentially from the top to find the target line,

One effect of BASIC's twc forms of sequential search is that the rurning time of 3 program depends on how
large it is, The more variables you have in your program, then the lorger the average time taken to find each
one, and the more lines in your program, the longer it takes to execute each GOTO or COSUB, The speed of the
corpiled code, on the other hand, is independent of program size and rumber of variables. This means that it is
quite impossible ever to aske a firm statement about relative performance, since you carnot say how long a3
statement such as A = B + C will take under the interpreter. It depends on context, Similar arguments apply to
program size before and after corpilation. Programs aay contain REMarks and blanks, BASIC names can be any
length. After compilation 3ll these uncertainties disappear - the REMarks ard blanks are removed (from translated
code) and the variable and line references are all two-byte addresses.

is in one sense very pessimistic, The timings were 3ll taken on the smallest
program in which they could be measured, i.e, a simple FOR-loop. There were no blarks or remarks in the source,
and the names were all two bytes long. The performarce irprovement measured for GOTO, for example, is 214 to 1.
In a large program this would be even greater. But the catch is that this figure nay be irrelevant. Because the
directly executing operations are so fast, they scarcely contribute to the ewecution total at all, and
performarce becomes dominated by those operations that are rot cowiled, e.q, READ, by the out-of-line
subroutines, e.q. Multiply, or by 1/0.

So the table that follows

Apart from indicating performance gains the table also summarises those larqguage features that ACCEL3 will
optinise, rather then leave to BASIC. SAVE, CSAVE, CLOAD, and RESTORE are also translaled, but for expediency
rather than as a performance improvenent,

s eskenerny

PO Box 39, Fastleigh, Hants, England, SOS SWQ

SPEED/SPACE Porformance Table.

Speed Improvement(Ratio) Operation Space Degradation(Bytes)
INT SNG oeL SR w NG oeL SR
178] i} 7.3 Assignment (LET) -4 L]] L]
3.3 3.4 3.4 3.5 Array Reference (1-din) 13 13 13 13
3.8 3.8 3.4 3.8 Array Reference (2-din) 12 12 12 12
k] 1.8 1.6 M0, R 4 7 7
3 2.8 1.4 8.8 Compare (=) 3 1 19 K]
v 1.8 1.4 3,4 Add, Concatenate (¢) i)) 2
L} 1.8 1,3 Subtract {-) 4 6)
1.5 1.3 1.4 Multiply (x) 4 4 é
1.8 1,17 1.82 Divide (/)] é)
n 7 84 9.3 Constant Reference] [) 4 4
7.4 1.9 FOR-NEXT é 3
111 6.8 4.8 POKE -5 5]
18 4.5 3.6 SET, RESET = H S
7 4.4 30 8.1 IF THEN ELSE 3 1] 9 3
k<] 4.3 3.5 ON expression GOTO -2 ¢ []
50 6.8 S ON expression GOSUB] 3 3
1.2 1.0 1.3 1.2 PRINT simple-variable =1 -1 -1 -1
81 5.8 37 ot H 11 11
Flow of Control
214 =4 -1
74 COSUB/RETURN -10
functions
inf inf inf inf VARPTR -3 -3 -3 -3
5.2 1.9 1.7 POINT 3 ? 9
38 2.3 2.8 bt S 8 8
149 2.3 2.0 : PCEX‘ , [] 3 3
String Functions
53 ASC 5
258 LEN L
4.8 LEFTS 1
4.7 RIGHTS i
6.4 KID$ 2
5 CiR$]
% oI]
16 KIS]
7.4 cvs]
o] HSs]
S.4 o]
14 W !

ez

13

PO Box 39, Eastleigh, Hants, England, 505 5WQ

Disclainers-

1) Absolutely no comitment is implied by these figures. They are subject to all sorts of variability, E.q the
tine to reference & constant depends on the actual value of the constant.

2) Speed ratios for STRING operations depend on the lengths of the sirings, whether the siring is 3 program
constant (s literal), vhether the receiving string is the same length as the source string, etc. In measurement
tbyte strings vere used.

3) Use of “inf" {infinity) in the table means that the ratio could not be neasured meanirgfully. I.e. the
reference to VARPTR(X) in a BASIC program takes longer than the reference to X alone. But in a compiled program,
VARPTR(X) is actually faster than the reference to X,

4) Neqative numbers in the space table mean that the compiled code occupied less space than the original., These
nubers are based on the assuption that one statement per line is vsed, GOTOS008 occupies 10 bytes in BASIC (5
for the line overhead, 1 for the GOTO kewword, and 4 for the line nueber), In compiled code this becomes a simgle
Fbyte instruction.

5) When a8 program is cospiled there is a one-time overhead of asbout 30 bytes. So small programs will appear
pessinistic, copared with the table. Also scalar variables become "part” of the progras when it is corpiled, so
use of MEM {mmediately after compilstion will give apparently pessimistic results.

4) ACCEL3 is very different from ACCEL and ACCELZ in its treatment of both lines and expressiors. Coupled with
the difficulty of taking meaningful measurements, this has resulted in some large differences in the aquoted speed
ratioss Generally, the large ratios should not be read literally, except to note that they are “large",
Significant differences between ACCELD and ACCEL2 are that FOR-MEXT and 1-dim array references are slower, while
IF THEN ELSE, OUT, INP, SINGLE and DOURLE assigrwent and the string conversion functions (CVS etc.) are faster.

PROGRAMMING EXAMPLES,

These examples illustrate specific advantages that can be achieved by compilation. The first progras allows
you to produce musical notes from 3 BASIC program via the tape output port. In its uncorpiled form the program
runs 50 slowly that the wavefora generated sounds like 3 series of blips, much like a Geiger—counter. Compiled, 3
top note of two octaves above middle C (1824 cycles) is easily achieved. In fact the progras uncoreiled runs for
16 mins 34 secs, while compiled it takes only 10 seconds.

The second example is much more worthwhile. Every business application involves some degree of validation of
the keyed irput, This validation has to meet two conflicting requirements. First, it must diagrose any detectable
errors immediately, and request the operator to rekey. Second, 3lthough this validation code may be quite
complex, it must not be so slow that it causes the loss of any operator keystrokes. Apart from introducing
errors, this has the effect of causing the operator to stumble, and lose confiderce, So in this second example we
are not looking for start-to-end speed-ups as the result of cospilation. Rather, we are looking for better human
factors.,

These sarple programs, and possibly other sample test-—cases, may or may not be included on the tape or disk
yos received from Southern Software, On tape they will be standard CLOAD files on the reverse (unlabelled) side

of the tape, On disk the initisl boot-p menw may give an action code to install them on your system disk. If
other samples are included, then their runnirg instructions will appear as comeents at head of the progran.

[T ecuzney

PO Box 39, Eastleigh, Hants, England, SO5 5WQ

M

=S

A) SINGLE-NOTE MUSIC MAKER,

The tape output is port number 255, You can drive this from a BASIC prograsm by the statement OUT 753,X
where X is a2 value sent to the port. If the least significant bit of X is § then the tape signal latch goes low,
It it is 1 then it qoes high. So by driving it alternately high and low you cen gererate s square wave. The
frequency of this wave will control the pitch you hear, if you put the signal through an audio aelifier. The
lerath of the note is decided by how long you mske the loop, The volume canrot be altered,

Notes-

1)The tare output signal is an the larger grey jack.

2)A square—vave makes 3 nasty "electronic” sourd, You can imrove the sweetness by putting it throwgh s circuit
with 3 poor response to high frequency, e.q. 2000 c/s naximum,

3)The delay values which control the pitch do not give 3 wifora table, This is because the inner
non-linear overhead which itself depends on the frequency,

loop has @

4)0n the Model ITI the timer is not disabled by CMD"T", The timer interrupts produce 3 crackle, which can be
elininated by calling 3 USR routine to disable interrupts, This routine is two bytes fong, X'FI’ (disable) and
X‘C9’ (return).

The Program-

10 "SINGLE NOTE MUSIC MAKER, USING TAPE QUTFUT PORT

20 DEFINT A-2

30 DIN P(100),L(100)

40 ‘PITCH OF NOTES, FOR 3 OCTAVES, 128 TO 1024 C/S APPROX,
St’C C¢ D DEE F FE G Gb A AP B C

40 ‘784,2¢8,258,236,223,208,196,183,172, 141,152, 144,124

70 "134,126,118,111,104, 97, 90, 85, 78, 73, 48, 43, 59

80’ 59, 55, §1, 47, 43, 9, %, ;, 31, 29, 26, 24, 2

96 READ N 'MAMEER OF NOTES TO PLAY

100 DATA 23

110 “TAKE A PAIR OF SPARKLING EYES

120 PITCH OF NOTE, FOR THIS TUME

130 DATA 134,104,85,73,43,59,59,43,73,85 +73,104,118,97,%7,104,118,134,134
140 "LENGTH OF NOTE PLAYED, IN OQUAVERS, TIVE MEANS REST
150 DATA 2,1,2,1,2,1,4,1,1,2,1,2,1,4,1,1,2,1,1,1,1,4,-2

160 FOR I=1 TO NIREAD P(I)INEXT ‘PITCHES

170 FOR I=1 70 NiREAD L(I)INEXT ’'LENGTHS

180 FOR CC=1 10 2 ‘PLAY 2 PHRASES

196 FOR C=1 TO N ‘PLAY N NOTES

200 LL=0SLH=L(C) "LENGTH OF NOTE, IN QUAVERS

210 R=111F LM<D THEN R=0:LM=-LH 'REST?

220 I=01K=P(C)iL=Kin=0

230 OUT 255,M ‘OQUTPUT SIGNAL, ODD=HICH, EVEN=LOW

290 T=I+1001F I<L THEN 240 ‘DELAY, TO FRODUCE PITCH

250 L=L+KIH=RH “SNITCH WAVEFORM SIGNAL

260 IF 1710000 THEM 230 'FLAY OME QUAVER. (CHANGE THIS CONSTANT TO ALTER SPEED OF HUSIC)
270 LLAL+1IIF LLAK THEN 220 ‘ANDTHER QUAVER WITHIN THIS NOTE?
280 NEXT C 'NEXT NOTE

270 MEXT CC “NEXT PHRASE

300 END

PO Box 39, Eastleigh, Hants, England, SOS SWQ

B) INFUT VALIDATION,

This program collects 8 Work Order specification for the hupothetical ACHE fre!qht corpany, The first ineut
ftield is a customer account number, validated for length, for w:nerics onl':.c. a aqa}nst.a Hodulus-11 check.'ih:
this progran runs under interpretive BASIC, a very fast twist can e.xxt {rom this field and lose the firs
character of the next field by keying the second character before the validation completes successfully,

field is a two—character US State code. The program checks this invut- 293inst a table of the 50
possil:\: vﬁﬁ. This is a very common form of validation. Other examples are .coqux'.s type codes, insurance
classifications, tax codings, etc. In this case, although an early code like CAlifornia causes no problens, the
table 1is sufficiently long that 8 search for e.q. KYoning causes 2 visiblg delay, and 2 or 3 Pkeystrokes can
easily be lost from the next field. In effect the operator must stop and wait for validation tolcwleh bg!uu
keying the next field, Corpilation solves this important human problem, although of course it nskes little

difference to the overall throughput.
The Program—

10 "DATA VALIDATION EXAWPLE - FREIGHT ROUTING
29 CLEAR 1000
39 DEFSTR A-H,S-ZIDEFINT I-N
49 DIN SC(58) ‘STATE CODE
56 GOSUB 330 ‘INITIALISE
40 CLSIPRINT @16, “ACHE FREIGHT COMPANY - HORK ORDER™
79 PRINT 2138, "ENTER CUSTOMER NUMEER! "]CHR$(30);
CUsT™™MO
Z:UX?HLEN(UBW)OS THEN FRINT 2970,"CUSTOMER MUMPER MOT 5 DICITS™{CHR$(20);1GOT0 70
118 HODSM=0
120 FR I=1 10 S
CN=HID$ (CUSTNO, I, 1)
}3: IF ONC'8™ OR D’O"“?" THEN FRINT @979, “NON-NUMERIC DATA IN CUSTOMER NUMEER";CHR$(30)71GOTO 70
150 MODSUM=HODSUM+ASC(CN)—468 ‘COMPUTE MODULUS-11 CHEDX
i?: gx!um&mwmomn THEN PRINT @970, "CUSTOMER MAEER FAILED MODULUS CHECK“;CHR$(30);:GOTO 70
180 PRINT @976,CHR$(30)} 'CLEAR ERROR MESSAGE, IF ANY
199 FRINT @264, ENTER DESTINATION (STATE)!: ";OHR$(30);
210 INPUT STATE
220 FOR I=1 10 58
230 IF STATE=SC(I) THEN GOTO 240 'FOUND IT
249 NEXT
250 PRINT 2970, "INVALID STATE CODE";CHR$(30);1G0T0 199
280 PRINT 2970,CHR$(30); 'CLEAR ERROR MESSAGE, IF ANY
270 PRINT @394,"ENTER GOODS CLASSIFICATION: "}
280 INPUT GOODS
298 PRINT @522,"END OF TEST CASE. HIT ENTER TO RERUN, "}
309 INPUT XIGOTO 40
330 ' INITIALISATION
340 FOR I=1 70 58
350 READ SC(I) ‘READ IN STATE CODES

360 NEXT

379 RETURN

380 DATA AL,AR,AS,CA,CO,CN, O, 0C,FL, GA, HA, 1D, IL, IN, 1O, KA, KY , LA, HE , HD, 148, NI HT , 1, MR, KT, MR, BV, M, NJ, N1, NY, MC, MO,
OH, 0K, OR,FA,RT,SC,SD, TN, TX, UT, VT, VA, kA, W/, KT, KY

18

Soft

PO Box 39, Eastleigh. Hants, England, SO55WQ

are)

* PERFORMANCE HINTS. o

Nothing the compiler can do will speed wp 10 devices - disk, tape, printer, or kesboard, But for processing
linited by mutaﬁm the following are good rules!

1) Always use INTEGER data tupes whenever possible; since these are the only data elements the CPU can manipulate
directly, You can qualify variable nawes with I o mske them INTEGERs, but better is to get into the habit of
coding €.g. DEFINT I-P at the head of each prograa.

2) Because FOR-NEXT processing has to be "defensive", in terss of handling badly-behaved loops, it transpires
that a prograsmed loop (e.g. I=I+1!IF I<100 THEM GOTO n) is very much faster, So it may be worth using such 8
{echnique on critical inner loops.

3) Avoid continually processing DATA with READ statements. Rather, READ the dats values once into an srray and
process from that., This avoids the very considerable overhead of conwverting the DATA constants from character ta
numeric on every use.

4) There is 3 well-known execution "hicowp” caused by string space “garbage collection”, (recovery of free
space)s ACCELY does not affect the actual garbage collection process, but it does atlempt t{o minimise its
frequency of occurrence, by avolding string space allocstion if possible, In particular, if string sizes match in
assignment, then a spectacular improvement may result,

5) Keystroke polling, The key overrun example earlier showed how it was possible for ACCEL3 to substantially
improve the keying characteristics of a programy by reducing the processing lime between INPUT statements.
However there is one situation where the coepiled program ney appear io behave worse., Suppose you have 3
real-tise simulation, such as a qame like Space Invaders, where your program continually wpdates the screen and
periodically palls the keyboard, using the INKEY$ function. If DMEY$ is rwll, wou loop round and perform the
next wpdate. If this update is both long and fully compiled, then it is possible that the plaver may depress and
release 3 key in betueen the INEY$ polls, In this case the keystroke is lost. Interpretive BASIC reduces the
charce of this by polling the kewboard at the beqinning of every statement (whether or not it asks for input),
The cost of this poll is high - in a graphics test case, putting the poll into compiled code actually slowed down
the program by 2 factor of 3, So it is omitted from cospiled code, but included in uncospiled statements. (In any
case, it's not a2 perfect solution, Interpreted BASIC may slso lose keystrokes)s If you have a cospiled progran
that you believe suffers from this problea, then precede some of the compiled statements in the wdate loop with
3 colon (1), to force the poll to take place more often,

COMMON PITFALLS. *

1) Harny programs have loops that are simply there to delay the process, e.9, to nske 3 "ball" moving on the
screen qo more slowly, Either lengthen these locps when the program is compiled, or vuse a SINGLE variable
FOR-LOOP containing 3 very slow operation, like DOUBLE divide, which will suame the compile speed—wg,

2) 180 GOTO 100 is a common way of terminating 3 program to avoid the READY message corruptirg the screen.
This loop canrot be interrupted by the BREAK key, and will need RESET, Instead use e.q. 100 :GOTO 188

3) If you choose different MEMORY SIZE settings from the exsmple qiven in the text,
compiler elsewhere in memory, then be sure the address arithmetic
out on paper first, and type it in from the written copy.

or if you position the
is correct. This is very error-prore. Nork it

4) Hhen you have compiled a program, do not use the editing commands, 'since they will produce completely:

weredictable results. Always reset the nachine state with NEN, LOAD, or CLOAD.

5) It is common practice to use DATA statemenis as 3 source of verisble data, I.e. after running the program once
you EDIT new values into the DATA statements for the next rum, This isn’t possible once the progras is corpiled,
Instead you have to modify the source and recorpiles

17

NOEXFR OPTION.

ACCEL supports 8 compile-time option which mininises the level of optinisation. Code the single line-
REM NOEXPR

in front of the section vhere optimisation is to be minimised, You can turn optinisation back on with!
REM EXFR
There are & number of reasons for using REN NOEXFR in front of part of 3 programi
1)1 that section contains extended non-Tandy lanquage, then this may be 2 way of having it execute successfully.

2)The section nay mske use of ON ERROR GOTO. This may fail in an optimised section because either the error nay
not be correctly diagnosed, or, if it is, the error line number may not be up-to-date, so RESUME will rot work,

3)To aininise code expansion, Since code evpansion is not great with ACCEL3, this use is less important than it
was with ACCEL2, However, array references in particular give quite 3 lot of compiled code, and in 3
non-per formance—critical section you may prefer to have these interpreted.

4)If the compiled program fails. This might be due to integer overflow, for exarple, Freceding the program with
REM NOEXFR may either make it easier to trace by running with trace on {TRON), or aay eliminate it, in which case
it can be identified by liniting optimisation to a section at a time,

REM NOEXFR inhibits compilation of all statements except GOTO, GOSUB, RETURN, FOR, MEXT, ON expr, ard IF
THEN ELSE (although the statements after THEN and ELSE are uncompiled). Alsa SAVE, CSAVE, and RESTORE are aluays
compiled, All of the above have to be compiled for the program to retain its integrity, However this does mean
that if you have an uncospilable non-Tandy lanquage extension, you cant ever use it in an ON, IF, or FOR
evpression, Also, if such expressions fail through INTEGER overflow, you wont elininate the problem with REM
NOEXPR.

It is also inevitable that some mon-Tandy language extensions will always fail. For instance GOSUB X, where
X is a variable containing a dunamically varying line ruwber, would not be urderstood by ACCEL3, and could rnot
work, The extensions that function correctly rely on the fact that ACCEL3 will pass 3 string of unrecognised
bytes to the interpreter. Since ACCEL maintains the run-time variable dictiorary exactly as the interpreter
expects, such statements or expressions will work, if that’s all they deperd on, Bul ACCEL3 does not maintain
either the LINE structure of the program, nor the run-time stack, in 3 compatible form.

it will pass just that reference to
is SINGLE. This nay be

If ACCEL3 finds an unrecognised function reference within an expression
the interpreter. However it assimes that the data type resuliing from that reference
wrorg, and in this case make sure the reference is protected with REM NOEXPR,

COMPILE-TIME MESSAGES.

These are messages you may get when compiling a program with ACCEL3.

0UT OF MEMORY, Compiler could not complete.

ILLECAL FUNCTION, Disallowed statement, e.q. DELETE,

UNDEFINED LINE. Bad line number referenced in GOTO, GOSUR, RUN, etc.

SYNTAX ERROR. Corpiler cant parse the line.

TYPE HISHATCH, Statement implies STRING/numeric data mismatch.

HISSING OFERAND, Check the syntax,

STRING FORMULA TOO COMFLEX. ACCEL3’s restriction is tighter than the interpreter. Break the statement down,

BEILFSR

[ssrtware)

PO Box 39, Eastiefgh, Hants, England, SOS5 5WQ

J st

Box 39, Eastleigh, Hants, England, SO55WQ

L spenerny

The result of any error found at compile-time will be to leave the progran in an indeterninate state, Dont
even atterpt to LIST it. Note down the error line number, and reload tha'oriqiml.

During compilation 3 numbers are displaved, These are put out chiefly as an 3id to see how compilation is
progressing, The first is the size (in bytes) of the original PASIC program, The next 2 are the sizes of the
program after the two corpiler passes aver the program.

FASS 1 builds the variable dictionary, and modifies some of the source statements, e.9, DATA statements are noved
to the backs It removes REMarks and redundant blanks, so the program size will usually qo down,

PASS Z actually comspiles the code, and is the one that evpands the text.

RESTRICTIONS.

Experience of users of ACCEL and ACCELZ has shown that some prograns working under PASIC may fail in
execution, or even in compilation, These failures were almost aluays due to the program infringing one or more of
the restrictions below, rather than as a result of a compiler bug. So if you encounter a probles, believe that it
is as a result of a restriction, and identify the problen by tracing the program, inserting diagnostic PRINT
statements, or by bresking the progras down into segrents,

Certainly users who create a program from scratch, compiling occasionally as they go to check progress
rarely suffer any real constraints, ACCELI relies on your program obeying certain BASIC rules which are not
checred by the interpreter, and indeed are not necessarily documented in the TANDY narwal, fn exarple is the
"strength reduction” applied by the interpreter, If two INTEGER variables are added, their result nay exceed the
naxime INTEGCER size (32747), In this case the interpreter turns the temporary result into 2 float (SINGLE)
varisble. No compiler can afford to produce code Lo check for this contingercy, and indeed it is certain that the
original BASIC language designers would have reqarded this as an error, Unfortunately the effect here is that
copiled and uncompiled programs can give differing results,

1) Mo redefinition of meaning of names.

The names in your program mst mean the same whether the program is
or executed dynamically, as the interpreter sees it, The ambiguity applies only to names that take the DEFined
data tye by default, Mames like IX or 5$(3) are always consistent, An exarple of 3 disallowed name is I=1!DEFINT
LiI=1, The interpreter will treat the first I 3as SINGLE, and the second as INTEGER. The compiler will treat both
3s INTEGER, i.e, it sees DEFINT as applyinf to the whole program,

read globally as the compiler sees it,

You are unlikely ever to do this suri of thing deliberately, but it can come about, e.q. if CLEAR i¢ used
othgr than at the top of the program, CLEAR resets variables types to default (SINGLE), and may therefore cause 3
variable to change from INTEGER to SINGLE without your meaning it to, A comon error is-

18 DEFINT I-N
20 CLEAR 1000

2) Current line-nusber is not maintained.

‘ Lines which start with statements that have been corpiled to nachine—code do not wpdate the current
line-rawber, Therefore BASIC diagrostic nessages may be misleading, TRON will give an incomplete trace.

3) Error behaviour is not necessarily consistent,

Out-of-range arqueents to string finctions (e.q. HID$ offset and length) are rounded modulo 254,
out-of-range in ON statements are treated as zero, not errors, Out-nf-memary nay rot be diagrosed at rurtime,
ang may cavse a wild branch, or 3 rebool, Your program may contain errors which BASIC does not diagnose, but
shich the compiler will reject, for instarce bad syntax in an ELSE clause which is never executed. Some error
diagosis will be isprecise, e,q, RETURN WITHOUT GOSUR is diagrosed as MEXT HITHOUT FOR, (Roth are syptoms of an
erpty stack). IF (A=R) {00 is treated by the interpreter as IF (A=B) THEN GOTO 100, ACCEL3 carrot handle this,

EEmmm,

PO Box 39, Eastleigh, Hants, England, SO5 5WQ

Values

i

although it will accept IF expr THEN 100, IF expr GOTO 100, or IF expr FRINT A, etc.

INTEGER OVERFLOW is not necessarily diagnosed. It is rarely caused by addition or subtraction, but may come
about through multiplication, which IS diagnosed, tut possibly with the wrong line-ramber, E.g. A = PEEK(I) + 254
X PEEK(I+1) is twpically used to calculate 3 STRING address, and will overflow if the address is in the upper
half of memory, i.e. PEEX(I+1) is greater than 127, Correct the problem by forcirg one of the arqueents to be
SM‘ €Q 25648 1 PEEK{I+1),

In general, programmed error hardling (i,e, the use of (N ERROR) is suspect, This is firstly because the
error you are trying to trap may not be caught by the compiled code at all. But secordly, even if the error is
trapped, the current line number may be out-of-date, i.e. it is the last uncorpiled line. So RESUME nay cause a
loop. Actually, this problem is not as severe as il sounds, because in practice ON ERROR GOTO is almost always
used in conjunction with 170 statements to detect FILE NOT FOUND, DISK FULL, INFUT PEYOND END OF FILE, etc, Since
1/0 is not compiled, the error trap will work.]

4) A first program line of 2 single colon is disallowed.

5) Compiled programs may not be EDITED.

#hen the aachine holds a corpiled program you may not use the commards EDIT, AUTO, DELETE, MERGE, and NAME,
and obviously these must not appear in a program you try to compile. (This gives an ILLEGAL FUNCTION diagnostic),
In addition GOSUB should not be used as keyboard (i.e, direct) command.

6) Operational differences,

You cant arbitrarily GOTO or RW any line of the compiled program, only those lires that haven’t been
optinised, (To force a line N to retain its BASIC lire rumber, simply put RUN N or RESUME N somewhere harmless in
the program), BREAK may “take” in an interpreted lire, in which case CONTirwe may work. Or BREAK may be delected
by the ACCEL3 library, in which case control goes ta READY, Or EREAK may rot take at all, e.q, in 3 tight GOTO
loops Then you have to reboot.

7) Saving and Loading compiled programs,

Compiled programs contain address references to bath varisbles and to code. These will only work if the
program 5 reloaded (from tape or disk) at evactly the same address. (The run-time library must be at the same
address as well), In effect always use the same envirorment as when the program was saved, SAVE and CSAME can
only be used in direct mode and A3y not appear in a compiled program. SAVE and CSAVE of 2 compiled program are
only supporied for a literal file name; e,q, SAE "PROG". SAVE expr will rot work, Owirg to an incompatibility
between NENDOS80 and TRSDOS, a compiled program has to be specially reformatted before SAVE or CSAVE, gqiving a
significant delay on @ large program. Also SAVE and CSAVE cause all varisbles to be cleared, ard after LOAD ard
CLOAD you cannot LIST the program or execute GOTO to a line, until some other operation has heen performed,

8) Complexity of STRING expressions,

ACCEL] is more restrictive than the interpreter on how complex STRING expressions can be. This is diagnosed
at compile-time, and if it occurs break the statement down into separate statements.

9) Keyboard Foll,

Corpiled code does rot poll the hegoard, This may cause cause different operator characteristics, for
instance 3 delay in accepting 3 keystroke, or failure to pause a scrolled display, You can force the poll by
irserting a3 colon at the front of a lire.

ACCELD is distributed on an “"as is" basis, without warranty, Mo liability or resporsibility is accepted for loss
of business caused, or alleged to be caused by its use,

PO Box 39, Eastleigh, Hants, England, 505 5WQ

