Users Manual

Algorithmic Associates

3D USERS MANUAL
Version 1.1

A three-dimensional graphic animation package

for the TRS-80%

Algorithmic Associates extends thanks to Kari Denzau,

Carnegie-Mellon University, for the cover design.

3D was designed and implemented by Tom Konchan,
Harvard University. The hidden line removal
algorithm was designed with assistance from Aviel

Klausner, Harvard University.

Algorithmic Associates

AN
ﬂ PO Box 244
A\ Bedford, MA 01730

*TRS-80 is a trademark of the Tandy Corporationm.

Developed and distributed by:

AN\ Algorithmic Associates
PO Box 244
AAN Bedford, MA 01730

3D Users Manual: Copyright 1982 ALGORITHMIC ASSOCIATES. All rights reserved.

No part of this Users Manual may be reproduced in any form or by any means

without express written consent of ALGORITHMIC ASSOCIATES.

3D Software Package: Copyright 1982 ALGORITHMIC ASSOCIATES. All rights

reserved.

All portions of this software package are copyrighted and are the proprietary
and trade secret information of ALGORITHMIC ASSOCIATES. Reproduction or publi-
cation of any portion of this software package without express written consent

of ALGORITHMIC ASSOCIATES is strictly prohibited.

DISCLAIMER

ALGORITHMIC ASSOCIATES makes no representations or warranties with respect to
the contents of this Users Manual or with respect to the software package
described herein, and specifically disclaims any implied warranties with re-
spect to its quality, performance, merchantability, or fitness for any partic-

ular use.

TABLE OF CONTENTS

s Introduction

2. 3D Concept

3. 3D Primitives

4. Loading 3D From Tape

5a Using 3D From BASIC

6. Using 3D From Assembly Language
Is Error Handling

8. Hidden Line Concept

Appendix A - 3D Memory Map

Appendix B - 3D Object Definition Space and Screen Space

16

19

24

28

31

32

33

1. INTRODUCTION
3D gives your TRS-80 the power of three-dimensional animation. 3D extends
BASIC (or Assembly Language) with high-level primitives that are powerful and
easy to use. These primitives enable you to quickly create programs for user-

interactive three-dimensional animation applications. 3D has several features:

Graphics

3D enables you to define three-dimensional and two-dimensional objects.
These objects can be scaled, rotated, displaced, and projected onto the CRT.
Any number of objects may be displayed simultaneously. Objects are displayed
as aesthetically as possible using the highest degree of resolution available

on the TRS-80.

Animation
3D provides for smcoth movement of objects. The average animation speed
is from 5 to 20 frames per second depending upon the complexity of the objects

and the program.

Easy to Use

3D is easy to understand because it supports consistent, intuitive repre-
sentations of objects and their movement. Definitions of the high-level
primitives in 3D are logical and completely documented. Examples of how to
use 3D are given in simple, but extensive, demonstration programs. Programs

using 3D are short and are developed quickly.
Power
3D performs fast, three-dimensional animation in a manner that utilizes

the resources of the TRS-80 productively.

User Interactive

3D supports interactive applications programs such as those that allow end-

users to define and manipulate objects during program execution.

Efficient
3D is efficient in three aspects: (i) programming efficient - it helps
you to develop programs rapidly, (ii) time efficient - 3D is written in Assembly

Language; it executes quickly, and supports non-flickering animation of multiple,

Page 1

complex objects, and (iii) space efficient - 3D primitives, including space for
definitions of objects, occupy about 5,000 bytes of memory, and calling programs

tend to be short due to 3D's high-level primitives.

Basic Extension

All the features of BASIC are still available. 3D gives you all the power
of three-dimensional animation without having to learn a new programming language.
3D can, also be used from Assembly Language for those applications requiring

the utmost in space and time efficiency.

3D is mastered quickly by those familiar with BASIC. First-time users
should read Section 4, "Loading 3D From Tape" and should run the four demon-
stration programs shown thefe. The remaining sections, except Section 6, "Using
3D from Assembly Language," should be read before writing your first program (or

before altering the demos —- a quick way of becoming acclimated to 3D).

Page 2

2. 3D CONCEPT

3D relies on eight high-level primitives to accomplish graphic animation.
These primitives are: INITIALIZE, DEFPOINT, DEFSURFACE, DEFLINE, CLEAR, PLACE,
DISPLAY, and DRAW. These primitives are defined in Section 3, but an intuitive

explanation of their use is given here.

Each primitive requires several input parameters. The parameters are
BASIC variables that can be assigned values in the normal ways supported by
BASIC. For example, the DEFPOINT primitive has three parameters, X1Z, Y17%, and
71%, corresponding to the X-coordinate, Y-coordinate, and Z-coordinate of the
point being defined. Here X1%, Y1%Z, and Z1% are BASIC variables of type integer.
Values are assigned to these variables prior to calling DEFPOINT. The result

of the call is a new point added to the object being defined.

The 3D concept is easily described using an example. Consider a BASIC
program that defines and manipulates a cube. The program begins by calling the
INITIALIZE primitive. This primitive initalizes 3D and builds a symbol table
so that 3D can find the BASIC variables used as parameters. Next, the program
defines the cube using the three definition primitives: DEFPOINT, DEFSURFACE,
and DEFLINE. The definition of the cube is performed by: (i) calling DEFPOINT
8 times, each time defining a different corner point on the cube, then
(ii) calling DEFSURFACE 6 times, each time defining a different surface,
finally, (iii) calling DEFLINE 12 times to define the lines that comnect the

corners of the cube.

Now the cube can be manipulated. First, the position, rotation, and scale
parameters are set. - Then the CLEAR primitive is used to clear the virtual
screen —- an area in memory where the image is created. Next, the PLACE primi-
tive is used to place the cube on the virtual screen with the orientation and
at the position specified by the parameters. Finally, the DISPLAY primitive
is used to copy the contents of the virtual screen to the CRT where it can be
seen. Although the use of a virtual screen adds an extra step to the program,

its use guarantees flicker-free animation.

At this point, the program is displaying one frame of the animation. To

move the cube, the position and orientation parameters for the object are

Page 3

changed and then control must loop back to the step in which CLEAR was called.

Put simply, the 3D concept is as follows:

STEP ACTION

1 INITIALIZE 3D

2 DEFine one or more objects

3 Set the position and orientation parameters for the

object

CLEAR the virtual screen

PLACE one or more objects on the virtual screen
DISPLAY the virtual screen

Change the position and orientation parameters

GOTO Step 4

0 N O B

Because the parameters are BASIC variables, they can be altered in any of
the ways supported by BASIC. For example, the BASIC statements INPUT and INKEY
may be used in the program to allow the end-user of the program to interact
with the animation in real-time. Several demonstrations included in this manual

illustrate this point.

The BASIC statements PRINT and SET can be used to augment the animation
with text and additional detail. The BASIC USR function is used to make the

calls to the 3D primitives.

So far we have discussed the use of 3D from BASIC. But 3D can also be
used from Assembly Language. In this case, the same primitives in the same
order are uéed. The only difference is the interfacing technique. In this
case, the parameters are contained in single-byte, labeled locations and are

directly accessible. Calls to 3D are via the Assembly Language CALL instruction.

There is one primitive that hasn't been discussed -- DRAW. This primitive
accepts 2 points as input and draws a line connecting them on the virtual
screen. This primitive is useful for drawing backgrounds or otherwise aug-

menting an animation scene.

Page 4

3. 3D PRIMITIVES
The 8 primitives that make up 3D are described in detail in this section.

The organization of this section is to facilitate its usage as-a reference.
Figure 3.1 shows the parameters used by the primitives. When using the
parameters from BASIC, they are integer variables. When using them from

Assembly Language, they are single-byte, labeled locations.

Figure 3.1 3D Parameters

Legal
Name Description Units Range
HRZZ Horizontal displacement of object| Pixels 0 to 255
VRTZ Vertical displacement of object Pixels 0 to 255
THYZ Theta - rotation around X-axis Degrees x 5 -128 to 127
PH7Z Phi - rotation around Y-axis Degrees x 5 ~128 to 127
PS% Psi - rotation around Z-axis Degrees x 5 =128 to 127
SC% Scale of object None 0 to 127
OBJ% Object number None l.to 10
X17% X-coordinate Pixels -128 to 255
Y17 Y-coordinate Pixels -128 to 255
X2% X-coordinate Pixels 0 to 255
Y27 Y-coordinate Pixels 0 to 255
Z1% Z-coordinate Pixels -128 to 127
P1% Point number None 1 to 85
P2% Point number None 1 to 85
P3% Point number None 1 to 85
Sa7 Surface number None 1 to 64
S2% Surface number None 1 to 64

Error checking is performed by the primitives, but is not described in

this section. For a description of error checking refer to Section 7.

Before presenting the 3D primitives, it is appropriate to define what is
meant by an object. An object is a group of defined points, surfaces, and
lines which can be manipulated by 3D. Each object must have at least one point,
one surface, and one line. For example, the simplest object is a single point
with a line having that point as both its end-points, and having a surface de-
fined by that point. This will be more clear as the primitives become

understood.

Page 5

INITIALIZE

Input: None
Function: To prepare for use of 3D primitives
Notes: Must be called only once prior to use of any other

3D primitive
Limitations: None
Call From BASIC:
All versions: GOSUB 65000

Call From Assembly Language: _
16K Version: Call 7F5FH
32K Version: Call BF5FH
48K Version: Call FF5FH

INITIALIZE is the only primitive written in BASIC. It is written in
BASIC because a symbol table must be defined using VARPTR to tell 3D the loca-

tions of the parameters (i.e., the BASIC variables).

When calling 3D from Assembly Language, a different version of initializa-

tion is required. Both versions of INITIALIZE are described here.

The BASIC version of INITIALIZE (see Figure 3.2) is a subroutine that is
called as early in the program as possible. This assures the parameters are
placed at the beginning of the BASIC variable stack, resulting in efficient
use of the parameters. INITIALIZE must be called once prior to usage of any

other 3D primitive. It should not be called thereafter.

When calling 3D from Assembly Language, the Assembly Language version of
INITIALIZE is used (see Figure 3.3). Two actions occur during initialization
in this case: (i) labels are equated to certain required locations in 3D, and

(ii) a call to the Assembly Language initialization routine is made.

Page 6

Figure 3.2 BASIC INITIALIZE Primitive
(16K Version¥)

EEEAAR CTHITIALIZATION
Thizs zukbroutineg iz called once Prior o
LLE LT +hw 2roprdimitives, Fur e el eros .
it odis oalled as earle as Pozsibls.

ESERE HREZN=E:WETH=0 THY = PH”*H P”'“H b e I W P e o IR M1 I g e A
ESARG HWEN=E Y IN=0 T el P N=0 G PN S M= t?: A PTRS =2
SRS R ERPTREC MEZ o G0 5
EEEAS AN=YRARFTRE WRETS b
FEOELE PNV AR TR THY
AL FAN=NRRFTE FHY
GEELG AN=WARPTRED SN T
‘JBiﬂ A=V AR TR SO :GHSUEEgH44
] ﬁ':WPFPTFfﬂE'“?:GDEUEEEHJL
EFWSD MmN ERFTR 1N 21 =
O H”‘VHEPTEQW1hb
mJﬂad Fr st AR TR 2
EEEEE Fh=NERP TR 2N o
TEEE FAN=VARPTRCZ1LM
wuﬂwﬂ Flra=ARPF TR P L%
CESAPRE AN=NARFTRE P2
S FN =N FRP TR PR D
EEEEE FARN=RRPTR S
EEERE FAN=WARPTEC Z2% 0 G
EERGE FORTS wﬂTﬂﬁ”-ﬁnkr
ot e s I 2 e R S R o
g [AN ; ke CPTRY =P TR+
EE04E POFEZSETEAPTREY A2 POREZOE7 24P TR, ALY - RETURM

. GOSLEES
CGCEELIE

ﬁ:‘“"I u.‘l "IE“'"TT"
A PTR M= RETLIRR

- *POKE addresses in lines 65040 and 65046 are different for the 32K and 48K

versions as follows:

16K 28706 28672 28673

32K -20446 -20480 -20479

48K - 4062 - 4096 - 4095

Page 7

ﬁﬂﬁﬁ]

SR

*Add 4000H

addresses

Figure

JIMITIALT

RO LAt

THIT

HEFRMT
DEFEUR
DEFLIH
rLEFFR:
FLACE
o1

o 4
iy

JEMMIate

M
WET
T
Fld
RS
R
GBH

e

L ERTRY

to all EQU addresses for the 32K version.

Lo forer

b

e
)
ARl
B
ﬁuH

B
E)
Ead
L
e
L)
AR

faves Bleg

Ed

)

(16K Version¥*)

Locations

Sar L H
TlmCH

T

—ten

"
"F1KH

e
s,

]xn""”-!"“‘]rln -----

T

T
TF
TEE M
FEEEH
FFEHHH
TF 4

i
“ran
H

“F FH

TR

for the 48K version.

D} r

£

;ru =1

At

b A0

ilmitia
e d e
il e
i Tedf i ne

311
Fl

EIx

i Fipe q

AV v Mt

T
T

iPodnt
iFadnt

REANR RS - T

3.3 Assembly Language INITIALIZE Primitive

Fopedopad A dowess

Vs Popedrgdddwe

T N = I 1 B RORY
s mee P il b d e
Tdre Foeedmd e

P d md b d e

P d ok e

SR <R I (B B W O 3
o b e

o a e e

2l

cli mate
T I R T

SR ace

*

Page 8

Al

THIT medmitiwe

Add 8000H to all EQU

DEFPOINT

Input: OBJ%, X1%, Y1%, Z1% .

Function: Add the point (X1%, Y1%, Z1%) to the definition of object
OBJ%.

Notes: All points for an object must be defined by consecutive

calls on DEFPOINT. That is, DEFPOINT should not be called
to define a point on object 1, then a point on object 2,
then back to define another point on object 1. However,
calls to other 3D primitives may occur between the con-
secutive calls on DEFPOINT.

Limitations: The total number of points for all objects combined must
be 85 or less. .

Call From BASIC:
16K Version: POKE 16526,97: POKE 16527,112: ER%=USR(0)
32K Version: POKE 16526,97: POKE 16527,176: ER%Z=USR(0)
48K Version: POKE 16526,97: POKE 16527,240: ER%Z=USR(0)

Call From Assembly Language:
16K Version: CALL 7061H
32K Version: CALL B061H
48K Version: CALL F061H

DEFPOINT adds the point (X17%, Y1%, Z1%) in three-dimensional Cartesian

space (see Appendix B) to the definition of object OBJ%. As the point is de-
fined, it is implicitly numbered. Numbering begins with 1 for-each object.
For example, 8 consecutive calls on DEFPOINT for the $same object results in the
definition of 8 points numbered 1 through 8. If DEFPOINT is then called 4 more
times for a different object, then that object will have 4 defined points num-
bered 1 to 4. The implicit number, or point number as it is called, is used

to reference the point later when using DEFSURFACE and DEFLINE.

Because pixels on the TRS-80 are twice as tall as they are wide, a square
(say 5 pixels x 5 pixels) would appear as a rectangle that is twice as high as
it is wide. To further complicate the problem, rotations of the object will

nullify any attempt to correct this problem. To see this, consider defining

Page 9

a rectangle that is twice as wide as it is high. When placed on the screen,

it would appear square —- just what we want. But, if the object is rotated

90O it becomes a rectangle, only this time it is 4 times as high as it is wide!
To solve this problem, 3D has a built-in adjustment that is applied after an
object is rotated. With this built-in adjustment, an object defined as square
will appear square on the CRT, no matter what the rotation. But, if its dimen-

sions were measured by counting pixels, the X-dimension would be twice the Y-

dimension.
DEFSURFACE
Input: OBJ%, P1%, P27, P3%
Function: Add the surface specified by P1%, P2%, and P3%Z to the
definition of object OBJZ.
Notes: All surfaces for an object must be defined by consecutive

calls on DEFSURFACE. Points P1%, P2%, and P3% must be
the numbers of points defined for object 0BJ%. For
hidden line removal to function properly; P1%, P2%,
and P3% must be oriented clockwise with respect to one
another as viewed from outside the object looking in at
the surface.

Limitations: The total number of surfaces for all objects combined
must be 64 or less.

Call From BASIC:
16K Version: POKE 16526,193: POKE 16527,112: ER%=USR(0)
32K Version: POKE 16526,193: POKE 16527,176: ER%=USR(0)
48K Version: POKE 16526,193: POKE 16527,240: ER%Z=USR(0)

Call From Assembly Language:
16K Version: CALL 70ClH
32K Version: CALL BOCI1H
48K Version: CALL FOClH

DEFSURFACE adds the planar surface defined by the three-point numbers,
P1%, P2%, and P3% to the definition of object OBJ%. As the surface is defined,

Page 10

it is implicitly numbered, with the numbering beginning at 1. The implicit
number, or surface number as it is called, is used to reference the surface later

when using DEFLINE.

A planar surface is sufficiently defined by specifying any 3 points that
lie on it. Here we conveniently choose previously defined corner points as P1l%,
P2%, and P3%. For a simple object such as a single point, we simply use that

point for each of P1%, P27, and P3%.

To ensure that hidden line removal functions properly, points P17, P27,
and P37 must be oriented clockwise with respect to one another as viewed'from
outside the object. For a surface that has many points defined on it, choose
3 points that do not form a straight line. Additional information regarding

hidden surface removal is contained in Section 8.

DEFLINE
Input: OBJ%, P1%, P2%, S1%, S2%
Function: Add the line segment specified by endpoints P17 and P2%
to the definition of object OBJ%. Surfaces S1% and S2%
are the two bordering surfaces and are required for proper
hidden line removal.
Notes: All lines for an object must be defined by consecutive

calls on DEFLINE. Pl7% and P27 must be point numbers of
points defined for this object. S1% and S2% must be
surface numbers of surfaces defined for this object.
Limitations: The total number of lines (for all objects combined)
must be 64 or less.
Call From BASIC:
16K Version: POKE 16526,108: POKE 16527,113: ERZ=USR(0)
32K Version: POKE 16526,108: POKE 16527,177: ERZ=USR(0)
48K Version: POKE 16526,108: POKE 16527,241: ER%=USR(0)

Call From Assembly Language:
16K Version: CALL 716CH
32K Version: CALL B16CH
48K Version: CALL F16CH

Page 11

DEFLINE requires surfaces S1% and S2% for hidden line removal processing.
Although they are normally the surfaces on either side of the line, the user has
the freedom to select any surfaces defined for the object. Thus, special effects
are possible. The definition of a hidden line (and, hence, one that isn't dis-
played on the CRT), is one that has both associated surfaces hidden from view.

Note that S17 and S2% need not be unique.

CLEAR
Input: None
Function: Clear and initialize the virtual screen.
Notes: This primitive should be called once prior to the first

call to PLACE. Thereafter, this primitive should be

called anytime the virtual screen requires clearing.
Limitations: This primitive only clears the virtual screen. To clear

the CRT, first call CLEAR, then call DISPLAY. '
Call From BASIC:

16K Version: POKE 16526,8: POKE 16527,123: ERZ=USR(O0)

32K Version: POKE 16526,8: POKE 16527,187: ER%=USR(0)

48K Version: POKE 16526,8: POKE 16527,251: ER%=USR(0)

Call From Assembly Language:
16K Version: CALL 7BO8H
32K Version: CALL BBO8H
48K Version: CALL FBOSH

Page 12

PLACE

Input: OBJ%, HRZZ, VRTZ, TH%, PHZ, PS%Z, SC%
Function: - To place object OBJ% on the virtual screen with X-displace-

Notes: None

Limitations: Objects being placed may be of arbitrary shape and size.

Call From BASIC:

ment HRZZ, Y-displacement VRTZ%Z, rotation around X-axis
THZ, rotation around Y-axis PHY%, rotation around Z-axis
PS%, and scale SC%. Those portions of the object that lie

outside the virtual screen are not drawn.

However, the hidden line removal feature handles only non-

overlapping, convex solids (see Section 8).

Call From Assembly Language:

16K Version: POKE 16526,202: POKE 16527,119: ER%=USR(0)
32K Version: POKE 16526,202: POKE 16527,183: ERZ=USR(0)
48K Version: POKE 16526,202: POKE 16527,247: ERZ%=USR(0)

16K Version: CALL 77CAH
32K Version: CALL B7CAH
48K Version: CALL F7CAH

The steps performed by PLACE are listed in order below. All rotations are

positive by the left-hand rule around their associated axes. The left-hand rule

is: With the thumb of the left hand aligned with the axis, the curling of the

fingers point in the direction of positive rotation around the axis.

1.

Rotate object by THZ x 5 degrees around X-axis.

Rotate object by PHZ x 5 degrees around Y-axis.

Rotate object by PS%Z x 5 degrees around Z-axis.

Scale the object by multiplying each coordinate of each point by SCZ.
Adjust the object for asymetric pixel size by doubling the X-coordinate
of each point.

Displace the object's defined origin by HRZ% in the horizontal and
VRT% in the vertical directionmns.

Orthogonally (parallel) project onto the virtual screen, clipping as

necessary.

Page 13

The coordinate system used in 3D is shown in Appendix B. Note that the
positive Z-axis points out of the screen. Also, note that the virtual screen and

the CRT are identical in dimension and orientation.

Proper hidden line removal is dependent upon the characteristics of, and
the interaction between objects. Section 8 describes the hidden line capabilities

of 3D and explains how to turn this feature on or off (default is on).

Objects are drawn using the highest resolution possible on the TRS-80. The

algorithm used by 3D to draw the lines in objects yields the most aesthetic lines

possible.
DISPLAY
Input: None
Function: Display the contents of the virtual screen by copying it
to the CRT (VIDEO RAM).
Notes: This primitive ensures flicker-free animation by perform-

ing the copy quickly.

Limitations: None

Call From BASIC:
16K Version: POKE 16526,22: POKE 16527,123: ER%=USR(0)
32K Version: POKE 16526,22: POKE 16527,187: ER%=USR(0)
48K Version: POKE 16526,22: POKE 16527,251: ER%Z=USR(0)

Call From Assembly Language:
16K Version: CALL 7Bl6H
32K Version: CALL BB16H
48K Version: CALL FB16H

After DISPLAY has been used to display the virtual screen, the image on
the CRT may be enhanced by using BASIC PRINT statements or by poking into
VIDEO RAM.

Page 14

DRAW

Input: XAZ o Y1Zs X2%s Y27
Function: Draw, on the virtual screen, a line segment between the

screen points (X1%, Y1%) and (X2%, Y2%).
Notes: The points need not be in view as clipping is properly
handled.

Limitations: Lines that are drawn are never subject to hidden line

removal.

Call From BASIC:

16K Version: POKE 16526,34: POKE 16527,123: ER%=USR(0)

32K Version: POKE 16526,34: POKE 16527,187: ER%=USR(0)

48K Version: POKE 16526,34: POKE 16527,251: ER%=USR(0)
Call From Assembly Language:

16K Version: CALL 7B22H
32K Version: CALL BB22H
48K Version: CALL FB22H

Page 15

4. LOADING 3D FROM TAPE
3 There are three versions of 3D, one for each of the TRS-80 Level II/
} Model III memory sizes: 16K, 32K, and 48K. The version of 3D, which you have,
‘ is specified on your cassette. The only difference between the versions is
where 3D resides in memory. In each version, 3D is placed as high in memory
as possible, leaving maximum space for BASIC programs. For this reason, the
16K version, for example, will also run on a TRS-80 with 32K of memory. But,

in this case, 16K of memory would not be accessible to BASIC.

When 3D is loaded you must restrict BASIC from overwriting it. Respond to

the "Memory Size?" question at start-up as shown in Figure 4.1.

Figure 4.1 Responses To '"Memory Size?"

Your Version of 3D Response
16K 27647
32K 44031
48K 60415

3D and several demonstration programs are stored on a single 500 baud

cassette. The contents of the cassette are described in Figure 4.2

Figure 4.2 3D Cassette Tape Contents

File Location Name Type Description
% 1 5 THREED SYSTEM 3D Package
2 35 . M BASIC Cube Demo
3 60 e BASIC Icosahedron Demo
4 85 "3n BASIC House Demo
5 110 ADEMO SYSTEM | Assembly Demo
6 120 SDEMO Assembly ADEMO Source Code
7 150 THREED SYSTEM ‘3D Backup Copy

Page 16

File 1 is 3D - a package of Assembly Language routines. It is loaded
from SYSTEM mode prior to loading a demo or application program. After loading
3D, either: (i) load an Assembly Language program (such as file 5) from SYSTEM
mode, or (ii) hit and then CLOAD a BASIC program (such as file 2, 3, or
4). An example of how to load and run the first BASIC demo follows:

0. Ensure that the computer is set to 500 baud, that the cassette is
rewound, and that your recorder is set to play.
1. From BASIC type:
SYSTEM ENTER
The computer responds:
*?
2: Type:

THREED (_ENTER)

The computer loads 3D and responds:
*7?
3. Type:
BREAK
4. The computer responds: (Model IIT only)

Cass?
Type:
L
Dy The computer responds:

Memory Size?
For 16K Version, type:

27647

For 32K Version, type:

44031

For 48K Version, type:

60415 (ENTER)

The computer responds:
>

6 Type:

CLOAD "1" ENTER

The computer loads the demo and responds:
>

Page 17

s

7. Type:
RUN (_ENTER)
The program responds:
Object 1 or 2?7
8. Type:

1

For more information on loading from cassette, consult the reference man-

uals for the computer and recorder.

File 5 is an Assembly Language demo. To run it, first load 3D from SYSTEM
mode, then load file 5 from system mode. Immediately after file 5 is loaded,
type:
/ (ERTERD)
to begin running the demo. File 6 is the Assembly Language source code for
file 5. It can be loaded and edited using the Radio Shack* Editor/Assembler
(Cat. No. 26-2011).

Files 3 and 4 are additional BASIC demos that can be CLOADed and RUN in a
way similar to that of file 1. Instructions for interacting with these demos

is found by LISTing the first lines of each program.

*Radio Shack is a registered trademark of the Tandy Corporation.

Page 18

5. USING 3D FROM BASIC

Using 3D from BASIC is best explained by walking through an example pro-
gram. The example we use is the first demonstration program on your cassette
(see Figure 5.1 for a listing of this program). This example demo shows no
error checking. As this is a debugged program, it had the error-checking state-
ments removed for efficiency. See Section 7 for an explanation of how to use

error checking.

Program line 20 calls the INITIALIZE primitive. The BASIC CLEAR instruc-
tion isn't used in this program; if it was used, it must come before the call

to INITIALIZE.

Program line 40 sets up a loop for defining 2 objects -—- a cube and a
corner-cube (a cube with one corner flattened). The first time through the

loop object 1 is defined. The second time through, object 2 is defined.

Program lines 50-220 define the points, surfaces, and lines for each object.
The data for the objects is read from the DATA statements in lines 1000-1690.
To help visualize the definition technique, refer to Figure 5.2 while examining
program lines 50-220 line-by-line. Object 2 is defined such that its origin
is in the center of the corner-cube. This is very convenient as rotation of
this object will not cause it also to be displaced (rotations are with respect

to the object's origin).

Program line 280 sets 3D parameters in preparation for entering the ani-
mation loop. HRZ%=128 and VRT7%=128 causes the object to be displayed in the
middle of the CRT. Program lines 310-330 are the heart of the animation loop.
They call the CLEAR, PLACE, and DISPLAY primitives. Program line 335 prints a
message on the CRT after the current frame of the animation has been displayed.
Program lines 340-390 alter the 3D parameters to give the object the appearance
of moving in space. Tumbling of the cube is done by increasing THZ, PH%, and
PS%Z by 2 each time through the animation loop. When THZ reaches 72 it is reset
to 0 as 72 x 5 = 360 degrees (one complete revolution). The values for THY,
PHZ, and PS%Z must be in the range -128 to 127. If either of them are outside
this range, then only its low-order 8 bits are used. These are interpreted as

a two's-complement number in the range -128 to 127.

Page 19

1

o)

Al

A

AR

e
£
TR
e
e
L

11a
1“ﬁ

156

1ed

178

o

2

SRR

e

27

okt

r
el 1 5

Figure 5.1 Demo 1 Program Listing
(16K Version)
TEOLUMC TG CUERE DEMORSTRAT T
o lomacd 300 usia® SYSTEM mochs,
2o CLLOAD tkhis demonsteation ProSeam.,

S BLM Tlis Poeecsream,

GOEUE 5008 INITIALTEZE

i oot
Fidle Qs = 1 TO 2

TDefive Points
FEAD PTEN
FOR T = 1 T0O PTSX
FEAD 1%, Y1W, S1n -
FORE 15826, 97 POKE 16527, 118 ERN=USRCE Y ‘DEFFOIMT
PEST I%

Tefine surfaces
FEFAD SR
FOR I%5 = 1 TO SURY
BEAD PN, P2, PEy
FORE 1aS26, 1853 POKE 16827, 112 ERsUSR @ DEFSLRFACE
HEST T

Define lines
FefAl LTk
Fop Th o= 1 T L THY
BEAD P11k, P&, @1, S8k
EO1EBDEL 188 PORE 18527, 113 ERR=USRECEH Y CDEFLIME

MESET DRI

s inberface

IHFUT "ObJdect 1 g 2% OB.J%

TF ORI L DAMDO ORI =2 THEM PRIMT "Bad inPut., trws a%ain., "
ERER 0l A

o arned war-dakles
LW LE MREMm 05 WRETRm=] 20 ks WYMmR SN

Erdmat iom Lo
Fom T 1T 1A
F!': 1 Ema

FOEE] Emme
PR Le
FREINT
TE e
TF oM
TF CWRET

FiokE 1&B27 0183 ERX=UERCE Y P CLEAR
POKE 16527,11% ER%=USRCEY *FLACE
FIORE 16527 FP””H'PfH' TIEPLAY
F{||1|'n'=l+'1v|”" i

3 L 1['.|

cx ”F"'T" “_,,er e fl -
MEXT I

RN

Figure 5.1 Demo 1 Program Listing (16K Version) - Continued

CLE paodints Poeo oolbdect 2
CETH L@

TH el a1,

DETE L -1
CIFTE] e d]
KT S C I
. B DETEH -~
1 LasE DETHA
a1 Lead@id DETH
) 1416 DETH
s For ok dect 1 1426 DETH -
DARTA & 1438 DETA]
LATA 1,56 T4 7 surfaces for oobdect 2
DETA 7o, DETE 7

DERTH 2,703 DFATHA 1. 2
DATHA a2 DETH S. 1.3
DFETH .5, 7 FODETH]
CETE 10204 R R I
C1E Vines For olkdect 1 DT = e
DETH DATAR 1.2
DFETH DATH &, 7.8

T CIE Vives o ooldect 2

oA 4

DETH 2 DATA 15
1
1

Frome kit]

DATH €
DRTE -3
ODETE L,
DRTF =1,
DETE L -
DETA 1.
DATH 1.1

§

LETA -1,
DARTH L.

ten s

i o=

LT 3 DATA
LT
CHATH
DATA
LATH
LT
DETH

I FRC Py

t L'\

DATA
DATA .
DATA 3,
DATA
2 DATA

) T
i
) 7

R I N 5 B
o

by Bia¥ 3
l'r-i

1Ty :
MR JE RN I TS U I

Ty =g

A1

P REI YRR R KL R
Pk} __'i f'.ﬂ L B o [

A e 1 AT
B DETE S, 8, 5.4 DATA
1@ DATR TLe.m,.3 CDRTH 5.8
' DATH S @
TR kA5 ST
DATA 2,12.5,
DATH . 7. 5.7
TERE DARTA &, 8. 1.7
Témey DRTH 78,4, 7

ASEEE C IMITIALTIZATION
Thiz subeowbing iz called onos Pedlor to
Primitives, For effecienos.

as garly as Possible.

Page 21

Figure 5.2 Definition of Demo Object 2

P9 P10

- s - e -

Pl = (-1,-1,1) P 6= (0,1,1)
P2 = (1,-1,1) P7=(,1,0)
P3 = (~15=15-1) P 8 = (1,0,1)
P4 = (1,-1,-1) P9 = (-1,1,-1)
P5 = (-1,1,1) P10 = (1,1,-1)

In this demo, displacement of the object is controlled to keep the object
in view. In general, however, displacement values are in the range 0 to 255
for HRZ%Z and VRT%, where the position (HRZ7% = 64, VRTZ = 104) is the lower left
corner of the screen (see Appendix B). If HRZ% or VRT% is outside this range,
then only its low-order 8 bits are used. They are treated as an 8-bit unsigned

integer.

In this demo, the cube always moves at the same rate. An easy way to speed

it up is to use larger increments in the rotation and displacement parameters.

Page 22

Varying speeds are possible by varying the parameter increment sizes. To slow

down the cube, delay loops can be used.

After a program has been developed, its efficiency is improved by removing
extraneous spaces and comments, and by using as few line numbers as possible;

that is, all the usual techniques for speeding up BASIC programs are utilized.

The demonstration program presented here is a simple example. The real
fun and usefulness of 3D comes when you develop programs for your own applica-
tions. One suggestion is to interface one of the joysticks available for the
TRS-80 and write games or educational software using 3D from BASIC. Once you
have debugged the program, you may want to recode it in Assembly Language if

the utmost in speed is desired (improvements of at least 70% can be expected).

Page 23

6. USING 3D FROM ASSEMBLY LANGUAGE

Use of 3D from Assembly Language is explained by walking through the ADEMO
program. ADEMO is on your cassette and is listed in Figure 6.1. We assume the
reader is familiar with the Radio Shack Editor/Assembler (Cat. No. 26-2011) that

was used to create ADEMO.

When running ADEMO, no errors will occur in the 3D primitives because it is
debugged. In general, when an error occurs in a 3D primitive called from
Assembly Language, control returns to BASIC start-up mode. This can be changed
so that control goes to an error handling routine that you write or to the

entry point of a debugger program. Section 7 explains how to make this change.

Each 3D primitive alters all Z80 registers, including the primed ones.

But, 3D parameters are never altered by the primitives.

A walk-through of ADEMO begins with program lines 12-39 that EQUate loca-
tions of the 3D primitives and 3D parameters to labels. Program line 41 calls

the INITIALIZE primitive.

Program lines 43-95 define a two-dimensional square. The technique used
is simple but not flexible. Other techniques are possible, including ones

that request the input of points, lines, and surfaces from a cassette or user.

Program lines 97-108 set the 3D parameters in preparation for the anima-
tion. Program lines 110-135 are the animation loop. Only Z-axis rotation is
used to make the square spin as it is enlarged. When SC=48, it is reset to O.

When PS=72, it is reset to O.

Page 24

Figure 6.1 Assembly Language Demo Program Listing

(16K Version)

FIEEEA L s FESEMELY LAMGLUASE DEMOMSTRATION
A To Lmad fthe 20 Primitives usind SYSTEM moce.
HReaEs e Lomadd this PeoSesn osicg SYSTEM moce,

o, om0

EAEad G Twee a slask o0 fben kit EHTER o rurn.

SRR = -

BRgET

gEEas IMITIALIZE

FIARA G

BRRLe JEMate the locations of bhe 230 Primitives

@EEal 1

gAanls IWNIT Eg TFEFH ilvikialies primitive
BR@Eln DEFFHMT EGL TEE 1L H ilefine Point Prdmitive
EEA L DEFSUR EGL TEHCIH e i sueface Pedmihd e
agELs DEFLIM Eo FLECH slefine Tive Prdimitive
Baale CLEAR g TERAEH iClear primitive

ey FLACE et FECAM PP Vame P dmidhd e

AAELE DISPLA Ec) TE - iisrlayw Primitive

FiaE s DR B TEZEH ilwan prdmitive

BRRZa

AAGz1 cEMlate the locations of bhe 20 paramebers

A@Ess

peREan HREE e TFaEH iHorizontal

Bepzd VRET il TFaFH Pertical

AQa25 TH Ecilt TS i Thsta

CREEZE PH E) TFEIH
AREEST PO Bl TFEEH
@ARaze = B T
|anss QR ECH TS
BEREZE =1 B sl Pl ate
1 L FFEEH i e o i nate
by ol FFHTH ared 1ot
e N TR S maeeed donacte
=1 Eend T i emeerd st
F1 Ed TFEAR dPodnt
REA EGi) FFEEH iFPoint
ECul FPFECH iPaivt
End TR R A
B TFSEH ERCARN L O Dl -

pEE4l EMTREY CALL THTT itall the IMIT Primitive

A2

Page 25

Figure 6.1

Assembly Language Demo Program Listing (16K Version) - Continued

v Py
i

il i e

LA T

il 1 e

xl’ll l"’f‘

LD
LD

Pooad mtiz

Lo

CHLL

LD
LD
CALL.

LI
1D
CALL
RN O N
L[y
(N
&
{0
L.

LD
CALL

Tines
LD

R

LD

1L

LD
CALL

L[
1L
AL

1o

LD
CALL

[
r'l

AL

|
-5
i
r.

o N

for
FI & .::.
AS SN
ZI
CRENA
LR

I Ta

Al

CORIYA

o
B]
TEL A
LAY &
e
nZl oA
DEFPHT

H
ll1 ' r’
EEFFHT

Mol
LS o P
DEFPHT

a1
CH1 0. A
LEFRMT

=
D]
M

l"‘| e} l

A

h. !
...... T
EEF:UE

i

. F

.2
(P23, A

I
CELH
DEFLIM

F. 1
RS R
DL T

LA

i

cab et

H]llr-ll' 1
ERNTT o BT

Frame

Foadnt

e Pl

O

1=1.

ERRT-2 38 BT

A i |

ke

PC =,

1

FRNE-2 A BT

R 2 e

lefine

ilred i ne
R o

FR T2 08 BT

PR 1=a,

Page 26

|,r|1:=
P i

1

witk 1

i

=1, 21=01

ik

1.’

nt

=

o Z1l=00

arface 1

P

a |
K

Time

PE=1

Tive

P,

1

Fa=m,

1 i

Fll

1.

Fa=1 2

from 1 o 2

1.

firom Point
o R Bt |

Frecm Pood oo

ml=1,

]

Fromm Foint

Sl=1. EIe=1

B ace

T

)
2t 3
i

oot 4

L

Figure 6.1

Assembly Language Demo Program Listing (16K Version)

A
e

S
huds Bk fek ped Beb Ful P

Jﬂi?u
E 4

L

T

Fal e

5

Al el s i

AR Y

TR Wk AT
ke +,

Alndsp o

1
CET

1T

ML« FE e R
O
CoRLL

ﬂ N 1:: l"'” :."

-y
e

STEOPERTE bk

w L
ISR NS

Z I |
0

L P O
DA | I

AT bl

L. LA iImifinite

A Dni=

EMTR

Page 27

SR KT

- Continued

AT

R e

7. ERROR HANDLING

When certain 3D primitives are called with improper parameter values, error
handling takes place. The nature of this error handling depends on whether the
primitive was called from BASIC or Assembly Language, and whether the programmer

had chosen to act on the error by including the appropriate program statements.
Error handling is only performed by DEFPOINT, DEFSURFACE, DEFLINE, and
PLACE. The other primitives do not need error handling as they either accept

no inputs or accept all values of inputs for their parameters.

Errors During Calls From BASIC

In this discussion, it is assumed that the POKE addresses/values in the

calling program are correct; as this type of error is not detected by 3D.

When an error occurs, control immediately returns to BASIC, and an error
code is assigned to the variable in the active USR statement. The specific

actions performed by each of the primitives follow.

When DEFPOINT is called, it first checks whether OBJ% is between 1 and 10
inclusive. If this isn't true, it returns to BASIC with an error code of 1.
Otherwise, it checks that less than 85 points have already been defined. If
this isn't true, then it returns to BASIC with an error code of 2. Figure 7.1

shows an example of how to utiiize the error handling feature of DEFPOINT.

Figure 7.1 BASIC Error Handling For DEFPOINT
(16K Version)

SRR D DEFEROTMT

When DEFSURFACE is called, it first checks whether 0OBJ7 is between 1 and
10 inclusive. If this isn't true, then it returns to BASIC with an error code
of 1. Otherwise, it checks whether less than 64 surfaces have been defined.
If not, then it returns to BASIC with an error code of 2. Finally, a check
is made to ensure-that points P1%, P2%, and P3%Z have been defined for the

current object. If not, control returns with an error code of 2.

Page 28

Figure 7.2 shows an example of how to utilize the error handling feature of

DEFSURFACE.

Figure 7.2 BASIC Error Handling for DEFSURFACE
(16K Version)

POKE 16526, 19%: POKE 16527, 112: ERY=USROB) * DEFSURFACE
IF 1 THEM FRIMTYIL L DELY BT
IF ER%=f THEH FRIMT'ILLEGAL FHT-SUR": TP

When DEFLINE is called, it first checks whether 0BJ% is between 1 and 10
inclusive., If not, an error code of 1 is returned. Otherwise, a check is
made to ensure that less than 64 linesAare defined. If not, an error code of
2 is returned. Finally, a check is made to ensure that Pl%,'PZZ, S17%, and S2%
are defined for the current object. If not, an error code of 2 is returned.

Figure 7.3 shows an example of how to utilize error handling with DEFLINE.

Figure 7.3 BASIC Error Handling for DEFLINE
(16K Version)

FORE 1aESEERe, 113 ERX=USRcad ‘DEFLIME
IF ERMe= 1 : L DB STOR
IF ERY=2 THEM PRIMT"ILLEGAL PHT- SURSLIM": STOF

When PLACE is called, it first checks whether OBJ7 is between 1 and 10
inclusive. If not, then an error code of 1 is returned. Next, a check is
made as to whether the object has at least 1 point, 1 line, and 1 surface. 1If
not, an error code of 2 is returned. Figure 7.4 shows an example of how to

utilize error handling with PLACE.

Figure 7.4 BASIC Error Handling for PLACE
(16K Version)

PR JEMIE, 2OE: POKE CELACE

3 THEM rRIHT”IHimﬁFLE%ﬁmmEJ”=WETDP

Page 29

Errors During Calls From Assembly Language

3D recognizes the same errors when called from Assembly Language as when

called from BASIC. When using Assembly Language, however, the errors are

necessarily handled differently. When an error is discovered, the HL register

is loaded with the error code and control returns to the location pointed to

by the error vector. The error vector (see Figure 7.5) contains the address

of an
value
error

after

error routine that is branched to when an error occurs. The default
is OOOOH, the entry to BASIC. To change the error vector to, say, an
routine you wrote, load the error routine address into the error vector

calling the INITTALIZE primitive.

Figure 7.5 Error Vector

Vector Location Contents
16K Version 32K Version 48K Version
716AH B16AH F16AH LSB of error routine
716BH B16BH F16BH MSB of error routine

Page 30

8. HIDDEN LINE CONCEPT
3D utilizes a novel hidden line removal algorithm. The algorithm is fast

and requires only that surfaces and lines for objects be specified correctly.

When defining a surface for an object, you should choose previously de-
fined points P17%, P2%, and P3% that are oriented clockwise with respect to one
another as viewed from outside the object. When defining a line for an object,
you should choose the previously defined surfaces S17 and S27 that adjoin the
line. If the line lies on a previously defined surface, such as a window that

lies on the side of a house, then make S17 and S27% that one surface.

The hidden line algorithm is used by PLACE to determine which lines in an
object are hidden from view and should not be drawn. To determine which lines
are not to be drawn, the algorithm examines the two surfaces adjoining each line.

If both of these surfaces are hidden from the viewer, then the line is not drawn.

The algorithm works for any number of non-overlapping convex (having a

boundary that bulges outward) polyhedra (solids bounded by polygons).

The hidden line removal feature is normally on, but may be turned off and
on at any time by altering a control bit in 3D (see Figure 8.1). To turn the
feature off, you must set the control bit to 0 prior to calling PLACE. When
PLACE is called, the object will be drawn with all "hidden lines" included. To

turn the feature back on, you must set the control bit to 1.

Figure 8.1 Hidden Line Control Bit

Version Location To Turn Off From BASIC
16K 7741H POKE 30529,0
32K B741H POKE -18623,0
48K F741H POKE - 2239,0

Page 31

Appendix A

3D Memory Map

Contents Beginning Addresses

16K 32K 48K
Beginning of 3D 6C00 ACO00 EC00
Symbol Table 7000 BOOO F000
Initialization Area 7022 B022 F022
DEFPOINT 7061 BO61 FO61
DEFSURFACE 70C1 BOC1 » FOC1
DEFLINE 716C B16C Fl6C
PLACE 77CA B7CA F7/CA
CLEAR 7B08 BBO8 FBOS8
DISPLAY 7B16 BB16 FB16
DRAW 7B22 BB22 FB22
Virtual Screen 7B4E BB4E FB4E
INITTALIZE 7F5F BF5F FF5F
End of 3D 7FFF BFFF FFFF

Page 32

Appendix B

3D Object Definition Space

(-128,127,-128) (127,127,-128)

(-128,127,127)

127,127,127)

(-128,128,127) k&

cecsmw mamcsnsdleoceme w ws v

(128,128 -128)

255

151

»

3D Screen Space

y
Z = -128 plane
E Z = 0 plane
[}
i Z =127 plane
4
]
]
]
]
‘-“:-‘ >
[}
‘ m
' /|
N,
' e -
P4 :
' 1]
| :
i i i i i B v R
R]
- s H
o 191 255

2

Page 33

(127,-128,127)

Values in parentheses

indicate the x, y, and
z values, respectively,
of the indicated point.

(127,-128,-128)

The hashed area denotes
the visible region.

T 4 . - F | 40 [0S A, e - T
Deoc. 19, 1983 Roxton Bales
By Sm7s
WD SO v BRI
Pasan. &ISEN

ALTED

T o s 035 sem
Merd v i Vg

s an updats Lo my vecent letter reaussting {‘"'!“I’E'ﬁ"}f“)“ taps Ccopy of
D) package I bhought From you. I have atier oo ’m"" TimEe bheen

b AT
v

Zbie o vecover (1 think) the I2K version of the obisch oods and
Basic demo Ryosiyams, Ivv rumming them I have found wh@t ey e &

flraw in the Thres-D program.

Fro the HOUSE demd that whils both the Y and 72 axes
PErly Fided in Space:; the X axis Jdoes 1ot. It vemains
a0 the OhJSECt as originaily defined. Thus as you

= around the Y axig (g2 attached Printouts)s the X

Yot o The hous
ax i Es around the Y oakis — eventual iy beocoming the sans as

B
i -
i
s
]
o 4
5]
.:é

the 2 anis (wharn the Y rotation is 90 degress), I obhery wWords:s no
\7

mattay wWhat Y or Z o rotations have beon entevred,. the X o axio will
FLHAYS be & ing drawn Through the two snds of the houses!

Trig i confirmed by the CUBE demo. i+ you manually set and changs
P and TH%. So it Ccan’t bhe 2 pProblem in the obdect definition
datde

Anesk

el B ol

ot I noticed 18 that when the rotation values THA:, PHY.
127 orv 128, ov some multiple, the picture will suddsnly
rmt*tw an additional 18¢ dearsmes. Apparsntly this is the naturs of
tThines, and not really a problam —~ but Yyou might mesntion it in the
Prosyan remaris.

Finatty:, the problam with running the 32K programs under Disk Rasic
Can b solved by adding the |inss shown to the initializsation

SECt ion: To handle negative numbers returned Ffrom the VARPTR

fFunct ion.

Again: it may ks that I simply have & bad copy of ths 32K code, and
thers (s not vreally & bus in the X axis realization. I+ yvou do find
a manuine ervor Iim sure you wWill fix it: in which case I would
rathay that you wait and send ths taps with correctad code, as
oppossd To Ssanding it Wwith new copies of the Vi.l. In @ither avent.
pleaas 4o et me hear from you on this subdisect. I have a good deal
DF monEy tied up in the program: and would like to be able to use
iTa)

Thank yous

AN

“ Algorithmic Associates

PO Box 244
Bedford, Massachusetts 01730

2feafes D Mooy,

@ 'i)\ “as e ’S»n'v\(,ﬁ EML\(D:; (»1,,k r{tﬁ l&(, € ct V’k"‘w‘@ € S
//glc)r ‘H»az__ —Sre.u \ k O €_ W e ? ey oOvs (

&
‘-/"L\f \)P oc(.f O @ po \ocs-“fs anv = ente “\0(*“{

»-g’é 'S "t‘(«(’ o AV P O e . Coeeus e c"‘\ s

@ _"Tk(a«-“ks ~gc;a’ e l'hgc’rwt <:=*"0'-/\ on how 4o " ok e
2P o ‘ixi":\“”/lﬁ"_ with 1Dk, Casic, . Ak SOULE,
‘gﬂ,« -t A -4]:",\(S,U{u.& W€ _ may s0 &I’?TQC” t
D ow A:‘;'k-/ Lowe 1~ y P e “/f’“”k’\a, éu, ¢ gu‘o i t
%) b\{a" a cassetle ULV (e ’g’c’f L-eaq(II/FLT

3 7 > ! &/ A v M e -
We v~ W \))396’ Ee o -, &_ s

2 .
Pa<ssic ,

;

"'Lt(’"'"\—.—

e e [\ Xaxts cotakion. D vses
J L S O P Voue, g ,‘{b\ ~AXTS (4] A /.

the <lomda e d"l«a.— o wpiacbué__r“«-d deSinidion »Og’

%= 5 pace. Y*C“‘;‘-«?L?OV\, as ﬁU(L‘/ X-axis s ““"‘"‘“‘g’ ’
\)-evS&'Twu~&cL _—:(:i:,—_)”t-) &,l(oou(c.l)?‘"-3»«:{/\ e ‘r‘d'l\c(kld’v\/ G-«\((
Liaatly 2-axis voradiow, “Tho 1 dowe Lo

eaclh 3 Sveme., oF aaltwmeXion, 52“3{—' % 0% voeis

fm\ c‘_\et\'“(\g.‘fs '&'L\\\S I~ e Text (J‘:&JL{"k‘\lé}
PLACE,

o "TL{~ E.}g-@—&:ks 18;#% v\.;_')‘\» e (,Q L.,J:")(L\ _’T’{"\"Z, j 4y 97:;) c-n«c&
?5/};} whe tL~€ v"r('_tLL\. 128 o V2.7 s -(’AT)\CH'V\?C(

A -k‘«\e_ ’a‘—/},‘ Parqcyf\a fb\ o g!’ ,6.)1:«3 e YA —

Ve € om e “’{f(—\u.'t“ Yo ¥.‘-L L toMs o v vay ‘Es Og

- O

[)

,%\\“‘C‘((i \8_ (k,07.4 =
/“r<

o (ﬁ Lz,v(

