
Common File Formats for Emulated TRS-80 Floppy
Disks
Tim Mann
http://tim-mann.org
Last revised 4 Jul 2008

Most current TRS-80 Model I/III/4 emulators use one of three common file formats for emulated floppy disk media.
The extension .DSK is usually used for all three formats, and some emulators transparently support two or three of
them, while others support only one. The two most common formats both originated with emulators written by Jeff
Vavasour, while the third originated with an emulator written by David Keil, so I'll take the liberty of giving the
formats names that use their initials.

l The JV1 format originated in Jeff's Model I emulator for MS-DOS. It's a very simple, limited format that can
represent only single-density media with 256 byte sectors and a Model I directory on track 17.

l The JV3 format originated in Jeff's Model III/4 emulator for MS-DOS. It is much more flexible than JV1, but
still cannot represent everything the real hardware can do, so some copy-protected disks cannot be
represented. The format has been extended to support 8-inch floppies and sector sizes of other than 256 bytes,
but not all emulators support these extensions. I indicate below which features are extensions and which
emulators are known to support which extensions.

l The DMK format originated in David's Model III/4 emulator for Windows. Unlike JV1 and JV3, DMK is able
to represent essentially everything that a real TRS-80 floppy disk controller could do, including copy
protected TRS-80 disks.

This document describes the JV1 and JV3 formats in complete detail and indicates (where known) which emulators
support which. DMK is quite different from JV1 and JV3 and is not described in this document, but there is a
description on David Keil's Web page. You probably don't need any of this information unless you are writing an
emulator or working with unusual disks.

The JV1 Format
The JV1 format is simply an array of 256-byte sectors stored in a file. Byte 0 of the file is byte 0 of track 0, sector 0;
byte 256 is byte 0 of track 0, sector 1, and so forth. There are 10 sectors per track (i.e., single density), numbered 0
through 9, and only one side. Tracks are numbered starting at 0. All sectors on track 17 are formatted with the
nonstandard data address mark 0xFA, indicating a TRSDOS 2.3 directory. All other sectors are formatted with the
standard data address mark 0xFB.

Note: In emulations of the WD1791/3 floppy disk controller used in the Model III and 4, it is best to present track
17 as being formatted with the standard deleted data address mark 0xF8. The WD1791/3 cannot write 0xFA, and
upon reading, returns it as 0xFB. So Model III/4 operating systems use 0xF8 on the directory track instead.

The JV3 Format
The JV3 format consists of a fixed-size array of sector headers, followed by an area containing the data for each
sector. As an extension to allow for more sectors, a second block of sector headers and data can follow. Here is the
format in pseudo-C notation. The length of each data area depends on the content of the headers, as described
below.

typedef struct {
SectorHeader headers1[2901];
unsigned char writeprot;
unsigned char data1[];

Page 1 of 5Common File Formats for Emulated TRS-80 Floppy Disks

24/2/2009http://www.tim-mann.org/trs80/dskspec.html

SectorHeader headers2[2901];
unsigned char padding;
unsigned char data2[];

} JV3;

Write Protect and Padding

The field writeprot should normally contain 0xFF. As an extension, a value of 0x00 in his field indicates that the
disk is write-protected (i.e., it is not writable).

The field padding is currently unused. It should contain 0xFF.

The Sector Header

Each sector in a JV3 file is described by a three-byte header. The first byte gives the sector's track number, the
second gives its sector number on the track, and the third is a set of flags.

typedef struct {
unsigned char track;
unsigned char sector;
unsigned char flags;

} SectorHeader;

#define JV3_DENSITY 0x80 /* 1=dden, 0=sden */
#define JV3_DAM 0x60 /* data address mark code; see below */
#define JV3_SIDE 0x10 /* 0=side 0, 1=side 1 */
#define JV3_ERROR 0x08 /* 0=ok, 1=CRC error */
#define JV3_NONIBM 0x04 /* 0=normal, 1=short */
#define JV3_SIZE 0x03 /* in used sectors: 0=256,1=128,2=1024,3=512

in free sectors: 0=512,1=1024,2=128,3=256 */

#define JV3_FREE 0xFF /* in track and sector fields of free sectors */
#define JV3_FREEF 0xFC /* in flags field, or'd with size code */

The track field gives both the physical track number on which the sector lies and the logical track number that is
formatted in the sector's ID. Numbering starts from 0. Thus it is not possible to represent a copy-protected disk
where sectors were deliberately formatted with incorrect track numbers. The format allows for 255 tracks
(numbered 0 through 0xFE), but emulators may impose lower limits. You can expect at least 80 tracks to be
supported; xtrs currently allows up to 96.

The sector field gives the logical sector number that is formatted into the sector's ID field. The physical order of
sectors on the track is not explicitly represented, but xtrs (and perhaps other emulators) present them in the order
they are recorded in the JV3 file; thus when a TRS-80 program formats a track with interleave and reads back the
sector ids, they come back in the same interleaved order.

The flags field packs in a lot of information:

l If JV3_DENSITY is set, the sector was formatted in double density (MFM); if not, it was formatted in single
density (FM).

l The 2-bit JV3_DAM field encodes the sector's data address mark. Here are the basic meanings of the codes:
JV3_DAM value Single density Double density
0x00 0xFB (Normal) 0xFB (Normal)
0x20 0xFA (User-defined) 0xF8 (Deleted)
0x40 0xF9 (User-defined) Invalid; unused
0x60 0xF8 (Deleted) Invalid; unused

Page 2 of 5Common File Formats for Emulated TRS-80 Floppy Disks

24/2/2009http://www.tim-mann.org/trs80/dskspec.html

The treatment of single density data address marks by the Western Digital 1771 and 179x controllers used in
original TRS-80 hardware is rather inconvenient. The WD1771 (used in the TRS-80 Model I) is capable of
writing any of the four DAMs shown above, and can distinguish amongst all four on reading. The WD179x
(used in the Model III and 4), however, can write only 0xFB or 0xF8, and on reading, it cannot distinguish
between 0xFB and 0xFA, or between 0xF8 and 0xF9.

TRS-80 operating systems differentiate directory sectors from ordinary data sectors by giving them different
data address marks. Unfortunately, Model I TRSDOS uses 0xFA on directory sectors, which a WD179x
cannot write and cannot distinguish from the 0xFB used on data sectors. Other Model I operating systems
(such as LDOS) typically write 0xF8 on directory sectors but accept either 0xFA or 0xF8 when reading them,
allowing them to read TRSDOS disks. Compatibility problems remain when attempting to use Model I
TRSDOS disks on a Model III or 4, and when attempting to use LDOS disks with Model I TRSDOS.

An emulator can easily paper over these compatibility problems by behaving differently from the real
hardware. All currently known emulators do so, making (at least) the following changes to strictly correct
behavior: (1) If TRS-80 software attempts to write or format a 0xF8 DAM in single density, it is instead
recorded in the JV3 header as 0xFA. (2) If TRS-80 software reads a single density sector that has the 0xFA
DAM using an emulated WD179x, it is returned as 0xF8 instead. These changes hide all the DOS
compatibility problems described in the previous paragraph.

It might be worthwhile to make precisely correct behavior available as a run-time emulator option, as this
might allow more types of "protected" self-booting TRS-80 disks to work correctly. This option is available in
xtrs version 3.2 and later, but not in any other known emulators.

The following tables summarize the DAM behavior of both the WD1771 and the WD179x. On the WD1771,
read status bits 6,5 are used to report the DAM of the sector just read, while write command bits 1,0 select the
DAM to write; on the WD179x, only read status bit 5 and write command bit 0 are significant: read status bit
6 is always 0, while write command bit 1 is used for a function unrelated to DAM selection. The behavior of
these bits on the actual hardware is shown first in each cell; the modifications typically made by emulators
follow in parentheses. It should be emphasized that WD1771 behavior shown here correctly describes the
actual hardware, even though it contradicts the Western Digital data sheet; the data sheet erroneously
transposes the column headings for status bits 6 and 5. As an aside, it seems likely that the engineers who
designed the WD179x were misled by this error, as the value that the WD179x returns in bit 5 is the value that
the WD1771 was documented as returning in bit 5, but that it actually returns in bit 6.

Read status bits 6,5:

Write command bits 1,0:

l JV3_SIDE reflects both the physical side on which the sector is recorded and the side number formatted in the
sector's ID. Thus it is not possible to represent a copy-protected disk where sectors were formatted with
incorrect side numbers or with values other than 0 or 1 in the sector ID's 8-bit side field.

DAM WD1771 WD179x single WD179x double
0xFB 0,0 0,0 0,0
0xFA 0,1 0,0 (0,1) impossible
0xF9 1,0 0,1 impossible
0xF8 1,1 0,1 0,1

Bits WD1771 WD179x single WD179x double
0,0 0xFB 0xFB 0xFB
0,1 0xFA 0xF8 (0xFA) 0xF8
1,0 0xF9 0xFB 0xFB
1,1 0xF8 (0xFA) 0xF8 (0xFA) 0xF8

Page 3 of 5Common File Formats for Emulated TRS-80 Floppy Disks

24/2/2009http://www.tim-mann.org/trs80/dskspec.html

l JV3_ERROR, if set, indicates that the sector should show a data CRC error when read. The actual value of the
two CRC bytes is not represented.

l JV3_NONIBM is an xtrs-specific extension that partially supports the WD1771's feature of "non-IBM" sector
sizes. Only a small subset of the functionality is supported, with some special kludges specifically to make the
VTOS 3.0 copy protection scheme work. It is probably best to treat this bit as a "must be zero" field in other
emulators; see the xtrs source code if you are really sure you want to know how it works, and keep your barf
bag handy.

l JV3_SIZE is an extension to support sector sizes of other than 256 bytes. This field is encoded differently
depending on whether the sector is in use or free (not in use):

Thus, if a sector is in use, xor'ing its JV3_SIZE field with 1 gives the IBM size code that appears in its sector
ID size field. If a sector is free, xor'ing its JV3_SIZE field with 2 gives its IBM size code. This representation
was chosen because the original JV3 format supports only 256-byte sectors, always places zeros in the
JV3_SIZE field for sectors that are in use, and always places ones in the field for sectors that are free.

If a sector header is not in use (free), its track and sector fields must contain 0xFF. Its flags field must contain 0xFC
plus the appropriate free JV3_SIZE field value given above.

The Data Blocks

For each sector header, there is one data block. The blocks are placed in the same order as the headers that describe
them, and are tightly packed. Thus to find the data block for the nth header, you need to know the total size of data
blocks 0 to n - 1. A sector header marked as free does have a corresponding data block, of the size indicated in its
size field. However, the file can (and in fact should; see below) end immediately after the last in-use data block.

The Second Header Block

The second header block is present if and only if the file is long enough to contain it. It starts immediately after the
last data block described by the first header block. Thus to find the second header block, you need to know the total
size of all data blocks described by the first header block.

It's obvious, by the way, how to extend the format to more than two header blocks, but no known emulators support
more than two. Having more than two is not useful to describe any floppy format that was supported by any real
TRS-80. One block is sufficient for 5.25-inch DD drives, and two are sufficient for 8-inch drives, 5.25-inch HD
drives, or 3.5-inch HD drives.

Allocating and Freeing Sectors

Allocating and freeing sectors is a little tricky (if you support the extension to sizes other than 256 bytes). When a
new emulated disk is first created, it should have one header block, filled with free 256-byte sectors. When a new
sector is formatted, if a free sector of the correct size exists, it can be reused; otherwise, the next sector after the
highest in-use sector can be chosen and changed to the correct size. In the latter case, since there is no data after the
sector that is being resized, resizing it does not require anything to move. When a sector is erased (because the track
it is on is being reformatted), it should normally be freed without changing its size, so that the data of later sectors
need not be moved.

Size IBM size code in sector ID JV3_SIZE field value if in use JV3_SIZE field value if free
128 00 1 2
256 01 0 3
512 02 3 0
1024 03 2 1

Page 4 of 5Common File Formats for Emulated TRS-80 Floppy Disks

24/2/2009http://www.tim-mann.org/trs80/dskspec.html

If the highest in-use sector is freed, the emulator should search backward for the new highest in-use sector, and
should truncate the file to eliminate any sector data for trailing free sectors, as well as the second header block if it is
no longer needed. Why do this? If the user reformats some sectors to be shorter or longer than they used to be, the
nominal start of the second header block (as defined above) will shift. If you have garbage at the end of the file, and
the block shifts to start somewhere in the garbage, then when you read the file back in again later, you'll have a
second header block full of garbage that will confuse you.

Support
Here is a summary of which emulators support which formats and which features. The data is believed current as of
this document's revision date. Future versions of some of these emulators may support more (or fewer!) features. If
an emulator does not support a feature, it will still work with disks created by emulators that do support the feature,
as long as those disks didn't require that feature when they were created. For example, an emulator that supports the
second header block will not create a second header block unless you format more that 2901 sectors on one disk;
note that an 80 track, double sided, double density 5.25-inch disk contains less than 2901 sectors.

Additional information or corrections for this table are welcome.

Back to the TRS-80 Page | My home page

 JV1 JV3 Basic
features JV3 Write protect JV3 Second

header block

JV3 Sizes
other than
256

JV3 Non-
IBM kludge DMK

Jeff Vavasour
Model I v3.02u Yes No No No No No No

Jeff Vavasour
Model III/4 v2.3 No Yes No (future) No No No No

Matthew Reed
Model I/III v1.10 Yes Yes No (future) No (future) No No No

Matthew Reed
Model 4 v1.01 Yes Yes Yes Yes No No No

Matthew Reed
TRS32 1.0 Yes Yes Yes Yes Yes Yes No

xtrs Model I/III/4
v3.7 Yes Yes Yes Yes Yes Yes Yes

WinTRS80 Model
I/III/4 v1.02 Yes Yes Respected but not

generated Yes No No No

Yves Lempereur
Model I Yes No No No No No No

David Keil Model
III/4 Yes Yes, with some

limitations
Respected but not
generated No Yes No Yes

Page 5 of 5Common File Formats for Emulated TRS-80 Floppy Disks

24/2/2009http://www.tim-mann.org/trs80/dskspec.html

