
 The Great CRC Mystery

 Terry Ritter

The Cyclic Redundancy Check (or CRC), is a way to detect errors in data storage
or transmission. With more and more data being transmitted over phone lines, the
need for protocols that protect data from damage in transit as increased, but
the theory behind CRC generation is not well known.

What Is a CRC?

The Cyclic Redundancy Check is a way to detecting small changes in blocks of
data.
Error detection is especially important when computer programs are transmitted
or
stored, because an error of even one bit (perhaps out of hundreds of thousands)
is
often sufficient to make a program faulty. Although a few errors in a text file
might
be acceptable (since the text can be reedited when received or recovered), an
error-free
file is preferable. An error-correcting protocol triggered by CRC
error-detection can
provide this accuracy at low cost.

The CRC algorithm operates on a block of data as a unit [1]. We can understand
the CRC
better if we see a block of data as a single (large) numerical value. The CRC
algorithm
divides this large value by a magic number (the CRC polynomial or generator
polynomial),
leaving the remainder, which is our CRC result.

The CRC result can be sent or stored along with the original data. When the data
is
received (or recovered from storage) the CRC algorithm can be reapplied, and the
latest
result compared to the original result. If an error has occurred, we will
probably get
a different CRC result. Most uses of CRC do not attempt to classify or locate
the
error (or errors), but simply arrange to repeat the data operation until no
errors
are detected.

Using the CRC

The IBM 8-inch floppy disk specification used the CRC-CCITT polynomial for
error-detection,
and this CRC is now used in almost all disk controller devices. A disk
controller computes
a CRC as it writes a disk sector, and then it appends that CRC to the data. When
the data
is read back, a new CRC is computed from the recovered data and compared to the
original CRC.
If the CRC values differ, an error has occurred and the operation is repeated.
The standard

disk CRC (CRC-CCITT) is hidden in the controller, and nowadays receives little
comment.

One version of the XMODEM (or Christensen) file transmission protocol uses the
CRC-CCITT
polynomial to detect data transmission errors, typically caused by line noise.
When the
receiving end detects a data error, it sends a NAK (Negative AcKnowledge)
character to the
sender, which requests that the data block be retransmitted. The receiving end
repeats this
process until the CRC from the transmitting end matches the local result, or
until one or
both ends give up. When the result does match, the receiving end sends an ACK
(ACKnowledge)
character, and the transmitting end then sends the next block.

Error Control and Efficiency

Many different CRC polynomials are possible; these generator polynomials are
designed and
constructed to have desirable error-detection properties. If the CRC polynomials
are "well
constructed" the major difference between them is in their length. Longer
polynomials provide
more assurance of data accuracy and are fully usable over larger amounts of
data; however,
longer polynomials also produce longer remainder values, which add additional
error-checking
overhead to the data.

A "16-bit" polynomial has a 16-bit remainder. There are two well-known 16-bit
polynomials:
CRC-16 (used in early BISYNC protocols) and CRC-CCITT (used in disk storage,
SDLC, and XMODEM
CRC). Of the two, CRC-CCITT may be a little stronger, and, by convention is
often used in ways
which strengthen its error-detection capabilities. This article illustrates
CRC-CCITT,
which is the polynomial x^16 + x^12 + x^5 + 1.

Polynomials are classified by their highest non-zero digit (or place) which is
termed the
degree of the polynomial. Both CRC-16 and CRC-CCITT are of degree 16, which
means that bits
16 through 0 are significant in their description; a degree 16 polynomial thus
has 17 bits.
Normally we are most concerned with the remainder of the CRC operation, which
has one bit
less than the polynomial. Thus, we may think of 16-bit CRC's, even though their
generator
polynomials actually contain 17 bits (bits 16 through 0).

In a proper CRC polynomial, both the most significant bit (MSb) and least
significant bit
(LSb) are always a '1'. Because the highest bit of the polynomial is always a
'1', we are
able to treat this bit differently from the other bits of the polynomial. Since
the remainder

from a 16th degree polynomial has only 16 bits, a 16-bit register is sufficient
for CRC
operations on a 16-bit polynomial, even though the polynomial itself actually
has 17 bits.

A well-constructed CRC polynomial over limited-size data blocks will detect any
contiguous
burst of errors shorter than the polynomial, any odd number of errors throughout
the block,
any 2 bit errors anywhere in the block, and most other cases of any possible
errors anywhere
in the data [2]. So every possible arrangement of 1, 2, or 3 bit errors will be
detected.
Nevertheless, there remains a small possibility that some errors will not be
detected.
This happens when the pattern of the errors results in a new value which, when
divided,
produces exactly the same remainder as the correct block. With a properly
constructed 16-bit
CRC, there is an average of one error pattern which will not be detected for
every 65,535
which would be detected. That is, with CRC-CCITT, we should detect be able to
detect
65535/65536ths or 99.998 percent of all possible errors [3].

There is no technique which we can use to absolutely guarantee detection of any
error; but
we can minimize undetected errors at reasonable cost. Other error-detection
techniques are
available, such as checksum or voting, but these have poorer error-detection
capabilities.
For example, the single-byte checksum (used in the original version of XMODEM)
appears to
be about 99.29 percent accurate [4], which seems pretty good. But for a single
additional
byte, the CRC technique is about 460 times less likely to let an error pass
undetected. In
practice, the difference is much greater because the CRC will detect all cases
of just a
few errors, and these cases are most common. The cost is a 2-byte CRC value in
every block.
For example, the XMODEM protocol sends data in 128-byte blocks; these blocks can
be CRC
error-checked with an additional two bytes--an error-check overhead of about 1.5
percent [5].

Polynomial Arithmetic

The CRC performs its magic using polynomials modulo two arithmetic. Polynomial
arithmetic
mod 2 allows an efficient implementation of a form of division that is fast,
easy to
implement, and sufficient for the purposes of error detection. (This scheme is
not
particularly useful for the division of common numbers). Polynomial arithmetic
mod 2
differs slightly from normal computer arithmetic, and is generally the most
confusing part
of the CRC.

A polynomial is a value expressed in a particular algebraic form, that of:
A[n]*X^n +
A[n-1]*X^n-1 + . . . + A[1]*X + A[0] (or AnXn + An-1Xn-1 + . . . + A1X + A0).

Our common number system is an implied polynomial of base 10: Each digit means
that digit
is multiplied by the associated power of 10. The base 2 or binary system of
numeration is
also a form of the general polynomial concept. When we see a number, we think of
it as a
single value; we mentally perform the polynomial evaluation in the assumed base
to get a
single result. On the other hand, formal polynomials are considered to be a list
of multiple
separate units, and the existence or evaluation of an ultimate single value for
the
polynomial may not be important.

Because decimal arithmetic uses constant-base polynomials, all of us already
know how to
do polynomial arithmetic in a constant base (10); however, the polynomials used
in CRC
calculations are polynomials modulo two. By modulo 2 we mean that a digit can
have only
values 0 and 1. Of course, this is always the case with binary values, so one
might well
wonder what all the mumbo-jumbo is about. The difference is this: A modulo
polynomial has
no carry operation between places [6]; each place is computed separately. We
perform mod 2
operations logically, bit by bit; in mod 2, the addition operation is a logical
exclusive-OR of the values, and mod
2 subtraction is exactly the same (exclusive-OR) operation.

Modulo arithmetic is used for CRC's because of its simplicity: Modulo arithmetic
does not require carry or
borrow operations. In computing hardware, the carry circuitry is a major part of
arithmetic computation, and is a
major contributor to speed limitations. Of course, since we have both
subtraction and exclusive-OR instructions
available in most computer instruction sets, this particular advantage is less
important for software
implementations of CRC. Nevertheless, the simplicity of modulo arithmetic allows
several different software
approaches not available in our conventional arithmetic. Note that the
modulo-type operations available in
programming languages (e.g., the Pascal MOD operator), operate on entire numbers
rather than individual bits or
places.

A polynomial division mod 2 is very similar to common binary division, except
that we perform a logical
exclusive-OR operation instead of a binary subtraction. Similarly, because
"greater than" and "less than" are
meaningless in modulo arithmetic, we can replace these operators by performing
the exclusive-OR operation is
the high bit is set or 1, driving the high part of the dividend to zeros.

We can implement a polynomial division as follows: A polynomial division
register of a length corresponding to

the remainder produced by the polynomial to be used is set up (see Figure 1,
below) [7]. Each element of the
register should be able to hold the maximum modulo value; in "mod 2," a single
bit suffices. (Note that the
hardware diagrams are intended only as examples; very short CRC's are of limited
practical use, and there are
better ways to do the job.)

 Polynomial = x^5 + x^4 + x^2 + 1 = 110101

 x^4 x^3 x^2 x^1 x^0
 +---+ +---+ +---+ +---+ +---+
 +<-|Q D|<-XOR<-|Q D|<--|Q D|<-XOR<-|Q D|<--|Q D|<-XOR<- dn
 | | | ^ | | | | ^ | | | | ^
 | +---+ | +---+ +---+ | +---+ +---+ |
 | | | |
 +----------+-------------------+-------------------+

 FIGURE 1. Polynomial Divide Hardware for a 4 bit CRC

The register is cleared, then the data are shifted into the register from the
right; each shift is a polynomial
multiplication. Each shift also shifts a bit out of the register from the most
significant bit (MSb). We know that the
register value will exceed our representation when the shifted-out bit is
logical 1, so we arrange to perform our
polynomial subtraction" when this happens; that is, when we shift out a 1, we
exclusive-OR the polynomial with
the value in the register. Because our polynomial (the magic number) always
contains a high-order bit, which
always forces the shifted-out bit back to a logical 0, we need not actually
operate on the high-order bit. So only
zeros shift out, keeping the mod 2 polynomial remainder in the register.

This bit-level hardware process is easily simulated. Turbo Pascal algorithms for
the simulation are shown in
Listing One, page 76. Software simulation has the advantage of a fast and easy
investigation of an algorithm,
allowing quick changes to try out various forms of optimization. The program
produces a "trace" of the execution,
showing the step-by-step operation.

The polynomial division register does not hold the desired remainder until the
place containing the last data bit has
been shifted out of the register. To do this, a zero data bit be shifted in for
each bit of the register. In the case of
CRC-CCITT, 16 bits (2 bytes) of zeros need to be appended to the data. After
entering the zero bits, the result
in the polynomial division register is the CRC result. The common implementation
of XMODEM requires these
two trailing bytes.

The CRC result can be obtained without shifting in the two zero bytes by
rearranging the CRC register and
feeding the data in at the top end of the system (see Figure 2, below). By
shifting the CRC register we can shift
zeros in from the right. The data bit will be compared to the MSb in the CRC
register, and only if they differ will
the polynomial be subtracted. As before, this acts to keep the full remainder in
the register; however, the
remainder is now correct after each bit, and requires no trailing zeros.

 Polynomial = x^5 + x^4 + x^2 + 1 = 110101

 dn x^4 x^3 x^2 x^1 x^0
 v +---+ +---+ +---+ +---+ +---+
 +<-XOR<-|Q D|<-XOR<-|Q D|<--|Q D|<-XOR<-|Q D|<--|Q D|<-+
		^				^				
+---+	+---+ +---+	+---+ +---+								
 +---------------+-------------------+------------------+

 FIGURE 2. CRC Hardware

A simulation of this immediate-result algorithm (called, for lack of a better
name, the CRC algorithm) is also given
in Listing One, for comparison to polynomial division. Notice that both the
polynomial division and CRC
algorithms come up with the same remainder (or CRC value), but the CRC version
does it faster and with more
consistent logic.

Faster CRC's in Software

The bit-by-bit form of the CRC algorithm can be, and often is, directly
simulated in software. The shifting and
looping required by this approach can be reduced in several ways. Both
byte-oriented [8] and table-oriented [9]
algorithms have been available in the technical literature for a number of
years. Table-oriented algorithms may (or
may not) produce somewhat higher speed, at the expense of a sizable table of
constants that generally must be
initialized before use. Examples of the various forms of CRC algorithms are
given in Listing Two (page 78).

We can speed up the algorithm even more by precomputing the CRC for all possible
combinations of a 16-bit
CRC and a data byte and then saving the results. Done naively, this would be a
transformation of 24 bits (16 bits
of the previous register, and 8 bits of data) into 16 bits. This approach would
thus require 2^25 Bytes (about 34
Megabytes) of look-up table. In order to make the table approach practical, we
must find a way to reduce the
size of the table.

If we examine the CRC hardware, we notice that the current data bit is always
combined with the current MSb
of the CRC register. When we compute a whole byte CRC, we end up combining the
whole data byte with the
high-byte of the CRC. We can precompute the exclusive-OR of the data byte and
the high byte of the CRC
register (this is a single operation in software), yielding a single byte we can
call the combined term or the
combination value.

For the common 16-bit CRC's, it turns out that the CRC register changes in
patterns which are directly related to
the combination value. Thus, it is possible to pre-compute the CRC changes for
all 256 possible combination

values. Then, when we need to do a CRC, we can use the 1-byte combination value
to look up a corresponding
2-byte result, then use that result to correctly change the CRC register. As one
might expect, the required change
is simply a 2-byte exclusive-OR operation.

To generate the data for the lookup table, we need only generate the 2-byte CRC
result for all 256 possible data
bytes, given an "all zeros" starting CRC register. Each result has a 1 for those
bits in the CRC register that are
changed by a particular combination code. We can use a nontable implementation
of the CRC to compute the
table values.

This approach to generating a table of CRC values thus requires a 512-byte
lookup table. We must fill the table
with the correct data in an initialization step and perform a few more run-time
operations than the straight lookup
process requires (compute the combination value, look up the result, then apply
the result to the CRC register
and compute the new CRC value).

Another variations that is faster than the original bit-by-bit approach and that
also eliminates the look-up storage
of the table approach is the bytewide shifting algorithm. A bytewide approach
eliminates seven bit-by-bit
test-and-jump operations which are a significant overhead in the bit-by-bit
version, and also takes advantage of
fast shift and parallel-logic operations available on most processors (as well
as some high-level languages such as
Turbo Pascal or C).

First we need some algebra: By giving each CRC register bit and each data bit a
separate symbol, we can
express the result of a CRC operation symbolically. Each bit of the CRC register
will be represented by a
formula showing all the data and original CRC bits which affect that bit in the
result. If we take the exclusive-OR
of the bits specified by the formula, we can directly compute any bit of the CRC
result.

In order to generate the formulas for each bit of the CRC register, we create an
algebraic analog of the shifting
and combining process of the bit-by-bit CRC algorithm. Instead of shifting bit
values (as in a normal shift
register), we instead move the whole symbolic formula for each bit to the next
higher bit position. Instead of
actually performing an exclusive-OR operation, we concatenate the formula for
the data bit to each of the
affected bits in the CRC register, with a symbol indicating an exclusive-OR
operation. If ever we find that we
have two identical variables in any one formula, we can cancel and eliminate
them both (because anything
exclusive-ORed with itself is zero, and zero exclusive-ORed with any value is
just that value).

After symbolically processing a whole byte of data, and eliminating common
terms, we come up with a symbolic
representation for each bit of the result. By factoring this expression into
convenient computer operations, a
program is obtained which utilizes the bit parallelism available in software.

CRC Deviations

More improvement is possible. We have previously assumed that the CRC register
is cleared before starting the
computation, and also that we specifically compare the stored (or transmitted)
CRC value to the current CRC
result. These assumptions are discarded in protocols other than XMODEM [10].

When a CRC register is contains only zeros, processing a zero data bit does not
change the CRC remainder. So,
if the CRC register is clear, and extraneous zero bits do occur, these data
errors will not be detected. For this
reason, most current CRC protocols initialize the CRC register to all 1's before
they start the computation,
allowing the detection of extraneous leading zeros.

We can also eliminate the need to detect the separate CRC field at the end of a
data block. If the CRC result is
simply attached to the end of the data, the receiving CRC register will clear
itself automatically if there is no error;
that is, each bit of the stored or transmitted CRC value should cancel the
similar bit in the CRC register. Although
of minor importance for software implementations, this is a reasonable
simplification for hardware CRC devices
because it allows the exact same hardware to be used regardless of block length.

When the CRC is appended to the end of the data (thus eliminating the need to
detect it as a separate field), and
if bit-level CRC hardware is also to be supported, CRC software may need to use
data in reverse bit order. This
is because bit-level CRC hardware works on data after it has been serialized,
and data is traditionally serialized
LSb-first. That is, the parallel-to-serial conversion in an asynchronous serial
device sends the rightmost bit of a
character first and the leftmost bit last. The bit-level CRC hardware has little
choice but to treat the resulting data
stream as a single larger number; but that data-stream has its byte-level
bit-order changed from our usual
expectations.

If a MSb-leftmost CRC routine is to be compatible with bit-level CRC hardware,
it may be necessary to reverse
the bit order of every data byte (before each is processed or serialized) and
also the CRC remainder bytes (after
the block ends). Bit-order reversal can be done in software, hardware, or both.
Alternately, the CRC algorithm
could be constructed so as to use and hold MSb-rightmost data.

In strictly software CRC implementations, however, we work on data before it is
serialized and after it is
recovered and we trust any serialization that occurs to be transparent. We can
thus afford to treat data as a single
large value, MSb-leftmost, with MSb-leftmost bytes and a similar MSb-leftmost
CRC remainder appended on
the right. This arrangement is most consistent with both the theory and our
numerical conventions, and is the form

used by XMODEM. The CRC routines shown in this article use MSb-leftmost data and
keep the result also in
MSb-leftmost format.

If we arrange to verify the CRC by processing the CRC result as data, we again
fall prey to extraneous zero data
bits. In order detect such errors, we arrange for the CRC register to take on a
unique nonzero value in the event
of no error. By some quirk of the algebra, it turns out that if we transmit the
complement of the CRC result and
then CRC-process that as data upon reception, the CRC register will contain a
unique nonzero value depending
only upon the CRC polynomial (and the occurrence of no errors). This is the
scheme now used by most CRC
protocols, and the magic remainder for CRC-CCITT is $1D0F (hex).

Actual CRC Implementations

I constructed several CRC implementations for speed and size comparisons (see
Listing Two). The
CRC-CCITT polynomial was used, since this is the polynomial used in XMODEM, as
well as many other data
communication uses. I used Turbo Pascal although the code could obviously be
rewritten in C. A couple of the
operations used are Turbo Pascal extensions: Swap() is an INTEGER function that
exchanges the high and low
byte of an integer value; Lo() is an INTEGER function which selects only the low
byte of an integer.

I used the Pascal Bit-by-Bit approach (a direct simulation of the hardware
method) to provide a reference
against which the other algorithms are compared. The Pascal Fast B-B-B is an
improved bit form comparable to
most high-level-language implementations of the XMODEM CRC, except that this
version requires no trailing
zeros to finish the calculation (and so is already faster than the usual
version). The Pascal Byte version illustrates
the improvement wrought from algebraic factoring; the Pascal Table version shows
how a pre-computed table
can simplify and speed execution-time operation. The Machine Code versions of
Byte and Table show yet more
improved speed. The different approaches illustrate various tradeoffs of speed,
space, and specialization. The
results (Table 1, left) show a range of almost two orders of magnitude in
execution speed.

Each CRC implementation was made a Pascal PROCEDURE for easy testing and
comparison. For validation,
varying amounts of program code from main-memory were processed by each
implementation. All algorithms
achieved the same result. Several of these versions have been placed in an
implementation of XMODEM with
good results.

Time Tests

For the time tests, each implementation was executed 10,000 times under Turbo
Pascal 3.01A on an 8088 in a
Leading Edge PC with a 7.16 Megahertz (MHz) clock; the times would be 50% longer
on an IBM PC. The time
was taken automatically from MS DOS. Because the MS DOS timer ticks only about
18.2 times per second,
this method is only precise within about 55 milliseconds (msec) on both the
start and end of the timing interval.
The large number of repetitions minimize the effect.

 10,000 Uses (secs) 1 Use (msec)
 Procedure In Line Procedure In Line

Pascal Bit-by-Bit 13.790 13.070 1.379 1.307
Pascal Fast B-B-B 7.310 6.590 0.731 0.659
Pascal Byte 2.150 1.430 0.215 0.143
Pascal Table 1.430 0.710 0.143 0.071
Machine Code Byte 1.050 0.330 0.105 0.033
Machine Code Table 0.890 0.170 0.089 0.017

TABLE 1.

The time reported as "10000 Uses" is real time decreased by the amount of time
taken by 10,000 empty loops,
thus giving us the time associated with the procedure call and execution,
instead of also including the looping
structure that we use only for the tests. The "In-Line" column decreases "10000
uses" by the time taken for
10,000 procedure calls and returns, giving the time for execution only.

Selection Criteria

The time necessary to process a byte (including the CRC operation, and whatever
queuing operations and other
tests need to be performed) should be less than the time it takes to receive a
character. We could just accumulate
the data in a block as it is received, then CRC-process the whole block, but
this would add some delay, or
latency, between receiving the last data byte and returning a response to the
sender (ACK for good data, NAK
for an error, in XMODEM). Some XMODEM implementations appear to use this method,
giving the impression
that the protocol or the CRC are responsible for the delay. Because fast CRC
routines are obviously possible, it
is hard to rationalize any latency at all [11].

The Pascal Byte version, which takes only a few lines of code and is
machine-independent (under Turbo Pascal),
may be suitable for speeds up to 9600 bps, and is a reasonable choice for most
use. The Pascal Table version is
a little faster, but the table generally must be initialized before use, either
by using a different CRC version, or
perhaps by reading the values in from a file. Alternately (in most languages)
the table could be defined in the
source code as a large body of constants.

The faster versions can generally benefit from being used in-line (that is, not
as procedures) to avoid procedure

call/return overhead, but this is also inconvenient, since each use would
involve duplicating the same code in
different places. The Machine Code Table version is shorter, and so would
minimize the duplication penalty. The
Pascal Table version can also be used in-line, because it takes a minimum amount
of code. I use an Include file
holding the Machine Code Byte version, then call the routine as a procedure; the
resulting code is both small and
fast.

Other Uses

Although this article has concentrated on CRC's in communications and data
storage, CRC's can be used in
many different applications involving error detection. Such applications include
start-up verification of ROM
code, load-time verification of RAM modules (as in the 6809 operating system
OS9), and program and data
correctness validation.

It should be noted that CRC polynomials are designed and constructed for use
over data blocks of limited size;
larger amounts of data will invalidate some of the expected properties (such as
the guarantee of detecting any
2-bit errors). For 16-bit polynomials, the maximum designed data length is
generally 2^15 - 1 bits, which is just
one bit less than 4K bytes. Consequently, a 16-bit polynomial is probably not
the best choice to produce a single
result representing an entire file, or even to verify a single EROM device
(which are now commonly 8K or more).
For this reason, the OS9 polynomial is 24 bits long.

How To Learn More

A good introduction to CRC's can be found in the classic Error Correcting Codes,
by Peterson and Weldon
(Cambridge, Mass., MIT Press, 1972), but you can expect to do some serious math
to understand it. A brief
non-mathematical chapter on CRC error detection in data applications (with some
good figures) is available in
Technical Aspects of Data Communication, 2nd ed., by J. McNamara (Digital
Equipment Corporation, Digital
Press, 1982). The very brief section in Computer Networks by A. Tanenbaum is
also fairly good.

Notes

 1.The CRC does not require a fixed block size (though there is a built-in
maximum), but some
 error-correcting protocols do. Larger amounts of data are simply
partitioned into blocks that are
 considered separately.
 2.Peterson, W. W. and D. T. Brown. 1961. Cyclic Codes for Error Detection."
Proceedings of the IRE.
 January. 228-235.

 3.Tanenbaum, A. 1981. Computer Networks. Prentice-Hall. 128-132.
 4.Brooks, L. and J. Rasp. 1984. "How Accurate is Accurate?" DDJ. February.
27.
 5.Error detection is only part of the requirements for a protocol. Other
requirements include transmitting the
 data in blocks, numbering the blocks, and responding when a block has been
received. The corresponding
 design decisions in XMODEM typically add yet another four bytes to each
block transferred, for a
 required overhead of about 4.5 percent. This value can be, and often is,
additionally degraded in
 implementation.
 6.The general case of polynomial arithmetic, which allows a nonconstant base,
generally makes carry
 operations (between terms) difficult.
 7.It is common and traditional for the CRC register to be shown shifting
right, which is the exact inverse of
 this author's analogy to binary division. Given our system of numeration,
it seems reasonable to place the
 most significant digits of a value to the left, and it is then correct for
the CRC register to be seen as shifting
 to the left.
 8.
 Helness, K. 1974. "Implementation of a Parallel Cyclic Redundancy
Check Generator." Computer
 Design. March. 91-96.
 Vasa, S. 1976. "Calculating an Error-Checking Character in Software."
Computer Design. May.
 190-192.
 Socha, H., et. al. 1979. "Letter to the editor." Computer Design. May.
6, 12.
 Kjelberg, I. 1985. "Letter to the editor." IEEE Micro. August. 4, 99.
 9.
 Whiting, J. 1975. "An Efficient Software Method for Implementing
Polynomial Error Detection
 Codes." Computer Design. March. 73-77.
 Perez, A. 1983. "Byte-wise CRC Calculations." IEEE Micro. June. 40-50.

 Schwaderer, D. 1985. "CRC Calculation." PC Tech Journal. 118-132.
 10.
 McKee, H. 1975. "Improved CRC Technique Detects Erroneous Leading and
Trailing 0's in Data
 Blocks." Computer Design. October. 102-106.
 Fortune, P. 1977. "Two-Step Procedure Improves CRC Mechanisms."
Computer Design.
 November. 116-129.
 11.Some protocols other than XMODEM allow subsequent blocks to be sent before
a previous block is
 acknowledged, thus minimizing the latency problem.

