Full explanation
of BASIC error
messages

Judy Deane

handy tips on
debugging

Ideal for the beginner!

Cat, B-6200

Foreword from Dick Smith

Hi there! Welcome to the exciting world of computing, and to the
rapidly growing ranks of people using the incredible new System 80
computer...

The idea behind this book is to provide you with a really easy to
follow introduction to programming in BASIC, using the System 80
computer. The System 80 is an exciting new machine based on the
"Level II" version of the Tandy TRS-80 computer, which has been the
largest-selling computer of all time. The System 80 uses virtually
the same components as American made computers like the TRS-80, but
it is assembled in Asia to take advantage of lower labour costs.
This allows it to be sold much cheaper, providing outstanding value
for money and bringing the advantages of computer technology to
people who could never afford it before.

Along with its lower price, the System 80 also offers an inbuilt
cassette tape deck which gets around most of the troubles often
caused by a separate audio tape recorder. It is also designed to
give you the choice of using either a video monitor or a standard
TV set for its display. So there's no need to buy a video monitor,
if you already have an unused TV set -- nor do you need to lug
around a monitor when you're taking your System 80 to a friend's
place!

The System 80 is also designed for later expansion using the
popular $-100 interconnection system -- opening the door to d4lmost
unlimited expansion. Plug-in boards for the S$-100 system are made
by hundreds of manufacturers all over the world.

In short, the System 80 is not unly excellent value for money, but
an ideal "first computer" on which to learn programming!

By the way if you're impscient like me and want to get your
System 80 running with pre-recorded programs straight away, turn
to Appendix D at the back of the book after reading chapter 1.

Happy computing,

Dick Smatt.

National Library of Australia Card Number
and ISBN 0 9595080 3 1

Copyright 1980 by Dick Smith Electronics Pty ‘Ltd,
Cnr Lane Cove and Waterloo Roads, North Ryde NSW 2113
Australia.

All rights reserved. Reproduction or use of any part of the
editorial or pictorial content of this publication in any
manner is prohibited without prior written permission from the
publisher.

No patent liability is assumed with respect to use of the
information contained herein. While every precaution has been
taken in the preparation of this book the publisher assumes no
responsibility for errors or omissions, nor can any liability
be accepted for damages resulting from the use of the programs
contained -herein.

PRINTED IN AUSTRALIA

Dick Smith’s

Easy Way to -
Programming in

BASIC

Using the System 80 Computer

by John and Judy Deane

FIRST EDITION, 1980

Published by Dick Smith Electronics Pty Ltd,
Sydney, Australia

Preface by the Authors

While this book is all about programming
the System 80 computer, it is not a Programming
Manual. If you want something that is gritty,
concise and complicated then this is ~~t the
right book for you.

On the other hand, if you have not even
played with a computer before, then this should
be just the book for you! It will be especially
useful if you have a System 80 computer in front
of you while you read!

The objective here is to help you make your
way through the ins and outs of programming with
the System 80. If you follow us all the way you
should pick up enough about the BASIC language,
programming and the System 80 to really do your
own thing!

There are lots of fun programs published
of BASIC computer games that you can have a
great time copying into your System 80 (though
sometimes minor changes will have to be made).
However, the satisfaction of writing your own
program, even a simple game, is incomparable!

Computer programming is not an arcane art
or even a mysteriovus science. It is a creative
HUMAN activity. It requires a little education
(read on!) and some concentration but you can
dos it

John and Judy Deane

v

Contents

Chapter Contents Page
1. Can I turn It onZ.. .. «edntereonnections s eesessss i 1
2. Let's say hello........ PRINT ,RUN,NEW. .. .covuvunnnn .- 3
3. Programming already?....REM,LIST,delete..euvueeerennn. 6
4, It really works!........ +=%/variables...ccovrennanns 9
5 BIg UMDY S nmsiiniinie s e scientific notation......... 14
6. GCetting complicated..... precedence......... S e s 16
7. Decisions, decisions!...GOTO,IF/THEN,END........ I 19
8. Question time......... oo ENPUT 4 o e o s T e 22
9. A little hRelp.oeoe s os o AUTOLDELETE, soaivs veismmonmmas 26
10. Just a calculator.,...... immediate mode..oeevsasannas 28
11. Program saving.......... CASSEtte USeiisnaoe it ni o5 tioe 30
12. Again & again! civssienes FOR/LSTEPINERT 1oovnvisininsionss oios 33
L3, Stop: T80 e nemmetialomisivas timing 1oops,STOP:.eeveessss 37
1%, LAVENG' it 00 cysvesans VAR POS sieisismir nia simmiiesoisiniaios wiate 41
15. Inside out....ovueuuun.. NESLER 100PS ies v amiini 2 44
16. Debug T8, .. cew e oo s debugging,precision......... 47
175, EOIBTRG o wsiizi vs 55 9555 am e Line modiFieation e aes s 52
18. SUb-programs............ ON/GOTO,GOSUB/RETURN. y 55
19 BEixed datds: wmuicaismiss s DATA,READ ,RESTORE ,strings... 59
20. Compact style........... multiple statements......... 63
2l. The game generator...... RAMDOM,RND s oo v vt vvenenannns 65
22: PiotUressicamssss oo a CLSSET RESET , POINT« sussrozeinini 67
23. TableS.veueuneennnnnnnns arrays,DIM..... SRS e 70
24, Did he say "YES"........ string operations....i.c.v... 73
25. Conditions.......cc..... AND, OR,NOT ,ELSE, flowcharts. . 75
26. Screen control.........s PRINT. @5 ss s o oiniarsoinimarsioie mmmmars ; 78
27. Changing data........... cassetie datal e veva s o 81
28. Antibugging............. more debugging.............. 83
29 Bl v otisnshpisieing ML SCELIAN o vo o oo es i v 85
Glossary G-1
Appendix A. Summary of BASIC A-1
Appendix B. Errors B-1
Appendix C. Answers to Exercises C-1
Appendix D. Getting started before you read any books! D-1

How to load and run programs from the demo cassette

\'

1.Can I turn it on?

Well, you've got a System 80! And I guess you'd like to use it!

Find somewhere comfortable (you could spend some time with your
System 80), secure (it would be a pity to have a card table fold up
under you!) and out of the weather (computers don't like rain, dirt
or tornadoes too much). Now let's see what we're doing.

This is the back of your System 80:

ON OFF © EXPANSION CONNECTOR

TAPE =N l
RECORDER MONITOR VIDEO CUT RESET
) \!
Power RF video cable

* If you're going to use a Video Monitor you'll need to use the
composite video cable, ie.

Plug the fat DIN end into "MONITOR" in the back of System 80 and
the smaller RCA plug into the back of your monitor.

* If you're going to use your TV set for display you can't use the
above cable but the RF video cable built into System 80 will need
to be connected to the aerial socket of your TV set. Select
channel 1 to see System 80's display. You may find that you'll
have to adjust brightness or contrast or even vertical or
horizontal hold on your TV, to get a clear and steady display.

OK, you've got System 80 connected to your display, now you can turn
it on. Don't forget System 80's power switch at the back right.

(Frmthetop‘%:off &W:on)

System 80 should have a red light on at the left and your display
should be showing

READY?_

near the top.

If you don't see that, refer to your System 80 User's Manual for more
details.

You might like to use double size characters, especially if you're
using a TV set for your display. At the back, press the "VIDEO CUT"
button in (till it locks). When that's in, the grey "PAGE" button
above the keyboard becomes active. ie.

i (fj) i PAGE Shows the left half of the
WALR i display, 32 characters wide.
VIDEO CUT This is the normal position.

Shows the right half of the

display (there's often no-

thing here at all!)

wAtR 6 ouE The display shows 64 smaller characters

1 -
VIDEGU CUT (and doesn't do anything).

Mow that you've got

READY?_

displayed at the size you want it, press the large
| NEW LINE

key. System 80 will sort itself out, then display

READY
&

at the bottom of the screen.

NOW YOU'RE AWAY L.

We can get on with our look

at the language that System

80 uses. It uses BASIC, a
language formulated as the
Beginners' Allpurpose Symbolic
Instruction Code.

(You may think of other words
to describe it later, but \5
these are the recognised ones.)

2.Let’s say hello

Now that we really have a computer
let's see that it works.

At this stage the video display
should be showing

READY
p

at the bottom of your screen.

The > is the prompt sign which
means that the System 80 can accept
your type-in now and the underline is the cursor which shows where the
next character typed will go. The total display means that your System
80 is ready and waiting for you to say something. What you type in
must be just right but if you make a mistake you can correct it by
simply pressing

BACK
SPACE

to remove the last character typed, then retyping it correctly.

Now type in the following line exactly as it appears.
PRINT "HELLO"

Can you find the single large key on your keyboard called | NEW LINE] ?
This is to tell the System 80 that you have finished that line and your
computer should look at what you have just typed in, so press it.

What happened? The display should have gone to the next line and shown

HELLO
READY

Ve

Even if you left off the last quotation mark you'll still get this
display but it may cause trouble later when you want to Lype in more,
so remember to put quotation marks at both ends of the text following
PRINT.

If you got some other message check that you
-spelled PRINT correctly
-left no spaces in the word PRINT
-used only one pair of quotation marks.

Try it again. D0id System 80 say hello this time? You can make your
System 80 say anything you like by changing the text inside the
quotation marks and it will answer exactly what you type in.

NOTE that PRINT and the quotation marks did not appear. They are not
supposed to be displayed and are only to tell the computer what to do.

Now type in the following line s
1¢ PRINT "HI, I'M SYSTEM 8@"

Be sure to use numeric zero, here represented by @, rather than
alphabetic 0.

Now hit | NEW LINE

This time System 80 didn't talk to you did it? This is because of the
number at the beginning of the line which tells your computer that
what you have just entered is part of a program (Yes indeed! A real
program!) to be stored in memory rather than acted on immediately.
READY is not displayed this time as the appearance of the word would
just be a nuisance at this stage of the game. But notice that the
prompt and the cursor are displayed on the next line ready for you to
Ltype in your next instruction. So type

RUN | NEW LINE)

This time you should have seen
HL, I'M SYSTEM 8

appear on the next line.

If, Heaven forbid, it did not, then the System 80 could not understand
something. Go back and type the line in again and, as long as you use
the same line number the new line will replace the old. If RUN still
doesn't gel you Lhe right thing something is thoroughly mucked up in
the program. This time type

W (W LIne

before re-trying the line. That should zap ANYTHING left over!

The command NEW tells System 80 that you want it to erase any
existing program in its memory and "wipe its slate clean" ready to
feed in a new program. You should always use this command before
feeding in a new program.

WELL NOW, WHAT HAVE YOU DONE?
That is your FIRST program and you have made it work..!

We can distinguish now between 2 different things you can say to the
System 80. Lines that you type in and that are executed immediately
[EEW LINE) is hit are BASIC commands. Lines that are typed in to be
executed later are BASIC statements. Statements makeup a program
and will execute when the command RUN is given.

Unlike the first lines we tried which
were once-only displays,your program
statement can be recalled. If you hit

a second time your System 80 will say
hello again. No matter how many times
you say RUN the computer will answer
because the instruction you have given
is still in memory. Doesn't that make
you feel powerful?

What have we learnt in this chapter?

Statements Other

Commands
RUN PRINT "text" BACK
NEW SPACE

NEW LINE

READY

> prompt
_ cursor

quotation marks

line numbers

3.Programming already?

A one line program does not seem quite like the real thing.
So let's do some more. Type in

2@ PRINT "AT YOUR SERVICE:!" (INEW LINE)

If that looks all right try typing

RUN { NEW LINE)

Hiwmm?? That was a bit like what we did last time, but now you can see

HI, I'M SYSTEM 8@
AT YOUR SERVICE!

Right! Your first program has grown!
Surely you haven't forgotten what you typed in? Well, probably not,
but anyhow lel's type in

LIST { NEW LINE)
NOW you should see

14 PRINT "HI, I'M SYSTEM 8@"
2(4 PRINT "AT YOUR SERVICE:"

You should have figured out what PRINT does, but there is that funny
little 1¥ and 20 before the PRINT. These are line numbers. They say
where in the program lines should go. Type

5 REM TEST PROGRAM - (NEW LINE)

now try
LIsT (NEW LINE)
again.

WOW, that last line is now at the TOP of the program.!!

Aha; in line number order! You can write a program with line numbers
as 1, 2, 3 ete., but, say you make them 1@, 2@, 3@ instead, then up to
9 program corrections and additions can go inbetween any 2 old lines.

Actually, line numbers can be any numbers from @ to 65529 (that's a
lot of lines!).

UK, but what if 1 type a line number the SAME as one already in the pro-
gram?? Well! We've already discovered that haven't we? The line just
typed in completely replaces the old one. That sounds a bit dangerous!
Maybe so, but that is how you correct a line with mistakes. Just retypeit:

However, if you spot the errors before you have actually finished typing
in the line itself, you can erase the whole line by pressing

— BACK
{SHIFT) with |SPACki

So much for all that stuff. What we have now is a 3 line program.

Let's RUN {NEW LINE) it.

Good Heavens, something must be wrong. We added a line but il ran just
the same way! Remember that line was

5 REM TEST PROGRAM

and in BASIC when you say REM that means
REMark. The computer leaves such REM
statements in your programs and shows

them when you list them, but it completely
ignores them when the programs are
actually running - it understands that
they are solely for the use of humans.

What good are REM statements if the
computer ignores them? Simple: they
allow anyone else, or yourself at a later
date, to list the program and see what it
is doing and how it is doing it. Program
requirements change, and sometimes the
computer setup does too. REMarks provide
shining little gems of illumination to
what could otherwise become a very misty
program landscape!

Let's pretend we have done something a bit dumb (we're only pretending
remember) and we want to totally annihilate a line of program. Type in

1@ [NEW LINE
And RN it again. I'm beginning to get a bit weary of saying| NEW LINE

("Hey look at this!"™) all the time. As you can see it is

always used as the terminating keystroke of a line. So from now on,
even if I don't say NEW LINE at the end of a line, you will know
that you must type it there.

What were we doing? Oh yes, when we
ran then only the second line of text
appeared! To see what we did type

LIST
(now really, you didn't forget that

did you?)

Right! The middle line has gone en-
tirely! We deleted line 1§ just by
typing its line number with no program
line!

~ad

Mow for a bit of "computer'" type stuff. We nearly have enough bits
and pieces together to have a bash at our own programs.

Very soon System 80 will start telling you things it has found that
it does not like. For instance, if you asked your computer to

1@ PRNT'HI"

it does not notice the missing 'I' when you press [NEW LINE). (The
computer just stores the line away.) BUT when you tell it to RUN
System 80 will say

?SN ERROR IN 1
READY
19 _

and stop running your program. Here 'SN' stands for SYNTAX and it
means that there is something wrong in the way that the words are
written in line 1ff; in this case,a spelling error in the word 'PRINT'.

System 80 has automatically entered "edit mode" for the line with an
error and is waiting with the line for you to correct. We'll talk
more about editing later but for now it is sufficient to press

[NEW LINE) and you'll see the whole line containing the error.
System 80 will now talk to you normally and will display the prompt
and cursor showing that it is ready for you to type in Lhe correct
version.

There are many errors that System 80 can detect and these are listed,
and explained, in Appendix B.

0K, now one giant step for you and a small one for mankind.
Type in NEW to remove all trace of program. The screen will be cleared
and i

READY
y

will appear at the top.

NOW write your very first own program to print out your own name!
(and RUN it too!)

Pause here for violins, mounting orchestral accompaniment then, prefer-
ably, peace and quiet.

You should have something along the lines of
1¢ PRINT "U.R.WRIGHT"
Tremendous crescendo, gradually fading to close. Enthusiastic applause

and we all go home for a good night's sleep.

In Chapter 3:

Commands Statements Other
LIST REM more about line numbers
deleting
errors

4.1t really works!

13,470
Everybody knows that computers are 3 4T\
good at mathematics. Wrong! 15
Computers ARE good at arithmetic;
add, subtract, multiply, divide, /=

but it takes people to construct
programs to solve problems in math-
ematics. A computer is only as good
at maths as its programmer is!

SLL

y
I EN) AR

B - .
1 i)

=
S

Your System 80 talks arithmetic with
a BASIC flavour that is not too diff-
erent from "normal".
So, for add we use +

for subtract -

for multiply
and for divide

~ %

Hmm, those last two are a bit funny - whatever happened to X and & ?
Well, it might be a bit confusing (and computers can't stand confusion)
to use the same symbol as an alphabetic X for multiply, and + just did
not exist on the standard typewriter layout. So, % is pretty much
like a special X, and / is the way we write fractions (eg.l/2). So
there we have it ..

Before we go any further, let's talk a little about maths. No don't
go all squeamish on me yet, I want to say my bit! Maths is not some-
thing to be frightened of (unless you faint at English grammar say).
It is just a way to describe some things. You wouldn't use maths to
describe Mrs Jones' new hat! But how about things invelving numbers
anyway, like sizes, times or distance? For instance, instead of saying
"if your car travels at a constant speed for some time you can find
out how far it went by adding a unit of speed for each unit of time",

how: about; saying distance = speed X time

Maths is a clever plot carefully designed and constructed by people
to allow shorthand descriptions of the way we think the world works.
That just could be useful!

So much for that excursion. Let's get back to the world of the System §0.
First, type NEW and then LIST to make sure we have a clean slate!

You didn't forget(NEW LINE)did you?
0K, 1'l11l stop nagging.

NMow we can try the program line

—ad

3% DI=SPxT

You guessed it, DI is distance, SP is speed and T is time. We multiply
SP by T to get distance as DI.

9

DI, SP and T are called variables and they can have different values.
Or, to put it a different way, their values can vary! Gosh.

Variable names must start with a letter ie. A to Z, and the rest can
only be made up of letters and numbers. Some examples ,of allowable
variables are A

Q

MAX

B4

ZING

SA569

and some illegal ones are
3ADD (number first)
5 (that's not a variable, that's a number)
FOO! (illegal character - not A to Z or @ to 9)
&ALL (not A to Z first, also illegal character)

BUT, but, but the System 80 only looks at the first two letters, so
be careful naming variables. While saying
SPEED certainly makes a program more
understandable for humans than just using
SP it can be hard to notice that two
COMPLETELY different variable names look
the same to your computer!

eg. System 80 would see no difference
between SPEED and, say, SPLAT.

SPEED or SPLAT 27

Also, if you use long variable names you
have to be careful not to include any
letter sequences that are used elsewhere in BASIC (these are called
reserved words). So DISTANCE is illegal because TAN has a special
meaning! See Appendix A for a list of reserved words.

0K, back to our program line.
30 DI=SPxT

What this says to the computer is to multiply (%*) the variables SP
and T together and put the result in the variable DI. Even though
you could read that line as "DI equals SP times T" it does not really
mean "equals". A better way to say "=" might be "takes the value of".

Mow we have the 'gutsy' bit of a program, but we haven't given SP and
T any values! (Actually, variables always have some value. If System
80 has not been doing anything else they should have the value zero -
but that's not very useful.)

Let's say we go for a trip and each day we drive at an average speed
of 7@km/h for about 6 hours. Nice and leisurely. How far do we
travel each day? That's not too tough, but let's see if your

System 80 can do it. We need some program lines like:

14 sP=7¢
20 T1=6

When the program is RUN the variables on the left of the "=" are
given the values of the numbers on the right hand side.

10

To speak pure BASIC one should really say "1@ LET SP=7@" but with
System 80 you can forget "LET" (or put it in, whichever you prefer).
In the examples here 1'll leave it out.

Numbers can be written like 1 or 345 or -82@f or P (no commas
in big numbers!) for whole numbers. Or for fractional numbers 1.5
or -2395.66 or 3.14159 (this last one is "pi").

Now LIST your program; it should look like

14 sP=7¢
2@ T=6
3@ DI=SP*T

Right, now RUN it!

But, hey,... nothing happened. It just said READY. Ready for what
I ask you??

Aha,.. System 80 did what we asked it to do, and the computer knows
the answer to our problem, but we did not ask it to tell us!:!

Ho hum. Let's add another program line.

4@ PRINT DI

NOTE that there are no quotation marks around DI because we do not
want the letters printed out, but the value that has just been
assigned to the variable DI.

Now RUN it again.
If you don't see 42§

READY

N something is wrong! LIST the program and
carefully check each line. Retype any lines that are wrong, or type
NEW and go back and try this chapter again!

Now we can get an answer out!
It seems a bit bare though. Let's fancy it up some. Add

35 PRINT "THE DISTANCE IN KILOMETRES IS"

and RUN. Good! But how about writing the words and answer on the
same line. Erase line 35 (by typing nothing for that line, remember?)
Then try

4@ PRINT DI,"KM IS THE DISTANCE."

HEY!! It says 420 KM IS THE DISTANCE.

That's better, but why all those spaces??

The display is divided into 4 fields or areas, each 16 positions wide.
If you put commas between things to be printed then they go into these
fields. This lets you compile tables easily. eg. try

PRINT 1,2,3,4,5,6

(This is an immediate command, not a program statement!) The numbers
are spaced out, 4 to a line.

If you want things squashed up, use semi-colons between them. Try

PRINT 1;2;3;4;5;6
11

A bit different, eh? Now let's try
4@ PRINT DI;"KM"

and RUN of course. You could even enclose your answer by the text
describing it - for instance,

4@ PRINT "THE DISTANCE IS";DI;"KM"
Also let's add

35 PRINT
5@ PRINT

and now RUN.
That really is good! Those lines that look as if they do nothing
space the result out nicely!

LIST out the program and have a good look at it. If something does
not quite make sense, go back and re-read that bit of this chapter.
It is vital that you understand what we have done so far.

I've changed my mind. I'm going to drive for 8 hours each day of our
trip. How about you changing the computer's program to calculate how
far we will go?

I'l1l just sit here and contemplate my navel for a bit while you
adjust the program. GO ON0u.. T RIS e e A R e

0K?? Well, my idea was to change line 2@ to put a value of 8 into T.
That makes our distance jump to 56@km per day!

You may have already noticed that we are off to a bad start in pro-
gramming - no documentation! Nothing to say what the program does!

You try saying what it does. Use a REM statement about line 5. One
line can be almost 4 screen-lines long (System 80 stops accepting
type-in at 244 characters) so that allows you to say an awful lot.
However, if you want to say more just take a new line and use a new
line number then say REM again and finish what you wanted to say.
You can, of course, use as many REMs as you like (but don't kill any
program lines; make sure you give the REMs unused line numbers).

1'11 doodle again while you think of what to say ...ievevivennns

I thought it could go something like

5 REM THIS PROGRAM CALCULATES THE DISTANCE TRAVELLED GIVEN SP IN
KM/H AND T IN HOURS.

We've covered a lot of things in this chapter so give yourself a pat
on the back and go and have a cuppa.

12

In Chapter 4

Commands Statements Other

variable=zexpression + add

LET var.=zexpression - subtract

PRINT variable #* multiply

PRINT / divide
variables
numbers

print fields & ,

print & ;

I'11 give you a few exercises now. The answer to each is a separate
program so you should type NEW before writing each. There is no
'correct solution", there are only programs tha work and "them that
don't". Everybody programs a bit differently, ..d while some answers
may be "better" for one reason (eg. faster) they may also be worse
for other reasons (eg. incomprehensible).

Exercise 1.

You have to fly from Alice Springs to Perth (blimy!). You know that
the aircraft flies at about 4@@km/h and that the trip takes about

5 hours. But how far is it?

(We already know that distance = speed * time.)

Exercise 2.
You are paying off a $25,@P@ house loan at $28@ per month for 25
years. How much are you actually paying the lender?

Exercise 3.
You are Science Officer on the Starship Enterprise and you are about to

fire a proton torpedo at a fleeing fiend. Given that the Enterprise
is travelling at S@,@@@km/sec and proton torpedoes accelerate at
2,@@Pkm/sec?. And knowing that V=U+A*T (V final velocity, U initial
velocity, A acceleration and T time). How fast will the proton torpedo
be going after 5 seconds?

Next, with the same conditions, how far will it have gone? We also
know that S=UxT+1/2#AxTxT (here S is distance, and the others are as

above).

Good luck! See Appendix C for one set of answers to these exercises.

13

5.Big numbers

When you want to talk about very big numbers or very little numbers
it is helpful to have a shorthand way of doing it. In fact we use
shorthand methods all the time! For example, we buy material in
metres, travel in kilometres and measure small things in millimetres,
and here metre is the basic unit with kilo as a shorthand way of
saying thousands and milli as a shorthand way of saying thousandths.

Another shorthand form of 1¢@@ is 1@°. All the superscript 3 means

is 1@*1@x1@, 3 lots of 1P multiplied together and this "3" is called
the power, or exponent, of 1f. System 80 cannot write above the line,
so instead it uses E notation, meaning exponent of 1@. In this format
1#° could be written as E3. So if you want to talk about the distance
to the sun, rather than saying 158 X 149 metres, you can express it
for the computer as 15@E9, which is simply a different way of saying
the same thing and is understandable ig‘).

to your System 80. It's also easier

than saying 1500PP@P@BPP isn't it? Q (bﬁﬁ@ggg
N %

If that number of zeros is hard to
write correctly, think about 1E25!!

(1 followed by 25 zeros) ‘9 - " Q %%

ﬂ

The same number can be written many different ways; thus 15@E9
is the same as 15£14
or-1,5ELY .
Your computer will accept any of these forms as the same number, but
it likes to print in the last form, and does so automatically for
| numbers bigger than 999,999. That is, the number is expressed as a
decimal between 1 and 1@ with a positive exponent.

For instance, 1,732,008,PP8 would be printed as 1.732E+@9
and 689,000,000, 000,000 as 6.89E+14 etc.

0K, that's big numbers, now little ones.
One millimetre = Iﬂ%ﬂ metres or @.f@@1 metres.

This can also be written as 1@~ where the "-" means that the number
is divided (not multiplied) by the given exponent.... just another
bit of shorthand. So if you want to talk about a millimetre you can
enter it as 1E-3 and your System 80 will know what is meant.

Again, System 80 will accept many different forms of the same number.
For instance; 3.2E-8B

or 32E-9

or 32fE-1@ will all be accepted as @.0@PPAP@32.
But it will only be printed in the first form by System 80. That is,
as a decimal between 1 and 1@ with a negative exponent.

14

Expression of numbers in this form is called scientific notation,
because science often deals with very large numbers (eg. astronomy)
or very little numbers (eg. atom research).

You may have noticed that when you enter a number using scientific,
or E, notation if the exponent is positive you need not give it a

sign but when System 80 prints it out the "+" is always there. The
computer has a standard format for printing these numbers which is;

4’—'*-x E % ab *--\‘

number expressed t exponent given
in decimal format sign in two digits,
between 1 and 1@ eg. @6, 26 etc.

(may be either positive
or negative)

If the exponent is positive it means that the decimal point should
be moved as many places to the right as the exponent says. If it
is negative, then the decimal point must be moved to the left as
many places as the given exponent.

Exercise &.

If light travels at 3P@,AP@ km/sec and takes about 5@ seconds to
reach Earth from the sun, how far apart are they? Write all numbers
in E format.

Exercise 5.
Try Exercise 3 again, using E format numbers, and changing 5 seconds
to 25 seconds.

In Chapter 5

Commands Statements Other

E format

15

6. Getting complicated

(NOTE: Don't worry if you find some of the maths in this chapter
a bit beyond you. Just skip over it for now and go to Chapter 7.
You can come back and refer to the maths later....)

Now we can put an arithmetic expression
together, such as 1+2#3. BUT do we mean
1+2 then *3 OR 2%3 then +17 To answer
this question we have an established

order for performing arithmetic operations.
This is called operator precedence or

what comes first.

7 \\

System 80 does * and / before + and -

Hmmm.... * and / have the same precedence - which one gets done first?
Well, they just get done from left to right. So the answer to 6/2%3 .
is definitely 9 - not 1! And 1+2x%3 is 7.

Sometimes these rules will mean that we don't get the answer we want
without some juggling. Thus 1+2 times 3+4 cannot be written 1+2x3+4.
Why? Think about.it...., yes, of course, it's because 2%*3 is done
first, then +l1 and +4. We can use parentheses to get over this!
Anything inside () will be done first. So, to get the answer we
want we could say (1+2)%(3+4).

Parentheses cannot be used for multiplication as they are in written
maths. For instance, 2(3+4) will not be calculated as twice the
answer to 3+4. If you want this, you must write 2#(3+4). You would
still use parentheses to compute 3+4 first but you need a multiplicat-
ion sign too.

That's all under control, so let's add a few more functions to our
repertoire. If we want to multiply a number by itself we can write
T#T. In everyday use this is T squared or T2. System 80 understands
TC2 as the same thing, that is two Ts multiplied together.

NOTE: There is no [key on the keyboard. To get [on the screen you
must press [ESC) . 7T

Thus; AL5 means AxAxAxA*A
TWOL2 means TWO*TWO
(the contents of variable TWO multiplied by itself)

This is a lot like E notation since it involves exponentiation, but
it is more general because the number to be raised to the glven power
is not automatically taken to be 1.

How could you write 9.8ES5 usingLC? Yes, simply 9.8*1@L 5.

16

Another operation is unary minus or negation. This is similar to
the minus we all know about, but refers to a complete expression,

So if we say -A we mean negative the value in variable A. This has
the effect of making a positive number negative, or a negative number
positive.

Now we can complete a table of precedence. Operations are done in
this order;

1. expressions inside ()

2. L exponentiation

3. - negation

4. » [left to right

5. + - left to right

Exercise 6.

You be the computer and work out the value of se (then check them
with System 80!);

la 1434

25 (2+4) %2

3. 2[3-1

4, -3C2 (careful here!)

While we're talking about this sort of
thing it is appropriate to add that
System 80 has a whole lot of numeric
functions available.

With all of them you feed a number in
(the argument) and get another one out
(the result).

eg. with the function ABS, the
argument is returned as a
positive number (the result),

See the System 80 Basic Manual for a complete list of available
functions. These are some of the more common ones.

absolute value ABS(arg.) gives argument as a positive value
eg. ABS(3.9) is 3.9

ABS(-19.6) is 19.6

integer part INT(arg.) gives whole number less or equal to
argument
eg. INT(5.9) is 5

INT(-3.1) is -4

sign = SGN(arg.) result is -1 if<@, Bfor @, 1 if >@
eg. SGN(-515@) is -1
SGN(19.5682) is 1
SGN(@) is @

17

square root = SQR(arg.) result C 2 equals argument
eg. SQR(16) is &

exponential = EXP(arg.) result is e Cargument (e= 2.71828)
log base e = LOG(arg.) reverse of EXP,
ie. argument = e[result

sine = SIN(angle) for a right-angled triangle,
sine is the ratio of opposite side
length over hypotenuse length

cosine = CO0S(angle) ratio of adjacent side over hypotenuse
tangent = TAN(angle) ratio of opposite side over adjacent

ATN(arg.) reverse operation of TAN,
result is an angle

arc tangent

n

NOTE: angles are in radians

radians = pi/18f » degrees
degrees = 18f/pi * radians
and pi = 3.14159

eg. TAN(45%pi/18@) is 1

Exercise 7.
You have to replace the cord in the Girl CGuides' flagpole. It is a

bright sunny day so you can get to work. With trusty protractor you

measure the angle made by the end of the pole's shadow with the top
of the pole as 55°. Also the shadow is 6 strides long (say metres).
How much cord will you have to buy?

(Hint - look at TAN & degrees to radians!)

In Chapter 6

Commands Statements Other

rules of precedence
[exponentiation
() parentheses
functions; ABS
INT
SGN
SQR
EXP
LOG
SIN
Cos
TAN
ATN

18

7. Decisions, decisions

So far our program only goes zoom, clunk and ends. The whole point
of a computer is to be able to do boring, or entertaining, things
over and over (and over and over....)! System 80 has some state-
ments that let repetitive things be done easily.

Type in NEW to clear things out, then

1P PRINT "DECISIONS!"
2@ GOTO 148
and tell it to RUN.

NOTE: GOTO means exactly what it says. Here line 2§ tells the com-
puter to go back to line 1@ and do that line again. By the way, some
versions of BASIC require you to write GOTO as two separate words,
ie. GO TO . With System 80 BASIC you can write it either way, but
for convenience we'll write it as one word in this book.

Well it sure goes!! Look at that! Do you want to stop it?? I guess
that would be sensible. Press the

key. You should see

BREAK IN 14
READY
P

Peace again! Now type CONT. That means CONTinue and that is exactly
what it does! Try the (BREAK) and CONT operations a few times.

is a command to BREAK OFF what System 80 is doing and jump
back to BASIC and show READY.

That was all very exciting, but not awfully useful. We need some
more things to control that GOTO stuff. A way of stopping it after
enough has been done would be useful. Try

15 IF COUNT=1@ THEN END

That's a start. We could control the print with a count. Now we must
start our count somewhere

5 COUNT= @
and also do the counting.

11 COUNT=COUNT+1

19

Put those lines in and type RUN.

Look at that! It printed 1ff times and stopped! Wow! That IF/THEN
statement did all the work, and it's a beauty. Let's have some more
fun with it. Add

14 TF COUNT=7 THEN PRINT"I'M NOT FINISHED YET"

Then RUN it. Well, fancy that!
DECISIONS! was still printed 1#
times even though there was
another line included and extra
words to print.

Now that we've added these bits
and pieces it might be a good
idea to LIST the program. We have

5 COUNT=¢

1@ PRINT "DECISIONS!'"
11 COUNT=COUNT+1

14 IF COUNT=7 THEN PRINT"I'M NOT FINISHED YET"
15 IF COUNT=1g THEN END

20 GOTO 14

Line 5 is only acted on once and serves to start the counting at the
chosen starting point. (It initialises the count.)

Line 1@ is the fundamental line where we really carry out the prime
objective of the program.

Line 11 keeps track of how many times we have gone through this part
of the program. In this instance, it is how many times the PRINT
statement has been executed.

Line 14 makes use of the count that we are making in line 11 and
introduces the first of our decisions.

When the condition COUNT=7 is fulfilled, in other words, after lines
1@ and 11 have been executed 7 times, then the extra message I'M
NOT FINISHED YET 1is printed, as you saw when you ran the program.
IF, however, the count does not equal 7, the extra message will not
be printed and the computer will just move on to the next line.

Line 15 also uses the count that we've set up and stops the program
when we have had enough.

ie. when COUNT=1@, and only then, END is encountered and System 80
has finished making decisions.

If the count does not equal 1ff, then your computer will not act on
the rest of the line and will simply continue.

Line 2@ is the next line to be executed if the count is not 1#. So,
until the program has been gone through 1@ times, System 80 will

keep going back to line 1f.

NOTE that it does not begin again at line 5 but only repeats the
PRINT at line 1@ then adds to the COUNT and then reconsiders the
conditional statements at lines 14 and 15 with the new value of COUNT,

20

Lines 14 and 15 are examples of CONDITIONAL BRANCHING statements.
The program will do something else (ie. branch from the rest) if it
passes the test given in the condition. (eg.in line 14 IF COUNT=7)

Line 2@ is an example of an UNCONDITIONAL BRANCHING statement. Any
time that System 80 reaches the GOTO it will branch to the given
destination (in this case, line 1ff) without condition.

Not all programs will need an END statement (line 15). When System
80 has executed the last statement there is nothing else to do but
end - so it does. However, as you can see here, if you want to END
the run before coming to the end of your listing an END statement
can be used. In fact, often you need to include END to stop your
computer running on to other lines when they're not wanted.

The IF...THEN... statement can obviously be very useful and is worth
studying more closely. Basically you can use it to make the computer
check for a particular result or '"condition", and then do something
(or go somewhere) if it finds it. 1In other wordsj®you can use this
statement to build decision making into your programs.

In general, it takes the form;
IF condition THEN statement

The condition is written; The statement can be
any BASIC statement

io lation xpression : :
exDreSS L =5pa & p < and 1L Wlll be acted

where the "expression'" can be; 2
: P 4 on when the condition
a variable,

a number, is fulfilled.

or a calculation like (A+6)*SIN(Z) etc. It can be PRINT or
END as in our program,
or GOTO (etc.)

or any calculation.

and the "relation" can be;

= equals

< less than

> greater than

= less than or equal to

= greater than or equal to
<> not equal

Exercise 8.
Change what we have so far put together to print "MORE" after the
fifth line..

In Chapter 7

Commands Statements Other
CONT IF .. . THEN. ..
GOTO
END = <=
< >S=
> <>

21

8.Question time -

It might seem a bit annoying that whenever we want to print a different
number of "DECISIONS!", or print "MORE" in a different place, or poss-
ibly do something useful(!) we must change the program!

Along the same lines, our program can talk to us (PRINT) but we can't
talk to it. Oh yes we can! And what allows that is the INPUT statement.

WHAT | WANT Let's type NEW and try this.
“TO
K?ON 1S... 1@ PRINT"I WANT A NUMBER"
— 20 INPUT NUM
3@ PRINT "I SAW";NUM
— 49 GOTO 10

Type RUN and try that out for a
while. You will see a question
mark whenever System 80 expects
a number typed in.

.

Now how about negative numbers?... Well, that's OK,

Big numbers? Did you remember not to use commas in big numbers? If
you do include commas System 80 will take your input as more than one
number; the first one being the digits before the comma and the re-
maining digits making up a different number. Since System 80 only
asked for one number, when it reads two or more, it will display
PEXTRA IGNORED and continue with your program taking the first digits
as the whole INPUT number.

Now try some E format input (well, up to about 1£38 anyhow. Anything
much above that will produce an 7?0V ERROR ie. overflow, or too big!)

Have you tried long numbers? We might lose a bit off the end, eq.
123.456789@12 just comes out as 123.457 (Yes, even if you do type
it in correctly as56.. it will be rounded up to57) This is
the precision of the number which is determined by how many digits of
each number can be stored. Actually it is the normal working pre-
cision of the computer, correct to é digits, but System 80 can work
with greater precision. However, you need to specially ask for it
before you can get this additional accuracy of 16 significant figures.
Refer to the System 80 Basic Manual for a full description of single
and double precision numbers.

Now try some garbage. For instance, answer System 80 with

GARBAGE

System 80 says ?REDO. Hey that's good! It knew that was garbage!

22

If you make an illegal entry such as typing in letters when numbers
are wanted as you just did, then System 80 gives you another chance
to type in the correct response.

Now change line 1 to
1 PRINT "A NUMBER PLEASE";

It's better to be polite isn't it? But a more important change is
the semi-colon at the end. RUN it and see..... Well! System 80 is
waiting for your number on the same line that he printed the request.
That looks nice!

Now we can see the importance of the semi-colon. What it does as the
last thing in a PRINT line is to wait, without taking a new line as
would usually be done after a PRINT. So subsequent PRINTs will go on
the same line, and input will go next to the printed question!

That is useful in its own right but, as it happens, there is an even
simpler way to write the input. Programs ask questions and want
answers so often that BASIC allows the INPUT statement to include the
question too. Delete line 1@ and change line 2 to

2 INPUT "A NUMBER PLEASE" ;NUM

Make sure that separator is a semi-colon as nothing else will do, not
even a comma: RUN it again and it should look just the same.

Oh, did you notice? We took out line 1@, but left in 4@ GOTO 1d.
So we got the message 7?UL ERROR IN 4@ ie. unlabelled statement, or
"1¢" does not exist. Change 48 to

4@ GOTO 24

Now we 're back in business.

Exercise 9.
Write a program to include an INPUT that can control how many times

you print "QUESTIONS!".

You can ask for more than one item to be typed in with any INPUT line.
When you're typing them in you'll need to use a comma to separate the
items and this time the comma won't mean the rest will be ignored as
it was before because System 80 will be expecting more than one INPUT
item this time. As an example here is a short program that uses what
we have looked at up to this stage.

14 INPUT "MAY I HAVE TWO NUMBERS";A,B
20 IF A>B THEN GOTO S@

3@ PRINT Bs"IS THE LARGER NUMBER."

4@ GOTO 14

5@ PRINT A;"IS THE LARGER NUMBER."

64 GOTO 14

23

When you RUN this you may discover another aspect of System 80's
operation. If two numbers are expected and only one is typed in
System 80 will display two question marks on the next line to remind
you that more input is wanted. So you really get quite a few chances
from System 80 to type in acceptable input. -~

Exercise 1(.

Go back to an earlier exercise that you liked and use INPUT to
control the numbers going into the program. Make the program con-
tinue by going back to ask the input question(s) again instead of
stopping.

Now for some fun and games!

Here is another program that makes use of just about everything we
have done so far. Astute observers are invited to plug the various
loopholes in this little game! And, oh yes, it is possible to land
without cheating!

100 REM SPACE LANDER

110 REM SETUP

120 HT=50000

130 SP=H0O0

140 FJEL=8000

150 PRINT

160 PRINT"MANUAL LANDING ON TITAN=REPORTS EVERY 10 SEC"
170 PRINT

180 PRINT"HEIGHT" ,"SPEED","FUEL","RATE"

190 PRINT" MU UM/ SECY, "™ KG"»"KG/SELCY

200 REY MAIN LUOP

210 PRINT INT(HT),INT(SP),INT(FUEL),

220 RATE=D

230 IF FUEL>0 THEN INPUT RATE

240 1F FUEL=0 THEN PRINT

250 REM PHYSICAL MQODEL

260 ACC=1,64=1932*xRATE/(12000+FUEL)

270 HTI=HT=10%SP=0,5*ACC*x100

280 IF HT<) THEN HT=0

290 FUEL=FUEL=10%RATE

300 TF FUEL<O THEN FUEL=0

510 SP=SP+10xACC

320 IF HT>0 THEN GOTO 200

400 REM END OF RUN

410 IF SP<15 THEN PRINT"SAFE LANDING AT";SP:;"M/SEC"
420 1IF SP>=15 THEN PRINT"THERE IS NOw A NEW CRATER";

INT(SP/15);"M DEEP"

If there is anything here that you can't grasp now, don't worry. Wait
till you've had more experience with programming and you can come
back later and work it out. However, this program shows what you can
do with only our limited repertoire. It shows how powerful System 80
can be and what a terrific help, not to mention time-consumer. When
you start playing and writing games like this you can spend hours on
it and never be seen again.

24

In Chapter 8.

Commands Statements Other
INPUT variable commas in input
INPUT"guestion" jvar PEXTRA ICNORED

?REDO

PRINT with ; at end

25

9.A little help

Sure, you have to do the programming, but System 80 provides a couple
of commands to cut down on the amount of typing you have to do.

The first one lets System 80 number
the lines for you! Type

AUTO

System 80 says

14_

to ask for the statement for line 1.
For instance, we could say (on the same line as 1@)

PRINT "HI'!"

After you press NEW LINE , System 80 will store away that line as
line 1@ then ask for the next line by displaying

20_
If you just press (NEW LIMNE] then, since you haven't entered anything,

there won't be any line 2@ in your program. System 80 just goes on to
the next line and asks you to put in something for line 3@. Let's
write a few lines such as; .

3@ PRINT "NOW IS THE TIME"
4@ PRINT “"FOR ME TO SHOW YOU" (NEW_LINE)
5@ PRINT "THAT I'M NOT JUST" (NEW _LINE)
6@ PRINT " A PRETTY FACE." CNEW_LINE)
78 PRINT (NEW_LINE)
8@ PRINT "I CAN HELP YOU IN" (NEW LINE)

9@ PRINT "ALL SORTS OF WAYS." NEW LINE

Well, that's enough isn't it? But System 80 doesn't seem to think so.
Gee, we've got to stop this somehow! The computer just keeps asking
for new lines! OK, to break out of this sequence just press (BREAK
and you'll see the good old

READY
7

Now you could ask for a LIST or whatever seems appropriate.

You can also use AUTO to add on to what has already been done by typing
AUTO line number

where "line number'" is the number of the next line to be entered.

26

For example, AUTO 1@@# will continue from where we stopped before.
As if that's not enough, you can also say
AUTO line number, increment

this lets you change the AUTO stepping amount or increment from the
normal 1@ to any size you like.

If System 80 discovers that you already have a line where the AUTOmatic
line numbering has got to, it displays an asterisk (%) after that line
number.

If you press{ NEW LINE] you will delete the previous contents of that
line so, if you want to leave it undisturbed, you will need to press
(BREAK) to get out of the routine. Then, if you want to get past the
particular line, you can retype AUTO with a later line number.
Otherwise, when System 80 tells you that you already have a line at
that line number, you can just type in a new statement to replace the
old contents.

System 80 also lets you undo all that good work you've done with AUTO.
Say you put a whole collection of lines in the wrong place. (That
never happens to me - no, no!) You could type in each of their line
numbers to delete each line OR to delete the lot type in

DELETE start line - end line

So DELETE 1#-9@ will remove what we've done so far. We could also
delete those lines by typing

DELETE -9

which will delete everything from the first line of the program, up to
and including line 9@. The "end line" must be an existing line or you will
get 7?FC ERROR meaning System 80 can't work with the given number.

However the '"start line" need not actually exist and System 80 will
look for the next line following that number. For instance,

DELETE 5-20 will give ?FC ERROR because there is no line 2§
in our program.

DELETE 5-3p will clear lines 1§ and 3@, and

DELETE 55-8# will clear lines 6@, 7@ and 8f.

You can also delete one line by typing DELETE line number. eg, DELETE 78
would remove the spacing line from our program. So, now we know of two
ways to delete a line. We can be positive and say DELETE line number
or just type in its line number with nothing following.

In Chapter 9

Commands Statements Other
AUTO line numberj&ncrement BREAK)with AUTO
DELETE line - line line* in AUTO

27

10. Just a calculator

Remember how we have said things like PRINT "HI" and PRINT 3 just to

check how things work? (In Chapter 2) This use of commands is called
calculator mode or immediate mode operation and, as the name implies,

you can use that sort of operation to do calculations.

So try typing in

PRINT 1+2

You should see the answer immediately! That's very significant!
System 80 has worked out the little expression you gave it (ie. 1+2)
before doing the PRINT of the result. It will do the same thing for
very complicated expressions too. Try

PRINT S5E&4%5+1/2%2@@@=5L2

Wow, that's the whole of
Exercise 3 part 2 in one line! Or

PRINT 2x6«TAN(55%3.14159/180)

That's Exercise 7 in one line.

If you are doing a lot of calculator type work, saying P-R-I-N-T
might get a bit tedious, so System 80 has a quick way of saying PRINT
which is just the character ?. Try typing

?YTHIS IS STILL SYSTEM 8@ SPEAKING."
or
? 1+2

which is a lot shorter than our first entry in this chapter but still
gives the same result!

Exercise 11.
Get an immediate solution to give a rough value for your age in hours

Although we're talking about System 80 operating in immediate mode,
it is a consistent machine, and some of what we have done can be
applied to programs. For instance, a PRINT statement does not have
to only be given "TEXT" or variables to display. An expression in a
PRINT line in a program will be calculated and the result printed.

28

The one-line solution to Exercise 7 can similarly be programmed as,
for instance,

1@ REM ALT SOLUTION TO EXERCISE 7
2@ PRINT "CORD 1S";2%6*TAN(55%3.14159/18@);"M LONG."

That's more to retype if you get the expression wrong but it is a
lot shorter.

Just another little thing. We used ? as shorthand for PRINT. Well,
the question mark can be used in a program too! You can enter the
short form, but if you type LIST then System 80 will expand it to
PRINT. Question marks in other places will stay question marks, but
as a statement they become PRINTs.

In Chapter 19

Commands Statements Other
PRINT PRINT calculation immediate mode
% ? (=PRINT)

29

11.Program saving

You can write quite complicated programs now but, if you turn off the
System 80 everything will be lost! So.. you could leave your computer
on all the time and preserve ONE program (not really recommended),

OR you could type your program back in each time you want to use
it (that's a daunting prospect, not to mention a boring and time-
wasting exercise).

BUT, of course, there is another
way and System 80 is already pre-
pared for it. Programs can be
recorded or '"saved" on an audio
cassette and System 80 has its
own cassette recorder built in!

This single fact places System
80 ahead of quite a few other

small computers because there

are no troublesome adjustments
of volume or tone settings to

mar its usefulness.

To check out the procedure for program saving we'll need a little pro-
gram. How about

14 PRINT "IT'S ME!"
Wow, that's really sophisticated!

First step, obtain your cassette tape. An ordinary audio tape is fine,
though preferably not too cheap - faults that wouldn't worry your ear
too much could wreck a program!

Lock down the grey key(F1), and the red light next to it should light.
This puts the cassette under local (or your own) control, rather than
System 80's influence.

Insert your cassette and rewind it. Now eject it again(!) and
manually wind it past the non-recording leader until you see the brown
tape coming through. Then insert it again,

Press [F1) again to release it (and the red light goes off). The cas-
sette is now (partially) under System 80's control.

Hold down the "RECORD" key on the cassette player and lock down "PLAY".
Both should stay down but the tape shouldn't move yet. Type in

CSAVE "M"

30

This is the instruction to save your program as a file called '"M".

NOTE that quotation marks must be used or you'll get a 7?TM ERROR
ie. your type-in doesn't match what is wanted.

The tape should run for about 3 seconds with the red light on. Then
the System 80 will stop it and display that it's ready again. Press
"STOP" on the cassette player.

Well, that seemed OK, but did it really work? Let's check.

Press (F1) down again for local control and rewind the tape. Release
and press "PLAY" (not "RECORD" this time). Then type

CLOAD?'"M"

ie. load-check from cassette file named "M" to see that what you have
just saved does, in fact, correspond with the program in System 80.
The tape will move again and when the beginning of the program is
found ** will appear at the top right of the display screen.

The right # will flash for each program line recognised.

If both *x just stay on continuously, or they don't ever appear,
then some sort of error has occurred. Press the "RESET" button at

the left back of System 80 (from the top)
to stop the computer looking at the tape. [E/?M
If all is well and the cassette program matches the program inside

System 80 then the READY display will be shown. If they do not match
you will see

BAD
READY
>—

In this case, go back and save your program again.

When your program is saved and the check is satisfactory, the next
step to try is to load the program from cassette into System 80's
memory. Type NEW to clear things out, rewind the cassette and set it

to "PLAY" with(CF1 Jup. Type
CLOAD"M"

Those *%x should appear again, then at the end of the load System
80 will let you know that it's ready to accept type-in again. Type
RUN and System 80 will run your test program and print

IT'S ME!

That's full cycle:- out to cassette,
check,
clear System 80
and read the cassette back in!

When you have saved more programs on a tape and you specify one to be

loaded, System 80 will search for and load only the program that you
have asked for by name. Besides being enclosed in quotation marks

31

1_;hat name must be a single character only. Then, to let you know what
is happening, System 80 will replace the left * of the display with
the letters of the programs it finds on the tape before it gets to the
program you have specified.

To summarise e
key red light
local tape control with
to position ((FL1) on REW FF STOP-EJECT
the tape down
& & =1
and Enﬂ Q| tape counter
RECORD+PLAY
‘to record @ " "
of| cassette of f ==l then CSAVE'"name
up
PLAY
to check (::::) then CLOAD?"name"
of f
up
PLAY
to load into @ " "
Systen @0 of £ then CLOAD"name
" e

The System 80 User's Manual has further details on cassette use.

As an added bonus, System 80's cassettes are compatible with those for
the Tandy TRS-80 Level II computer. This means that any of the large
number of program cassettes available for the TRS-80 Level II may be
used with your System 80.

In Chapter 11

Commands Statements Other
CSAVE "name" cassette operation
CLOAD? "name" @ key
GLOAD Fnemet RESET button

32

12.Again & again

There are many times when you will have a little bit of program that
has to be gone through a number of times. Often this number of times
is known, or at least, can be worked out.

To continue with a somewhat trivial example. Some time ago you wrote
a little program to print a bit of text ten times (in Chapter 7).
There you set a counter to zero,
did the print,
counted it,
then checked that the required part of
the program had been done ten times.

Perhaps that seemed a bit complicated for
what we were doing, though easier than 1§
different PRINT statements! The people
who designed BASIC agreed and to cut down
the work a bit, we can write

14 FOR C=1 710 1¢
20 PRINT"AGAIN"
3@ NEXT C

Try typing that in and running it. It's a much more satisfactory way
of achieving the same result isn't it? Just as before, we can add
something, like

25 IF C=5 THEN PRINT "AND"

and the extra word will be printed using the same counter "C" that we
set up for the earlier part, without disrupting the loop.

What we have here are two statements, in this case lines 1f and 34,
that must be used in association:

FOR variable=start TO end

.

statements to be executed

&EXT same variable

The FOR statement sets the variable to the start value (a number,
another variable or calculation) and remembers the end value.

The NEXT statement adds one to the counting variable, and compares
it to the end value. If it is less or equal, then the statements
between FOR and NEXT are done again. If greater, then the statement
after the NEXT 1is done.
jie. that set of statements between FOR and NEXT is executed
for each possible whole number from start to end.

33

If you miss out the FOR, or more probably, get the variable name
wrong in the NEXT you'll get a ?NF ERROR message ie.NEXT without FOR.

If you miss the NEXT you won't get an error, but you atso won't get
any looping.

Exercise 12.
Print the values of X for X=1 to 1#.

That was a terribly easy exercise wasn't it? But it was just to make
sure that you could set up a working loop. And it also serves to
introduce our next point, which is that the variable used to count the
number of passes through the FOR/NEXT loop may also be printed out or
used for other purposes. BUT it should not be changed.

For example: :

If a man is paid S1 for his work on the first day, $2 on the
second day, $4 on the third day, and so on, with his pay doubling each
day this FOR/NEXT loop could be used to work out how long you could
afford to employ him if you have $1¢@@¢ for paying him.

14 PAY=#

28 FOR A=1 TO 5¢¢

3 PAY = PAY + 2C(A-1)

4@ IF PAY = 1¢@@ THEN GOTO 84
5@ IF PAY > 14@@ THEN GOTO 74
6@ NEXT A

7 A = A-1

8@ PRINT"HE CAN WORK";A;"DAYS."
9@ END

If you enter this program and run it you may be surprised at the
answer. But if you don't believe it try adding some lines to print
out some other bits of information like his pay on his final day.

The program as written does the following:

Line 1 sets a variable that we wish to use in calculations, to the
starting point of zero (initialises the variable).

Line 2@ begins the FOR/NEXT loop and sets the end value of the count
variable to 5@@. This value is determined by the conditions of the
problem. Since $1@@f is the limit of the pay he can get and his pay
will double each day, then $1P@@/2 should give an ample number of
passes through the loop. It doesn't matter if this number is too big
because the looping will be by-passed at the appropriate stage by the
IF...THEN... statements of lines 4@ or 5.

Line 3§ uses the count variable in a calculation to work out his pay
so far. On the first day, when A is 1, his total pay is his previous
pay ($#) plus $2C(1-1) which is $1. On the second day, when A is 2,
total pay is previous pay plus $2C(2-1) etc.

Line 4@ says that if the total pay has reached the available financ-
ial limit, then no more calculations need to be done and the answer
can be given.

34

Line 5@ says that if the total pay has exceeded the limit without
actually reaching exactly $1@@@ then we have gone too far. Obviously
no more calculations need to be done so we'll branch out of the loop
and get the answer.

Line 6§ is reached if the total pay is not yet enough to cause branch-
ing at lines 4f or 5@. This is the end of the loop and simply says
that if A is not more than 5@@ the program returns to line 2{.

Line 7@ is the line jumped to if we have gone too far (ie. from line 5¢@) .
It says that A should be 1 less because we can't afford to pay so much.

Line 8@ is reached both by ordinary progression of the program from
the previous line and by the branching in line 4@. It simply gives
the answer using the variable A to tell us how many days he can work,
ie. how many times we had to pass through the loop.

Line 9@ ends the run.

Exercise 13. -
Print the values of X and XC2 for X=1 to 1{.

Hey, look at that exercise. L
You've generated a table! (::B

It's not very complicated but it sure

shows how to go about it. You get an

expression for one entry of your table

then use FOR/NEXT to run through all

the values you want in the table.

Now try this one.

Exercise l4.
Generate a table of SIN(X) for X as #, #.1, @.2..... 2.0

(Hint - think about X from @ to 2@.)

Now you can use your System 80 to generate 6 figure log. and trig.
tables. Didn't you always want to do that?

Actually there is another little fiddle to let you do things like
Exercise 14 a bit more easily. You can say

14 FOR X=@ TO 2 STEP @.1
28 PRINT X, SIN(X)
3@ NEXT X

Not bad eh? You get a default step size of 1 if you don't specify
a STEP number, but you can state precisely what you want if you'd
rather something different. You can use any step size you want,
including negative steps!

35

However some combinations don't work so well, for instance STEP @
never finishes or changes! Also, for a negative step, the end should
be smaller than the start. eg.

... FOR C=12 T0 -6 STEP -1.5

You can see what that means can't you? It counts backwards, down to
-6 with a negative step size, in other words, subtracting 1.5 each

step.

Chapter 12
Commands Statements Other
FOR
NEXT

FOR: .« s STEP /e

NEXT

36

13.Stop it!

Here we will talk about different ‘E
ways of stopping different things. i
Delaying, pausing or terminating
programs or listings... WOow .

We've already talked about using
the END statement to terminate a
program, and pressing to
stop a running one. However,
there is another sort of pause.
You can use the statement STOP

(in a program) which will transfer
you to immediate mode. When you want to go on, type CONT and your
program will continue at the statement after the STOP.

eg. type NEW and

U

1@ PRINT"STOP"
2 STOP
3P GOTO 1¢

When this is run you should see

STOP

BREAK IN 2@
READY

¥

Type in CONT to go round again.

If you didn't have line 2@ and the program didn't stop, then you
could have used the (_BREAK lkey to stop the run and you would have
seen the message

BREAK IN 1f
READY
>—

and to continue from that you could also have typed CONT.

.

If you type CONT at the wrong time, for instance when System 80 hasn't
previously come to a stop (CBREAK) or STOP), you'll get 7?CN ERROR

ie. how can I continue when I haven't even stopped?

You can do a similar kind of stop just from the keyboard. Let's
change the program by deleting line 26, Now it will just run, and
run... Try holding down (_SHIFT } and pressing the key with.
The program is wow "suspended". It has stopped but did not show
BREAK or READY.

In this state System 80 is not ready to accept any input from you,

37

it just lets you have a good look at what's on the screen (though
this lot isn't very interesting). In fact, you would most probably
find if you tried to type something in that the program would just
start running again because pressing almost any key will send it on
its way once more (only doesn't do anything and will
give a fully-fledged break plus a return to immediate mode).

You can do another sort of pause with a delay loop. In this loop the
program will look as if nothing is happening, but your ever-faithful
System 80 will still be working away. To see this, try typing NEW and

1@ PRINT"WAIT A SECOND."
2@ FOR C=1 TO 345

3@ NEXT C

4¢ GOTO 1@

Here lines 2@ and 3@ form a delay loop, because line 3@ tells the com-
puter to add 1 to the counter C, then jump back to line 2f until it
reaches the limit in the FOR statement, in this case 345, ie. it has
to "loop back" 345 times and this takes about a second. To vary the
delay time, change the limit from 345. For example, a limit of 345f
gives about 1§ seconds.

OK, now to listings. Someday, with luck, you should have a listing
longer than 14 lines. When that happens, and you type LIST, the first
lines will disappear from the top of the screen before you have time
to see them: If you want to make the listing pause, press the
and (@) keys. Yes, that works for listings as well as programs. To
continue press a key as before. Another way to stop it is to press
and not only will the listing stop but you will also get the
old familiar message

BREAK
READY

p 2

meaning that it's your turn to type in something. But, unfortunately,
since we've broken out of the listing you can't just type CONT to see
the rest. However you can see the remainder of your program listing
by asking for a LIST from the line number that you stopped at. eg. if
the last line displayed was 1@5 ... you can get the rest by typing

LIST 1@5@-

Yes, that little dash is part of something bigger. You can say

LIST
to list a whole program or

LIST start-end
to list from line "start" to line "end", then you can break that up so

LIST start-
lists from the chosen "start" line to the end of a program and
LIST -end

lists from the beginning to the chosen "end" line.

38

Also LIST line number
(without the dash) will list a single line only.

Now we can go back to our original problem and have another look at it.
Unless you move very quickly, you will not be able to stop a listing in
time to see the first few lines of your program. But now we know a
better way don't we? Right! Ask for a listing of the starting lines only.

Easy isn't it? You can just list any part of a program that you want
instead of having to start at the beginning every time. For instance,
if you are writing a program and you have already checked the first
half, you can ask for only the later lines to be listed and System 80
will jump to the lines you want. You can use any line number.. if it
doesn't exist System 80 will just take the next one.

At this point I will add that something similar can also be done for
running a program. You can RUN from a line number, so that again, you
don't have to start at the beginning every time but can just look at
the relevant part immediately. However with a RUN, the line number
used has to be one that exists in your program or you will get a

?UL ERROR ie. no such line.

Let's summarise this bit.

Program Listing
Statement Type-in Type-in
Terminate END
Long pause STOP
& Restart type in CONT RUN line no. LIST line no.
Delay PORce CSHIFT) (@)
X oop

Exercise 15.
Write a program to be an interval timer. Ask for theinterval length
and indicate its end.

What if your program somehow manages to go really berserk, so that
nothing happens when you try to stop it running with the (SHIFT (@)
keys or the (BREAK) key? This can happen:

When it happens, don't panic. You still have a card up your sleeve.
At the left back of System 80 there is a small button marked RESET.

If you press it System 80 should stop whatever it is doing and display
READY. RESET returns control to you and will leave the program in
System 80 intact.

If even this fails you'll have to turn System 80 offil Sorry about that.
To add insult to injury, don't forget that you need to wait 15 seconds
before you turn it back on or you won't get any sense from System 80.

39

In Chapter 13

Commands Statements Other ™
CONT STOP delay loops
RUN line number SHIFT
LIST line-line & LIST
RESET

40

14.Laying it out

Now let's have a look at some things to help in setting out PRINTs.
We've already learnt a few ways to let us make a printout look more
readable and ordered. For instance, we know about including blank
Print statements to space out lines nicely and we can make a table
of our results by using commas in the PRINT lines, or we can keep
relevant things together by using semi-colons.

So what else do we need to know?
One more instruction that can help you to set out your printout is
the TAB function.

...PRINT...TAB(column number)...

where the subject material of the PRINT that follows the TAB will be
printed beginning at the indicated column number (columns are numbered
@ to 63 from left to right).

The TAB instruction is similar to the use of commas in a PRINT where
things will be printed in "fixed zones". But with TAB you can deter-
mine for yourself how far apart the columns will be. Try typing and
running the following. (Don't use commas, because System 80 will get
confused about whether to use the fixed zones or your chosen columns.
You can leave out the semi-colons and get the same result, but I put
them in for the sake of readability.)

1@ PRINT"A";TAB(15);"B";TAB(3@);"C";TAB(45);"D"
20 PRINT 1;TAB(15);2;TAB(3@);3;TAB(45);4
3@ PRINT -1;TAB(15);1TAB(3@);-1;TAB(45);1

You can see that with the same TAB numbers, the digits are offset one
space from the letters. This is because the System 80 allows a space
before any number, positive or negative, to give its sign, and you
can see that in the third line this was needed.

The TAB function provides a simple way to plot out a numeric function, eg.

1@ REM PLOT SIN(X)

28 FOR X=@ TO 3 STEP @.5

3% PRINT X;TAB(SIN(X)*3@);"*"
4@ NEXT X

Voila! A sine curve. Since these sine values will range between @ and 1
we multiply SIN(X) by 3¢ to make the argument for TAB (ie. a column

number) a reasonable size. 1In this example the "*'" will appear between
columns @ and 3@, depending on the value of SIN(X).

41

A complete plot of sine will include negative values of SIN(X) too. To
plot these they must be converted to positive arguments for TAB and
the earlier values plotted will need to be "moved over" on the screen.
So if we add the same value to all of them (say 3@, to approximately
centre the zero value on the screen) we will be able to get a con-
tinuous plot. With these points in mind, see if you can change the
program to give one complete cycle.

These lines would do the trick.

14 REM FULL PLOT OF SIN(X)

20 FOR X=@ TO 6 STEP @.5

3@ PRINT X;TAB(SIN(X)*3@ + 3@);"*"
4@ NEXT X

Ah! At least line 4@ didn't need to be changed.

You see that some of the curve got flattened on the left. Here, the
TAB column number was less than what had already been printed and the
TAB call was ignored. If you want to see the complete curve the arg-
ument for the TAB call will need to be changed - you could change
the scaling factor (ie. multiply SIN(X) by something smaller than 3@)
and/or alter the offset (add 35 instead of 3@).

Could you tell what determined the end value of the loop? Well, since
the function SIN(X) works with values of X in radians, X needed to be
pi to plot the positive values, and for our purposes 3 was near enough.
To give the full plot a value of 6 or 6.5 (when you're stepping by B.5)
would give an end value near 2 pi which is 6.28... I chose 6 simply
because it was twice 3 and gave as much again as we had in the first
half.

TAB arguments greater than 63 go on to the next line, but 255 is the
largest legal argument! A negative number or more than 255 gives a
7FC ERROR ie. function call error - the argument given will not work
in that function.

Exercise 16.
Generate a plot of X£2 for X from 1 to 7 with #.5 steps.

Exercise 17.
Plot SIN(X)/X for 1 to 14.

If, in the course of your program, you want to find out the current
character position in a PRINT line then you can use the POS function.
The argument for this function need have no real relevance in your
program; it can be any letter or number. eg. try

14 INPUT"NUMBER' ;N
2@ FOR I=1 TO N
3ﬂ PRINT u*u;
4@ NEXT 1
5@ PRINT POS(@)
6@ GOTO 1¢
42

and you will see a row (or more) of asterisks on the screen plus a
number telling you how many character positions in the line have been
used. For this function the positions are numbered 1 to é4 inclusive
from left to right across the screen and begin again for each new line.

The TAB function gives you an easy way to set out results in an
intelligible manner but of course there are other things you can do
to make your printout look good or to emphasise the headings or just
to separate things. Try typing

1@ PRINT "THIS WILL BE FUN."
2@ PRINT

3@ FOR X=@ TO é#

aﬁ‘ PRINT ||*||;

5@ NEXT X

6/ PRINT

7@ PRINT

8¢ PRINT "DID YOU LIKE IT?"
9@ PRINT

Line 6@ had to be included to finish off the row of "*'" because the
statement in line 4@ ends in a semi-colon (so would print the next
thing on the same line). Line 7@ was included to PRINT another space
to set things out clearly.

You can play around with these statements to give all sorts of effects
in your printout and to make the information in your display easier to
read.

In Chapter 14

Commands Statements Other

TAB(column)
POS(dummy arg.)
function plot

43

15.Inside out -

We've already talked about FOR/NEXT loops, but this chapter will
continue our acquaintance. Here we will have a look at "nested"
loops. That just means putting one inside another, like a nest of
coffee tables...

Using the one-second timer from Chapter
13 we can now make an egg timer.

14 REM EGG TIMER FOR 3 MINUTES
2@ FOR S=1 TO 3#6ff =—

38 FOR C=1 TO 345 *———"—1
40 NEXT C

5@ NEXT S
8/ PRINT "TAKE IT OFF!'"

Here lines 2@ and 5@ form one delay loop
and lines 3@ and 4§ another delay loop.

NOTE: the 3@/4P loop is fully INSIDE the 2{/5@ loop! This means that
the 38/48 loop must be fully completed (345 loops) each time the com-
puter goes around the 2(/5f loop (and it goes around this outer loop

3 times 6@, or 18f times). So the outer loop counts the number of
seconds wanted, while the inner loop provides the basic delay for each
second.

Exercise 18.
Using nested loops write a program to give a countdown to blast-off,
counting off the minutes and marking the final time.

FOR/NEXT loops can be nested to any desired depth (ie. you can have
as many loops inside loops, inside loops as you can work out how to
use). BUT, the FORs and NEXTs must all be matched up correctly. So

FOR A... we=—m—
FOR B..., =+=——

FOR L_.:l
NEXT C

NEXT B

FOR D... =—

NEXT D ——

NEXT A
(WOW!) is OK, but

44

FOR A...
FUR B.

HEY
NEXT A E
NEXT B

is not nested and will fail with a ?NF ERROR message (ie. NEXT without
FOR) at the line that says NEXT B, since when System 50 recaches that
line, it will have completed the A loop which contains the FOR B line
and it will be inaccessible.

Now we've seen how you can use nested loops and that you can't put
half a loop inside another and the other half outside. However you
can break out of a loop quite legally by using a conditional branching
statement. For instance, type NEW (or if you don't want to type it

in again, CSAVE your countdown and we'll use it 'ater) then try

1# FOR A=1 TO0 1@

280 PRINT"ALL THIS WORK!"

3@ FOR B=1 TO 2

4@ PRINT" OH BOY!"

5@ NEXT B

6F IF A=4 THEN GOTO 1@@

70 NEXT A

1¢@ PRINT"I'VE HAD ENOUGH!"

Actually, that program just zips through without really looking as if
System 80 has to work too hard, doesn't it? It might be better to in-
clude some delay loops to make it look more effective. Add

15 FOR X=@ TO 25¢

16 NEXT X

25 FOR X=@ TO 258

26 NEXT X

(It was just as well we had spare line numbers = sn't it?) That looks

better. System 80 said that it had done enough .fier only & cycles,
even though we'd originally set it at 1§ cycles, because line 6f told
it to jump out of the loop - so it did.

Exercise 19.

Let's have some more fun with printouts and launch some rockets.
We'll do this in a series of steps to build up a program. (This is
not only a fun game, but also a serious programming exercise!)

1. Starting at line number about 2@ write PRINT statements to make
a rocket. You may want more than one element in the body.
(Hint - use "A" for the top,
"H" for the body elements
and "¢A>'" for the tail.)

Run this bit of the program, and make changes if you need to, till
your rocket loocks OK.

45

2. Starting at about line 3@@d, make a loop to generate an exhaust.
Put in a delay loop of about 1l counts between each exhaust
element to slow it down a bit.

(Hint - make about 8 lines with "#*",) o

Again,run this till it looks good.

3. Start at about line 4@ and make a similar loop, but with blanks
(and delays) to space between rockets.

4, Put a final loop right round the program to launch 1@ rockets.

Wasn't that worth it? Now you can add Exercise 18 to the beginning
of your rockets program and have a dandy little display that you
wrote yourself, to show all your admiring friends.

In Chapter 15

Commands Statements Other

nested FOR/NEXT loops

46

16.Debug it!

BUGS, the perpetual enemy of computer programmers. In this chapter
we are going to talk about a few types of fly swatters.

Actually, we're not dealing with in-
sects, arachnids, or shop specials on
plastic swatters. "Bugs'" in a program
are errors that are not catastrophic;
the program just doesn't work properly!
Really, catastrophic errors are not too

@ % bad. If you get a message like "7SN

ﬁoo ERROR IN 6@", then you know that it is
ﬂo% line 6§ that needs looking at. However,

<
(o o) bugs hide. You know something doesn't
Pod$ Qﬂ % work, but where is the error?

|

On with that in a moment. But first [should say that Lhe presence

of bugs is an integral part of programming. HNot a desirable part,

but for programmers from rank amateurs to hardened professionals,

ever present and unavoidable. The trouble is that computers do exactly
what you tell them to do. System 80 can't tell whether a sequence of
statements doesn't quite make sense, or if it is OK. It just does it!

Down to business. Let's assume that we've written a program, but now
that we run it we can see that it doesn't work (or at least not the
way it was meant to). Oh, the pain of it all! What now? Well, the
thing to do first is to look carefully at what did actually happen,
and to try to work out from that what went wrong. Then try listing
the program and checking your hunches.

In fact, an examination of your program could be enough. Have a good
look at it, for statements that send the program to the wrong desti-
nation, necessary statements that aren't there, or calculations that
take the wrong argument or ... No luck? Well, now you'll have to
pretend to be the computer, and work through your program line by line
doing just what the statements say, until the error becomes obvious.

To make this easier, you can temporarily put in some extra PRINT
statements, and try running it again. Statements like

55 PRINT 55;"A=";A

to show the value of variable A, while also giving the line number to
remind you what part of the program it came from, and identifying text

to say what value we are printing. If you just want to see that the pro-
gram is going to the right places in the right order, you could include

55 PRINT 55;

47

le. just show the line number. That semi-colon at the end lets a lot
of line numbers fit in one screenfull. Remember that yoy. can press
(SHIFT J(@ J to check how these numbers are going at any time.

To get the hang of the sort of debugging that needs to be done, we can
look at a little program with inbuilt errors! The program we've got
is one intended to print out the prime numbers (those that can't be
made up by multiplying two smaller numbers together). The idea behind
the program is to take every odd number - obviously even numbers can't
be prime, because they are divisible by 2 at least - and divide it by
each number up to its square root to see if there is any whole number
(integral) result. Those numbers that give no whole number result
should be printed out as the prime numbers.

1@ REM PRIME NUMBERS

2@ FOR N=1 TO LIMIT STEP 2

3@ FOR P=1 TO SQR(N)

4@ IF N/P=INT(N/P) THEN GOTO 7¢
5@ NEXT P

6@ PRINT P

78 NEXT N

Run this and nothing happens! Try
25 PRINT 25;"N=";N;

and run it again. You'll see " 25 N= 1" only! It went one time
round the main loop!! Why?...

Oh yes, we didn't set LIMIT to anything! Add
15 INPUT "LIMIT";LIMIT

Run it again. A limit of 5 should produce 1,3,5. Our debug line
shows that we really did the outside loop 5 times with 5 different
values but we didn't get any printout from line 60. So, let's check
the inside loop with

25 PRINT 35;"P=tsp;
and run. Gosh,
20Nz d ISP NS 2 S5 Pl s s S

Um, well, OK. We saw all our Ns, but P only ever got to 1. So let's
look further at the inside loop. It starts from 1, so what happens

on the first cycle? P is 1 and, of course, any number divided by 1 is
still integral and will satisfy the condition in line 48. So every
time we'll jump to line 7@ and never find any indivisible numbers to
print out. So we shouldn't be looking at P=1. Try

3@ FOR P=2 10 SQR(N)
Another run with {IMIT=5 and we get 3 numbers printed out (as well as

the diagnostic prints) BUT they are all 3! Try another LIST. What
are we printing?

48

In line 6 we are printing P Is that what we want?.... A
moment's thought...... Aha! No. Let's try N.

6@ PRINT N

At last we get the right numbers. Now we can remove the debugging
lines (25 & 35). Run again with some bigger limits. Hold it! Since
we expect a lot of numbers to be printed out it might be better to

6@ PRINT Nj

(with the semi-colon) so that there will be less zipping around of
the results on the screen. Right, now! My run looks OK. If yours
doesn't then the rest is up to you.

There is another fairly similar way to do some debugging. You can
insert a STOP statement in your program. eq.

25 STOP
When the program reéches this you will see

| BREAK IN 25
READY
?

Now you're in immediate mode and you can see what your program is
doing by typing something like this

PRINT N

ie. an immediate print of any of your program's variables! Remember
you can also say

N

here - a little bit faster! To go on with your program type CONT.

If you want to change your program at this stage (not entirely unknown),
you certainly can, BUT you cannot then CONTinue (you would get a 7CN
ERROR). You must RUN it again.

System 80 has a function to give you some help with debugging. It is

especially useful if you don't have a clue about where your program is
going. With it you can trace the route that your creation is taking.

If you type

TRON

to BASIC before you RUN your program you will get a mass of information
about which line numbers are encountered. For each line executed you
will see

{line number)

You'll probably have to use(SHIFT)(@) to see what is happening.

49

We're all writing lengthy programs now aren't we? Or perhaps you're
stuck in a loop! (Remember, press almost any keyv to go on.) To
understand this display you'll have to make a list of the trace
numbers to compare with your program. iz

Once your problem is sorted out (or von've had enouah anyway!) you
can stop the trace by tvping '

TROFF

There is another source of possibte programming problems. The System
80 is a real computer, not a theoretical one. and one consequence of
this is that it cannot hold &il numbers with 2n exact value. As I
said in Chapter 8, System 80 usually works ccrrect to § places, so
whole numbers from -999,999 to 999,999 are OK (as long as they
stay integral). But System 50 may give unexpected results if you ask
it to deal with numbers with sreat accuracy. To have a look at this
sort of thing, try

14 BEG=170p04d

20 UP=#.¢1

3@ FOR N=BEG TO BEG+UP#1{ STFE P
4 PRINT N;

S# NEXT N

Line 3@ indicates that there shonid be 1@ runs through the loop (the
limit is 1§ step sizes mure than the starting value) and we can also
see that the variable N chances by a small amount each loop.

However, even System 50 has its limits, and what actually happens is
the number printed does not change, yet the run does finish. And from
the number of PRINTs we can tell that the loop was gone through 14
times, not 1@ Wow!

I'm not going to say any more about that than to emphasise that we are
trying to work with numbers that are bhevond the ability of System 80
to cope with exactly. There are not any clear guidelines here, except
to be careful of long numbers, and when debugging, to print anything
that controls the way a program works. It's a good idea to read the
System 80 Basic ilanual's details of high precision numbers so you can
fix problems like this.

While we're talking about precision of numbers and unexpected results
let's have another look at our program to plot a sine curve (in Chapter
14). In the first half, when the limit was 3, our step of #.5 included
a print for the value X=3. You would expect this since the value 3
can be made up exactly by adding our step sizes of PB.5 to the begin-
ning value. What you would not expect is that if the step size is
changed to @.2 the final value of 3 will not be printed out. If you
want a step size that small and the final value of 3 to be included

in the printed results then this can be done by adding a small amount
to the limit (say @.@5) and although this makes no theoretical differ-
ence to the values calculated, it does make a practical difference.
So, once again, be careful with numbers that control Lhe workings of
your program. (You may even feei it's worthwhile making a habit of

50

adding a tiny amount to the end value of a loop so that you don't
encounter this problem.)

I've spent a fair bit of time on debugging, and that reflects the
amount of time that you are likely to spend on it. Debugging is not
simply a nuisance, but a facet of programming in its entirety.

In Chapter 16 (actually we've done most of these before)

Commands Statements Other
CONT (after debug STOP) STOP big numbers
? variable PRINT line;'"var=";var
TRON
TROFF

51

17.Editing

Now that you know how to find errors in your programs it's nice to -
know that System 80 will help you to fix them. Instead of retyping
all of a line containing an error you can just change the part that
is wrong.

Let's start off with a line to
change, say

1 PRIINT "HI"

First we select the line we want
to edit with

EDIT 14

When you type that you'll see

14_

No, you haven't destroyed line 1f. That display just means "ready to
edit" (in this case, line 1ff). This is just like what you see when
there is an error - System 80 automatically enters edit mode!

You can move backwards or forwards in the line by pressing the space
bar (forwards) or the

BACK
SPACE

key (backwards). Try it! You can't just retype the line. You'll see
that as you move along the line, the characters that you have previously
typed in will appear but if you try to type in a new letter nothing
will happen. Space and Backspace are the first commands that System 80
as an editor will recognise.

Now move to the first "I". (You did type two "I"s in "PRINT" didn't
you?) OK, we have an "I" too many. To remove the next one type

for delete. You don't need to tell the editor what you want to delete.
By just typing [::J you have indicated that you want to delete the next
single character. So now you should see

14 PRI!I!_

Whenever you delete something, edit will tell you what it was with
exclamation marks around it.

If you press(_NEW LINE)at this stage System 80 will go to a new line
and will show you the rest of line 1 as it will now be in your program.

Now if you decide that, after all, you would like to say a bit more
you will have to type EDIT again since(NEW LINE) returned us to BASIC

52

and left edit mode. So type
EDIT

Oops! I forgot to say which line I wanted so System 80 said ?UL ERROR.
So this time let's say

EDIT 1¢
That's better. Now how about inserting some characters? Space to
1@ PRINT "_

You could do this a specially quick way by saying, after the line num-
ber has been displayed, ie. "search for 'H'". The computer
will zoom along to the first "H" in the line and stop just before it.
Well, now we're just after the first quotation mark, let's do the in-
sertion. Press Nothing happened. That's right, but any further
characters will be put into the line. Type

LET'S SAY

(with a space at the end). Then we'll have to tell editor that this

insert is finished. To do so press(SHIFT J(ESC) ie. "escape from

insert". Again, nothing happened. But if you press the space bar
now you will see that you're back to looking at the rest of the line
and you can give other edit commands now if you wish.

If we wanted to add something to the end of the message, we could in-
sert it before the last quotation mark or we could space to

1@ PRINT "LET'S SAY HI_

and press [::]for'hack": This will delete the rest of the line (in
our case it is only the quotation mark) and allow us to insert new
material. I think I'll add

TO ALL OUR FRIENDS."

with a space at the beginning and a quotation mark to finish the mess-
age replacing the one we have just deleted.

Now you can press (NEW LINE) and return to BASIC.

Well! You can select a position, then delete and/or insert character(s)
which covers a fair proportion of editing. But let's look at one more
thing. If we go back to our sine curve plot again (Chapter 14), you
will remember that the latest version of line 3@ that I offered was

3@ PRINT X;TAB(SIN(X)#3@ + 3g@);n*n
If I had deci&ed to make the changes that I suggested to move the plot
over on the screen so that the left-hand side was not flattened, in-

stead of having to type in a whole new line I could have said EDIT 34,
spaced along to the first "3" (after the line number, of course), typed

53

to change the next single character and then typed 2, to make the
scaling factor 2¢f instead of 3@. If you wanted to add more than 3@
at the end of the TAB argument, then you could just space till you see
3, press and type 5 to change the number added into 35. Now when
you press (NEW LTNE) you should see

3@ PRINT X;TAB(SIN(X)*2@ + 35);mxv

This is a very convenient way to make small changes to see how they
affect the printout that you're generating.

To summarise.

EDIT line number immediate mode command to BASIC to select a
line to edit

space move right one character

backspace move left one character

[5) (; search for next occurrence of character "c",

and stop at position before it
delete next (undisplayed) character

insert typed characters into next positions

[;ﬁrﬂgl will now delete

ended by (SHIFT) (ESC)

[ED delete remainder of line and insert typed
characters into next positions

(E(=]

[g] c change next character to "c¢"
[NEW LINE | display whole line, finish edit and return
to BASIC

I think that this is a good "working set" of edit commands. When you've
got these working smoothly have a look at the "Text Editing" section
in the Basic Manual and you'll find a whole lot more commands for
advanced users.

In Chapter 17

Commands Statements Other
EDIT line number Edit commands:
space
backspace

[g) character
(@D text (SHIFD)(ESD)
(E) character

[(NEW LINE]

54

18. Sub-programs

There are two distinct types of sub-program that we'll look at here.
Both are usually of greatest benefit as programs get more complicated.
One provides a way of splitting a long program into bite-size pieces,
and the other lets you use the same series of instructions from where-
ever you like, without rewriting them!

To illustrate the first kind, let's say we want to write a program to
play around with money! That could get a bit complex, but we'll take
the essential things we want to handle as;

1 Debit (bills)
2 Credit (pay!)
3 Balance

4 Adjustment

(If that doesn't really grab you, then insert Warp, IMap, Fire, Status
instead for you science fiction freaks.)

Now we need to have a line in our program to distinguish the categories
we're dealing with. (Of course, for a real program we should do some
initialisation too, like set some balances to zero, or pesition your
spaceships! So I'll leave some space at the start of our program.)
Instead of writing four separate sections we could use this line

1@@ INPUT"1 FOR DR,2 FOR CR,3 BALANCE,4 ADJ"; OPT
Then to link this to the rest of our program we could simply write
114 ON OPT GOTO 140d,20¢0, 3800, 4800

That looks impressive! What System 80
does here is to look at the value of OPT.

For OPT = 1 it will GOTO 1@@@
for 2 GOTO 2¢¢d
for 3 GOTO 3¢g@d
for 4 GOTO 4@pd

Simple really, isn't it?
We have a multiple GOTO statement.

ON var. GOTO takes a variable
(or expression) and uses its value to
count along the list of line numbers
to select one to GOTO. Actually the
computer takes INT(var.) so you don't
have to use strictly integral values
(but remember that, say, 3.9 is taken
as 3). This variable may have any positive value up to the number of
line numbers in the list. If you exceed the number of possibilities
(ie. the number of lines to GOTO) by any number up to 255, or have a

55

zero value, then System 80 will just do the next line! Negative num-
bers, or those above 255 will give a 7?FC ERROR (argument incompat-

ible with that function). You can have as many line numbers in your

list as you can fit on a line. But they must exist!! (If not you'll
get a ?UL ERROR ie. unlabelled line.)

-

The rest of the skeleton program in the above example would be some-
thing along these lines

1P@@ REM DEBIT SUBPROGRAM

1999 GOTO 1¢¢@
20@@ REM CREDIT SUBPROGRAM

2999 GOTO 1¢@¢

etc. (you can fill in the details - only the hard work is left to do!)
Each subprogram performs the desired task, then causes a jump back to
the INPUT line to get a new entry.

As a summary of the possibilities and restrictions of this statement,
type in this program.

1@ REM TRY-0UT OF ON...GOTO

26 INPUT "WHAT IS YOUR NUMBER';NUM

3@ ON NUM GOTO 7¢, 8¢,94

4@ PRINT"WELL. YOU DIDN'T EXCEED 255 BUT"
41 PRINT"YOUR NUMBER WAS GREATER THAN 3,"
42 PRINT" OR WAS IT ZERO?"

S@ END

70 PRINT"YOUR NUMBER WAS TAKEN AS 1"

75 END

8 PRINT"YOUR NUMBER WAS TAKEN AS 2"

85 END

9@ PRINT"YOUR NUMBER WAS TAKEN AS 3"

This is also an example of the use of the END statement, in lines 5@,
75 and 85, used to stop the program running on to later lines. It
wouldn't make any sense would it, if each of the various PRINT lines
was displayed every time? But, gee it gets a bit much to have to re-
start the program for each trial. It would be better, don't you agree,
to replace these lines with GOTO 2@ ? We'll also need to add

100 GOTO 24

Try various different numbers and you should get a good idea of how
the ON....GOTO.... works.

If you have more categories (and thus more line numbers to GOTO) than
you can fit on one line, then you can adjust the variable suitably,
and write more ON,....GOTO.... statements.

eg. if you have 15 different classes that need separate treatment,
you could take the first 8 with the first ON....GOTO.... you write
and the remaining 7 with a second ON..,.GOTO.... line. BUT since

56

this will start again with your variable at 1, you will need to
subtract from it the number that you have already treated, in
this case, 8. As in

3@ ON NUM GOTO 1@d,20d, 384,497, 508, 608, 703, 87
32 ON NUM-8 GOTO 9@d, 14@d, 110@, 124d, 1300, 148@, 1500

You may need to adjust your variable (for instance, add a small bit,
multiply or divide it) to make sure that its value is such that the
line that you want will be the one selected by the GOTO, but, as with
most programming, if you work carefully you can achieve great things.

The other sort of sub-program comes into its own when a particular
routine, or series of statements, is wanted in various different
places in your programs. Let's say you're writing a game and you want
to input angles as clock hours (eg. 12.@ means straight up). If you
also want to use COS and SIN you'll have to convert all your angles to
radians (pity about that). You could write a sub-program (often call-
ed a subroutine) to do the conversion, and then to use it you could
have something like

1@@ INPUT"WARP DIRECTION (AS CLOCK HOUR)";CLOCK
114 GOSUB 1d@g@
12¢ REM SUBROUTINE HAS CONVERTED TO RADIANS

2@@ INPUT"FIRE DIRECTION (AS CLOCK HOUR)';CLOCK
21§ GOSUB 1@pd
224 REM ANGLE IS RAD

While the subroutine could be

1@@dP RAD=(3 -CLOCK)#3@%3.14159/18d
141@ RETURN

The subroutine is called at lines 11§ and 21§ by the GOSUB statement,
which is just like a GOTO, except that System 80 remembers where the
GOSUB came from! Pretty neat, and very useful tool! When the sub-
routine has finished its work, it tells the computer with a RETURN
statement. This RETURN line does exactly what the word says...it goes
back to where it came from, or more precisely, to the line following
the relevant GOSUB call. So after the GOSUB at line 11{@, the sub-
routine is executed, then the RETURN sends control back to line 12(.

Exercise 20.

Write a small program to accept two options. One is debit, and the
other credit. The sub-programs should input an amount and update a
balance. Use a subroutine to do the amount input and to check that
the amount is positive and less than $1Pf. Request the input again
if the limits are exceeded and show the balance after each trans-
action.

57

There is another statement that combines both the sub-program styles
we have talked about, ie.

ON variable GOSUB line 1, line 2,....

.

Here the value of "variable'" selects which subroutine will be called.
Each of these subroutines must end with a RETURN statement, which
will return the program to the statement following the ON...GOSUB...

This lets us change the earlier example into a really modular program.
That is, fairly separate program modules can be written which are able
to be considered by themselves. eq.

1¢ REM CONTROL MODULE
14@ INPUT "1 DR,2 CR,3 BAL,4 ADJ";O0PT

114 ON OPT GOSUB 1@0d, 2007, 38008, 4@@d
12¢ GOTO 1dd

14@@ REM DR MODULE

1999 RETURN
20@@ REM CR MODULE

2999 RETURN

(No, I'm still not filling in any details!)

The RETURN statements in lines 1999, 2999 go back to line 12 which is
just another statement telling the program where to go next. It sends
System 80 back to line 1P to get some more input.

Exercise 21.
Rewrite Exercise 2f) as 4 modules; a header or control module, a DR
module, a CR module and an input subroutine.

In Chapter 18

Commands Statements Other
ON var. GOTO lipne 1.... modular programming
GOSUB/RETURN
ON var.GOSUB line 1../RETURN

58

19.Fixed data

Sometimes a program needs Lo have a
list of things that will stay the
same for each run. These could be
legal account numbers, star fleet
base co-ordinates or areas under a
normal curve(!) and so on.

The DATA statement provides this list.
eg.
14 DATA 1,1,2,3,5,8,13

Then when you use the statement,
READ variable , the next entry in the
list is read (fancy that!) and as-
signed to the given variable. eg.

20 FOR C=1 TO 7
3@ READ FIB

4@ PRINT FIB

5@ NEXT C

will list all the entries, one after another, from the above DATA
statement. DATA statements may be anywhere in your program, even
after the relevant READ statement. When you say READ, System 80 will
look right through your program for the next DATA statements. So you
could group them all at the end of your program (for easy addition of
new DATA lines), or together at the beginning (for quick location in
a listing) or throughout your program near the associated READ state-
ments, and all the data will be read just the same. If, however,
System 80 can't find a DATA statement or you've READ all the entries,
you will get an 20D ERROR message ie. out of data.

0K, you can get the DATA ... but only once! Whal if you want to use
that same information again? Aha! You don't necd to type out the
same DATA statement again. You can get back to the start of your
listed DATA by saying RESTORE. So if you add

60 RESTORE
7¢ GOTO 2¢

this little program will run forever!:

Exercise 22.
Make a DATA statement of the following account numbers of overdrawn

customers.
465, 591, 615, 988, 1@@5, 1213.
Then write a program to check that account numbers that are input are

not in the redl,

59

Now for something really exciting (well, it turns me on anyhow),
You can put text into DATA statements! You can have

14 DATA "ANDY", "BRUCE", "CHRIS", "DAVE" n
To READ these you need a new type of variable. This is called a
string variable. The name of 3 string variable will look just like
other variable names, except for a $ at the end. (No. Unfortunately
it has nothing to do with money - $ is just the special marker for
string variables.) So

NAM$
B4$
OMD$
are legal string variables, while
669% (doesn't begin with A-7)
1IF?$ (symbolic character, not A-Z or #-9 in name)
TOWNS (reserved word TO in name)

are not legal string variables. Note too that NAM$ and NASTY$ will
be taken as the same variable (because System 80 only notes the
first two letters, remember?).

To print that last DATA statement's contents you can write

20 FOR N=1 TO 4
3@ READ NAM$

4 PRINT NAM$
S@ NEXT N

If you're beginning to think these string variables are similar to
numeric variables, you're right. You can READ them, PRINT them and
you can give them values. egq.

190 SURNAMS$ ="JONES"

But note that we used a string variable (name$) and we are putting
into it a string constant (characters enclosed by quotation marks)
NOT a number. We could say

20d NUMB$="69" (with quotation marks)
but NOT
208 NUMB$=69 (just a number)

If you try to equate strings and non-strings you will get a 7TM ERROR
le. type mismatch meaning that something is not a string. Anything

you can type (even symbols) can be a string constant as long as it is
contained within quotation marks. But, since these constants are text,
not numeric values, we can't do arithmetic with them. However, using a
"+" operator, we can stick them together, one after the other. This is
called concatenation. eq.

114 FULLNAM$=NAM$ + SURNAMS
120 PRINT FULLNAM$

would give (assuming the previous program lines have just been done)

60

DAVEJONES (no space)
If you don't like that, then

NAM$+" "+SURNAM$ is DAVE JONES or
SURNAM$+", "+NAM$ is JONES,DAVE

If you want a space printed, you need to include it yourself because
System 80 doesn't automatically leave a space in front of text.

We can also input strings (and then they don't need to be enclosed by
quotation marks). Try this game. (Remember to clean your slate first.)

1@ REM CONVERSATION

2@ PRINT"HI."

3@ INPUT "WHAT'S YOUR NAME";NAM$
4@ PRINT"HELLO ";NAM$;", "

5@ PRINT "I AM YOUR SYSTEM 80."

6@ INPUT"HOW ARE YOU';HOW$

78 PRINT "WELL. I'M ";HOW$;" TOO!"
80 PRINT "BYE FOR NOW ";NAM$;"."

If you tried to be polite when you said how you were, and answered
VERY WELL, THANK YOU

System 80 would say to you

PEXTRA IGNORED

That's not an equally polite response is it? But this is only because
System 80 would take the input as being two strings separated by a
comma and so the second one (ie. THANK YOU) will be ignored. If the
answer had been enclosed by a pair of guotation marks then it would
have been accepted as one string. So you can use quotation marks in
inputting strings but they are not usually needed and they are not in-
cluded in the string. If you want to include quotation marks in a
string, you can embed them in the text of an input string. eg.

I SAID "THANK YOU".
would be accepted in full.

If you have a very long name and entered it all) and you were pretty
talkative about your state of health, you may have got the message
?0S_ERROR ie. out of string space. This will happen if you have used
more than 5@ characters (including spaces) in your total string in-
puts because System 80 only sets aside that much space for strings.
However you can get over this limitation by allocating more string
space yourself. eg.

CLEAR 10@ (a command)

will let you enter 1P characters for this program. You can have as
many as 255 characters in a string, though you will have needed to
CLEAR that much space first, of course. If you use more than 255
characters (remember, that includes spaces and punctuation) you will
get a 7LS ERROR ie. string too long.

ad

We can also compare strings.

61

In the last chapter we said

1¢@ INPUT"1 DR,2 CR,8 BAL,4 ADJ";0PT i

Well, we can make that a bit fancier now! We can put the allowed
(legal) options into a DATA statement, like

lﬂﬂ DATA IIDRII’HCRII’ "BAL“, I!ADJII
and then input the option in string form with
114 INPUT"OPTION";O0PT$

Now we can check the input and deal with it using

12@ RESTORE

13% FOR N=1 TO 4

149 READ RQ$

15@ IF OPT$=RQ$ THEN ON N GOTO 1¢@@,20dd, 3003 , 4000
160 NEXT N

17@ PRINT"NOT A LEGAL OPTION"

18¢ GOTO 11@

followed by the relevant subprograms.

Here, line 12f ensures that we start at the beginning of DATA,

line 13f starts a loop for the number of entries in DATA,

line 14@ actually gets the next legal option (RQ$) out of DATA,

line 15@ checks that the input option is legal. If so, then the loop
counter, N, is the same as our old option input!

If the input is not in the list, then the loop ends after line 16f

and lines 17@ and 18§ say that we're wrong and will try again.

Sure, this is longer, but it is pretty (as well as being more
conducive to accuracy)!!

Exercise 23.

Create a little database (with DATA statements) with each entry as
"surname",''given name","address line 1","address line 2". You could
use one DATA statement per entry. To mark the end use "surname' = "*",
Write a program to input a surname and display either name and address
or "not known'".

In Chapter 19

Commands Statements Other
CLEAR string space READ string variables & ..$
DATA string constants & ".."
RESTORE + as string concatenation

62

20.Compact style

You will have noticed that a lot of

BASIC program lines are quite short. = -
This means that even a fairly short Ga
program can end up as quite a few

line numbers. Also, it doesn't take N

much program to go over one screen-
full in a listing. Well, you can
actually pack a program into a small-
er package. (Oh good. I was beginning
to wonder.)

You can write more than one statement on a line by putting a colon
between them. For instance, try running

14 V=24@:PRINT V;"VOLTS"

You can put the whole delay loop on one line, ie.
2@ FOR D=1 TO 345:NEXT D

Or, how about

3@ FOR C=1 TO 2@:PRINT C,CL2:NEXT C

That's a whole table from one line!

It is certainly a good idea to put a group of related statements on a
single line, especially if they are fairly simple - the delay loop is
a good example. However if everything is just pushed together in long
multi-statement lines it can get very difficult to follow what the
program is trying to do! It will also make it hard to squeeze in ad-
ditions (if you ever need them, of course).

There is another very valuable use for multiple statements - with an
IF/THEN. Previously, if you had two things to do when an IF was sat-
isfied, you had to GOTO somewhere, then GOTO back again - that's messy
and sometimes difficult to follow in a listing. But NOW... If you
write multiple statements after a THEN they will all be done if the
test is true. If the test is not true then none of them will be done.

Try
1@ INPUT A

2@ IF A=1 THEN PRINT "AHA! A=";A: GOTO 1¢
3@ PRINT "THAT WASN'T 1.": GOTO 1¢

63

Multiple statements can also be used in immediate mode! Try this
line to get the total of numbers from 1 to 1d.

T=@:FOR N=1 TO 1f@:T=T+N:NEXT N:7?T

Exercise 24,

Write a program in as few lines as possible to input a string. Then,
if your input is "YES" print "OK", otherwise print "NOT OK" and loop
back for more.

Don't forget that when you include REM statements in your program, the
letters REM at the beginning of the line tell your computer that what

follows is for human use only, and can be ignored by the computer. So
don't use REM to start any multiple program lines, or all the follow-

ing instructions on that line won't be acted upon.

In Chapter 2

Commands Statements Other
and multiple IF/THEN and : : and multiple
statement commands statement lines

64

21.The game generator

@ There is a function in System 80 specially
designed for games (well...maybe some other

things too). It allows you to get a random
number, that is, a '"surprise'" number - one
that doesn't depend on anything else! With
this you could

- make arithmetic quizzes

- invent guessing games

- add randomness to games

(like a cross-wind for golf?)

(Y &,
SIS

Whenever you use RND(X) you will get a new
random whole number between 1 and X.

Try this little game.

174 REM NUMBER GUESSER

2@ N=RND(104@)

3¢ PRINT "I'VE GOT A NUMBER BETWEEN 1 AND 1¢@."
4@ INPUT "WHAT'S YOUR GUESS";G

5@ IF G<N THEN PRINT "TOO LITTLE!": GOTO 4@

6@ IF G>N THEN PRINT "TOO BIG!": GOTO 4@

7@ PRINT "OH RATS, YOU GOT IT!"

(See how multiple statement lines can make your program
neater when you use IF/THEN ?!!)

RND(X) will give you random numbers that are integral values but by
saying RND(f#) you can generate random numbers as fractions that are
bigger than @ and less than 1.

What, you might ask, do we get for negative arguments of RND? An
?FC ERROR!! Not so useful. You will also get an 7?FC ERROR if the
argument that you have chosen for RND is greater than 32768.

To be truthful about it, RND really generates "pseudo random' numbers.
Whenever you turn System 80 on, if you use RND you will get the same
sequence of "random" numbers. However you can get a new sequence by
using the RANDOM statement.

So RND(X) returns an integer between 1 and X inclusive.
X must be positive and >=1 but not more than 32768.

RND(#) returns a fraction between @ and 1.

RANDOM sets up a new pseudo-random sequence.

mad

Exercise 25.
Write a program to throw two dice.

65

Exercise 26.

Write a program to draw one playing card from a standard deck.

In Chapter 21

Commands Statements Other
RANDOM RND(@)
RND(X)

66

22.Pictures

Yes, pictures! Well, sort of anyway. We've already done some graph-
ical things with a sine curve back in Chapter 14 and our rockets in
Chapter 15. Graphics, even quite simple ones, really make a program
great! As the man said, "A picture is worth a thousand words'" - even
if it takes a thousand instructions to create it!

1

A slight note of discord? Well, yes. To - 'mm",_._..
make a picture the program must say where ke “E !..
every dot of it goes. And yes, that can ol - é"*'"'
make quite long programs, and even rather " LL.
tedious programming to get it all right. 35{ ‘-',5':_-.-._.
But, ah,... the finished product! -_-E‘:E':E';" A

;:_.';..Z.', ., !

About those "dots'". System 80 has 6,144 of them!! To make it a bit
easier they are set out like graph paper: 128 dots wide and 48 dots
high. (That sounds a bit more manageable.) They are set out as

to 127 from left to right and

@ to 47 from top to bottom.

You can refer to any of these dot positions as (c,r) where c is the
column number and r the row number as shown:

column———127

(109, 30)

However, before we start making pictures, we should have a clear screen
The statement CLS will do just that. Try using it as a command and type

CLS

Presto! (I suppose we had to get our ready display back.)

CLS is similar to the type-in NEW in that it empties the screen and
puts the cursor at the top BUT the important difference is that CLS
will not clear all your program and variables too.

OK, the instruction to "paint" a dot is SET(column,row).
Try this out.

67

1 REM GRAPHICS SAMPLER

2@ INPUT"CHOOSE YOUR COLUMN,ROW";C,R
3@ CLS

4@ SET(C,R)

50 FOR X=1 TO 345:NEXT X

6@ GOTO 20

You'll be asked to input a column number and a row number, then the
screen will be cleared and you'll have a second to see your point set
on a clear screen UNLESS the numbers you choose are outside the range
allowable for graphics. You'll get an 7FC ERROR if you choose a
column number less than @ or greater than 127 OR if you have a row
number less than @ or greater than 47.

You can see that the point (@,d) is right up in the top left-hand cor-
ner and the point (127,47) is at the extreme bottom right-hand corner.

Did you try using numbers with fractions? The numbers you choose don't
have to be integral, but this function will only use the whole-number
part.

The statement to clear a dot is RESET(column,row) with the same con-
ditions on the column and row numbers. Add this to your program.

45 RESET(C,R)
47 FOR X=1 TO 1@@:NEXT X

Or you could try this one

1@ REM ANOTHER GRAPHICS SAMPLER
2@ CLS

3@ SET(26,24)

4 FOR X=1 TO 1@@:NEXT X

S@ RESET (24, 20)

6@ SET(3p,20)

78 FOR X=1 TO 1@@:NEXT X

8@ RESET (3@, 2¢)

99 GOTO 3@

and System 80 will blink at you.

Exercise 27.
Write a program to fill in the whole screen.
Add some more program to randomly clear points in this. (Termites!)

Did you know that computers were artistic? Well, try out this little
doodler.

1 REM KALEIDOSCOPE

24 CLS

3@ XI=RND(64)-1:YI=RND(24)-1

4@ IF RND(1@)>1 THEN GOTO 8¢

5@ SET(XI,YI):SET(127-XI,YI)

6@ SET(XI,47-YI):SET(127-XI,47-YI)
70 GOTO 3¢

80 RESET(XI,YI):RESET(127-XI,YI)

68

9@ RESET(XI,47-YI):RESET(127-X1,47-YI)
14@ GOTO 3@

Line 3@ chooses the (4 screen) point location.

Line 4@ decides whether to turn it on or not so that the screen does
not eventually fill completely. This is a random decision
(made by choosing a random number between 1 and 1@) and
changing the value "1" will change the "darkness'" of the
doodle by allowing a greater proportion of points to be
turned on.

Exercise 28.

Snail Tracks! Start on the screen and move a snail track randomly
about. Each move he can go -1, @ or +1 in X or Y from where he is,
but not outside his box.

There is another function that doesn't do anything to your picture.
It just lets your program check what it has already done.
POINT(column,row) returns a value of -1 if the dot is set, or # if
it is reset (clear). eq.

IF POINT(1¢8,5@)%-1 THEN PRINT '"ON"

tests the dot at column 1@ and row 5@.

Exercise 29,
Change Exercise 28 so that your snail never crosses his own traill
How far can he get?

In Chapter 22

Commands Statements Other

CLS POINT (column,row)
SET(column,row)
reset(column,row)

69

23.Tables

Some time ago we found out how to display tables on the screen.
That was useful,... and pretty., In fact, it was so useful that it
would be good to keep those tables inside the computer to look at
again. Let's do it.

How about a table of quantities? This could be numbers of boots sold,
current levels of starship resources, or costs of cigars, etc. etc...
Say we want up to 5@ entries, System 80 must be told this so that
space can be provided. This is done with a statement like

17 DIM QUANT(58)

ie. the DIMension, or size, of our table called QUANT is 5@ entries.
The table QUANT is also called an array. QUANT is a lot like our
usual variables, except that it comes in 5@ flavours! (or at least,
in this case it does) To pick the entry of QUANT that we want to
refer to we need to specify a sub-
script. This is a number (or var-
iable, or calculation) from @ to 5@.
So to refer to QUANT entry number 25

e USe quant(25)

We can say things like
QUANT(25)=365.25
PRINT QUANT(25) etc.

Try out this program.

17 DIM QUANT(5@)

2@ INPUT"ENTRY";E

3@ INPUT"VALUE" ;QUANT(E)

4ff FOR E=@ TO S5@:PRINT QUANT(E); :NEXT E:PRINT
5@ GOTO 2d

You should have seen that the value you entered appeared in the place
that you chose for it in the table. If you were to try "ENTRY" out-

side the B to 5@ range you would get an error when System 80 tried to
use the array. Either

?BS ERROR - bad subscript or
?FC ERROR - really bad subscript!!

Exercise 30.
Change the above example to only print non-zero entries. It should
also print the entry number.

70

You'll notice that I've been lying (well, a bit misleading anyway).
If we give an array a dimension of 5@, then we can actually have 51
entries because we can include the subscript .

With an array it's easy to add up all the elements. Add something
like

58 REM TOTAL QUANT

68 1Q=¢

7@ FOR E=@ TO 5@ :TQ=TQ+QUANT(E) :NEXT E
8 PRINT"TOTAL";TQ

9@ GOTOD 24

Line 5@ replaces the old GOTO loop (which we put back in line 9@).
Line 6 initialises the total so that in line 7¢ we can just add to it.

0K, that's one away. Let's try some more.
14 DIM NAM$(6), V(6), Q(6)
That's interesting! A string array! We can enter values with

20 FOR E=@ TO 6
3@ INPUT "NAME,UNIT COST,QUANTITY";NAM$(E),V(E),Q(E)
4 NEXT E

Next, we can display this with

5@ SALES=d

6@ PRINT "ITEM","PRICE"."QUANTITY","SALES"
78 FOR E=@ TO 6

8@ PRINT NAM$(E),V(E),Q(E),V(E)*Q(E)

9@ SALES=SALES+V(E)*Q(E)

16@ NEXT E

11 PRINT

12@ PRINT "TOTAL SALES",,,SALES

How's that? (Did you notice how the three commas in line 12f1 spaced
the printout?) We have 3 arrays all running in parallel. The same
element in each array describes a different characteristic of the
same thing!

Let's say we want to keep sales figures for each item in each month.
We could say

1# DIM SALES(6,12)

This lets us specify which item we want and also what month of the
year we want too! Thus SALES(1,6) could be the June sales for item #1.

Another two dimensional array (sometimes called a matrix) could hold
an object's position in space. eg.

... DIM XYZ(1@,3)

71

for 1 objects with XYZ(obj,1l) the X co-ordinate,
XYZ(obj,2) the Y co-ordinate
and XYZ(obj,3) the Z co-ordinate

When you're debugging your programs you can get a display of (dump
out) the contents of array NAM$ (for instance) with the command :

FOR E=@ TO 6:?NAM$(E) :NEXT E
or XYZ with
FOR O=@TOLl@:FOR D=1T03:?XYZ(0,D); :NEXT D:?:NEXT O

(Wow! That's quite a one-liner.)

Whenever you RUN a program, System 80 will clear all your variables
(and arrays) to zero. You can also clean off your own slate with
the statement

.. CLEAR

At this time System 80 also sets aside the amount of space you can use
for all your string arrays and variables. The space that is reserved
for strings (ie. 5@ characters - see Chapter 19) is not much if you're
using arrays. To allocate more string space you can include at the
start of your program

. CLEAR number of string spaces

If you try to use too much memory space, eg. with DIM BIG(1@@d@d), you
will get 7?0M ERROR ie. out of memory. There are obviously limits to
what you can do because everything uses up space in memory, program
lines, variables, arrays both numeric and string ..etc... but you'll
have to write a fair bit before you run out of space.

If you want to know how much memory you still have left you can use
the command (always with PRINT)

PRINT MEM

In Chapter 23

Commands Statements Other
PRINT MEM DIM arrays
CLEAR matrices
CLEAR no.string spaces subscripts

72

24.Did he say YES ?

We saw in Chapter 19 how you can get
string answers to questions. egq.

1@ INPUT"QUESTION";ANS$
2@ IF ANS$="YES" THEN PRINT "OK"

etc.
It would be nice to be able to recog-
nise type-in of "YES" or "y,

Certainly we could make more than one
IF, but that's messy. The function

LEFT$(string,number)

gives a string of the leftmost given number of digits from the given
string argument. So you could say

2@ IF LEFT$(ANSS,1)="Y" THEN PRINT "OK"

and both "YES" and "Y" will work (and so will "YUCK'" or "YNO" etc.).
Similarly you could select the right-hand 3 characters with

RIGHT$(ANS$, 3)

Another thing you can do is to find out how long a string actually is.
Use LEN(string)

Exercise 31.
If NAM$="SKYWALKER" can you give the results of ..?
1. LEN(NAMS$)
2. LEFT$(NAMS$,3)
3. RIGHT$(NAMS$,6)
4. RIGHT$(NAMS, LEN(NAMS))
Use System 80 to check your answers only.

You might have noticed that, as could have been expected, functions
with names ending in "$" return strings, while those without "$" at
the end return numbers.

There's another function here that acts a bit like a combination of
LEFT$ and RIGHTS, and it is MIDS.

MID$(string,start,number)

returns a string "number" characters long, starting from the character
"start" in "string". (The first character is 1 - not @.) So

MID$("SKYWALKER",4,3) is "WAL"

73

If you ask for more characters than the string has, MID$ will give
you as many as it can. You can leave out the third argument of MID$
and you will get all the rightmost characters of the string, starting
with the character that you have specified. (Where have I seen that
result before?) Try this little program to analyse typed input.

14 INPUT"STRING";S$

26 FOR C=1 TO LEN(S$)

3@ PRINT"CHARACTER=";MID$(S$,C,1)
4@ NEXT C

5@ GOTO 1¢

Now we've got strings.....and numbers..... and never the twain shall
meet. But they do -
STR$(number) allows the given number to be handled as a string and

VAL(string) gives the numerical value of the given string.
If you don't have a number in your string you'll just
get zero, or if a number is followed by other characters
you'll just get the number.

For instance, what would you expect to be printed if you said...?
PRINT VAL("23")+1,STR$(23)+"1"

Did you say 24 231, ?
Well, congratulations! Of course you did.

Exercise 32.
Write a calculator. It should accept;

ENTER number
ADD number
SUB number

(and others if you like).

(Hint - use a space to indicate the start of the number, and MID$
or RIGHT$ to get the number out for VAL to use!)

In Chapter 24

Commands Statements Other

LEFT$(string,no.)
RIGHT$(string,no.)
MID$(string,pos,no.)
LEN(string)
VAL(string)
STR$(number)

74

25.Conditions

Often the conditions you want to test
¥ for in your programs using an IF...THEN..
statement will involve more than a single
check. You may want the computer to
work out whether a number of things has
occurred, all at the same time. For
instance, if you want to go sailing you

! 1 should; be able to swim
' AND be able to get a boat
A AND have a fine day.

You don't have to use more than one IF
line to do this. Just as in English you can use the operator AND
to make one statement do the job. So you could tell System 80

...IF SWIM$="YES"AND BOAT$="GOT"AND DAY$="FINE"THEN SAIL$="YES"

Here the string variable SWIM$ must have the value YES
AND BOAT$ must have the value GOT
AND DAY$ must have the value FINE
before SAIL$ is given the value YES.

If you might go boating in other circumstances (for instance if your
plane ditched!) you could add

...IF SAIL$="YES" OR PLANE$="DITCH" THEN PRINT "GO SAILING"

Here the OR operator is being used, instead of AND, so that you may be
EITHER going sailing for fun
OR sailing of necessity.

The message GO SAILING will be printed if
EITHER the string SAIL$ has the value YES
OR the string PLANE$ has the value DITCH.
(System 80 won't insist that it's a fine day before you can save your-
self from the plane.)

THUS in an IF statement
condition AND condition is true ONLY if both conditions are true
condition OR condition is true if EITHER condition is true.
You can even add to this by using parentheses to make "compound"
conditions. Try this to get the feel of it.

1@ INPUT "A,B,C";A,B,C

2f IF (A=l AND B=2) OR C=@ THEN PRINT "YEP":GOTO 1@

3@ PRINT "NOPE":GOTO 1

So the AND and OR operators let you make multi-barrelled decisions with
a single IF...THEN... statement which you can make more complex with
parentheses.

75

As well as being able to do something under complex conditions, you
can instead take different action if it is not true. You can do this
just by adding ELSE... to your IF. eg. you could say

. IF A=1 THEN PRINT "YEP" ELSE PRINT "NOPE"
which is just the same as

. IF A=1 THEN PRINT "YEP"
... IF A<>1 THEN PRINT "NOPE"

only a lot prettier!
And.. you can still put multiple statements in! So you could have

14 INPUT A
20 IF A=1 THEN PRINT"YEP":GOTO 1@ ELSE PRINT"NOPE":GOTO 1§
34 STOP

which will never get to the STOP!

Try replacing line 2@ above with

2 IF NOT A=1 THEN PRINT"YEP":GOTO 1@ ELSE PRINT"NOPE":GOTO 1§
This completely turns our test around!

You can also use NOT to test for the untrue value of an extended set
of conditions in parentheses. For instance, if we went back to our
earlier example and said

2@ IF NOT (A=1 AND B=1 AND C=1) THEN PRINT"YEP":GOTO 1@

then all three values would need to be NOT equal to 1 for "YEP" to
be printed.

So you can certainly cover all contingencies and still with only one
IF...THEN... statement! This is starting to make things complicated!
(starting?) There are some program design methods to help the poor
old programmer exercise his art. One of these is a graphical method
called flowcharting. It is just some specially shaped boxes to break
up a program into manageable pieces, and diagramatically show its
"shape".

F lowcharting uses

for calculations

and for decisions

and lines to indicate program flow. (Some people use more symbols,
but two is enough!) For instance, a typical program could look like

76

Initialise

;

Get Input

Operation
Type
?

«

Calculation Calculation
Type 1 Type 2

Flowcharts can be particularly useful when working out what you want
to do with a program that will be using the IF...THEN...statement or
IF...THEN...ELSE... with the AND,OR and NOT operators to give various
different treatments.

Exercise 33.

We want to simulate the behaviour of this light bulb with a program.
It must input the states of the switches, then display what happens.
First flowchart the problem, then write a program from your flowchart.

F—T1e
4 .

In Chapter 25

Commands Statements Other
IF oo THEN s ELSE . AND
OR in IF statements
NOT
logical parentheses
flowcharting

77

26.Screen control -

You can display numbers and things
on the screen and make simple pic-
tures, but imagine putting them
together! Actually, as you'll see
it's not very hard, but it always
needs careful planning.

A print can be made to start §

anywhere on the screen by saying A E ii

. PRINT @n, things to print

where "n" is the character position set out as

» 62,63

- 1023

Try
PRINT @ @,"HI"

You'll see HI at the top left, with the ready display on the next
line (probably over the top of old screen contents). It might look
a bit confusing, but you can put that message wherever you want it!

Next comes the really exciting bit - combining graphics with text.
First you must know how System 80 makes its graphics.
It divides each character position into 6 dots like Ei;

Each 6-dot position may contain any character (like "A") OR have

any combination of its 6 dots set. We've already seen in Chapter 22
(the GRAPHICS Chapter) how to turn on one of the dots with SET(col,row)
If we said

SET(g@,d)

we would turn on the top left dot of character position B. The column
and row numbers used in the instructions SET, RESET and |(f#,@)|(1,0)
POINT make up the dots of character position @ like this N G EE

)[(1,2

78

Video Display Map

[19j0916 v[L¥]oy vieo s vforfecfec]icloefscfrefecee ozl 1[i]i[at][si]ri]et]zs
IOARAHEAGHN olslelelelile ﬂ [ofcTeliTofslel ol<lv]e 8aliols g oa_:_._o-n:,. o|dfolclsls
HHHHEH AR HEHBEEE dHEH 3B BH HH BH B aH BE BHEH B § -nn_"..ann:nma_nﬁmwm
v “ | —_ | T
4144 4444443422 40 L4 bty 4 R 4344+ 44 L
€zOL *> 3 E 4 ; SIS NSNS TN SRS INED .
5r .ﬁ _ 1
vy 1 _L Al | *
o 4+ -+ 1 -+ + + L - -
656 rh_ _ Bk 19 M ._w | 011 L)
£ ._l_l h 4 | { _ l b
el T T H 180 O
S68 i W} L 110 v_ i L+ ..I_l 41 A L1l _ 1 1+ 1
b | L . _ i IREEN] ﬂ. !
! + ‘ 1 NRER | t I | 1
e i + : -t A e T —Hrdaqe
168 | i | SEEAREHEENE N E __ hl 1] RRR RS 3 o £t 5 o 1 U 0l 254) 4
sl | 10] 1] L]
el JUUNUREY SR BR E: 144 Ll | | 0 L 0 00O A
492 ¥e) NS 4 | J RUENE Hb iy 44 _p SENEENENEE b _ | SREENE AL L L et ol
LR I ﬁ Ll # (L HIRANERARERA J I &
wf [TTITTTTL (11 (1 SEEIEER RN L L | | LHH L LT | 11
£0L it _ | _ _ [| 1] I | ic|ov9
+ — R +H444 E e e B + + 4+ N — 4 —
or g | ﬁ I ot
_ | i 1
6€9uc AL eRanEl 1411 144 | L 1L [} aut 1] I it
1% .- - _ i 1 - nh“.
o ! : R AR e RS .4_| | 4 _ s SENEHES | _. 28 I == ed
SL5 |5z | _ | 1 | # | _ﬂ 1111 Ll | 1 2s
v | — B ._“ | I | | & B _. e
£ | _ 1] L | IR ! {1 UL O I L 34 1] JNE B N0 L
LIS |z | grey
—4-i4 1 i1l 3L 4413144 Ly (NI QY B 1+A v 4 - 4- 11+ 4 e -. 41 L1l - -
i i 1Ll | £
oz q 111 | or
. A 11 . ot +1+ 1 -+ 44+ 4414 ittt +t+ 4401
Lry s | h 1]] " (¥BE
" iERS | 1T 1 “ [[11 1T "
g 1SRN URENERANRINEES L SREEY I {1l I &
LBE | ™ Il | 9 |OZE
b - = et |+ 44444444 _EE 1 H 5 EEE N 4 _ O R R R = R &
i1} | | | | 11}
v 1 | 111 | [
4 4 44 SEPEEE 08 B il
L .. - 4+44 L1 L1 4111 L 113 11 12 i 1 ++44 _ 44 T:H 95z
£y | i [u_| .* T ; 1 (43
1
-z UNNEERIRSERENE RRANEN 1] L] : i
ssz| o T I _ | ol|z6t
= 1117 IIRERERERERE] s
[JERE v
IBL | ¢ 1L IENRENEERNRE I L |8TE
» ; i »
3] s
@ |.v.. L4 1 L L1141 o el | v |v9
t | 3
t | [
o ¢« 17] 1o
o i +iHttt 2588 -
RS e e e e R0 B G BB B e SR N AR

The accompanying VIDEO DISPLAY MAP gives the dot/character positions
for all the screen.

Now for some action! This example plots a box then puts a message
inside it. Pretty hot stuff!

1@ REM MAKE A BOX

2@ CLS

3% FOR X=2¢ TO 8¢

4 SET(X,1#):SET(X,30)

S@ NEXT X

60 FOR Y=1¢ TO 3¢

78 SET(2@,Y):SET(84,Y)

8@ NEXT Y

9% PRINT @ 384+18,"THIS IS A BOX";
1@ REM LINE 118 STOPS PROMPT APPEARING
11¢ GOTO 114

Exercise 34.
Write a program to lay out a box like

the size of the screen. Next put a fancy title in the box at the top.
(You'll have to end your PRINT @ lines with a semi-colon to keep the
right of your box intact!) (Don't forget to CLS first.)

Exercise 35.
Write a program to draw an ace of hearts.

Exercise 36. -
Input 5 product names and sales quantities and make a bar chart of
their sales.

In Chapter 26

Commands Statements Other

PRINT @ ny.... display control

80

27.Changing data

It's all very well to have DATA

statements to store information in i ¢ ™ L
a program, but what if that DATA =l 1= | =
changes frequently?? Do we have to = t Nﬁ —
keep changing our DATA statements == JA) —_—
every time there is a change? No, = = 1
of course not. It is possible to

keep your data on cassette and up SuT

L — |

date it when needed.

But before we go on, a word of warning.

So that you're not completely wiped out if your machine hiccups, as
may happen, you should at least keep multiple copies of cassette data.
If you're updating its contents don't write out to the same tape.

Use a different one and keep the one you used for input so that you
can regenerate files if you need to. I would strongly suggest keep-
ing each file on a separate tape, clearly labelled!! It might well
be a good idea too, to re-read a tape and check it against what you
expected to have written.

So BE CAREFUL! and test out your work thoroughly before filing all
your company records in the rubbish bin.

Well, now that we're ready, I guess I had better tell you how to do
it! You need to first of all position your tape as in the CSAVE
operation. Make sure the tape is past its leader and set the recorder
to record (with(_F1 Jup).

Now for the transfer of data! This is done with a PRINT statement,
but since you don't want your data displayed on the screen but printed
onto the tape instead the instruction is modified thus;

.+« PRINT#-1,1ist of things to be recorded

To try out the procedure you could say

14 REM CASSETTE DATA SAVE

2@ INPUT"PREPARE CASSETTE FOR RECORDING & PRESS NEW LINE";G0$
3@ PRINT#-1,"I'M SYSTEM",80

4 PRINT"OK,YOU CAN STOP THE CASSETTE NOW!"

That GO$ in line 2@ is just a dummy to make INPUT wait till you are
ready to go to the next line,

Don 't make your PRINT#-1 lines too long because anything after 255
characters will be lost!!

81

Sooner or later you'll probably want to read your cassette data back
in (well, I hope so anyway!)

Set the cassette deck to play ((F1Jup) and this time the statement is
like INPUT (reasonable, that) except that, because the source of the
data is a cassette, not you, the statement is again modified like this

. INPUT#-1,1ist of variables for data to be read into

A bit of care is needed here though. The list of variables in INPUT#-1
must match in type and number what is on the tape. If they don't, or
there is an input error, you'll get an 7FD ERROR - file data error.
However the names of the variables need not match as long as numeric
variables are still numeric and string variables remain strings.

To get back the data that we just recorded we could write

16 REM CASSETTE DATA INPUT

2@ INPUT"PREPARE CASSETTE FOR INPUT AND PRESS NEW LINE";GO0$
3@ INPUT#-1,NAM$,NUMB

4 PRINT"I FOUND ";NAM$;" & ";NUMB

5@ PRINT"YOU CAN STOP THE CASSETTE NOW."

The tape should stop when the data has been read in (but if it doesn't,
just press RESET, at the left back, and try again).

Exercise 37.

Request that the user type his name and address into a string array.
Save this on cassette and display it.

(Don't forget to tell yourself what to do with the recorder!)

These operations could be used for mailing lists, library catalogues,
kitchen recipes, family genealogy or a million other things. It can
be very useful in playing games on the computer to be able to record
things like the current status of Space Affairs for later use in a
long game of Space Trader. BUT please be careful. It could be very
easy to lose your valuable lists!

In Chapter 27

Commands Statements Other

PRINT#-1, list
INPUT#-1, list

82

28. Antibugging

This is more a frame of mind than a
thorough methodology. It is an approach
to program design that assumes that you
are likely to make some mistakes or
omissions and so will take appropriate
precautions. It is something like put-
ting ant-caps on your house's foundat-
ions - it reduces the number of places
that bugs can get in.

The first thing to do is to actually

sit down and design your program,

It's fine to type a straightforward program straight from your imagin-
ation into System 80's memory, but there comes a stage when it's hard
to hold all the facets of a program in your consciousness at one time.

We've already talked a bit about program design with flowcharts.
They are certainly good for nutting out complex logical situations,
however some people find them less well suited for overall design.

One good approach to total program design is called "top-down" design.
Essentially this means to program (maybe even in plain old ordinary
English) the most broad outline first. egq.
Set-up
Program Handle requests

End

This is the top level. Next,each of these steps is refined.
For instance, if this program were a simulation of a space battle,

clear display
Set-up '{ generate positions
J Handle requests get request
Program (repeat while enemy process request
still exists) end request
End
N

83

You can go on refining until the required program instructions are
obvious. If you run out of room, just start a new page for the sub-

classes eg. ~-
r if "map" { display positions
i W request details
if "Warp '{ move ship

Process request <

e e request details
R ire { track weapon

if "status" -{ list status

This gives you an overall understanding of your program, and you can
see at what level it is most appropriate to break into separate blocks
of instructions. (A rough guide is that a block, or "module", should
fit into a single screen full.)

Another level of "anti-bugging" comes into the picture when you are
actually writing the program. If a bit of program is especially
complicated, or contains lots of calculations, it is a good idea to
spread it out a bit. Perhaps you could even show some intermediate
values. If a program is not squashed up, using all available line
numbers for that section, then there will be space for extra debugging
PRINTs to be put in if all is not well. It also allows some extra
space if it is necessary to add further operations.

Again, if the program is getting particularly tortuous, it might be
time to sit back and see if there is a different way to do it all
more simply. The simplest solution is always the best especially
if the program ever has to be changed!

Well, what a boring old load of pontifical censored that was! Anyhow,
it's just common sense. I guess you've got to have a low point some-
where.

84

29.END

Here are a few extra bits of fairly esoteric information that might
be of interest.

There are some statements that you can use as commands and some com-
mands that will work as statements in a program.

RUN and LIST can both be acted on in a program (though they're not
very useful there since RUN will cause a program to go forever and
LIST will prevent it from being run at all by just giving a listing).

GOTO line number

can be used as a command to cause a program to be run from the given
line number without your variables being cleared first (as would
happen with the command RUN).

However, there are also some statements that cannot be used as
commands, such as INPUT, and when they are tried you will get 71D
ERROR ie. illegal in direct mode or this can't be done by itself.

If you want to use BASIC programs from other computers (or want to
shorten your own work) you might like to know that System 80 accepts

two other forms of IF condition THEN GOTO line number

They are IF condition GOTO line number

and IF condition THEN line number

That's all for basic BASIC! However, as you'll see when you look at
the System 80 Basic Manual there are lots more goodies (though you
might have to look a long way before finding a use for some of them!)

Good programming:

85

Glossary

argument; either a heated discussion or more hopefully just a value,
numeric or string, given for a function to work with.

array; a collection of related items grouped under one variable name.

ASCII; American Standard Code for Information Interchange. This is
a code for computing characters.

BASIC; B..... Antagonising Sometimes but Ingenious Code. Actually,
BASIC is the computing language that System 80 uses and stands
for Beginners' All-purpose Symbolic Instruction Code.

binary; system of representing numbers with only two different digits.,
eg. ON or OFF for a computer's electronics.

bit; binary digit - smallest unit of computer's Memory(see memory)

byte; group of 8 bits - smallest program accessible unit of the com-
puter's Memory. Each byte may contain part of an instruction,
part of a number to be used or the code for a character (see
memory)

QES; program error

command; instruction which can be immediately acted on.
computer; ingenious electronic device for consuming time.
constant; fixed value, numeric or string, used in a program.

cursor; not a user of strong language but a mark (underline in System
80) indicating the position the next character will take.

dump; display of information, some of which might even be useful!

E; exponentiation factor followed by a power of 10.

execute; carry out instructions

field; subdivision of a section of display, records etc.

function; operation on an argument to give a new result,

hardware; nuts, bolts, transistors and integrated circuits in computer.

hexadecimal; non-decimal system of number representation - base 16
Digits are @ to 9 and A toF OR @ to 15

home; starting position on computer's display, top left-hand corner.
initialise; set to starting value

K; represents 100@ in normal parlance, but for computing it usually
represents 210 je. 1024

line numbers; necessary beginning of program line.

machine language; computer's own representation of instructions for
hardware to execute.

matrix; two dimensional array

memory; this is where the computer stores all its instructions, values
etc. It has two parts, a user-accessible section where things
like the program lines and input are stored (Random Access Memory
or RAM) and a place where all the permanent information for the
computer, like how to decipher BASIC, is stored in a form not
generally accessible to the user (Read Only Memory or ROM).
Memory is made up of lots of bits. Each bit (or binary digit)
is either on or off ('cause that's easy to do with electronics).
These bits are organised into lots of groups of 8 called bytes,
and this is the smallest unit of memory that the computer can do
programming things with. An 8K computer has about 8(¢¢ bytes of
memory to program in (actually, in computing "K" often means an
equivalent in binary terms ie. 210 or 1¢24, so 8K is 8192 bytes!)

nested loops; FOR/NEXT loop containing more FOR/NEXT loops. The
innermost one will be completed for each pass through any loop
containing it.

peripheral; hardware allowing the computer to communicate with the
external world.

program documentation; vital to programmers. Explanation of purpose
of program as in REM.

prompt; character(s) on computer's screen indicating its readiness
to accept input - usually precedes cursor on the screen.

RAM; Random Access Memory, usually implies READ/WRITE storage space.

reserved words; letter groups set aside in BASIC for use only in the
defined instructions. Their appearance elsewhere will wreak havoc.

ROM; Read Only Memory, permanent information in System 80.

scientific notation; representation of numbers using a power of 1.

software; programs provided to make System 80 work.

statement; component of program. Line of instruction to be executed
when program is run.

variable; name of an entity which can hold different values.

zone; fixed field eg. System 80 has & zones across the display screen.

G-2

Appendix A.Summary of BASIC

Here is a summary of System 80's Level II BASIC:
1. COMMANDS

AUTOautomatic line numbering by steps of 1@ from line 1

AUTO line number, increment
automatic line numbering by chosen steps from given line
number

CLEAR
set program variables to zero

CLEAR n
clear variables and '"n" string-space bytes

CLOAD "name"
load cassette file "name" into memory

CLOAD? "name"
cassette program check

ELS
clear screen

CONT, tter (BREAK) or STOP to continue
CSAVE '"name"
save program on cassette as file '"name"

EDIT line number
select line to edit, then use
space
backspace
c search for character "c"
delete next character
f__Jtext (SHIFT)(ESC) insert text
Hltext delete remainder and insert text
(C] ¢ change next character to "c"

(NEW LINE] finish edit

LISTprogram list

LIST line number-line number
list part of program

NEW

remove current program from memory
PRINT MEM

display amount of free memory
RUN

execute pr agram

RUN line number
execute from given line number

TRON
TROFF
line number trace display on or off

A-1

2. PROGRAM ELEMENTS

Each program consists of a series of lines. Each line is

line number statement
OR

up to 255 characters (including spaces). Spaces may be left out,
so care must be taken to avoid reserved words as these will result
in unexpected errors.

Variable names;

must start with a letter and the rest can only be made
up of letters and numbers. System 80 will only take note of the first
two characters.

String variable names;
‘ must also have a "$" at the end.

Numeric constants;
will be *number
fnumber Efnumber
up to 1E38 (normal precision correct to 6 digits)

String constants;
must normally be enclosed by quotes ie''string"
(but quotes are optional for string input only)
up to 255 characters long (including spaces)

Numeric operators;
+ addition
- subtraction or unary minus
* multiplication
/ division
[exponentiation
String operator;
+ concatenation

Order of precedence;
first..() parentheses
L exponentiation

negation (unary minus)
%/ multiplication and division, left to right

last.. +- addition and subtraction, left to right

3. STATEMENTS

CLEAR n
clear variables and "n" string-space bytes

CLS clear screen

DATA list |
data for READ statement

DIM name (dimension list)
allocate array space

A-2

terminate program execution

FOR var=start TO end STEP change -
set "var" to "start" and execute till NEXT statement

GOSUB 1line number
unconditional branch to subroutine - RETURN at subroutine end

GOTO line number
unconditional branch to line number

IF condition THEN line number

IF condition GOTO line number

IF condition THEN GOTO line number
conditional branch to line number

IF condition THEN statement
conditional execution of "statement"

IF condition THEN statement 1 ELSE statement 2
execute statement 1 if condition is true
execute statement 2 if condition is false

condition is; expression relation expression
relation is; <, <=, =, >=,>,K>
operate on conditions with AND, OR, NOT, ()

INPUT "text";variable list
display "text" and accept type-in to variables

INPUT#-1, variable list
transfer data from cassette to the variables listed

LET variable=zexpression
assign value of "expression" to "variable"
"LET" is optional

NEXT variable
end of FOR/NEXT loop

ON variable GOSUB line number list
"variable" selects a "line number" (from list) of subroutines
to go to

ON variable GOTO line number list
"variable" selects a "line number" to GOTD

PRINT expression list
to display
Use semi-colon to compact items or comma for zones.
Use TAB(col) to lay out print.
PRINT with no following text spaces to a new line.
? can be used as shorthand for PRINT.

PRINT @ number, expression list
display at character position given by '"number"

PRINT#-1, expression list
send data to cassette

RANDOM
start new random number sequence

READ variable list
read next entry out of DATA statement list

REM remark
comment or explanation - this is not executed

A-3

RESET (column,row)
clear dot on display screen

RESTORE
start DATA list again

RETURN
finish subroutine and go back to statement after GOSUB

SET(column,row)
set dot on display screen

0
Al Pstop program execution - may go on with CONT

4. FUNCTIONS
ABS(arg) absolute value
ATN(arg) reverse of TAN - result in radians
COS(radians) trig cosine (radians=3.14159/18@*degrees)
EXP(arg) eCargument
INT(arg) returns integer = argument
LEFT$(string,number)

leftmost "number" characters from "string"
LEN(string) number of characters in '"string"
LOG(arg) reverse of EXP - elresult=argument
MID$(string, position,number)
return string as "number" characters from "position"
in "string"

POINT (column,row)
check display dot position
-1 if set

@ if reset
POS(dummy arg)returns present display position (@ to 63)
RIGHT$(string,number)

returns "number" characters from right of "string"

RND(arg) arg >@ gives random integer between 1 and arg.
arg =@ gives random fraction between @ and 1
SGN(arg) returns -1 for arg <§
@ for arg ={

1 for arg >f
SIN(radians) trig sine
SQR(arg) square root of argument ie. arg=resultL?2
STR$(arg) returns string representation of argument
TAB(column) spaces to "column" (f to 63) in PRINT
TAN(radians) trig tangent
VAL(string) returns "string" as numeric value

A-4

5. RESERVED WORDS

Must not be used in variable names

ABS EDIT LIST REM
AND ELSE LDAD RESET
ASC END Lac RESTORE
ATN ERL LOF RESUWME
CDBL ERR LOG RETURN
CHR$ ERROR MEM RIGHT$
CINT EXP MERGE RND
CLEAR FIELD MID$ SAVE
CLOSE FIX MKD$ SET
CLS FOR MKI$ SGN
CMD FRE MKS$ SIN
CONT GET NAME SQR
Cos GOSUB NEW STEP
CSNG GOTO NEXT STOP
CVD IF NOT STRINGS
CVI INKEY$ ON STR$
CVS INP OPEN TAB
DATA INPUT ouT TAN
DEFDBL INSTR PEEK THEN
DEFFN INT POINT TIME$
DEFINT KILL POKE TO
DEF SNG LEFT$ POS TROFF
DEFSTR LET PRINT TRON
DEF USR LSET PUT USING
DELETE LEN RANDOM USR
DIM LINE READ VAL
VARPTR

A-5

NOTES ON USING THE SYSTEM 80 COMPUTER

You probably won't need to worry much about these points while
you're working through this book. However if you do go on to
delve deeper into programming your System 80, you'll find them
well worth bearing in mind.

1. The reason why System 80 gives two READY? messages when you
first turn on the power is to give you the opportunity to
reserve part of its memory space for machine language or SYSTEM
programs. If you just press NEW LINE after the first READY
appears, no such space is reserved; but if you type in a number
first, System 80 will take that number as the decimal address
of the "top" of its memory space available for BASIC programs.
Whatever actual memory space is present above that address will
be left free for machine language programs.

2. System 80's inbuilt cassette tape deck is fine most of the
time, but there are times when you do need an external recorder
-- like when you want to use one of the low-cost light pens
that need to plug into the recorder's MIC input. System 80 has
provision for an external recorder, but don't forget that your
programs have to know how to talk to the external recorder
instead of the internal deck.

With BASIC programs this can be done very easily, without even
modifying the programs themselves. After loading them into the
computer, and before typing RUN, just type in:

ouT254,255

followed by NEW LINE. System 80 will then automatically
"connect" your programs to the external recorder whenever they
try to communicate with the internal deck.

3. For people who are already familiar with the Tandy TRS-80
computer, System 80's keyboard differs from that on the former
in a few minor ways:

(a) The NEW LINE key replaces the TRS-80's ENTER key

(b) The BACKSPACE key replaces the "«" key

(c) The CTRL key replaces the "y key

(d) The ESC key replaces the "T " key

(e) There are no CLEAR or "—" keys. This is not terribly
important, as these keys are rarely used. However if the "—»"

key is needed,it can be added fairly easily. Details are
available in DSE Technical Bulletin No.l2.

Appendix B. Errors

Error messages are given as

?code ERROR IN line number

for programs, and

7code ERROR

in

immediate mode.

The codes are

BS

CN

DD

FC

FD

1D

MO

NF

Bad Subscript. You tried to refer to an array element outside the
DIMensioned range - either too big (eg. the 5@th element in a 1¢
element array) or wrong dimensions (eg. ELEMENT(1,2) in a one-dim-
ensional array).

Can't Continue. The computer can't continue if it hasn't stopped -
BREAK or STOP - if there have been modifications to the program
since stopping or if there is no more program to run.

Re-dimensioned array. A subsequent DIM has been found after one
has already been assigned either by a DIM statement or by default
(when DIM size is 1@). A default size is allotted if the array has
been referred to before its DIM has been encountered and for this
reason it is a good idea to put all DIM statements at the head of
the program.

Function Call error. This means that you have given an argument
that cannot be used with the function you have called. There are
many causes including argument too big (eq. more than 255 with TAB),
negative argument with LOG or SOR, array subscript negative or
greater than 32767 or non-integral exponent.

File Data bad. While doing an INPUT#-1 System 80 detected an
error. There was either a mis-read from the cassette or the
variable list in the instruction didn't match the actual data on
cassette.

Illegal in Direct mode. An attempt has been made to use instruct-
ions in direct (command) mode that can only be used in programs
eg. INPUT

Missing Operand. A required argument was not provided eg. * with-
out anything to multiply by, or CSAVE without a name.

NEXT without FOR. Every NEXT statement (end of a FOR/NEXT loop)
must be preceded by a FOR (beginning of that loop) using the same
variable, This error can be shown if you have simply omitted the
FOR line, given a different variable name in NEXT or incorrectly
nested loops so that the computer can't get at the matching FOR.

B-1

LS String too Long. An attempt has been made to create a string
longer than 255 characters.

0D Out of Data. A READ statement has been encountered when there is
no DATA for it. DATA may have been omitted or already read. (In-
clude a RESTORE statement to allow DATA to be re-read.) Another
possible source is not enough data items on a tape for all the
variables in an INPUT#-1 statement (the last bits of data may have
been lost from the corresponding PRINT#-1 if they exceeded 255
characters).

OM Out of Memory. Your program has taken up all available memory in
System 80. Maybe you have a very large array or your program is
reserving too much area for seldom-used branches that can be writ-
ten more economically.

0S Out of String Space. System 80 allocates space for 5@ string
characters but if you want to use more string space you need to
use CLEAR to set it aside first.

OV Overflow. INPUT or result of a calculation is too large for
System 80 to handle (in excess of 1E38). Note that underflow be-
comes zero ie. when numbers are too small for System 80 to deal
with accurately they are taken to be zero.

RG RETURN without GOSUB. A RETURN statement signifies the end of a
subroutine which must have been entered with GOSUB (not GOTO).
RETURN tells the computer to go back to the line after GOSUB which
can't be done if there is no such statement.

SN Syntax error. Something is wrong in the characters that you are
using - spelling error, incorrect punctuation, missing parenthesis,
illegal character, reserved word in variable name are some poss-
ibilities.

ST String expression too complex. System 80 couldn't handle the string
operation as it was given. Can it be made simpler or could you
split it up into smaller steps?

TM Type Mismatch. One side of assignment numeric and the other side
string.

UL Undefined Line number. You tried to refer or branch to a non-
existent line.

/@ Division by Zero. That's illegal and illogical! Perhaps your
number was so small that it was taken as zero.

These are the error codes that are mentioned in this book. There
are some more that System 80 uses and for these you can refer to the
System 80 Basic Manual.

B-2

Appendix C. Answers to Exercises

10 REM CHAPTER 4, EXERCISE i

20 HEM SPEED IN KM/H §& TIME IN HOURS, FIND DIST IN KM
30 SPEED=400

40 TIME=S

50 DIST=SHEED * TIME

60 PRINT DIST; "KM FRrOM THE ALICE TO PERTH,"

10 REM CHAPTER 4, EXERCISE 2

20 REM RATE IN $/MONTH, TIME IN YEARS, FOR REPAY IN §
30 RATE=280

40 TIME=25

50 REPAY=RATE & TIME = 12

60 PRINTU"TOTAL REPAYMENT 15 3";REPAY

10 REM CHAPTER 4, EXERCISE 3
20 REV PART 1

30 REM V VELDCITY, U INITIAL v, A ACCELERATION, T TIME
G0 U=s0000

50 A=2000

60 T=%

7O Ml i+ A & T

A0 PRINT Vi;"kKM/SEC AFTER";T:"SECUNDS"

100 REYM PART e

110 REM S DISTANCE

120 S=uxT + 1/2 » 4 » T*T

130 PRINT"AT A DISTANCE OF";S;"Kmn

10 REM CHAPTER 5, EXERCISE 4

0 KEY v VELOCT Y Y 1 TIME, § DISTANCE
50 Vv=3ES

40 T=585gp

S0 S3=v « 7

60 PRINT S;"KM FROM EARTH TO THE Sun®

10 REM CHAPTER 5, EXERCISE 5
¢l REM SEF EX 3

30 U=SE4

40 A=2F3

50 T=25E0

6U vaU + AxT

70 S=U*T + 1/2%A*T T

BO PRINT Vi"KM/SEC AT"pS;mKm»

10 REM CHAPTER 6, EXERCISE &
20 REM 1

30 N=1+35%x4
40 PRINT N
50 REM 2

60 N=(2+4)x?
70 PRINT N
80 REM 3

90 N=2([3=1
100 PRINT N
110 REM 4
120 N==3([2
130 PRINT N

10 REM CHAPTER 6, EXERCISE 7

20 L= TAN(S5 * 3,14159/180) * 6 » 2

30 REM IE SS DEGREES TO RADIANS, THEN TAN GIVES HEIGHT TO BASE

40 REM RATIO, SO * 6 GIVES THE HEIGHT, THEN %2 FOR CORD REQUIRED,
50 PRINT L;"M OF CORD REQUIRED"

1 REM CHAPTER 7, EXERCISE 8

5 COUNT=0

10 PRINT "DECISIONS!™

11 COUNT=COUNT+1

12 REM THIS 1S THE NEwW LINE!

13 IF COUNT=S THEN PRINT "MQRE"

14 IF COUNT=7 THEN PRINT "I'M NOT FINISHED YET"
15 IF COUNT=10 THEN END

20 GOTO 10

10 REM CHAPTER 8, EXERCISE 9

20 REM N IS NUMBER OF TIMES, C IS COUNT
30 INPUT"HOW MANY TIMES":N

40 C=0

50 PRINT"QUESTIONS!"

60 C=C+1

70 IF C=N THEN END

80 GOTO 50

10 REM CHAPTER B8, EXERCISE 10

20 REY YOUR CHOICE HERE!

30 REM TO MAKE EX 9 GO BACK AND ASK AGAIN,
40 REM REPLACE LINE 70 WITH

50 REM 70 IF C=N THEN GOTO 30

?"CHAPTER 10, EXERCISE 11"
230%365%24;"HOURS OULD (MINUS A FEW MONTHS!)"

10 REM CHAPTER 12, EXERCISE 12
20 FJIR X={ TO 10

30 PRINT X

40 ~EXT X

~ad

C-2

10
20
30
40

10
20
30
40

10
eo
30
40
50

10
20
30
40
50

10
20
30
40
50

10
20
30
uo
50
60
70
80
90
100
110
120
130
140
150

REM CHAPTER 12,
FOR X=1 TO 10
PRINT X,Xx(2
NEXT X

REM CHAPTER 12,
FOR X=0 TO 20

EXERCISE 13

EXERCISE 14

PRINT X/10,SIN(X/10)

NEXT X
REM CHAPTER 13,

FOR C=1 TU 345x%S§
NEXT C

EXERCISE 15
INPUT"INTERVAL IN SECONDS";:S§

PRINT"THAT'S ALL FOLKS"

REM CHAPTER 14,
REM PLOT X2

EXERCISE 16

FOR X=1 TO 7 STEP 0,5
PRINT TAB(X[2);%x"

NEXT X

REM CHAPRTER 14,

REM PLUT SIN(X)/X

FOR X=1 TO 14

EXERCISE 17

PRINT XiTAB(SIN(X)/X*x30430);"%"

NEXT X

REY CHAPTER 15,

EXERCISE 18

M MINUTES CUUNTER,
FOR M=5 T0O { SIEP =1

PRINT M;"MINUTES TO BLAST OFF"

FOR S=1 TO S0
FOR D=1 TO 34%
NEXT D

NEXT 8§

S SECONDS,

FOR S=10 TO 1 STEP =)

PRINT 8
FOR D=1 TO 3495
NEXT D
NEXT S
NEXT M
PRINT"F I R E

C3

O DELAY

160

170,

180
200
210
220
230
300
310
320
330
340
350
400
410
420
430
440
450
500
510

10
20
30
40
50
60
70
80
90
100
200
210
220
230
240

REM CHAPTER 15, EXERCISE 19
REM PART 4 = 10 ROCKETS
FOR R=t To 10

REM PART 1 = A ROCKET
PRINT" A"

PRINT" H"

PRINT"‘&’"

REM PART 2 = EXHAUST
FOR E=1 TO 8

PRINT" ="

FOR D=1 TO 100

NEXT D

NEXT E

REM PART 3 = SPACE
FOR S=1 TO 8

PRINT

FOR D=1 TO 100
NEXT D

NEXT 8

REY OTHER BIT OF PART 4
NEXT R

REM CHAPTER 18, EXERCISE 20
BAL=0 i
INPUT"1 FOR DR OR 2 FOR CR";O0PT
IF OPT=1 THEN PRINT"DR AMOUNT":
IF OPT=2 THEN PRINT"CR AMOUNT";
GOSUB 200

IF OPT=1 THEN BAL=BAL=AMT

IF OPT=2 THEN BAL=BAL+AMT
PRINT RAL

GOTO 30

REM SUBPROGRAM

INPUT AMT

IF AMT<(0 THEN GOTO 210

IF AMT>100 THEN GOTO 210
RETURN

Cc4

10
20
30
40
50
60
70
100
101
102
1U3
104
200
el
20e
203
204
00
Q01
Y02
903
a0y

10
2o
50
4o
S50
60
70
&0
90
100
L1eo
209
210
220

REM CHAPTER 18, EXERCISE 21
RAL=(

REM CONTROL MUDULE
INPUT"{=DR,2=CR";0OPT

ON OPT GOSUB 1000,2000
PRINT HAL

GOTN 40

0 REM DR ®MUDULE

0 PRINT"DR aMOUNT";

0 GOSuUr 9000

0 RAL=HAL=AMT

0 RETURH

0 REYM CR MODULE

0 PRINT"CR AMOUNT"™;

0 GOSUB 9000

0 RAL=RAL+AMT

0 RETIHKN

0 QEM TNPUT MODULE

0 INPUT AMT

0 IF AMT<D THEN GOTO 9010
O IF AMT>100 THEN GUTO 9010
0 RETURN

REM CHAPTER 19, EXERCISE 22
DATA 465,591,615,988,1005,1213
INPUT"CUSTOMER NUMBER";C
RESTURE
FOR M=y T0O 6
READ BAD
IF C=BAD THEMN GOTO 200
JEXT N
REYM NOT FOUND, SO 0K
PRINT"CREDIT Okt
GOTU 30
REM w00PS, FOUND,
PRINT"HE'S A nuU=NO"
GNTO 30

10 REWM CHAPTER 19, EXERCISE 23

20 DATA"HONG","MAGGIE","A(0 THE ROAD","SYDMEY 2000"
30 DATAYRALPH","INGRID","1 COMPUTER NAYM","HOFART 70GO™"™
100 DATA"»"

120 INPUT"SURNAME" ;SN

130 RESTORE

140 READ DS%

150 IF DSE="«" THEN GOTD 300

160 IF DS$=SNE THEN GOTU 200

170 RFY PASS EXTRA ENTRIES!

180 READ DGS,D1%,D2%

190 GOTO 140

200 PRINT "FOunD"

210 READ DG3$,01%,02%

220 PRINT DG%;" ";DS$

230 PRINT DI1%

240 PRINT D28

250 GNTO 120

300 PRINT"NOT KNUWN!I™

310 GOTO 120

10 REM CHAPTER 20, EXERCISE 24
20 INPUT"YES";ANSS:IF ANS$="YES" THEN PRINT"OK":GOTO 20
30 PRINT"NOT OK":GOTO 20

10 REM CHAPTER 21, EXERCISE 25

20 D1=RND(6)

30 D2=RND(6)

40 PRINT YOUR THROW IS";D1:;"AND":D2

10 REM CHAPTER 21, EXERCISE 26

20 DATA"JACK","QUEEN","KING","ACE","SPADES","CLUBS"
21 DATA"DIAMONDS","HEARTS"

30 N=RND(13) : REM 13 CARDS IN A SUIT

40 S=RND(4) : REM 4 SUITS

S0 PRINT"YQUR DRAW IS THE ";

60 IF N<10 THEN PRINT N+1; : GOTO 200

70 RESTORE : FOR C=1 TO N=9 : READ CD$ ¢ NEXT C
80 PRINT CODS$;

200 RESTORE : FOR C=1 TD S+4 : READ STS$: NEXT C
210 PRINT" OF ";57%

10 REM CHAPTER 22, EXERCISE 27

20 FOR R=0 TO 47 : REM BLOCK

30 FOR C=0 T0 127

40 SET(C,R)

50 WNEXT C : NEXT R

60 RESET(RND(128)=1,RND(48)=1) : REM TERMITES!
70 GOTO 60

C-6

100 REM CHAPTER 22, EXERCISE 28

20 CLS o
30 X=RAUND(127) : Y=RND(47)

40 SFT(X,Y) : REM MAIN SNAIL LOOP
S50 X=X+RND(3)=2

60 IF X<0 THEN X=0

70 IF X>127 THEN X=127

BU YZY+RND(3) =2

90 IF Y<0 THEN Y=0

109 IF Y>47 THEN Y=47

110 GOTO 40

10 RE4 CHAPTER 23, EXERCISE 29

11 REM ADD LINES 45 & 105 TO EXERCISE 28
20 CLS

50 X=RAD(127) @ Y=RND(4T)

4 SET(X,Y) : ™MAI~N SNAIL LOQP

45 Xh=X : YS=y 3 REM SAVE POSITION

S0 X=X+RND(3) =2

60 [F X<0 THEMN x=(

G TF Xx>127 THEN X=127

HU Y=Y +uD(3) =2

99 IF y<) THEH Y=0

100 IF Y>47 THEM Y=47

105 IF POINT(X,Y)==1 THEM X=XS ¢ Y=YS : GUTO 50
Lig GOTN 40

1 *g4 CHAPTER 23, EXERCISE 30

10 DTA JUANT(50)

20 TNPUT"ENTRY";E

30 INPUT"VALUE";QUANT(E)

du FIr E=u TQ 50

S0 IF WJAUT(E)<>0 THEN PRINT E,QUANTC(E)
buU MNEXT T

(0 GOTO 20

?"CHAPTER 24, EXERCISE 31"
NAME="SKYWALKER"

21, LEN(NAMS)

e LEFTS (NAMS, 3)
?3,RTIGHTS (NAMS ,6)

24, RIGHTS (NAMS ,LEN(NAMS))

10 REM CHAPTER 24, EXERCISE 32

20 =0

30 IWNPJT RA® : REM CALCULATOR LOOP

dy FOR T=1 TO LEN(RUSD)

5¢ IF MIDS(RGE%,I,1)=" " THEW GOTO 70

ol NEXT I : GOTO 200

70 MABR=VAL(RIGHTS(RAB,LEN(RGS)=1))

B0 1F LEFTS(RAS,I=1)="ERNTER" THEN X=NMBR
90 IF LEFTS(RAS,I=1)="ADD" THEN X=X+NMBR
100 IF LEFTS(RN%,[«1)="SUB" THEN X=X=NMRR
200 PRINT X : GOTO 30

C-7

10 REM CHAPTER 25, EXEKRCISE 33

20 PRINT"ENTER SwITCH STATES AS ON QR QFF"

30 INPUT"SW 1":;S1%

40 INPUJT"Sw 2";S2%

50 INPUT"Sw 3";83%

60 IWNPJT"Sy 4";54%

70 1F S13="CN" AND S2%="0ON" AND S3$="0ON" THEN GOTO 200
BO IF Sus="0ON" THEN GOTO 200

90 PRINT"DARKNESS PREVAILS!"

100 GOTO 10

200 PRINT"THE FIRMAMENT IS INDEED ILLUMINATED!"
210 GOTO 19

10 REM CHAPTER 26, EXERCISE 34

20 CLS : REM BUSINESS FORM|

30 FOR X=0 TGO 127

40 SET(X,0) 2 SET(X,6) : SET(X.,47)
50 NEXT X

60 FOR Y=0 TO 47

70 SET(0,Y) ¢ SET(127,Y)

80 NEXT Y

90 PRINT284,"SYSTEM 80 FANCY TITLE"?
100 GOTD 100 : REM STOP PROMPT

10 REM CHAPTER 26, EXERCISE 35

20 CLS : REM ACE OF HEARTS

30 FOR Xx=1 TO 20

40 SET(X,0) ¢ SET(X,21)

S0 NEXT X

60 FOR Y=1 TO 20

70 SET(Q,Y) & SET(21,Y)

80 NEXT Y

90 PRINTa@65,"A"; : PRINT@393,"A";

100 FOR Y=0 TO 3

110 SET(8,Y+8) : SET(9,Y+9) : SET(10,Y+10)
120 SET(12,Y+8): SET(11,Y+9)

130 NEXT Y

140 SET(7,9) : SET(7,10) ¢ SET(13,9) : SET(13,10)
150 PRINTa@512, : REM JUST POSITION PROMPT!!

10 REM CHAPTER 26, EXERCISE 36

20 DIM NAMS(S),Q(S)

30 CLEAR 200

40 FOR P=1 TO §

50 INPUT"NAME, QUANTITY";NAMS(P),Q(P)

60 NEXT P

70 BIG=0 : REM FIND BIGGEST FOR SCALING

B0 FOR P=1 TO %

G0 IF I(P)>RIG THEN BIG=G(F) .
100 NEXT P

11400 GEIL'S

120 PRINT"PRODUCT","% SALES"

130 FOR P=1 TN 5§

140 PRINT LEFTS(MNAMB(P),16)

150 FUOR X=0 TO Q(P)/BIG %90 : REYM SCALE BAR CHART
o0 SET(X+32,Px3+1)

170 NEXT X ¢ HEXT P

10 REM CHAPTER 27, EXERCISE 37

20 DIV NADS(S)

30 INPUT"NAMEY ;NADS (L)

du FOR I=1 TO 4

S0 TIPJT"ADDRESS LINE";NADS(I+1) : NEXT I
AU PRINT"PREPARE CASSETTE T0 RECORD PLEASE"
70 INPUT"PRESS 'NEW LINE' WHEN READY";ANSS
B0 FOr I=1 TO S : PRINTH=1,NADSCI) : NEXT I
G0 PRINT"OK, STOP THE TAPE PLEASE"

100 PRINTSPRINTIPRINT

110 PRINT"NOwW wE'LL RELOAD IT®

120 PRINT"REWIND TAPE PLEASE"

130 INPUT"PRESS '"nEw LINE' wWHEN READY";ANSS
14 FOR I=1 TO S : INPUT#=-1,NADSC(I) : NEXT I
150 PRINT"STUP THE TAPE PLEASE"

160 PRINT:PRINT:PRINT

170 PRINT"THIS I8 WHAT AWE GOT;":PRINT

180 FOR I=1 TO 5§

190 PRINT NADSC(T)

200 NEXT I

Appendix D. Getting started before
you read any books !

If you're like most people, the first thing you'll want to do when you
get your new System 80 computer home is plug it in and get a program
running - long before you start reading through any books at all!

This is natural enough; in fact you'll find that there's a demon-
stration cassette with your System 80 designed for this very purpose.
Or you can buy any of the pre-recorded program cassettes for the
System 80 or the Tandy TRS-80 Level II.

To get such a pre-recorded program running, you only need to read
chapter 1 of this book. This tells you how to connect up your
System 80 and get it ready for business. Then you work through the
following short sequence of steps:

1. Press the button above the keyboard on the System 80 (the
adjacent red lamp should come on). Now press the STOP-EJECT key
on the tape deck. This will open the deck lid, so that you can
insert the cassette - make sure that the side marked
"DEMONSTRATION" (or the wanted program with another program
cassette) is uppermost.

2. Press the REW key, to rewind the cassette to the start. Now press
the STOP-EJECT key, and remove the cassette. Then with a pencil
or your finger, wind the tape inside the cassette until the brown
magnetic part of the tape reaches the front gaps. Now re-insert
the cassette, same side up as before.

3. Press the button again (the lamp should now go out), and
press the PLAY key on the tape deck until it latches down.

4. Now type in the command NEW, followed by (NEW LINE] , and follow
this with the second command CLOAD (again followed by the

NEW LINE)] key). The tape should now move, and the first program
on the tape will be loaded.

5. When the word READY re-appears on the screen, press the STOP key
on the cassette deck to make sure that the tape stops. Then type
in the command RUN, again followed by . The program
loaded from tape should now run.

6. To stop a program running, press the [BREAK] key.

7. To load in a new program, type NEW and (NEW LINE] to erase the
existing program. Then press the PLAY key of the cassette deck,

and typein CLOAD again followed by (NEW LINE

D-1

8. Note that the System 80 demonstration cassette has five different
demonstration programs. These can be specified when you give the
CLOAD command, if you wish, by following the word CLOAD with the
first letter of the program name, in quotes. So t® specify the
first program, called GRAPHICS, you would type CLOAD"G",

Similarly to specify the last program, called STAR WAR, you would
type CLOAD"S". TIf you do give the first letter of a program name

in this way, the System 80 will search along the tape until it finds
a program whose name starts with the specified letter. (If you just
type CLOAD, it will simply load in the next program it finds)

Don't forget to always press the key after typing in a
command such as NEW, CLUAD, CLOAD"G" or RUN.

The above "short instructions" should let you get your System 80
running very quickly on pre-recorded programs. But in order to write
your own programs you'll still have to read the rest of this book, and
preferably the manuals which come with the System 80 itself...

