

Page 1

THE LSI JOURNAL January 1984 Volume 2. Number 5

Table of Contents

INTRODUCTION FROM LSI:

ARTICLE SUBMISSION POLICY .. Page 2
VIEW FROM THE BOTTOM FLOOR ... Page 3
NEW PRODUCT ANNOUNCEMENTS .. Page 6

FROM OUR USERS:

EZEDIT/FLT - The LDOS command line editor Page 7
PRPARM - Change those PR/FLT parameters Page 13
SYNONYM - The LDOS command synonym processor Page 14
Mod 3 RTC Interrupts - discussed and modified Page 22
Profile One Plus - A special treat for Mod 1 users Page 26

REGULAR USER COLUMNS:

*** PARITY = ODD *** - Tim Daneliuk Page 28
'C' What's Happening - Earl Terwilliger Page 31

FROM THE LDOS SUPPORT STAFF:

ITEMS OF GENERAL INTEREST .. Page 35
updates and clarifications

LDOS: HOW IT WORKS - The BACKUP utility Page 36
Who, what, where, why, when (and how) discussed

Sending Printer codes - A special application Page 38

THE JCL CORNER - by Chuck .. Page 39

Special Feature:

The LSI Journal and LDOS Quarterly Index Page 39
by Scott Loomer

Copyright (c) 1983/1984 by Logical Systems, Incorporated
8970 N. 55th Street P.O. Box 23956

Milwaukee, Wisconsin 53223
Main switchboard: (414) 355-5454

Page 2

The LDOS Quarterly policy on the submission and payment for articles is as follows:

Articles sent for consideration must be submitted in the following format:

1. A cover letter, summarizing the content and intent of the article.
2. A printed hardcopy of the article. Desired print effects and formatting

should be indicated where necessary.

A diskette with--

3. A 'plain vanilla' ASCII text file containing the article. The text
should be free-form (without "hard" carriage returns), but any tables or
other structured data should be formatted as 87 characters per line.
Do NOT send SuperSCRIPSIT or Newscript files. Also, please do not
embed print effects.

4. If the article involves assembly language programs, include both the source
code, and the object code.

5. Any other necessary files or patches should also be supplied in machine
readable form.

Please do not send in printed text without a diskette, as it will NOT be considered for
publication. Payment will be made in the form of an LSI product, or $40 per published
page in the current Quarterly format. The size of the article will determine the value
of the LSI product available as payment.

Please include your name, address, telephone number and LDOS serial number with your
submission, firmly attached to your hardcopy printout, and affixed to the diskette you
submit.

LSI is extremely interested in seeing submissions from our users, and is open to
suggestions on any ideas for the Quarterly.

Submissions should be sent to:

The LDOS Quarterly Editor
c/o Logical Systems, Inc.

8970 N. 55th Street
P.O. Box 23956

Milwaukee, Wisconsin 53223

UNIX™ is a trademark of Bell Laboratories
MAX-80™ is a trademark of LOBO Systems, Inc.

PC-DOS™ and IBM-PC™ are trademarks of IBM Corp.
TRSDOS™ is a trademark of Radio Shack/Tandy Corp.

MS-DOS™ and XENIX™ are trademarks of Microsoft, Corp.
WordStar™ is a trademark of MicroPro International Corp.

CP/M™, CP/M-80™, and CP/M-86™ are trademarks of Digital Research, Inc.

The LDOS Quarterly is copyrighted in its entirety. No material contained herein may be
duplicated in whole or in part for commercial or distribution purposes without the
express written consent of Logical Systems, Inc. and the article's author.

Page 3

V I E W F R O M T H E B O T T O M F L O O R

by Bill Schroeder

Well, another year has come to an end, and I thank you all once again for being
supporters of LSI, and the LSI product line. With your support LSI has made it through
yet another year.

1984 will be a year of rapid and massive change in the microcomputer industry. Here are
a few of my quickie predictions for the year ahead:

Tandy will try their hand at competing with IBM (no easy task there).

AT&T will enter the market place with a whole new concept.

Commodore will continue to dominate the low end market.

Digital Research will increase its presence in the systems software arena.

The REAL "Peanut" will be introduced by IBM.

TeleVideo will become a major force in the market.

Removable cartridge hard drives will become more prevalent.

Microsoft will fall slightly from its present lofty position.

Apple will begin to have serious trouble.

Over one hundred small computer product manufactures will go out of business.

The Coleco ADAM will prove to be a failure.

Over one-half of the TRS-80 software suppliers will falter or fail.

Over 25 microcomputer publications will fail.

It is quite probable that none of the above events will take place, but they are
interesting possibilities - - -

Now, on to what I know will be changing at LSI in 1984:

LSI will not be publishing the LSI Journal, but the people at BASIC COMPUTING will be!
That's right, starting with the April issue of BASIC COMPUTING, the LSI Journal will be
incorporated as a special section in that magazine. This arrangement with these folks
was made so that LSI could get out of the business of publishing a "magazine". All the
same authors will be writing for us, and we will be providing the material to BASIC
COMPUTING for publication, on at least a quarterly basis. All existing subscribers will
have their subscriptions filled by BASIC COMPUTING. If you already subscribe to BASIC
COMPUTING, your subscription will be extended the proper number of issues. For those
who are not subscribers to either publication, a subscription order card is included in
this issue.

This means that this is the final issue of the LSI Journal published by LSI. The major
bulk of technical and other information will now be imparted through BASIC COMPUTING.
But--- there will be a new publication from LSI. This will be the "LSI Newsletter". It
will be published for the purpose of announcing new products, special offers and the
like to our valued customers. All registered LSI customers will receive this newsletter
at NO CHARGE. It will be published on an as required basis, but we expect at least
several times per year. It will contain little, if any, technical information.

Page 4

The LSI Hotline phone number has been disconnected due to lack of interest. There have
been very few phone calls, far less than we expected. I can't justify the cost of the
phone line, the answering equipment and the creation of the content for such a small
audience. This service was discontinued effective January 1st. To those out there who
called and appreciated the LSI Hotline, my apologies.

S U P E R S A L E S a n d V A L U E S

DEAL #1: While our supplies last, any product LSI has in stock that is not
manufactured or published by LSI will be sold-out for 40% OFF of the suggested retail
price. Don't miss this chance. LSI will no longer be selling software that is not
published and/or manufactured by LSI. We are liquidating our inventories of these
products, to your benefit. All <IN STOCK> products from MISOSYS, MICROPRO, POWERSOFT,
MOLIMERX, ... are to be sold at 40% off of suggested retail. We will NOT fill
backorders or give rain checks for these products. We have dozens of some items, and
only a few of others. These will be shipped on a first-come, first-served basis, and
any orders for items that are already sold-out will be promptly returned/refunded. To
take advantage of this offer, you must indicate that you are taking advantage of Deal
#1 on your order or over the phone. Please note that the special introductory offer for
WordStar and MailMerge is over, and that they have returned to their regular price of
$395 and $249, respectively.

Products we have that are not listed in the LSI catalog:

PowerMail Plus, Model 1/3 version by PowerSoft Sugg. retail $150
PowerMail Plus, Model 4 version by PowerSoft Sugg. retail $150
ZSHELL, for LDOS 5.1 from MISOSYS Sugg. retail $ 40

The 6.x versions of EDAS (PRO-CREATE) and DSMBLR III (PRO-DUCE)

For the most part, these and all the other discontinued products are fine products from
excellent companies. Our decision to discontinue, marketing, promotion, support,
endorsing, etc. of non-LSI products should in no way reflect on the quality of these
products or companies.

DEAL #2: Special LSI 30% discount. For orders postmarked between March 1st, 1984 and
March 15, 1984, take a 30% discount on any LSI-manufactured product. This includes
LDOS, FED II, LED and all our other excellent LDOS support products (don't forget
diskDISK). This offer is not good in conjunction with any other offer, but you may have
both Deal #1 and Deal #2 items on the same order. This offer is also good on phone
orders placed in this period, but again you must indicate Deal #2 over the phone (or on
your order).

DEAL #3: FREE LSI Journal Issues. With any order totaling $50 or more (net amount
after discount), get the previous Volume 2 LSI Journal/LDOS Quarterly issues at no
charge. This includes Volume 2, numbers 1 through 4. Number 4 is in short supply, so if
we run out, you will get only numbers 1 through 3. Take advantage of this order quickly
if you need all four. Again, you must note this special offer on your order (or over
the phone). This offer is good until we run out of back issues.

DEAL #4: How about the full LDOS 5.1.4 operating system at 1/2 price? That's right,
FULL LDOS 5.1.4 for just $64.50. This special offer is available to CONVERTS from both
NEWDOS and DOSPLUS. Now is the time for all your friends to convert to the power of
LDOS. Here's how it works:

From February 1, 1984 until June 30, 1984, LSI will provide the complete LDOS 5.1.4
system for the price of $64.50, plus $5.00 shipping and handling, to anyone that trades
in their NEWDOS-80 or DOSPLUS 3.4/3.5/4 operating system. To take advantage of this
special, just send your original MASTER disk and MANUAL to LSI along with $69.50, and
we will rush a fresh LDOS 5.1.4 operating system right out. This offer is not good in
conjunction with any other offer. Don't forget to mark your order as Deal #4 or the
LDOS Trade-In offer. Oh, one more thing... I will even take our own LDOS 5.0 systems
in trade!

Page 5

DEAL #5: We have several extra Radio Shack Hard Disk systems. These are in good, used
condition, but are being sold on an as-is basis due to the fact that we do not have any
of the manuals or cables (other than the power cable). Because of this, we recommend
these to experienced users who already own a RS HD system. The price, you ask? Well,
these are a steal at $995 for a primary or $695 for a secondary, plus shipping and
handling. None of the above discounts apply, but we will throw in Deal #3.

All these "Deals" are good only directly from LSI, and not from any of our dealers.

In the future, LSI will again market software not created by LSI, hopefully by the
middle of 1984. When we do, these will be very carefully selected products that are
manufactured and supported by LSI, even though originally written outside. We will no
longer offer products that do not bear the LSI name.

We had originally planned a new catalog for January '84, but due to needed product line
changes, including the changes outlined above, we have decided to wait until June of
1984 to publish our new catalog. This will be sent to all registered LSI customers at
no charge. We think our new catalog will be well worth the wait. At that time we will
be implementing many new policies and pricing changes along with the revamped product
line. For the time being, (the first half of '84) all LSI prices and policies will
remain as stated in our current catalog.

Here's an interesting thought: "Beware of pre-release software". When a software
company sends out BETA test (the second test phase) copies of software, they sometimes
appear on the "Underground Software Exchange" overnight. Beware-- if anyone offers you
a test copy of a new or updated product, you may be getting a free time bomb. That
product is in BETA testing because the producing company is still in the process of
locating and correcting errors. I know of one incidence of a fellow that received a
clandestine copy of an update to a popular spread-sheet program. He was very excited
about this find because this was the product he used everyday in his business, and now
he had "THE HOT NEW VERSION". (Note: Apparently he never purchased the original version
in the first place.)

After about three days of playing with it, he had managed to destroy all of his
existing data files (several hundreds of hours of work). He called the company and they
very nicely told him to go to hell. He was not a legitimate owner of their product in
the first place, had no right to have the BETA product he obtained, and found out that
the product was expected to destroy his files. After all, it was a BETA TEST version
and not a released product. So beware, it may not be a good idea to be the first on
your block with a neat, new product, if that is before it is even released.

For those who are interested, the current version of the TRSDOS 6.x system for the
Model 4 and 4P is 06.01.01, and should be available from your local RS store. I think
its a freebie. They should also have the hard disk drivers and formatter for TRSDOS 6.X
(it is available off-the-shelf in the Midwest Computer Centers, anyway). The latest
version of LDOS for the Model 1, 3 and MAX-80 is 5.1.4 with file dates of 10/01/83.

The Model 2/12 version of TRSDOS 6.x is complete (and in final testing) as of this
writing. This will be known as LS-DOS 6.2.0 (or TRSDOS if purchased through Tandy). The
pricing and public availability of this product are still in question. If you are
interested in this product, please contact LSI in March of 1984 for complete and final
details. Whatever the final decisions may be, you WILL be able to purchase this product
in April of 1984.

This new product will allow for complete transportability of software between the
Models 4/4P and 2/12, along with any other machine that has 6.x implemented for it. A
bit of caution here--- you MUST have used ONLY the official information contained in
the Model 4 technical manual (26-2110) from Tandy, or information distributed by LSI

Page 6

when interfacing to the 6.x system to achieve this compatibility. Use of any other
source of information on the 6.x system will most likely result in current or future
incompatibilities. At this time, LSI and Tandy are the only official sources regarding
technical specification for the TRSDOS 6.x and LS-DOS 6.x systems.

New Product Announcements

Remember LED, the LDOS EDitor? This is the official LDOS 5.1 Text Editor, and is used
here at LSI for program source code maintenance, KSM file editing, and many other
editing needs. Well, LED has been vastly enhanced and is now one of the best full
screen editors available for your TRS-80 Model 4/4P (and in the future 2/12). LED is
available now for $99 plus $3 shipping and handling as LS-LED for the 6.X operating
system ONLY. We will NOT be doing a Model III version of this product (there just isn't
enough room). If you use your Model 4 for programming, you will love this powerful text
editor.

Note that LS-LED is not a word processor, but is a flexible, easy to use screen
oriented text editor. LS-LED is capable of doing most word processor type functions,
but there are no print formatting facilities, or indeed any printing capabilities (Of
course, the DOS library command LIST with the "print" parameter can be used for
hardcopy, if desired). Two major features that have been added to LS-LED are: writing a
marked block to disk, and the insertion of the contents of a disk file at the current
cursor position. With these two commands, the production and maintenance of subroutine
libraries and other forms of "boiler-plate" operations become a snap.

Of course, the original version of LED for LDOS 5.1 is still available for $29 plus $3
shipping and handling.

LSI is now shipping LS-Host/Term, a comprehensive communications utility for the 6.X
operating system. This package allows a Model 4 running under 6.x to emulate an ADDS-25
terminal, and provides for error-free file transfer between 6.x systems, or other
systems supporting the Modem7 protocol. The host system may be unattended during the
transfer. Speaking of hosting, the host capabilities of this package are very
sophisticated, and include password protection and remote cursor positioning using two
different protocols. LS-Host/Term is only $199 plus $3 shipping and handling.

FED, the most popular "zapping" program around for the LDOS system will be available
for the IBM (or any MS-DOS 2.x, PC compatible) machine in March or April of 1984. The
price will be $99, plus $3 shipping and handling. This is a very valuable tool for any
serious user of an MS-DOS machine.

LSI will also introduce the most versatile data handling and management system
available for the PC-DOS (and MS-DOS) world. This product will be announced in June of
1984, and more details will be available at that time.

LSI Ouick Hint #1

Question: How can I move a file from LDOS 5.1 or TRSDOS 6.x to TRSDOS 1.3?

Quite simple, actually. Here is the procedure: First, under LDOS 5.1 or TRSDOS 6.x,
format a five inch diskette as thirty-five track, one side, single-density. Now, copy
the desired file to this special diskette. You may now re-boot under TRSDOS 1.3, and
the TRSDOS 1.3 "CONVERT" utility will read this disk just as though it were a Model 1
TRSDOS 2.3 diskette.

Here's the catch-- some Model 4 computer systems have a newer type of controller board,
and will not format properly in single-density with LDOS 5.1.3 or before, or TRSDOS
6.0. This problem was "bypassed" in software, and these machines will format correctly
with LDOS 5.1.4 and TRSDOS 06.01.01.

Page 7

EZEDIT/FLT - a command line edit utility
by Graham M Brown, 20 Paddock Close, Castle Donnington, Derby DE7 2JW, England

How many times have you typed in a long command line from DOS, only to find that you
spelled a parameter incorrectly, and DOS asks you to do it all again? Well certainly I
have done it enough times, and it is a nuisance. So EZ-Edit was born. Imagine typing:

FILTER *PR PR(M=10,I=10,C=80,L*60,P=66,F,T)

There is an error in the "L" parameter. With EZ-Edit, just type in <SHIFT><CLEAR><O>
and your command comes back on the screen - position the flashing cursor over the
character in error, correct it, press <ENTER>, and bingo!

EZ-Edit is a keyboard filter which intercepts a <SHIFT><CLEAR><O> and allows you to
edit the previously entered command line. The left and right arrows move through the
line, and extend it if required. Any other key will overtype existing text. <ENTER>
will cancel editing, and process the command as shown. <SHIFT><CLEAR> will delete the
command from the cursor to the right, and then execute the remainder. <BREAK> will
return to DOS ready. In the above example, if the cursor was over the first open
bracket, pressing <SHFT><CLR> would result in the command FILTER *PR PR.

Just as KSM does not work properly with MINIDOS (see LDOS Quarterly, Jan '83), EZ-Edit
has a similar effect on the "R" command of MINIDOS. I have developed a similar patch
for MINIDOS when EZ-Edit is running. EZ-Edit will perform this alteration as a
temporary patch in memory when it loads. This program will, of course, work without
MINIDOS. EZ-Edit takes less than 256 bytes when relocated in high memory.

EZ-Edit requires KI/DVR to be present and active. This program should work under all
5.1 releases of LDOS, but has only been tested on 5.1.3 and 5.1.4. Originally, the
program was written to accept <clear><shift><E>, but this was changed to prevent a
conflict with KSMPLUS. If desired, the value on line 2340 may be changed to any other
valid character. The value (EF) is also underlined in this BINHEX listing.

0506 4544 4954 2020 0102 0052 D5DD E13A 2501 FE49 2048 2111 4422 A252 22AA 5221 2B44
2290 5222 E152 2125 4222 F253 228F 5422 9F54 22F6 5221 BE42 2298 5222 F052 2199 4222
A254 2189 4222 6252 218A 4222 1253 21D5 0022 7852 2120 0122 7F52 2115 40AF ED52 C217
5321 1C53 CD67 4421 1F44 CB66 CA0E 53CB 6E28 1E21 AC53 CD67 442A FA4D E511 D900 1936
12E1 1124 0119 EB21 0453 010A 00ED B0ED 5B16 403A 0F43 CB6F 2804 ED5B BE43 ED53 D953
01E1 002A 4940 5D54 AFED 4222 4940 23E5 ED53 CE53 1109 0019 2208 5422 1754 221B 54E1
E511 0A00 1922 0D54 2232 54E1 E511 0B00 1922 1154 2214 54D1 D521 CC53 EDB0 E1F3 3A0F
43CB 6F20 08DD 7501 DD74 0218 0322 BE43 FB06 3E21 1843 3E20 7723 10FC 3E0D 0102 0053
77C3 2D40 2110 00ED 7AF9 E1C9 0000 2175 53CD 7B44 C330 4021 8D53 18F5 455A 2D45 4449
5420 2D20 4C44 4F53 2063 6F6D 6D61 6E64 206C 696E 6520 6564 6974 6F72 2E20 5665 7273
696F 6E20 352E 310A 2863 2920 3139 3833 2062 7920 472E 4272 6F77 6E2E 2041 6C6C 2072
6967 6874 7320 7265 7365 7276 6564 0D0A 4B49 2F44 5652 206E 6F74 2069 6E73 7461 6C6C
6564 2021 0D0A 4669 6C74 6572 204F 4E4C 5920 7573 696E 6720 2A4B 4920 6465 7669 6365
210D 0A4D 494E 4944 4F53 2064 6574 6563 7465 6420 2D20 7061 7463 6869 6E67 2E2E 2E0D
180A 0000 0445 6469 7400 0000 CD00 00FE EFC0 E5D5 C5DD E5ED 5B20 407B E6C0 5FED 5320
40D5 D521 1843 7EFE 0D28 0623 CD33 0018 F53E 01AF 0054 0FCD 3300 D13E 5F32 D553 6F1A
32D6 53AD 32D7 5321 D753 3AD5 53AE 32D5 5312 0150 01D5 CD2B 00D1 B720 050B 78B1 20F3
28E3 F53A D653 12F1 FE08 2823 FE09 2815 FE0D 2835 FE1F 2821 FE01 285A FE20 38B7 FE80
30B3 127B E63F FE3F 3001 1318 A87B E63F FE01 3801 1B18 9E3E 1ED5 ED53 2040 CD33 003E
0FCD 3300 D17B F63F 5F1A 1BFE 2028 FA13 13ED 5320 407B E63F 4F06 00E1 1118 43ED B03E
0D12 CD33 00DD E1C1 D1E1 2118 43C3 0544 E1DD E1C1 D1E1 C32D 4002 0200 52

00100 TITLE '<EZEDIT/FLT by: G M Brown>'
00110 ;*=*=*
00120 ;Some code alteration is necessary in MINIDOS/FLT for
00130 ;the "R" command to function properly. So EZ-Edit
00140 ;should be installed AFTER MINIDOS. Should MINIDOS be
00150 ;installed after EZ-Edit, then the "R" command is not
00160 ;guaranteed to work at all.
00200 @KBD EQU 002BH

Page 8

00210 @DSP EQU 0033H
00220 KIDVR EQU 4016H
00230 CURSOR EQU 4020H
00240 @EXIT EQU 402DH
00250 @ABORT EQU 4030H
00260 HIGH1$ EQU 4049H
00270 HIGH3$ EQU 4411H
00280 SFLAG1$ EQU 430FH
00290 SFLAG3$ EQU 442BH
00300 INBUF1$ EQU 4318H
00310 INBUF3$ EQU 4225H
00320 KIJCL1$ EQU 43BEH
00330 KIJCL3$ EQU 42BEH
00340 @CMNDI1 EQU 4405H
00350 @CMNDI3 EQU 4299H
00360 DFLAG1$ EQU 441FH
00370 DFLAG3$ EQU 4289H
00380 @DSPLY EQU 4467H
00390 @LOGOT1 EQU 447BH
00400 @LOGOT3 EQU 428AH
00420 ;The first part of the coding loads an initial message
00430 ;checks that *KI has been referenced, and for KI/DVR
00440 ;and MINIDOS being active.
00460 ORG 5200H ;A good place to start
00470 PUSH DE ;Put *KI DCB into
00480 POP IX ;IX register for later
00500 ; This section of code corrects all model specific
00510 ; references in the code.
00530 LD A,(0125H)
00540 CP 'I' ;it's a 3 if true
00550 JR NZ,CONT ;go if Mod 1
00560 LD HL,HIGH3$
00570 LD (M1),HL
00580 LD (M2),HL
00590 LD HL,SFLAG3$
00500 LD (M3),HL
00610 LD (M4),HL
00620 LD HL,INBUF3$
00630 LD (M5),HL
00640 LD (M6),HL
00650 LD (M7),HL
00660 LD (M15),HL
00670 LD HL,KIJCL3$
00680 LD (M8),HL
00690 LD (M9),HL
00600 LD HL,@CMNDI3
00710 LD (M10),HL
00720 LD HL,DFLAG3$
00730 LD (M11),HL
00740 LD HL,@LOGOT3
00750 LD (M12),HL
00760 LD HL,00D5H
00770 LD (M13),HL
00780 LD HL,0120H
00790 LD (M14),HL
00800 CONT LD HL,4015H ;See if *KI specified
00810 XOR A ;in the filter command
00820 SBC HL,DE
00830 JP NZ,WRONGDV ;error if not.
00840 LD HL,LOGMSG ;Point to message....
00850 CALL @DSPLY ;..and print it.
00860 LD HL,DFLAG1$;System flag area
00870 M11 EQU $-2

Page 9

00880 BIT 4,(HL) ;Test for KI/DVR, and
00890 JP Z,KINOTON ;error if NOT set
00900 BIT 5,(HL) ;Test for MINIDOS, and
00910 JR Z,MDISOFF ;bypass zapping if NOT there.
00930 ;If MINIDOS active, then it has to be zapped, otherwise
00940 ;this bit is skipped over.
00960 LD HL,ZAPMSG ;Point to message....
00970 CALL @DSPLY ;...and display it.
00980 LD HL,(4DFAH) ;Get MINIDOS address
00990 PUSH HL ;and save
01000 LD DE,00D9H ;Offset for zap
01010 M13 EQU $-2
01020 ADD HL,DE ;get actual address, and
01030 LD (HL),12H ;zap MINIDOS
01040 POP HL ;restore start address
01050 LD DE,0124H ;for next offset
01060 M14 EQU $-2
01070 ADD HL,DE ;get actual address, and
01080 EX DE,HL ;put in DE register pair
01090 LD HL,TABLE ;Point to zap table
01100 LD BC,0AH ;10 bytes to zap, so..
01110 LDIR ;...do it
01130 ;The next part of the code intercepts the *KI driver
01140 ;address, and stores EZ-Edit's start there. The old
01150 ;contents are loaded into EZ-Edit for continuation.
01170 ;High memory is also altered.
01190 ;EZ-Edit does not bother to indicate to the system (or
01200 ;other programs) that it has loaded. Indeed, by finding
01210 ;the proper header, it would be possible to get EZ-Edit
01220 ;to locate itself at the same address after a *KI reset.
01230 ;This has been left for you to do if you require.
01250 MDISOFF LD DE,(KIDVR) ;Get *KI driver address
01260 LD A,(SFLAG1$) ;See if JCL is
01270 M3 EQU $-2
01280 BIT 5,A ;active at present
01290 JR Z,NO_DO ;skip if not, else
01300 LD DE,(KIJCL1$) ;change DE to KIJCL$
01310 M8 EQU $-2
01320 NO_DO LD (VECTAD),DE ;Store in EZ-Edit
01330 LD BC,LAST-START ;Get length of filter
01340 LD HL,(HIGH1$) ;HL = Present High Memory
01350 M1 EQU $-2
01360 LD E,L ;Put into register
01370 LD D,H ;pair DE
01380 XOR A ;Clear the carry
01390 SBC HL,BC ;get new High memory,
01400 LD (HIGH1$),HL ;and set it.
01410 M2 EQU $-2
01420 INC HL ;Point to EZ-Edit start
01430 PUSH HL ;and save it
01440 LD (OLDHI),DE ;Put old HIGH$ in filter
01450 PAGE OFF
01480 ;Relocate calls and jumps in the filter
01490 ;Restore *KI DCB driver address, and relocate
01500 ;EZ-Edit to below HIGH$
01520 LD DE,ONOFF-START ;Get offset
01530 ADD HL,DE ;add to new start
01540 LD (MODIFY2),HL ;and modify
01550 LD (MODIFY6),HL
01560 LD (MODIFY7),HL
01570 POP HL ;recover start
01580 PUSH HL ;and keep going
01590 LD DE,CONTENT-START

Page 10

01600 ADD HL,DE
01610 LD (MODIFY3),HL
01620 LD (MODIFY8),HL
01630 POP HL
01640 PUSH HL
01650 LD DE,XORVAL-START
01660 ADD HL,DE
01670 LD (MODIFY4),HL
01680 LD (MODIFY5),HL
01690 POP DE ;DE = Start of EZ-Edit
01700 PUSH DE ;save it. DE = To
01710 LD HL,START ;and HL = From
01720 LDIR ;BC = Count, so move it.!
01730 POP HL ;recover EZ-Edit's start
01740 DI ;Don't interrupt a minute
01750 LD A,(SFLAG1$) ;Test for JCL again
01760 M4 EQU $-2
01770 BIT 5,A
01780 JR NZ,DO_ON ;Skip if ACTIVE, else
01790 LD (IX+01H),L ;Load KIDCB with address
01800 LD (IX+02H),H ;of EZ-Edit
01810 JR OUT
01820 DO_ON LD (KIJCL1$),HL ;JCL, so load KIJCL$
01830 M9 EQU $-2
01840 OUT EI ;Interrupts on, and
01850 LD B,62 ;how many spaces
01860 LD HL,INBUF1$;point to inbuf$
01870 M15 EQU $-2
01880 LD A,20H ;space
01890 HERE LD (HL),A ;store it
01900 INC HL ;point to next
01910 DJNZ HERE ;go until done
01920 LD A,0DH ;CR
01930 LD (HL),A ;put at end of buffer
01940 JP @EXIT ; now back to DOS
01960 ;Table of zaps for MINIDOS zapping routine
01980 TABLE DB 21H,10H,00H,0EDH,7AH,0F9H,0E1H,0C9H,00H,00H
02000 ;Error if KI/DVR not established
02020 KINOTON LD HL,KIOFFMS ;Point to message
02030 GO_OUT CALL @LOGOT1 ;LOG and DISPLAY
02040 M12 EQU $-2
02050 JP @ABORT ;Abnormal exit to DOS
02070 ;Error if *KI not referenced
02090 WRONGDV LD HL,NOTKIMS ;Point to message
02100 JR GO_OUT ;Log, display, and DOS
02120 ; Messages
02140 LOGMSG DB 'EZ-EDIT - LDOS command line editor. Version 5.1',0AH,'(c) 1983
by G.Brown. All rights reserved',0DH
02150 KIOFFMS DB 0AH,'KI/DVR not installed !',0DH
02160 NOTKIMS DB 0AH, 'Filter ONLY using *KI device! ',0DH
02170 ZAPMSG DB 0AH,'MINIDOS detected - patching...',0DH
02190 ;EZ-Edit : The actual relocated filter
02200 ;The filter conforms to the LDOS standard header.
02230 START JR BEGIN
02240 OLDHI DW 0000H
02250 DB 4,'Edit'
02270 ;Local storage area
02290 ONOFF DB 00H ;Flash character store
02300 CONTENT DB 00H ;The contents of DE before flash
02310 XORVAL DB 00H ;The XOR character for the flash
02320 BEGIN CALL 0000H ;Call to KI/DVR, and MINIDOS
02330 VECTAD EQU $-2
02340 CP 0EFH ;See if SHIFT+CLEAR+O

Page 11

02350 RET NZ ;Ret if not
02370 ;Got a SHIFT+CLEAR+O here
02390 PUSH HL ;Save what we use
02400 PUSH DE
02410 PUSH BC
02420 PUSH IX
02430 LD DE,(CURSOR) ;Get the cursor location
02440 LD A,E ;and make sure that
02450 AND 0C0H ;its at the far left of
02460 LD E,A ;the screen.
02470 LD (CURSOR),DE
02480 PUSH DE ;Save the address of the
02490 PUSH DE ;line - TWICE
02510;Get the last command from INBUF$, and put on screen
02520;Turn the cursor off afterwards.
02540 LD HL,INBUF1$;Point to input buffer
02550 M5 EQU $-2
02560 GETLOOP LD A,(HL) ;and get all characters
02570 CP 0DH ;up to but NOT including
02580 JR Z,GOT_CR ;a CR, and put on the
02590 INC HL ;screen
02600 CALL @DSP
02610 JR GETLOOP
02620 GOT_CR LD A,0FH ;Cursor OFF now
02630 CALL @DSP
02640 POP DE ;Restore line address
02650 PAGE OFF
02670 ;Scan for an input, and flash the character with the
02680 ;cursor (CHR$(95)). Allowable inputs are:
02690 ;LEFT ARROW - backspace without erase
02700 ;RIGHT ARROW - cursor right without erase
02710 ;SHIFT+CLEAR - erase all from cursor to the right and
02720 ; process the command to the left.
02730 ;ENTER - process the line as is. Characters to the
02740 ; left and right of the cursor make up the
02750 ; command
02760 ;BREAK - Back to DOS
02780 FLASH LD A,5FH ;Cursor character
02790 LD (ONOFF),A ;store it
02800 MODIFY2 EQU $-2
02810 LD L,A ;and save in L
02820 LD A,(DE) ;Get character in DE
02830 LD (CONTENT),A ;and save for later
02840 MODIFY3 EQU $-2
02850 XOR L ;XOR to get flash value
02860 LD (XORVAL),A ;and save it.
02870 MODIFY4 EQU $-2
02890 TEXTLP LD HL,XORVAL ;Point to store area
02900 MODIFYS EQU $-2
02910 LD A,(ONOFF) ;Get one character
02920 MODIFY6 EQU $-2
02930 XOR (HL) ;XOR
02940 LD (ONOFF),A ;save back for flash
02950 MODIFY7 EQU $-2
02960 LD (DE),A ;and put on screen
02970 LD BC,150H ;Timer for scanning
02980 LOOP PUSH DE ;save DE
02990 CALL @KBD ;and look at the keyboard
03000 POP DE ;get DE again
03010 OR A ;Any input ???
03020 JR NZ,INPUT ;Jump if so, else....
03030 DEC BC ;see if BC = 0
03040 LD A,B

Page 12

03050 OR C
03060 JR NZ,LOOP ;Loop if not, else...
03070 INPUT JR Z,TEXTLP ;no input = back to flash
03080 PUSH AF ;save input
03090 LD A, (CONTENT) ;restore contents to
03100 MODIFY8 EQU $-2 ;original character
03110 LD (DE),A
03120 POP AF ;recover input, and
03130 CP 08H ;is it LEFT ARROW ??
03140 JR Z,LARROW
03150 CP 09H ;RIGHT ARROW ??
03160 JR Z,RARROW
03170 CP 0DH ;ENTER ??
03180 JR Z,ENTPRES
03190 CP 1FH ;SHIFT+CLEAR ??
03200 JR Z,CLEARPR
03210 CP 01H ;BREAK ??
03220 JR Z, BREAK
03230 CP 20H ;Is it ASCII 2$H-7FH
03240 JR C,FLASH
03250 CP 80H
03260 JR NC,FLASH
03270 LD (DE),A ;if so, then put on
03280 RARROW LD A,E ;the screen. Test for
03290 AND 3FH ;extreme right, else
03300 CP 3FH ;increment DE (type to
03310 JR NC,NOADD ;the right).
03320 INC DE
03330 NOADD JR FLASH ;Back for next input.
03350 ;Deal with the input. Editing allowed on one line only.
03370 LARROW LD A,E ;Test for column 1
03380 AND 3FH ;If less, then cannot
03390 CP 1 ;move further left.
03400 JR C,NODEC
03410 DEC DE ;else DECrement
03420 NODEC JR FLASH
03430 CLEARPR LD A,1EH ;Erase to end of line
03440 PUSH DE ;Save DE for a moment
03450 LD (4020H),DE ;tell the cursor where,
03460 CALL @DSP ;and clear the line.
03470 LD A,0FH ;Cursor OFF
03480 CALL @DSP
03490 POP DE ;and restore DE
03510 ;How long is the command ?? - go to right of line, and
03520 ;find first non blank character on the left.
03540 ENTPRES LD A,E ;Point DE to end of
03550 OR 3FH ;the line
03560 LD E,A
03570 BKLOOP LD A,(DE) ;and look back....
03580 DEC DE
03590 CP 20H
03600 JR Z,BKLOOP
03610 INC DE
03620 INC DE ;DE = space after command
03630 LD (CURSOR),DE ;load the cursor
03650 ;Move the new command into INBUF$, and execute via
03660 ;@CMNDI address.
03680 LD A,E ;Get column number into A
03690 AND 3FH
03700 LD C,A ;Load length of the
03710 LD B,0 ;command into BC
03720 POP HL ;Point HL to line start
03730 LD DE,INBUF1$;DE = Destination

Page 13

03740 M6 EQU $-2
03750 LDIR ;Move the command
03760 LD A,0DH ;finish off with a CR
03770 LD (DE),A ;in the buffer, and....
03780 CALL @DSP ;on the screen.
03790 POP IX ;Restore original
03800 POP BC ;register values
03810 POP DE
03820 POP HL
03830 LD HL,INBUF1$;Point to new command
03840 M7 EQU $-2
03850 JP @CMNDI1 ;and execute it.
03860 M10 EQU $-2
03870 BREAK POP HL ;Keep the stack tidy
03880 POP IX
03890 POP BC
03900 POP DE
03910 POP HL
03920 JP @EXIT ;and exit to DOS
03930 LAST EQU $
03940 END 5200H

Mr. Brown also sent us the following program to alter PR/FLT parameters "on the fly".
Unfortunately, we don't have room to run the source code. If you desire a hardcopy of
the source, send us a request along with a self-addressed, stamped envelope (large,
with 37 cents postage)

Although PR/FLT as supplied with LDOS is a very fine general purpose printer filter, I
have found it somewhat restricting in that there is no facility for changing any of the
parameters once set. In fact, should you wish to change the margin, it would be
necessary first to issue a RESET *PR, followed by re-filtering PR/FLT with your new
parameter values in the command line (as normal). This is all very well, but if you had
your printer output routed, or indeed had other printer filters installed, the RESET
would ruin everything. Certainly from my point of view, I needed a program that would
find where PR/FLT was in memory and then change any of the parameters that I wanted.

The program is called from DOS ready by entering the command:
PRPARM (parm,parm,parm,...)

where parameters are nearly the same as for PR/FLT:

MARGIN number of spaces for the left margin
INDENT -:- -:- indent on line wrap
CHARS number of characters per line
LINES number of printed lines per page required
PAGE page length in lines (at 6 lines per inch)
XLATE use the format XLATE=X'aabb' (see the PR/FLT documentation)
FF issue a form feed

Abbr: MARGIN=M,INDENT=I,CHARS=C,LINES=L,PAGE=P,XLATE=X

Example: PRPARM (M=30,C=50,FF)

Run PRPARM and reset the left margin to 30 and only print 50 characters on each line.
Issue a form feed character to the *PR device as well.

A typical display would be:

PRPARM - parameter modifier for PRIFLT. Version 5.1.3
Copyright (c) 1983 by Graham M Brown.

Page 14

The current PR/FLT parameters are
MARGIN = 010 spaces
INDENT = 036 spaces
CHARS = 082 characters per line (0 = no count made.)
PAGE LENGTH = 066 lines
LINES/PAGE = 066 lines
000 (dec) is being translated to 000 (dec).

By typing in PRPARM only, the current parameters as stored in PR/FLT are displayed and
no alterations are done. A check is made for LDOS 5.1.x and also that PR/FLT is in fact
installed. The program is written for the Model 1 and 3. Here is the BINHEX code:

0506 5052 5041 524D 0102 0052 E521 6353 CD67 443A 2501 FE49 2031 211F 4422 4052 2189
4222 4852 2154 4422 6C52 3E01 32C8 5221 8A42 225E 533A FF52 3D32 FF52 32B7 523A 0853
3D32 0853 32BA 523A 3E40 FE51 C256 5321 1F44 CB5E CA5A 53FD 2AF6 4DE1 7EFE 0D28 07FE
2020 0B23 18F4 3E0D 3207 55C3 CC52 116B 55CD 7644 C252 53DD 2125 4021 FFFF CD1E 5328
03FD 7717 21FF FFCD 1E53 2803 FD77 1921 FFFF CD1E 5328 03FD 771A 21FF FFCD 1E53 2803
DD77 0521 FFFF CD1E 5328 03DD 7703 21FF FF23 7CB5 2807 2BFD 746D FD75 7121 0000 7CB5
289E 3E0C CD3B 003E 00DD 7704 2600 FD6E 1711 A554 CD2F 53FD 6E19 11BE 54CD 2F53 FD6E
1A11 8C54 CD2F 533A 2840 6F11 FE54 CD2F 533A 2A40 6F11 3055 CD2F 53FD 6E6D 0102 0053
113F 55CD 2F53 FD6E 7111 6055 CD2F 5321 5854 CD67 4421 1D55 CD67 44C3 2D40 2324 2520
2E7C B5C8 287D C964 000A 0001 00DD 2129 53AF DD46 01DD 4E00 B7ED 4238 033C 18F9 09C6
3012 1379 FE01 C8DD 23DD 2318 E2E1 2107 54DD 21C9 53DD 21E7 53CD 7B44 C330 400A 5052
5041 524D 202D 2070 6172 616D 6574 6572 206D 6F64 6966 6965 7220 666F 7220 5052 2F46
4C54 2E20 5665 7273 696F 6E20 352E 312E 330A 8383 8383 8383 2020 2043 6F70 7972 6967
6874 2028 6329 2031 3938 3320 6279 2047 7261 6861 6D20 4D20 4272 6F77 6E2E 0D0A 0A50
6C65 6173 6520 7573 6520 4C44 4F53 2035 2E31 2E33 206F 6E6C 792E 0D0A 0A50 522F 464C
5420 6973 206E 6F74 2079 6574 2069 6E73 7461 0102 0054 6C6C 6564 2021 0D0A 0A50 6172
616D 6574 6572 2065 7272 6F72 202D 2074 7279 2061 6761 696E 2021 0A41 6C6C 6F77 6162
6C65 2070 6172 616D 6574 6572 7320 6172 653A 204D 2C49 2C43 2C4C 2C50 2C46 462C 616E
6420 584C 4154 450D 0A54 6865 2063 7572 7265 6E74 2050 522F 464C 5420 7061 7261 6D65
7465 7273 2061 7265 203A 0A0A 2020 2020 204D 4152 4749 4E20 3D20 5858 5820 7370 6163
6573 0A20 2020 2020 494E 4445 4E54 203D 2058 5858 2073 7061 6365 730A 2020 2020 2043
4841 5253 2020 3D20 5858 5820 6368 6172 6163 7465 7273 2070 6572 206C 696E 6520 2830
203D 206E 6F20 636F 756E 7420 6D61 6465 2E29 0A20 2020 2020 5041 4745 204C 454E 4754
4820 3D20 5858 01D6 0055 5820 6C69 6E65 7320 2D20 544F 4620 6861 7320 6265 656E 2072
6573 6574 0D20 2020 2020 4C49 4E45 532F 5041 4745 2020 3D20 5858 5820 6C69 6E65 730A
2020 2020 2058 5858 2028 6465 6329 2069 7320 6265 696E 6720 7472 616E 736C 6174 6564
2074 6F20 5858 5820 2864 6563 292E 0D4D 2020 2020 208C 524D 4152 4749 4E8C 5243 4841
5253 2081 5243 2020 2020 2081 5249 4E44 454E 5476 5249 2020 2020 2076 524C 494E 4553
2097 524C 2020 2020 2097 5250 4147 4520 20A2 5250 2020 2020 20A2 5246 4620 2020 20BC
5258 4C41 5445 20AD 5258 2020 2020 20AD 5200 0202 0052

SYNONYM -- The LDOS Command Line Synonym Processor
By Henry Melton, 2511 Dovemeadow Drive, Austin, TX 78744

The world of the professional programmer can get positively confusing at times. In the
course of a single business day, I am required to deal with a half-dozen or so
different operating systems, some quite modern and some positively ancient. And then I
come home to work with my LDOS system . . . Not only do I have to constantly adjust to
differing keyboards and screen formats, but more significantly, I have to remember
which operating system command does what. Just to get a listing of files, my fingers
might type LIST, DIR, FILES, CAT, LISTC, or L. Some of the newer systems are helping us
poor users by allowing command synonyms to be used, so that more than one reserved word
might be used for the same function. I decided to add that same capability to my LDOS.

The SYNONYM utility is an addition to the error trapping system of LDOS that allows for
extended flexibility in operator actions for Model I and Model III TRS-80 systems
running under LDOS 5.1. SYNONYM locates itself into high memory following the standard
LDOS convention and is SYSGENable. Once loaded, it intercepts any PROGRAM NOT FOUND
errors generated from keyboard or JCL command line inputs. Once the error is detected,
a special text file SYNONYM/TXT is read and the match-and-substitute record lines in it

Page 15

are used to determine if the rejected command line has a valid substitute. If so, the
reconstructed command line is placed in the command buffer and re-executed.

The result of SYNONYM processing is to add another level to the two existing levels of
command interpretation. Under LDOS, the first word of a command line is first checked
for an LDOS reserved word. If none of the reserved words match, then the word is
treated as the name of a command file to be executed. With SYNONYM, if the first two
levels fail, this third possibility for command information exists.

Like the JCL language, much of the utility of SYNONYM is up to the imagination of the
user. The synonym library file can be created and modified with any word-processor that
will produce a plain, un-numbered file of text lines.

Each record line in the file contains three items of information:

The first character of each line is a single numeric digit in the range of 1 through 9.
This is the minimum number of characters that must be the same to indicate a match.

The second item is a word that is allowed as a valid synonym.

The third item is the remaining text on the line. This is the text that will replace
the rejected command line. The special character '&' may be used to represent the text
of the original command line after the first word.

Here are some examples:

Command line SYNONYM record Resulting Command line

fi /vc 2 files dir & dir /vc
f 1 free free & free
calc 365/12 4 calc lbasic ?&:cmd"S" lbasic ?365/12:cmd"S"
c01 syn/mac 3 c$1 copy &:$:1 copy syn/mac:0 :1
d0 2 d$ dir &:$ dir :0
d1 sample 2 dl dir &:1 dir sample:1
bk work 2 bk copy & bk&:3 copy work bkwork:3
a syn 3 asm do it(@asm,name=&) do it(@asm,name=syn)
ban 3 banner lbasic run "banner" lbasic run"banner"

If there is no acceptable synonym, then the PROGRAM NOT FOUND error is displayed
normally. If the resulting synonym command is itself invalid, the whole process repeats
using the new command line as input.

Synonyms can be used within JCLs and synonyms may call JCLs. In fact, using a DO
command line as a synonym may easily be the most powerful use of this utility. My
personal JCL file (IT/JCL) is quite large, but remembering all the parameters and
syntax considerations has been my main trouble. When I want to invoke a function of the
system, I really don't want to puzzle over whether I am invoking a system function, a
/CMD program, a LBASIC program or a JCL -- I want type the word and have it done.
SYNONYM makes this a reality.

Another use of synonym is to execute one-liners from LBASIC. See CALC and REVTOF in the
sample SYNONYM file to see what I mean. LBASIC is powerful. The ability to use its
power at LDOS Ready is very handy at times. The limitations on this use is that the
function has to fit within LBASIC and :CMD"S, leaving only 50 characters to get the job
done. Anything longer has to route through a JCL or use a real /BAS program file. To
keep screen clutter to a minimum, I patched LBASIC on my Model I system to eliminate
the sign-on banner when LBASIC is executed.

. Patch to remove the execution banner from LBASIC - Model 1
X'541E'=00 00 00 00 00 00

. Patch for Model 3
X'5446'=00 00 00 00 00 00

Page 16

Sample SYNONYM/TXT file -- Total line length should not exceed 80 characters. The
resulting command line should not exceed 63 characters.

2 dirt dir &
2 files dir &
1 asm do it(@asm,name=&)
2 debug debug (e
3 out debug (n
3 off system (drive=3,disable)
3 onn system (drive=3,enable)
1 v dir /vc
1 d dir /aaa
1 bye do it(@back)
1 free free &
2 d1 dir :1 &
2 d0 dir :0 &
3 device device
2 looker lbasic run"looker
3 c01 copy &:0 :1
3 c03 copy &:0 :3
1 hex list & (H,LRL=256)
3 nosynonym memory (add=x'400d',word=X'4bcd')
5 synoff nos
2 peek memory (add=x'&')
3 zap purge & (S,I,Q=N)
4 hide attrib & (inv)
3 unhide attrib & (vis)
4 calc lbasic ?&:cmd"S"
3 tof lbasic lprint chr$(12);:cmd"s"
6 revtof lbasic for i=0 to 65:lprint chr$(27)+chr$(13);:next i:cmd"S
3 jmp memory (go=X'&')
3 cls jmp 1C9
3 erase kill &
3 delete kill &
2 type list &
3 catalog dir &
4 page tof
3 num list & (num,A8
3 tab list & (num,tab,A8
3 slow filter *do dospeed
4 fast reset *do
3 b01 backup &:0 :1
3 b03 backup &:0 :3
5 name0 attrib :0 (name="&")
5 name1 attrib :1 (name="&")
7 format1 format :1 (name="&",dden,abs,mpw="PASSWORO")
4 sys1 system (system=1)
6 sysgen system (sysgen)
8 clonesys do it(@clonesys)

Here is the BINHEX code for SYNONYM. If you wish the "processed" DOS command to be
displayed on execution, replace the 0000 00 with CD67 44.

0506 5359 4E4F 4E59 0102 0052 21AD 52CD 6744 3A2D 40FE C320 0921 FC52 CD67 44C3 2D40
3A25 01FE 4920 2F21 1144 2251 5222 7952 2285 5221 1D42 2294 5222 A252 2322 9A52 22A8
5221 2542 229E 5322 7B54 2B22 F953 2199 4222 A453 DD21 2E53 2A49 4022 5C53 1156 56B7
ED52 444D 3E16 DD6E 00DD 6601 235E 2356 EB09 EB72 2B73 DD23 DD23 3D20 E9ED 5B49 4021
5656 01FD 02ED B8ED 5349 402A 0D40 226B 5321 6453 220D 403A 0343 3292 542A 0443 2293
543E C332 0343 218C 5422 0443 C32D 4053 594E 4F4E 594D 202D 2D20 4C44 4F53 2063 6F6D
6D61 6E64 206C 696E 6520 7379 6E6F 6E79 6D20 7072 6F63 6573 736F 7220 0A43 6F70 7972
6967 6874 6564 2031 3938 332C 2048 656E 7279 204D 656C 746F 6E0D 4F6E 6C79 0102 0053
2076 616C 6964 2061 7420 4C44 4F53 2052 6561 6479 202D 2069 6E73 7461 6C6C 6174 696F

Page 17

Page 16

6E20 6162 6F72 7465 6421 0A0D 8D52 8A52 8C54 9652 E053 9C52 A452 8553 8A53 8F53 9653
9953 A653 A953 AC53 B553 B853 CD53 D053 EB53 2954 7754 1808 0000 0553 594E 4F4E F5FE
8628 04F1 C300 0033 3333 33F1 FE5F 2809 F53E 863B 3B3B 3B18 EA3B 3B3B 3B3B 3BCD A653
20DF CDCD 5320 DACD EB53 2802 18F4 CD25 54CD 7754 F121 1843 0000 00C3 0544 CDB5 5321
C754 1195 5406 00CD 2444 C921 C153 1195 5401 0C00 EDB0 C953 594E 4F4E 594D 2F54 5854
0D21 0756 1195 54CD 1300 C077 FE0D C8FE 2038 F1E5 1157 56ED 52E1 28E8 2318 E521 0756
7ED6 3047 237E FE20 28FA 1117 4313 1AFE 2028 0197 0054 FA1A AEE6 DFC0 2313 10F7 1AFE
0DC8 FE20 C87E FE20 280D FE0D 2809 1AAE E6DF C023 1318 E7B7 C9DD E5D5 E521 C755 D11A
FE20 2803 1318 F813 1AFE 2028 FA77 FE0D 2833 FE26 2805 2313 1A18 F2DD E1DD E5DD 7E00
FE20 2806 381A DD23 18F3 DD23 DD7E 00FE 2038 0D28 F577 23DD 23DD 7E00 FE20 30F5 2B18
D1D1 DDE1 C921 C755 1118 4306 3F7E 12FE 20D8 2313 10F7 3E0D 12C9 2164 5322 0D40 C900
0001 0557 5648 4A4D 0202 0052

00110 ; SYNONYM -- Command line synonym processor for LDOS
00120 ; Copyright 1983 by Henry Melton
00140 ; The synonym processor resides in high memory and is linked into the error
00150 ; reporting chain. When the error code 95 appears, indicating that a Program not
00160 ; found error is to be flagged, SYNONYM reads the command buffer and uses the
00170 ; first word of the contents as a substitution key for an acceptable alternate
00180 ; command string. A file with the name SYNONYM/TXT is needed that contains the
00190 ; substitution data.
00460 ; Synonym records are searched sequentially til either a match or EOF occurs. If
00470 ; the new command line fails, then the processor tries again with this new
00480 ; input. When & substitution occurs, there is the possibility of the resulting
00490 ; command line exceeding the 64 character command buffer. If so, the line will
00500 ; be truncated to 64 characters.
00530 ECHO EQU 1 ;Display the generated command = 1
00550 @DSPLY EQU 4467H
00560 @EXIT EQU 402DH
00570 @GET EQU 0013H
00580 @OPEN EQU 4424H
00590 ; Model 1 Equates
00600 HIGH1$ EQU 4049H
00610 INBUF1$ EQU 4318H
00620 @ICNFG1 EQU 4303H
00630 @CMNDI1 EQU 4405H
00640 ; Model 3 Equates
00650 HIGH3$ EQU 4411H
00660 INBUF3$ EQU 4225H
00670 @ICNFG3 EQU 421DH
00680 @CMNDI3 EQU 4299H
00690 ;
00700 ORG 5200H
00710 START:: LD HL,BANNER ;Display the program name and copyright
00720 CALL @DSPLY
00730 LD A,(@EXIT)
00740 CP 0C3H ;is it a 'jump'?
00750 JR NZ,OKGO ;if so, we aren't at LDOS Ready
00760 LD HL,ABORTMS ;and can't install/modify the system
00770 CALL @DSPLY
00780 JP @EXIT
00790 OKGO: LD A,(0125H) ;pick up type of machine flag
00800 CP 'I' ;will be "I" if Model 3
00810 JR NZ,MOD1 ;continue if Mod 1
00820 LD HL,HIGH3$;Pick up Mod 3 locations and
00830 LD (MODCH1),HL ;adjust all references
00840 LD (MODCH2),HL
00850 LD (MODCH3),HL
00860 LD HL,@ICNFG3

Page 18

00870 LD (MODCH4),HL
00880 LD (MODCH6),HL
00890 INC HL
00900 LD (MODCH5),HL
00910 LD (MODCH7),HL
00920 LD HL,INBUF3$
00930 LD (MODCH8),HL
00940 LD (MODCH11),HL
00950 DEC HL
00960 LD (MODCH10),HL
00970 LD HL,@CMNDI3
00980 LD (MODCH9),HL
01000 ; all Mod 1/3 conversion is done, let's get on with the good stuff...
01020 MOD1: LD IX,RELOTB ;Using the relocation table and the
01030 LD HL,(HIGH1$) ;High Memory location, patch the
01040 MODCH1 EQU $-2
01050 LD (STORE),HL ;load module for operation in high
01060 LD DE,LAST-1 ;memory.
01070 OR A
01080 SBC HL,OE
01090 LD B,H
01100 LD C,L
01110 LD A,ENTRYS
01120 PTLOOP: LD L,(IX+00H)
01130 LD H,(IX+01H)
01140 INC HL
01150 LD E,(HL)
01160 INC HL
01170 LD D,(HL)
01180 EX DE,HL
01190 ADD HL,BC
01200 EX DE,HL
01210 LD (HL),D
01220 DEC HL
01230 LD (HL),E
01240 INC IX
01250 INC IX
01260 DEC A
01270 JR NZ,PTLOOP
01290 LD DE,(HIGH1$) ;Move the module to its high memory
01300 MODCH2 EQU $-2
01310 LD HL,LAST-1 ;location
01320 LD BC,LAST-FIRST
01330 LDDR
01350 LD (HIGH1$),DE ;Put the new HIGH$ value in storage
01360 MODCH3 EQU $-2
01370 LD HL,(400DH)
01380 REL0: LD (VECTOR),HL ; Plug the primary RST 40
01390 REL1: LD HL,BEGIN ; vector with the SYN processor
01400 LD (400DH),HL ; address.
01410 LD A,(@ICNFG1) ; Do the same for the CONFIG
01420 MODCH4 EQU $-2
01430 RELX: LD (CMD),A ; initialization chain so the
01440 LD HL,(@ICNFG1+1) ; SYN processor can be SYSGENed
01450 MODCH5 EQU $-2
01460 RELY: LD (ADDRES),HL
01470 LD A,0C3H
01480 LD (@ICNFG1),A
01490 MODCH6 EQU $-2
01500 RELZ: LD HL,INIT
01510 LD (@ICNFG1+1),HL
01520 MODCH7 EQU $-2
01530 JP @EXIT ;end of the loading operation

Page 19

01540 BANNER: DEFM 'SYNONYM -- LDOS command line synonym processor '
01550 DEFB 0AH
01560 DEFM 'Copyrighted 1983, Henry Melton'
01570 DEFB 0DH
01580 ABORTMS: DEFM 'Only valid at LDOS Ready - installation aborted!'
01590 DEFB 0AH
01600 DEFB 0DH
01620 RELOTB: DEFW REL1 ;Table of addresses to relocate to HIGH$
01630 DEFW REL0
01640 DEFW INIT
01650 DEFW RELX
01660 DEFW RELXX
01670 DEFW RELY
01680 DEFW RELZ
01690 DEFW INTERCPT
01700 DEFW LOOP1
01710 DEFW REL2
01720 DEFW PROCESS
01730 DEFW REL3
01740 DEFW OPENSYN
01750 DEFW REL4
01760 DEFW REL5
01770 DEFW LOADFCB
01780 DEFW REL7
01790 DEFW READLN
01800 DEFW LOOP2
01810 DEFW COMPARE
01820 DEFW REL8
01830 TBLEND: DEFW MOVELN
01840 TBSIZE EQU TBLEND-RELOTB+2
01850 ENTRYS EQU TBSIZE/2
01870 FIRST: JR BEGIN
01880 STORE: DEFW 0 ;to receive the old HIGH$ value
01890 NAME: DEFB BEGIN-TEXT
01900 TEXT: DEFM 'SYNON'
01910 BEGIN: PUSH AF
01920 CP 86H ;A true error code has
01930 JR Z,CHECK2 ; an 86H here.
01940 QUIT: POP AF ; so if not, go about
01950 DEFB 0C3H ; your business.
01960 VECTOR: DEFW 0
01970 CHECK2: INC SP
01980 INC SP
01990 INC SP
02000 INC SP
02010 POP AF
02020 CP 95 ; A PROGRAM NOT FOUND
02030 JR Z,INT ; error will have a 95
02040 PUSH AF ; here.
02050 LD A,86H
02060 DEC SP
02070 DEC SP
02080 DEC SP
02090 DEC SP
02100 JR QUIT
02120 INT: DEC SP ; make sure the stack
02130 DEC SP ; is ordered properly
02140 DEC SP ; to minimize side effects
02150 DEC SP
02160 DEC SP
02170 DEC SP
02180 INTERCPT: CALL OPENSYN ; open SYNONYM/TXT
02190 JR NZ,QUIT

Page 20

02200 LOOP1: CALL READLN ; read in a line
02210 JR NZ,QUIT
02220 REL2: CALL COMPARE ; test for a match
02230 JR Z,PROCESS ; if so, process it
02240 JR LOOP1 ; or else loop
02250 PROCESS: CALL BUILDLN ;build the replacement
02260 REL3: CALL MOVELN ; command line and move
02270 POP AF ; it back into the
02280 LD HL,INBUF1$; command buffer and
02290 MODCH8 EQU $-2
02300 IF ECHO ; execute it.
02310 CALL @DSPLY
02320 ELSE
02330 NOP
02340 NOP
02350 NOP
02360 ENDIF
02370 JP @CMNDI1
02380 MODCH9 EQU $-2
02400 OPENSYN: CALL LOADFCB
02410 REL4: LD HL,DSKBUF
02420 REL5: LD DE,FCB
02430 LD B,0
02440 CALL @OPEN
02450 RET
02470 LOADFCB: LD HL,FILENAME
02480 REL7: LD DE,FCB
02490 LD BC,CR-FILENAME+1
02500 LDIR
02510 RET
02530 FILENAME: DEFM 'SYNONYM/TXT'
02540 CR: DEFB 13
02560 READLN: LD HL,LINEBF ;Read a line of text into
02570 LOOP2: LD DE,FCB ; a local buffer until
02580 CALL @GET ; a CR, skipping all nulls
02590 RET NZ ; or other control characters.
02600 LD (HL),A
02610 CP 13
02620 RET Z
02630 CP 20H
02640 JR C,LOOP2
02650 PUSH HL
02660 RELXX: LD DE,LAST ; Make sure the text does
02670 SBC HL,DE ; not exceed the line
02680 POP HL ; buffer.
02690 JR Z,LOOP2
02700 INC HL
02710 JR LOOP2
02730 COMPARE: LD HL,LINEBF ;Get the match count
02740 LD A,(HL) ; from the first
02750 SUB 30H ; character in the
02760 LD B,A ; synonym record line.
02770 LOOP3: INC HL
02780 LD A,(HL) ; skip spaces in the
02790 CP 20H ; syn record
02800 JR Z,LOOP3
02810 LD DE,INBUF1$-1
02820 MODCH10 EQU $-2
02830 LOOP4: INC DE
02840 LD A,(DE) ; skip leading spaces
02850 CP 20H ; in the original
02860 JR Z,LOOP4 ; command line
02870 LOOP5: LD A,(DE)

Page 21

02880 XOR (HL) ;compare loop.
02890 AND 0DFH ; ignoring upper/lower
02900 RET NZ ; case distinctions,
02910 INC HL ; compare for the full
02920 INC DE ; match count, rejecting
02930 DJNZ LOOP5 ; for any mismatch.
02940 LOOP5A: LD A,(DE)
02950 CP 13 ; After the count,
02960 RET Z ; if the original ends
02970 CP 20H ; first, match is okay.
02980 RET Z
02990 LD A,(HL) ; But if the SYN key
03000 CP 20H ; ends first, then the
03010 JR Z,NOMATCH ; match is rejected.
03020 CP 13
03030 JR Z,NOMATCH
03040 LD A,(DE)
03050 XOR (HL)
03060 AND 0DFH
03070 RET NZ
03080 INC HL
03090 INC DE
03100 JR LOOP5A
03110 NOMATCH: OR A
03120 RET
03140 BUILDLN: PUSH IX ;Save IX on general principles.
03150 PUSH DE ;Save the pointer into INBUF$
03160 PUSH HL ;Save the pointer into the SYN record
03170 REL8: LD HL,NEWLN ;Start at the beginning of the
03180 POP DE ; new line buffer,
03190 LOOP6: LD A,(DE) ; skip until a space
03200 CP 20H
03210 JR Z,LOOP7
03220 INC DE
03230 JR LOOP6
03240 LOOP7: INC DE ; skip spaces until replacement
03250 LD A,(DE) ; text is encountered.
03260 CP 20H
03270 JR Z,LOOP7
03280 LOOP8: LD (HL),A ; copy replacement text
03290 CP 13 ; until EOL
03300 JR Z,BLDEX
03310 CP '&' ; if '&' is in replacement
03320 JR Z,SUBSTIT ; text then substitute.
03330 RETUR: INC HL
03340 INC DE
033S0 LD A,(DE)
03360 JR LOOP8
03380 SUBSTIT: POP IX ;Pick up the pointer to the
03390 PUSH IX ; remainder of the original
03400 LOOP9: LD A,(IX) ; command line, and copy it
03410 CP 20H ; to the new command line.
03420 JR Z,LOOP10
03430 JR C,NOSUB ; Skip leading spaces.
03440 INC IX ; If no no-space characters,
03450 JR LOOP9 ; then & vanishes.
03460 LOOP10: INC IX
03470 LD A,(IX)
03480 CP 20H
03490 JR C,NOSUB
03500 JR Z,LOOP10
03510 LOOP11: LD (HL),A
03520 INC HL

Page 22

03530 INC IX
03540 LD A,(IX)
03550 CP 20H
03560 JR NC,LOOP11
03570 NOSUB: DEC HL
03580 JR RETUR
03590 BLOEX: POP DE
03600 POP IX
03610 RET
03620 MOVELN: LD HL,NEWLN
03630 LD DE,INBUF1$; copy up to 63 text
03640 MODCH11 EQU $-2
03650 LD B,63 ; characters and one
03660 LOOP12: LD A,(HL) ; CR to the original
03670 LD (DE),A ; command buffer.
03680 CP 20H
03690 RET C
03700 INC HL
03710 INC DE
03720 DJNZ LOOP12
03730 LD A,13
03740 LD (DE),A
03750 RET
03760 INIT: LD HL,BEGIN ; This is the CONFIG
03770 LD (400DH),HL ; initialization routine.
03780 CMD: DEFB 0C9H
03790 ADDRES: DEFW 0
03800 FCB: DEFS 50
03810 DSKBUF: DEFS 256
03820 NEWLN: DEFS 64 ; Result line buffer
03830 LINEBF: DEFS 80 ; Syn line buffer
03840 LAST: DEFM 'HJM'
03850 END START

Modifying the Model 3 Real-Time-Clock Interrupts
by Andrew Gransden, c/o 68 St Annes Grove, FAREHAM, Hampshire, England, UK TS15 9TB

This article is primarily aimed at those TRS-80 Model III owners, living outside North
America, with machines adapted to work with 50 Hertz mains power. This is not to say
that other readers will not be interested in the experiences described below. (With
some modification, this approach could be used to correct the clock on a Model 4
running in the Model 3 mode under 5.1.4 at the 4MHz speed - ed.)

This all started by replacing my unreliable Mod I-type machine (Video Genie {UK}/PMC-80
{USA}) with a Mod 3 from Tandy. I stayed with the TRS-80 line only because I am hooked
on LDOS, and on the fact that I could use all my LDOS compatible software (with only
minor patching) and disks on my new machine. I was extremely pleased with my Mod 3
operating under LDOS apart from the annoying fact that the Real Time Clock (RTC) lost
10 seconds every minute. As I had always used the RTC in my programs, and with system
functions like JOBLOG, I set forth to find a means of correcting this problem.

The internal clock must run at the proper frequency to ensure that the display is not
affected by jitter or flickering. In the Mod 3, the internal clock frequency is divided
to yield a RTC interrupt frequency half that of the mains. In a 60Hz machine the RTC
interrupt occurs at 30Hz, or every 33.33 milliseconds, while in the 50Hz machine it
occurs at about 25Hz (25.381Hz to be precise) or approximately every 40 milliseconds.
Unfortunately, TANDY did not compensate for this difference by replacing the System
ROMs. TRSDOS 1.3 can be patched, but under LDOS the clock management is left to the
ROM. This means that the RTC goes uncorrected when using LDOS.

Having established the cause of the problem, I now had to find a way of applying my own
correction. With reference to the Technical Information section of the LDOS Manual, the

Page 23

Model III Technical Reference Manual (Cat No. 26-2109) and the excellent reference
work 'Model III ROM Commented' (a fully commented disassembly of the System ROMs) and
armed with EDAS 4.1, DSMBLRII and the LDOS DEBUGger, I set about my task.

One solution would have been to design, build, and install an additional crystal-driven
clock operating at 30Hz. This would have been easy enough, but with the result that the
warranty on my Mod 3 would have been voided. Another solution would have been to order,
at some expense, an external battery-powered clock. The third, and the solution I chose
was to correct the clock error using software. The following is a description of the
Mod 3/LDOS RTC interrupt control chain, and how I solved the problem.

When the RTC pulse occurs, it interrupts the CPU and sets Bit 2 of the Interrupt Status
Port (X'E0') to zero. An image of this Status Port is kept by LDOS in INTIM$ (X'4473').
The Jump vectors relevant to each Interrupt Status Bit are held in INTVC$ (X'4475' -
X'4484'). In LDOS, the vector relating to Bit 2 of INTIM$ points to X'44A5' in SYS0,
which in turn jumps to X'3529' in ROM where the RTC routines can be found. This routine
decrements the system clock 'heartbeat' (X'4216') from 30 (X'1E') down to zero. When
'heartbeat' reaches zero, the time is incremented and, if selected, displayed in the
corner of the screen. What I needed to do was to re-write this routine to operate
properly at the actual 25Hz interrupt rate instead of the expected 30Hz. To totally re-
write the ROM routine would have used a lot of high memory, and would have duplicated a
lot of code. The solution was to write a relocatable routine which would apply a
correction to the clock count, and then hand control back to the ROM RTC routine.
Results from several experiments proved that I needed to apply a double correction
using 2 counters. The final affect is to stretch every 20th second by approximately a
third. The accuracy of the corrected RTC is within 3 seconds a day.

The program first loads into low memory; locates the current RTC interrupt vector and
saves it; modifies the internal references; installs the routine in high memory below
the current HIGH$; and then reduces HIGH$ to protect the routine. The correction
routine uses only 87 bytes of high memory and obeys the 'front-end' protocol as defined
by LSI. The program carries out a series of checks to ensure that you are using a Mod 3
with LDOS (Version 5.1.x) and you have not previously applied the correction. The
program will abort with a suitable error message if any of these tests fail.

Once installed the routine can be SYSGENed to load every time your Model III is booted.
This is because SYSGEN saves all system vectors including those contained in INTVC$ as
well as the high memory area above HIGH$. One word of warning: as should be the case
with all programs used with LDOS, HIGH$ should be respected, otherwise your system will
crash FASTER than ever before (within 25 ms of clobbering the correction routine).

Below is the BINHEX dump for those of you without an Editor/Assembler.

0506 5449 4D45 4249 0102 0052 2196 52CD 6744 3A25 01FE 49C2 1853 2A13 403E A5BD C21D
533E 44BC C21D 532A 7944 3E4F BCDA 2253 2A11 44DD 21C9 53DD 7501 DD74 02DD 21CD 53DD
7501 DD74 02DD 21D6 53DD 7501 DD74 023E 1577 2BDD 21DE 53DD 7501 DD74 02DD 21E2 53DD
7501 DD74 02DD 21EB 53DD 7501 DD74 023E 2477 2A79 4422 0A54 2A11 4422 B953 0157 00AF
ED42 2211 4423 F322 7944 EB21 B753 EDB0 FB21 F752 CD8A 42C3 2D40 5449 4D45 3530 202D
204C 444F 5320 5265 616C 2054 696D 6520 436C 6F63 6B20 3530 487A 2043 6F72 7265 6374
696F 6E20 5574 696C 6974 7920 2D20 5665 722E 342E 310A 436F 7079 7269 6768 7420 2843
2920 3139 3833 2020 4120 5720 4772 616E 7364 656E 0D54 494D 4535 3020 696E 01BB 0053
7374 616C 6C65 6420 616E 6420 6F70 6572 6174 696F 6E61 6C0D 2131 5318 0821 5053 1803
218A 53CD 8A42 21A7 53CD 8A42 C330 4046 6F72 2054 5253 2D38 3020 4D6F 6465 6C20 4949
4920 7573 6520 4F4E 4C59 210D 436F 7272 6563 7469 6F6E 2077 7269 7474 656E 2074 6F20
776F 726B 2075 6E64 6572 204C 444F 5320 5665 7273 696F 6E20 352E 312E 7820 4F4E 4C59
210D 436F 7272 6563 7469 6F6E 2061 6C72 6561 6479 2069 6E73 7461 6C6C 6564 0D54 494D
4535 3020 4162 6F72 7465 6421 0D18 0901 53BB 5306 5449 4D45 3530 3A16 42FE 1620 353A
0C54 3D32 0C54 FE00 200A 3E15 320C 543E 1E32 1642 3A0D 543D 320D 54FE 0020 153E 2432
0D54 3E01 5F3A 1642 93FE 0630 023E 0632 1642 3A16 42EE 0620 043C 3216 42C3 0000 0202
0052

00100 ;* TIME50/ASM - Version 4.1 - 28 Oct 83
00110 ;* TITLE: TIME50 50Hz Real Time Clock Correction Routine

Page 24

00120 ;* AUTHOR: Andrew W. Gransden
00130 ;* c/o 68 St Annes Grove
00140 ;* FAREHAM, Hampshire
00150 ;* PO14 1JW England UK
00170 ;* Copyright (c) 1983 A W Gransden
00190 ;* TIME50 routine corrects for errors in the
00200 ;* the TRS-80 Model III Real Time Clock
00210 ;* interrupt handling routine when operating
00220 ;* on a 50Hz Version Machines under the
00230 ;* LDOS Disk Operating System Version 5.1.x.
00250 ;* Variable and Label Declarations
00260 LF EQU 0AH ;linefeed
00270 CR EQU 0DH ;carriage return
00280 SEC1 EQU 21 ;coarse correction count
00290 COR1 EQU 8 ;coarse correction value
00300 SEC2 EQU 36 ;fine correction count
00310 COR2 EQU 1 ;fine correction value
00320 ROMCHK EQU 0125H ;ROM check for Model III
00330 INTVEC EQU 4012H ;interrupt vector
00340 @EXIT EQU 402DH ;LDOS return entry
00350 @ABORT EQU 4030H ;abnormal program exit to LDOS
00360 HBEAT$ EQU 4216H ;clock heartbeat counter
00370 HIGH$ EQU 4411H ;highest useable memory
00380 @DSPLY EQU 4467H ;display message
00390 @LOGOT EQU 428AH ;display & log message
00400 RTCVEC EQU 4479H ;jump vector to RTC routine
00420 ;* start of TIME50 installing routine *
00440 ORG 5200H
00450 ENTRY LD HL,MSG1 ;point to message 1
00460 CALL @DSPLY ;and display it
00470 LD A,(ROMCHK) ;test for Model III
00480 CP 49H
00490 JP NZ,ERROR ;go if not
00500 LD HL,(INTVEC+1) ;load interrupt vector
00510 LD A,0A5H ;load A with known jump
00520 CP L ;and compare with HL
00530 JP NZ,ERROR1 ;exiting if incorrect
00540 LD A,44H ;to error handing abort
00550 CP H
00560 JP NZ,ERROR1
00570 LD HL,(RTCVEC) ;load RTC vector
00580 LD A,4FH ;load max DOS area addr
00590 CP H
00600 JP C,ERROR2 ;go if greater
00610 LD HL,(HIGH$) ;get current high mem bc
00620 LD IX,P1 ;set pointer to allow
00630 LD (IX+1),L ;correct addressing of
00640 LD (IX+2),H ;storage in high memory
00650 LD IX,P2
00660 LD (IX+1),L
00670 LD (IX+2),H
00680 LD IX,P3
00690 LD (IX+1),L
00700 LD (IX+2),H
00710 LD A,SEC1 ;set count to ? seconds
00720 LD (HL),A
00730 DEC HL
00740 LD IX,P4 ;set pointer as above
00750 LD (IX+1),L
00760 LD (IX+2),H
00770 LD IX,P5
00780 LD (IX+1),L
00790 LD (IX+2),H

Page 25

00800 LD IX,P6
00810 LD (IX+1),L
00820 LD (IX+2),H
00830 LD A,SEC2
00840 LD (HL),A
00850 LD HL,(RTCVEC) ;get present mt vector
00860 LD (EXIT+1),HL ;and save
00870 LD HL,(HIGH$) ;reduce HIGH$ by
00880 LD (NXTMEM),HL ;store old high memory
00890 LD BC,LAST-START ;length of routine
00900 XOR A ;clear carry flag
00910 SBC HL,BC ;calculate new HIGH$
00920 LD (HIGH$),HL ;protect routine
00930 INC HL ;point to new start
00940 DI ;disable interrupts
00950 LD (RTCVEC),HL ;break into Int chain
00960 EX DE,HL ;transfer new START to DE
00970 LD HL,START ;load address of routine
00980 LDIR ;move routine to high ram
00990 EI ;enable interrupts
01000 LD HL,MSG2 ;point to message
01010 CALL @LOGOT ;display & log
01020 JP @EXIT ;return to LDOS
01040 ;* Messages *
01060 MSG1 DB 'TIME50 - LDOS Real Time Clock 50Hz '
01070 DB 'Correction Utility - Ver.4.1',LF
01080 DB 'Copyright (C) 1983 A W Gransden',CR
01090 MSG2 DB 'TIME50 installed and operational',CR
01110 ;* error handling *
01130 ERROR LD HL,ERMSG ;point to message
01140 JR EREXIT ;jump to error exit
01150 ERROR1 LD HL,ERMSG1 ;point to error message
01160 JR EREXIT ;jump to error exit
01170 ERROR2 LD HL,ERMSG2 ;point to error message
01180 EREXIT CALL @LOGOT ;display message
01190 LD HL,ERMSG3 ;load abort message
01200 CALL @LOGOT ;display & log
01210 JP @ABORT ;jump to abort routine
01230 ;* error messages *
01250 ERMSG DB 'For TRS-80 Model III use ONLY!'
01260 DB CR
01270 ERMSG1 DB 'Correction written to work under '
01280 DB 'LDOS Version 5.1.x ONLY!'
01290 DB CR
01300 ERMSG2 DB 'Correction already installed'
01310 DB CR
01320 ERMSG3 DB 'TIME50 Aborted!',CR
01340 ;* actual TIME50 routine to be placed in high ram *
01360 START EQU $
01370 JR J1 ;skip protocol block
01380 NXTMEM DS 2 ;high mem addr of next bk
01390 DB 06H ;6 bytes of protocol blk
01400 DB 'TIME50' ;routine title
01410 J1 EQU $
01420 LD A,(HBEAT$) ;get heartbeat count
01430 CP 1EH-COR1 ;just reset?
01440 JR NZ,TEST2 ;go if not
01450 P1 LD A,(COUNT1$) ;get seconds count
01460 DEC A ;decrease by one
01470 P2 LD (COUNT1$),A ;save
01480 CP 00H ;... seconds gone
01490 JR NZ,P4 ;go if not
01500 LD A,SEC1 ;reset seconds count

Page 26

01510 P3 LD (COUNT1$),A ;save reset count
01520 LD A,1EH ;increase heartbeat
0i530 LD (HBEAT$),A ;save reduced heartbeat
01540 P4 LD A,(COUNT2$) ;carry out fine
01550 DEC A ;correction
01560 P5 LD (COUNT2$),A ;and save
01570 CP 00H
01580 JR NZ,TEST2 ;when COUNT2$ reaches 0
01590 LD A,SEC2 ;reset correction count
01600 P6 LD (COUNT2$),A
01610 LD A,COR2
01620 LD E,A
01630 LD A,(HBEAT$) ;get heart beat count
01640 SUB E ;remove correction
01650 CP 06H ;finished?
01660 JR NC,J2 ;go if less
01670 LD A,06H
01680 J2 LD (HBEAT$),A
01690 TEST2 LD A, (HBEAT$) ;get heartbeat count
01700 XOR 06 ;at new bottom?
01710 JR NZ,EXIT ;go if not
01720 INC A ;heartbeat=1
01730 LD (HBEAT$),A ;save reduced heartbeat
01740 EXIT EQU $
01750 JP 0000H ;jump to RTC routine
01760 COUNT1$ DS 1 ;reserve 2 bytes
01770 COUNT2$ DS 1 ;for correction counts
01780 LAST EQU $
01790 END ENTRY

Profile ONE Plus ??
by E. R. Sturiale, SASSCO Microcomputer Services

133 Falmouth St., Rochester, NY 14615 (716) 865-1622

Has Radio Shack forgotten about the Mod 1 user? If their marketing of Profile III+ is
any indication, they have. Fortunately, when they made the wise decision to use LDOS as
their hard disk operating system, the possibility arose to develop patches for Mod 1.
Since we run a small software consulting firm which uses both Mod 1's and 3's, it
became necessary to have compatibility between machines for Profile data bases.

As you can probably tell from the number of patches, the conversion of machine language
programs is not simple. Also, there are just enough hardware differences between
machines to generate Excedrin headaches 256 through 1023. The calls to the operating
system were relatively easy to change after the required 896 pages of disassembling and
cross referencing to decode the Profile modules.

Applying the patches

1) The minimum requirements to install these patches and run Profile I+ are:
Double Density (any LDOS-supported form)

Two Disk Drives
PROFILE III+ HD (RS number 26-1593)

2) BACKUP your RS Profile III+ distribution diskette onto a working patch DATA disk.
This can be accomplished after formatting by using the LDOS Backup utility with
(X,VIS) or any other copy by file option. By all means leave the write protect
tab on the distribution diskette.

3) Create a "CLEAN" LDOS system diskette with at least 50 K of free space.

Page 27

4) Type in all the FIX and JCL files using the BUILD command (or some ASCII text
editor). Store them on the "CLEAN" LDOS system diskette and double check your
typing.

5) Place the Backup (working) PROFILE diskette in Drive 1 and the system disk with the
fix files in Drive 0.

6) NOTE : If your distribution diskette is labeled Version 01.00.01 or if you have
already applied the patches supplied by Radio Shack, then skip to Step 7.

Now type: DO RSPATCH

If the messages indicate all is O.K., then continue else check your RSPATCH/JCL
file and then return to Step 2

7) This JCL will apply all the patches necessary for Profile 1 + to operate. The
procedure may take as long as five minutes. Please watch the screen for errors in
patching. If one does occur, then check the FIX files and go back to Step 2.

To start the patch procedure, type: DO PROFIX

8) If you are going to use the system for Hard Disk operation, then copy all your
Profile /CMD programs from the working disk on Drive 1 to your HD and begin
hacking. If you want to use the system on floppy, then continue. This set of
patches will add prompts for diskette swaps.

Now type: DO PROMPT

9) At this point, create two more LDOS system diskettes and label the first "CREATION
DISKETTE" and the other "RUNTIME DISKETTE"

Copy the following patched files to the CREATION diskette:
EFC1/CMD EFC2/CMD EFC3/CMD EFC4/CMD EFC5/CMD EFC6/CMD EFCE/CMD EFCM/CMD CM/CMD

Copy the following patched files to the RUNTIME diskette:
EFC7/CMD EFC8/CMD EFC9/CMD EFCA/CMD EFCB/CMD EFCC/CMD EFCD/CMD EFCF/CMD RM/CMD

If all goes well, you should be ready to dive into the manual and get started.

There are several differences in PROFILE I+ that I should mention.

1) The Profile I+ programs will try to write the working modules such as screen
formats on Drive 0. When working with the floppy version, it is usually more
convenient to have these files somewhere else. The best way to do this is to use
the LDOS SYSTEM (DRIVE=0,WP=ON). This forces the files to be written on the next
available drive and not your CREATION diskette.

2) The cursor character on the DEFINE SCREENS option is different than standard. The
only problem that may occur is if you try to use the special character from the
<shift> @ display which is the same as the cursor. If the cursor passes over this
character the special character will be erased. Since there are lots of other
special characters that look like the cursor, you should not have any problems
selecting another one.

3) Part of the patching procedure disables the Model III scroll protect option since
the Model I does not have that feature. The easy way to do that was to change the
memory loads required to a place where they will not do any damage. I chose
location 3001H which is in non-existent memory in the Model I. If you are using a
memory side-car that resides in that area then either un-plug it, or change all the
patches in the FIX files that are "01 30" to a location that is not being used.
By the way, I have not noticed any difference in operation or screen presentation
by eliminating the scroll protect feature. Other than some characters being

Page 28

different, due to the different character sets, all screen presentations seem to
be O.K.

4) Using KI/DVR with the (TYPE) option is recommended. Use of Profile I+ with the
other drivers or filters (except the HD drivers, PDUBL and RDUBL) has not been
evaluated. If you wish to try some others, experimentation may be required. When
using KI/DVR with Profile I+, any prompts that call for the <clear> key should be
replaced with <shift><clear>.

5) None of the other modules that are offered by Small Computer Company have been
patched or tested with Profile I+. We have plans to purchase them so if patches
are necessary, you may see them in future LSI Journals.

6) After Profile I+ was working for awhile, we noticed that the programs gave
excessive PRINTER NOT READY messages when everything was in fact O.K. Patches were
added to lengthen the delay time the programs wait for the printer to respond to
accommodate such functions as double striking or fast CPU's.

The patches are available in XA0 of the LDOS SIG on CompuServe, and are presented here
starting on page 47.

***** PARITY = ODD *****

by Tim Daneliuk, T&R Communications Assoc., 4927 N. Rockwell St., Chicago IL 60625

Well, Winter is upon us. If that isn't bad enough, my friendly LSI Journal editor
decided that he needed TWO columns absolutely ASAP. He said "I need two
PARITY=RIDICULOUS columns by the deadline. Can you do it?" Well, I barely make it to
work on time. So friends, I had to get moving. Translated, this means that what you are
about to read is probably not up to the high journalistic standards you've come to
expect from me. I must be held blameless, as I simply cannot rush two columns out in 12
weeks and be expected to maintain the excellence and humility you've all come to know
and love...

CP/M and the TRS-80

Let's face it. CP/M is not a great operating system. It's not really even a GOOD
operating system. There are too many systems out there which use CP/M as the DOS (?) to
ignore "Pa Kildall's" favorite product. Even the folks at Radio Shack have announced
their intention to bring out CP/M+ (aka CP/M 3.x) for the Mods 4, 4P and 12. So, as a
public service, let's discuss a few CP/M-80 related products.

In all fairness, I should point out that CP/M was FIRST! For its day, it was a fine
product which served the 8-bit micro industry well. Much of the popularity of early
microcomputers was partly due to the existence of CP/M. Since it was first, CP/M is
among the best outside vendor and user-supported operating system on the market. There
are products which ONLY run under CP/N, so it's a good idea to be familiar with it.

First, let's look at Montezuma Micro's (hereafter known as MM) CP/M for the Model 4.
Tandy announced CP/M availability this spring, and to date has not yet released it. The
MM CP/M is a full blown CP/M 2.2 for the Mod 4. It incorporates all the usual CP/M
commands (all 4 of 'em) and utilities, with extras. The folks at MM have done a real
nice job on this implementation. The BIOS (Basic Input/Output System) is written to
emulate an ADM-3A. The keyboard driver allows you to input special characters (curly
braces {}, brackets [], and backslash \) which are not normally available on the Model
4 keyboard. MM has gone as far as cleaning up those hideous CP/M error messages. Now
after an error, you get the choice of retrying the operation which caused the error,
letting CP/M handle the error, or rebooting the system. Instead of the usual "BDOS
ERROR" message, the MM CP/M tells you things like "Record Not Found" and the like.

Page 29

The highlight of this CP/M implementation is that it is chock full of useful utilities.
The most notable is INTERCHG.COM, a utility which reads "alien" disk formats. The only
"standard" CP/M format is eight inch, single-sided, single-density. As a result, there
is no "compatibility" of the CP/M system whenever you're using other types of media.
This isn't so bad with eight inch floppy disks because if you can write anything else,
you can almost always create single-density single-sided disks also.

With five inch CP/M, each manufacturer specifies the media format as they choose. This
has created a wonderful mess of incompatible five inch CP/M disks. INTERCHG reads over
20 popular five inch CPIM media formats, including Osborne, Xerox, Lobo, Zenith, and
NEC disks. I tested INTERCHG on Lobo and NEC PC-8001 five inch disks. I was able to
read both with no difficulty whatsoever.

MM has also included the popular public-domain MODEM.CON program. This gives you
communications ability under CP/M. MEMLINK.COM is a "RAMdrive" program which can use
the extra 64K memory bank as a logical drive, like TRSDOS 6.x. The only thing missing
in this CP/M implementation is the ability to use the Shack's hard disks under CP/M. On
the other hand, why would anyone stop using LDOS and start using CP/M on a hard disk?

In the several months I've used the MM CP/M, it has run flawlessly with one exception.
When you do a lot of disk I/O among several different drives, you get Record Not Found
errors. I've detailed this bug to the manufacturer. By the way, if you're worried about
support, fear not! Montezuma Micro is run by the same people who run Aerocomp. Aerocomp
is one of the most reputable and helpful mail-order houses in the business. The Model 4
CP/M package comes with 36 pages of documentation about the implementation, as well as
Dave Cortesi's EXCELLENT book "INSIDE CP/M". The latter is a 500+ page discussion of
CP/M. MM CP/N costs $199 and is available from:

Montezuma Micro, P.O. Box 32027, Dallas, TX 75232 (214) 339-5104

Thanks to a local CP/M "guru", I have been introduced to a fabulous new product called
MPC. If you fiddle around in assembler, you've probably had the urge at some point to
write you're own operating system. No, you're not crazy! (Well, maybe a little
crazy...) Of course, such a project is a large undertaking, and would require more time
than the average individual has available. The next best thing would be to look at the
source code for someone else's DOS. Unfortunately, most DOS authors frown on
distributing the source for their system, and quite understandably!

You may have noticed that MPC is CPM reversed, and that's exactly what this product
does. It "reverses" (disassembles) the code which makes up the CP/M kernel and produces
a FULLY COMMENTED source file. If you're interested in how the BDOS (Basic Disk
Operating System) or CCP (Console Command Processor) work, you can read and study this
file. The comments alone are worth their weight in gold and will give you great insight
as to how CP/M actually works. MPC costs only $35 and is available from:

CC Software, 2564 Walnut Blvd. #106, Walnut Creek, CA 94598, (415) 939-8153

THINGS FOR THE MAX-80

The folks at Powersoft are at it again! Apparently they really like the MAX-80 'cause
they keep bringing out new products for it. First, a "MAXed" version of SU+, and now
SETMAKER/SETWRITER. If you own a MAX, you already know that the video system on the MAX
is quite versatile. The character set is programmable - i.e. you can make each
character look as you wish. Unfortunately, this is a messy proposition involving time,
effort, and assembly language.

SETMAKER allows you to create custom character fonts and graphics characters on the
MAX-80. These can be saved as on disk or they can be directly loaded into LDOS itself.

Page 30

You can boot the system with your own fonts and graphics in place. Powersoft has also
included several examples of customized character fonts and graphics.

SETWRITER is a companion product to SETMAKER, and allows you to print your custom fonts
and graphics on an Epson MX-80 or FX-80, just as you see them on the screen! If you're
using an MX-80 you must have GRAFTRAX. I was not able to test SETWRITER since I don't
have either of these printers. Judging from SETMAKER (which ran flawlessly), I don't
hesitate to recommend these programs. They're in machine language, and are about as
"bullet proof" as can be. There are plenty of on-line menus-- the documentation is
almost unnecessary. These are $29.95 each, or $50 for both. They're from:

PowerSOFT, 11500 Stemmons Freeway Suite 125, Dallas, TX 75229 (214) 484-2976

MODEL 4 TOPICS

Speaking of Powersoft, they've also just released their LDOS utilities for TRSDOS 6.x
on the Model 4. It's the "Toolbelt for TRSDOS 6" and costs $49.95. Considering the
(more than 15) useful programs you get, this has got to be the best bargain in town. I
use versions of these utilities under LDOS 5.1 and TRSDOS 6, and find them to be
excellent products. Contact Powersoft for more details.

A new word processor from Anitek called "LeScript" is available. One version runs on
Mod 3, 4, or MAX (the package also includes a Mod 1 version). It supports 80 col on the
latter two, even when running the Mod 4 in Mod 3 mode! LeScript also uses the extended
memory available in the Mod 4 and MAX as text buffer. When you fire LeScript up on a
MAX, for example, you're greeted with the pleasant sight of around 80K of text space.

LeScript also supports virtually every printer known! If you have a printer from RS,
Epson, NEC, C. Itoh, ... you'll find its features implemented in LeScript. For example,
I was able to use italics, underline, super- and sub-scripts on my MX-100. LeScript
even lets me print in proportional mode by using the Epson's bit-image graphics.

One especially delightful aspect of LeScript's operation is that it runs just great
with LDOS 5.1 / TRSDOS 6. Although the program doesn't ordinarily use the system's DCBs
(ahem!) it DOES know enough to not interfere with operating system features. For
example, you can leave type-ahead on when you enter LeScript, and when you're done you
won't be greeted with lines of garbage.

For $129 you'll be hard-pressed to find a better overall word processing product.
Though LeScript isn't virtual (the maximum text you can edit at any one time is limited
by memory), it should accommodate the vast majority of word processing chores you can
dream up. If I sound enthusiastic, I am! You will be too when you see this product. For
more information, contact:

ANITEK Software Products, P.O. Box 361136, Melbourne, FL 32936 (305) 259-9397

MACHINE WARS

It never fails, almost invariably someone asks the question, "What should I buy, a
Model 4 or a MAX?" I've used both quite a bit and I'm ready to give my informed opinion
- "It depends!" From a pure performance point of view, the MAX wins hands down. In some
cases, the MAX runs rings around much more expensive machines like the IBM-PC or the
TRS-80 Mod 12. I also prefer the versatility of the MAX. It gives me two serial ports,
runs eight inch floppies, and can boot from any type of disk drive, including hard
disks.

There's another side to this story. It's clear that new TRS-80 software will be for
LDOS/TRSDOS 6. LDOS 6.x is not now available for the MAX-80, and may never be, due to
hardware conflicts. If you use your machine in a commercial application and need to be
compatible with the rest of the world, it seems that the MAX is not a viable choice
unless you intend to use CP/M.

Page 31

What about the Mod 4? Frankly, the Mod 4 never impressed me much. It has the same
sleazy video that Tandy is notorious for, has no 8" drive capability, and only one RS-
232 port. Worse yet, early Mod 4s apparently had flakey disk controllers and used wait
states when accessing memory. The latter made this "4 MHz" machine run as much as 25%
slower. (I am told that these problems have been resolved, and that current production
Mod 4s work just fine.) But . . . just wait 'till you see the Mod 4P (P=Portable)!
It has great video, no wait states, and is built like no TRS-80 I've ever seen. I
spent a day with a 4P, and as jaded as I am, I was impressed! This is a wonderful
machine, and shows that Tandy IS paying attention to the market. I still miss 8"
floppies because an 8" disk drive is an excellent compromise between price and storage
capability. Other than that, the 4P is a "dream" machine.

Another consideration is support. Though LOBO has one of the very best warranties, as a
mail-order operation they're not in the position to give instant help. Radio Shack, on
the other hand, can help you locally and is in a better position to answer questions.

All things considered, the bottom line is this: If you're a software "tinkerer" who is
reasonably knowledgeable and a performance hound, get a MAX. You'll love it! If you're
fairly non-technical, and need a lot of "hand-holding" and support, buy from Radio
Shack. What do I use? A MAX-80! Though I enjoy using the Mod 4, I find the MAX a
consistently overall better performer. Still, the Mod 4P is really tempting! Mebbe if I
save my lunch money for a few years...

THE WRAP UP

That's it for now. Unfortunately, I've had to delay the review of the Model I to III
upgrade I mentioned in last time. Hopefully I'll get another crack at it later in 1984.

The "C" Language (Part V)
Earl 'C' Terwilliger Jr., 647 N. Hawkins Ave., Akron, Ohio 44313

INITIALIZATION, BLOCKS, POINTERS, ARRAYS

As you can tell from the C commented title for Part V, the subjects for discussion are
blocks, pointers, how variables can be initialized and an introduction to arrays. Shall
we start with more on blocks? (Were you expecting a choice?)

Several computer languages are block-structured in the sense that they allow functions
to be defined within other functions. C does not allow this. In C, functions are always
"external" since they are not inside of other functions. I am alluding to the fact that
functions are blocks of C code. Remember from previous parts that a block is enclosed
via {}. These braces {} enclose functions and other blocks. After the { comes variable
definitions, if any. Variables in C, are thus defined in a block-structured manner.

Variables can be declared following the { that begins any compound statement. Also
after the { that begins a function, variables can be declared (defined). If more
variables need to be declared, later in the function, they can be, by declaring them
after the left brace which begins a block. These variables can even have the same name
as other variables. Their declarations "supersede" the identically named variables in
outer blocks. They exist only within the block in which they are declared. Don't forget
or confuse what you have learned previously about variable storage class and what you
are learning now. The above comments on variables declared within blocks hold true for
external variables too. Now can we look at how variables can be initialized? (No
freedom of choice, is there?)

If you would like to assign an initial value to a variable when it is defined, C will
allow it. As an interesting point, C does initialize certain variable classes for you.
If you do not specifically assign an initial value to an external or static variable, C
will initialize them to zero for you. However, automatic and register variables are not
initialized automatically for you by C. So, don't count on them containing anything
worthwhile unless you specifically initialize or assign a value to them. An equals sign
and a constant expression are used to initialize simple variables. (Arrays and

Page 32

structures are initialized differently, as we shall C later.) Here are some examples of
simple initialization:

int a = 5;
int b = c = d = e = 0;
char g = 'x', h, i = 'y';
char f = 'f';
int d = 45 * 67;

As you can imply, this initialization saves "extra", sometimes unnecessary, assignment
statements which assign a value to a variable. K&R call this shorthand for assignment
statements. Remember what was just learned about blocks and how variables can be
declared within them? Well, variables declared within these blocks (or functions) can
also be initialized. This initialization takes place each time the function or block is
"entered". External and static variables are initialized only once. (Are you wondering
why this is? External and static variables are of different storage class and scope
than automatic and register variables. Think about how and when these variables come
into existence and when they go out of existence (if they do)?) Also, for automatic and
register variables, the initialization can be done via any valid expression. This
initializer is not limited to a constant expression.

Before I discuss how arrays can be initialized, shouldn't I discuss what they are and
how they are declared (defined) ? For example:

int number[10];

This declares an array of size 10. In essence, this is a "block" of 10 integers
together. Likewise:

char name[12];

declares a block (an array) of 12 characters. Each member of the array is called an
element. Each element is numbered or indexed. In C the index starts at zero. In the
number array above, the elements can be referred to individually via number[0],
number[1], ..., thru number[9]. C also supports multi-dimensional arrays. For example:

int a[10][20];

This declares a two dimensional (rectangular) array. Elements of a multi-dimension
array are stored by rows. Viewing storage as linear, elements of the array are seen in
storage order if the right most index varies fastest. Now, how can arrays be
initialized?

Arrays are initialized differently than other variables. Only external and static
arrays can be initialized, automatic arrays can not be initialized. External and static
arrays are initialized as shown in this example:

static int numbers[10] = { 0,1,2,3,4,5,6,7,8,9 };

Remember, in the absence of explicit initialization, all elements of external and
static arrays are initialized automatically to zero.

In initializing external and static arrays, fewer initializers can be used than there
are elements. In this case, the remaining elements will be zero. C also disallows more
initializers than elements. Wouldn't it be nice to be able to repeat an initializer or
just to initialize specific elements and ignore others? Well, sorry, C does not provide
a means to do that.

Here is an example of a character array and its initialization:

/*5...10...15...20...25 */
static char me[] = "Earl C. Terwilliger Jr.";

Page 33

Quick! How many elements does the array me have? (Use the comments ruler line to help
you count.) Did you guess correctly with 24? Each character between the quotes is an
element plus the \0 which is added by the C compiler to terminate the string. Did you
notice that the size of the array, i.e., the number within the [] was omitted? If you
do not include it, C will compute the size of the array for you based on the number of
initializers. Another way to initialize a character array is as follows:

char name[] = { 'E', 'A', 'R' , 'L', '\0' };

Notice that it is so much easier to use:

char name[] = "EARL";

Are you thinking that the initialization of a character array is like a "string copy"?
If so, be careful in your evaluation of the following statements:

static char msg[5];
msg = "TEST";

This is not a string copy! C does not provide any operator for string copying or
dealing with an entire string of characters as a single unit. Also, msg is the name of
an array, it is a constant. It is not an lvalue and the above expression using it as
such is ILLEGAL! How then can elements of an array be assigned values? The answer is by
individually assigning values to each element. To "blank out" a character array,
examine the C code which follows:

char message[20];
...
for (i=0, i<20, ++i) {

message[i] = ' ';
}

Also, note that the message array does not necessarily have to be external or static.
It could be an automatic array!

Next, onward to pointers! A pointer is a C variable which contains the address of
another variable. I can hear you thinking! You are no doubt asking, how does the
pointer get the address? The unary operator & mentioned in an earlier part gives the
address of its object. The & operator applies only to array elements and variables.
Consider the following:

char a;
char *ptr;
...
a = 25;
ptr = &a;

In the expression: ptr = &a, ptr is assigned the address of a. By the way, there is no
such thing as just a pointer. In C, pointers are always pointers to a particular data
type. As shown above ptr is a pointer to type character. The * operator denotes
indirection, it treats its operand as an address. It accesses this address to obtain
the contents stored there. For example:

char *ptr, a, b;
b = 'x';
ptr = &b;
a = *ptr;

In the above examples, b is assigned the value 'x'. ptr is assigned the address of b. a
is assigned the value of the character pointed to by ptr, which is 'x'. *ptr is a C
mnemonic declared in this example to be a character. The combination of the * and ptr
denote a character just like the above variable b does. When a pointer is declared, the
type of data it points to is stated. The pointer is limited to point to data of that

Page 34

type. Also, pointers and pointer references are lvalues and can appear on the left side
of assignment statements. Above, the pointer ptr is seen appearing on the left of an
assignment statement. Below, *ptr is shown on the left of an assignment:

char *ptr, a, b;
b = 'x';
ptr = &a;
*ptr = b;

After the above statements are executed, a will contain the same value as b! *ptr is a
pointer reference. In the case above it actually references a. ptr contains the address
of a and *ptr references the character stored at the address in ptr.

Having the address of a variable is very useful. Remember from a previous part that C
passes copies of variables as arguments to a called function. This is "call by value".
The called function can not alter a variable in the calling function. (Actually, it
could if the variable used in both functions was an 'external" variable.) Now that you
have learned about the & operand, you can use it to pass, as parameters to a function,
addresses of (pointers to) variables. The called function can declare the arguments
passed as pointers and alter the referenced data!

Looking back over the discussion on arrays, do you remember the problem of assigning
values to an array? Consider this, now that you are familiar with arrays and pointers:

char *myname;
myname = "Earl C. Terwilliger Jr.";

This also is not a string copy! But it is a valid expression. myname is a pointer and
it is assigned the address of the string! Comparing these two C statements with the
ones shown to illustrate arrays, you should be wondering about the relationship between
an array and a pointer. Actually an array name is a pointer expression. However, keep
in mind that a pointer is a variable but an array name is a constant. If an array name
is passed as an argument to a function, what is actually passed is the location
(address) of the beginning of the array. (Using the & operator on just an array name is
invalid. C does however, allow the & operator to take the address of an array element,
for example &myname[4]. The & operator applies only to variables and array elements!)

A called function, when passed an array name as an argument, can declare the argument
as a pointer and reference thru the elements of the array. Would you like an example?

main() {
static char myname[] = "Earl C. Terwilliger Jr.";
char a;
a = 'l';
printf("%d\n",scount(myname,a));

}
scount (ptr,ch)

char *ptr, ch;
{

int c = 0;
while (*ptr != '\0') {

if (*ptr++ == ch) ++c;
}
return (c);

}

The function scount will return the number of occurrences of a given character in a
given character string (array). The two parameters passed to it are the address of the
string to search and the character to search for. If you follow the logic, pay
particular interest to the *ptr++ expression. The value printed after the above code is
executed should be 3! (What? You don't believe me? Type in the code and try it out on
your favorite C compiler.)

Page 35

Next time, you will see more on pointers and arrays. Structures will be introduced and
I will point out some of the most common errors found in C programs.

Items of General Interest

Here are corrections and additional information regarding subjects raised last time:

Page 12:

The patch to restore "random" allocation should have been listed as for Model 3 and
MAX-80, LDOS 5.1.x only. The correct patch for Model 1, LDOS 5.1.x is:

PATCH SYS8/SYS.SYSTEM:0 (D00,FE=D5 CD C1 44 D1 6C)

Page 14:

The new name for the TRSOOS 6.x communications software package is LS-Host/Term,
Catalog number L-35-281, $199 plus $3 shipping and handling.

Page 55:

It has been reported that the following patch will correct a "0 left" error with Model
1 SuperSCRIPSIT, Version 01.02.00: PATCH SCRIPSIT/CND (X'7E22'=FC)

Page 57:

Here is the equivalent of the ROM/CTL patch, but for the Model 1. Comments are the same
as the Model 3 patch:

. ROM/FIX

. Patches to the Model 1 SS 1.2 DW2/CTL driver for system DCB usage
D00,91=3D BF
D02,0B=3E 30 00
D03,2D=CD 35 BF
D03,45=CD 35 BF
X'BF35'=D5 F5 CD 3B 00 F1 D1 C9
. End of patch

Page 64:

In the FDC driver patch, the first line should have ended ED A2, not ED A4. The SYS2
patch for drive timing is already present on most release versions of 6.1. The byte
position of the SYS1 patch (for changing REMOVE back to KILL) should have been C8, not
CB.

Patches, patches, patches ...

The following patch to LBASIC (versions prior to 09/31/83) will correct the operation
of RUN"filespec",V for large programs:

. Patch to LBASIC/CMD (Model 1 ONLY!)

. corrects operation of RUN"",V
D0C,58=5E 64
D13,89=ED 62 39 D9 CD 4D 1B D9 F9 C9
. End of patch

. Patch to LBASIC/CMD (Model 3 and MAX-80 ONLY!)

. corrects operation of RUN"",V
D0C,6F=75 64
D13,A0=ED 62 39 D9 CD 4D 1B D9 F9 C9
. End of patch

Page 36

The following patch to FM will correct a problem with not moving certain files:

. Patch to FM 5.1 to correct not moving certain HIT positions
D0F,4E=02
D19,62=62
. End of patch

. Patch to FM 6.x to correct not moving certain HIT positions
D0F,67=02
F0F,67=00
D19,C6=63
F19,C6=62
. End of patch

The following patch to QFB (all 5.1 versions) will provide for proper operation on
double-sided media, and prevent a conflict with READ40 source drives:

. Patch QFB/CMD (5.1.x)

. corrects two-sided & READ40 operation
D02,26=00 00 00
X'5AAE'=CD C6 60
X'60C6'=CD 96 5C FD CB 03 A6 C9
. End of patch

The following patch corrects a problem in the version of XMODEM provided with the LS-
Host/Term communications package:

. Patch to XMODEM from LS-Host/Term

. corrects problem with setting 8 bit word mode
D01,9E=C9
F01,9E=28
. End of patch

The following patch corrects an error in the SVC table for Model 1 LDOS 5.1.3 and 5.1.4

. Patch to correct SVC table entries for Model 1 LDOS 5.1.3 & 5.1.4

. this patch is to SYS7/SYS
D11,8B=44 30 44 33 44
. End of patch

LDOS: How it works - The BACKUP utility discussed
BACKUP functions and procedures discussed
or--- You can never have too many backups

by Joseph J. Kyle-DiPietropaolo

Long, long ago in a galaxy far, far away... oops- sorry. When the idea of a BACKUP
utility was first implemented in a TRS-80 type DOS (Model 1 TRSDOS), the only
designated purpose was to produce exact duplicates of existing diskettes. The BACKUP
utility on LDOS 5.1.x and TRSDOS 6.x, however, wears many hats to serve a variety of
purposes.

The first is, of course, to produce exact duplicates. One major difference between this
mode of LDOS/TRSDOS 6.x BACKUP and the original variety is that LDOS/TRSDOS 6.x BACKUP
(henceforth known as BACKUP) requires that the destination diskette be FORMATted first.
The reason for this is simple: LDOS can handle many different disk drive setups. BACKUP
can handle all of these, but only if the diskette was previously processed and made
usable by LDOS through the FORMAT utility.

Page 37

To produce an exact duplicate of a diskette, several things must be true about both the
source and destination disks.

1) Both drives must be the same type. That is, they must both be five inch or both
eight inch, the same density (single or double), and have the same number of sides.

2) Neither the source nor destination drive can be a hard disk system.

3) The destination drive must have an equal or greater number of cylinders than the
source drive. For most people, a cylinder is the same as a track, but double-sided
drives and hard disk systems actually have cylinders. A cylinder is a collection of
tracks grouped together as one logical unit.

4) If the destination diskette has flaws (indicated during the FORMAT process), they
cannot be on a cylinder that is occupied on the source drive. Generally, flawed
diskettes should be discarded in any case.

When these conditions are met, and none of the special BACKUP parameters are specified
(as described further on) BACKUP will be able to do what is called a "Mirror-image
BACKUP". This is a misnomer-- the data is not reversed, as it would be in a mirror, but
is copied identically from the source to the destination cylinder by cylinder.

This is the most common type of BACKUP. All other forms of BACKUP operations fall into
the category of "BACKUP-by-class". If one or more of the above conditions are not met,
then the BACKUP is done by copying each file on the source drive to the destination
drive, one at a time. During this type of BACKUP, the BACKUP utility will display
messages to indicate the type of BACKUP. "Backup-by-class invoked" means that the
process was caused by a specification on the part of the user. "Backup-reconstruct
invoked" means that BACKUP detected that one of the above conditions was not true.

Well, you may ask, what is a "BACKUP-by-class" good for? For this we must dig a little
deeper into the parameters and specifications of BACKUP. One useful specification is
the "partspec". A partspec is a portion of a normal LDOS file specification. For
example, to move all files with the extension of /BAS, and that begin with "M". The
command "BACKUP M/BAS:0 :1" could be used. The special partspec of $ means "all files".

To move groups of files, parameters can be used. For instance, "BACKUP :0 :1 (MOD)"
would copy all files that had been modified since they were last backed up. In a DIR,
this modified condition is indicated by a "plus" (+) sign next to the file.

Other parameters are available to backup files based on dates, visibility status,
protection level, and whether or not the file already exists on the destination drive.
With this introduction, all users should be able to use BACKUP more efficiently.

But what about frequency of backups? As a general rule, backups should be made at any
significant break in a data processing procedure. That means at least every day a
diskette is used. If a lot of processing is done, it wouldn't be a bad idea to perform
backups more often, perhaps at mid-day in addition to at the end of the working day.

And how many sets of diskettes? Three is considered the absolute minimum. The sets
should be used in a rotation system. For example, let's label the sets of disks A, B,
and C. On the first day, set A is used. At the end of the day, set A is backed up onto
set B. The next day, set B is used for processing. Set B is then backed up onto set C.
Set C is used the next day, and at the end of the day, set C is backed up onto set A,
and the cycle continues. In this manner, no set is used two days in a row, and new work
is always done on the backup to ensure its integrity.

Many companies use five sets, labeled Monday through Friday. This helps prevent
confusion as to what set is to be used, and provides additional backup protection. Each
set is used on its labeled day, then backed up onto the next day's set. Six sets could
be used if work is to be done on Saturdays.

Page 38

What about re-formatting? Many people advocate periodically bulk-erasing and re-
formatting the destination disk before a backup. This is a good idea, as this would be
the only time that currently unused portions of the diskette would be checked for
potential flaws.

What about diskettes themselves? Diskettes should be labeled with the date they are put
into service. After a period of time, typically six months, they should be replaced
with new diskettes, even if no difficulties were noted in their operation. The cost of
even a premium diskette is trivial when compared to the value of the data it stores.

Sending Characters to a Printer Via the Keyboard with a Single Keystroke (Whew!)
by Dick Konop

An interesting customer service request prompted this article. The nature of the
dilemma goes something like this: How can one pass an um-teen character control
sequence to a printer directly from the keyboard with a single keystroke? One answer to
this problem can be found in the use of KSM and MINIDOS.

The MINIDOS filter has a command (<CLEAR><SHIFT><P>) which will allow a (two character)
hex byte to be entered from the keyboard. This byte is then sent to the printer. The
KSM filter allows multiple keystrokes to be defined as a single key (each of the
keystrokes <CLEAR><A> through <CLEAR><Z> can represent a different sequence of
characters). To attain our final goal, a KSM file can be created which will invoke the
MINIDOS filter, and pass it the hex control bytes.

The best way to illustrate this is by example. Let us assume that the bytes X'1B' and
X'0F' need to be sent to the printer to produce the desired result. First, create a KSM
file. One method of producing a KSM file is with the BUILD library command. If the
BUILD command is used, the HEX parameter must also be specified. For example:

BUILD MOOSE/KSM (HEX)

After issuing the BUILD command, the prompt A --> will appear on the screen (if the
extension for the filespec was /KSM). Respond to this prompt by entering the following
characters (note that the spaces are for readability only, and must not be entered).

F0 31 42 3B F0 30 46 3B 0D

Once the KSM file has been built, the KSM and MINIDOS filters must be applied to the
keyboard. The order in which the filters are applied is important. The KSM filter must
be applied first, followed by the MINIDOS filter. For example:

FILTER *KI KSM MOOSE
FILTER *KI MINIDOS

After this has been done, depressing the <CLEAR><A> key sequence will cause the
characters X'1B' and X'0F' to be sent to the printer.

A total understanding of what is happening is not required to use this concept. It is
important to note that for each byte sent to the printer, four bytes are needed in the
KSM file. The first byte will always be X'F0'. This is the character that will cause
the MINIDOS "P" function to be activated. The next two bytes in the KSM file are the
hex values corresponding to each hex digit in the byte being sent to the printer; That
is to say, the "31" and "42" are the hex representations for the characters "1" and
"B", respectively. These form the byte that will be sent to the printer (in this case
X'1B'). The last byte in the four byte sequence will always be X'3B'. This is a
semicolon character, and is translated by KSM into an <ENTER> (X'0D'). Finally, there
must be a terminating X'0D' byte at the end of the KSM key assignment. This acts as a
terminator for the KSM key definition. The X'0D' marks the end of all assignments made
to the <CLEAR><A> KSM key.

Page 39

Please note that when a KSM printer control key is pressed, the actual MINIDOS commands
will appear on the screen (just as if they had been typed in). This type of printer
control should be useable from within any program that allows use of KSM and MINIDOS.

THE JCL CORNER - by Chuck

For the last two years, I have attempted to use this column to shed some light on the
subject of Job Control Language. Through examples both of my own design and also those
of other readers, the many aspects of JCL have been examined and described. Rather than
rehash all of this material again, I would rather devote this space to answering
specific questions about the application of JCL procedures.

One particular question about using JCL procedures keeps coming to the attention of our
customer service department. The question, "How can I use JCL to run (a particular
program)?", can't always be answered with a simple set of instructions. Some programs
as written can be run and controlled via a JCL procedure, while others can't. There are
those that can be partially controlled, but still require some user keyboard input.

Future columns will attempt to deal with both previously mentioned subjects; answering
specific user questions, and explaining how existing programs can be controlled with a
JCL procedure. In addition, I will attempt to explain how a program can be designed to
allow a JCL procedure to control it from start to finish. If any of you have questions,
comments, or interesting uses for JCL, send them to LSI, attention "JCL Chuck".

Cumulative Index to LDOS Ouarterly Volumes 1 and 2 - Subject

"Active Variable Dump for LBASIC" - Alan Moyer v2n3p15 v2n4p38
"Alcor Pascal" - Scott Loomer v2n1p18
Allocation, disk v2n4p08
AM Electronics, disk controller v1n3p03
"APL*PLUS/80 - A System Overview" - Daniel Lofy & Lee Rice v2n1p09
"Article, An" - Charlie Butler v1n4p40
"ASCII File Listing Utility for The BASIC Answer" - Jeffrey Brenton v2n3p19
Assembly language basic concepts v2n2p58 v2n3p46 v2n4p40
Assembly language patching v1n6p38 v2n1p46
Assembly language programming tips vln5p14 v1n6p64
"At Large" - Earl Terwilliger v1n6p50
"Automatic Chaining with JCL" - Jim Kyle v2n4p52
"BASIC and File Structure - A Beginner's View" - Wes Goodnough v1n6p20
"BASIC Concepts - The RUN,V Command" - Dick Konop v1n6p69
"Beta Tester, I was an LDOS" - Tim Daneliuk v1n3p16
Byte I/O v1n3p38 v1n6p76 v2n2p52

under LDOS 6.x v2n3p56
'C' graphics v2n4p16
"'C' language, The" - Earl Terwilliger:

general introduction v2n1p15
functions, variables, constants, expressions v2n2p35
operators v2n3p39
logic, control & flow v2n4p34
initalization, blocks, pointers, arrays v2n5p31

"'Card' Utility" - Paul Tonini v2n2p18
"Case of Mis-Allocation, A" - Bill Schroeder v2n4p08
Case mode indicator v2n2p11
Changing operating systems v1n4p40
"Clock Speedup Kits with LDOS, Using" - Tim Mann v1n1p13
Cobol v1n6p32
"Color Comes to the TRS-80's" - Scott Loomer v2n3p28
"Communicating Micro, The" - Gordon Thompson v1n6p12 v2n1p28
Communications v1n5p40 v1n6p83
"Communication Host" - James Bruckart v2n1p35

Page 40

Cumulatlve Index to LDOS Quarterly Volumes 1 and 2 - Subject

"Confessions of a Machine Language Addict" - Ray Pelzer v1n6p38
Configuring with non-relocatable code v2n4p50
Customer service tips v2n1p07
Cylinder term explained v1n1p04
DAM's, old v1n5p19
"Data Address Marks" - Roy Soltoff v1n1p05
Date conversions v2n4p60
"Device I/O and Independence, LDOS" - Roy Soltoff v1n3p38
Disk allocation schemes v2n4p08
Disk byte I/O v1n3p38 v1n6p76 v2n2p52
Disk controller, AM Electronics v1n2p03
Disk drive first access delay v2n4p63
"Disk Drive Control Linkages, LDOS" - Bob Bowker v1n6p43
Disk drives (8") on the Model III v2n3p08
Disk drives, non-Radio Shack v2n3p55
Disk drive poll v2n2p27
Disk drive select time hardware fix (Mod I) v1n3p18
"Disk I/O in Assembler" - Doug Kennedy v2n2p55
Disk speed (300 RPM delays) v1n4p11
"Double Sided Drives with LDOS" - Tim Mann & Roy Soltoff v1n2p37 v1n3p56
"Easy LScript" - James Bruckart v2n2p22
"Easy VisiCalc" - James Bruckart v2n3p23
"EDAS IV 'Z' Command" - Earl Terwilliger v2n1p37
Editor, LDOS command line v2n5p07
Electric Webster with Newscript, LDOS and Sole v1n6p55
"Electronic Inbasket, The" - Gordon Thompson v2n4p15
"ELSIE - The Contented Compiler" - Jim Frimmel v1n3p2l
Epson MX-80 tips v1n5p18
"..... er" - Earle Robinson:

assembly language efficiency v1n6p64
printers, TBA, UTILZAP v2n1p39
printers, word processors, MNet, 'C', LDOS 6.x v2n2p26
'C' book, SS drivers, Model 4, PROMPT/CMD v2n3p33
UNIX, IBM PC, Telex v2n4p28

Expansion interface v1n4p39
EZEDIT - The LDOS command line editor - Graham Brown v2n5p07
"Fast Graphics for 'LC'" - Scott Loomer v2n4p16
File listing utility for TBA v2n3p19
File structure, BASIC v1n6p20
Filter linkage v1n3p47
"Fortran, Cobol and LDOS JCL" - Glen Rathke v1n6p32
Fortran with interrupts and SVC's v2n4p19
"Greek to Me, LDOS - It's" - Charles Knight v1n5p15
"Hayes Smartmodem, LDOS and a" - John Mullin v1n6p34
High memory, avoiding memory conflicts v1n4p13
High memory module header v1n3p46
Host, communications v2n1p35
Index, LDOS Quarterly/LSI Journal - Scott Loomer v2n5p39
"Inside the Expansion Interface" - Earle Robinson v1n4p39
"Interrupts and SVC's in Fortran, Using" - J. Bender v2n4p19
JCL chaining v2n4p52
"JCL Corner" - Chuck Jensen:

clear screen v1n1p03
file copying v1n2p30
compilation macros v1n3p51
hex codes, more compilation macros v1n4p46
keyboard input v1n5p34
logical operators, keyboard filters, LScript patch v1n6p72
creating and defining JCL procedures v2n1p54
backups v2n2p49
JCL with FORTRAN and Cobol v1n6p32

Page 41

Cumulative Index to LDOS Ouarterly Volumes 1 and 2 - Subject

LBASIC:
active variable dump v2n3p15 v2n4p38
"CMD"O" implementation and possible uses" v1n4p15
default extension patch v1n5p19
file structure v1n6p20
notes (items missing from 1st printing of the LDOS manual) v1n1p09
RUN,V command v1n6p69
USR routines (relocating to high memory) v1n3p47

LDOS 5.1.4, new features v2n4p03
LDOS 6.x

announced v2n2p46
licensing v2n4p07
technical manual v2n4p07
patches v2n5p35 v2n4p64

"LDOS: How it Works" - Joe Kyle-Dipietropaolo:
PATCH utility v2n1p52
REPAIR, CONV and COPY23B utilities v2n2p44
non-Radio Shack disk drives v2n3p55
configuring with non-relocatable code v2n4p50
BACKUP utility v2n5p36

"Les Information" - Les Mikesell:
communications v1n5p40
RS232 drivers v1n6p83
SYSTEM (FAST) and (SLOW) commands v2n1p58
byte I/O v2n2p52
byte I/O under LDOS 6.x, CTLP/FLT v2n3p56
@PARAM under LDOS 6.x v2n4p61

"Let Us Assemble" - Rich Hilliard
the basics v2n2p58
using DEBUG, sorts v2n2p46
number base conversion v2n4p40

"Library, The" - Earle Robinson v1n4p28
Library commands

LOAD documentation correction v2n1p47
SYSTEM (FAST) v1n1p13 v2n1p58
SYSTEM (SLOW) v2n1p58

Limited backup policy explained - Bill Schroeder v2n3p04 v2n4p06
"Linking to LDOS in Assembly" - Roy Soltoff v1n1p12
"LISP Implementations for the Z-80" - Lee Rice & Daniel Lofy v1n6p26
Listing utility for TBA v2n3p19
LScript made easy v2n2p22
"LScript Patches to Add Versatility" - Scott Loomer v1n6p45 v2n1p47
Load module structure v1n4p42
Lower case lock v1n4p11
LSI Journal submission and subscription policies v2n4p02
MAX-80 LDOS described v2n1p50
"MAX-80 Memory Map" - Chuck Jensen v2n4p58
Magazines v2n3p35
Manual story, with corrections to 1st edition v1n1p16
Memory map v2n1p34
Minimum configuration disk v1n2p29
"Mixing Newscript, Electric Webster, LDOS and Sole" - Jerry Latham v1n6p55
Modifying Mod 3 RTC Interrupts - Andrew Grandsen v2n5p22
"My BASIC Answer" - E. Cheatham (TBA review) v2n3p17
"Newscript 7.0 and REFLEX" - Gordon Thompson v2n1p28
"Newscript and The BASIC Answer" - Jerry Latham v2n2p20
"New Version - EDAS IV, A" - Marc Leager v1n6p09
Number base conversion v2n4p40
Old DAM's v1n5p19
Parity errors v1n1p04

Page 42

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Subject

"*** PARITY = ODD ***" - Tim Daneliuk:
introduction, DATAENTR 200 & ISAM 200 v1n4p17
tips for better programming, DISCATER, Filter Disk v1n5p11
BASF drives, drive poll, TAS, MODEM80, HEXSPELL II, Utilities, HELP v1n6p59
Tandy, MAX-80, AEROCOMP, Electric Webster, The BASIC Answer v2n1p42
disk drive poll, gold plugs, LX-80, Proofreader, Scripsit Dict. v2n2p27
magazines v2n3p35
rumors, LX-80 software compatibility, TRSDOS 6.x software v2n4p31
CP/M, LeScript, M4 vs. MAX-80 v2n5p28

"Partitioned Data Sets, MISOSYS Announces" - Roy Soltoff v1n3p23
"Pascal 80, LDOS and" - D. Hill v2n1p22
Passwords for LDOS 5.1.x v1n1p03
Patch, how to v2n1p52
"PDS - Standard and Other Types of Uses" - Scott Loomer v2n1p24 v2n3p45
"Performing Date Conversions in BASIC" - Dick Konop v2n4p60
PR/FLT, changing parameters v2n5p13
Printer codes, sending v2n5p38
Printers v2n1p39
Profile III Plus with LDOS v2n4p55 v2n5p26
Profile One Plus (Pro3+ on the Mod 1) - E. Sturiale v2n5p26
PRPARM - changing PR/FLT parameters - Graham Brown v2n5p13
Quarterly reader survey results v2n2p06
Radio Shack v2n1p42 v2n3p03
Recursive v2n5p42
"Relocating Code for LBASIC USR Routines" - Chuck Jensen v1n3p47
Reviews:

Alternate Source (TAS) - Tim Daneliuk v1n6p60
APL*PLUS/80 (STSC) - Daniel Lofy & Lee Rice v2n1p09
CHROMAtrs (South Shore Computer Concepts) - Scott Loomer v2n3p28
DATAENTR200 & ISAM200 (Johnson Associates) - Tim Daneliuk v1n4p18
EDAS IV (MISOSYS) - Marc Leager v1n6p09
Electric Webster (Cornucopia) - Tim Daneliuk v2n1p45
HELP (MISOSYS) - Tim Daneliuk v1n6p63
HEXSPELL II (Hexagon) - Tim Daneliuk v1n6p61
LDOS Utilities (Powersoft) - Tim Daneliuk v1n6p62
LISP (Supersoft) - Lee Rice & Daniel Lofy v1n6p29
MAX-80 (Lobo) - Tim Daneliuk v2n1p44
Microcomputer Math book (SAMS) - Earle Robinson v1n5p10
MODEM80 (LSI) - Tim Daneliuk v1n6p60
Pascal (Alcor) - Scott Loomer v2n1p18
Pascal-80 (New Classics) - D. Hill v2n1p22
PDS (MISOSYS) - Scott Loomer v2n1p24
Printers - Earle Robinson v2n1p39
Profile III+ (Radio Shack) - Sam Goldberg v2n3p25
Proofreader (Aspen Software) - Tim Daneliuk v2n2p30
Scripsit Dictionary (Radio Shack) - Tim Daneliuk v2n2p30
Structured BASIC Translator (Acorn) - Sue Ratkowski v1n4p21
The BASIC Answer (LSI) - E. Cheatham v2n3p17
The BASIC Answer (LSI) - Tim Daneliuk v2n1p46
UOLISP (Far West) - Lee Rice & Daniel Lofy v1n6p30

Routing a device v1n3p38
"Roy's Technical Corner" - Roy Soltoff:

load module structure v1n4p42
task processor v1n5p20 v1n6p76
error handling during byte I/O, @CKDRV, KFLAG$, @ICNFG, @KITSK v1n6p76
LDOS 6.x v2n2p46

RS-232 drivers v1n6p83
RTC Interrupt, Model 3 v2n5p22
"Running 8-Inch Drives on the Model III Under LDOS" - Peter Simon v2n3p08
Sector I/O v2n2p55
Sending Printer codes v2n5p38

Page 43

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Subject

"SOLEFIX - Fix that GAT Error" - Erik Ruf v2n2p14 v2n4p38
Speedup kits v1n1p13
SYNONYM - The LDOS command synonym processor - Henry Melton v2n5p14
Sysgen and type-ahead v1n1p04
Sysres, Quickly with JCL v2n4p12
System routines:

@ADTSK, @RMTSK, @KLTSK, @RPTSK - task proc. v1n5p31 v1n6p76 v2n4p19
@CKDRV - determining 5.1.2 vs 5.1.3 for @CKDRV adjustment v1n6p78
@CKDRV - moved v1n5p06
@CMNDI - command interpreter v1n1p12
@CTL, @GET, @PUT - byte I/O v1n3p38
DAY$ - day of the week v1n4p11
@GET and @PUT under LDOS 6.x v2n3p56
@ICNFG - configuration interfacing v1n6p81
@KITSK - keyboard task v1n6p82
KFLAG$ - keyboard scanner v1n6p78
"@PARAM, Using" - Roy Soltoff v1n2p31
@PARAM under 6.x v2n4p61
"@PARAM, @DSPLY, @EXIT and INBUF$ for Everyone" - David Vinzant v2n2p23
@RAMDIR documentation correction v2n2p39
SVC's and Fortran v2n4p19

Tandy v2n1p42 v2n3p03
Task processor v1n5p20 v1n6p76
"T-Timer, LDOS Supports the" - Roy Soltoff v1n4p12 v1n5p18 v1n6p66
TRSDOS (Mod I) to LDOS (Mod III) transfer without REPAIR v1n4p58 v2n2p44
TRSDOS 6.x (see also LDOS 6x.) v2n2p46
Update policy explained - Bill Schroeder v1n2p02 v2n4p04
Upper case lock v1n4p11
Users group directory v2n1p06
Utilities:

CONV v2n2p44
COPY23B v2n2p44
PATCH v2n1p52
REPAIR v2n2p44

Version number explanation v1n2p02
VisiCalc made easy v2n3p23
"VisiCalc with LDOS, Using" - Roy Soltoff v1n2p20

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Programs

ADDLF/FLT - James Bruckart - add a line feed after carriage return v2n1p36
ALIVE/ASM - Earl Terwilliger - task processing demo v1n6p53
BEEP/FLT - Tim Mann - beep cassette port on each keystroke v1n1p22
BINHEX/BAS - Tim Mann - convert hex to binary v1n1p21 v1n4p56

Improved version with checksum v2n2p42
CARD/BAS - Paul Tonini - file utility v2n2p18
CASE/CMD - Rick Tobias - Mod I case mode indicator v1n2p11
CIRCLE/CCC - Scott Loomer - fast graphic circle routine v2n4p16
CLFLT/FLT - Les Mikesell - general purpose communications filter v1n6p87
CLS/CMD - clear screen command for use in JCL (very short!) v1n6p67
COM/BAS - Earl Terwilliger - short BASIC dumb terminal program v1n6p50
COMM1/ASM - Earl Terwilliger - machine language dumb terminal program v1n6p51
CONFIG8/CMD - Peter Simon - 8" drives on the Model III v2n3p08
CTLP/FLT - Les Mikesell - link printer and display v2n3p57
DATE/BAS - Dick Konop - date conversions v2n4p60
DCAL/BAS - Tim Mann - disk drive speed check on Mod I v1n1p26
DELETE/CMD - Renato Reyes - multiple file killer v1n4p56
DIRMAP/BAS - Dave McLaughlin - granule map of disk allocation v1n2p41
DISKMAP/BAS - Bill Fields - alphabetized disk file mapper v1n4p50
EZEDIT/FLT - Graham Brown - LDOS command line editor v2n5p07

Page 44

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Programs

FAST/CMD - Tim Mann - fast clock on the LX-80 v1n1p24
FASTSPL/ASM - fast despooling for Model I 5.0.3 v1n6p68
FILL/CCC - Scott Loomer - non-recursive graphic fill routine v2n4p16
INBASKET/BAS - Gordon Thompson - communications message collector v2n4p15
IOTA/FLT - Charles Knight - modification to SLASH0/FLT v1n5p16
KILL/CCC - Earl Terwilliger - multiple file killer v2n2p39
LBASIC/OV4 - Alan Moyer - active variable dump for Model I v2n3p15
LISTITBA - Jeffrey Brenton - file lister for TBA v2n3p19
MINIDOS/FLT - Roy Soltoff - MiniDOS for 5.0.x Mod I users v1n2p44
MODCMD/CMD - John Mullin - send commands to a Hayes modem v1n6p34
MX80/FLT - Ken Roser - block graphics on MX-80 w/o Graftrax v1n1p22
MX80/FLT - improved version of above v1n4p59
NODAM/CMD - Chuck Jensen - read non-LDOS disks without REPAIR v1n4p58 v2n2p44
ONLINE/FLT - John Mullin - carrier detection filter v1n6p37
PASSWORD/BAS - James Bruckart - password check for host systems v2n1p36
PENCTL/FLT - Tim Mann - for Electric Pencil users v1n1p22
PDUBL/CMD - original Percom doubler driver (for illustration only) v1n1p24
PROMPT/CMD - Earle Robinson - change the 'LDOS Ready' prompt v2n3p35
PRPARM/CMD - Graham Brown - changing PR/FLT parameters v2n5p13
REFLEX/FLT - Gordon Thompson - communications program v1n6p16
RENAME/BAS - Charles Knight - BASIC file renamer v1n5p42
SALVAGE/BAS - transfer data from TRSDOS 2.3B disks v1n2p15 v1n4p62
SLASH0/FLT - print slashed zeroes v1n2p41
SLOSTEP/DCT - Les Mikesell - head settling delay for some DS drives v2n1p60
SOLEFIX/ASM - Erik Ruf - fix SOLEd disk for compatibility v2n2p14
SYNONYM/CMD - Henry Melton - command synonym processor v2n5p14
TCHRON/ASM - Roy Soltoff - time board support routine v1n6p66
TERMINAL/BAS - dumb terminal program v1n6p86
TIME50/CMD - Andrew Grandsen - modify M3 RTC processing (50Hz) v2n5p22
TIMEDI/FOR - J. Bender - Fortran interrupt and SVC demo v2n4p22
UPCASE/FLT - Tim Mann - convert characters to upper case v1n1p24
UPDATE/BAS - Tim Mann- update system disks (replaced by BACKUP) v1n1p23
USRFREE/CMD - Chuck Jensen - LBASIC free memory command v1n1p24

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Patches

BASIC compiler (RS) patch v1n4p62
COBOL patch v1n4p62
DEBUG ASCII mode patch v1n5p45
DIRCHECK/CMD (LSI Utility Disk #1) patch for hard or DS drives v2n2p44
DTERM patch - Peter Trenholme v1n5p18
EDAS IV "Z" command patch - Earl Terwilliger v2n1p37
FED patch v2n1p47
File Manager patch for moving HIT entries v2n5p36
File Manager patch for moving system files v2n4p38
HIGH patch for screen full pause v2n4p39
I/O bus disable for boot on Model III v2n3p46
KI/DVR patch to extend keyboard debounce time v2n3p45
LBASIC default extension patch v1n5p19
LBASIC remove execution banner v2n5p15
LBASIC RUN"",V fix v2n5p35
LED xlate parameter patch v2n1p48
Lower case driver forced on boot (Mod I) v2n3p46
LScript patch to require filespecs for S or L v2n1p62
LScript JCL patch v1n6p13
LScriptX patches - Scott Loomer v1n6p45 v2n1p47
MAP (LSI Utility Disk #1) v2n1p47
MAX-80 patch to prevent printer driver from converting LF's to CR's v2n2p39
MAX-80 patch to set LF after CR v2n4p39
Microsoft patches v1n2p16

Page 45

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Patches

Microsoft MACRO-80 patches - Richard Deglin v1n6p96
MiniDOS patch to allow installation before KSM v2n1p49
Mod 3 speedup patch v2n4p39
Newscript patch to use with REFLEX - Gordon Thompson v2n1p30
Password (master) disable patch v1n5p19
PDUBL patch to write old DAM v1n5p19
PR/FLT patch to disable chr$(6) trapping v2n1p48
Profile patches - Dick Yevich v1n4p59
Profile patch to fix buffer problem v2n1p47
Profile 3 Plus, HD version - for use on Mod 1 - E. Sturiale v2n5p26
PDUBL patch to write old DAM v1n5p19
QFB - Quick Format and Backup fix for READ40 and DS drives v2n5p36
SOLE patch to allow use of Super Utility - Erik Ruf v2n2p14
SuperScripsit patch - Model 1 version 01.02.00 v2n5p35
SuperScripsit patches - Dennis Brent & Renato Reyes v1n6p92
SuperScripsit patches - Joseph Kyle-Dipietropaolo v2n4p55
SYSTEM(SLOW) and (FAST) patch v2n1p58
TCHRON, TIMEDATE80 & TRSWATCH time & date boards patch vln4pl2 v1n6p66
The BASIC Answer patch for local variable DC v2n4p39
T-Timer patches vln4pl2 vlnSpl8 v1n6p66
TRSDOS patch to read REPAIRed LDOS disks on Mod I v1n2p13
VIDSAV/CMD (LSI Filter Disk #2) patch to allow JCL installation v2n2p43
VisiCalc patches v1n2p20 v1n5p43

Mod III enhanced - Ray Pelzer v1n5p43 v1n6p38 v2n1p46 v2n3p45
RS232 transfer v1n6p19

WRTEST (LSI Utility Disk #1) v2n1p47
XMODEM - from LS-Host/Term - patch to fix 8-bit init v2n5p36

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Authors

Bender, J. - "Using Interrupts and SVC's in Fortran" v2n4p19
Bowker Bob - "LDOS Disk Drive Control Linkages" v1n6p43
Brent, Dennis - SuperScripsit Patches v1n6p92
Brenton, Jeffrey - "An ASCII File Listing Utility for TBA" v2n3p19
Brown, Graham - "EZEDIT - The LDOS command line editor" v2n5p07

"PRPARM - Changing PR/FLT parameters" v2n5p13
Bruckart, James- "Communication Host" (PASSWORD/BAS & ADDLF/FLT) v2n1p35

"Easy LScript" v2n2p22
"Easy VisiCalc" v2n3p23

Butler, Charlie - "An Article" (changing operating systems) v1n4p40
Cheatham, E. - "My BASIC Answer" v2n3p17
Daneliuk, Tim - "I was an LDOS Beta Tester" v1n3p16

"*** PARITY = ODD ***": DATAENTR200 & ISAM 200 v1n4p18
"*** PARITY = ODD ***": Message to Hackers v1n5p11
"*** PARITY = ODD ***": TAS, HEXSPELL II, MODEM80, HELP, Utilities v1n6p59
"*** PARITY = ODD ***": Tandy, MAX-80, Electric Webster, TBA v2n1p42
"*** PARITY = ODD ***": disk drive poll & spelling checkers v2n2p27
"*** PARITY = ODD ***": magazines v2n3p35
"*** PARITY = ODD ***": rumors, LX-80, TRSDOS 6.x software v2n4p31
"*** PARITY = ODD ***": CP/M, LeScript, M4 vs. MAX-80 v2n5p28

Deglin, Richard - Microsoft MACRO-80 patches v1n6p96
Fields, Bill - DISKMAP/BAS v1n4p50
Frimmel, Jim - "ELSIE, The Contented Compiler" v1n3p21
Goldberg, Sam - "Review of Profile III+ for LDOS" v2n3p25
Goodnough, Wes - "BASIC and File Structure - A Beginner's View" v1n6p20
Hall, D. - "LDOS and Pascal-80" (New Classics review) v2n1p22
Knight, Charles - "LDOS, It's Greek to Me" (Greek translation) v1n5p15

RENAME /BAS v1n5p42
Kyle, Jim - "Automatic Chaining with JCL" v2n4p52
Latham, Jerry - "Mixing Newscript, Electric Webster, LDOS and Sole" v1n6p55

Page 46

Cumulative Index to LDOS Quarterly Volumes 1 and 2 - Authors

Latham, Jerry - "Newscript and The BASIC Answer" v2n2p20
Leager, Marc - "A New Version - EDAS IV" (MISOSYS review) v1n6p09
Lofy, Daniel - 'IAPL*PLUS/80 - A System Overview" (STSC review) v2n1p09

"LISP Implementations for the Z-80" (Supersoft & Far West reviews) v1n6p26
Loomer, Scott - "Alcor Pascal" (review) v2n1p18

"Color Comes to the TRS-80's" (CHROMAtrs review) v2n3p28
"Fast Graphics for 'LC'" v2n4p16
"LScript Patches to Add Versatility" v1n6p45 v2n1p47
"PDS - Standard and Other Types of Uses" (MISOSYS review) v2n1p24

Melton, Henry - "SYNONYM - LDOS command synonym processor" v2n5p14
McLaughlin, Dave - DIRMAP/BAS v1n2p41
Moyer, Alan - "Active Variable Dump for LBASIC" v2n3p15
Mullin, John - "LDOS and a Hayes SmartModem" (w/programs) v1n6p34
Pelzer, Ray - "Confessions of a Machine Language Addict" v1n6p38 v2n1p46
Ratkowski, Sue - Structured BASIC Translator review (Acorn) v1n4p21
Rathke, Glen - "Fortran, Cobol and LDOS JCL" v1n6p32
Reyes, Renato - DELETE/CMD v1n4p56

SuperScripsit patches v1n6p92
Rice, Lee - "APL*PLUS/80 - A System Overview" (STSC review) v2n1p09

"LISP Implementations for the Z-80" (Supersoft & Far West reviews) v1n6p26
Robinson, Earle - "Inside the Expansion Interface" v1n4p39

"The Library" v1n4p28
"Review: Microcomputer Math" (Barden, SAMS) v1n5p10
"..... er": assembly language programming tips v1n5p14
"..... er": efficient assembly language programming v1n6p64
"..... er": printers, word processors, MNet, 'C', LDOS 6.x v2n2p26
"..... er": 'C' book, SS drivers, Model 4, PROMPT/CMD v2n3p33
"..... er": UNIX, IBM PC, Telex v2n4p28

Roser, Ken - MX80/FLT v1n1p22
Ruf, Erik - "SOLEFIX - Fix that GAT Error" v2n2p14
Simon, Peter - "Running 8-Inch Drives on the Model III Under LDOS" v2n3p08
Sturiale, E. - "Profile One Plus" v2n5p26
Terwilliger, Earl - "At Large" (communications program & ALIVE) v1n6p50

"The 'C' Language" v2nlpl5 v2n2p35 v2n3p39 v2n4p34 v2n5p31
"Using the EDAS IV 'Z' Command" v2n1p31

Thompson, Gordon - "The Communicating Micro" (& REFLEX/FLT) vln6pl2 v2n1p28
"The Electronic Inbasket" v2n4p15

Tobias, Rick - CASE/CMD, a Mod I case mode indicator v2n2p11
Tonini, Paul - CARD/BAS, file utility v2n2p18
Vinzant, David - "@PARAM, @DSPLY, @EXIT and INBUF$ for Everyone" v2n2p23
Yevich, Dick - "Profile on LDOS" v1n4p59

Developing an index turns out to be a very subjective procedure.

- apologies are hereby offered to anyone that feels slighted through omission or
misstatement; it was unintentional -- Scott Loomer

LSI Quick Hint #2

With LDOS 5.1.4, using the library command "DIR partspec:n (A=N)" will provide the
old-style "multiple-across" directory display without any patches to the system.

Page 47

.CPROMPT/FIX
X'75F8'=CC 3A 7C CA 63 76 FE 6D CA 63 76

.RPROMPT/FIX
X'76BE'=02 7D
X'7D02'=CD 50 7C 21 2D 71 CD E5 7C 21 1C 7D 7E 02 23 CD 33
X'7D13'=00 7E FE 03 28 61 C3 0E 7D 0D 0D 0D 00 20 20 20 20
X'7D24'=20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 4D
X'7D35'=6F 75 6E 74 20 43 52 45 41 54 49 4F 4E 20 44 69 73
X'7D46'=6B 65 74 74 65 0D 20 20 20 20 20 20 20 20 20 20 20
X'7D57'=20 20 20 20 20 20 20 20 20 50 72 65 73 73 20 45 4E
X'7D68'=54 45 52 20 54 6F 20 43 6F 6E 74 69 6E 75 65 20 20
X'7D79'=03 AF CD 49 00 FE 0D 20 F8 C9

.RSPATCH/JCL
PATCH EFCM/CMD (X'886A'=C3 84 86)
PATCH EFCM/CMD (X'883C'=CD 78 86)
PATCH EFCM/CMD (X'8684'=AF 32 14 42 C3 2D 40)
PATCH EFCM/CMD (X'8678'=3E 20 EB 2B BE CA 7B 86 23 36 0D C9)
PATCH RM/CMD (X'716C'=31)

.PROFIX/JCL

. Auto patching for Profile + HD model III

.to operate on the Model I with either floppy or HD.

.Be sure the patch disk is in drive 0 and the

.disk containing the profile modules is in drive 1
//PAUSE Press <ENTER> to Begin
PATCH CM/CMD USING CM/FIX
PATCH RM/CMD USING RM/FIX
PATCH EFC1/CMD USING EFC1/FIX
PATCH EFC2/CMD USING EFC2/FIX
PATCH EFC3/CMD USING EFC3/FIX
PATCH EFC4/CMD USING EFC4/FIX
PATCH EFC5/CMD USING EFC5/FIX
PATCH EFC6/CMD USING EFC6/FIX .CM/FIX
PATCH EFCM/CMD USING EFCM/FIX X'7BC2'=67 44
PATCH EFCE/CMD USING EFCE/FIX X'74B8'=18 43
PATCH EFCF/CMD USING EFCF/FIX X'7652'=18 43
PATCH EFC7/CMD USING EFC7/FIX X'765E'=18 43
PATCH EFC8/CMD USING EFC8/FIX X'74BB'=19 43
PATCH EFC9/CMD USING EFC9/FIX X'7661'=05 44
PATCH EFCA/CMD USING EFCA/FIX X'7832'=05 44
PATCH EFCB/CMD USING EFCB/FIX X'761A'=49 40
PATCH EFCC/CMD USING EFCC/FIX X'761E'=49 40
PATCH EFCD/CMD USING EFCD/FIX X'7617'=01 30

X'782C'=01 30
X'7ABE'=01 30

.PROMPT/JCL X'7B3F'=01 30

.This patch allows FLOPPY usage X'7151'="ONE"
PATCH CM/CMD USING CPROMPT/FIX X'7172'=31
PATCH RM/CMD USING RPROMPT/FIX X'74F6'=63

Page 48

.EFC1/FIX .EFCB/FIX .EFCF/FIX
X'87FA'=67 44 X'5801'=5D 44 X'6681'=67 44 X'88AB'=67 44
X'846A'=05 44 X'5825'=5D 44 X'62F1'=05 44 X'7ADC'=18 43
X'8464'=01 30 X'5849'=5D 44 X'62EB'=01 30 X'7AF3'=18 43
X'86F6'=01 30 X'588E'=5D 44 X'657D'=01 30 X'7B01'=18 43
X'8777'=01 30 X'590D'=5D 44 X'65FE'=01 30 X'851B'=05 44
X'8397'=C2 X'5A03'=5D 44 X'5E4B'=C1 44 X'801B'=49 40
X'89B0'=60 X'60F4'=60 X'5E46'=C4 44 X'8515'=01 30

X'56ED'=18 43 X'87A7'=01 30
X'570B'=18 43 X'8828'=01 30

.EFC2/FIX .EFC8/FIX X'66FF'=60 X'82F3'=60
X'7E12'=67 44 X'56F2'=67 44
X'7A82'=05 44 X'543C'=01 30
X'74BE'=22 40 X'5668'=01 30 .EFCC/FIX .EFCM/FIX
X'70C3'=5B X'56E9'=01 30 X'56E7'=67 44 X'8CFF'=67 44
X'4022'=8F X'707B'=01 30 X'9625'=67 44 X'7379'=96 43
X'4023'=00 X'70AD'=01 30 X'97E9'=67 44 X'7601'=05 44
X'7E90'=60 X'7BAF'=01 30 X'9FFD'=67 44 X'8843'=05 44

X'7BE7'=01 30 X'A01F'=67 44 X'8986'=05 44
X'7BDE'=18 43 X'565D'=01 30 X'76EC'=C2

.EFC3/FIX X'7BED'=18 43 X'56DE'=01 30 X'7423'=18 43
X'8109'=67 44 X'8DE7'=18 43 X'73B1'=01 30 X'75D2'=18 43
X'7D79'=05 44 X'8DFE'=18 43 X'73D5'=18 43 X'75FE'=18 43
X'7CA6'=C2 X'8E51'=18 43 X'73DD'=18 43 X'8835'=18 43
X'8187'=60 X'5442'=05 44 X'9228'=18 43 X'8840'=18 43

X'70D4'=05 44 X'9248'=18 43 X'882B'=01 30
X'7BF0'=05 44 X'9298'=18 43 X'8980'=01 30

.EFC4/FIX X'8DD9'=49 40 X'73E0'=05 44 X'8BFB'=01 30
X'7FE9'=67 44 X'9730'=49 40 X'7406'=05 44 X'8C7C'=01 30
X'7C59'=05 44 X'6DF8'=4C 44 X'9224'=49 40 X'8D7D'=60
X'7C53'=01 30 X'6E06'=4C 44 X'587B'=60
X'7EE5'=01 30 X'5764'=5A 44
X'7F66'=01 30 X'564C'=5D 44
X'8067'=60 X'74C9'=60 .EFCD/FIX

X'5C40'=67 44
X'58AA'=01 30 .RM/FIX

.EFC5/FIX .EFC9/FIX X'5B3C'=01 30 X'771A'=05 44
X'7D66'=67 44 X'E441'=67 44 X'5BBD'=01 30 X'7770'=05 44
X'79D6'=05 44 X'BFA3'=70 44 X'805D'=18 43 X'779C'=05 44
X'79D0'=01 30 X'E39C'=05 44 X'8074'=18 43 X'7956'=05 44
X'7C62'=01 30 X'7B7E'=18 43 X'8082'=18 43 X'7598'-18 43
X'7CE3'=01 30 X'C5F8'=5D 44 X'58B0'=05 44 X'770F'=18 43
X'81A1'=60 X'7B74'=00 00 00 X'5CBE'=60 X'7717'=18 43

X'E6B1'=60 X'7765'=18 43
X'776D'=18 43

.EFC6/FIX .EFCE/FIX X'778E'=18 43
X'7AE8'=67 44 .EFCA/FIX X'7D80'=67 44 X'7796'=18 43
X'7758'=05 44 X'7033'=67 44 X'79F0'=05 44 X'759B'=19 43
X'7B66'=60 X'6758'=70 44 X'791D'=C2 X'75E0'=63

X'6C9D'=01 30 X'79EA'=01 30 X'7C63'=01 30
X'6F2F'=01 30 X'7C7C'=01 30 X'7BE2'=01 30

.EFC7/FIX X'6FB0'=01 30 X'7CFD'=01 30 X'7950'=01 30
X'6076'=67 44 X'5B55'=18 43 X'81B7'=60 X'76CE'=01 30
X'5CE6'=05 44 X'5B73'=18 43 X'714B'="ONE"
X'57D2'=5D 44 X'6CA3'=05 X'7CE6'=67 44

X'6A7B'=60

