

Page 1

THE LDOS QUARTERLY January 1, 1983 Volume 2, Number 1

Table of Contents

INTRODUCTION FROM LSI:

 CHANGE OF ADDRESS ... Page 2

 VIEW FROM THE BOTTOM FLOOR .. Page 3
 USER'S GROUP INFORMATION .. Page 6
 CUSTOMER SERVICE NEWS ... Page 7

FROM OUR USERS:

 Languages: an alternative to BASIC

 APL*PLUS - STSC'S APL Language for the Model III Page 9
 The "C" Language - Part 1 ... Page 15
 Alcor PASCAL .. Page 18
 PASCAL-80 ... Page 22

 PDS - Using the MISOSYS Partitioned Data Set utility Page 24
 NEWSCRIPT + REFLEX/FLT - An update on the REFLEX filter Page 28
 ** Special Insert ** Model I/III memory address chart Page 34
 HOST yourself when out of town .. Page 35
 EDAS 4.1 - The Z command .. Page 37

 ... er ... Earle Robinson at large .. Page 39
 PARITY = ODD - By Tim Daneliuk .. Page 42

FROM THE LDOS SUPPORT STAFF:

 ITEMS OF GENERAL INTEREST ... Page 46
 Includes corrections from last issue, FIX disk news, patches, etc.

 LDOS ON THE MAX-80 .. Page 50

 LDOS: HOW IT WORKS - the Patch Utility Page 52
 The first in a series of "in-depth" examinations of LDOS programs

 THE JCL CORNER - by Chuck ... Page 54
 Back to the basics of JCL, plus the question of the quarter

 LES INFORMATION - by Les Mikesell ... Page 58
 Includes FAST/SLOW information, SLOSTEP filter for newer drives

LATE BREAKING NEWS, ETC. ... Page 62

Copyright (C) 1983 by Logical Systems, Incorporated
11520 N. Port Washington Rd., Mequon, WI 53092

(414) 241-3066

Page 2

= IMPORTANT NOTICE =

Logical Systems will be moving to its new location in April of 1983. To be sure your
correspondence is handled promptly, please use the below listed address starting April
15th. Postal correspondence should use the PO Box number. Parcels sent UPS should use
the street address only.

Logical Systems, Inc.
8970 N. 55th Street

PO Box 23956
Milwaukee, WI 53223

(414) 355-5454

The LDOS Quarterly policy on the submission and payment for articles is as follows:

Articles sent for consideration should be accompanied by typewritten or lineprinted
copy. An ASCII text file or Scripsit file MUST accompany the printed copy! Please do
not send in printed text without a disk, as it will NOT be considered for publication.
Payment will be made in the form of a product from LSI, or $25.00 per page ("page" is
defined as page in the then current newsletter format). The size of the article will
determine the value of the product, although no reasonable request will be refused.
Please include your name, address, telephone number and LDOS serial number with your
submission. LSI is extremely interested in seeing submissions from our users, and is
open to suggestion on any ideas for the Quarterly.

Submissions should be sent to:

LDOS Quarterly Editor
11520 N. Port Washington Rd.

Mequon, WI 53092

The LDOS Quarterly is copyrighted in its entirety. No material contained herein may be
duplicated for commercial purposes without the express written consent of Logical
Systems, Inc. and/or the article's author.

Page 3

V I E W F R O M T H E B O T T O M F L O O R

 by Bill Schroeder

Well, they interrupted my basket weaving and wallet making by handing me my crayons
and a tablet. It must be time for another article for the LDOS Quarterly, so I'll give
it a try.

For those who would prefer not to read through all my ramblings just to find out what
the special offer is for this quarter, I'll start off with it. One of our most popular
utilities is FED. This is the official LSI file oriented "ZAPPING" utility, which we
believe to be the best of its kind for use with LDOS. From now until March 31, 1983
the price of FED will be dropped from $40 to JUST $25. After March 31, 1983 the price
will go back to $40. Even better than that is my "FED with $50". This special package
deal allows you to get FED for just $10, but there is a catch; you must order your
"$10 FED" with some other LSI product(s) so the total value of the order is more than
$60. This special offer is NOT available in conjunction with any other LSI special and
is available only to LDOS owners that are on the Extended Support Agreement.

The LDOS Quick Reference Card is now being shipped. This card ended up to be 20 panels
(10 per side) in length. It is 4 color and coated with clear varnish. This is without
a doubt one of the best QRCs around. Any serious user should order one of these at
just $8.95 (postage paid). It will be sent to you by first class mail. These cards are
available directly from LSI and each registered owner will be limited to purchasing
two (2) of these cards.

Lobo Drives is now shipping the MAX-80 computer in quantity. This is a super little
machine running at a clock speed of over 5 MHz. There is an LDOS 5.1.3 (called
MAX-LDOS around here) for use with this new machine. There is a lot more information
on this machine elsewhere in this quarterly so I won't dwell on details. Let me just
say that if you are in the market for a new Z-80 machine that runs LDOS and CP/M, has
a real time clock, is 128k capable, has the SIO dual RS232 set, handles 8" and 5"
drives and can run most Model III software you should look at the MAX. I think you
will be quite surprised. If all this is not enough to pique your interest, consider
that the MAX sells for only $820. That is not a misprint - it is only $820.

The MAX-80 from LOBO is a truly astounding machine. It has all the hardware
capabilities of a Model-I, Model-II and Model-III and has more hardware features than
all three put together. Yes, it will take some time for the full potential of this
machine to be utilized from a software standpoint, but at this time it is without a
doubt the best thing that has come along in the TRS-80 compatible area. When you
consider the price of just $820 it's hard to believe. You of course must buy a monitor
(about $150) and a couple of drives (about $600), but this still leaves a total of
only about $1500 to $1600 for a complete state of the art Z-80 system which is CP/M
and LDOS capable. The only negative consideration would be the service aspect as LOBO
is the only service location at this time and they are in California. This draw back
is offset, however, by the fact that the MAX-80 is designed with this in mind and
contains a very low component count on a simple board design. This is much to the
credit of Kirk Hobart, the design engineer of the MAX-80. We at LSI have yet to have a
MAX-80 fail or even glitch in any way. If you or anyone you know is considering a
TRS-80 type computer, the MAX-80 certainly deserves a serious look. Also, you should
keep an eye on LOBO for many neat things in the future.

For those that are interested, I have been running the Radio Shack hard drive
(26-1130) for the last 5 months or so, and I am very pleased with both the reliability
and the very low noise level of this drive. If you are thinking of a hard drive for
your system, you should look at the Radio Shack 5-MEG. It retails for just $2495 and
is available through your local RS store. One more new item from the Shack is their
doubler for the Model I. The RS double density modification is easy to install, very
reliable, fully supported by LSI and competitively priced.

Page 4

Let's touch on a subject that is near and dear to my heart (well more like a knife in
the back). That, of course, is software piracy; in particular, piracy of LSI software.
We are continuing to see illegal copying of our software at an increasing rate. With
this in mind I am now asking for your help. If you as an LDOS user purchase (you must
have paid for it) any software product that contains any LSI code, or you believe it
contains LSI code please let us know, when where, how and from whom you bought it. No
one has the right to duplicate any LSI code as LSI does NOT license any of its
products at this time. Your name will not be used and if the information you provide
(diskette, receipt, testimony or the like) result in the successful prosecution of the
pirate I will pay you a reward of $10,000 dollars. I really hope that I am able to pay
this reward many times, as this may slow down a problem that costs every legitimate
software customer quite a bit of money each year and is seriously jeopardizing the
cottage software industry. If it does not stop soon, the industry as a whole will
suffer greatly and software will rise in price faster than any other commodity. So
please help us and yourself to draw the line and at least stop piracy for profit. This
$10,000 reward will be paid above and beyond any out of pocket expenses that you may
incur in assisting us.

80-US magazine has now gone "slick". The January issue of 80-US has a whole new look.
If you don't get this publication, you should. Just call or write to Mike Schmidt at
80-US, 3838 5. Warner St. Tacoma, Wa. 98409. He will be happy to send you a FREE
(check that FREE) copy of 80-US so you can see what you are missing. There is no
obligation at all, but you have to tell Mike that you are an LDOS owner and heard
about this offer here. Enjoy.

There is now a new section on the LDOS MicroNET board. This is the "C" users group.
This group will promote the use and understanding of the "C" programming language. It
is set up as Section #1 on the LDOS board; Section #0 remains the main LDOS section.
Those who would like to get into the "C" language should consider getting the "LC"
package, available through LSI or MISOSYS at just $150. This package is a "C" compiler
and EDAS 4.1 editor assembler. For more information on this package contact LSI or
MISOSYS. We will now be trying to have an article or two relating to "C" and its uses
in each quarterly. Hopefully, Earl Terwilliger will be heading up this effort. Earl
writes well and is a much appreciated addition to our regular quarterly contributors.

Speaking about LDOS Quarterly contributors, articles from our users on LDOS, TRS-80s,
Radio Shack, related software, or even editorial in nature are of great interest to
LSI. We want our users to hear from other users. There is one big advantage in
publishing in the LDOS Quarterly that you are not likely to see in any other of our
industry publications, that is NO EDITING OF AN ARTICLE'S CONTENT. There are no
"Sacred Cows" at LSI. We will publish relevant, well written and constructive
articles, even if a few "not-so-nice" things have to be said. For a specialized
publication we also pay rather well (we think). Our new author's rate is $40 per
published page (this will change if we start typesetting). Because we do not typeset
the Quarterly, we only get about half as many words on a page as does a regular
magazine like BYTE. This would be like them paying $80 to $100 dollars per page. So if
you have something to say, write it and send it in - it could pay off.

In my last column I mentioned the get together that we had here in Mequon and listed
the attendees. Unfortunately I listed most of the people by name and finished with the
statement "and staff". Well, needless to say the "staff" was justly offended by this
oversight. So for clarification here is the technical definition of "and staff": Gil,
June, Linda, Lorly, Lynette and Mark. I certainly apologize to these most valuable
members of our company.

LSI now has a complete catalog of products available through LSI. This catalog is
yours free for the asking, so please call or write and we will be happy to send you
one. Our LSI hotline is now operational at (414) 241-4100. It is available 24 hours a
day, 7 days a week. There is some interesting info on there and usually a "hotline
special" is also mentioned that could save you some bucks on LSI products.

Page 5

Many LDOS users and dealers have inquired about our desire to published or distribute
software created by other than LSI. The fact is that WE ARE ACTIVELY LOOKING FOR
SOFTWARE TO PUBLISH. LSI is looking for software of all types; UTILITY, LANGUAGE,
APPLICATIONS, even ENTERTAINMENT. We are able to make royalty or lump sum deals. We
are able to pay from 10 to 25 percent of the revenues on a product or up to $50,000 in
a lump sum purchase of a copyright. We are also willing to negotiate any reasonable
arrangement and will consider both exclusive and non-exclusive contracts. If you have
authored or own the copyright/marketing rights of a product that works on LDOS, we
would like the opportunity to review the product and consider it for LSI publication.

LSI has several rules regarding submissions for review, so to avoid disappointment
please follow these guidelines. 1) All submitted software must be accompanied by
complete documentation. 2) Your submission should include a letter clearly explaining
the mission of the software package and the intended audience. 3) You must be willing
to provide proof that you hold the rights to offer the product to LSI. 4) You must be
willing to modify the product as may be deemed necessary by our analysts. 5) If
payment is by royalty, you must be available and willing to maintain the product. 6)
Your submission will NOT be returned to you. 7) You must allow 6 to 8 weeks for LSI to
evaluate your product and its potential market. 8) If LSI publishes your product you
must be willing to provide LSI complete source code. 9) Submissions should be sent to
LSI Attention software acquisitions manager.

The LDOS 6.0 project is doing very well and we hope to have a Model-II version of this
RAM based system released as an LSI product no later than mid 1983. We will publish a
feature list of this new system in the April issue of the LDOS quarterly. We are
looking at a retail price of $200 to $400 for this system, depending on the
configuration purchased. We are considering offering 2 or three different packages
containing different enhancements and utilities, something on the order of "USER",
"ADVANCED USER" and "PROGRAMMER". This is all pure conjecture at this time as final
marketing decisions have yet to be made. I will try to provide more definite
information in the next quarterly.

We now have OFFICIAL LSI "T-SHIRTS". These are heavy cotton shirts in either Dark
Brown or Sand with our Logical Systems logo imprinted in the opposite color on the
upper left chest. They are available in Small, Medium, Large and X-Large for just
$9.00 postage paid, or just $5 if ordered with any other LSI merchandise. Be sure to
specify size (S, M, L, XL) and color (Dark Brown, Sand) when ordering.

LSI is moving to a much larger facility. We have purchased a 10,000 square foot
building and will be moving our entire operation there sometime in April. The new LSI
address will be 8970 N. 55th St. Brown Deer, WI. 53223 or PO Box 23956, Brown Deer,
Wi. 53223. The new phone number for all services will be (414) 355-5454. These changes
should become effective sometime in the month of April. We are still growing very
rapidly and hope to open an LSI branch in another state in 1984.

LSI has become a very successful company, but we are cognizant of the fact that this
success is directly attributed to the ongoing support and enthusiasm of YOU, our
customers. Through the support and word of mouth advertising that you have provided,
we have been able to use our resources for things like this newsletter and better
documentation and testing for LSI products instead of lavish advertising. For this I
thank you all very much, and you should thank yourself as the end result is more for
your money when buying LSI software. I will see to it that YOU the customer are never
forgotten as the real reason for the overwhelming success of the LSI operation.

Page 6

USERS GROUP DIRECTORY

In response to the offer in the last issue, the following LDOS users groups sent in
information about themselves. Please note that these are independent groups and have
no official connection with LSI.

The Cincinnati TRS-80 User's Group has an active LDOS group.

CINTUG - LDOS SIG
Alan R. Moyer, Chairman (513) 868-0248
993 San Angelo Dr., Hamilton, OH 45013

 or

CINTUG
Karl Wiedamann - President (513) 871-0073
Ed Fairman - Secretary (513) 542-5028
5380 Bahama Terrace, Apt 8, Cincinnati, OH 45223

For users in the Madison, WI area, the Madison LDOS User's Group meets the second
Thursday of each month at one of the members homes. You can contact Scott Loomer at
(608) 233-0488 for details.

The Adelaide user's group in South Australia has several sub-groups depending on your
particular area of interest. They also publish a monthly newsletter. For information,
contact:

Adelaide Micro User's Group
Rod Stevenson, Secretary
36 Sturt St.
Adelaide 5000, South Australia

Telephone 08 51 5241 (bus) 08 337 6682 (home)

TCUG - LDOS SIG

For those of you around the Washington D.C area, there is an LDOS special interest
group which is part of the TCUG users group. They meet the 1st Wednesday of every
month. For further information, contact Carl Hessinger at (301) 474-8486.

MAXIMUL - MAX-80 User's Group

For MAX-80 owners, the MAX-80 Independent Microcomputer Users League, or MAXIMUL for
short, has been started by Doug Hogarth and Bill Vermillion. You can contact Bill on
Compuserve under number [70270,214]. They currently have several newsletters available
under that number in ACCESS on Compuserve. For more information, send a self addressed
stamped envelope to:

 MAXIMUL
 PO BOX 19525
 Orlando, FL 32814

Page 7

CUSTOMER SERVICE TIPS

 As the years have flown by, the staff here at Logical Systems has become
 increasingly efficient in the customer service area. This not only makes things
 easier internally for us, but also gives you much faster and better service. In
 the past months it has become necessary for certain groups of our staff to handle
 specific aspects of the broad services we provide. There is usually someone or
 some way for us to offer you assistance with most questions or problems. If we
 can do nothing else, we try to steer you in the proper direction to get what you
 need.

 Recently we have evaluated the types of services we have been providing, either
 via the phone, or through the postal service. Both aspects have been categorized
 and our staff of experts has been broken-up, departmentalized, and will try to
 specialize in what each group does best.

 Below are examples of how we'd like you to classify either your letters, or your
 phone calls to us.

 If you are calling or writing about:

 1. System programs (LDOS), specs on updates, syntax questions, hardware
 questions or requirements or anything you feel only a good programmer or
 technician could answer.

 The Syntax is:

 > Customer Service Department Please.

 *Please do not try explaining in length any technical question or problem to our
 receptionist. She will only end up re-routing your call and you'll have to go
 through your explanation all over again. The same is true with the person who
 handles the mail. If its marked Attn: Technical Support Department, it will be
 enroute to the correct department a little faster.

 2. Update questions (in general) "Have we received it, or has it gone back
 out to you?", product orders and shipments, Dealership questions, and requests
 for our product catalogs are handled by:

 > Order Processing Department

 3. Warranty Card Registrations (all products), Extended support agreement
 Subscriptions, address change information and warranty status information are
 handled by:

 > Subscription and Registration Department

 4. Specific questions about products we sell, compatability, and policies
 surrounding our product sales are handled by:

 > Product Sales Department

 5. Special services like, Custom software, technical programming, contract
 purchases or OEM Dealer questions should be directed to:

 > Contract Sales Department

 6. Articles, suggestions, or ad placement for the LDOS Quarterly are handled
 by:

Page 8

 > LDOS Quarterly Editor, or Ad Manager

 ** All other questions that just don't fall into the above categories will be
 best handled if you start with a BRIEF description of what you are looking for.
 This means both your correspondence or you calls.

 Remember, our technicians currently do not answer the phone nor do they open
 and date stamp the mail. We're trying to streamline our services to you but we
 need your help.

 CUSTOMER SERVICE (TECHNICAL SUPPORT)- PHONE HOURS

 The normal hours for technical support are:

 9:00am - 12:00 noon and 4:00pm - 5:00pm Central Time

 The hours for Customer Service in general are:

 9:00am - 5:00pm Central Time

 Between 12:00pm and 4:00pm our technical staff is scheduled for meetings
 crucial for new product development and review of current product status. To give
 these people time to bring you the best possible software it became necessary to
 lock them away for a few hours each day to do their thing.

 Regular (non-technical) Customer Service and all of our other activities
 continue through the afternoon except the tech support service. So if you can,
 try to place your calls during the appropriate times and you will find that your
 questions will be handled much smoother. If you call and speak with our Customer
 Service department for Technical Support, they will try to help you, but if they
 are unable to give you a complete & accurate response they will write down your
 name, number & question(s) and get back to you with the appropriate answer.

 Our present phone number 414/241-3066 has 5 lines designated for sales and
 service. When we relocate our phone number will be 414/355-5454 and there will be
 many more lines for your calls. This new phone number will be effective April
 15th, 1983. Remember, our Customer Service staff can only handle a certain amount
 of calls at the one time. So don't be surprised if you hear a sweet voice come
 back to you and say "All those lines are busy, would you like to hold". Don't
 fret though, if you choose to hold, your call will be handled in the order which
 it was received. You will be taken care of.

 UPDATES

 This is an item which is of great importance and at times is gravely
 misunderstood. How exactly are updates at LSI handled?

 Your disks really don't go into never never land on their way here, when we
 receive them, or on their way back to you. Though it may seem that way to some of
 you, some of the time.

 We process a great deal of master disks for update, but recently due to the
 increased volume we've experienced calls where people expect to see their updated
 disks returned to them much quicker than is possible. Also, we have had some
 disks lost in the mail either on their way here, or on their way back to you.
 (That's never never land!)

Page 9

The best way for you to insure that we have received any parcels you send us would be
for you to send these Certified mail, or UPS. When we receive yours disks, be it an
LDOS disk or any other masters for updating, we have had an approximate turn around
time of about one week (from receipt). Then your disks should be on their way back to
you. We normally use first class mail when returning these.

We process so many updates that it becomes a real task to try and locate the status of
a disk we should have received four weeks earlier.

Each of our departments is here to supply you with its special administrative, or
software talents and we appreciate your patience and acceptance of our changes as they
occur. Please bear with us during these changes, we have to adjust too.

AGAIN - our departments are as follows

 * Customer Service Department
 * Order Processing Department
 * Subscription & Registration Department
 * Product Sales Department
 * Contract Sales Department
 * LDOS Quarterly Department

Your calls or correspondence will be handled to your advantage if it gets to the right
place the first time.

APL*PLUS/80 - A SYSTEM OVERVIEW

by Daniel J. Lofy & Lee C. Rice

I. APL ON THE RISE

As a marketable programming language, APL seemed doomed from the start. It was first
created by Kenneth Iverson as a noncomputer language for mathematics at Harvard.
Iverson later moved to IBM, and continued to develop the language, first as a hobby
and later for possible programming applications (specifically for the IBM 360). His
first book (A PROGRAMMING LANGUAGE, published by Wiley and Sons, 1962) stirred some
interest in APL among only a few programmers and teachers.

The original implementation of APL required special terminals and printers able to
handle its formidable set of Greek characters. In addition to the fact that it had
poor string handling facilities and was not user friendly, its keyboard layout was
also different from the standard keyboard; which meant that it also failed to attract
computer hobbyists. Rumor has it that IBM originally published the implementation as a
joke. In addition to everything else which it had going against it, it was also an
interpreted language (rather than a compiled one); which meant that it was
particularly unattractive in data processing environments where CPU time was a
precious commodity.

APL had a few things going for it, however. The language is enormously productive in
terms of programmer time, and permits the construction of swift and elegant code for
many applications which require ten times the code in other languages. With the advent
of minicomputers and microcomputers, CPU time became cheap and programming time became
a precious commodity; so that, by the middle of the 1970's, APL had achieved a small
but loyal following. In the years which followed, its growth can only be described as
phenomenal.

Scientific Time Sharing Corporation (STSC) is one of no fewer than forty companies now
devoted to APL software and publications, and the producer of APL*PLUS - an enhanced
version of APL which contains stronger string handling capabilities and extremely
portable APL code.

Page 10

They produce and support versions of APL*PLUS for a wide variety of mainframes and
minis. They entered the micro market in 1982, choosing the TRS80-Model III for their
first implementation. Of equal significance, APL*PLUS/80 was designed to run under
either TRSDOS or LDOS. "Designed to run" means that the manuals contain full
instructions for LDOS implementation, and that APL*PLUS/80 takes full advantage of the
power and flexibility of the LDOS operating system.

STSC also provides a chip which will permit the Model III CRT to display the APL
character set, and a label set to mark the special symbols on the keyboard. We
installed the chip in less than twenty minutes (no soldering required) thanks to a
particularly clear set of instructions - having first been assured by the local Radio
Shack repair shop that they could service the machine fully with the chip installed.
For those who want APL but choose not to relearn keyboard positions, APL*PLUS/80 also
contains a keyword option: mnemonic keywords replace the APL function symbols, and the
keyboard retains its ASCII layout. Both the keyword option and the symbol option are
filters, so that programs typed in (and saved to disk) in one format can always be
displayed in the other. You can be working in one format, and change to the other with
a simple command.

Like LISP and a number of other modern interpretive languages, APL is a functional
programming language. It comes stocked with a rich set of system functions, and new
functions can be produced as combinations of existing ones. In fact, a program is just
a large function built out of smaller functional modules. Unlike many interpretive
languages (like LISP), APL*PLUS/80 also provides full access to the operating system
from WITHIN the APL workspace. The programmer has in fact two I/O options. Individual
functions and programs can of course be saved to (or read from) disk, but another
option is that of saving an entire workspace (which will typically contain many
programs or functions). Access from one workspace to another is also possible.

Most importantly, entering an APL workspace offers no limitations in accessing other
data. You can read in as data any files or programs - whether they are written in
BASIC, FORTRAN, or virtually any other ASCII code. Lack of transportability of data
and text files from one micro language to another is a very serious problem for
implementations of most computer languages at the micro level. In APL*PLUS this
problem has been eliminated once and for all.

II. PROGRAMMING IN APL

Whether you elect to install the APL character generator chip or to use the keyword
forms (a set of mnemonics which replace the standard APL character set), APL will
require some patience in becoming acclimated to an almost entirely new keyboard
layout.

Page 11

The better you typed before, the more practice you may need to purge ingrained habits.
The time lost, however, is more than compensated by the fact that APL programs (called
"functions") are typically much shorter than their counterparts in BASIC, FORTRAN, or
just about any other language. Further, although it may seem a formidable task in
memorization to learn all of the weird symbols, you'll soon discover that many of the
most used characters are almost iconographic. See, for example, if you can guess what
the following do:

The first expression assigns the value 2.0 to the variable A, while the second prompts
the user for numeric input and assigns it to B. The third writes B to the terminal;
and the fourth writes the floor (largest integer smaller than the floating point
number) to the terminal.

One reason why APL functions are so short, and the language is so efficient, is that
many of its functions extend to arrays as well as scalars. This reduces the number of
loops required to implement most algorithms. Additionally, APL also offers the
programmer the opportunity to write functions composed of other functions, all of
which can be saved in a single workspace. This not only facilitates logical design of
programs; but, since separate functions can be tested separately, debugging time is
dramatically reduced.

For those who may feel uneasy with the concept of an array, it reduces simply to the
notion of a list of elements of some kind. For example, the daily sales of John Jones
on the working days of January might be stored within the single APL variable A as the
array $110.00 $204.40 $160.59 etc. Now suppose we need to know Jones' sales for the
entire month. Most programming languages would require us to loop thrpugh the array
one element at a time. APL, however, provides a technique called reduction which
inserts operators between each element and also performs the desired operation. In our
example, Jones' sales for January could be computed by typing: +/A. This reduction of
A under addition could also be used as a single piece of still another function.
Operations such as reduction extend immediately to arrays of more than one dimension.
If instead of one salesperson we had five whose sales were stored in a matrix B, we
could type +/B and we would get a list of five numbers, each representing the total
sales for one salesperson. Reduction is only one of the many ways provided by APL to
avoid frequent use of loops, and to make functional expressions strikingly short and
quite readable.

Another such operator is "rho", which is useful in determining the number of elements
in an array. For example, instead of using a loop to count the number of days that
Jones worked, we can simply type:

APL provides two modes of operation. The mode in which operations are immediately
performed is called "desk calculator mode", and is illustrated by all examples so far.
The "function definition" mode permits the user to combine APL intrinsic functions
into user defined functions. To make the retail store example slightly more
complicated, suppose we want a function to determine the average daily sales (to the
nearest penny!) for the store for an arbitrary month. Let's also accommodate the fact
that, in addition to not specifying the number of working days in the month, some
months may require more salespeople on hand than others.

If we add one simplification to the above example by assuming that any salesperson who
works one day works each working day, we could present the situation using the
following BASIC program:

Page 12

10 DIM MO!(20,5) REM MO is workdays by salespeople
20 TS%=0
30 FOR I = 1 TO 20
40 FOR J = 1 TO 5
50 TS! = TS! + MO!(I,J)
60 NEXT J
70 NEXT I
80 AV% = INT((TS!/100) + .5) REM Divide & round
Compare this to the following APL function:

To conclude that the APL is better because it does in one line what BASIC does in
eight would be mistaken. At best, the above APL function offers a good example of the
abuse of power and only accounts for part of the strength of APL. The better method
would be to use a function such as the following.

Notice that the above function could also have been defined as:

where AVERAGE is

and ROUNDOFF is

Clearly, this last is not required for such a simple case; but, for more complex
functions, nested definitions offer both readability, fast debugging, as well as the
fact that they can be easily used in other functions. This example illustrates the
fundamental advantage of the use of workspaces. Not only can the months be stored
together as variables in a single workspace, but so can a variety of functions needed
to process them. These functions can be copied separately into other workspaces should
they be needed again, allowing the user to build a library of his or her most needed
functions.

III. STSC'S APL*PLUS/80 SYSTEM

The complete system provided by STSC contains no fewer than three user manuals, two
books, reference cards, APL character chip and keyboard labels, warranty agreement,
and a product overview and ordering information for STSC's other systems and many
publications available on APL. The APL system is provided on a both sides of a double
density diskette.

Page 13

The first side is to be backed up to a system diskette(TRSDOS or LDOS), and should be
used in drive #0: there is JUST enough room for the APL system on an LDOS system disk.
The second side of the diskette contains a variety of APL workspaces (to be described
below); and, as a data diskette in one of the other drives, it has room for user
created workspaces.

Complete backup information is provided, and the user may make as many backups as
required. To run APL under LDOS, no user patches are necessary. STSC has had the
foresight to provide a self-executing program ('LDOSAPL/JCL') which does all the
necessary interfacing between LDOS and APL (and need only be executed once per
backup). There are system commands in APL for accessing LDOS disk directories, and for
reading into a workspace files not created under APL. Nor are users limited by the
workspace configurations provided by STSC. The COPY command under APL will copy
individual functions from disk workspaces into the active workspace; so the creation
of new workspaces from existing ones is smooth and easy.

The manuals consist of (1) a Formatting User's Guide, (2) a Shared File System User's
Guide, (3) a Programmer's Reference Manual, and (4) a Computer Operation User's Guide.
The books provided are (1) the second edition of the classic APL textbook, APL: AN
INTERACTIVE APPROACH, and (2) a tutorial APL IS EASY. It is NOT necessary to wade
through the 1200 pages of documentation, since many of the workspaces are interactive,
and STSC also provides suggestions as to what to read or skim and what to skip,
depending on familiarity with APL and/or with the operating system (LDOS or TRSDOS).
For even the novice user, about two hours of reading should be enough to begin
hands-on APL work.

Sixteen workspaces are provided, all with the default suffix of '/AWS'. One of these,
'DESCRIBE', provides a description of the others. Most workspaces are NOT mentioned in
the manuals and documentation. They are intended for hands-on work, and for later user
modification. Once you have loaded a particular workspace, there is also a
function/command called 'DESCRIBE' which will provide detailed information on what is
in the workspace, and suggestions for use.

Three of the workspaces ('DEMO', 'DEMOAPL', 'BIGDEMO') are simple demonstrations of
APL graphics and functions. They include such functions as calendars, tipping hats,
bargraphs, snowflake designs, and interactive spelling contests. They are designed,
not to teach APL, but to make it user friendly, and to give the beginner a glimpse of
its power.

There are two tutorial workspaces. APLCOURS/AWS is a simple and interactive drill on
basic APL functions - it provides a scoring technique at the end, so that users can
pace their progress and identify trouble spots. SHAPE/AWS is a more advanced tutorial
which tests user knowledge of the structure of the fundamental functions. Both
workspaces are fully interactive, totally user friendly; and, like all other
workspaces, they can be run in either keyword mode (with mnemonics) or using the APL
symbol set.

There are two additional workspaces designed to be used with the books provided.
CLASS/AWS provides all of the programs used in APL: AN INTERACTIVE APPROACH. The
reader going through this book as a self tutorial will find hours of typing time have
been saved. LESSONS/AWS contains all the programs used in the book APL IS EASY, and
again saves hours of typing time. We should note that, especially in the case of
CLASS/AWS, these programs are not merely drill exercises. Many are powerful examples
of APL programming, and users will want to move some of them into their self created
workspaces for later use too.

Two workspaces provide formatting information and functions. EDIT/AWS contains
prototype functions for inputting and editing text. These functions are of limited
value in the form provided, but suggestions are given for modification to suit
individual text editing needs. FORMAT/AWS contains formatting functions mentioned in
the Formatting User's Guide, and will again save the user hours of typing time.

Page 14

Five additional workspaces contain miscellaneous utilities. SYSTEST/AWS provides a
complete on line test of all APL library functions, and can be used on entry to APL
(in much the same way as the TRSDOS program MEMTEST/CMD is used). CHARSET/AWS fills
the screen with the APL Symbol Forms, and can be used for ready reference by those
using these forms (or learning them) rather than keyword forms.

EPSONMXS/AWS has prototype functions for Epson printers with Graftrax, and provides a
driver routine to allow the printer to reproduce APL symbols in bit graphics mode. The
techniques used are more important than the actual functions, and readers with other
printers can create their own custom print driver routines in APL using these as
models. FILEAID/AWS provides functions for advanced users who wish to write-protect,
read-protect, or execute-protect programs within a workspace (full password
implementation is provided). The authors have access to two mainframe time-sharing
systems, and we should note that APL*PLUS provides a system of security which rivals
the big systems, for those in need of it. SENDRCV/AWS is a workspace containing
powerful functions for communicating with a host mainframe equipped with APL*PLUS.
Programs may be downloaded or uploaded between micro and mainframe, and full
communications protocol is provided. Finally, UTILITY/AWS provides an additional set
of APL programs for communications, and operates through the RS232 interface to allow
the user direct control of BAUD rates, duplexing, and terminal modes.

Many of these workspaces will probably not be accessed by the beginning user, but it
is surely a comfort to know that they are there and waiting. Readers who balk at the
$300 pricetag for APL*PLUS should note that they are not buying a language, but a
system. The authors presently have the following languages up and running under LDOS:
FORTRAN, COBOL, UOLISP, LISP1.5, EDTASM, two data base systems, and three statistical
packages, as well as Compiler BASIC. In each case, putting up the language has been
only the first step. Interfacing with the system (LDOS) is the next, and providing
utility support packages follows. If these packages are available from vendors, they
are never cheap and seldom bug-free; and, if they are not, months of programming time
must be committed to their production. There are no such problems with APL*PLUS: the
support utilities are ready and waiting. Customization may be desirable or even
necessary, but this can be done in APL itself, thanks to its complete interface with
LDOS. We have had three occasions to write STSC with questions. In two cases they
telephoned the day they received the letter, and in the third case, we received
information in the mail within a week. In short, on a value-received basis, APL*PLUS
is both powerful and dirt cheap!

IV. CONCLUDING NOTES

Once having experimented with the workspaces (a generous number of them!) provided on
the distribution disks, the user may choose to establish his/her own account. This
allows one to begin in either a clear workspace, or one which has built-in functions
ready for execution. For those sharing their TRS80 with others, data files may also be
protected under different account numbers.

The STSC implementation of APL offers many advantages, and these are well documented
(with many examples). The book, APL: AN INTERACTIVE APPROACH, is an excellent overview
of the language, and also details the differences between APL and APL*PLUS.

In addition to generous documentation and support packages provided by STSC with
APL*PLUS/80, the company has also been most responsive to questions. In our first
effort at installing the system under LDOS, we encountered an inability to execute the
command)WSLIB, which gives a listing of workspaces on a disk. They were back to us
with the appropriate patch the next day.

Equally reassuring was it to find out that our local Radio Shack repair shop knew
about the APL character chip. For reasons not connected with APL or the chip, our
TRS80 had to go in for service. They accepted the machine with no questions after
being informed that the seal had been broken to install the APL chip; and, when it was
returned, the APL chip had been left installed.

Page 15

APL, like BASIC, is an interpreted language and is therefore quite slow. In fact,
don't be too surprised if the first time you execute a function of considerable length
you fear that you went into an infinite loop. What the language lacks in speed it
makes up in its ease of programming, its large and powerful set of primitives
functions, its ability to combine these primitives, and its modes of operation. If you
already own a MODEL III, STSC's APL*PLUS/80 will turn it into a desk calculator which
exceeds any you could buy before you even tried to write a function. Furthermore, it
is a relatively easy language to learn especially given the almost 1100 pages of
information STSC provides. If you're looking for a new and interesting language for
your MODEL III we recommend this one.

THE "C" LANGUAGE

Earl 'C' Terwilliger Jr.
647 N. Hawkins Ave.
Akron, Ohio 44313

 LOGICAL SYSTEMS has set up an "interest section" on the LDOS SIG for the "C"
programming language. Wonder what all the fuss about "C" is? I can hear you saying
"NOT ANOTHER LANGUAGE!." Well, yes, another language! However, "C" is not just another
language. It is different than BASIC, FORTRAN, PASCAL, Z80 ASSEMBLER, etc. How
different, do I hear you asking? In a series of articles, let's take a look at "C" and
I will show you just how simple but powerful the "C" language can be.

 In this first article, I would like to give a brief history of "C" and tell a
little about it through its use of variables, storage and its use of functions.

 "C" was developed by Brian W. Kernighan and Dennis M. Ritchie of BELL
LABORATORIES. "THE C PROGRAMMING LANGUAGE" authored by Kernighan and Ritchie is the
ultimate reference document for the "C" language. A wide range of computers now have
"C" compilers. (TRS80, IBM PC, PDP11, IBM/370's, etc. "C" runs on various operating
systems.) "C" has been called a systems programmers language since it is useful in
writing operating systems. In fact, the UNIX operating system (a trademark of BELL
LABS) was written in "C". Frequently, any given implementation of the "C" language
references a particular UNIX version. (You don't, however, have to write an operating
system to take advantage of "C".)

 "C" lends itself well to "structured programming". Structured programming does not
mean the absence of the GOTO statement. In fact, the "C" language does implement the
goto statement. However as Kernighan and Ritchie (K&R) state in their book, the GOTO
is "infinitely-abusable". When I discuss the control and flow of a "C" program I'll
talk more on the topic of structure. (Not to be confused with the C concept of
structures, i.e., records. Although, I will want to also talk about how C groups
variables into a record or structure. LATER!)

 "C" was designed to be a portable language. Its not very heavy at all! Many "C"
programmers will say, it is light in some features. Most programmers are amazed when
they see how relatively few identifiers (statements or keywords) that "C" has. Here is
all there is:

 int extern else char register
 for do double static while
 struct goto switch union return
 case long sizeof default short
 break entry unsigned continue auto
 if float typedef enum entry

Page 16

As you can see, many of the "C" statements are the same as those found in other
languages. (For examples: if, for, goto, etc.) Did someone say they can't find the
keyword enum in the back of K&R's book? I'll pretend I didn't hear that for now. New
things come later!

 "C" hereinafter referred to as C (I got tried of typing ""), is characterized as a
"low level" language. A C source program is compiled (assembled) into an executable
machine language program. This is not, however, why it is called a low level language.
It is called that because it deals with data items much the same way as machine
instructions do. Machine instructions deal with characters (bytes), numbers and
addresses. These objects are what C deals with also. To illustrate this, we'll take a
look at C's data types.

There are only four data types:

 char - a single byte (one character)
 int - an integer
 float - floating point (single precision)
 double - floating point (double precision)

The int data type can be further qualified to be short int, long int or unsigned int.
The length of these number data types is specific to the machine for which the C
compiler was designed.

 You might be wondering, at this point, about how "high level" tasks are performed.
Or for that matter, how is any task accomplished which other languages perform but for
which you don't see a C vocabulary word? You say you don't see any read, write (I/O),
string manipulation, or array processing statements in C's above listed vocabulary? I
expect not! Such things are specific to a particular machine. You can of course invent
functions to do these "high level" tasks and explicitly call them in C. Usually you
don't have to invent them, however, since they are provided as functions in the C run
time or the installation (computer specific) library. The installation specific
functions, run time functions and functions of your own design aid in creating a more
structured program. One might expect (and rightly so) that the main body of the
structured program is also a function! It is in fact and is called main(). (The
parentheses () are used to denote main as a function and can optionally enclose
variable names representing parameters passed to the function.) There must always be a
main() function in your C program as it is always the entry point. Braces {} enclose
all of the statements that make up a function. C statements are expressions, such as x
= 2 followed by a semicolon. The semicolon is used as a statement terminator.
Statements may be, if you wish, grouped together (compounded) into blocks. A block is
a statement or many statements which are enclosed in braces {}. This block or compound
statement is treated as a single statement.

Braces surrounding the statements of a function, such as main() also form a block or
compound statement.

 Functions are invoked by their name followed by an optional argument list in
parentheses. Taking a look at a simple C program, the use of the all these symbols ()
{} ; can be illustrated:

 main()
 {
 /* C sample program to print HELLO! */
 /* and return back to the operating system */
 printf("HELLO!");
 exit(0);
 }

Page 17

Note that comments in a C program are delimited by a /* and an */. In this sample
program are 3 functions; main, printf and exit. The exit function passes back to the
operating system the return code of 0. This function is unnecessary in this sample
program since the program would "fall through" and end normally at the last bracket
without it. (It is usually a better practice to return a value upon ending a
function.)

 The printf function prints the values passed to it in the format specified. (Its
counterparts in the FORTRAN language are the WRITE and FORMAT statements.)

 The arguments of a function are passed as copies of the values of the arguments.
This is "call by value" versus "call by reference". The function gets its own copy of
the variable and can't change the original passed value held by the caller. "Call by
reference", that is, passing the addresses of the variables can be achieved in C if
pointers (addresses) of the variable arguments are passed. Having the address of the
variable, the called function can then change the value. This "call by reference" is
actually how array names are passed. When an array name is passed as a variable, it is
actually the address of the first element of the array. (It would be impractical to
copy the entire contents of an array and pass these separate copies as is done with
other variables.)

 Any of the 4 data types (int, char, float, double) can be represented in C by a
variable. Numeric and character constants are also used in C as data values. A
variable is symbolically represented by a name. This name is composed of letters and
digits. The first character of the name must be a letter and although large names are
allowed, only the first 8 characters of the name are significant. A C convention is to
use lower case for variable names and upper case for symbolic constants. NOTE: C
keywords (reserved words) must be in lower case.

 Variables, before used must be declared. In declaring a variable the data type the
variable is to represent is stated.

For examples:

 char c,d,e;
 int x;
 short b;
 string[100];

c, d, e are declared to be each a single character. x is declared as an integer. b is
declared as short precision and string is a character array of 100 characters. (C
numbers the elements starting at 0. So this array has elements 0 through 99, each 1
character in length.)

 Variables not only have a type associated with them but also a storage class. The
scope ("lifetime") of a variable is the part of, or range of the program in which the
variable is defined. There are basically 4 types of storage classes for variables:
extern, auto, static and register. An important concept to introduce before explaining
these 4 types is the difference between the declaration and the definition of a
variable. When a variable is declared, properties of the variable are assigned (type,
size, etc.). When a variable is defined (done only once) storage is assigned. Except
for use with external variables these terms (definition and declaration) are almost
synonymous.

 Automatic (auto) variables are variables "local" or "internal" to a single
function only. This is the default for variables declared within a function. Auto
variables have a scope or "lifetime" only within the braces {} or block in which they
are defined. Variables declared as or defaulted to auto, appear as a function is
called and disappear when the function ends. Since they have this dynamic "local"
nature they are said to be "automatic".

Page 18

 External (extern) variables are "global" in nature. They are permanent and are
accessible throughout the entire range of a C program. They can be shared between
functions of a single C program and between many C source programs. Only one of the C
programs would define the variable, the others would have to only declare it as
extern. An external variable definition appears outside of any function. This
actually defines the variable as external (extern). External variables are defined
outside of any function and declared in the function which uses them.

 Static (static) variables are stored in a fixed memory space. They can be external
or internal in nature. When declared to be internal in nature they are like auto
variables except they remain in existence in their fixed space. External static
variables are global in nature but are only accessible within a single C source
program. Static variables represent private permanent storage.

 Register (register) variables are stored in machine registers. They are used to
store heavily used variables in order to improve performance of the C program.

Here is a sample of some variable definitions and declarations:

 auto int c;
 extern char b;
 register r1;
 static x1;

As you can see, the storage class and data type can be used to specifically determine
the properties of a variable.

 That's it for this issues article. Next issue, we'll discuss more about
expressions, functions and learn about operators. I will have a sample program and
we'll take a look at its design.

 WHAT? you ask, stopping now? Well, we can't learn it all in one lesson! Besides, I
wouldn't have anything for you to read next issue. See you then, in the mean time my
COMPUSERVE ID number is 70575,1330. Send me a message on the LDOS SIG in the C
Interest Section!

ALCOR PASCAL

by Scott Loomer

Product: Alcor System's Pascal for the TRS-80 Model I & III

Price: $199

 This review of the Alcor Pascal System consists of two parts; first, a general
overview of the Alcor package and second, tips on how to maximize its effectiveness
under LDOS.

The Alcor Pascal System

 The introduction of a complete implementation of the Jensen and Wirth standard
Pascal is exciting news for the TRS-80 community. Pascal is a high level programming
language that is now widely used in the instruction of programming and the creation of
highly maintainable programs. This review will not attempt to teach you much about
Pascal. I'll assume that you know enough about the language to be interested in using
it on your system. Any good book store will have several texts on the Pascal language
which would provide an introduction.

Page 19

 The Alcor Pascal system is currently available on the TRS-80 Model I & III and
will soon be available for the Apple II, IBM PC and CP/M according to Alcor. Any
programs which do not use the specific system installation library (as described
below) will be transportable between the systems.

 The Alcor Pascal system comes on two double-density disks for the Model III or
three single-density diskettes for the Model I. The system contains several
components, each of which will be described below. The components are the text editor,
two versions of the Pascal compiler, the linking loader, a string function library, a
TRS-80 system installation library, the Pascal run-time interpreter and a set of
tutorial files.

 The editor (or another text editor) is a necessary first step as the Pascal code
must first be prepared. The Alcor editor was written in Pascal and does the job, but
as I will discuss later in this article, there are better alternatives. Alcor Pascal
is designed to run under T**DOS and therefore has to provide the capability to
generate the full ASCII character set that T**DOS doesn't support. The Alcor editor
(referred to as the Blaise editor in honor of Blaise Pascal) uses the CLEAR key for
several functions such as generating characters that are not directly available on the
TRS-80 keyboard. This use of the CLEAR key collides with the LDOS keyboard driver.
Another disadvantage of the editor is that it is large (25k) and not very memory
efficient. You have only about 13k of buffer space on a 48k machine. If you do use the
Alcor editor, do not use the LDOS keyboard driver. The editor has an extensive
repertoire of features including HELP commands.

 The compilers are the heart of the system. After the Pascal source code has been
created, it is compiled into P-code by the compiler. Alcor provides two versions of
the compiler. They are identical except that one resides entirely in memory and the
other is overlayed. The in-memory version can compile a program of up to about 1000
lines while the overlayed version can handle up to about 4000 lines. To put these line
counts in the proper perspective, the Pascal compiler itself had about 8000 lines of
source code (as explained by Pascal). Operation of the compiler consists of
identifying the source file, object file and listing device or file. Normally, the
compilation is displayed on the monitor line by line as it occurs. Errors detected by
the compiler are identified by a code number and a pointer to the position where the
error occurred. At the conclusion of the listing, each error code identified is
explained. The compilation is quite fast; about one line of source per second.

 The run-time interpreter is used to execute the P-code. Alcor Pascal would best
be described as a semi-compiled language. The P-code produced by the compiler is a
compact, tokenized version of the source code. The program is executed by using the
run-time interpreter. The resultant execution speed is faster than BASIC but slower
than a machine language program. The run-time interpreter is about 16k in length.

 An alternative to using the run-time interpreter is provided by the linking
loader. The loader allows several object files to be combined into a single program.
This can include the run-time support normally provided by the interpreter. The merged
file can then be written out as a stand-alone command file. Alcor places no
restrictions on the distribution of files created this way other than to require that
they be identified as being created by the Alcor Pascal system. The drawback to this
type of file is that your small Pascal program (maybe about 3k) has now become 18k+
due to the included run-time support. The best solution for using Pascal programs on
your own system is to leave them as P-code and have the run-time interpreter on your
system to execute them.

 The Alcor system supports extensions to the Pascal standard as defined by Jensen
and Wirth. Some of these are in the compiler and others are supported by two system
libraries. A few of the compiler supported extensions include common variables, the
ability to compile procedures independently and the OTHERWISE clause for the CASE
statement. The string library is (will be) standard on all Alcor Pascal
implementations.

Page 20

The strings are dynamically created and can be disposed of to reclaim memory (no
garbage collection). The string functions supported essentially duplicate those
available in BASIC. The second library supports features unique to the TRS-80. The
functions include graphics support, peek and poke, inp and out, inkey and two machine
language interface routines. There is the equivalent of the user function in BASIC and
a second more powerful routine that allows all primary registers (except the flag) to
be initialized and/or read. Any program written that does not use the TRS-80 library
functions will be transportable to any Alcor Pascal system.

 The final portion of the system is the tutorial. This consists of a 70 page
section of the manual and dozens of sample programs. The programs progress through the
Pascal language and conclude with a 500 line data base program example. Incidentally,
the names of the tutorial files are keyed to the figures in the tutorial section of
the manual. The tutorial section provides a good illustration of how Pascal and the
Alcor system work.

 A few comments about the manual. It is quite extensive, consisting of over 200
pages. There is an introductory section and sections on the text editor, the system
installation, the tutorial, as well as a reference section and an index. The reference
section is a detailed description of the language. A quick reference card is also
provided. Be sure to examine the manual carefully as some important information is not
repeated in the section where you might look for it. For instance, the description of
how to generate the non-standard characters in the editor are in a section on
enhancements to earlier versions of the system.

Alcor Pascal on LDOS

 Alcor Pascal is supplied on T**DOS formatted disks and must be patched to run
under LDOS. The patches are provided in a special Alcor format which must be applied
using the Alcor patch utility (provided). The patch utility needs to be renamed to
avoid conflict with the system patch utility; try PPATCH. Alcor recommends applying
the patches under T**DOS. If you do so, make sure you are using version 1.3 as earlier
versions will not access the entire patch file. This isn't mentioned in the manual,
probably because Alcor isn't aware of the problem. It did provide me with a chance to
test their customer support. Since the effect appeared to be a glitched file, I called
their support number. I explained the problem and they said they would have to
research it. They called back within an hour (on their dime) and read me the balance
of the patch (it's short) so that I could get started. I sent the disks back and they
were replaced (new disks, same serial number).

 The weakest portion of the Alcor Pascal system is the text editor. If you do not
now possess a text editor or word processor, it'll get the job done. If you have a
text editor such as LED, I'd recommend using it as you are already familiar with it.
LED works extremely well as a Pascal source editor. I have a Pascal system disk which
contains a copy of LED that has been zapped with FED to change the default extension
to /PCL. The D patch is:

 .Patch to LED to change the default extension
 D05,08="PCL"
 .End of patch

LED is compact (6k) and provides all of the features of the Alcor editor. It is also
faster since it is machine language. The buffer capacity is nearly 40k! A particularly
useful feature of LED is the automatic indent. This creates the same indent on
subsequent lines that is traditional in structured code.

 Alcor Pascal supports some I/O redirection. When the system prompts for a file
name, :C for CRT/keyboard or :L for line printer may be substituted. The standard
INPUT and OUTPUT channels in Pascal are automatically prompted for prior to execution
(with defaults to the CRT/keyboard).

Page 21

This means that a simple program that reads from INPUT and writes to OUTPUT will allow
you to type to your printer, list a file to the screen, type to a file, etc. Two
deficiencies in this I/O redirection (from an LDOS viewpoint) are that you can't
easily access devices such as *CL, *SI or *SO and the filespecs MUST BE IN UPPER CASE.
Since it takes a few moments for the compiler to load in, it isn't desirable to have
it abort because you forgot to use upper case. One solution for this or any command
program in which you want to force upper case is to apply the following X patch using
the LDOS patch utility:

 .Patch to set the caps lock switch on the Model III:
 X'429F'= 20
 .This is the patch for Model I:
 X'4423'= 20
 .That's all there is to it

The reverse patch (to force lower case) is:

 .Patch to reset the caps lock switch on the Model III:
 X'429F'= 0
 .This is for the Model I:
 X'4423'= 0
 .That's all there is to it

I'd recommend applying the first patch to PASCAL/CMD, PASCALB/CMD, RUN/CMD and
LINKLOAD/CMD since all of these will abort if a filespec is entered in lowercase. Use
the second patch on your editor if you like to create source in lower case. The
compiler treats lower case source as if it were upper case.

 The Alcor run-time interpreter has to be renamed as RUN is a system command; try
PRUN.

 Since the normal development of a Pascal program will have you jumping back and
forth between the editor and compiler, use KSM to save some time. If you use a
standard name for the file you are currently working on such as WORKFILE try the
following KSM definitions:

 E - led workfile/pcl
 C - pascal;WORKFILE/PCL;;WORKFILE/OBJ;
 R - prun WORKFILE/OBJ
 L - linkload;L;

A <CLEAR><E> gets you into the editor and a <CLEAR><C> compiles it for you. <CLEAR><R>
then executes the program. <CLEAR><L> gets you into the linking loader and set to
specify the file to load.

 In summation, let me say that I am very pleased with Alcor Pascal. It is a
comprehensive implementation that seems to be bug free except for the following:
subrange specifications for integer variables don't work unless the subrange starts at
0. The Alcor folks are aware of this and promise to correct it. Since subranges are
not absolutely necessary for any application, this isn't a serious problem. The UPPER
CASE restrictions are annoying but not fatal. I've addressed this problem to Alcor and
I'm sure if others did as well it would be changed. One other item that should also be
requested is access to the flag register in the TRS-80 library machine language
interface routine. Alcor also advertises an advanced development package that consists
of a P-code optimizer (said to reduce the length of the P-code 10-30%) and a native
code generator. The CODEGEN program converts the P-code to Z-80 machine language which
will run faster, but expands the length of the file. I plan on examining this package
and will report on it in the future.

 If you've wanted Pascal for your TRS-80, your wait is over - Alcor is here.

Page 22

 Please address any comments on this review to:

 Scott A. Loomer
 315 Palomino Lane
 Madison, WI 53705
 608-233-7739 or MicroNet[70075,1033]

Since I first wrote the review of Alcor Pascal (in August) a couple of things have
happened that I wish to pass on to you.

 First, the initial copy of the Alcor Newsletter came out. What a pleasant
surprise! With the exception of the LDOS Quarterly, I've become resigned to trivial
newsletters (if any at all) from software manufacturers. Such is not the case with
Alcor. Their first effort is 62 photo-reduced pages of good, solid information.
Included in the newsletter is a brief mention of an enhanced version of the Pascal
system due out soon (inexpensive upgrade to current owners). Two enhancements listed
include random access file support and an include capability. Other enhancements are
alluded to. The newsletter included Pascal procedures to allow use of random access
files in the interim. This is a good illustration of the power of Pascal and the Alcor
implementation. Try writing random access routines for BASIC in BASIC! Other articles
describe how to pick up command line arguments in a Pascal program and how to use the
machine language interface capabilities of Alcor Pascal to provide bitwise logical
operators. All in all, good stuff!

 The second item was a mailing from Alcor that corrected a slight error in the
random access procedures and also fixed an error in the linking loader. This prompt
attention to user-reported errors does credit to Alcor.

LDOS AND PASCAL-80

by D. E. HALL

The power of Standard Pascal with the ease of use of interpretive BASIC (well,
almost). And it fits on a Model I or III, is now LDOS-compatible, and is inexpensive,
to boot. It's New Classics Software's Pascal-80. With this Pascal, there's no tedious
swapping of diskettes or programs to progress from entering the program statements to
compilation to execution and back to editing. It's all there, run through a menu of
simple commands, in one program, and still leaves you with 23K bytes of memory in a
48K machine. An additional 9K is available once the program has been compiled and
stored on disk. This may surprise some of you, but Pascal-80 was written by Phelps
Gates, the author of a TRS-80 version of APL, and if he can make that fit, he can make
just about anything fit.

An earlier version of Pascal-80 was reviewed by Rowland Archer in the December 1981
issue of Byte. At that time, it was not compatible with LDOS, but it has now been
enhanced to be so. According to the manual, the current version has been tested with
and will work with DOS Plus, DoubleDOS, LDOS, NewDOS, NewDOS 80 (including version 2),
and TRSDOS. It even comes with its own DOS, in case you don't like any of these --
TDOS, from Micro-Systems Software. I have found no compatibility problems with LDOS.
Pascal-80 does use its own keyboard driver, so, according to Gates, various "special
features" will not work. I have not tried any that didn't work, but Pascal-80 is
complete enough to not need much extra.

Page 23

Archer had several complaints about the version of Pascal-80 which he was using,
although he thought it was the best of the TRS-80 Pascals he had tried. Most of these
complaints have been taken into consideration and remedied by Mr Gates in the new
version. These include the limited DOS compatibility, the lack of an INCLUDE facility
(to direct the compiler to compile procedures from a disk file), the lack of an ASCII
source file format (so a powerful word processor can be used to create the source
program), the lack of an equivalent to (L)BASIC's SET and RESET functions, and minimal
documentation. All these complaints have been remedied, leaving an excellent
implementation of Standard Pascal for the TRS-80.

Archer also thought that the full-screen editor supplied was minimal for the creation
of large programs, but I found it quite acceptable. However, several limitations do
still exist in Pascal-80. My main complaint is that Pascal-80 disk file names must be
specified at compilation; you cannot specify a file name during execution. It may be
possible to get around this using LDOS's ROUTE and LINK commands, but I haven't
succeeded yet. Also, Pascal-80 is not quite a full Standard Pascal, but it's very
close. The following functions of Standard Pascal are not implemented:

Variant Records

WITH statement

Pointer variables

Structures of files (ARRAY OF FILE, etc.)

Procedures PACK & UNPACK (all structures are packed)

File window (buffer) variables.

Many extensions to Standard Pascal have been built in. These include, but are not
limited to, the ability to assign a string which is shorter than the declared array
length to an ARRAY OF CHARACTER variable; arrays of CHARACTER may be printed with a
single statement; REAL variables may have either 14-digit or 6-digit precision (to
save space); a predefined file (along with INPUT and OUTPUT), LP, for the printer; and
various other routines specific to the TRS-80. Variable names may be any length, with
all characters significant; calculations are done to 14 digit accuracy. A full
complement of variable types are available: Boolean, Integer, Char, Real, Real6, and
Text. Others may be defined by the user, as well.

Pascal-80's compiler is fast, and the compiled code executes faster than an equivalent
BASIC program would; Gates says that execution is generally four to five times the
speed of TRS-80 interpretive BASIC, except for the slowing down in calculations caused
by Pascal-80's 14 digit accuracy. My experience so far is that it is quite noticeably
faster in execution than LBASIC, at least in the word processor I'm writing in both
LBASIC and Pascal-80. Even with Pascal's limited string-handling functions, it takes
Pascal-80 about 2 seconds to send a justified 60-character line to the printer, to
LBASIC's 10 seconds or so. The Pascal version is now roughly 500 lines long, and there
has been no indication that I'm near the end of memory. Archer has calculated the
upper limit of source lines to be about 1180, depending upon the programmer's style.
Though a substantial program can be written in Pascal-80, it is not designed to handle
very large disk data files. It can only SEEK (Pascal-80's random access mode) up to
the 65,535th byte in a file.

Error messages detected during compilation are pretty good, and whenever an error is
found, the offending line is displayed with an arrow under the character that the
compiler was looking at when it got confused. The actual error is frequently in the
previous line. If after a compilation error is found, you select to edit the program,
you are automatically located at the offending line -- no need to search for it.

Page 24

Unlike some compilers, you are shown only one error at a time, but with the ease of
switching from compilation to editing, this is no problem. And you needn't be bothered
by "errors" caused by an earlier mistake. Remember those good old FORTRAN programs you
tried to run, with one error and 17 error messages?

The procedure to use Pascal-80 is very similar to that used to run LBASIC. You first
boot the system, enter any LDOS commands (such as SYSTEM (LOWER) or to enable the
printer filter), and enter PASCAL, just as you would LBASIC. Pascal-80 will then
display a menu on the screen, allowing you to load a source program from disk, edit a
source program in memory, create a new program, append a source disk file to the
program in memory, save the source program to disk, compile the source program in
memory, run the program in memory (it will automatically be compiled first, if
necessary), erase the program in memory, write the compiled code to disk, or execute
compiled code that has been stored on disk. Part or all of the source code can be
listed on the printer from within the editor. You generally must run PASCAL before you
can execute a Pascal-80 program (just as you must first run LBASIC to be able to
execute an LBASIC program). However, Gates has included on the Pascal-80 disk two
programs which enable you to convert a compiled object program into a /CMD file which
may be run from outside Pascal-80. New Classics has kindly allowed registered users to
distribute the /CMD versions of Pascal-80- compiled programs, as long as several
conditions are met. You may contact them for details.

Pascal-80 is available from New Classics Software, 239 Fox Hill Road, Denville, NJ,
07834, and costs about $100. -- pretty good, considering what many Pascals are being
advertised for. I haven't tried the more expensive Pascals, but I expect to stick to
Pascal-80. Why meddle when you're satisfied?

Contributed by David Hall, 2343 Wallen Rd, Moscow, ID 83843

PDS - Standard and other types of uses

By Scott Loomer

 The Partitioned Data Set (PDS) utility from MISOSYS is probably the most powerful
and least exploited utility for LDOS. Let me try to explain, as a user, what PDS can
do for you. This article is divided into three parts; first, an explanation of what
PDS is designed to do, second, some examples of what it can be made to do, and
finally, the future for PDS.

Partitioned Data Set Standard Usage

 A partitioned data set is a collection of programs that can be accessed and
executed independently. Those are my words and not intended to represent how anyone
who knows something about computer science would describe a PDS. Does my description
sound like anything you're familiar with? How about the LDOS system libraries, SYS6
and SYS7? They, too, are a collection of programs that can be executed individually
and are, in fact, PDSes (PDSi?). Look at the number of separate library functions in
SYS6; there are 18. Now since the minimum disk allocation on a Model III is 1.5k (1
granule) that means that SYS6 is at least 18 * 1.5k or 27k in length, right? Wrong. A
quick look at the directory shows us that SYS6 is 13.5k long. So that must mean
that programs (let's call them members) in a partitioned data set must be allocated
just the space they require. That is the first of two major advantages of a POS;
programs occupy just the space they need. The second advantage of a PDS can also be
illustrated with SYS6. How would you like to have all 18 of those programs stored
individually AND showing up in the directory. That would certainly clutter up the
display during DIRectories, wouldn't it?

Page 25

 The PDS utility allows you to create your own library files. The utility is,
itself, a PDS. It consists of eight programs (members) that are used to create and
manipulate PDSes. Use of the PDS directory command on PDS shows us the following:

PDS - DIR Library Module - LDOS Version 1.0
Copyright (C) 1981, Roy Soltoff, All rights reserved

PDS: PDS/CMD 07/31/82 Size: 9K Members: 8/ 10
append P 15-Jan-82 1688 build P 15-Jan-82 1067
copy P 15-Jan-82 1031 dir P 15-Jan-82 1297
kill P 15-Jan-82 545 list P 15-Jan-82 1109
purge P 28-Jan-82 1511 restore P 15-Jan-82 595

 The first line of the directory names the file, the date, and the size in both
total length of members and the number of members in use vs. the PDS member capacity.
Each member is then listed alphabetically, identified as either a program (P) or data
(D), and the member's length is given in bytes. If you add up the 8 entries in the
directory the total is 8,843 bytes which agrees with the 9k size. An examination of
the system allocation directory shows that PDS/CMD occupies 10.5k. The 1.5k
difference? Well, there is some overhead for a PDS in the form of a front end loader
and internal directory. Together, these total about 400 bytes and are sufficient in
this case to bump PDS into another granule. But examine the alternative: on a Model
III each of the members would occupy a granule if saved separately with APPEND
occupying two granules. That would be a total of 9 granules or 13.5k. Thus, this PDS
has saved us about 30% in disk storage space. This is typical of the space you can
save by combining several programs in a PDS.

 The eight utility programs that comprise PDS accomplish the following:

 BUILD - Create a new PDS. Initially it will only occupy the space necessary for the
 front end loader and the directory. It will expand as members are:
 APPEND - Adds a new member to a PDS.
 COPY - Copies a member out of a PDS and into an external file.
 DIR - Gives a directory of the members of a PDS.
 KILL - Deactivate a PDS member.
 LIST - Provides the same function as the LDOS system LIST command, but for PDS
 members.
 PURGE - Reclaims the space occupied by KILLed members and compacts the PDS.
 RESTORE - The reverse of KILL if the member hasn't been PURGEd.

 Two types of members are supported by PDS. These are executable programs (command
files) and all else which are treated as data. To execute a program member, you type:

 "PDS name(membername)"

Only enough of the member name to be unique is required. You can use the BUILD member
of the PDS utility by typing "PDS(BUILD)" or "PDS(B)" or "PDS(BU)". This is another of
the features of PDS that I appreciate. I like program names to be as descriptive as
possible (within the 8 character limit) but I don't like to type long names. The
solution? Store the programs in a PDS with a short name (like 'L' for library), using
their full names as the memberspec. If you have done this with the HITAPE/CMD program
and there are no other members that start with 'H', it can be invoked with "L(H" -
three keystrokes! Programs that require parameters can also take advantage of this
abbreviated accessing; to invoke a mirror image backup on my system, I type "L(B) :0
:1". A PDS directory listing of 'L' will give the full name of 'REPAIR' so you can
have your cake and eat it too.

Page 26

 Another significant advantage of PDS is its speedy access to the member that you
wish to execute. The entire PDS file (which could be as large as available disk space)
does not load into memory. Rather, only the short front end loader and directory are
brought in. The front end loader determines from the directory where on the disk the
start of the member is and directs LDOS to begin execution of the file at that point.
The member is then brought into memory and executed. PDS uses an ISAM key to select
the appropriate portion of the file to execute.

 PDS also provides the ability to have multiple entry points into a single
program. Using the MAP parameter of the PDS APPEND command, you can specify several
different member names and entry points into a single program being added to a PDS.
The individual portions of the program are executed by specifying the appropriate
member name.

Non-standard Applications of PDS

 Even with a utility as inherently useful as PDS, I am seldom satisfied to leave
my hands off. Therefore, I have developed some very useful (to me at least)
applications for PDS that are not exactly what it is designed for.

 The first of these applications is the HELP utility (available from MISOSYS for
$25). The HELP utility is a series of command files that explain features of LDOS when
invoked with HELP(command name). The explanations are quite detailed showing allowable
abbreviations and default values for parameters as well as the function and syntax of
the command. The HELP files are all PDSes. I wanted to have an easy, quick means of
displaying the HELP screens. The solution was to create each HELP command display as a
command file origined to the video display screen. Placing the HELP member into a PDS
provided compact storage of many displays and handled the overhead of accessing a
particular entry. Only one problem remained. Since the HELP screens are directly
origined to the video display, they overlay what was previously on the screen. Rather
than make the HELP members unnecessarily large to blank all portions of the screen, I
came up with the following patch which causes the screen to be cleared before the
member is executed:

 . PDSHELP/FIX
 . Patch to PDS/CMD utility to clear screen before
 . executing member
 . Jump to patch
 D00,2F=C3 D7 52
 . Change "PDS member required" message to make room
 D00,FE=6E 65 65 64 65 54 21 0D
 . Patch to clear the screen
 D01,06--CD C9 01 7E 23 FE 28 C3 04 52
 . End of patch

 The HELP utility includes this patch as well as instructions for creating your
own custom HELP files using PDS. A BASIC program is also included to convert text
files created with a word processor into the load module format required for
executable PDS members. A point that should be made here is that any LDOS system can
use a PDS file so you do not need the PDS utility to use HELP. The utility is only
required to create and modify PDS files.

 A second non-standard application was more involved. I wanted to create a
telephone dialer to use with my Hayes SmartModem. To accomplish what I had in mind, I
needed to be able to do some pre-processing (create a blank display with titles),
execute the PDS member (which would fill in the display blanks with names and numbers)
and finally do some post-processing (dial the number). The PDS utility would give the
capability to maintain the phone list. My requirements indicated that I would have to
write my own front end loader.

Page 27

 The PDS BUILD command allows you to specify use of your own front end loader
(FEL) instead of the standard one provided by PDS. An examination of the standard FEL
shows it to be one of the tightest, and most efficient (and consequently confusing)
pieces of code that I've encountered. So much for writing my own FEL since I would
need to duplicate and extend what is accomplished by the standard FEL. Well, not
exactly.... there was a coward's way out. I decided to use the standard FEL and add my
own routines. The FEL is a command file itself so that it is possible, using CMDFILE,
to append other routines to it and then change the transfer address to execute the new
code before jumping back to the standard FEL. A general procedure for creating a
semi-custom FEL is as follows:

1. Isolate the standard PDS FEL by:
 a. Create a temporary PDS with the command:
 PDS(BUILD) TEMP
 b. Run CMDFILE. Load your temporary PDS. The load address
 reported will be 5200 to 52E0 with a transfer address of
 5200. CMDFILE has loaded in just the front end loader
 from the PDS.
 c. Save the front end loader as STANDARD/FEL.
2. Add your new code to the standard FEL by:
 a. Assemble your new code with an origin of 52E1H. After you
 accomplish what you need to, end your new code with a
 jump to 5200H to execute the original FEL. If you need to
 do something after the member executes, have the member's
 code jump back into the code you are adding to the FEL.
 You should then terminate this post-processing code with
 a jump to @EXIT at 402DH.
 b. Run CMDFILE. Load in STANDARD/FEL and then your new
 object code. Save the merged code with a new transfer
 address of 52E1H and a suitable name (with an /FEL
 extension).
3. There is a pointer in the standard FEL that must be adjusted
 to make your new FEL work correctly. This byte, located in
 record 0 at relative byte 70H, points to the relative byte
 after the last byte of your FEL. The easiest way to
 determine the new value is to use FED. Load in your new FEL
 and use the <E> command to go to the last byte of your FEL.
 Move the cursor one byte forward and note the relative byte
 address displayed by FED. This is the new value that must be
 inserted into the original FEL code. Use FED to change the
 byte at record 0, relative byte 70H from 14H to the value
 you just determined and save the changed file. You have
 finished the creation of your custom FEL.
4. To create a PDS using your new FEL the command is as
 follows:
 PDS(BUILD) filespec (LOADER="NEWFEL/FEL",MEMBERS=dd)

 If any of you are in possession of both the PDS utility and a Hayes SmartModem,
contact me if you would be interested in the autodialer.

The Future of PDS

 The future for PDS utilization is bright. Some of the current or near term
enhancements or applications are:

 1. The directory command in LDOS 5.1.3 now indicates PDS files with an asterisk in
the attributes column.

Page 28

 2. The newly arrived enhanced EDAS version IV allows the user to create PDS
libraries of assembler source code for standard applications. The EDAS command *SEARCH
will cause EDAS to search the referenced PDS for all members that will resolve
undefined references in the source. This powerful capability allows you to create
standard routines and access them by name.

 3. The C compiler, LC, also released recently, makes use of PDS. The standard
library and installation library for LC is provided in the form of PDS files. Any
references in the C source code to these library functions is automatically resolved
at compilation time. Note that you will not need to have PDS to use LC. Any PDS file
can be used on any LDOS system without the PDS utility which is only needed to create
the file. If you do have the PDS utility, however, you will be able to create your own
C support libraries of your personal routines.

 4. Lastly, it is possible that if interest in PDS warrants the development, we will
see PDS expanded to allow read only access from any application program. The PDS
members could then be Scripsit documents, BASIC data files, etc. and be accessed from
within the application by specifying the PDS filespec (memberspec).

Please direct any comments concerning this article to:

 Scott A. Loomer
 315 Palomino Lane
 Madison, WI 53705
 MNet [70075,1033]

NEWSCRIPT 7.0 and REFLEX.
Some Further Notes.

Gordon B. Thompson,
Bell-Northern Research
P.O. Box 3511, Stn C,

Ottawa, Ontario. K1Y 4H7,
Canada

 Since the original article on The Communicating Micro appeared in the October
1982 issue of the LDOS Quarterly, a solution to running Prosoft's very powerful word
processor, NEWSCRIPT 7.0, with REFLEX has been found. The result is a very powerful
word processor that can fully communicate with another of its kind in the fully cloned
fashion described in the previous article, can transfer the contents of its working
memory, can boot in double density on Model I, and can easily reconfigure for
different printers, etc.

 NEWSCRIPT has its own powerful drivers for screen, printer and keyboard.
Although this driver package is not relocatable, it is, however, tailored to suit the
user's needs, and so may vary in length. The address stored in the system keyboard DCB
at H4016 & 7, is a vector pointing to both the NS/CMD keyboard driver and to
NEWSCRIPT's communal scratch memory area. Throughout the various component parts of
NEWSCRIPT frequent use is made of the value stored in the DCB. As a result,
installing REFLEX/FLT, which changes the contents of the DCB, altered, causes no end
of trouble. The solution is to fool NS/CMD by installing the filter and then
rethreading the control sequences so NS/CMD never knows there is a filter active.

 NS/CMD's keyboard driver begins by immediately jumping over the adjacently
located scratch memory area. If instead of jumping deeper into NS/CMD, control is
sent to REFLEX, and then passed back to the spot where that jump was to have landed,
the original NS/CMD address can be left in the DCB. This change is accomplished
without altering the disk copy of NS/CMD by simply patching RAM with RAMPATCH/BAS,
Listing 1, and capturing the result with a SYSTEM (SYSGEN) command.

Page 29

 Unfortunately, the jump to REFLEX involves jumping too many bytes for a two byte
jump instruction. Consequently, one byte of NEWSCRIPT's scratch memory must be
usurped to accommodate the third byte of the absolute jump command. I have yet to run
into problems with this strategy. It seems as if this particular memory location is
rarely used.

 REFLEX was intended to be controlled from the LDOS keyboard driver. As
NEWSCRIPT's keyboard driver is different, a new way of controlling REFLEX must be
established. This is accomplished with RAMPATCH/BAS. NS/CMD's special instruction
mode, the <SHIFT><CLEAR> command, is changed so that the two commands that switched
the special character sets of the Model III become REFLEX's commands instead. These
commands were unused in Model I.

 To use REFLEX with NEWSCRIPT, it is necessary to relocate REFLEX's mode indicator
letters from the top right screen corner to the bottom right corner elsewise they will
be interpreted by the EDITOR package as edit instructions! REFLEX/FLT's references to
3C38 should be changed to 3CFF.

 NEWSCRIPT's NS/CMD carries its own JCL feature, using the file STARTUP/MIN for
its instructions. Prosoft provided this feature to boot the system. The LDOS
configure feature is very much quicker for everyday booting, so the NS/CMD JCL
function can be saved for generating fresh configurations. STARTUP/MIN is shown in
Listing 2. Although the published version of REFLEX did not load under LDOS's JCL
routines, it does load with NEWSCRIPT's JCL function.

 For the Model III, the procedure is very simple. An LDOS system disk with the
RS232T driver, REFLEX/FLT, NS/CMD, STARTUP/MIN, NSINSTAL/BAS and EDIT, SCRIPT and
NSINIT, is prepared. NSINSTAL/BAS is run. This operation sets NS/CMD for your
particular printer and typing style. Once this has been done, NS/CMD is run. This
invokes STARTUP/MIN file, which loads the proper drivers and filters, runs
RAMPATCH/BAS to rethread control, and finally, captures this configuration with a
SYSTEM(SYSGEN) command.

 For the Model I, the procedure is similar, except that a single density disk
carrying all the requisite drivers, including PDUBL and NS/CMD, STARTUP/MIN,
NSINSTAL/BAS must be assembled and it is used to build new configurations. A double
density working disk is put together that carries NEWSCRIPT's EDIT, SCRIPT, NSINIT and
SOLE2/CMD. A two sided disk works very well, one side for the single density builder,
and the other for the double density working material. Once the new configuration has
been captured on the double density disk, and "SOLE2d" in, the double density side can
boot directly. The single density side is only needed when the configuration is being
altered in a major way. Additional details on the original construction double
density NEWSCRIPT disks, see "Using NEWSCRIPT 7.0 with Model I Double Density" in
October 1982 LDOS Quarterly, page 55.

 Two minor points: If AUTO LBASIC RUN"NSINIT is used to make the disk
automatically get into NSINIT, NEWSCRIPT's superMENU, then the first key stroke is
lost. Secondly, the continuous delete mode is not sent over the REFLEX link, only a
string of ddd's. The toggle delete must be used instead.

 EDIT will send the contents of its workspace out the communications line by
merely saving to *SI in place of a filename. Text received from the communications
line can be directly written into EDIT's workspace by being in REFLEX and in an EDIT
input mode.

Page 30

Listing 1.

RAMPATCH/BAS

10 ' *** RAMPATCH FOR NS/CMD ***
 11 ' REFLEX/FLT MUST BE ALREADY INSTALLED.
 12 ' Reference: "The Communicating Micro"
 13 ' October 1982 Issue, LDOS Quarterly
 14 ' +++ VARIABLE ASSIGNMENT: +++
 15 ' R Entry point for REFLEX/FLT
 16 ' N Entry point for NS/CMD's keyboard driver
 17 ' D Target of Jump Relative at start of
 18 ' NS/CMD's keyboard driver.
2$ 'Find values for R, N and D:
 21 R1=PEEK(&H4016):R2=PEEK(&H4017):R=256*R2+R1-65536
 22 N1=PEEK(R+1):N2=PEEK(R+2):N=256*N2+N1-65536
 23 D=N+66:D2=INT((D+65536)/256):D1=D+65536-256*D2
3$ 'Rethread command control sequence:
 31 POKE (&H4016),N1:POKE (&H4017),N2
 32 POKE N,&HC3:POKE N+1,R1:POKE N+2,R2
 33 POKE R+1,D1:POKE R+68,D1
4$ 'Patch NS/CMD so the ?? s and j commands are replaced
 41 ' with new commands that control REFLEX:
 42 ' <SHIFT><CLEAR> i Puts REFLEX in LOCAL mode.
 43 ' <SHIFT><CLEAR> u Puts REFLEX in REFLEX mode.
 44 I <SHIFT><CLEAR> y Puts REFLEX in TERMINAL mode.
 45 DIMV(20):FOR K=1TO19:READ V(K)
46 POKE(N+185+K),V(K):NEXT K
49 DATA 254,105,40,08,254,117,40,04,254,121,32,20,198,128,201,00,00,00,00
50 CMD"S

Listing 2

STARTUP/MIN

SET *SI RS232T(DTR=Y,RTS=Y)
FILTER *KI REFLEX
LBASIC RUN"RAMPATCH/BAS
SYSTEM(SYSGEN)

 For Model I, the appropriate double density driver must be installed. The line
calling it can be placed at the beginning of STARTUP/MIN. Also, the RS232R driver
should be used for Model I. Otherwise, Models I and III are identical.

VISICALC and REFLEX.
Some Further Notes.

 The patch given in "THE COMMUNICATING MICRO" article in the October 1982 issue of
the LDOS Quarterly for VISICALC to make it send and receive the contents of its
workspace over the communications line may appear to be faulty in that the receiving
machine flashes horizontal bars instead of accepting the incoming code.

 The problem is that VISICALC requires a finite time to to organize its memory.
The difficulty is overcome by having the receiving machine move to the lower right
hand corner of the sheet that will be sent, and enter something in that cell. Now,
incoming data can then be accepted without pause.

 When VISICALC is loading from disk, you may have noticed how it accepts a token
gulp, pauses, and then gets going again. It's the same thing.

Page 31

Page 32

Page 33

Page 34

M E M O R Y M A P - A L P H A B E T I C L I S T I N G

This memory map section is provided to allow quick lookup of a memory address
corresponding to an LDOS system label. An asterisk marks those addresses which are
different on the <Mod I> and [Mod III].

 @ABORT----<4030>,[4030] @PAUSE----<0060>,[0060] JFCB$-----<4358>,[4265]*
 @ADTSK----<4410>,[403D]* @PEOF-----<4448>,[4448] JLDCB$----<43C0>,[42C2]*
 @BKSP-----<4445>,[4445] @POSN-----<4442>,[4442] JRET$-----<430C>,[4222]*
 @CKDRV----<44B8>,[4209]* @PRINT----<446A>,[446A] KFLAG$----<4423>,[429F]*
 @CKEOF----<444B>,[4458]* @PRT------<003B>,[003B] KIDCB$----<4015>,[4015]
 @CLOSE----<4428>,[4428] @PUT------<001B>,[001B] KIJCL$----<43BE>,[42BE]*
 @CMD------<4400>,[4296]* @RAMDIR---<4396>,[4290]* KISV$-----<43B8>,[42B8]*
 @CMNDI----<4405>,[4299]* @READ-----<4436>,[4436] LDRV$-----<4308>,[4427]*
 @CTL------<0023>,[0023] @REW------<443F>,[443F] MFLAG$----<442F>,[N/A]*
 @DATE-----<4470>,[3033]* @RMTSK----<4413>,[4040]* MULTEA----<4B6C>,[4B6B]*
 @DEBUG----<440D>,[440D] @RPTSK----<4416>,[4043]* OSVER$----<403E>,[441F]*
 @DIV------<44C4>,[4451]* @RREAD----<4454>,[445E]* OVRLY$----<430E>,[4414]*
 @DODIR----<4463>,[4419]* @RUN------<4433>,[4433] PDRV$-----<4309>,[4423]*
 @DOKEY----<44BE>,[4285]* @RWRIT----<4457>,[4461]* PRDCB$----<4025>,[4025]
 @DSP------<0033>,[0033] @SKIP-----<4460>,[4464]* PRSV$-----<43BC>,[42BC]*
 @DSPLY----<4467>,[4467] @TIME-----<446D>,[3036]* RDSECT----<4777>,[4777]
 @DVRHK----<4033>,[4033] @VER------<443C>,[443C] RDSSEC----<4B45>,[4B45]
 @ERROR----<4409>,[4409] @WEOF-----<444E>,[445B]* RSELCT----<4759>,[4759]
 @EXIT-----<402D>,[402D] @WHERE----<000B>,[000B] S1DCB$----<43D8>,[42D4]*
 @FEXT-----<4473>,[444B]* @WRITE----<4439>,[4439] S2DCB$----<43E0>,[42DA]*
 @FNAME----<44BB>,[4293]* CFCB$-----<4480>,[4485]* S3DCB$----<43E8>,[42E4]*
 @FSPEC----<441C>,[441C] DATE$-----<4044>,[421A]* S4DCB$----<43F0>,[42E6]*
 @GET------<0013>,[0013] DAY$------<4047>,[4417]* S5DCB$----<43F8>,[N/A]*
 @ICNFG----<4303>,[421D]* DBGSV$----<405D>,[405D] SBUFF$----<4200>,[4300]*
 @INIT-----<4420>,[4420] DCT$------<4700>,[4700] SEEK------<475E>,[475E]
 @KBD------<002B>,[002B] DCTBYT----<479C>,[479C] SELECT----<4754>,[4754]
 @KEY------<0049>,[0049] DFLAG$----<441F>,[4289]* SFCB$-----<44A0>,[42A1]*
 @KEYIN----<0040>,[0040] DRCYL-----<4B65>,[4B64]* SFLAG$----<430F>,[442B]*
 @KILL-----<442C>,[442C] DIRRD-----<4B10>,[4B10] SIDCB$----<43C8>,[42C8]*
 @KITSK----<4300>,[4285]* DIRWR-----<4B1F>,[4B1F] SODCB$----<43D0>,[42CE]*
 @KLTSK----<4419>,[4046]* DIVEA-----<4B7B>,[4B7A]* SVDAT1$---<4306>,[442F]*
 @LOAD-----<4430>,[4430] DODCB$----<401D>,[401D] SVDAT2$---<4307>,[4457]*
 @LOC------<445A>,[446D]* DOSV$-----<43BA>,[42BA]* TCB$------<4500>,[4500]
 @LOF------<445D>,[4470]* GETDCT----<478F>,[478F] TIME$-----<4041>,[4217]*
 @LOGER----<447E>,[428D]* HIGH$-----<4049>,[4411]* TIMER$----<4040>,[4288]*
 @LOGOT----<447B>,[428A]* INBUF$----<4318>,[4225]* USTOR$----<4DFE>,[4DFE]
 @MSG------<4479>,[4402]* INTIM$----<404B>,[4473]* VERSEC----<4772>,[4772]
 @MULT-----<44C1>,[444E]* INTMSK$---<404C>,[4474]* WRPROT----<4768>,[4768]
 @OPEN-----<4424>,[4424] INTVC$----<404D>,[4475]* WRSECT----<4763>,[4763]
 @PARAM----<4476>,[4454]* JDCB$-----<430A>,[4220]* WRTRK <476D>,[476D]

Page 35

Communication Host
by James F. Bruckart

 The computer revolution has introduced computers and terminals into the workplace
at an ever increasing pace. As home computer owners, terminal programs and modems have
given us access to mainline information systems and community bulletin boards. Until
the introduction of LDOS, most TRS-80 applications required special programming to
function in anything except a terminal mode. But the device independence of LDOS has
introduced the ability to use your TRS-80 has a host computer.

 As a military physician, I perform histories and physicals on all patients I
admit to the hospital, and compile data related to their complaints and diagnoses for
future research. Such data manipulation is perfectly suited for a TRS-80 database, but
frequent movement in the hospital and among hospitals makes it inconvenient to
transport my computer. However, I have found that any computer terminal provides a
link to my database.

 The problems of maintaining a host system for terminal access breakdown to
operating software, system configuration, and system security. LDOS solves the first
problem. Using the links described in the LDOS manual (LINK *KI *CL and LINK *DO *CL)
your computer is in a host mode. Any characters you type at a distant terminal will be
treated as if you typed them at the keyboard, and characters displayed on your video
display will appear on the terminal display. In this mode your computer will run the
familiar LDOS commands and Basic programs as if you're sitting at home at the
keyboard.

 Getting started will require LDOS operating on a computer with an RS232 interface
(or similar hardware) and an autoanswer modem. The JCL file in listing 1 will
configure your system for initialization of the host mode. Turning the date switch off
and setting the DO command to AUTO will cause the system to reconfigure with power-up
or reset. I plug my CPU into an appliance timer that turns the computer off for a
minute at noon each day. This way the computer recovers at noon if I crash the system
in the morning.

 A problem you may encounter when using most dumb terminals; the carriage return
(CHR$(13)) causes a return and linefeed on the TRS-80, but only a carriage return on
the terminal. Each new line of text will simply be printed overtop the previous line.
ADDLF/FLT is a filter for the communication line that solves this problem by issuing a
line feed (CHR$(10)) after each carriage return.

 The final problem of running a host system is security. Others will learn that
your computer is "on-line" and one day your valuable files may be lost. My Basic
program COMMPASS/BAS can prevent unauthorized persons from roaming into your data and
operating system. After calling your computer, type enter or return and the computer
will cue you for a password. Incorrect entries and the time they occur will be logged
on your line printer. After 5 incorrect entries, the computer issues a null break
(should disconnect the other users modem), and returns to wait for your call. When you
issue the correct password, the computer returns to the LDOS Ready prompt. End your
session by typing LBASIC RUN"COMMPASS/BAS" or BOOT from LDOS Ready. Special features
of the Compass program include initial checking for the line printer and disabling of
the break key (to prevent the unauthorized user from "Breaking" out of the program).

 In summary, LDOS provides the key to initializing your personal host computer
system. Configuring the computer (after purchasing an autoanswer modem) is simply
performed with a JCL file loaded at power-up. The problem of system security is
relegated to a simple Basic program where you specify the password.

 Hints to those getting started:

Page 36

 1. Try each program at the keyboard and watch the modem lights. What you type
is equivalent to modem input, and modem output will be indicated by the transmit data
light.

 2. Programs which displace the keyboard driver or use the RS232 will probably not
work with this configuration (i.e.- Scripsit or Profile). You or a friend should patch
these programs to use the LDOS drivers.

.Communication Host JCL Initialization

.Set Modem to on and auto-answer
SET *CL TO RS232x/DVR
. - fill in the proper driver and parameters
. for your hardware
FILTER *CL using ADDLF/FLT
SYSTEM (DATE=OFF)
AUTO DO = COMMHOST
LINK *KI *CL
LINK *DO *CL
LBASIC RUN"COMMPASS"
//STOP

10 REM ** Communication Password Screen
20 CLEAR 500: CMD"B","OFF": CLS: PRINT TIME$: B$=""
30 PRINT@256,"Printer not ready": LPRINT CHR$(13): CLS: PRINT@256,"Computer ready for
communications": REM Checking if printer ready - if you don't have a printer omit
lines 30 and 80.
40 A$="":INPUT A$
50 IF A$="" THEN GOTO 60 ELSE GOTO 40
60 FOR I=1 TO 5: PRINT: LINEINPUT "Password: ";B$
70 IF B$="PASSWORD" THEN GOTO 100: REM INSERT YOUR OWN PASSWORD
80 LPRINT TIME$,B$
90 PRINT "Incorrect - your error has been logged": B$="": NEXT: PRINT STRING$(100,1)
:GOTO 20: REM EXECUTING MODEM BREAK
100 PRINT "Correct - returning to LDOS Ready"
110 CMD"B","ON": CMD"S"

00110 ;**** ADDLF/FLT - adds linefeed after carriage return
00120 ;
00130 ; see Filters and Drivers section of LDOS
00140 ; Technical Information in Owner's Manual
00150 ;
00160 LF EQU 10
00170 CR EQU 13
00180 EXIT EQU 402DH
00190 ABORT EQU 4030H
00200 DSPLY EQU 4467H
00210 ;
00220 ; Model III equates as comments
00230 ; Change If using a Model III
00240 ;
00250 HIGH EQU 4049H ;4411H for Mod 3
00260 LOGOT EQU 447BH ;428Ah for Mod 3
00270 ;
00280 ORG 5200H
00290 ;
00300 ENTRY LD A,(DE) ;Device must have output
00310 AND 2
00320 JR Z,NOGOOD

Page 37

00330 PUSH DE ;Save DCB
00340 LD HL,MSG
00350 CALL DSPLY ;Show sign on msg
00360 POP IX ;IX => DCB of *CL
00370 LD HL,(HIGH) ;Now ready to move
00380 LD BC,LAST-START ; filter into high mem
00390 XOR A
00400 SBC HL,BC
00410 LD (HIGH),HL ; so move HIGH$ down
00420 INC HL
00430 LD A,(IX+1) ;Old *CL entry pt.
00440 LD (PUTBYT+1),A ;Store in our filter
00450 LD (GETBYT+1),A
00460 LD A,(IX+2) ;Also old MSB of *CL
00470 LD (PUTBYT+2),A
00480 LD (GETBYT+2),A
00490 DI
00500 LD (IX+1),L ;Put our new entry pt.
00510 LD (IX+2),H ; into *CL DCB
00520 EX DE,HL
00530 LD HL,START
00540 LDIR ;Move our filter up
00550 EI
00560 JP EXIT ;All Done
00570 ;
00580 NOGOOD LD HL,ERRMSG
00590 CALL LOGOT
00600 JP ABORT
00610 ;
00620 MSG DEFB LF
00630 DEFM 'This filter will add a '
00640 DEFM 'line feed to <CR>'
00650 DEFB CR
00660 ERRMSG DEFM 'This filter is for output only!'
00670 DEFB CR
00680 ;
00690 ; Actual filter code to move to high memory
00700 ;
00710 START JR C,GETBYT ;If Carry, is input request
00720 PUTBYT CALL 0 ;Old *CL driver
00730 CP CR ;Did we just send a CR?
00740 RET NZ ;Nope
00750 LD C,LF ; Else yes, so send LF
00760 JR START
00770 GETBYT JP 0 ;Old *CL driver for input
00780 LAST EQU $
00790 END ENTRY

Using the EDAS 4.1 "Z" Command
By Earl C. Terwilliger

The new version of MISOSYS's editor assembler is now available, EDAS-IV. GREAT STUFF!
The original version was used to assemble LDOS itself. Its new features and functions
(too numerous to mention here) give the assembly language programmer ALL that can be
asked. There are so many functions, it is sometimes hard to remember them all. Ah ha,
you say! Does it have a HELP facility? Well, since you asked, you can build a help
file and display it with the <V>iew facility. However, if there are multiple "screens"
in your HELP file, scrolling to the right place may not be so easy!

Page 38

 EDAS-IV has a patch space available for the user to implement a function. I
decided to use this patch area to implement a HELP display facility. In EDAS-IV, at
address X'5809' is a vector pointing to X'5DAF'. At X'5DAF' is the 50 byte patch area.
To start executing the code at X'5DAF' type in a Z and a carriage return. This is the
ZCMD function. Originally as shipped, EDAS-IV has an X'C9' at address X'5DAF'. This is
the Z80 opcode for a RETURN. I designed the following program to be PATCHed in
starting at the X'5DAF' location and thus replace the RETURN. The program simply opens
the file EDASHELP/TXT and lists it on the video screen. (The PATCH code created from
the assembled program is also shown below.) If multiple HELP "screens" are desired,
simply precede each "screen" of data with an X'0C'. When the HELP function detects
an X'0C' as part of the data it will pause until any key is depressed. When a key is
then depressed, the next screen of data is displayed! Before each "screen" is
displayed, the video screen is cleared. This is done so that each "screen" does not
have to fill the video display. To exit the HELP facility (or ZCMD function) without
having to display all of the screens, depress the BREAK key. The source program and
its PATCH version are as follows:

; EDAS <Z> COMMAND PROCESSOR (ZCMD/ASM)
; HELP FACILITY
; WRITTEN BY EARL C. TERWILLIGER JR.
;
; ADDRESS X'5809' =--> X'5DAF' = X'C9'
; FOR THE TRS80 MODEL I
; REPLACE WITH THE FOLLOWING
;
 ORG 05DAFH ;PATCH AREA
START EQU $
 LD HL,4200H ;SBUFF$ SYSTEM BUFFER
 LD DE,FCB ;FILE NAME ADDRESS
 LD B,0 ;LRECL = 0
 CALL 4424H ;@OPEN - OPEN FILE
 RET NZ ;OPEN OK?
CLS EQU $
 CALL 01C9H ;CLEAR THE SCREEN
GET EQU $
 LD DE,FCB ;FILE ADDRESS
 CALL 0013H ;@GET - CALL GET A BYTE
 JR NZ,CLOSE ;CLOSE IF END OF FILE
 CP 0CH ;CODE TO WAIT?
 JR NZ,DSP ;NO. DISPLAY
 CALL 0049H ;@KEY - WAIT FOR INPUT
 CP 01H ;BREAK?
 JR Z,CLOSE ;END IF YES.
 JR CLS ;GO CLEAR SCREEN
DSP EQU $
 CALL 033H ;CALL @DSP
 JR GET ;GET
CLOSE EQU $
 LD DE,FCB ;FILE NAME ADDRESS
 CALL 4428H ;@CLOSE - CLOSE FILE
 RET ;RETURN
LAST EQU $
LENGTH EQU LAST-START
 ORG 4480H ;CFCB$ FCB FOR COMMANDS
FCB EQU $
 DEFM 'EDASHELP/TXT
 END

Page 39

.

. PATCH FILE FOR EDAS/CMD EDAS-IV

. IMPLEMENTS THE <Z> COMMAND FOR THE TRS80 MODEL I (LDOS)

. WHEN THE <Z> COMMAND IS ENTERED IT LISTS THE FILE

. EDASHELP/TXT ON THE VIDEO SCREEN.

.
X'5DAF'=21 00 42 11 80 44 06 00 CD 24 44 C0 CD C9 01
X'5DBE'=11 80 44 CD 13 00 20 12 FE 0C 20 09 CD 49 00
X'5DCD'=FE 01 28 07 18 E8 CD 33 00 18 E6 11 80 44 CD 28 44 C9
X'4480'="EDASHELP/TXT "
. <-------- 32 BYTE FCB --------->
.
. END OF PATCH

 The file name EDASHELP/TXT can, of course, be changed to one of your own choice.
The special pause code of X'0C' in the data file stream can be changed to one of your
own choosing also. Be sure and change the program code to match the file name and
pause code you choose! MODEL III LDOS owners will want to change to the appropriate
LDOS addresses used in the program.
 A possible EDASHELP/TXT file, one that I use is as follows:

................... EDAS-IV HELP MENU

 <A> ASSEMBLE BRANCH <C> CHANGE/COPY
 -CI CORE IMAGE <D> DELETE <E> EDIT
 -IN IN MEMORY <F> FIND <G>
 -LP LINE PRINTER <H> HARD COPY <I> INSERT
 -NC NO CONDITIONAL <J> <K> KILL A FILE
 -NE NO EXPANSION <L> LOAD FILE <M> MOVE BLOCK
 -NH NO HEADER <N> RENUMBER <O>
 -NL NO LISTING <P> PRINT <Q> QUERY DRIVE
 -NM NO MACRO <R> REPLACE <S> SWITCH
 -NO DUMMY <T> TYPE SOURCE <U> UTILIZATION
 -WE WAIT ON ERROR <V> VIEW FILE <W> WRITE
 -WO WRITE OBJECT <X> EXTEND <Z> HELP
 -WS WITH SYMBOLS 1 ALTER LINES PER PAGE
 -XR XREF FILE . JOB LOG MESSAGE

 Well, I'll stop now and go back to creating some MACROS to store in my PDS
library for use with EDAS-IV. Bye for now!

........................er........................
By Earle Robinson

I have been so involved with printers and drivers for the new SuperSCRIPSIT (tm) from
Tandy, that much of this quarter's article will consist of some very negative comments
about printers and their manufacturers. Working with some of these machines is some
what like living in the New York City subway. The noise is deafening. At one time I
had 5 printers scattered around my little office. Thank God I wasn't running more than
one or two at a time.

First of all, I'll discuss the various daisy wheel printers that I have had the
opportunity to work with while writing the drivers that my company, softERware, is
distributing. The DW 2 from Tandy has been a real work-horse for many, and its merits
are undeniable. Unfortunately, every time I have ever used one, my neighbors run over
to learn if there has been an earthquake. In California that is no laughing matter! It
is also a very ugly machine, resembling the modern designs that the World's Fair of
1939 projected for the future. The 'concentration camp' blue-grey doesn't help things
much.

Page 40

Nevertheless, it can provide very good print quality with a variety of different
wheels. The real problem in today's environment is its high price compared with what
some of the competition is offering. The new RS daisy wheel, the DWP 410, is much
quieter, no prettier, and slower. It is also cheaper.

Next the F10, aka 'Starwriter' or 'Printmaster'. The F10, available in 40 cps and 55
cps models is a reasonably quiet and non-vibrating machine which offers the same print
quality as the DW 2, but at a significantly lower cost. If you shop around, you can
pick one up for about $1300-1350. Add $300 for the faster model. One weakness that it
has compared to the DW 2 is that it supports only one proportional space wheel, the
Theme 10 Pt. The spacing for that wheel is locked into its electronic circuitry. This
means that when you are in proportional mode, the circuit provides the spacing as each
letter is printed. If you use another proportional wheel, and it doesn't have the same
spaces as the Theme, tough cooky! There is an option, according to the #&$% manual,
but the technical people at the importer have never figured out how to use it! On the
plus side, the F10 will accept any of the Qume or Diablo wheels. This gives you a very
wide palette for whatever printing needs you may have.

Finally, the manual! If you think that Digital Research writes poor manuals or that
government documents are obtuse, you must read, or try to read the F10 manual. It is
the worst written piece of you know what that I have ever come across. Even the first
documentation for my 'discatER' was better written and clearer. The dip switches are
described in two different sections. There is no way to know which one is correct.
This is especially important since the front end has no switches for varying pitch,
line spacing. Only switches for select/deselect, line feed, form feed and a set-page.
Further, the manual speaks of 'serial' and 'line' mode. You might think that your
parallel printer won't work in the serial mode. Wrong. Serial here means a sort of
logic-seeking mode which offers more features than the line mode. So, why even
consider line mode? I don't know. I could go on forever, which is how long it took me
to figure it all out.

Next the Qume 5 Series. My neighbors thought that there might have been an earthquake
when the DW 2 was running. They knew that there had been one when the Qume was in
action. This printer, which weighs about 14 tons, probably has vacuum tubes in place
of circuit boards. It is a solid monster. It was the first daisy wheel distributed by
Radio Shack, and under its own name has been vibrating and printing away for years. It
also deserves mentioning because nearly all other printer manufacturers use most of
the software control codes that it does. Note that I said nearly all. More later.

Then there are the various Diablos, the newer Qumes. All resemble in one way or
another the F10, except they are more expensive. One exception is the NEC Spinwriter.
This is the Rolls Royce of printers. As you probably know, NEC uses a thimble as the
printing element. Since it is closer to the paper, it provides more precise
printing.........at a price. If you are looking for a daisy wheel, I would go for the
F10, if you are either a programmer or if there is a printer driver for the WP program
with which you would use it. Reasons are its low cost, relatively little noise, and
the wide availability of wheels and ribbon cartridges. I am told that there is a new
manual in the offing, too. Regarding wheels, be prepared for problems in finding the
proportional ones or those that are not the standard. Also shop around for prices. My
local Computerland charges $35 for a Theme wheel while I can get it elsewhere for $6
or less.

Just a few words about the low cost Brothers and Smith Corona daisy wheels. Cheap they
are, compared to the others. But, they lack many features of the better printers, most
particularly the lack of a backspace. They are also very slow. My advice is to save up
for a true daisy wheel or just save money and buy one of the dot matrix printers
described below. I also saw a new Dutch manufactured printer at Comdex. Very nice. But
what about service if they can't compete in the market?

Page 41

It was the Epson MX printers that revolutionized the dot matrix printer market and
provided for the first time good print quality at an affordable price. I have had one
for over three years and it has never failed, nor have I even had to change the
printing head. The documentation, written by David Lien is outstanding, an example
that I wish other manufacturers would follow. The print quality in today's market is,
however, no longer competitive for the same price, in spite of the qualities of the
new ROM's. It is also quite slow when using the features such as emphasized printing
to improve appearance. Nevertheless, the Epson provides a clean print out, and is
notably reliable.

The ProWriter, aka NEC 8023a, aka TEC, is actually manufactured by TEC. Available at
about the same price as the Epson, it is perhaps a half a generation in advance. It is
faster, offers Greek letters, and other characters not on the Epson, and proportional
spacing. It also has a 12 pitch font, a definite advantage over the Epson which only
offers 10 pitch as standard. The Epson compressed is a little too small for my taste.
The manual, from the same importers who brought us the F10 is better than that, but
still poor. It comes with both pin-feed and friction feed. Pin feed is often called
tractor feed. It is not the same thing. For heavy duty usage, pin feed is definitely
inferior.

As for the new DMP 200, 400 and 500 printers from the Shack, well, they do offer the
considerable technical support that Tandy provides. Enough said.

Now, the star of the new generation of dot matrix printers, the Toshiba P1350. I
understand that RS will also be distributing it under the name of DMP 2100. It is
fast, runs at 160 cps (that means characters per second) for draft printing and
between 80 and 120 for the various other optional printing modes and fonts. The
Toshiba offers 10 and 12 fixed pitch fonts and their so-called expanded versions of 5
and 6 pitch as well as proportional font. Frankly, I prefer the 'Prestige Elite' font.
It is almost as good as daisy wheel printing. The manual is poor but adequate. And, at
least they do use the Qume control codes which will simplify a programmer's task. The
price is high, $2200 list; there is no discounting yet. Add another $250 for a tractor
feed. If you can afford it and/or need it, wait a few months for competition to force
the price and choose this gem of a printer. The new Anadex printer, not yet out, is
also reported to be outstanding. For an economical printer, try the ProWriter in one
or another of its garbs. There are many other dot-matrix printers out there, too. My
advice is that you ask yourself if the manufacturer will still be in business a year
after you buy one. If the answer is no, don't buy it. There are many people who bought
the Base2, to name only one defunct printer, and they have no way to get it serviced.

I firmly believe that dot matrix, or a new technology will eventually replace the
daisy wheel and spinwriters of today. If you need a printer for business
correspondence or are submitting manuscripts to publishers, go for a daisy wheel or a
spinwriter. There are people out there who look at letters with a magnifying glass to
see how it is typed. If they see dot-matrix, into the round file it goes. If you are
already rich like Tim Daneliuk then you can get away with anything you want, even a
scratchy pen. Otherwise, take note of the above.

I have recently had the opportunity to try two programs, both of which are very
impressive. The TBA package, from the same Mequonians who brought you LDOS and this
quarterly, is a fine piece of software. It will permit you to structure your Basic
programs and then read them afterwards, months afterwards. You can even create a sort
of macro type of capability from within Basic with TBA. I think I'll do a little more
work in Basic in the future.

The other program, UTILZAP, was written by Bob Bowker a television creator who likes
to twiddle bits in his spare time. Utilzap is a 'superzap' type of program which
offers two things that SU+ doesn't: double sided support and use with an LX80. SU+ has
many more features, of course. But, I can't use it with my LX80 nor with my 8" drives.
So, I have turned to Utilzap. I prefer FED for some of the things that the other will
do. But, Utilzap has direct access to disk cylinders and tracks.

Page 42

Here's a little quick, very quick way to copy sectors from one file to another from
within a program. First of all open the files with the LRL as 256. Then load DE with
the file to be read, and HL with the file to be written. The rest of the code is as
follows:

AGAIN CALL @READ
 EX DE,HL ; Exchange FCB'S
 JR NZ,OUT ; EOF. Get out
 CALL @WRITE ; Or use @VER
 JR AGAIN ; Read next sector
OUT CALL @CLOSE ; Close the new file
 RET

I use this little routine to make a backup of re-opened files from within
SuperSCRIPSIT, an enhancement which should have been there to begin with.

By the time you all read this Christmas and Hanukah will have passed. I wish everyone
(except the author of the F10 manual) a most happy and prosperous New Year!

PARITY - ODD

(C) 1982 Tim Daneliuk
T&R Communications Associates

FIRST, A WORD ABOUT TANDY...

 There has been a noticeable upsurge of the "Tandy is a bad guy" mentality
appearing lately in the popular microcomputing press. While I certainly have no reason
to defend the folks in Fort Worth (I don't even own Tandy stock!), I think that a lot
of the editorializing being done is poorly thought out, and sometimes just plain
ridiculous. So, to start out this column, I've decided to do a little editorializing
myself. I hasten to point out that this section is necessarily biased and represents
only my own rather narrow-minded opinions!

ACCUSATION NUMBER 1: Tandy doesn't know how to market it's new computer products
correctly.

 This is partly right and partly wrong. It is true that some of their recent
marketing decisions have made less than great sense (introducing the Model 16 with no
supporting software). On the other hand, you can hardly fault the marketing practice
of a company whose revenues went up about $300 million during a year when the rest of
the economy withered away. They must be doing SOMETHING right! Tandy has made
mistakes, but to paraphrase Mark Twain, "Reports of their demise are greatly
exaggerated". Whether Apple, IBM, or Atari like it, Tandy is still a dollar volume
leader in the microcomputer market. I wouldn't count them out just yet on the
marketing front!

ACCUSATION NUMBER 2: The Radio Shack computer salespeople are poorly trained.

 Score 100% on this one. I have seen some of the most amazing demonstrations of
TRS-80s in computer stores ("Yessir, you just stick the disk in drive 1, and soon
you'll be running accounts receivable for all 5000 of your stores...") It is
unbelievable how little about their product line many RS sales people know. However,
blame can't be laid primarily at Tandy's doorstep. This is an industry-wide problem
('Been in a COMPUTERLAND or BYTE Shop lately?? Its not really any different.). This
problem was bound to happen so long as the growth rate of the product outstripped the
nation's ability to assimilate new technologies. Ever try explaining what a "byte" of
data or a "disk sector" is to the complete novice? It can be REAL frustrating. I
think the only solution to this one is time.

Page 43

Eventually, personal computers will become as integral to our lives as automobiles or
television, and the learning gap will narrow. One final thought here: You can't
expect a computer salesman to give you in-depth explanations of how his particular
flavor of computer is designed, along with a tutorial explanation of a boot ROM
disassembly! You don't go to your local GM dealer and demand to know why they use one
spark plug gap versus another. Why? They didn't design the car. The dealer is there
to sell cars and provide normal warranty and post-warranty service on them, not custom
design them to your specifications. Likewise, you cannot reasonably expect your local
dealer to provide hours of consultation to give you a free education in computer
science.

ACCUSATION NUMBER 3: Tandy doesn't provide adequate after-sale support for their
hardware/software products.

 This is the most common gripe I've heard, both in the media, and by TRS-80
owners. I may be sticking my neck out on this one, but in my estimation, this
complaint has LITTLE OR NO BASIS IN REALITY WHATSOEVER! Tandy has repeatedly provided
hardware and software updates for nothing, yet people complain. Sure, I'd like them to
admit that some of their software has problems, and fix it the day I report the
problem. On the other hand, you get what you pay for. As an example, take the case of
LDOS. I've heard LDOS users grumbling that they wished Tandy were as responsive as LSI
in dealing with problems. This is silly. LSI can be responsive 'cause they charge you
for every update. You can get extended support for a year, or just pay the ten bucks
every time you update a disk. The point is, that our friends in Mequon have revenue
which helps pay for their support activities. Tandy does it for nothing, and then gets
a lot of grief from the user community because they don't provide instant service.
Personally, I think that the Radio Shack Microcomputer News magazine should be
expanded to encompass a nationwide support network, much like LSI's extended support
agreement for LDOS. With each serious user kicking in $20 or so a year, sufficient
revenue would probably be generated to set up an independent division whose purpose
would be to provide timely support on all major software and hardware items. This
would also weed out the casual users who think that their twenty or thirty bucks
invested in a game gives them the right to tie up a $40,000 a year systems analyst
with ridiculous questions (these folks would NEVER consider spending an extra nickel
for support, let alone $20).

 The really amazing thing about this whole issue, is that many of the biggest
complainers are also the biggest software pirates around. They steal the software, and
then have the gall to be outraged when their software and/or hardware has problems. In
a capitalistic economy like ours, the "bottom line" makes the corporate boardroom
decisions. A company that is losing revenue due to lost sales from pirates, is not
likely to go out of their way to improve customer support! Whether you believe it or
not, piracy ultimately hurts YOU, the computer user.

 As Bill and many of the people at LSI will attest, when you give support away,
people loose sight of the value they are getting for their money. When LDOS was still
being sold with free 800 line support, the overwhelming majority of calls were from
people who couldn't be bothered to read the manual. I think this kind of thing is the
reason Tandy recently announced the abolition of it's 800 lines. If you get the idea
that I'm really in Tandy's corner on this issue, you're absolutely right. I used to
work in a service industry, and I know from long hard experience that as long as you
give your time and effort away, it is NEVER appreciated. Tandy has made it clear that
they realize their problems and deficiencies, and that they really want to support the
user community. The fact that LDOS is being sold in Radio Shack stores, the fact that
Tandy has an official policy of attempting to repair TRS-80s which have been modified,
the fact that Tandy is setting up a division which encourages third party software,
all point to an active corporate policy of trying to provide quality products and
keeping the customer happy.

Page 44

 If you think this is a lot of opinionated nonsense, here's a little survey you
can conduct. Find yourself a half dozen or so computer users with machines other than
the TRS-80 (if there are that many!). Try to pick people with abilities comparable to
your own. Now, compare notes on how each person's respective hardware/software vendor
treated them. You'll probably be surprised. Tandy may just turn out to be the best of
the bunch! Oh, one more thing: Compare notes on what each person's total investment
has been in real dollars (i.e. actual costs incurred to buy the system and keep it
running) versus what they've been able to accomplish with their systems. Be prepared
for suprise #2.

NOW, A FEW ODDS -N- ENDS

 The first PARITY=ODD poll on disk drives is going very well. You're response has
been gratifying, to say the least (I didn't know that many people read this column!).
If you haven't sent your entry in yet, please do it NOW. The information concerning
the poll as well as where to send your entry is in the last issue of the LDOS
Quarterly.

 As some of you may know, I served as a field test site for the new computer from
LOBO, the MAX-80. I hope to have a chance to comment in depth on it in some future
installation of this column. For now though, let me say that this is a fine machine
well worth the price. You'll have to go a long way to find a more cost effective
microcomputer. If you haven't heard, the MAX-80 comes standard with 5", 8", and hard
disk interfaces, two RS232 ports, a parallel printer port, and a TRS-80 type expansion
bus. It also has a lot of little "goodies" like a real time clock with battery backup,
64K memory, a programmable video character generator, etc., etc. Best of all, the MAX
runs BOTH CP/M and LDOS (a soon-to-be-released version of 5.1.3), yet costs a paltry
$820! If you're thinking about adding a new machine to your collection, or would like
to upgrade to something new, give the MAX-80 a close look. It promises to be a popular
and well supported machine. Speaking of LOBO, they've just reduced the price of all
their hard disk products, making them substantially more competitive with other hard
disk packages than they used to be. I've been running the large 8 MEG version (the
Model 1850) here, and I've found it to be a tremendous piece of hardware. You can't
fully appreciate the elegance and power of LDOS till you've seen it running a hard
disk system! Here's LOBO's address:

 LOBO Drives International
 358 5. Fairview
 Goleta, CA 93117

 (800) 235-1245

 The final ODD -N- END, concerns Model I owners who are using their machines in
critical applications. Since Tandy is no longer manufacturing our dear beloved "I",
you may want to consider buying a used one as a backup in case of dire emergency (i.e.
the CPU blows-up). AEROCOMP has, from time-to-time, a few reconditioned Model I, 16K,
Level II, keyboard units. They also have a good selection of Model I parts like
printed circuit boards, cases, keyboards, and so on. If you're a hardware hacker or
just need a spare machine, you might want to check with them:

 AEROCOMP
 Redbird Airport
 Building 8
 P.O. Box 24829
 Dallas, TX 75224

 (800) 824-7888

FINALLY, THE GOOD STUFF!

Page 45

 I've looked at two software products for this issue of the Quarterly, the first
of which is a spelling checker called Electric Webster. I was particularly anxious to
look at this product, because it's predecessor, Microproof, was notoriously
incompatible with LDOS. Well, things have changed. Webster runs just fine under LDOS
5.1.3 (I didn't check it under earlier versions). The only feature which I didn't
actually test, was calling it from within the LSCRIPT environment. One word of
caution: Be sure you have the latest version of Webster and ALL the patches from the
manufacturer before trying to run it under LDOS and LSCRIPT. I understand that there
were a few problems with some of the early releases, so check with Cornucopia if your
copy is fairly old.

 Webster is written entirely in machine language. Once it has loaded, you are
prompted for the name of the file you want to check. That file is loaded, and Webster
proceeds to check for spelling errors. The program will display the total number of
words in your file as well as the number of unique words. Then all the unrecognized
words are listed to the screen. Now, Webster takes you through that list, one word at
a time. You can interactively add the word to your dictionary, ask to see it in
context, or correct it's spelling. There is one real handy feature for those of us who
can almost spell. At any time, you can examine the part of the dictionary the unknown
word would go in if it were added to the list of known words. This helps you to find
the correct spelling of a word even if you can't remember EXACTLY how to spell it. For
example, if you use the word "evident", Webster will flag it as unknown. When you ask
to see the dictionary, a list of 15 words or so will be displayed, all of which start
with "ev...". By going through the list, you can find the correct spelling of
"evident", and correct your text accordingly. After all the text has been processed,
Webster will load a previously patched version of LSCRIPT, bring in the corrected
text, and turn control over to the word processor. You can now print, save, or edit
the corrected text as usual.

 Electric Webster runs very nicely under LDOS. It seems well integrated into the
operating system, and I had no difficulty using it on a variety of hardware including
8" drives and a hard disk. It is also one of the fastest (if not THE fastest) of the
spelling checkers I've tested so far. I found it easy to use, and the documentation
for it quite useful.

 There are a few problems with Webster, however. First, you cannot use lower-case
to input the name of the file you want to check. This is not particularly serious, but
irritating nonetheless. Secondly, the size of file you can check is limited to what
can fit in memory. With disk oriented word processors like SuperScripsit becoming
popular, this is a fairly severe limitation. Thirdly, if you correct a word, Webster
doesn't check to see if your correction is properly spelled. So, if you are correcting
"evident" and change it to "evident", Webster will let it go by unnoticed. This is a
big problem, in my judgement, and one that ought to be fixed pronto!

 All in all, I really like Electric Webster. Once you get used to it's
idiosyncracies, it is a powerful spelling checker that will be useful to almost
anyone. At $149 it's no giveaway, but if you write a lot, the price is easily
justified. I only hope that Cornucopia comes out with a disk oriented version to cope
with word processors like SuperScripsit. Electric Webster is available from:

 Cornucopia Software Inc.
 P.O. Box 5028
 Walnut Creek, CA 94596

 (415) 524-8098

 Before I go on to the second product, The BASIC Answer from LSI, I should mention
one thing. I generally try to include one LSI/Galactic/Misosys product in each of
these columns. This does NOT mean that these products get an automatic positive
review.

Page 46

The "powers-that-be" at LSI have given me complete latitude in doing reviews,
including the right to negatively review their products, so long as I can substantiate
my views (they must really think their stuff is good!). Rest assured that I look at
the LDOS support products from these companies with the same rigor as I do anyone
else's software.

 TBA (The BASIC Answer) is a BASIC text processor whose function is to make
programming in BASIC simpler by allowing you to write line-independent, structured
code. You do this by writing your programs in a syntax that refers to other parts of
the program by label. For example, instead of using GOSUB 1000, you might use GOSUB
@SCREEN.DUMP. Similarly, variables can have much longer names than in the usual LBASIC
language (up to 14 significant characters). TBA also lets you maintain variables as
being "Local" in a subroutine, or "Global" and accessible to the whole program. The
idea behind all this is that programs written this way will be 1) More readable than
regular LBASIC code, and 2) Easier to maintain in the future. For example, let's say
you use an important subroutine that normally starts at 1000. If you ever modify it so
that it starts at some other line number, you will have to change all GOSUB 1000
references in the entire program. With TBA you don't have to change anything because
all your references to that subroutine were something like GOSUB @SCREEN.DUMP, which
is completely independent of the actual line numbers.

 Once you've written a program using TBA's "language" (using a text editor like
LED or LSCRIPT, or even the LBASIC editor), you use TBA to translate the program into
normal LBASIC syntax. In fact, so long as you don't use the LBASIC extensions to
standard Tandy Disk BASIC, you can use BASCOM or other similar compiler products to
compile TBA-generated programs. TBA also has many options built-in including complete
cross-referencing facilities, and assembly language type pseudo-ops like TITLE, LIST
ON/OFF, and PAGE.

 As usual, LSI has included complete documentation which has sections for both the
beginner and advanced BASIC programmer. The package sells for $69 and will run on
either the Model I or III.

 I have to be honest: I really don't care much for BASIC. In fact, except for
Snapp's extended BASIC for LDOS, I'd never seen any BASIC utility that I thought was
worth much. Well, we live and learn. TBA is terrific! Its just plain indispensable if
BASIC is your language of choice. TBA almost forces you to write self-documenting,
structured programs. You really have to go out of your way to write sloppy code with
this product, and I recommend it wholeheartedly. In fact, just between you and me,
I've started programming in BASIC again. In fact, I may even publish some TBA "source"
in this very column. But please, don't tell anyone...

ITEMS OF GENERAL INTEREST

The patch to enhanced Visicalc version 150Y0-T83 in the October Quarterly suffered a
character loss during editing. In the line that starts X'A720', there is a single "3"
as one of the character pairs. If that pair is changed to a "3A", the patch will work
properly. Thanks to Revd. Michael Bootes of West Sussex, England for bringing this to
our attention.

The following patch was part of the article "LSCRIPT patches add versatility" in the
October 1982 issue of the Quarterly. Unfortunately, there was a problem with the patch
4 section, and we did not get the corrected version into the newsletter. The correct
code is as follows:

Page 47

.

.Patch 4 - resolve conflicts between Scripsit & PR/FLT

. The following patch allows Scripsit to peacefully coexist

. with PR/FLT. The patch will zero the PR/FLT parameters on

. entry to Scripsit and restore them on exit. This will only

. work for LDOS 5.1.2 and later. This patch was written by

. Scott Loomer.
D00,48=C3 F5 63
D12,3D=E5 3A 25 01 FE 49 28 07 21 1F 44
D12,4C=3E 42 18 05 21 89 42 3E 43 32 33 64 22 A1 62 7E
D12,5C=CB 5F 28 23 DD 2A F6 4D DD 7E 19 32 3B 64 DD 36
D12,6C=19 00 DD 7E 1A 32 3C 64 DD 36 1A 00 3A 2A 40 32
D12,7C=3D 64 3E 00 32 2A 40 E1 C3 69 63 00 00 00
D13,E4=C3 A0 62
DL0,E4=3A 00 00 CB 5F 28 16 DD 2A F6 4D 3A 3B 64 DD 77
DL0,F4=19 3A 3C 64 DD 77 1A 3A 3D 64 32 2A 40 C3 DD 63
.End of Patch

The LDOS Library commands LOAD (X) and RUN (X) are documented as working with files
that start above X'5300'. This is not correct, and should be documented as working
with files that load at or above X'5400'.

Following is a patch to FED/CMD, the LDOS File Editor. It fixes a problem that can
occur with the L command.

 . Patch FED/CMD, corrects L command
 D1B,81=0B 20 01 04
 . EOP

Early versions of the WRTEST/CMD program on the Utility Disk #1 has a problem when
running on the Model III. The following patch will correct it.

 PATCH WRTEST/CMD (D01,6A=9A 52)

The MAP/CMD program on the first utility disk would not always show the proper sector
count for double sided drives. Apply the following patch to correct this problem.

 . Patch for MAP/CMO, utility disk #1
 D03,D5=E4
 D03,FB=C6 00 B8 DA EB 55
 D04,2E=E4
 D04,41=E4
 D04,54=E4
 D05,79="4"
 . EOP

Model III PROFILE, Ver 3.4, will sometimes come up with a "Disk full or write
protected" error when initializing a new system. The following patch to the INIT
program will cure the problem:

 PATCH INIT/ (X'7062'=1A)

LCOMM on version 5.1.3, on Model I and III and MAX-80, has a problem when trying to
send a disk file that is larger than the memory buffer. To fix it, apply the following
patch:

Page 48

 . MODEL I patch for LCOMM file send - 12/15/82
 D07,AE=12
 . EOP

 . MODEL III and MAX-80 patch for LCOMM file send - 12/15/82
 D07,B3=12
 . EOP

For Version 5.1.3, both Models I and III, the following patch to FORMAT/CMD will
correct the use of precompensation when formatting in double density.

 . Model I & III TRS-80 patch for FORMAT w/precomp
 X'60E5'=8B 67
 X'678B'=FD 56 05 C3 08 64
 . EOP

The following patch for LBASIC prevents a syntax error if a space is used after a hex
constant.

 . LBASIC/CMD fix for use with hex constants, MODEL I only
 D08,6E=D7 00
 . EOP

 . LBASIC/CMD fix for use with hex constants, MODEL III, MAX-80
 D08,7F=D7 00
 . EOP

The PR/FLT program uses a CHR$(6) in a special manner to reset its internal line
counter. This can interfere with programs that do dot addressable graphics or
proportional printing. The following patches will prevent a CHR$(6) from being trapped
by PR/FLT.

 . MAX-80 PR/FLT patch, disable CHR$(6) feature
 D03,DF=00 00 00 00
 . EOP

 . Model III PR/FLT patch, disable CHR$(6) feature
 D03,C0=00 00 00 00
 . EOP

 . Model I, 5.1.3 PR/FLT patch, disable CHR$(6) feature
 D03,E7=00 00 00 00
 . EOP

 . Model I, 5.0.3A PR/FLT patch, disable CHR$(6) feature
 D03,2F=00 00 00 00
 . EOP

The XLATE parameter in LED does not function correctly. This can be fixed by applying
the following patch:

 . Patch to LED, all versions, to correct XLATE parm
 D03,41=BA
 . EOP

Page 49

When using the Extended Visicalc and the LDOS KI/DVR program, the key sequence
<SHIFT><CLEAR> rather than just <CLEAR> is needed to perform a backspace. Also, the ^
character used to denote exponetiation can be generated by <CLEAR><;>.

MAX-80 LDOS users may run into a problem at times when attempting make a backup using
a single drive. To correct the problem, apply the following patch to the FORMAT/CMD
program:

 . FORMATXA - Fix FORMAT/CMD for single drive backups - MAX-80 ONLY!
 D10,79=00
 D11,7C=00
 . EOP

When using both the MINIDOS and KSM filters, the MINIDOS filter normally must be
installed AFTER the KSM. If the order is reversed, the "R" function of MINIDOS will
not work. From time to time we get requests from users who want to sysgen Minidos and
use KSM files only for certain applications. Right now the only way to do this is to
sacrifice the "R" function of Minidos.

As a solution, Roy has developed the following patch to MINIDOS/FLT. Once this patch
is applied, the Minidos function "R" will only work if KSM is installed after Minidos,
not before it. It is recommended that you rename the copy of Minidos after you patch
it to avoid confusion.

 . Patch to MINIDOS/FLT Ver 5.1.3 Model I
 D02,92=14
 D02,DD=2l 12 00 ED 7A F9 E1 C9 00 00
 . EOP

 . Patch to MINIDOS/FLT Ver 5.1.3 Model III
 D02,8E=14
 D02,D9=2l 12 00 ED 7A F9 E1 C9 00 00
 . EOP

FIX Disk update

Since the last newsletter, the following files have been added to the FIX disk. The
current date on the disk is 12/14/82.

***** RCOBOLA/FIX - Patch for Radio Shack RUNCOBOL for use
with ISAM files.

***** RSCOBOLA/FIX - Patch for RSCOBOL to prevent an error if
the compiler is entered without using a filename.

***** RCOBOLB/FIX - Patch for RUNCOBOL to fix a problem with
OPEN-EXTEND mode using non-ISAM files.

 . RCOBOLA/FIX
 . This fixes a problem with Opening and immediately
 . closing an ISAM file. Patch the RUNCOBOL/CMD module.
 .
 X'5220'=CD 42 44 C8 FE 1C C0 78 B1 C8 3E 1C B7 C9
 X'AE09'=20 52
 . EOP

Page 50

 . RSCOBOLA/FIX
 . Patch for RSCOBOL/CMD to prevent an error when no
 . filename is used when entering the compiler
 .
 X'9B02'=CD 04 52
 X'5204'=16 00 78 B7 CA 2D 40 C3 51 9C
 . EOP

 . RCOBOLB/FIX - 12/13/82
 . Fixes Open/Extend problem in RUNCOBOL/CMD
 .
 X'522F'=CD 48 44 C8 FE 1C C0 AF C9
 X'9A40'=2F 52
 . EOP

LDOS for the MAX-80

For those of you who are not familiar with the MAX-80 computer from Lobo Drives, it is
a Z-80 based 64K RAM single unit computer that has built in 5" and 8" drive
controllers, parallel printer port, dual RS232 ports, runs at 5 MHz, and can be
configured with an additional 64K of RAM. For more information on the computer itself,
see the add in the last Quarterly or contact Lobo directly at 805-683-1576.

We are receiving many calls and letters asking questions about the MAX-80 and LDOS.
Here are the most common ones along with our usual answers.

**1) What version of LDOS will be used for the MAX-80?

 LDOS Version 5.1.3, emulating a Model III. This means that assembly language entry
 points and storage areas will be the same as the Model III version of LDOS. These
 addresses are shown in the "Alphabetic Model I/III Memory Map" near the end of this
 newsletter.

**2) Will my programs have more memory to run in since there is no ROM?

 No. Since the LDOS is version 5.1.3, it needs the ROM code in low memory from
 X'0000' to X'2FFF', the same as a Model I or III. Lobo has a license to use the
 Microsoft code, so that part of memory is loaded from disk when booting. The memory
 available will be the same as when running a Model III.

**3) I own a Model I. Will my present software run on the MAX-80?

 That depends... If the software would run on a Model III, it will probably run on
 the MAX. We also have many patches providing Model I/III compatibility available on
 our FIX disk.

**4) Will my Model III software run on the MAX-80?

 Probably. Since the hardware is not a true image of a Model III and since the ROM
 area is not an exact duplicate, there could be conflicts. However, we did use the
 MAX-80 to write the MAX-80 operating system. We know that programs such as
 Scripsit, EDAS, the Microsoft M80, L80, and EDIT all run with no changes.

**5) Will LDOS use the optional 64K of memory?

 No, not for any standard system features. We will be developing several utilities
 for the MAX-80, the first of which will be a RAMDISK for the alternate memory. This
 should be available in February if all goes as planned.

Page 51

**6) What specific differences are there between the MAX-80 LDOS and the Model III
version?

 First of all, the entire front end of the ROM code was re-written. However, the
 Documented entry points were all maintained. Programs that use ROM calls should
 work as long as the call was documented in the Radio Shack Model III manual. The
 character set on the MAX-80 does not have the special character set that is
 normally found at locations 192 through 255. Instead, a graphics character is
 displayed. Since the character set is programmable, this graphics character can be
 changed to the special character if necessary (this function is not provided by
 LDOS, and would require the user to program the change). The MAX-80 version of LDOS
 has two utility programs to set the hardware clock/calendar. No power-up prompting
 for date or time will be done as the hardware with its battery backup always
 supplies the correct date and time. Also, programs such as BACKUP and FORMAT no
 longer display the message about the real time clock not being accurate, as the
 hardware clock runs constantly and is a REAL time clock. The entire keyboard driver
 is resident in low memory, so setting KI/DVR no longer takes any user memory. Two
 replacement programs, RS232M and MAX80/DCT take the place of their Model III
 counterparts to make up for the hardware differences.

**7) The MAX-80 runs at 5 MHz which is 2 1/2 times faster than the Model III. Will
this make a difference in my programs?

 Yes and no. Programs will definitely execute faster on the MAX-80! However, things
 such as the interrupt rate, the keyboard delay and repeat, and the documented call
 for delay (@PAUSE) have been adjusted to keep timing and delay loops the same as on
 a Model III.

**8) Will LDOS use an 80 column display?

 No. LDOS version 5.1.3 is designed to use a 16x64 video display, and therefore does
 not have an 80 column mode..

**9) What about the documentation and support for the MAX-80?

 LDOS for the MAX-80 comes with the same 5.1.3 manual as Model I and III LDOS, but
 has an addendum describing the differences in existing commands and new programs. A
 normal registration card and Extended Support Agreement are provided with the
 manual. Questions about the MAX-80 hardware should be directed to Lobo. LDOS
 questions can be answered by either Lobo or by Logical Systems. There is also a
 MAX-80 users group, MAXIMUL, as described in the Users Group article near the front
 of this newsletter.

**10) What type of programs will definitely not work?

 Self-booting disks will not boot on the MAX-80. Utilities that access the Model III
 disk controller or printer port directly will not work. Communications programs
 that have their own RS-232 drivers included will not work because the MAX-80 uses
 the SIO chip from Zilog rather than the UART that is used in the Model III.
 Programs that used the ROM area of the Model III as a "bit bucket" or a garbage
 dump area will probably crash the system eventually. Programs that use tape I/O of
 any kind. Other than that, any program that uses only documented ROM or system
 calls should be OK.

**10) Do you sell the MAX-80?

 No. To keep the price low, the MAX-80 is available only from the manufacturer -
 Lobo Drives International.

Page 52

LDOS: How it works - The PATCH Utility

 From time to time we get requests for in-depth explanations of certain LDOS library
 commands and utilities. As an experiment, the staff of the Quarterly has decided to
 start up this column. If you have a specific request for a "How it works" article,
 please send it in writing to LSI, attention Quarterly Editor. This issue's column
 is about PATCH, as requested by Mr. Ian Hawke of England.

 These first few paragraphs will describe the different type of patches and when
 they should be used. Then, creating a patch and applying it to a file will be shown
 with several examples. Before continuing, one very important point should be made.
 NEVER patch the only copy of a program or data file! If for some reason the patch
 does not apply properly, you can always start over and try again... as long as you
 have another copy of the original file!

 The LDOS Patch utility is used to make changes to existing programs or data files.
 To use it, you must tell Patch the name of the file you want to change and then
 give it the new information to put into the file. For this discussion, we will
 consider files to belong to one of two groups, the first being a load module
 program and the second being any other type of program or data file. Patch can be
 used with one of two formats depending on the type of file being patched - a patch
 by load address or a patch to a direct sector and offset in the file. Load module
 programs can be patched in either format. Any other type of program or data file
 must be patched using the sector and offset format.

 Now that you know the two types of programs and the two types of patches, lets
 define some of the terms used in the description.

 Load module programs are programs that load into a specific area of memory. They
 are usually identified by a /CMD extension, but this is not always true. Generally
 speaking, any program that you execute by typing in its name at the LDOS Ready
 prompt is a load module type program. With LDOS, the /FLT and /DVR programs are
 also load module files, and can be patched using either format.

 BASIC programs, source code files for assemblers and compilers, word processor text
 files and program data files are all examples of non-load module files. This type
 of file is not normally changed with the Patch utility, but it can be done by using
 the direct sector and offset mode of Patch. However, it is generally easier to make
 corrections to most of these types of files by using the editor that originally
 created them.

 Patch by load address is referred to as an "X format" type of patch. Patch by
 direct sector and offset is called a "D format" patch.

 When using the X format patch on a load module file, the new code will be applied
 to the end of the file, making the file larger. The actual new code will be in the
 format:

 X'nnnn'=bb bb bb bb

The "X'nnnn'" represents the memory location where you wish the new code to start
loading, while the "bb bb bb" represent the hexadecimal values to load at those
locations. Since the new code is at the end of the file it will load last, thereby
overlaying anything that might have been loaded previously at the specified memory
location. Since files such as BASIC programs and data files do not use load addresses,
you can see why this type of patch is reserved for use with load module files.

The D format patch is used to change one or more bytes starting at a specific sector,
and at a specific offset into that sector. This type of patch would be in the format:

Page 53

 Dss,oo=bb bb bb

where "ss" is the sector number, "oo" is the offset into the sector, and "bb bb bb"
represent the hexadecimal values to be written to those locations. Since this type of
patch is directly overlaying existing locations in the file, it will not make the file
larger. Because it does not reference any particular load address as an X format patch
does, it can be applied to any type of file. NOTE: ss and oo are offset from zero.
Thus, D00,00 refers to the first record, and the first byte in that record.

Creating a Patch

In this issue of the Quarterly, the "Items Of General Interest" section (hereafter
called IOGI to conserve space) contains patches to several programs, including one for
the PR/FLT program. Referring to the IOGI section you should see that there are three
separate patches, one for each LDOS version. All versions of the patch contain 3 lines
- an identifying comment, the actual patch code, and an ending comment. You will
notice that the patch is in the D format, with the Model 3 patch code line looking
like:

 D03,C0=00 00 00 00

Examining this code, you should see that the patch will be applied to relative record
3 of the file (D03), starting at a relative offset of X'C0' in the record (C0=), and
that four bytes of the file will be changed to zeros (00 00 00 00).

The two lines that start with periods are comment lines that are used to identify the
name of the file and the end of the patch code. They will have no effect on the patch
file, and may be omitted entirely if desired. Their only purpose is to let the user
see what the patch file is for, and to assure that no lines were left out when the
file was built.

Since this is a very short patch, there are two ways it can be applied to PR/FLT. The
first method is to build the patch as an ASCII file using the BUILD library command or
a word processor. Since you all have BUILD, I will use it in the following example. To
follow along, get a backup copy of your LDOS disk with PR/FLT on it.

To create the patch file, type in the following lines from the LDOS Ready prompt,
pressing <ENTER> and <BREAK> as indicated:

 BUILD PR/FIX<ENTER>

Your disk drive(s) will now access, and the system will open a file called PR/FIX.
When the disk drives stop, you can type in the proper 3 lines of code as listed in the
IOGI section, pressing <ENTER> after each line. When you have typed in the lines,
press <BREAK> to close the file. Very simple so far! To actually apply the patch,
enter the following line from the LDOS Ready prompt:

 PATCH PR/FLT.GSLTD USING PR/FIX

If all goes well, the disks will access, the Patch sign on message will appear, and
shortly thereafter the message 'Patch(es) successfully installed" will be shown. If,
however, trouble ensues, read this next section for the most common error messages and
their causes and cures. After typing in the command line, the disks spin and the
message "Program not found" appears WITHOUT the Patch sign on message showing up. This
indicates the PATCH/CMD utility is not on your disk. Get a copy of it off your master
and try again. After typing in the command the disk spins and "File not in directory"
comes on the screen. This means you are missing either the object (PR/FLT in this
case) or the patch file (PR/FIX). If you see the message "Bad hex digit encountered",
chances are you mistyped the patch code. The line that Patch thinks is bad will be
displayed on the screen, so you can check it against the written version. If it all
looks correct, you may have left a space after the last digit pair in the line.

Page 54

This may not be readily apparent from the display on the screen. The error message
"Patch input format error" indicates that some patch code line was typed in
incorrectly. The best way to correct this error is to list the /FIX file and compare
it to the original printed listing. If you get an error message "Load file format
error", you are trying to patch a non-load module file with an X format patch.

Since the above patch code is very short, it may be applied directly to the file
without the need to create the separate PR/FIX file. To do this, you could use the
Patch command as follows:

 PATCH PR/FLT.GSLTD (D03,C0=00 00 00 00)

If the patch code is small enough, it may be applied directly to the target file by
placing it in parentheses on the command line. Files that contain more than one line
or a very long line cannot be applied in this manner and will have to be built into a
file as previously described.

The same rules apply for X format patches as well as D format ones. The patch code may
be applied from the command line or can be built into a file. Again referring to the
IOGI section, you will see an example of a command line X format patch that is for the
Profile INIT program, a D format patch for the LDOS utility LCOMM, and several
multi-line X format patches for programs in the Radio Shack COBOL compiler package.

The LDOS FIX disk is a collection of /FIX files for some of the more popular TRS-80
application programs. If you have recently purchased it and are unsure about how to
patch programs with it, you can use the following format:

 PATCH object file USING fix file

The "object file" in this example is the name of the actual file you want to apply the
patch to, such as RUNCOBOL/CMD, SCRIPSIT/LC, etc. The "fix file" is the name of the
patch file on the FIX disk, such as RCOBOLA/FIX, LSCRIPT/FIX, etc. Once you have gone
through the procedure a couple of times, you should find that applying patches is a
very simple procedure.

One final note: Although the directory of a disk is accessible as a file called
DIR/SYS, it should NEVER be patched! Doing so will make certain parts of the directory
unreadable to LDOS. If you need to make changes to the directory, use the extended
debugger disk read/write function or a program such as the FED file editor program.

THE JCL CORNER - By Chuck

Hello once again from the DO area of LDOS-land. No, I am no longer questioning if
anyone reads this section of the newsletter. The reader response cards from the last
newsletter have proved that many people are interested in using JCL and read this
column and the other examples of JCL usage submitted by LDOS owners. HOWEVER . . . the
#1 comment concerning JCL was something like "Have more simple JCL articles" or "I
still don't understand how to use JCL". Assuming that the responses mean "What the
heck is JCL good for and how do I use it", I will in the future try to dedicate a
portion of this column to answering specific questions received from readers about the
use of JCL as well as describing the general features. To start it off, let's go back
to the basics for a second and define what exactly JCL is in its simplest form.

JCL : Job Control Language - Sometimes described as "A FILE CONTAINING A SERIES OF
OFTEN REPEATED COMMANDSU.

JCL : Job Control Language - Sometimes described as "AN AUTOMATIC START-UP FUNCTION
FOR APPLICATION PURPOSES".

Page 55

JCL : Job Control Language - Sometimes described as "A PRE-DEFINED FILE OF KEYBOARD
ENTRIES THAT ANSWER PROMPTS IN AN APPLICATION PROGRAM".

Before I talk about the above definitions, I want to stress that JCL shouldn't be
considered a separate "language". Instead, it should be viewed as a method to create a
series of commands that will be passed to the system JUST AS THOUGH YOU TYPED THEM IN
ON THE KEYBOARD!

How can you figure out what a JCL file is good for? One way is to keep track of
anything you do every day or more than once a day. These will usually be the first
things to be incorporated into JCL files. Once you've found a function to automate,
you're set to create a JCL file. No, creating a JCL file is not impossibly difficult,
and in fact is extremely simple. Until you are experienced at it, I recommend that you
use a pen(cil) and paper to do the following.

 Actually perform the operation, writing down exactly what you type in on the
 keyboard.

Not hard so far, eh? Well, the rest is just as easy. To actually construct the JCL
file, you need to put what you have on paper into an ASCII file on your disk. Several
methods are available. The BUILD library command is available to all LDOS owners and
can be used as follows. From the LDOS Ready prompt, type in a command such as:

BUILD filename

where "filename" is the name of the JCL file you wish to create. Now, looking at the
commands you have written down on the paper, type in each line and press <ENTER>.
After all the lines are typed in, press <BREAK> to end the build. All done.

Word processors can also be used to create JCL files. Since my experience is limited
to Scripsit (in one of its many LDOS patched versions), I'll use it as an example of
creating a JCL file. This should be sufficient so that users of Newscript, Pencil,
Lazy Writer, etc. can figure out the proper procedure. For this example, I am going to
create a JCL file to copy three files from drive 0 to drive 1 and then do a directory
command to see the results. First, I type in LSCRIPT to enter the LDOS patched version
of Scripsit. Next I type in the actual commands, pressing <ENTER> after each line:

 COPY JCL21/SCR:0 :1
 COPY SUGGEST/SCR:0 :1
 COPY CONTEST/SCR:0 :1
 DIR :1

Now I have the actual commands I want the JCL file to execute. The next step is to
save them as an ASCII disk file which I will call COLUMN/JCL. To do this, I go to
LSCRIPT's command mode and type:

 S,A COLUMN/JCL

 ** With LSCRIPT and possibly with other word processors, un-needed spaces may
 exist at the end of the file. Before saving the file, you should position to just
 after the last carriage return in the file and then issue the appropriate command
 to Delete Line. With LSCRIPT, this is a <CLEAR><3><CLEAR><2> sequence.

Text editors can also be used to create JCL files. If I were using LED (the LDOS
Editor) to create this file, I would type LED COLUMN/JCL at the LDOS Ready prompt.
Once in LED, I would type in the four command lines, delete any extraneous spaces
after the last line, and then use the command <CLEAR><SHIFT><=> to save the file and
exit.

Heeeeey, this stuff is SIMPLE!

Page 56

Yup, that's all there is to it. To make this JCL file execute, I would type in the
command DO =COLUMN at the LDOS Ready prompt, and then sit back and watch as the three
files were copied and the directory of drive 1 was displayed. The nice thing about JCL
files is that once correctly built, they never make typographical mistakes when
issuing commands. The longer and more involved the command series is, the more you
will appreciate the "error free" feature of using a JCL file to do a series of
commands.

Use the LCOMM utility? Create a JCL file consisting of SET *CL RS232/DVR (parameters
if needed), LCOMM *CL, //STOP. Use LBASIC? Create a JCL file consisting of LBASIC
(parameters if needed), RUN"program name", //STOP.

OH OH . . . he's using some funny JCL stuff (//STOP) . . .

Not to fear, really. I can explain it in one small paragraph, plus a couple of
examples. There are two common ways to end a JCL file. The first is with a //EXIT
macro, the second is with a //STOP macro ("macro" being a JCL buzzword). If neither
one of the macros is used, //EXIT is assumed. The big difference is that:

 //EXIT puts you back where you came from.

 //STOP leaves you where you are.

Normally, any JCL file such as the COLUMN/JCL file example that starts at the LDOS
Ready level and also ends there will not use either macro at the end, and thus will be
treated the same as if an //EXIT had been used - it starts at LDOS Ready and ends up
there. However, if you are entering an application such as LBASIC, you will want to
use the //STOP to remain in LBASIC when the end of the JCL file is reached. If you
didn't use a //STOP, you would see a "Job Done" message and return to the LDOS Ready
level as soon as the last line in the JCL file was executed.

Ask me, I'll tell you - responses to USER QUESTIONS:

"When I use the command DO FILENAME, I end with an extra file on my disk - a file
called SYSTEM/JCL. What gives ?"

 When DOing a JCL file there are two commands - DO FILENAME and DO =FILENAME. The
 LDOS JCL contains provisions to do logic and substitution, and therefore has a
 "compile" phase. If the "=" is not used on the command line, the JCL file will
 first be compiled and then executed. The compilation phase examines each line and
 writes the results to a file called SYSTEM/JCL which it then executes. If your
 JCL file contains only executable commands and execution macros such as //STOP or
 //EXIT, using the "=" in the command line will prevent the SYSTEM/JCL file from
 being created. A file such as the COLUMN/JCL example described earlier is such a
 file and does not need compiling.

"When I use a BASIC compiler, the resulting program executes much faster than the
original program. Why isn't this true with JCL, and how can I speed up the execution.
Can the MEMDISK utility program help?"

 Unlike language compilers such as a BASIC compiler, the JCL compile phase does
 not create a machine language program. Instead, it is used to check for logical
 operators and user defined substitution fields, etc. The result is still an ASCII
 file used to substitute lines in the file for keyboard responses. To speed up
 execution, you can use (version 5.1) the SYSTEM (SYSRES=11) command to reside the
 JCL execution module in memory. For those of you who have the MEMDISK utility,
 creating a MEMDISK and then copying the JCL files to it will speed up execution.
 To provide optimum speed, JCL files that are used extensively can be copied to a
 small MEMDISK and then SYSGENed.

Page 57

** This is a paraphrase of letters/telephone calls:

"I don't understand JCL, and I don't want to call or write with my questions because
I'm afraid you'll laugh/talk over my head/tell me to read my manual/etc." "I was
afraid to call before this because I thought you would /or/or/."

 My name is Chuck. My number is 414-241-3066 (after we move in March or April
 414-355-5454). I will never /or/or/. Due to circumstances beyond my control, I
 was involved with the TRS80 since its inception in 197? (my memory is hazy as to
 the exact date). As an employee of Radio Shack at the time (repair center
 technician), I did such things as call Ft. Worth and ask "How do I make a copy of
 the disk you sent me. FORMAT? What is FORMAT? BACKUP? What is BACKUP?" This was
 followed by questions such as "RS232? What the heck does that mean?" If I did it,
 so can you. Really - I (and our entire support staff) are always ready to help
 you with your LDOS questions, and I will always answer any JCL questions, as I
 appreciate the challenge. I use both JCL and the new TYPEIN utility daily, and I
 don't know how I ever got along without them.

JCL HINTS AND TIPS:

I have heard complaints that screen format of JCL leaves something to be desired when
using the //PAUSE, //INPUT, etc. macros, as the macro itself appears on the screen.
Remember the "%" symbol (Ver 5.1)? Try a line such as:

 //PAUSE %1DPress <ENTER> to continue

The %1D means "move the display cursor to the beginning of the line." This will cause
the following message to cover up the //Macro. For those of you concerned with screen
format, this should help.

JCL QUESTION OF THE QUARTER:

Last issue's winner was Jaques Yerby - the only person to mail in an answer to the
question. The correct answer was that entering a command to DO the file with no
parameters would NOT produce any executable lines. Therefore, any existing SYSTEM/JCL
file would be executed instead! Consider the case where the last JCL you compiled and
executed was to format a disk. Well, that same format command would be in the
SYSTEM/JCL file, and would execute. Of course, unexpected formats are very often fatal
to the information on the target disk! A good way to safeguard against this occurrence
is to start every JCL file with an execution comment, even if it is just a period
followed by a carriage return.

This issue's question is more straightforward than the last. Again, free software is
available for three lucky people. To be eligible, send in your answer to the question
before March 15th, 1983. A drawing will be held to determine the winners. A FED, LED,
TBA, Filter disk or Utility disk will be the prize.

Question: What is wrong with the following example, and how can it be fixed?

//. January question JCL now compiling. . .
//IF A
//ASSIGN A=1
//END
//IF B
//ASSIGN B=2
//END
//PAUSE Press <ENTER> to see the results
//IF A+B
. A or B was used as a parameter
//ELSE
. Neither A or B was used as a parameter

Page 58

//END

To keep the examples used in these questions of some practical value, I'll try to base
them on actual customer service calls or letters concerning JCL. For those of you who
want to see a practical use for a JCL, try and talk your Radio Shack Computer Center
into listing out the INITHD JCL file that comes with the Model I/III hard disk system.

LES INFORMATION by Les Mikesell

The LDOS SYSTEM (FAST) and SYSTEM (SLOW) commands are implemented to work only with
hardware that uses a value of 1 output to port FE to increase the CPU speed and a
value of 0 to go back to normal speed.

An image of the value last output to port FE is maintained in the system. The SYSTEM
(FAST) and (SLOW) commands pick up this stored byte, merge in the appropriate setting
for bit 0, output the new value to port FE, store the new value, and set the FAST bit
in SFLAG$ accordingly. The SFLAG$ bit is used by the system in certain timing loops,
especially the "motor-on" delay time for the disk drives, and this byte is saved in
the CONFIG/SYS file by the SYSTEM (SYSGEN) command.

When SYS0 initializes at boot-up, a value of 0 is output to port FE to slow system
down until the config file is loaded (if there is one). After the config file loads,
the bit in SFLAG$ is tested to determine the correct state for the CPU speed, and the
value to activate the fast speed is output if the bit is set.

There are modifications currently available that use different port addresses and
values to control the speed. The following addresses may be patched to change the CPU
speed control function to work with different hardware. The first list is the memory
address and normal contents with a description of the function performed. The second
list contains the disk locations for a 'D' type patch to change the values or port
address used.

Model 1, version 5.1.3
SYS0/ SYS
;
Address- values function
X'4427'=00 ;image of value output to port

X'4E1D'=3E 00 ;LD A,0
X'4E1F'=D3 FE ;OUT (FEH),A -initial slowdown at bootup

X'5072'=$1 FE 01 ;LD BC,01FEH -set up value/port address

X'507B'=ED 79 ;LD (C),B - output (if FAST bit is set after config file loads)

Model 1 5.1.3
SYS7 ... SYSTEM (FAST or SLOW)
(sets bit 3 of SFLAG$ accordingly)

X'521F'=F6 01 ;OR 1 - Set FAST by setting bit 1

X'522B'=E6 FE ;AND 0FEH - set SLOW by resetting bit 0

X'5230'=D3 FE ;OUT (FEH),A - output value

Locations for 'D' patches (note that the values shown are the normal contents and
should be changed according to the hardware modifications)

Page 59

SYS0/SYS:
D0C,D8=00 <= SLOW value
D0C,FE=FE <= Port address
D0F,35=FE <= Port address
D0F,36=01 <= FAST value

SYS7/SYS:
D0D,9B=01 <=Value to OR with image byte to produce FAST value
D0D,A7=FE <=Value to AND with image byte to produce SLOW value
D0D,AC=FE <=Port address

Model 3, version 5.1.3
SYS0/SYS
;
Address- values function
X'42A0'=00 ;image of value output to port
;
X'4E49'=3A A0 42 ;LD A,(42A0H) - get initial value (a 0)
X'4E4C'=D3 FE ;OUT (FEH),A - output for slowdown

X'5062'=01 FE 01 ;LD BC,01FEH - set up value/port address

X'506B'=ED 79 ;LD (C),B - output (if FAST bit is set after config file loads)

Model 3 5.1.3
SYS7 ... SYSTEM (FAST or SLOW)
(sets bit 3 of SFLAG$ accordingly)

X'521F'=F6 01 ;OR 1 - Set FAST

X'522B'=E6 FE ;AND $FEH (set SLOW by resetting bit 0)

X'5230'=D3 FE ;OUT (FEH),A - output value

Locations for 'D' patches (note that the values shown are the normal contents and
should be changed according to the hardware modifications)

SYS0/SYS:
D02,23=00 <= SLOW value
D0D,48=FE <= Port address
D0F,66=FE <= Port address
D0F,67=01 <= FAST value

SYS7/SYS:
D0D,A6=01 <=Value to OR with image byte to produce FAST value
D0D,B2=FE <=Value to AND with image byte to produce SLOW value
D0D,B7=FE <=Port address

Some users have reported frequent I/O errors with certain double headed disk drives.
The patch reported in an earlier issue of the Quarterly solved the problem by changing
the "SEEK" command issued by the disk driver to "seek with verify". This causes a
delay on every sector access which makes the drives function properly, but slows the
system down much more than necessary. The following program will add the delay needed
by the drive only after the head has been moved and requires additional settling time.

Page 60

Assemble the program with the name "SLOSTEP/DCT" and install it with the command
SYSTEM (DRIVE=n,DRIVER) (where n is the number of the drive). When the system prompts
for the name of the driver, enter SLOSTEP, and the program will be installed. If the
delay is required for more than one drive in the system, the procedure must be
repeated for each drive.

00100 ;
00110 ;SLOSTEP/DCT
00120 ;An addition to the LDOS disk drivers to provide an
00130 ;Increased delay for head settling whenever the disk
00140 ;Function would cause the head to move.
00150 ;This may provide greater reliability with certain
00160 ;Double-headed drives
00170 ;
00180 DELAY1 EQU 100 ;Delay before stepping
00190 DELAY EQU 1350 ;<=countdown delay for head settling
00200 ;
00210 ;SYSTEM ENTRY POINT DEFINITIONS...
00220 @DSPLY EQU 4467H
00230 @EXIT EQU 402DH
00240 @PAUSE EQU 60H
00250 DCT$ EQU 4700H
00260 HIGH$ EQU 4049H
00270 HIGH3 EQU 4411H
00280 ;
00290 ;
00300 ORG 6000H
00310 ;On entry to a /DCT program called by the
00320 ;SYSTEM (DRIVE=n,DRIVER), DE contains the address of the
00330 ;Specified DCT
00340 ;
00350 ENTRY: PUSH DE ; Save DCT pointer passed by SYSTEM
00360 LD HL,LOGON ; =>Logon message
00370 CALL @DSPLY ; print it
00380 LD HL,(HIGH$) ;Pick up available memory pointer
00390 ; CHECK FOR MOD 3...
00400 LD A,(125H) ; TEST FOR MOD III
00410 CP 'I' ; match if mod III
00420 JR NZ,MODI ; go if Mod I
00430 ; IF THIS IS A MOD III
00440 LD HL,HIGH3 ;Mod 3 HIGH$
00450 LD (NMEM),HL ;Save for later
00460 LD HL,(4411H) ;Get contents
00470 ;
00480 MODI: LD (MYMEM),HL ;Store away for relocating
00490 LD (OLDHI),HL ;And in header
00500 ;
00510 POP IY ; put DCT pointer in IY
00520 ; IY=> DCT FOR THIS DRIVE
00530 LD H,(IY+2)
00540 LD L,(IY+1) ;HL=Driver address
00550 LD (DVR1),HL ;Stuff into program..
00560 LD (DVR2),HL ;Everywhere needed
00570 LD (DVR3),HL
00580 LD DE,$-$;<=HIGH$ value
00590 MYMEM EQU $-2
00600 LD HL,LAST ;Relocate working parts
00610 LD BC,LEN ;Byte count to move
00620 LDDR ;Move to high memory
00630 LD (HIGH$),DE ;Lower HIGH$ to protect
00640 NMEM EQU $-2 ;<=self modifying for mod 1/3

Page 61

00650 INC DE ;Point to driver start
00660 LD (IY+1),E ;Store new driver address
00670 LD (IY+2),D ;In DCT for drive
00680 JP @EXIT
00690 ;
00700 LOGON: DB 'Stepping delay for double headed drives',0DH
00710 ;
00720 ;LDOS type header for hi-memory module:
00730 START: JR DRIVER ;Branch around header
00740 OLDHI: DW 0 ;<=pointer to previous HIGH$
00750 DB 5,'STEPS' ;Length / name
00760 ;
00770 ;Actual routine
00780 ;Trap only functions that require head movement
00790 DRIVER: LD A,B ; GET FCN CODE
00800 CP 0AH ; VERIFY?
00810 JR Z,CHECK
00820 CP 0DH ; WRITE SECTOR?
00830 JR Z,CHECK
00840 CP 0EH ; WRITE SYSTEM SEC?
00850 JR Z,CHECK ; SAME
00860 CP 9 ; READ SECTOR?
00870 JR Z,CHECK
00880 CP 6 ;SEEK?
00890 JR Z,CHECK
00900 CP 5 ;STEPIN?
00910 JR Z,STEPIN
00920 CP 4 ;RESTORE?
00930 R Z,STEPIN ;Same for RESTORE
00940 OLDDVR: JP $-$;Go direct to driver if other function
00950 DVR1 EQU $-2
00960 ;
00970 STEPIN: PUSH BC
00980 LD BC,100
00990 CALL @PAUSE
01000 POP BC
01010 PUSH BC
01020 JR CMDOUT ;B already has correct fcn number
01030 ;
01040 ;Check if head is going to move for these commands...
01050 CHECK: LD A,D ;Desired track
01060 CP (IY+5) ;Current head position
01070 JR Z,OLDDVR ;Go direct if not moving head
01080 ;
01090 ;If head is going to move
01100 GOSLO: PUSH BC
01110 LD BC,100
01120 CALL @PAUSE ;Slight pause, then..
01130 LD B,6 ;Seek track first...
01140 ;
01150 CMDOUT: CALL $-$;Using old driver
01160 DVR2 EQU $-2
01170 LD B,7 ;Tstbsy
01180 CALL $-$;Check disk status/wait till done
01190 DVR3 EQU $-2
01120 LD BC,DELAY ;Oelay countdown
01210 CALL @PAUSE ;Let heads settle
01220 POP BC ;Get back function code
01230 LD A,B ;Was it a seek, stepin or restore?

Page 62

01240 CP 7
01250 JR NC,OLDDVR ;Complete function if read or write
01260 XOR A ;Set Z flag for good completion
01270 RET ;Done if seek or stepin
01280 ;
01290 LAST EQU $-1 ;Symbols for assembly
01300 LEN EQU $-START
01310 ;
01320 END ENTRY

LATE BREAKING NEWS. ETC.

Following are bits and pieces received too late to be put in the middle of the
newsletter.

With Scripsit and LSCRIPT (the LDOS patched version of Scripsit), doing an L or S
command will load or save a file. If no filename is given, the last entered filename
will be used. This is normally convenient as it saves having to type in the filename
when saving the file to disk. However, if you have made changes and do not want to
overwrite the original document, you must remember to save the file under a different
name. Just entering S rather than S FILENAME will save it under the name you used to
load it, thereby overwriting the original file. Just so everyone has an option, the
following patch to LSCRIPT will make it ignore any previously entered filename and
force you to specify the filename to load or save.

. Patch for LSCRIPT to force filename to be specified

. on a Save command.

.
D0B,D0=28 06 CD 14 63 CD FE 53 3E 10 CA
.
. This next part is to force a filename to be specified
. on a Load command.
.
D0B,37=13 42 6C 6F 63 6B 20 74 6F 20 65 78 63 68 61 6E
D0B,47=67 65 3F 20 CD FF 53 C0 C3 A8 5D 00
D0B,59=CD 1B 5D
. EOP

LDOS PROBLEM REPORT FORM

==

 Date ___/___/___ Customer Name ___

 Serial # _______________________ Version ___________ Model_______________________

==

 Address ___

 City _____________________________ State _____________ Zip ______________________

 Country ____________________________ Phone # (_____) _______-_____________________

==

CPU: (_____) TRS-80 (____) LNW (____) PMC (____) Video Genie

MODEL I (____) III (_____) (____) Other ___

LOWER CASE: (_____) RS (______) PENCIL (_____) Other ____________________________

==

E.I.: (____) RS (____) LX8O (____) LNW (____) OMIKRON

 (____) Other __

DDEN: (____) Percom (____) DOC (____) LNW (____) LNW 5/8 (____) RS

 (____) Other _____________________________________

==

CLOCK SPEED UP (____) _____________________________ RATE in MHZ _____________________

CLOCK/CALENDAR (____) T-TIMER (____) TCHRON (____) METHUSELAH (____) TIK-TOK

 (____) Other __________________________________

==

MODEM: (____) ______________________________ RS232 __________________________________

==

VIDEO: (____) STANDARD (____) Other ______________________ HI-RES (____)

==

DRIVES: 5'' (_____) ______________________ 8'' (_____) ____________________________

 5'' (_____) ______________________ 8'' (_____) ____________________________

 5'' (_____) ______________________ 8'' (_____) ____________________________

 5'' (_____) ______________________ 8'' (_____) ____________________________

HARD DRIVE: 5''(_____) 8''(_____) Controller ______________________________________

==

PRINTER: Parallel (_____) Serial (_____) Brand ____________________________________

==

 (OVER)

LDOS PROBLEM REPORT FORM

 This form is provided to report problems that occur when using the LDOS
operating system. In the space below, please list any system configuration you are
using along with a description of the problem. Be sure to indicate whether the
problem is with an LDOS file, an application program, or a combination of both. On
the back of this sheet is a place for your name and address, as well as a checklist
of hardware and other information. It is extremely important to mark your
particular hardware, especially if it is not-standard.
