
THE LDOS QUARTERLY January 1,1982 Volume 1, Number 3

Now for the TRS-80™ Models I & III

∗ DOUBLE Sided & DOUBLE Density support
∗ AUTOMATIC Density recognition.
∗ 35, 40, 77, 80 and any other track counts are supported.
∗ All available drive stepping rates are supported.
∗ Hard Drive support, can be HANDLED AS A SINGLE DRIVE
∗ Hard drive partitioning, one drive can act as up to six.
∗ Intermix 5”, 8” and Hard drives, up to a total of 8 drives.
• Compatible with the Model I Radio Shack Expansion Interface.
• Upward compatible with TRSDOS (2.3 & 1.2 as documented).
• Fully supports Microsoft language products for the TRS-80.
• Complete media compatibility Model I to Model III and back.
• Full support for LOBO’s LX-80 interface.
• Full support for AEROCOMP LC double density controller
(DDC).
• Full support for PERCOM’s DOUBLER II.
• Complete documentation (well over 250 pages).
• Complete technical information.
• A TOLL-FREE 800 number for customer service.
• An LDOS users bulletin board on MicroNET.
• A Quarterly LDOS users magazine (The LDOS QUARTERLY).
• A liberal update policy.
• An enhanced BASIC (LBASIC) including:

Ø Upward compatible with Microsoft Basic
Ø High speed LOAD and SAVE.
Ø Run multiple programs with common variables.
Ø BLOCKED (variable length) files are supported.
Ø DOS commands may be executed from LBASIC.
Ø Built in string array SORT.
Ø Single stepper for debugging.
Ø Several new statements and file modes.

• A compiled JOB CONTROL LANGUAGE (JCL).
• CONVert utility to move files from Model III TRSDOS.
• An extended Debugging and Monitor program (with disk

access).
• CMDFILE for movement of disk and/or tape system (/CMD)

files.
• Device independent operation.
• Full LINKing, ROUTEing, FILTERing and SETting are

supported.
• MiniDOS feature for constant access to certain DOS

commands.
• RS-232 DRIVER for serial support.
• Sophisticated communications software included.
• Wildcard characters and partial Filespecs are supported.
• DATED FILES, show when a file was last written to.
• Backup: Mirror, by Class, if Modified, by Date, by Extension,

etc..
• Selectable PURGE for fast disk “cleanup” of unwanted files.
• Print formatter, for control of printer output.
• Built in printer SPOOLER, to both disk and ram.
• Joblog to record all system operations with time stamps.
• UPPER and lower case support, throughout the system.
• Blinking cursor with selectable cursor character.
• 128 character TYPE AHEAD buffering for keyboard input.
• Assign strings to individual keys with Key Stroke Multiply

(KSM).
• SUPER FAST operation with the SYSRES function.
• Extensive user control and system feedback.
• Advanced PATCH utility for easy maintenance.
• Complete transportability of software among all Z-80 LDOS

systems through the use of the LDOS high ram supervisory
call system (SVC).

• Dealers to serve users Nationwide and in the Common Market.
• The only DOS with a limited ONE YEAR WARRANTY!
• Enjoy a professional.operating system on your TRS-80.

* Specific hardware is required to use these functions.

The Ultimate In
Operating Systems
for Model I & III

Only $16900

 Version 5.1

∗ Model 1 LDOS provided on 35 track single density media.
∗ Model III LDOS provided on 40 track double density media.
∗ LDOS can be provided on special media configurations at an

additional charge.
∗ Prices and specifications are subject to change without notice.
^ Although not required, LSI recommends two or more drives

when using LDOS.

 For Further Information Contact The Distributor Or Dealer Nearest You:
(west)

LOBO DRIVES INT’L
354 S. Fairview Ave.

Goleta, CA 93117
(805) 683-1576

(Central)
Galactic Software Ltd.

11520 N. Port
Washington

Mequon, WI 53092
(414) 241-8030

(East)
MISOSYS

5904 Edgehill Dr.
Alexandria, VA 22303

(703) 960-2998
(The Common Market)

MOLIMERX LTD
1 Buckhurst Rd, Bexhill

Sussex, England
(0424)-220391

THE LDOS QUARTERLY January 1,1982 Volume 1, Number 3

Table of Contents

 VIEW FROM THE BOTTOM FLOOR .. Page 2

 WHAT'S NEW ? - LDOS compatible software Page 8

 UDATE NEWS

 5.0.3 Model I .. Page 12

 5.1.0 Model III .. Page 13

 5.1.1 Model I .. Page 15

 I WAS AN LDOS BETA TESTER ... Page 16

 ITEMS OF GENERAL INTEREST ... Page 17

 FILTER DISK UPDATED MENU .. Page 18

 FED - A file editor ... Page 20

 ELSIE - The LDOS "C" language compiler Page 21

 PARTITIONED DATA SETS ... Page 23

 UPDATED 5.1.1 FEATURES .. Page 33

 T-TIMER CLOCK/CALENDAR PATCHES Page 37

 DEVICE I/O AND INDEPENDENCE - Technical topic Page 38

 RELOCATING CODE FOR LBASIC USR ROUTINES Page 47

 THE JCL CORNER .. Page 51

 LATE BREAKING NOTES AND PATCHES Page 55

Copyright (C) 1981 By Logical Systems, Incorporated
11520 N. Port Washington Rd. Mequon WI 53092

(414) 241-3066

Page - 1

VIEW FROM THE BOTTOM FLOOR by Bill Schroeder

We are very pleased to announce that LDOS 5.1.1 MOD I was released to
hundreds of users on November 30th and hundreds more are now awaiting homes
on dealer shelves around the world. You will find an expanded list of new
features that 5.1.1 offers elsewhere in this newsletter. We feel that 5.1.1
is without doubt the best thing to ever happen to the TRS-80 world and we are
sure you will agree. Any 5.0.x user can still "trade-in" a 5.0.x for a 5.1.x
as stated in the last LDOS newsletter.

5.0.1 Service Renewal

The fee to extend your LDOS support for an additional year has been
tentatively set at $50.00. This fee will be subject to change without
notice!! We have made every effort to set this fee based on the cost of
providing support, but we had to guess at what percentage of our users will
renew their support. If we are close with our estimate, this amount will
stand. If not, it will have to be adjusted. All renewal notices will contain
a "Extended Support Agreement" which will clearly state the services to be
received and the total cost for the user to subscribe to those services. This
will be an extension of the current support being provided to new LDOS
purchasers. If a user does NOT extend his support agreement, he will not be
allowed use of the $5.00 update service, the toll-free 800 line, the MicroNET
bulletin board and will stop receiving the LDOS quarterly Newsletter. When
your warranty expires you will be unsupported, as with any other warranty.
This means that LSI will provide NO services to you. This is the purpose of
the Extended Agreement. We will provide services to those who wish them but
not for free. Each user will be offered the extended support agreement as his
warranty expires. There will be a 30 day grace period after warranty
expiration, during which time the user may execute his Extended Support
Agreement. After that grace period, the user's registration will be totally
removed from our support and customer service system. If at some later date
the user wishes to re-establish his support, a fee somewhat higher than the
extension agreement fee will be charged.

Updates, upgrades, and ordering

Please note that all upgrades or updates to LDOS products are handled through
LSI directly at 11520 N. Port Washington Rd., Mequon, Wisc. 53092. A very
long delay could occur if you send to a dealer or a distributor. In the
Common Market you should send your LDOS to MOLIMERX at 1 Buckhurst Rd.,
Bexhill, Sussex, England. LSI does NOT accept credit cards or purchase
orders. All upgrades of any sort must be accompanied by a check or money
order in U.S. FUNDS. Molimerx, of course, should be sent funds in English
pounds.

There has been some confusion regarding what is meant by LSI, LSI Distributor
and LDOS Dealer. All upgrades and updates come from LSI directly and must be
accompanied with a check for the exact amount (LSI does not honor credit
cards). LSI DOES NOT SELL ANY OF ITS PRODUCTS RETAIL!! There are four
official LSI Distributors; LOBO Drives in California, Galactic Software in
Wisconsin, MISOSYS in Virginia and MOLIMERX in England.

PAGE - 2

These distributors wholesale to dealers in their areas and handle retail
sales. All distributors honor COD, CASH, CHECK and CREDIT CARD retail orders
for all LSI products. LDOS Dealers are retail sellers of LDOS and certain
other LSI products, but SOME LSI PRODUCTS ARE AVAILABLE FROM DISTRIBUTORS
ONLY. If you have any questions about where and how to obtain any LSI
product, call LSl at (414) 241-3066.

A $5.00 update to 5.1.1 will be available for owners of 5.1.0 MOD III LDOS in
the near future, at which time the MOD I & MOD III Systems will contain the
identical set of features throughout. Watch for an announcement of MOD III
5.1.1 availability this coming spring.

There are several small patches for each of the LDOS versions in this
newsletter. You may apply these to the proper version of LDOS or send in your
Master disk with 0 and we will update it. Should you elect to apply the
patches yourself, it will be your responsibility to keep track of the status
of your system. We feel our update service is very important and any prudent
user should send us his Master disk several times a year to make sure of
having an official "current" master. The current versions of LDOS are:

 MODEL # VERSION # FILE MOD DATE
 ======= ========= =============
 MOD I 5.0.3A 11/15/81
 MOD I 5.1.1 12/15/81
 MOD III 5.1.0A 12/15/81

If you use our updating service to keep your system current, you can
determine from the above table if you should send in your disk for updating.
To check your Master, look at the label and then do a "DIR (S,I,A)" on that
disk. The MOD Date will be shown in the display. The /SYS and LDOS utility
files should show MOD dates later than or equal to those shown in the above
chart. If not, send in your MASTER with $5.00 and we will take care of it. If
you are applying the maintenance patches yourself, you must keep accurate
records as to the status of your system.

5.0.3A updates are now being returned with a MINIDOS filter on the the disk.
The documentation has been appended in a special way to the end of the filter
file. If you have this file on your 5.0.3A disk, you can get instructions for
it by using the command "LIST MINIDOS/FLT". Let the list run through to
completion. At that point the documentation will be on your screen.

In the case of our 5.1.1 MOD I LDOS, there are TWO disks in the system. One
is the system disk called LDOS 5.1.1 and the other is LDOSXTRA. When sending
in a 5.1.1 system for updating DO NOT SEND THE LDOSXTRA DISK. If we should
need to update the LDOSXTRA disk we will let you know.

Some of our users are under the impression that they MUST trade up to 5.1.1,
or that we are dropping support for 5.0.3A. This is not at all correct. We
will continue to support 5.0.x as long as a practical number of users are
still using it and are covered by their original warranty or their Extended
Support Agreement. Future products from LSI, Galactic or MISOSYS that are
designed for LDOS will probably be designed to work under 5.0.x or 5.1.x.
This will not be 100% true; some of our future products will require the
advanced features of our 5.1.x product line and will not be available to
5.0.x users.

PAGE - 3

Customer Service

We have been listening to you, our users, and have completely redone and
expanded our manual, The MOD I 5.1.1 manual is now nearly 400 pages long. It
is sequentially page numbered within sections and contains a complete INDEX,
TABLE OF CONTENTS and TAB INDEXES. I believe it is absolutely the best manual
in the Micro industry, bar none.

Many users have been taking us up on our offer to create LDOS system disks of
other than standard configurations. This is fine, but please tell us EXACTLY
what you want. We need to know the number of tracks, one or two sided, 5 or 8
inch, and the density. We can make special LDOS system disks in almost any
configuration. Each official LDOS master is created in an "OPTIMISED" fashion
with controlled placement of files on the disk to increase overall
proformance. The charge is still $5.00 if you provide the disk and $10.00 if
we provide the disk. We will NOT modify your MASTER LDOS disk under any
circumstances.

We will also provide the proper version of SCRIPSIT for use with LDOS if an
LDOS owner cannot find an original 1.0 SCRIPSIT to patch. The charge again is
$5.00 if you provide the disk and $10.00 if you do not. You MUST also send
proof that you have purchased some "legal" copy of SCRIPSIT, or you can send
an original SCRIPSIT master disk with the Radio Shack label. Without proof of
ownership of SCRIPSIT we will not be able to help you.

Some Model III users have complained that the only way they can get files off
of a Model I TRSDOS type disk with their MOD III and LDOS is to "REPAIR" the
disk and then copy the files off. THIS IS NOT SO!!! Once the REPAIR command
is used on the MOD III you cannot un-REPAIR (put back the old data address
mark) on the MOD III. This is not a flaw in the software as the MOD III is
not capable of writing the "OLD" data address mark. If you have a MOD I type
disk (35 track, Single Density) and you don't have a MOD I computer that you
can use to make a backup before doing the REPAIR, you can proceed as follows:

1> Boot under TRSDOS 1.2 or 1.3
2> Place the MOD I type disk in drive 1
3> Use the TRSDOS "CONVERT" command to move the files to MOD III TRSDOS
 in drive 0
4> After CONVERT has finished remove both disks
5> Place LDOS in drive 0
6> Place the MOD III TRSDOS that contains the moved files in drive 1
7> Reboot the system
8> Use the LDOS "CONV" command to move the files from the drive 1 TRSDOS
 disk to the drive 0 LDOS disk

This procedure will leave the original MOD I type disk untouched and directly
usable by MOD I TRSDOS. We do not understand why some users feel they must
have the original MOD I type disk with the "OLD" data address marks,
especially if they own only a MODEL III. But this is the procedure to use if
you must.

PAGE - 4

We are finding some very disturbing statistics regarding our 800 customer
service lines. We get over 90% of our calls from LESS THAN 10% of our
customers. We find that a vast majority of our calls are handled simply by
telling the users the same thing that is in the manual (which they neglected
to read). Toll free 800 service is not clearly understood by most people. I
have talked with many people who think we pay some FLAT RATE and can then
have all the incoming calls we want. This is incorrect. WE PAY FOR EVERY
SINGLE CALL THAT COMES IN ON THE 800 LINES BY THE MINUTE. At the present
rates we pay over $1500 dollars a month just for our 800 service. So please,
call us when you need us, but check your manual first before you call. I
can't see throwing away a technician's valuable time plus 35 cents a minute
just to read the LDOS manual to a user over the phone.

Before calling customer service with a "bug report" please make a simple
check yourself. Make a mirror backup of your MASTER LDOS disk and make sure
that you can duplicate the problem with that disk. If not, there is something
wrong with the files that are on the offending disk. Remember that when we
make major changes in the system, you must move ALL related files. This is
very important. For example, a 5.0.x version of BACKUP or FORMAT may not work
with a 5.1.x system. Also, you should understand that we use our product over
200 hours per week. If a major area of the system did not work we would know
about it in short order. So if your keyboard goes dead, or your video goes
blank, or LDOS won't boot or your basic program gets scrambled when you save
it, the chances are that YOU have a problem with your hardware or the use of
the software.

We also get calls that have NOTHING TO DO WITH LDOS, such as calls about
hardware modifications that we know nothing about. We are not a hardware
company! So if you hook up a right handed wigit to your expansion port while
holding your RS232 cable at a right angle to the interface and connect your
"OH-MY-GOSH" drive to your "YOUGOTTOBEKIDDING" interface and reverse your
MASTER disk in your "FLOPPED" drive..........and your system won't
boot????.......PLEASE DON'T CALL. We make it very clear what hardware we
support. If we don't come out with a support statement then it is safe to
assume that we know nothing about it.

We also get many calls asking us how to make this or that program run with
LDOS. We do not have the time to do this. It is not our responsibility to
make other companies software work with LDOS. You should contact the authors
of the product and ask them to correct or modify their product. It is also
prudent that an LDOS user specify to a vendor that he intends to run a
program on LDOS when ordering that program. We now have a sysLem by which any
prominent software author can get complimentary copies of LDOS for
development purposes. If you know of a software package you want supported,
have the author contact us for details.

From time to time we will offer patches or procedures to make selected
programs run with LDOS, as we have with PENCIL, SCRIPSIT, VISICALC, MAC-80,
and several others. We are now looking at MOD I & III PROFILE with the intent
of correcting it to work correctly on LDOS (no promises, but we will try). As
our product line expands and we have a larger user base, it will become
harder and harder for us to find the time to deal with other company's
products. We are fortunate that more and more companies are providing LDOS
compatible products every day. This is of great benefit to both the LDOS
users and LSI.

PAGE - 5

Some users have been saying that they have trouble getting through on the 800
lines. I have been monitoring these lines very closely and it is very rare
that all the lines are busy. It does happen, but not often. If you get a busy
signal, check the time. Remember that the 800 lines are open from 10am to 12
noon and from 4pm to 6pm Central time only. At any other time you will get a
busy signal. If you must have assistance outside of these hours you can call
(414) 241-3066. This is the main number at LSI.

About our mail.... we get many letters every day from satisfied users. Most
of these ask questions soliciting our comments or recommendations on
products, programming procedures or LSI policies. We just don't have the
personnel to answer all of these letters. If the answers to your questions
are important to you, then give us a call at (414) 241-3066 and we will try
to answer them. It is much less expensive to talk on the phone to you for 5
or 10 minutes then to generate lengthy correspondence. We do try to answer
certain technical letters with accurate information and will continue to do
so. Please DON'T stop writing. We do like to hear from our users and we do
consider all written input when we set policies or design new products.

Now I would like to mention a very touchy subject........ SOFTWARE PIRACY.
Most anything I could say about this mega-buck theft situation has been said.
I would like to make an important point that has NOT been expressed. Those of
you who are honest, legitimate owners of software should realize that the
condoning of this crime, even without participation, is just as bad as
participating. Software of the magnitude of LDOS MUST BE SUPPORTED, and the
more sales that are made, the better support and development for that product
will be. If you see someone giving away a copy of LDOS, just think of it as
ONE LESS NEW FEATURE that will be in the next version of YOUR LDOS. Our
development money does come from sales. We could go to elaborate disk
protection schemes, but that would be very unfair to the vast majority of
LDOS users, the honest ones, who would not give away or sell a copy of our
system. But it appears that the 99% may have to suffer at the hands of the 1%
of criminals that are out there. We hope this practice will decrease so we
will not find it necessary to take protective actions in the future.

One more point for the pirates out there; WE ARE ABLE TO IDENTIFY EVERY LDOS
and have terminated support for several users, and in one case are
contemplating legal action against a user. So beware.... we are not blind.

About Hardware and Software and ???

Some LDOS users are actively considering getting into double density. When
deciding on a double density modification, you should also consider moving up
to the LX-80 interface. The price has been dropped to just $449.00, and at
that price it becomes a very attractive alternative. Consider the following.
Your interface with ram must be worth $200 to $250 on the used market, and if
you spend $150 (for a doubler) or $250 (for a 5" and 8" doubler), you have a
$350 to $500 value involved. At just $449.00 for an interface that handles
5", 8", Double and Single density, Double and Single sided, up to 8 total
drives, and is capable of BOOTING A DOUBLE DENSITY DISK, the LX-80 begins to
sound like a pretty good deal. We at LSI use many of these fine interfaces
and would not be without them. So for double density, do yourself a favor and
consider selling your interface and getting into the LX-80 from LOBO.

PAGE - 6

Whenever you order any product for use with your computer, whether it be
hardware or software, you should always include your LDOS registration
number. Some products require LDOS, and some companies will give discounts to
LDOS users. Your LDOS registration number can save you money and get you the
right version of a product. If the vendor doesn't know you have LDOS he will
not be certain to send you the LDOS version of his product. A simple
statement like LDOS SERIAL NUMBER #########, could gave you a lot of
aggravation and may save you some money.

If you or your company has a significant product that is LDOS compatible or
LDOS specific and it does not compete directly with an LSI product, I will be
glad to mention it in the "What's New" section. Just send me a copy of the
completed product and a brief letter describing its functions, where it can
be purchased, and at what price.

I would like to see short reviews of LDOS compatible hardware and software
for publication in this newsletter. If you have had experience with a product
that would be of interest to other LDOS users, write an article about it and
send it to the QUARTERLY EDITOR at LSI. If it is worthwhile we will publish
it.

Hard Disk Systems are now available featuring LDOS. All LDOS users should
understand a few important facts about these systems. First off THEY ARE NOT
ALL DONE BY LSI. Many of the Systems being advertised as featuring the LDOS
operating system have the needed drivers and support software written and
supported by companies other than LSI. We trust that these are competent
implementations, but we have no way of knowing. LSI is directly supporting
several hard drive systems to date. Two that are available as of now are from
LOBO Drives International at 354 S. Fairview Ave. Goleta, Ca. 93117 and from
Laredo Systems Inc. at 2264 Calle De Luan, Santa Clara, Ca. 95050. Both offer
hard drive sub-systems for the MOD I & III.

The above mentioned companies have contracted with LSI to do the software
creation and support for their systems. There is a difference in acquiring an
OFFICIALLY SUPPORTED system and a partially supported system. If a hard drive
vendor elects to feature LDOS as his operating system and does his own
software development, he must support the system!! If you should buy a system
that is not officially supported by LSI and you have problems or questions
about the use of LDOS with the hard drive, don't call us!!! We will simply
refer you to the place you bought the drive. When we officially support a
hard drive system we must have those drives in our customer service
department and in our development department. We will NOT be of any help with
systems we did not create. We will of course still handle any problems that
have nothing to do with the hard drive.

For LSI to author a hard drive implementation costs a vendor from $6,000 to
$25,000 (this includes drivers, formatters, utilities, documentation and
support). Then the vendor buys special finished LDOS packages directly from
LSI and delivers them with each hard drive installation. LSI then handles all
system software problems and customer assistance. If a vendor creates his own
LDOS hard drive package, he is totally responsible for his portion of the
package. This is not to say that other hard drive implementations of LDOS
won t work or will have problems. They probably will work just fine, but we
don't know that and will not be responsible for work we did not do!!

PAGE - 7

Roy Soltoff and myself attended COMDEX in Las Vegas in November. We were in
search of the next machine for LDOS to be implemented on. We saw many new,
well designed Z-80 systems and were impressed by several. It seems likely
that LDOS will appear in 1982 on several all RAM MACHINES, the Z-90 from
Zenith and the MODEL II from Tandy are just two of the possibilities. We will
keep you posted as to what machines will be supported and when. In the next
issue of this newsletter Roy will probably have an article on the basic
design structure that we will be using on our ram based systems.

Many users have asked what publications we would recommend for LDOS users. We
would consider one publication to be of major importance to the TRS-80 user.
This is 80-US MAGAZINE. 80-US has just gone monthly and has held its
subscription rate at just $16.00 per year. This is a real bargain for the
original publication dedicated to the TRS-80 line of computers. The people at
80-US have also come out with a book called "THE CAPTAIN-80 BOOK OF BASIC
ADVENTURES". For those interested in the adventure concept this is a must
have book. See the ads for this book and 80-US magazine elsewhere in this
newsletter or call 80-US at (206) 475-2219.

When Roy and I began the LDOS project we decided that our system would have
NO SECRETS. We are willing to talk about any part of LDOS. But, this requires
costly technician's time so details about the system code will not be given
out for free. The charge is $50.00/hour, plus phone expenses, one hour
minimum, any part of an hour treated as an hour. Customer service will help
with any operational or functional questions, but they do not have the
resources to answer questions about the system code. In keeping with our open
door policy we have included in your manual a complete technical section and
we will be expanding on certain areas of the systems operation in each issue
of this newsletter. In the last issue Roy detailed the use of the LDOS
parameter scanner. In this issue you will find a detailed article on the BYTE
I/O concept and how LDOS deals with it.

The LDOS newsletter now contains a few ads for products relating to the
TRS-80 and/or LDOS. We hope to have more in the future. The LDOS QUARTERLY is
still being delivered third class, as there is no way that the present budget
could handle the many thousands of dollars it would cost to send it first
class (even though we would like to.)

One interesting comment that I have heard from several of our users is that
OUR LAST NEWSLETTER WAS AS LARGE AS THE DOSPLUS 3.3 MANUAL. I checked and
that is a correct statement, as both are about 48 pages.

WHAT'S NEW ?

New and exciting things are happening in the LDOS world. Many products are
now becoming available in LDOS compatible or LDOS specific versions. There is
not room to talk about all of them here, but at the risk of sounding like a
commercial I would like to touch on a few.

PAGE - 8

New from GALACTIC software is a FILE EDITOR called "FED". This product is for
the novice user, the serious user and the "real pro". It is simple and easy
to use and is also very powerful. We use it constantly to maintain the LDOS
system, and our secretaries use it to correct data bases. LDOS patches are
now developed and implemented with FED. FED is a screen oriented file editor
capable of doing most any type of file modification in both HEX and FULL
ASCII. It will locate a HEX or ASCII string in a file or find the byte that
loads at a specified address, or even tell you where the byte you have the
cursor on (one of three cursors) will load. Advanced printer support is
provided as well as two types of sector display modes. Elsewhere in this
newsletter is additional information on FED. FED is available now for 5.0.x
and 5.1.x from Galactic Software, 11520 N. Port Washington Rd. Mequon, Wi.
53092, for just $40.00 (MOD I & III). Also from Galactic is a special LDOS
version of their popular MAIL/FILE system at $159.00.

The "FILTER" package is available now from LSI distributors (MISOSYS,
GALACTIC & LOBO) for $60.00. This package provides many very useful filters
for almost all LDOS users. During development of this package, new ideas were
continuously being implemented, and the resultant package contains many more
filters than originally announced. The XLATE FILTER, BASIC LISTING FILTER or
the CALC FILTER are worth the price of this package by themselves. Do
yourself a favor and check this out. Details and a list of the filters in
this package can be found elsewhere in this newsletter.

Many of our users have asked about Editor/Assemblers. We are proud to
recommend one as the most powerful and versatile for the novice as well as
the experienced programmer. That, of course, is EDAS. This is the Editor
Assembler that LDOS is written and maintained with. There is that old saying
about "WHY RE-INVENT THE WHEEL?". Well, this Editor Assembler wouldn't have
been created had there been an assembler that was as powerful, flexible and
easy to use. There wasn't, and so EDAS was written. EDAS comes complete with
a very powerful LABEL CROSS REFERENCING SYSTEM, Editor Assembler and very
good documentation. If you need or want an Assembler contact MISOSYS at 5904
Edgehill Dr. Alexandria VA. 20303 for more information. EDAS sells for just
$79.00 (MOD I & III).

There is now a BASIC compiler written for LDOS by Bill Stockwell, and
published by Breeze/Quality Software Distributing. This is (for lack of a
better term) a "SEMI-COMPILER". That is, it generates optimized code,
replacing most time consuming basic routines with assembler modules. Compared
to other compilers, this one is "different" but very cost effective. It is
only $69.95. Contact Breeze/Quality Software Distributing at 11500 Stemmons,
Suite #125, Dallas, Tx. 75229, for additional information. Also from these
same people is a product call "Script Plus 3.0" which adds many enhancements
to Radio Shack's Scripsit package, and sells for just $39.95. Speaking of
Quality Software, I should tell you that they have made a major change in
their company as of late, consummating in a merger of themselves and Breeze
Computing (Kim Watt's company). So if any of you are wondering where Kim is,
he is now in Dallas sharing an office complex with QSD. Kim moved there from
Detroit in November (a nice time to go south). Kim's NEW Super-Utility now
supports LDOS completely, including the new LDOS data address marks.

There are several music generating systems for the TRS-80, but without a
doubt the most popular was the ORCHESTRA-80 and now ORCHESTRA-85.

Page - 9

This new product (ORCH-85) will allow you to create beautiful music with your
computer in STEREO NO LESS. This system allows for the creation and playing
of music in up to five parts. Its like having a band in your TRS-80. ORCH-85
lists for just $129.00 and is LDOS compatible. For additional information
contact SOFTWARE AFFAIR, Rubis Dr., Sunnyvale, Ca., 94087 (408) 295-9195.

From Walonick Associates comes a product called StatPac. This is a super
statistical analysis package that is available in a special LDOS version. For
additional information contact Walonick Associates at 5624 Girard Ave. South,
Minneapolis, Mn 55419.

Now there is a clock-calendar board supported by LDOS. This is the "T-TIMER",
detailed in an article later in this newsletter.

For a complete TAX PREPARATION system to use with LDOS, you can contact
Stenholm & Quint CPA, 129 Concord St., Framingham, Ma. 01701 (617) 879-8330.
This CPA firm produces a package for tax preparation used by professionals.
Their system is call the "SQ1 Tax Preparation System".

MISOSYS has available a CPM to LDOS convert utility which will move files
from certain 8 or 5 inch CPM disks to an LDOS type disk. Another product from
MISOSYS is their popular DISASSEMBLER which is compatible with LDOS and EDAS.
For information contact MISOSYS at 5904 Edgehill Dr. Alexandria, Va. 22303.

Aerocomp has now been delivering their doubler for several months and from
all reports it seems to be working very well. Their doubler was designed and
engineered by Wayne & Skip at Aerocomp. Wayne, one of the designers of the
PERCOM Doublers I and II, applied the knowledge he had gained in the creation
of those products to build the proverbial "better mousetrap". So if their
doubler isn't a great product, it should be. Aerocomp calls their doubler the
"DDC". Aerocomp also has a very "trick" product they call the "DDS". This is
a piggy back data clock separator which is designed to plug into the PERCOM
and LNW doubler boards to make them a lot more reliable in double density.
This product will correct most of the problems created by these boards. For
more information contact Aerocomp at Hanger #8, Redbird Airport, Dallas, Tx.
75224.

Many of our users want a good Disk Catalog program that is designed for LDOS.
Earle Robinson, a very competent assembler programer, has written a very
extensive catalog program just for LDOS. This catalog program has all the
features you could want in this type of utility. Earle has started a new
company called "softERware" at 16007 Miami Way, Pacific Palacades, Ca. 90272
just to handle the sale of this and his future LDOS compatible products. This
program is called "DISCATER" and comes with documentation for just $39.95.

Roy Soltoff, the Systems Analyst on the LDOS product, has come up with a very
interesting new package. Many LDOS users have asked for a method of creating
their own "LIBRARY" of commands. After some investigation, Roy has come up
with a construct for the user to be able to create his own libraries. He
calls these Partitioned Data Sets or PDS for short. Roy has put this concept
to work in a unique package that allows creation, listing and changing of
these library like modules. Now you can have several small programs in just
one file, saving disk space and directory entries. This product is detailed
by Roy elsewhere in this newsletter and is available through MISOSYS at 5904
Edgehill Dr., Alexandria, Va. 22303

Page - 10

LED is the name of the LDOS TEXT EDITOR. This is a new product from LSI and
will be available shortly. This editor will allow the processing of line
numbered or unnumbered ASCII text of almost any type. It has most of the
functions of a screen oriented word processor but adds several specialized
features to deal with certain types of text. It does not provide for printer
output from within the editor, as the LDOS LIST command can be used. The
Editor does support the entire ASCII character set. This product is available
directly from the LSI distributor nearest you (do not order directly from
LSI). The price for LED is $30.00. Contact an LSI distributor for more
information if you are interested in this package.

LSI will release "LC", our integer version of the "C" programming language in
early '82. The price for "LC" has been set at $150.00. This package will
include the LDOS TEXT EDITOR "LED" for creation and maintenance of LC source
files. LC will be available from LSI distributors or from your local LDOS
dealer. There is a full description of this package elsewhere in this
newsletter.

Now for a real "biggy". This is a new super LBASIC enhancement package from
the people at SNAPP Inc. This is an LDOS implementation of their famous
SNAPPWARE BASIC. Any serious basic programmer should not be without this
package. It is not cheap, but is worth every penny you pay for it. It will
pay for itself in saved time in short order. I could write a book just on
this package, but there will be a review in the next issue of this
newsletter. For now, call or write SNAPP Inc. 3719 Mantell, Cincinnati, Ohio
45236 phone: (800) 543-4628.

LOBO Drives has made a large change in the pricing of their powerful LX-80
interface. LOBO is now offering this interface for just $449.00 with a full
32K of ram. This is the interface that runs 8", 5", Single density, Double
density and double sided drives. With the LX-80 you can even boot a MOD I
Double density system disk. This is an excellent bargain on a proven product.
We use six of these constantly at LSI and have no problems. LOBO has also
announced a FREE upgrade to the LX-80. To make the LX-80 even more reliable
they have added a satelite data separation board and are offering to retrofit
this board into all earlier LX-80s. If you already have an LX-80 contact LOBO
for instructions on how to get this new board installed in your interface.
For more information contact LOBO drives at 354 S. Fairview Dr. Goleta, CA.
93117.

Now available from HEXAGON SYSTEMS is a powerful, LDOS compatible spelling
checker for text files. This is the second version of a successful product
and provides many enhancements over the original version. This "proof reader"
is available for just $99.00 from HEXAGON SYSTEMS, P.O. Box 397, Station A,
Vancouver, B.C. Canada V6C 2N2 (604) 682-7646. See their ad in this
newsletter.

Another very good spelling checker that is LDOS compatible is MICRO PROOF
from CORNUCOPIA SOFTWARE at P.O. Box 5028, Walnut Creek, Ca. 94596. Prices
start at just $89.50.

Page - 11

UPDATE NEWS - MODEL I, 5.0.3A

The following patches are for Model I, Version 5.0.3A. If you have an
earlier version, you should send in for an update. If your 5.0.3A dates are
11/15/81 or later, then these patches are already installed.

Use the BUILD command to type in the following JCL file and patches. When
executing the DO command to compile and execute this JCL, be sure to specify
the drivespecs S and D in the DO command line.

. FIX503A/JCL update to 5.0.3A

. s = source drive

. d = destination drive
//asign p=RS0LT0FF
patch backup/cmd.#p#:#d# backupm/fix:#s#
patch ksm/flt.#p#:#d# ksmb/fix:#s#
patch twoside/cmd.#p#:#d# twosidea/fix:#s#
patch sys2/sys.#p#:#d# sys2a/fix:#s#

. BACKUPM/FIX

. This patch will cause LDVR$ to be properly loaded at

. all times
X'5441'=CD C6 55
X'55C6'=E6 07 4F 32 08 43 C9
. EOP

. KSMB/FIX

. This patch will cause KSM to accept only upper case

. letters
X'5467'=18
. EOP

. TWOSIDEA/FIX

. This patch will correct twoside to work with 5.0.3
D00,99=33
X'52E2'=B2
. EOP

. SYS2A/FIX

. This patch will increase the timer for check drive

. to 500ms from 275ms
D03,A2=14
. EOP

Page - 12

UPDATE NEWS - MODEL III, 5.1.0 A

The following patches are for Model III, Version 5.1.0A. If you have an
earlier version, you should send in for an update. If your 5.1.0A dates are
11/15/81 or later, then the patches are installed except for the last two,
and you should DO the JCL file starting at @NEW. If your dates are 12/15/81
or later, then all patches are installed.

Use the BUILD command to type in the following JCL file and patches. When
executing the DO command to compile and execute this JCL, be sure to specify
the drivespecs S and D in the DO command line.

. FIX510A/JCL Update to 5.1.0A

. s = source drive

. d destination drive
//assign p=RS0LT0FF
.
. The first set of patches are for 5.1.0A with dates earlier
. than 11/15/81
patch lbasic/cmd.#p#:#d# lbasicd/fx3:#s#
patch lcomm/cmd.#p#:#d# lcommb/fx3:#s#
patch sys7/sys.#p#:#d# freea/fx3:#s#
patch backup/cmd.#p#:#d# backupc/fx3:#s#
patch format/cmd.#p#:#d# formate/fx3:#s#
patch pr/flt.#p#:#d# pra/fx3:#s#
patch sys0/sys.#p#:#d# sys0f/fx3:#s#
patch patch/cmd.#p#:#d# patcha/fx3:#s#
patch ki/dvr.#p#:#d# kib/fx3:#s#
patch sys2/sys.#p#:#d# sys2b/fx3:#s#
. The following patches are for 5.1.0A with dates
. earlier than 12/15
@NEW
patch sys11/sys.#p#:#d# sys11a/fx3.#s#
patch backup/cmd.#p#:#d# backupd/fx3:#s#

. LBASICD/FX3
X'5DED'=00
.EOP

. LCOMMB/FX3
X'543C'=F7
.EOP

. FREEA/FX3
L22
x'5276'=20
.EOP

Page - 13

. BACKUPC/FX3
X'545C'=CD E1 55
X'55E1'=E6 07 4F 32 27 44 C9
.EOP

. FORMATE/FX3
D06,47=F2 00 4E 3D 4E F4 00 0C 18 07 13 02 0E 1A 09 15
D06,57=04 10 1C 0B 17 06 12 01 0D 19 08 14 03 0F 1B 0A
D06,67=16 05 11 1D 00 00 00 00 00
.EOP

. PRA/FX3

.Allows a 0 to be sent to the printer
X'5518'=00 00 20
X'5531'=00 20
.EOP

. SYS0F/FX3

.Allows a 0 to be sent to the printer
X'41E5'=38 03 C2 4B 04 C3 C2 03
.EOP

. PATCHA/FX3

. This patch will allow patch to work without a closing

. paren
D00,BD=8D 52
. EOP

. KIB/FX3

. This patch will prevent the "type" buffer from being

. filled by the repeat function.
X'546F'=02
X'5476'=02
.EOP

. SYS2B/FX3

. This patch will cause check drive to allow at least

. two passings of the index hole before returning with

. a drive unavailable indication.
X'4E7A'=0F
. EOP

Page - 14

. SYS11A/FX3

. This patch will correct the // WAIT in JCL

.
D02,D7=C2 FE 0A C2 5C 4F C5 CD 64 51 71 ED A0 C1 10 F1
D02,EB=7E
D02,F6=23
.EOP

. BACKUPD/FX3

. This patch allows a backup of :1 to :0 (X)

.
D05,87=B3
.
.EOP

UPDATE NEWS - MODEL 1, 5.1.1

The following patches are for Model I, Version 5.1.1. If your 5.1.1 dates
are 12/10/81 or later, then the patches are already installed except for the
CMDFILE patch, and you should DO the JCL at @NEW. Dates of 12/15/81 or later
have all patches installed.

Use the BUILD command to type in the following JCL file and patches. When
executing the DO command to compile and execute this JCL, be sure to specify
the drivespecs S and D in the DO command line.

. FIX511/JCL update to 5.1.1

. s = source drive

. d = destination drive
//asign p=RS0LT0FF
patch lbasic/ov3.#P#:#D# ov3a/fx1 :#s#
patch backup/cmd.#P#:#D# backupa/fx1 :#s#
patch sys6/sys.#P#:#D# reseta/fx1:#s#
. If file dates are earlier than 12/15, also DO the
. next patch
@NEW
patch cmdfile/cmd.#P#:#D# cmdfilea/fx1 :#S#

. 0V3A/FX1

. This patch corrects the released LBASIC/0V3 file

. to match the LBASIC/CMD file.

.
D00,7B=7C
D04,D9=16
D04,E1=29
D04,FA=1D
D05,00=36
D05,06=3C
D05,0F=79
.
.EOP

Page - 15

. BACKUPA/FX1

. This patch allows a backup of :1 to :0 (X)

.
D05,87=B3
.
.EOP

. RESETA/FX1

. This patch will cause global reset to turn off the

. @ICNFG vector.

.
D2B,AC=32 03 43 11 02 00 21 00 42 CD 77 47 C2 F7 53 2E 70
.
.EOP

. CMDFILEA/FX1
D04,C8=61
D05,2A=C3 73 59 00 E5 CD 14 03 22 6C 5F CD F8 01 E1 CD 27 59 E5 21 74 58 CD
67 44 E1
.
.EOP

I WAS AN LDOS BETA TESTER by Tim Daneliuk

 This is the story of LDOS 5.1.1, the long awaited upgrade for the
TRS-80 Model I. It started rather innocently one fateful day in August. I
was to do a product evaluation of LDOS 5.0.2 for a major computer magazine,
and had arranged a trip to visit the authors of LDOS who would tell all. LSI
Inc. is cleverly concealed on the bottom floor of a building in the scenic
Wisconsin countryside north of Milwaukee. After a grueling 2 hour trip from
Chicago, I found my desination and proceeded to announce myself. I spent the
full day there and was amazed, mystified and agast on the way home. How was
I going to describe this product adequately in 40,000 words or less? Clearly,
LDOS was a major force in the microcomputer industry and was soon to become
the standard of excellence in TRS-80 systems software.

 I finished the product review and settled down to enjoy my new-found
DOS when the phone rang. It was LSI and they wanted to know if I'd be
interested in field testing the new 5.1 version of LDOS on the Model I.
Would I! Promptly, the software was sent and I was officially a "Beta Test
Site". Surrounded by 1 computer, 2 Disk Drives, 1 Printer, 2 Cats, and 1
Wife, I calmly proceeded to boot LDOS 5.1.1 and make a backup.
Fire-extinguishers and paramedics were available should the experience prove
overpowering to either the CPU or myself. Neither was required and what
follows is a brief overview (by no means complete) of this new LDOS.

Page - 16

 LDOS 5.1.1 is not radically different than 5.0.3. Rather there is a
set of subtle enhancements to the system which add to its already appreciable
power. These were enumerated in the last LDOS quarterly so I'll only deal
with my particular favorites.

 One of the nicest features of 5.1.1 is the SYSRES command. This
SYSTEM feature allows certain /SYS files to be loaded into high memory. This
speeds up DOS operation since overlays are not being called as often. Also,
certain features are added if SYRES is used. For example, by SYSRESing SYS2,
SYS3, SYS8, and SYS10 into memory, you can do BACKUP by Class between two
non-system diskettes on a two drive system. Another application of SYSRES is
the single drive system user. By residing /SYS files into memory they can be
purged from the disk and that space is now available for user files.

 Several new features have been added which make LDOS even easier to
use than before. It is now possible to enter a command with parameters and
leave off the closing parenthesis. Directories are alphabetically sorted
which makes finding a particular file in a listing a lot easier. As with
Model III LDOS, 5.1.1 has a MINIDOS filter which allows the commonly used DOS
commands to be entered in one keystroke sequence. Another favorite command
of mine is the software write-protect feature. This allows you to prevent
the operating system from writing to certain drives without having to put a
write-protect tab on the disks. LBASIC has also been enhanced. One of the
nicest features here is a CMD function which sorts a string array.

 Should you upgrade to 5.1.1? In all probability, yes. Though the
improvements found in this new release are subtle, they are not trivial.
I've found my efficiency using LDOS dramatically improved with 5.1.1 (no mean
feat considering how efficient 5.0.3 was to use). In my estimation, 5.1.1
has the single greatest feature of being even more "user-friendly" than
previous LDOS releases, and certainly than other so-called "advanced" TRS-80
operating systems.

ITEMS OF GENERAL INTEREST

Those of you trying to use KSM to set up control sequences to be sent to a
lineprinter have need of the semicolon character as other than an imbedded
carriage return. Use one of the KSM/FLT patches to change the semicolon to a
character of your choice. The patch will be a two part patch; changing the
character and character offset value. The value (nn) is the ASCII value of
the character to act as the embedded <ENTER>. The offset (oo) is the value
(nn-X'0D'). Both (nn) and (oo) should be represented as hex digits.

 Model I, Version 5.0 - X'5490'=nn:X'5494'=oo
 Model III, Version 5.1.0 - X'555B'=nn:X'555F'=oo
 Model I, Version 5.1.1 - X'558E'=nn:X'5592'=oo

Those of you who don't have lower case hardware installed may run into a
perplexing problem when doing comparisons on keyboard inputs. If KI/DVR is
set, the keyboard will automatically be in the lower case mode, even though
upper case is displayed on the video. Characters from the keyboard will not
match up when compared to upper case characters. Be sure to do a <SHIFT><0>
and then sysgen the system to lock yourself in the caps mode.

PAGE - 17

Model I owners should be sure NOT to use configuration files created under
5.0.x with version 5.1.x!

LDOS provides the <SHIFT><BREAK> key sequence as a means to restart a timed
out drive. However, this will only work if the interrupts are on. Since
FORMAT and BACKUP both disable the interrupts, a timed out drive during
either procedure will hang up the system. Some versions of the Radio Shack
interface (both the model with the buffered cable and the one without) have
an official Radio Shack modification to increase the drive select time by
changing a resistor value from 200k to 270k ohms. Also, as mentioned on page
49 of the December 80-Microcomputing, the capacitor used with the resistor to
provide the select timing can go bad and may have to be replaced. The article
gives component numbers for the capacitor of C-48 (C-62 in the newer
interfaces) and C-12 for the LNW interface. The original value was 33 mF, and
the article recommends that a 47mF or a 68 mF, 16 volt, tantalum capacitor be
used to replace it. If you are experiencing drive timeout, you should have
these two components checked.

The new 5.1 manual mentions a version 5.1 ROM for LX-80 owners. Hopefully,
this ROM will be available in early 1982. Among other things, this ROM will
allow software write protect, correctly pick up the DAM of the directory
(eliminating the need to log a drive), and provide more head settling time
for 8" drives. For details on upgrading your ROM, contact LOBO Drives
directly.

Single drive owners of 5.1 can get a directory of visible files on a data
disk by using the following procedure. Use the SYSTEM (SYSRES=) command to
reside SYS modules 1 and 10. Filter the keyboard with the MiniDOS filter.
Then type in the MiniDOS command <CLEAR><SHIFT><Q>. When the Q prompt appears
on the screen, insert the data disk in drive 0 and press enter.

Model I LDOS owners upgrading 5.0 disks to 5.1 may have a problem after doing
a BACKUP (OLD) from a 5.1 system disk to a 5.0 system disk. The 5.1 version
SYS6 increased in length to 50 sectors. Depending on the location of SYS6 on
the 5.0 disk, it is possible that it will get broken into 3 extents by the
backup. This will result in certain library commands not working. If this is
the case, try killing SYS6 on the 5.0 disk and then backing up (not COPYing)
SYS6 from the 5.1 to the 5.0 disk. If this does not work, it will be
necessary to make a mirror image backup of the 5.1 disk and then move the
necessary files from the 5.0 to the 5.1 disk.

LDOS FILTER PACKAGE

LSI is proud to announce the first in a series of extension packages for the
LDOS product line. This package is FILTER oriented, and will contain many
useful modules. This section of the newsletter will detail the filters that
will be incorporated into this package.

XLATE/FLT........ A complete translation filter system, for input and output.
 Included are a complete EBCDIC translate system and also a
 DVORAC keyboard translator. The user can very easily build
 any other translate tables that are needed for special use.

PAGE - 18

LISTBAS/FLT...... A filter which will format the output of a Basic program.
 All program lines which contain multiple statements (i.e.
 statements separated by colons) will have their appearance
 reformatted when displayed. All new statements encountered
 in a physical program line will be displayed on a new line,
 and will be indented. Also, special formatting will be done
 to change the display of PRINT statements and statements
 involving parentheses.

STRIP7/FLT....... Strips bit seven (the high bit) off of each character.

STRIPCNT/FLT..... A filter which will replace an output character above X'7F'
 or below X'20' with a pound sign (#).

MONITOR/FLT...... A filter similar to STRIPCNT/FLT, with the exception that
 characters less than X'20' will be displayed as a percent
 sign (%) followed by an ASCII representation of the actual
 character value + X'41'. in addition, characters greater
 than X'7F' will be displayed as either an <UP ARROW> or a
 <LEFT BRACKET>.

TITLE/FLT........ A printer filter that will print a user defined title after
 each Top-Of-Form character (X'0C') is encountered.

UPPER/FLT........ Converts every alphabetic character (a-z) to UPPER case.

LOWER/FLT........ Converts every alphabetic character (A-Z) to lower case.

SLASH0/FLT....... Will cause a printer that is capable of backspacing to do a
 backspace and type a "/" over every 0 (numeric zero) that
 is encountered.

TRAP/FLT......... Will trap and throw away a certain character each time that
 the character tries to go through the filter. Any character
 (00 - FF) may be "trapped".

LINEFEED/FLT..... Either add or remove a linefeed after each carriage return.

PAGEPAWS/FLT..... Will pause after each Top-Of-Form character is printed and
 wait until <ENTER> is pressed to continue.

CALC/FLT......... A keyboard filter to perform Hex/Decimal/Binary conversion.
 Hex addition and subtraction may also be done.

REMOVE/CMD....... Removes each occurrence of a specified byte from a file.

PAGE - 19

F E D - The Ultimate File Editor - by Doug Kennedy

FED is an all-purpose, screen oriented file editor to be used with the LDOS
operating system. Its wide range of capabilities make it excellent for the
advanced user, but its simplicity makes it easy to use for the novice user.
The editor supports both Model I and III, upper and lower case, single or
double density, or anything readable by LDOS. Some things to clarify:

 This is a file editor, NOT a file copier, text editor, or word processor.
 It is for displaying, printing, and modifying existing files. Fed works on
 a file level, not a track/sector level.

 FED was not designed to repair damaged disks, or recover lost files, but it
 could be used to do so by the experienced LDOS user. You cannot create or
 extend files with FED, only modify existing ones. FED is intended to run
 with the LDOS operating system only.

FED is available for $40.00 from Galactic Software, 11520 N. Port Washington
Rd, Mequon, WI 53092. Here is a brief description of FED's capabilities:

1) Complete editing capabilities, including Hexadecimal and ASCII modifying.
 Direct disk patching becomes a simple matter with FED. It is possible to
 write machine language code directly to disk. Small changes in files can be
 made instantly. No need to read in a large source file and reassemble just
 to change one character.

2) Record advancing, backspacing, and positioning. Move through files quickly
 either forward or backward. The user need not know how the file's directory
 records are stored, how many sectors per gran are on the disk, or how many
 granules per cylinder the disk has, or what density is used. Just know the
 filespec and password (if it has one).

3) Global ASCII and Hex string searching, with a command to position to the
 next occurrence of that string. FED searches the entire file, not just one
 record like most editors. It allows searching for 30 character ASCII
 strings (upper/lower case), and 30 digit (15 byte) Hex strings. FED saves
 that string and you can go to the next occurrence of that string from the
 currently displayed position in the file.

4) Locate a Hex address in a load module format file, and calculate the load
 position of a specified byte. A MUST for assembly language programmers. No
 more tedious hours spent going through a load module file manually to
 locate or change a byte at some memory location. Just type in the load
 address and FED points you at that byte. Another extremely powerful feature
 is the reverse of the address location command. FED calculates where in
 memory a specific byte pointed to by the cursor will load. With these two
 features it is possible to write machine language routines directly to
 disk. Direct patches are made quickly and easily. Even X-patches are easily
 installed by the experienced programmer.

5) Listing of a file or individual records to a printer, with many safeguards
 added to make it difficult to LOCK-UP the system if a printer is
 deselected, out of paper, etc.

PAGE - 20

6) Includes a 256 byte display mode, and an extended 128 byte mode. Editing
 utilities in the past allowed for 256 byte displays only. By using this
 format exclusively, the variations of an ASCII/HEX display are limited. But
 by having a 128 character display mode, the extra space makes it more
 visually appealing. The filespec, drivespec, record number, input & output
 can be displayed horizontally instead of vertically.

ELSIE - THE CONTENTED COMPILER by Jim Frimel

 LC, LSI's soon-to-be-released C compiler (nicknamed Elsie), will give LDOS
 users many new ways to "milk" their system. LC provides a substantial
 subset of the C programming language of Bell Labs fame, the main language
 used under the UNIX (TM Western Electric) operating system. LC was written
 to be compatible with UNIX programs. The C standard library is supplied
 with the compiler. LC programs which use the standard library can be
 compiled and run under UNIX. Programs written under UNIX which only use
 statements implemented by LC are also portable to LC and LDOS. A large
 amount of existing software, both commercial and public domain, will be
 directly useable by LC owners.

 For those of you who are not familiar with the C programming language,
 here is a brief introduction. C is a structured, portable language. A C
 program is a collection of functions arranged hierarchically (they call
 each other). C functions can be recursive and re-entrant, as local
 variables are created and stored in a stack (in LC, the Z80 machine stack).
 All machine-dependent features needed, such as I/O, are not implemented in
 the language; rather, they are placed in the standard library. Thus, only
 the implementation of the standard library changes from installation to
 installation, and C programs are written in machine-independent ways. The
 language itself provides ways of expressing program structure, and of
 giving arithmetic and logical expressions. C is known for having one of
 the most powerful expression capabilities available in any language. C
 statements supply the WHILE, DO-WHILE, FOR, IF, and SWITCH-CASE constructs.
 C also provides powerful pointer capabilities to enable direct access to
 memory and variable storage.

 LC is an integer-only implementation of C, which provides all C
 statements except "struct", "union", "goto", and "typedef". All data types
 except "float" and "double" are implemented; "long" and "short"
 declarations are accepted, but 16 bit fields are used for all integers. LC
 accepts multiple input files, with 4 levels of nesting for "#include'd"
 files. The compiler generates a Z-80 source file which is then assembled
 and linked to the standard library to generate the executable program. The
 LC standard library provides such functions as standard I/O redirection,
 dynamic memory allocation, automatic standard I/O opening and closing, and
 program chaining. In addition, functions specific to LDOS and the TRS-80
 are supplied in an installation library, and provide access to graphics and
 LDOS entry points.

 LC supports separate compilation; programs may be compiled in
 segments, and frequently used functions can be pre-compiled. External
 variables are supported with the "extern" statement.

PAGE - 21

 Optionally, the compiler will generate external declarations automatically
 without any "extern" statements. Users can create their own libraries of
 commonly used functions - user libraries - which need not be compiled for
 each subsequent use. Elsie supports both the Microsoft Macro-80 assembler
 and the MISOSYS EDAS disk editor-assembler. Under M80, the standard and
 function libraries are in relocatable format; under EDAS, the standard
 library is implemented as a partitioned data set composed of relocatable
 object deck modules which use an LC-supplied linker program while the user
 function libraries will be in Z-80 source form, to be assembled along with
 the program using the "*get" file include facility of EDAS. Supplied with
 LC is a program, "blib", which allows users to create their own relocatable
 load module libraries under the Microsoft package.

 To give you an idea of how simple LC programs can perform complex
 functions, here is a simple example program:

 #include stdio/csh /* standard I/O definitions */
 /* XFER - copy standard input to standard output */

 int c, bytes, lines;
 FILE *fp;

 main()
 { while((c=getchar()) != eof)
 { putchar(c);
 ++bytes;
 if (c == eol) ++lines;
 }
 fp = fopen("*do","w");
 fprintf(fp, "%d characters , %d lines were copied", bytes, lines);
 }

 This program just copies standard input to standard output, then gives a
character and line count to the user on the video display. Here is an
explanation of the program, going through the program from top to bottom. The
standard header file, "stdio/csh", is processed as if it were part of the
program source file, and contains system dependent and machine dependent
information, such as the constants "eol" and "eof" (end-of-line and file).
"FILE", also defined in the standard header file, provides a
system-independent way of defining a file pointer variable. "main" is always
the name of the main function, which is the top of the hierarchy of the
structured C program. The brace characters ({,}) group statements into
compound statements. Thus, the body of the function is one compound
statement. The "while" statement provides looping for the program. The
conditional expression in parentheses shows the power of complex C
expressions. The innermost expression, "c=getchar()", gets a character from
the standard input, and puts it into the variable, "c". [All functions in C
designate parameters within the appending parentheses and the parentheses are
always required regardless of the absence of any parameter.]

PAGE - 22

The value of the character is then compared to the constant, "eof", to
determine if end-of-file has been reached. Within the loop the character "c"
is output, and the byte counter is incremented. The line counter, "lines", is
incremented if an end-of-line character was read. Finally, when the loop is
exited, the video display is opened as an output file and "fprintf" is used to
print statistics on the display.

 This normally trivial program becomes a powerful utility when LC's
standard I/O redirection feature is invoked. Standard I/o redirection allows
the user to specify at execution time where standard input and output are to
be read and written.

 Once XFER is compiled, assembled and linked, typing the following line
into LDOS:

 XFER

will copy the keyboard to the video display, the defaults for standard input
and output. However, both input and output may be redirected, using the >
(for output), and < (for input) characters. Thus, the command:

 XFER <xfer/ccc

will list the contents of the file, "xfer/ccc", on the video display. Since
devices can be opened as files under LC and LDOS, the command:

 XFER >*PR

will let you type directly from the keyboard to the printer. The command:

 XFER >*pr <xfer/ccc

lists the source code of the XFER program on the printer. And, as you could
probably guess by now, files can be copied by redirecting both input and
output to and from disk files, as follows:

 XFER <TEST/JCL >TEST/BAK

LC will probably find its niche most readily among those who would like to
program at the "systems" and utilities level, but really don't relish assembly
language programming. Those LDOS users who already write assembly language
programs will find that LC increases their productivity for system tasks, and
executes fast enough for most system work. LC readily interfaces with
assembly language for critical portions of code. However, users will find
that this is usually not necessary.

 LC will be available for shipment in February of 1982, if all goes well,
for a cost of $150.00. Orders may be placed with the domestic US LSI
distributor nearest you.

 MISOSYS ANNOUNCES PARTITIONED DATA SETS by Roy Soltoff

 Partitioned Data Sets (PDS) are not new to LDOS. The two library files,
SYS6/SYS and SYS7/SYS, are PDS structures. Katzan, in OPERATING SYSTEMS, A

PAGE - 23

PRAGMATIC APPROACH, defines a partitioned data set as "a data file that is
divided into sequentially organized members." Katzan further states, "Each PDS
includes a directory that points to the beginning of each member. Data sets of
this type are most frequently used to store object programs - each member
corresponds to a single object program. The PDS as a whole is referred to as a
library. Operating system libraries and user libraries are stored in this
fashion." This definition describes exactly the two LIB files in LDOS.

 Some LDOS users have already explained how to find the member "number"
corresponding to a LIB command by searching through the PARM table of
SYS1/SYS. This table is used by the LDOS Command Interpreter, which parses the
command line and checks if the "filename" entered by the user matches up with
a LIB command listed in the table. When a match is found, linkage is
established with the system loader in SYSRES to denote the LIB file and the
specific member entry satisfying the LDOS command entered.

 The system loader, in reading the LIB file, discovers that it is a PDS
and reads through the member map table stored in the LIB file. This map table
is a directory containing information relevant to each member in the file.
Once the system loader finds the appropriate entry, it positions the file to
the starting point of the member, and then loads and executes the module.

 The PDS structure has provided a technique for combining separately
executable object programs into one file, thereby saving directory slots. It
also saves time by not having to load an entire 10K-15K file just to get a few
hundred bytes or a few thousand bytes of program loaded if all LIB commands
were just one big file. The overhead of having to read and search the member
directory is minimal. This technique has been used for years on mainframe and
mini computers. LDOS is the only known DOS supporting PDS structures on the
TRS-80.

 Up until now, only the system library has been blessed with this support.
However, MISOSYS has now implemented User PDS structures. The PDS command can
be used to create custom user libraries. A library could be a collection of a
dozen utility programs - all stored under one name but directly executable by
specifying the library name followed by the member name. Consider for a
moment, that I have built a library containing CMDFILE, DSMBLR, FED, BINHEX,
EDAS, and XREF. The library name MYLIB was chosen. I can then execute EDAS by
entering:

 MYLIB(EDAS)

at the LDOS ready prompt. If I wanted to build a custom LDOS command library,
I could use CMDFILE to extract DIR, COPY, KILL, DEBUG, ROUTE, and RESET from
SYS6/SYS and SYS7/SYS and build them into a user SYSLIB. Then I could kill off
SYS6 and SYS7 which would save about 15K from my "custom" SYSTEM disk. When I
wanted to do a directory, I would only need to type:

 SYSLIB(DIR) :2 (A,I)

to achieve the same result as if I had typed DIR :2 (A,I) on a regular SYSTEM
disk. Albeit I could have named my user library, "S" and save the entering of
five characters each time I wanted to execute a member of the library. That
would let me use "S(DIR)"! How's that for you BASIC/S fans? ... cont. page 33

PAGE - 24

With the LOBO LX-80 Expansion Interface
Now you can realize all the power and ports (optional), a keyboard ROM override
Potential of your TRS-80*, Model 1. If it’s switch, and a 32K memory expansion
Add on memory you need, your LX-80 can (optional). Send for a free LX-80/TRS-80
Accommodate up to four 5 ¼-inch, single- cost performance comparison chart.
or double-density 35, 40, or 80 track mini-
floppies, four 8-inch floppies (single or For the full story on how the LX-80 can
double sided), and up to eight Winchester expand your TRS-80, see your nearest
fixed disk drives (5 ¼”, 8”, 14”). LOBO dealer, or write or call:

LOBO’s powerful new LDOS™ operating *TRS-80 is a registered trademark of Radio Skack, a Tandy Company.

System, provided with your LX-80, allows
For the use of any eight drives, in any
Combination, single or double density.
And there’s more ... lots more. There are
Two parallel ports (standard) two serial

LOGICAL SYSTEMS ORDER FORM

This order form can be used to order any of the Logical Systems products
listed below. To place an order, fill in the quantities for each product.
Shipping and handling will be listed for each individual product. Orders
Should be sent to the LSI Distributor nearest you. If the distributor is in
The same state, add the proper sales tax.

Company Name:____________________________ Individual:_______________________

Address:_________________________________ City:_____________________________

State:_______ Country:__________________ Zip Code:_________________________

LDOS Serial Number:______________________ Phone No.:________________________

Ship Via: F/C Mail () UPS () UPS AIR – Add $5.00 ()

Method of payment: COD () Check/Money order () Master () Visa ()

Credit Card #:____________________________________ Expires: ________________

Cardholder Signature:_________________________________ Date: _______________

Qty Description Net Each U.S. & Can. Foreign Total Amount

LDOS Model I 5.1.1 169.00 6.00 25.00

LDOS Model III 5.1.0 169.00 6.00 25.00

FILTER PACKAGE 60.00 4.00 8.00

LC (LDOS “C” Language) 150.00 6.00 20.00

LED (LDOS TEXT EDITOR) 30.00 4.00 8.00

Distributors: Sub total: ____________

Galactic Software Ltd Lobo Drives Intl. S & H: ____________
11520 N. Pt. Washington 354 S. Fairview
Mequon, WI 53092 Goleta, CA 93117 Sales Tax: ____________

Total Due: ____________
MISOSYS Molimerx
5904 Edgehill Dr. 1 Buckhill Rd, Bexhill
Alexandria, VA 22303 Sussex, ENGLAND

Do not send orders directly to LSI. Send to the distributor nearest you.
Checks or money orders must be made out to the distributor, NOT TO LSI!

MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS
I Y
S S
O M
S MISOSYS announces a special offer to LDOS owners. Now you can pur- I
Y S
S chase the same ASSEMBLER used to create LDOS – but a special one O
M S
I time only price reduction. EDAS 3.5.2 is available for $10 off ofY
S S
O the regular price of $79 when purchased direct from MISOSYS usingM
S I
Y the coupon included with this advertisement. EDAS is a disk onlyS
S O
M assembler which produces absolute core-image code from one or moreS
I Y
S source disk files and/or memory buffer. Supported features are con-M
O I
S ditional assembly, paged & titled listings, global search & replaceS
Y O
S 14-character labels, lower case text entry, block move, cross ref-S
M Y
I erence utility, DIR FREE LIST & KILL from EDAS, R/W Macro80 files.S
S M
O I
S User *PARTITIONED DATA SETS* are now possible with the PDS command.S
Y O
S The LDOS user will find User PDS structures useful for customizingS
M Y
I SYSTEM disks and other CMD libraries. PDS is available as an add onS
S M
O to your LDOS direct from MISOSYS. Introductory priced at $40 untilI
S S
Y March 1, 1982. The PDS structure is described elsewhere in this NL.O
S S
M Y
I S
S CONVCPM is the Utility the LDOS MISOSYS accepts payment in theM
O I
S user can use == form of CashS
Y O
S to transfer | LDOS EDAS DISKMOD DSMBLR CMDFIL TUTIL | Master Card,S
M Y
I CPM files to | o | VISA, Check,S
S M
O LDOS. Works | /-_/-_/-\/-\ / \ /-\/-_/-_/-\ | or COD. AddI
S C O U P O N S
Y with 8” SDEN | _/-_/-_/_/ / C \ _/_/-_/-_/ | for S&H, $4O
S S
M or OMIKRON’s | / N O \ | EDAS, $1 allY
I S
S 5” CPM disk. | CONVCPM DUTIL / O P U \ THE-B00K PDS | other itemsM
O I
S ===>$30<=== === listed here. S
Y O
MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS MISOSYS

 Okay, what capabilities are included with PDS? The PDS command will
itself be a PDS. Members provided will implement the following functions:

 o ALIAS - Will provide the capability of defining more than one reference
name to a PDS member.

 o APPEND - Will append a new member to the existing PUS and update the
member directory and map tables accordingly.

 o CREATE - Will provide the capability of creating a new partitioned data
set with a maximum number of members. The PDS is composed of a front end
loader program, a MEMBER directory, a MAP table, and one or more executable
object deck files as specified by the user. The object deck (/CMD files) list
can be entered either by on-line prompts or via a listing in a data file. The
capability of multiple entry points to a single module (separate member names
just like COPY and APPEND or SET and FILTER) is implemented only when the data
file list option is specified.

 o DIR - Will provide a directory of members listing the member name, date
of entry, location in the PDS, transfer address, and file space occupied.

 o EXTRACT - Will transfer a copy of a PDS member from the PDS to a target
diskette as a standard /CMD file. The member will not be deleted from the PDS.

 o KILL - Will remove a member from the PDS and compress the file to
delete the space previously occupied by the deleted member.

 o LIST - Will list a specific member in standard hex format.

PDS is available from MISOSYS, 5904 Edgehill Drive, Alexandria, VA 22303. PDS
is priced at $50. Orders received prior to March 1, 1982 may take advantage of
an introductory offering at $40.

LDOS 5.1 - Enhancements and New Features - by Dick Konov

The following pages of the newsletter will describe the differences between
LDOS-5.0 and LDOS-5.1. In the last issue of the newsletter, a similar article
was written. Since that time, additional features have been added to LDOS-5.1.
This article will highlight the most significant changes which have been made
to the operating system.

1.> Any LDOS command parameters which requires parentheses may be entered
without the closing parenthesis.

2.> The CONV utility has been added to the system. This command will allow
you to transfer files created on the Model III under TRSDOS 1.2 or 1.3 to an
LDOS diskette. Note that Model I owners who wish to utilize CONV must be
capable of reading double density with their system.

PAGE - 33

3.> Some LDOS drivers, filters and Library commands will reuse their
original memory allocations if they are established, turned off, and
re-established. They are the SPOOLer, the Keyboard driver (KI/DVR), the
MiniDOS Filter, the Printer filter (PR/FLT), and the KSM Filter. In addition,
drivers such as PDUBL, TWOSIDE and the above mentioned will only be allowed
to be initiated once.

4.> The Keyboard (*KI) now has its own driver. This driver activates the use
of the <CLEAR> key, and must be established if advanced keyboard features are
to be utilized (e.g. KSM). In addition, the KI/DVR allows you to enter all
ASCII characters (0-127) directly from the keyboard. Also, the KI/DVR allows
you to establish an extended character set.

5.> The MiniDOS filter has been added. This is an additional keyboard filter
which allows the keyboard driver to intercept certain keyboard inputs and
immediately act on them. MiniDOS commands are issued by depressing <CLEAR>,
<SHIFT> and an alphabetic key. The following functions are available when
using the MiniDOS filter: toggle the CLOCK display on or off, enter the
system DEBUGger (if activated), display FREE space for all active drives,
KILL a file, display a disk's DIRECTORY, send a hex character to the printer,
REPEAT the last DOS command, and issue a Top of Form to the lineprinter.

6.> A SuperVisory Call (SVC) table can now be loaded into high memory for
use by assembly language programmers. It contains most documented system
entry points and routines. It is established using the SYSTEM library
command.

7.> Some SYStem modules may be resided in high memory by using the SYSTEM
library command. This will allow you to perform certain functions that
normally require these SYStem modules to be on a disk. For instance, the user
of a two drive system will be allowed to perform a BACKUP by class using
non-system diskettes, provided the proper SYStem modules have been made
resident. Residing system modules also increases the speed of the system.

8.> Any Physical drive in your system may be established as Logical drive 0.
This can be accomplished by using the SYSTEM library command.

9.> For Radio Shack interface owners only, drives may be software write
protected. This is accomplished using the SYSTEM Library command.

10.> The parameters BSTEP and CYL have been added to the SYSTEM library
command. BSTEP is global in nature, while CYL is used with the DRIVE=
parameter. These parameters will allow you to set your own default values for
the FORMAT utility regarding the bootstrap step rate and number of cylinders
to be formatted.

11.> The SYSTEM library command will also have added to it the parameters
DATE= and TIME=. These parameters are used to enable or disable the DATE and
TIME prompts on power up or reboot. If not altered, you will be prompted only
for the date on power-up.

12.> The SPOOLer will despool at a faster speed, and will work in conjunction
with the LSCRIPT patch for SCRIPSIT.

PAGE - 34

13.> APPEND has two additional parameters. The ECHO parameter will echo
characters to the screen if a "devspec to -->" APPEND is performed. The STRIP
parameter will "strip" off the last character of the file being APPENDed to
before the APPEND is performed. This can be useful if you wish to, for
instance, APPEND two SCRIPSIT files together.

14.> The COPY Library command has also had the ECHO parameter added to it.

15.> The DEVICE Library command will display additional information. Included
in this is whether or not the diskette is write protected (software or
physically), options which are currently active (e.g. KI/DVR, MiniDOS, TYPE,
etc.) and SYStem modules which have been resided in high memory.

16.> A "Not" partspec may be specified for some Library commands and
utilities. For example, by entering the following command:

 DIR -/CMD:0

you will be shown a Directory of drive 0 of all files that do NOT have the
extension "/CMD". This "Not" partspec is available with the DIR and PURGE
Library commands and the BACKUP utility.

17.> A specific date, or a range of dates may be specified when utilizing the
DIR and PURGE Library commands, as well as the BACKUP utility. The system
will use the file's last modification date to determine whether or not that
file is to be included in the specified operation.

18.> Along with the above mentioned modifications to DIR, additional
enhancements have been made. Unless specified, all files in a directory will
be displayed in sorted order. Also, a MOD parameter has been added to allow
you to produce a directory of modified files only.

19.> Along with the above mentioned modifications to BACKUP, two additional
parameters have been added. The NEW parameter will BACKUP only those files
not already on the destination disk. The OLD parameter will BACKUP only those
files already existing on the destination disk.

In addition, if the (QUERY) parameter is specified, a backup by class will
always be the result, whether or not the backup is a mirror image. If the
(QUERY) parameter is specified, you will be shown the MOD date and flag of
each file.

20.> One enhancement was made to the FREE Library command. If the FREE
command is given with a drivespec, a FREE space map will be displayed for
that particular drive.

21.> The FORMAT utility has had two parameters added to it. The (QUERY)
parameter will query you as to the type of FORMAT you require. If not
specified, the (QUERY) parameter will default to ON. The (SYSTEM) parameter
has been added, and deals with formatting a hard drive. Also, changes have
been made to the prompt questions and how these questions are dealt with.

22.> LCOMM has been modified substantially. The modifications made to LCOMM
are too numerous to mention here. Two of the most significant enhancements
will be discussed.

PAGE - 35

LCOMM will allow you to input from the keyboard all ASCII characters (0-127).
Also, a Dump To Disk (DTD) function has been added. This will allow you to
receive a file in a RAM buffer and dump it to disk after the transmission has
been completed. This feature is important to Radio Shack interface owners, as
it will guard against the random dropping of bytes when receiving files. Many
other features have also been added.

23.> The PATCH Utility has been enhanced, and will allow you to enter Direct
('D' type) patches from the command line.

24.> There will be two SCRIPSIT patches included with LDOS-5.1. The
SCRIPT/FIX patch will be identical to the SCRIPSIT/FIX patch that was
included with LDOS-5.0.

Many new features have been added to SCRIPSIT if the LDOS-5.1 LSCRIPT/FIX
patch file is applied. Operation of SCRIPSIT when using the new patch will
differ greatly from operating under the LDOS-5.0 patched version. Many of the
enhanced LDOS operations (such as the use of the SPOOLer and MiniDOS) will be
accessible from the SCRIPSIT environment.

25.> The RS232/DVR driver has had its name changed to RS232R/DVR. Both RS232
drivers have had enhancements made to them.

The parameters BAUD, WORD, STOP and PARITY may be abbreviated to their first
characters.

As specified by standard RS232 conventions, a TRUE condition means a logic 0,
or a positive voltage. A FALSE condition means a logic 1, or a negative
voltage. The RS232 driver will now treat the line condition parameters DSR,
CD, CTS and RI in the following manner:

 If specified ON, the driver will observe the lead and wait for a TRUE
 condition before sending each character.

 If specified OFF, the driver will observe the lead and wait for a FALSE
 condition before sending each character.

 If not specified, the lead will be ignored.

In addition, a (BREAK) parameter has been added to the RS232 drivers. This
parameter determines whether the driver can set the system BREAK, PAUSE or
ENTER bits.

26.> LBASIC has had several enhancements. The time it takes to load or save
LBASIC programs has been decreased drastically. Also note that LBASIC does
not need to be created by applying patches to Radio Shack Basic; it will be
resident on your Master Diskette.

A machine language string sort has been added to LBASIC. This will allow you
to sort a string array contained in RAM.

In the CMD"N" function, the last parameter will now represent the last line
number to be renumbered. It used to represent the first line number above
those to be renumbered minus one.

PAGE - 36

The RESTORE command has had an optional parameter added to it. Entering the
command RESTORE nnnn (where nnnn represents a line number in an LBASlC
program) will restore all DATA statements in lines whose numbers are greater
than or equal to the line number specified in the RESTORE statement.

The RUN command has had two parameters added to it. These parameters come
into play when using the RUN command as an LBASIC program statement which
will chain programs together. The (V) parameter will allow you to save any
variables which may have been established in one program, and utilize them in
another program. The (line number) parameter will allow you to specify a line
number dealing with where execution of the program is to begin.

A new command has been introduced into LBASIC. This command is SET EOF#
(where # refers to the buffer # associated with an open disk file). This
command may be used to reset the End Of File (EOF) marker of a random file.
This is a very convenient way of shortening a random file that may contain
unwanted records at the end.

27.> The file MOD1/EQU is included on your Master Diskette. It is an equate
file, and may be used by assembly language programmers.

28.> The file VC/FIX is also included on your Master Diskette, and is a patch
file to be used with VISICALC.

LDOS Supports the T-TIMER (tm) by Roy Soltoff

 The T-TIMER, a bus-connected circuit board that provides a calendar and
clock in real time, is now supported by LDOS. This board is manufactured by
the BAR-W-HARDWARE-RANCH. The T-TIMER keeps the time and date via a MSM-5832
real time clock/calendar chip. It uses a power backup supply of 2-AA size
batteries used for when the CPU is turned off. The T-TIMER is currently
available for the Model I and plugs into either the expansion port (screen
printer port) or the bus connecting the CPU to the expansion interface. It
has a bus extender socket. My test version is connected to my LX-80
development system on the CPU. The LX-80 is then plugged into the T-TIMER.
This timer has been in use for over two months without any problem. The
pleasure of accurate date and time without having to enter date and time on
each powerup is great. The only thing I have found wrong with this unit is
that when plugged into the CPU bus, my little finger scrapes the edge of the
T-TIMER circuit board when I press the TRS-80's RESET button. Perhaps I
should just plug it into the expansion port and be done with it. The only bad
thing about this device is that now I am spoiled. The office has four
machines but only one T-TIMER. Come on BAR-W, get me a Model III version! The
Model I T-TIMER is priced at $89 and is available from BAR-W at Box 1631,
Hurst, TX 76053. Herewith are the LDOS patches:

. TTIMER Model I Version 5.0.1 patch

. Copyright (C) 1981 by Roy Soltoff, All rights reserved

. PATCH SYS0/SYS.WOLVES
D04,72=D8 45 ED 78 0D CD A1 47 ED 78 0D E6 0F 85 12 1B
D04,82=C9 11 43 40 01 C5 03 CD C9 45 10 FB
D0D,D3=21 46 40 01 CA 01 CD AA 4E 06 03 CD AA 4E 01 CC
D0D,E3=0F CD AA 4E EB 13 DB CB E6 03 21 9E 50 20 01 34

PAGE - 37

D0D,F3=18 39 ED 78 0D A0 07 57 07 07 82 57 ED
D0E,00=78 0D E6 0F 82 77 2B C9
. end of patch

. TTIMER Model I Version 5.0.2 & 5.0.3 patch

. Copyright (C) 1981 by Roy Soltoff, All rights reserved

. PATCH SYS0/SYS.WOLVES
D04,65=D8 45 ED 78 0D CD A1 47 ED 78 0D E6 0F 85 12 1B
D04,82=C9 11 43 40 01 C5 03 CD C9 45 10 FB
D0D,C0=21 46 40 01 CA 01 CD AA 4E 06 03 CD AA 4E 01 CC
D0D,D0=0F CD AA 4E EB 13 DB CB E6 03 21 92 50 20 01 34
D0D,E0=18 34 ED 78 0D A0 07 57 07 07 82 57 ED 78 0D E6
D0D,F0=0F 82 77 2B C9
. end of patch

. TTIMER Model I Version 5.1.1 patch

. Copyright (C) 1981 by Roy Soltoff, All rights reserved

. PATCH SYS0/SYS.SYSTEM
D04,05=D2 45 ED 78 0D CD A6 47 ED 78 0D E6 0F 85 12 1B
D04,82=C9 11 43 40 01 C5 03 CD C3 45 10 FB
D0D,4E=21 46 40 01 CA 01 CD B8 4E 06 03 CD B8 4E 01 CC
D0D,5E=0F CD B8 4E EB 13 DB CB E6 03 21 B9 50 20 01 34
D0D,6E=18 21 ED 78 0D A0 07 57 07 07 82 57 ED 78 0D E6
D0E,7E=0F 82 77 2B C9
. end of patch

LDOS Device I/O and Independence by Roy Soltoff

 A very powerful and frequently used feature of LDOS is its relatively
complete device independence. This feature is available through the FILTER,
LINK, RESET, ROUTE, and SET commands. It is also available to the Assembly
Language programmer due to the correlated structuring of the Device Control
Blocks (DCB) as used for byte I/O devices {*KI, *DO, *PR, *CL, etc.} and the
File Control Blocks (FCB) as used for all disk files.

 Any system that supports total device independent structures should be
realized as an OS with possible channel input/output for each distinct device
{such as console, error output, data sets, etc.} on the machine side. On the
device side, there should exist no discernable transmission difference among
all the peripherals attached to the machine. Furthermore, you should be able
to easily interconnect any machine channel to any peripheral, possibly to
multiple peripherals. The system should also be capable of installing filters
(massaging functions) anywhere in the I/O channel. The operating system
running on a TRS-80 most resembling this structure is LDOS. Functions lacking
from this "total device independent structure" are its inability to filter a
channel connected to a data set (disk file) as occuring from the command,
"ROUTE *DD TO FILESPEC" and a somewhat simplified scheme in eliminating
filters and channel connections once made (i.e. via RESET). These limitations
generally stem from the lack of adequate memory available to the operating
system in a 48K environment. Consider, for a moment, that UNIX - a most
device independent system - takes upwards of 100K for its system
implementation.

PAGE - 38

 Enough of the philosophical. Let's begin to examine the methods used in
LDOS to implement device independence and reflect on how this ties in with
the programming of drivers and filters. You will first need a basic
understanding of the data fields associated with the DCB and FCB. Adequate
explanations are covered in the technical section of the LDOS manual and will
not be repeated here. I will expand on the information where applicable.

 Device independence has its roots in what I will call "byte I/O". The
term shall apply to any I/O passed through a channel, one byte at a time. You
get one byte when you scan the keyboard (albeit early TRS-80s were afflicted
with kkeyyboouncce but that was not multiple byte input). One byte is passed
to a printer. A data set generally has I/O data blocks of 256 bytes; however,
we can certainly characterize a blocked file with a record length of one -
that provides byte I/O with a data set channel.

 Three primitive routines are available at the assembly language level
for byte I/O. Primitive is not used here to imply rudimentary but rather
elementary. Just as the atom is considered a basic building block of
molecules, these byte I/O primitives can be used to build larger routines.
The three are called @GET, @PUT, and @CTL. Their vector entry points are in
the Level II ROM. @GET is used to input a byte from a device or file. @PUT is
used to output a byte to a device or file. @CTL is used to communicate with
the driver routine servicing the device or file. A reasonable illustration of
these routines is:

 ;*=*=*
 ; Example ROM Byte I/O Routines
 ;*=*=*
 @GET PUSH BC ;Save this register
 LD B,00000001B ;Set the mask code
 JR GO2DVR
 @PUT PUSH BC ;Save this register
 LD B,00000010B ;Set the mask code
 JR GO2DVR
 @CTL PUSH BC ;Save this register
 LD B,00000100B ;Set the mask code
 JR GO2DVR
 .
 .
 GO2DVR JP DVRBGN

 Observe the similarity of these routines. They are each identical except
for the value loaded into register B which establishes a mask code. If we
examine a few routines that use these primitives as building blocks, the
illustration will become more clear. Three other routines are in the ROM
having vectors labeled @KEY (scan the keyboard and return the value of any
depressed key), @DSP (display a character on the video screen), and @PRT
(output a character to the line printer. These appear as follows:

 @KBD LD DE,KIDCB$;P/u keyboard DCB
 JR @GET ;Go to input
 @DSP LD DE,DODCB$;P/u the video DCB
 JR @PUT ;Go to output
 @PRT LD DE,PRDCB$;P/u the printer DCB
 JR @PUT ;Go to output

PAGE 39

 Again we discover some interesting similarities among these three
routines. First, each loads register pair DE with a pointer to a specific
Device Control Block - the DCB assigned for use by the device. Second, where
we expect to input a byte, we go to the @GET routine but where we want to
output a byte, we go to the @PUT routine.

 These are not just whimsical procedures. The rule is that to input a
byte from a device, we load register pair DE with the pointer to that
device's control block then go to the @GET routine. If we want to output a
byte to a device, we point DE to the control block and go to the @PUT
routine. Similarly, if we want to "talk" to the driver routine servicing the
device (i.e. RS232/DVR), we can use the @CTL vector. Later on I will show
exactly how a driver routine can be written to sort out these primitives.

 If we go back and examine the three primitives, we notice that each one
collects into an instruction that jumps to some common driver beginning.
Again, this is a routine that exists in the TRS-80 ROM. Since the Model III
routine is different from the Model I routine, both will be shown here. For
one reason, it is important to see how Tandy screwed up the Model III device
independence and made it more difficult for such an implementation in LDOS.
For another reason, it is what forced the limitation of a maximum of four
active ROUTES in the Model III. First the Model I routine:

 ;*=*=*
 ; Model I Driver Initialization for hooks
 ;*=*=*
 DVRBGN PUSH HL ;Save register HL
 PUSH IX ;Save register IX
 PUSH DE ;Transfer the DCB or 0CB
 POP IX ; address to IX
 PUSH DE ;Save register DE
 LD HL,DVRRET ;Set up return restoral
 PUSH HL ; onto stack
 LD C,A ;Xfer char to output
 LD A,(DE) ;P/u DCB/FCB "type" byte
 AND B ;Mask with primitive code
 CP B ;Can DCB handle the call?
 JP NZ,IOHOOK ;Go to DOS hook if not
 CP 2 ;Set flags for direction
 LD L,(IX+1) ;P/u lo-order vector
 LD H,(IX+2) ;P/u hi-order vector
 JP (HL) ;Go to device driver
 DVRRET POP DE ;Reg restoral routine
 POP IX
 POP HL
 POP BC
 RET

The most important lines of code are:

 LD A,(DE) ;P/u DCB/FCB "type" byte
 AND B ;Mask with primitive code
 CP B ;Can DCB handle the call?
 JP NZ,IOHOOK ;Go to DOS hook if not

PAGE - 40

This piece of code masks the TYPE byte with the primitive mask and checks for
a match. For example, if you peek at address X'4015', the TYPE byte for the
keyboard, you will see a value of X'01' or 00000001B. If the @GET primitive
was entered by the @KBD vector, the mask value would be 00000001B. Thus the
comparison would be a match and the jump to IOHOOK would not take place. What
if the @PUT primitive was entered with register pair DE pointing to the *KI
DCB? The TYPE value of 00000001B would be ANDed with the mask value of
00000010B with a resultant value of 0. The zero value would not match the
mask value causing a jump to the IOHOOK routine. Obviously, an output request
to the keyboard makes no sense! In fact, the keyboard driver could not even
handle such a request!! We thus see that the first three TYPE bits (0, 1, and
2) are used by the three primitives to identify whether the device driver has
any code to deal with each specific primitive. If you examine the TYPE codes
in the *KI, *DO, and *PR device control blocks, you will see that *KI
supports @GET, *DO supports @GET, @PUT, and @CTL, while the *PR device
supports only @PUT and @CTL. Where a conflict occurs, the IOHOOK routine is
supposed to deal with the error. In Level II, this will generate an illegal
function call error.

 What would happen if the bits 0-2 each contained a zero but one of the
bits 3-7 contained a one? If this were the case, then the comparison would
never match the primitive mask and the jump to IOHOOK would always happen.
Notice that the technical documentation states a ROUTED device has its TYPE
byte bit 4 set to a one. A NIL device has its TYPE byte bit 3 set to a one.
Therefore, any device which is ROUTED or NIL, will have all three primitive
byte I/O calls directed to the IOHOOK routine. Also, if you examine the
technical information on file control blocks, you will see that an FCB for an
OPEN file, will have FCB+0 bit 7 set. This was not arbitrary. If register
pair DE contains an FCB pointer for the primitive call (@GET or @PUT), then
the DVRBGN routine will likewise vector to IOHOOK. This little feat enables
us to get out of the ROM into a routine that we control in the operating
system for any primitive call with a ROUTED or NIL device or an open file.
More on that later.

 Before we go on to the Model III DVRBGN routine, let's take a peek at
one last compare. After the masking is performed, if we don't jump to IOHOOK,
we see a "CP 2" instruction. What's the purpose of this? The masked value
will be either 1 for @GET, 2 for @PUT, or 4 for @CTL. The following table
illustrates the FLAG register conditions prevailing after the compare for
each primitive:

 TABLE I - FLAG SETUP

 1 CP 2 C,NZ = @GET primitive
 2 CP 2 Z,NC = @PUT primitive
 4 CP 2 NZ,NC = @CTL primitive

 After the compare, the DVRBGN routine picks up the vector pointing to
the driver routine's entry point, places it into register pair HL, and
performs an indirect jump instruction (this causes a jump to the address
contained in register pair HL).

PAGE - 41

We then see that when the DVRBGN routine passes control over to the device
driver routine, the flag conditions are unique for each different primitive.
This provides a method that the drivers can use to establish what primitive
was used to access the routine - and the primitive established the direction
of the request - input, output, or control!

Now, the corresponding routine in the Model III will be shown. Prepare for
the pain. The horrible instructions are preceded by triple asterisks:

 ;*=*=*
 ; Model III Driver Initialization for hooks
 ;*=*=*
 DVRBGN PUSH HL ;Save register HL
 PUSH IX ;Save register IX
 PUSH DE ;Transfer the DCB or FCB
 POP IX ; address to IX
 PUSH DE ;Save register DE
 LD HL,DVRRET ;Set up return restoral
 PUSH HL ; onto stack
 LD C,A ;Xfer char to output
 LD A,(DE) ;P/u DCB/FCB "type" byte
 *** BIT 7,A ;If not a file, don't
 *** JR Z,DVRB1 ; permit the IOHOOK
 AND B ;Mask with primitive code
 CP B ;Can DCB handle the call?
 JP NZ,IOHOOK ;Go to DOS hook if not
 DVRBl AND B ;Mask with primitive code
 CP 2 ;Set flags for direction
 LD L,(IX+1) ;P/u lo-order vector
 LD H,(IX+2) ;P/u hi-order vector
 JP (HL) ;Go to device driver
 DVRRET POP DE ;Reg restoral routine
 POP IX
 POP HL
 POP BC
 RET

Tandy got their sticky little fingers into the ROM and created two lines of
code that kept us from exiting through IOHOOK anytime bit 7 was reset. Ugh!
Double ugh! Thus, neither the ROUTE bit nor the NIL bit could be used to
force control to IOHOOK. This forced us to either implement a route driver in
high memory (which would have eliminated device routes from LBASIC under the
current scheme of memory management) or a route table in SYSRES (which would
limit the number of active routes to some maximum number). The latter method
was chosen as the lesser of two evils with four being arbitrarily set as the
route table maximum. Four popped out due to space limitations.

 Since so much has been stated about the IOHOOK jump, let's take a look
at a representative sample of such a routine. This one originates from the
Model I LDOS:

PAGE - 42

 ;*=*=*
 ; LDOS Model I IOHOOK routine
 ;*=*=*
 IOHOOK0 PUSH HL ;Xfer pointer to IX
 POP IX
 IOHOOK LD L,(IX+1) ;P/u lo-order vector
 LD H,(IX+2) ;P/u hi-order vector
 LD A,(IX+0) ;P/u DCB/FCB type
 CP 00010000B ;Is this DCB routed?
 JR Z,IOHOOK$;Vector points to new DCB
 JP NC,BYTEIO ;Disk I/O on bits 7,6,5
 AND 00001000B ;Is this DCB NILed?
 XOR 00001000B ;Set Z-flag if so
 RET Z ;Ignore CALL if NIL
 LD A,B ;Xfer the mask code
 CP 2 ;Set up the flags
 JP (HL) ; and go to vector addr
 ;*=*=*
 ; Byte I/O routine
 ;*=*=*
 BYTEIO EQU $;Tests for direction to
 ; read or write 1 byte

 Consider what would happen if we performed the command:

 ROUTE *PR *DO

The *PR TYPE byte would contain the value X'10' indicating a routed device.
Also, the ROUTE library command would replace the vector address in the *PR
DCB with a pointer to the *DO device control block. That is, the first three
bytes of the *PR DCB would be [10 1D 40]. If you trace through a call to @PRT
(request to output a byte to the printer), you will discover that a jump to
IOHOOK is performed. Trace through the IOHOOK routine. We first pick up the
vector to *DO's DCB from (IX+1) and (IX+2) and put it into register pair HL.
We then pick up the TYPE byte, compare it to 00010000B (X'10') and discover
that the device is routed. The match causes a jump to IOHOOK$ which transfers
the vector in HL (remember HL contained the *DO DCB address) This then falls
through to IOHOOK which grabs the *DO vector and TYPE byte. If you examine
the remaining code of IOHOOK, you will discover that in this case, the last
three instructions get executed which are essentially identical to the ROM
DVRBGN exit discussed earlier. Notice that if *DO was itself routed, IOHOOK
would again loop to IOHOOK$ and continue the loop until it got to a device in
the "chain" that was not routed.

 With the NIL bit set, it is easy to observe that the code in IOHOOK that
appears as:

 AND 8
 XOR 8
 RET Z

will perform an immediate return with the Z-flag set on a NIL device. This
function constitutes the bit-bucket.

PAGE - 43

 If we performed the command:

 ROUTE *PR to filespec

the TYPE byte of the *PR DCB would be set to X'10' indicating a route.
However, the vector bytes would be set to the file control block in high
memory established by the ROUTE command. The file would have been opened so
the FCB would be in an open state (remember, bit 7 is set). What happens if
we @PRT a character?

 The DVRBGN routine will again vector to IOHOOK. IOHOOK will discover
that *PR is routed as previously shown. When IOHOOK$ does its job, it will
now point IX to the FCB of the file *PR was routed to. The TYPE byte of the
FCB (the FCB+1 byte) will have bit 7 set causing the jump to the BYTEIO
routine. This routine is not going to be detailed here. It essentially
ascertains from the mask byte whether the request was @PUT or @GET and
performs the appropriate byte transfer for the file.

 Now that we have examined how LDOS directs I/O to either drivers or file
access routines, let's take a peek at how we can establish control blocks for
device independence. That's the real easy part. When you are requested to
enter a specification, you generally can provide a device specification or a
file specification. If a program is written to always provide for a 32-byte
FCB, you will always have enough space for an 8-byte DCB. The system @OPEN
and @CLOSE routines (@INIT included) detect the specification of device or
file via the presence or absence of the asterisk prefix required in device
specifications. If a file specification is given, @OPEN opens the file and
constructs the open FCB. If a device specification is given, @OPEN copies the
DCB into the FCB space (in the Model III we also must establish a
pseudo-route table within the FCB space so that IOHOOK can gain control. Thus
a standard linkage such as:

 LD HL,BUFFER
 LD DE,FCB
 LD B,0
 CALL @OPEN

doesn't care if FCB contained a true file specification or a device
specification. At the conclusion of the @OPEN statement, the FCB contents are
filled with data needed to support calls for byte I/O such as:

 LD DE,FCB
 CALL @GET

or
 LD DE,FCB ;Point to control block
 LD A,CHAR ;P/u the char to output
 CALL @PUT ;Issue the PUT call
 CALL NZ,TSTERR ;Test if valid error
 JP NZ,IOERR ;Go service the error
TSTERR EX DE,HL ;If a file, its an error
 BIT 7,(HL) ;Test for FCB
 EX DE,HL ;Z=DCB, NZ=FCB
 RET

PAGE - 44

The byte I/O vector is independent of the device type provided the device can
support that direction of I/O. The error testing procedure is needed if any
output requests are made in an environment that is subject to either device
or file specifications (independence). Since the TRS-80 ROM driver routines
do not complete their output function and return unilaterally with the ZERO
FLAG get, a @PUT to a device could be interpreted as an error. However, it is
most important to test for an error return if the @PUT was to a disk file! It
is for this reason that program authors who do not take this into
consideration when writing their application software will cause havoc to
those LDOS users that ROUTE *PR TO FILESPEC and lockup the system when
"printer" output is re-directed to a disk file on a diskette that becomes
FULL.

 Want to have some fun? Try going into LBASIC and running the following
mini-program:

 5 FO$="*PR"
 10 OPEN"O",1,FO$
 20 PRINT#1,"This is a test"
 30 CLOSE1

Find a use for that? Okay, let's say you have a program that writes data to a
sequential file. You want to test the program and ascertain what is being
written without actually having to generate the file and list it back out.
You could of course duplicate your PRINT#1 statements as LPRINT statements.
You could0also have substituted the *PR device name in lieu of the file name
in the OPEN statement. If your program contained numerous PRINT#1 statements,
which would be easier? How about this one?

 ROUTE *D0 NIL
 ROUTE *D1 FILE1
 ROUTE *D2 FILE2
 ROUTE *D3 FILE3
 LBASIC
 10 CMD"ROUTE *D0 *D1
 20 GOSUB180
 30 PRINT#1,"Bunch of data"
 40 CLOSE1
 50 CMD"ROUTE *D0 *D2
 60 GOSUB180
 70 PRINT#2,"Another bunch of data"
 80 CLOSE1
 90 CMD"ROUTE *D0 *D3
 110 GOSUB180
 110 PRINT#1,"The last bunch of data"
 120 CLOSE1
 130 CMD"S
 140 CMD"RESET *D1
 150 CMD"RESET *D2
 160 CMD"RESET *D3
 170 END
 180 OPEN"0",1,"*D0":RETURN

PAGE - 45

And they said I didn't know BASIC! Ingenuity will find a use for this
procedure. One such use could be to segregate output for different kinds of
preprinted forms - such as tax forms.

 Now we will move on to the device driver linkage used to separate out
the @PUT, @GET, and @CTL calls. It is extremely important to remember the
FLAG register direction conditions that were set according to the primitive
byte I/O routine that got us to the driver. These conditions were presented
in TABLE I. Consider the following protocol for the "front end" of a driver:

 ENTRY JR BEGIN ;Branch around linkage
 DW $-$;Last byte used by driver
 DB BEGIN-ENTRY-5,'MODNAME'
 BEGIN JR C,WASGET ;Go if @GET request
 JR Z,WASPUT ;Go if @PUT request
 . ;Must have been @CTL request

 At the entry of the driver, an absolute jump instruction executes which
causes a branch around some data. Ignore, for a moment, the data area which
will be discussed shortly. At the label, BEGIN, a test is made on the CARRY
FLAG. If the CARRY was set, then it only could have gotten itself into that
condition if the disk primitive was an input request (@GET). Thus, an input
request could be directed to a part of the driver which only handles INPUT
from the device.

 If the request was not from the @GET primitive, the CARRY will not be
set. The next test is if the ZERO FLAG is set. The ZERO condition prevailed
when a @PUT primitive was the initial request. Thus the jump to WASPUT can go
to a part of the driver that deals specifically with OUTPUT to the device.

 If neither the ZERO or CARRY flags are set, the routine falls through to
the next instruction (which is not shown). What would follow would be a part
of the driver that would handle @CTL calls. For instance, you may want to
have an RS-232 driver handle a BREAK by issuing a @CTL call 80 that the
RS-232 driver emits a true modem break, but a CONTROL-A (SHIFT+DOWNARROW+A)
would @PUT a X'01'. You might ask why we don't check for a "NOCARRY" flag?
Well if we just ascertained that the CARRY is not set, then it must be the
other condition - there is only one CARRY flag - it is either SET or RESET.
Thus the only other case could be a @CTL request.

 Some drivers are written to assume that @CTL requests are to be handled
exactly like @PUT requests. This is entirely up to the function of the driver
and the author thereof. If the driver is the LDOS byte I/O disk driver, a
@CTL call is output to the disk file just as if the byte I/O primitive was a
@PUT.

 Now, the front end linkage shown above has been implemented in LDOS
supplied drivers and filters starting with release 5.1.1. This was to provide
a uniform way of identifying the name of a driver when it was resident in
memory as well as the last memory address used by the driver. The PDUBL/CMD
double density disk driver released with 5.1.1 also has this linkage. PDUBL
itself uses it to search through all drivers vectored from the Drive Code
Table (DCT) prior to relocating itself into high memory in case PDUBL was
already resident from a previous PDUBL command.

PAGE - 46

Under LDOS 5.0.x, if you entered PDUBL twice, two copies of PDUBL would be in
high memory - one just wasting away. This will not happen under 5.1.1.
TWOSIDE also uses this technique. Although LDOS 5.1.0 had all of its filters
and drivers implemented with a technique for determining system residency,
they have been revised to also use this front end linkage for the sake of
uniformity at the expense of a few extra bytes taken up in RAM. It will be
interesting to observe that if every module using space in high memory used
this technique, then one could check a device chain and locate the starting
and ending point of each filter, driver, and whatnot. In fact, a memory
management routine could be written to start from (HIGH$+1) and search
through all of high memory presenting a directory of space utilization. Have
I raised a few eyebrows? If you write drivers and filters, you can use this
technique as easily as I can within the system.

 One last topic needs to be discussed relating to filters. A filter is
inserted between the DCB and driver routine (or between the DCB and the
current filter when applied to a DCB already filtered). The usual linkage for
a filter is to access the chained module by calling the address that was in
the DCB at the time of the filter installation. However, since the driver
expected the FLAG register contents to designate the I/O direction of the
request, it is ABSOLUTELY ESSENTIAL that each filter maintain the integrity
of those flags when issuing that CALL instruction. If you check out the TRAP
filter described in the technical section of your LDOS manual, that is the
purpose of the PUSH AF - POP AF sequence. Another pitfall to watch out for is
that routines handling output requests expect the output character stored in
the C register when the routine takes over. At the conclusion of the routine,
the character is generally placed in the A register. If your filter is going
to massage output, adhere to those specifications. This will ensure
compatibility amongst all filters and drivers.

 Questions and/or comments concerning this article may be addressed to me
at LSI corporate headquarters.

RELOCATING CODE FOR LBASIC USR ROUTINES by Chuck

One of the most useful features of LDOS is the capability for a user to
insert blocks of code in high memory and have them protected from the system.
The FILTER and SET library commands operate in this manner. It is also
possible to put blocks of code into memory to be called as USR routines from
LBASIC. However, since the high memory location of the code can vary, any
absolute references in the code to be moved will be incorrect after the
relocation. Also, if the code is to be called as a USR routine, a method must
be used to store the entry point for LBASIC to recover and assign with a
DEFUSR statement. This article will describe three steps - how to relocate
the code and set the new high memory protect, how to relocate absolute
addresses in the code, and how to access this code from LBASIC.

Normally, a front end program module is used to relocate the user code into
high memory. This module normally can be ORGed at X'5200'. However, if the
program is to be executed with the RUN (X) command, it should be ORGed at
X'5300'. The normal order of code in the program will be as follows:

PAGE - 47

 1) * The memory protect routine.
 2) * The address relocater.
 3) * The block move relocation.
 4) * The table of relocation addresses.
 5) * The actual code to be moved.

The first thing you should do is to find the current HIGH$ value and the
length of the code you wish to move. You can then calculate the new HIGH$
value, and the location in high memory where your code will reside. The next
example assumes the label LENGTH is equated to the length of your code (a
method to do this is shown in a later example).

 * The memory protect routine

 00200 LD HL,(HIGH$) ;get current memory protect
 00210 LD BC,LENGTH ;length of relocatable code
 00220 OR A ;clear Carry flag
 00230 SBC HL,BC ,calculate new HIGHS
 00240 LD (HIGH$),HL ;store this value
 00250 INC HL ;pt to 1st memory location

Now that HIGH$ has the correct value to protect the code to be moved and the
HL register is pointed at the start of the relocation area, you can see about
fixing up all absolute addresses in the code. The method described here was
chosen because it fulfils two requirements - it is very easy to use and
modify, and it adds no extra code in high memory. This method requires the
construction of a table containing the absolute instruction addresses. The
easiest way to do this is to label all absolute instructions with common
labels, such as REL1, REL2, etc.

For example, suppose you had the following routine assembled at X'5500':

 5500 C30655 00000 JP Z,OUT
 5503 3E0A 00000 LD A,10
 5505 C9 00000 RET
 5506 E5 00000 OUT PUSH HL

The first line of code assembles as an absolute jump on zero to address
X'5506'. When this block of code is moved to high memory, a jump to X'5506' is
not what the user really wants. This same problem occurs with CALL
statements, a LD of registers from memory locations, or a LD of a memory
location from a register. Of course, jumps, calls, or loads outside of the
relocatable code will not be a problem.

There are many different ways to get around this problem when writing your
own code. Relative jumps can be used instead of absolute jumps, alternate
registers can be used instead of memory locations, etc. However, there will
be times when you will have to use absolute instructions. The following block
of code will be used as an example to show how to label the instructions and
construct the table. This code serves no actual purpose other than as an
example.

 * The actual code to be moved

PAGE - 48

 5500 02000 ORG 5500H
 5500 CD7F0A 02010 START CALL 0A7FH
 5503 ED5B1755 02020 REL1 LD DE,(STOR1)
 5507 CDC901 02030 CALL 01C9H
 550A CD1355 02040 REL2 CALL LOOP1
 550D CA1455 02050 REL3 JP Z,ENDIT
 5510 221855 02060 REL4 LD (STOR2),HL
 5513 C9 02070 LOOP1 RET
 5514 C3C901 02080 ENDIT JP 01C9H
 5517 00 02090 STOR1 DEFB 00
 5518 00 02100 STOR2 DEFB 00
 0018 02110 LENGTH EQU $-START
 5500 02110 END 5500H

As you can see, only those instructions that reference addresses inside the
user's block of code need to be relocated. Calls or Jumps to ROM or LDOS
system addresses outside of the relocatable code should not be altered!

The relocating table will be a series of addresses. The label RELTBL should
be placed on the first entry in the table. Also, a terminating pair of 0
bytes should be the last entry in the table.

 * The table of relocation addresses

 01000 RELTBL DEFW REL1+2
 DEFW REL2+1
 DEFW REL3+1
 DEFW REL4+1
 DEFW 0 ;end of table indicator

The table entries point to the locations in memory where the absolute
addresses reside. Notice that the REL1 label entry is +2 from the start of
the instruction. This is because the LD DE,(STOR1) instruction is a 4 byte
instruction with the address being the last two bytes. All other of the
example addresses follow single byte instructions and therefore are offset by
only 1 byte. If you are unsure of the instruction length, it would be
advisable to run an assembled listing and check the offsets used in the
table.

The next block of code will make the adjustments of the necessary addresses
before the code is moved into high memory. It should immediately follow the
block of code that calculates the new HIGH$. At that point, register pair HL
contains the address where the relocatable code will start in high memory,
and BC contains the byte count of the code to relocate. The address in HL
will also be the entry point when the code is called as a USR routine from
LBASIC. It is assumed that the label START is used on the first line of the
code to actually be moved into high memory.

 * The address relocater

PAGE - 49

 00500 ;**** Relocate hard Jumps, Calls, and Addresses
 00510 ;
 00510 PUSH HL ;save entry point
 00520 PUSH BC ;save byte count
 00530 LD BC,START ;reloc. code start
 00550 OR A ;clear CARRY flag
 00560 SBC HL,BC ;calc. offset for reloc.
 00561 ;
 00562 ; Register HL now contains the offset difference
 00563 ; between the current location and the location
 00564 ; in high memory.
 00565 ;
 00570 LD C,L
 00580 LD B,H ;offset into BC
 00590 LD IX,RELTBL ;table of labels to adj.
 00600 RELOOP LD L,(IX) ;pre-move address
 00610 LD HL,(IX+1)
 00620 LD A,H ;msb of table entry
 00630 OR A ;see if it is a Zero
 00640 JR Z,DUNREL ;end of reloc. on Zero
 00650 PUSH HL ;save loc. of address
 00660 LD E,(HL) ;now get the CONTENTS
 00670 INC HL ;of the memory location
 00680 LD D,(HL)
 00690 EX DE,HL ;current absolute address
 00700 ADD HL,BC ;add in the offset
 00710 EX DE,HL ;new address into DE
 00720 POP HL ;loc of address
 00730 LD (HL),E ;store the offset address
 00740 INC HL ;in the current instruction
 00750 LD (HL),D
 00760 INC IX ;next table location
 00770 INC IX
 00780 JR RELOOP ;reloc. next label

Now that all of the necessary adjustments are made, you can move the code
into high memory. Remember that the entry point and byte count were pushed
onto the stack at the start of the previous routine.

 * The block move relocation

 00800 DUNREL POP BC ;recover byte count
 00810 POP DE ;recover entry point
 00820 LD HL,START ;start of user code
 00830 LDIR ;move it
 00840 JP @EXIT ;EXIT, all done

At this point everything is complete. The routine is loaded in high memory,
the HIGH$ value is set to protect it, and all absolute addresses have be
relocated. However, nothing has been done to make this routine available as a
USR call from LBASIC. To do this, the location of the entry point in high
memory must be stored in a fixed location so that the LBASIC program can pick
it up.

PAGE - 50

There is an 8 byte user storage area provide in LDOS just for this purpose.
This area is pointed to by the address in USTOR$, memory locations X'4DFE'
and X'4DFF'. Consider the rewrite of the previous five lines:

 00800 DUNREL POP BC ;recover byte count
 00810 LD HL,USTOR$;get pointer to user area
 00820 LD E,(HL) ;now point DE at
 00830 INC HL
 00840 LD D,(HL) ;user storage location
 00850 EX DE,HL ;0nto HL for load
 00860 POP DE ;recover entry point
 00870 LD (HL),E ;and store entry point
 00880 INC HL
 00890 LD (HL),D ;for recovery by LBASlC
 00900 ;
 00910 ; Now we continue the relocation move
 00920 ;
 00930 LD HL,START ;start of user code
 00940 LDIR ;move it into high memory
 00950 JP @EXIT ;EXIT, all done

This routine will work for USR programs with a single entry point. If more
than one USR call will be made to the same block of code, the entry points
can be stored sequentially in the user storage area. Since there are 8 bytes
of storage space, up to four entry points can be used with this method.
However, storing four entry points would require a slightly different routine
to replace lines 860 to 890 in the previous example.

The LBASIC program can pick up the entry point as follows:

 100 DEFINT X
 110 X=PEEK(&H4DFE)+256*(PEEK(&H4DFF))
 120 REM ** It will be necessary to use the negative value
 130 REM ** when the entry point is above 32767.
 140 DEFUSR1= -1*(65536-(peek(X)+256*(peek(X+1))))

If more than one entry point is needed, addition lines similar to line 140
can be used, indexing off of the value in the variable X.

 THE JCL CORNER by Chuck

A survey of all the customer support people revealed an interesting fact.
Only one of them recalled ever being asked a question dealing with JCL
compiling or the compilation macros. "Plenty of questions about the execution
phase", they said, "but nothing about compiling". This tends to suggest one
of two things - either everyone knows everything about the compiling phase of
JCL, or no one is using it because they don't understand it. Assuming a point
midway between these two conclusions, the next issues of the quarterly will
try and explain the function of the compilation phase of JCL, and give some
practical examples of its use.

PAGE - 51

The first question that comes to mind is "Why compile a JCL file ?"
Basically, the compilation phase allows a single JCL file to be used for many
different functions, and to have these functions selected at runtime. There
are three terms that will be used throughout this discussion. They are LABEL,
TOKEN, and MACRO. Labels are probably the easiest to understand. They are
merely used to combine many smaller JCL files into one larger file to save
disk and disk directory space. A token can be considered a variable. It will
have either a logical true or logical false value. It may also have a string
value assigned to it. A macro is a special JCL command statement. It is
always in the format of two slashes (//) followed by the appropriate word.

So how can you construct a JCL file to make practical use of the compilation
feature? A good place to start will be by gaining an understanding of the
logical decision capabilities of JCL. This will include the three logical
operator symbols and the three decision macros. Of course, the all important
tokens will also be discussed.

 Logical operators Decision macros
 ----------------- ---------------
 AND & //IF
 OR + //ELSE
 NOT - //END

The decision macros can be used with or without the logical operators. The
//IF macro is used to test the logical value of the statement following it.
For example:

 //IF a ;Tests to see if the token "a" is true
 //IF -a ;Tests to see if the token "a" is false

A token can be declared to be true by specifying it on the DO command line.
It does not have to be assigned a value. All of the following examples will
assign a true value to the token "a".

 DO TEST/JCL (a)
 DO TEST/JCL (a=testfile)
 DO TEST/JCL (A)

You will notice that upper and lower case are evaluated identically, and
there is no real difference between the first and third examples. Now that we
know one method of assigning a true value to a token, we can determine how to
assign it a false value.

There is literally nothing to assigning a false value to a token - simply do
not specify it on the DO command line. Also, the //SET, //ASSIGN, and //RESET
macros can assign or reset a token's logical value. They will be discussed
later.

The //END macro is used to mark the end of a corresponding //IF block. There
must be one //END used for every //IF. The //ELSE macro is used to provide an
alternative course of action in case an //IF statement evaluates false. As
you will see later, //IF conditional blocks can also be nested inside of
//ELSE blocks. Now for some examples:

 Example #1 . TEST/JCL

PAGE - 52

 //if a
 . print this comment
 //end

 Example #2 . TEST/JCL
 //if a
 . print this comment
 //else
 . print nothing entered!
 //end

 Example #3 . TEST/JCL
 //if a
 . print this comment
 //else
 //if b
 . print it was b, not a
 //else
 . print neither a or b
 //end
 //end

Example #1 is easy to understand, If the token "a" was true, the comment line
would be printed. Example #2 gives an alternate course of action in case the
token "a" is false. Example #3 does the same thing, except that the alternate
action also is a conditional test. Notice that there are two end statements
in this example - the first //END ends the second //IF, and the second //END
ends the first //IF.

The logical operators can be used with the //IF macro to do more complex
testing. Logical operators all have the same precedence, and will be
evaluated from right to left. Refer to the following:

 //IF a+b ;if either a OR b is true
 //IF -a&-b&-c ;if NOT a AND NOT b AND NOT c (if none is true)
 //IF a&-b ;if a AND NOT b (if a is true and b is false)
 //IF b+-a ;if b OR NOT a (if either b is true or a is not true)

As you can see, almost any combination of tokens and logical operators can be
used with an //IF macro to determine the logical condition, and therefore the
inclusion or exclusion of the following lines in the file up to the
corresponding //END macro.

As was mentioned earlier, the //SET and //RESET macros can change the logical
value of a token. //SET will assign a true value, and //RESET will assign a
false value. //ASSIGN will assign a true value, as well as a character string
value, to a token. One very powerful use for these macros is to allow a
single control token to adjust the values of numerous other tokens for use by
the rest of the JCL. This will reduce the number of characters needed on the
DO command line to. For example:

 .TEST/JCL
 //if a
 //set b
 //set c

PAGE - 53

 //assign d=testfile
 //reset ex
 //else
 . a was not entered
 //exit
 //end

By entering a DO command "DO TEST/JCL (a)", you will assign the tokens "b"
and "c" a logical true value, assign the token "d" a true value as well as
the string value "testfile", and assign the token "ex" a logical false value,
even if "ex" was entered on the DO command line. You could now have a series
of //IF lines to do procedures based on the value of the tokens.

Perhaps you're wondering why a token can be assigned a string value since we
have only discussed logical evaluations. They answer is that token values can
be used as substitution fields, and can also be concatenated to build larger
strings - probably the most powerful feature of the entire JCL language!
Token substitution and concatenation is easy. Simply use the pound sign (#)
to enclose the token name in the proper places. For example:

 COPY #f1#:1 to #f2#:2
 COPY #f1#:#s# to #f2#:#d#
 BACKUP GEN/#ex#:#s# :#d#

The first two examples have substitution fields for the filespec in the COPY
command. Additionally, the source and destination drivespecs are substituted
in the second example. The third example substitutes the file extension for a
BACKUP command, as well as the drivespecs. Consider the following JCL
examples:

 Example #1 . TEST/JCL
 //if a
 //assign ex=ASM
 //end
 //if -a
 //assign ex=CMD
 //end
 //if -s
 //assign s=1
 //end
 //if -d
 //assign d=2
 //end
 BACKUP GEN/#ex#:#s# :#d#
 //exit

Suppose you had two sets of files named GEN1 through GEN8, with one set
having the extension /ASM and the other set having the extension /CMD. This
file would allow you to backup these files sets and assign the source and
destination drives. It also provides default drivespecs in case they are not
entered on the DO command line. The JCL files in the Update section of the
newsletter even use a substitution field for the password in the filespec to
apply the patches. Refer to the following DO command line examples and the
resultant line generated by the JCL compiler:

PAGE - 54

 DO TEST (a,d=3) =>BACKUP GEN/ASM:1 :3
 DO TEST =>BACKUP GEN/CMD:1 :2
 DO TEST (s=0,d=4) =>BACKUP GEN/CMD:0 :4

One final point to end this month's JCL corner. IF you are going to
experiment with JCL compilation, you may wish to use the special character $
in the DO command. This will do the compilation without actually executing
the file. You can list the SYSTEM/JCL file to see the results of the
compilation. If everything is satisfactory, you can then execute the
SYSTEM/JCL file with the command DO *. Also, any compilation process should
produce at least one line of executable code. Otherwise, the existing
SYSTEM/JCL file may be executed. One way to avoid this problem is to start
every JCL file with an execution comment listing the name of the file.

 LATE BREAKING NOTES AND PATCHES
 ===============================

There are a few notes and extra patches that apply to the Model I, 5.1.1
version. If the file dates on your master is 12/15/81 or later, these patches
have already been installed.

On page 5-5 of the 5.1.1 LScript addendum, there is an error in the
MICROPROOF patch. The byte 22F in the second line of code should be a 2F.

There is a small patch for LBASIC/0V2 that correctly exits to LBASIC if the
<BREAK> key is pressed.

 . LBASIC/0V2A
 . This patch will cause the break key to work correctly
 . during a CMU"X"
 .
 X'5682'=62 58
 X'5694'=6B 21 00
 X'5862'=CD 73 56 C3 F6 55
 .
 . EOP

Here is a short patch for the KI/DVR program, Model I, 5.1.1 only. It allows
a zero character to be generated by a <CTRL><@> as stated in the manual.

 . KIA/FX1
 . This patch will allow CNT<@> to send a null properly
 .
 D00,FD=FE FF
 .
 . EOP

Both the Model I and III versions allow system overlays to be resided in
memory, thereby freeing up disk space. When creating a minimum system disk,
the only SYS files that normally need to be on the disk to boot the system
are SYS0 and SYS2. However, if the CONFIG/SYS file has more than 4 extents,
SYS8 must also be on the disk.

PAGE - 55

It is not advisable to ROUTE or LINK the printer to a disk file when using
LCOMM or the printer SPOOLer. The results will vary depending on the
particular hardware you are using. The most common result is a constant
stream of zeros written to the file. As explained in Roy's article on Device
I/O, the @CTL call can be used to check the status of a device. When the @CTL
call is made to a device that is connected to a file, a zero character
actually gets written to a file. In LCOMM, the status of the printer is
checked as a high priority interrupt task. That means approximately 40 zeros
per second will be written to the file!

Here is a short patch to KI/DVR for Model I, 5.1.1 owners who are using the
LSCRIPT patch with Scripsit. It will increase the repeat rate of the
keyboard, and thereby speed up the cursor movement in Scripsit.

 . PATCH FOR KI/DVR to increase the keyboard repeat rate
 .
 D01,22=01
 D02,F9=01
 D03,00=01

One final note on double sided drives.... We have just re-tested TWOSIDE and
PDUBL with double sided drives. We could find no problems in double or single
density. However, one of our dealers who is also a hardware dealer has
discovered that some Radio Shack interfaces had pins 32 and 34 connected
together. Also, some disk drives have pin 34 grounded internally. When these
two hardware elements come together in the same system, trouble results,
especially with double sided drives. lf you are having difficulty, check the
expansion interface and separate pins 32 and 34 if necessary.

The patch file VC/FIX on the 5.1.1 LDOSXTRA disk had extra carriage returns
in the three longest lines in the file. These must be removed to keep from
getting an error when applying the patch. NOTE: This patch is identical to
the patch on the MicroNET board, and the one in the last newsletter.

When doing a backup from a source disk of larger capacity than the
destination disk, it will be necessary to have multiple destination disks. BE
SURE TREY ARE ALL FORMATTED THE SAME. Switching the number of tracks or sides
can cause the backup to abort with a "Directory Read Error".

For those of you looking for an LDOS compatible data base, the MAXI MANAGER
data base program should now be LDOS compatible. Instructions on converting
the programs to LDOS will be supplied when purchased.

TRS-80 and TRSDOS are trademarks of Tandy Corporation. The LDOS QUARTERLY is
copyrighted in it's entirety. No material contained herein may be duplicated
for any purpose without the written permission of Logical Systems, Inc.

PAGE - 56

	Top of document
	Advertising - LDOS
	VIEW FROM THE BOTTOM FLOOR by Bill Schroeder
	Customer Service
	WHAT'S NEW ?
	UPDATE NEWS - MODEL I, 5.0.3A
	UPDATE NEWS - MODEL III, 5.1.0 A
	UPDATE NEWS - MODEL I, 5.0.3A
	UPDATE NEWS - MODEL III, 5.1.0 A
	UPDATE NEWS - MODEL 1, 5.1.1
	I WAS AN LDOS BETA TESTER by Tim Daneliuk
	ITEMS OF GENERAL INTEREST
	LDOS FILTER PACKAGE
	F E D - The Ultimate File Editor - by Doug Kennedy
	ELSIE - THE CONTENTED COMPILER by Jim Frimel
	MISOSYS ANNOUNCES PARTITIONED DATA SETS by Roy Soltoff
	Advertising - HEXSPELL 2
	Advertising - LOBO LX80 Expansion Interface
	Advertising - Electric Webster
	Advertising - 80 U.S.
	Advertising - Adventure
	LOGICAL SYSTEMS ORDER FORM
	Advertising - Galactic Software Ltd.
	Special offer to LDOS owners
	LDOS 5.1 - Enhancements and New Features - by Dick Konov
	LDOS Supports the T-TIMER (tm) by Roy Soltoff
	LDOS Device I/O and Independence by Roy Soltoff
	RELOCATING CODE FOR LBASIC USR ROUTINES by Chuck
	THE JCL CORNER by Chuck
	LATE BREAKING NOTES AND PATCHES

