
Decentralizing a Global Naming Service for Improved Performance

and Fault Tolerance

David R. Cheriton, Timothy P. Mann

Computer Science Department

Stanford University

April 3, 1997

Abstract

Naming is an important aspect of distributed system design. A naming system allows users and

programs to assign character-string names to objects and subsequently use the names to refer to those

objects. With the interconnection of clusters of computers by wide-area networks and internetworks, the

domain over which naming systems must function is growing to encompass the entire world.

In this paper, we address the problem of a global naming system, proposing a three-level naming ar-

chitecture that consists of global, administrational, and managerial naming mechanisms, each optimized

to meet the performance, reliability, and security requirements at its own level. We focus in particular

on a decentralized approach to the lower levels, in which naming is handled directly by the managers

of the named objects. Client name caching and multicast are exploited to implement name mapping

with almost optimum performance and fault tolerance. We also show how the naming system can be

made secure. Our conclusions are bolstered by experience with an implementation in the V distributed

operating system.

Categories and Subject Descriptors: C.2.4 [Computer Systems Organization]: Distributed Systems;

D.4.3 [Operating Systems]: File Systems Management|directory structures, distributed �le systems;

D.4.7 [Operating Systems]: Organization and Design.

General Terms: Design, experimentation, measurement, performance, reliability.

Additional Key Words and Phrases: Naming, distributed system, fault tolerance, cache, multicast.

Authors' present addresses: D. R. Cheriton, Computer Science Department, Stanford University, Stan-

ford, CA 94305; T. P. Mann, Digital Equipment Corporation{Systems Research Center, 130 Lytton Ave.,

Palo Alto, CA 94301.

This work was supported by the Defense Advanced Research Projects Agency under contracts MDA903-

80-C-0102 and N00039-83-K-0431, by the Digital Equipment Corporation, and by the IBM Corporation

under a Graduate Fellowship.

1 Introduction

Naming is an important aspect of distributed system design. A naming system allows users and programs to

assign character-string names to objects and subsequently use the names to refer to those objects. Named

objects commonly include hosts, electronic mailboxes, and �les, as well as (less commonly) programs in

execution, display windows, and network connections. With the interconnection of clusters of computers by

wide-area networks and internetworks, the domain over which naming systems must function has grown to

encompass the entire world. For example, it is desirable to be able to name any mailbox anywhere in the

world, and quite unacceptable to be unable to name a mailbox with which one could otherwise communicate.

Large scale naming systems are subject to challenging reliability, security, and administrative require-

ments. A large system must continue to function reliably in spite of the failure of individual hardware

1

components. Moreover, a naming system must provide trustworthy service even though parts of the sys-

tem may belong to many autonomous and mutually-suspicious groups|di�erent departments, corporations,

and even countries. Some progress on this large-scale design problem has been reported [2, 13, 16, 19, 22];

however, the performance of these systems appears inadequate for �le naming|at best, it is adequate for

naming hosts, mailboxes, and other relatively infrequently accessed objects.

Name lookup operations are a signi�cant factor in system performance. For instance, Le�er et al. [17]

attribute 40 percent of the system call overhead in UNIX to �le name resolution. Also, Mogul's measurements

of UNIX system call frequency [21] indicate that name mapping operations (open, stat, lstat) constitute

over 50 percent of the �le system calls. The frequent use of these functions results from accessing many

small �les (so there are typically few read or write operations per �le open), as well as the frequent need to

access �le property information, such as the time of last modi�cation.

In this paper, we describe a three-level naming architecture that consists of global, administrational, and

managerial directory systems, each optimized to meet the performance, reliability, and security requirements

at its own level. We focus in particular on a decentralized approach to the lower levels, in which naming

is handled directly by the managers of the named objects; at the uppermost (global) level, we use familiar

design ideas developed by others [16, 13]. Client name caching and multicast are exploited to implement

name mapping with almost optimal performance and fault tolerance, recognizing that most named objects

reside at the lower levels of a hierarchical name space. We also show how the naming system can be made

secure. Based on our analysis of this design and our experience with its implementation in the V distributed

operating system [7], we see the design as a sound basis for the implementation of a truly global naming

system for distributed systems.

Our naming system is intended to serve a fully-connected internetwork that includes a multicast facility.

Although the internetwork may be made up of many smaller component networks under separate admin-

istration, we assume that the (inter)network service can deliver a datagram from any connected host to

any other, and that the address of the destination is independent of the location of the sender. We also

assume that any set of hosts can form a group with a single address, to which any client can send (multicast)

datagrams. Neither the hosts that send to the group nor the members themselves are required to possess a

complete list of members; they need only know the group address. Datagram delivery to each group member

succeeds or fails independently of delivery to the others, and failures are not necessarily reported to the

sender. Multicast communication of this sort is available at the interprocess communication level in the V

system [10], experimentally at the IP datagram level in the DARPA Internet [8, 11, 12], and at the data link

level in the Ethernet [14].

1

The next section describes the naming system design in some detail. Section 3 evaluates the system's

performance, presenting an analytical model and validating the model by comparing it with measurements

on the V implementation. Section 4 analyzes the fault tolerance of the system, showing that (for nearby

objects) the system achieves optimum resiliency, in the sense that whenever an object is accessible at all,

it is accessible by name. Section 5 outlines the problem of making the naming system secure and describes

a solution. Section 6 compares our approach with related work. Section 7 presents our conclusions, notes

some open issues, and proposes directions for future work.

2 The Naming System Design

Our naming system provides the ability to give objects conventional, hierarchically structured character

string names and subsequently refer to the objects by these names. We use a name syntax in which the

% character designates the root and the / character separates name components.

2

For example, the name

%edu/stanford/dsg/bin/listdir is an absolute name with 5 name components.

The naming system provides three general classes of operations:

Binding { binding a name to an object, removing such a binding, or altering a binding.

Query { checking whether a given name is bound, listing the bound names in a given directory, etc.

1

Our naming system can also be adapted to work with more restrictedmulticast facilities, such as one that provides multicast

only within individual component networks of the internetwork.

2

Our present implementation uses [in place of % for compatibility with an older V naming system [9].

2

Mapping { looking up the binding of a given name and delivering an operation request to the bound

object's manager. A familiar example is the �le open operation, where the requesting client speci�es

a �le by name, and the naming system directs the request to the appropriate �le server.

user

bin

File Server 1
File Server 2

dsg

stanford

gov edu

host

time

c

b

a

fats-domino

bo-diddley

com

ray-charles

jackie-wilson

berkeley

Global

Administrational

Managerial

smith

jones

bin
drake

File Server 3

lib

%

Figure 1: Three Levels of the Naming System

The directories in our naming design fall into three classes, or levels|global, administrational and man-

agerial|as suggested by the small example in Figure 1. The levels are distinguished by their di�erent

performance, reliability, security, and administrative requirements.

Directories at the highest level|the global level|contain entries that represent the organizations and

groups of organizations participating in the naming system. In Figure 1, for example, %edu is the directory of

educational institutions, whose entries include %edu/stanford, designating the organization Stanford Univer-

sity, and %edu/berkeley, designating the organization U. C. Berkeley. There is generally no administrative

superstructure covering the organizations named in a global directory; they are independent and (to some

degree) mutually distrustful. Thus, security is an important consideration for these directories; for example,

it is desirable to enforce the convention that Stanford does not use names starting with %edu/berkeley

and Berkeley does not use names starting with %edu/stanford. High availability is also important because

the failure of a global directory would make a large subtree of the naming system inaccessible; fortunately,

the slow rate of change of naming information at this level makes a high degree of replication practical.

Performance is less critical because clients keep cached copies of the information in these directories.

Directories at the second level|the administrational level|are owned and administered by individ-

ual, uni�ed organizations. The entries in an administrational directory represent lower-level directories

and services belonging to the same administration. For example, %edu/stanford is Stanford University's

3

highest-level administrational directory, while %edu/stanford/dsg is the root directory for a subordinate

administration, the Distributed Systems Group. The administrational and global levels di�er in three sig-

ni�cant ways. First, trust is hierarchical at the administrational level, simplifying the security issues. That

is, subordinate administrations may distrust one another, but they accept the authority of the parent ad-

ministration in resolving name con
icts and other disagreements. Second, the administrational level in each

administrative domain is critical to the functioning of that domain, while the global directory system is

merely a connection to the outside world. Thus, each administrational directory should continue to be

available to local clients in spite of failure of, or disconnection from, the global directory service. Finally,

the entries of an administrational directory represent more localized and dynamic information than those

of the global level, making it feasible, if not necessary, to implement these directories using techniques such

as multicast that would not be appropriate at the global level. As with the global level, performance is a

secondary consideration because of client name caching.

Each directory at the lowest level, the managerial level, is stored by a single object manager; its entries

name objects and directories implemented by that manager.

3

For example (in Figure 1), %edu/stanford/

dsg/user/jones is a managerial directory whose entries are �les and directories belonging to a single user

and stored on a single �le server. The name %edu/stanford/dsg/jones/bin is Jones's directory of binary

program images, also a managerial directory managed by the same �le server. Although �les are the prime

example, any kind of object can be named using a directory implemented by its object manager. In V, for

example, display windows, programs in execution, and network connections are all named in this way. The

requirements on the managerial level di�er from the higher levels in several ways. First, high performance for

both lookup and update are important because managerial directories are accessed and updated frequently.

Caching has less performance bene�t at this level because of the rapid update rate. Second, the required

availability of managerial directories varies, depending on the objects they name. A highly available object

manager, such as a replicated �le system, must have equally highly available managerial directories; moreover,

each object manager should be able to function in the absence of the administrational and global directory

levels. But a managerial directory need not be available when the object manager itself is unavailable. For

example unreplicated �les in the directory %edu/stanford/dsg/user/jones should remain accessible within

Stanford as long as DSG �le server 3 is up and accessible from the campus network, even if the global and

administrational directory levels providing %edu/stanford/dsg are temporarily unavailable. However, if

the �le server is down or otherwise inaccessible, Jones's directory can be unavailable as well. Third, the

need for security in managerial directories also varies depending on the objects they name. A highly secure

object manager should be able to carry the same security over to its directories. Conversely, an unprotected

manager should not be forced to accept an unwanted and inappropriate security overhead on its directories.

The following sections describe the realization of each level in our design as motivated by the above

characteristics, proceeding from the managerial level to the global level.

2.1 Managerial Directories

A managerial directory is implemented by the object manager that implements the objects named in the

directory. The directories implemented by one object manager represent one or more complete subtrees of

the name space, covering that portion of the name space.

4

The object manager also stores the absolute

name of the root of each subtree. For example (in Figure 1), the subtrees rooted at the directories %edu/

stanford/dsg/bin and %edu/stanford/dsg/lib are both implemented by DSG �le server 1, which thus

covers all the names with pre�xes %edu/stanford/dsg/bin and %edu/stanford/dsg/lib. Accordingly, �le

server 1 stores all the �les and directories under these two subtrees.

Each object manager directly implements all operations on the names it covers. On receiving a naming

operation request, the manager looks among the subtrees it implements to �nd the one whose name is a

pre�x of the name supplied in the request. It then completes the operation using the directories in that

3

A single object that is logically replicated or partitioned among several object managers is treated by the naming system

as a collection of subobjects, all bound to the same name. The naming system supports locating at least one of the subobject

managers. Object-speci�c protocols are required to access the other managers, such as is required for an update operation.

4

We say that an entity covers a name if it authoritatively knows either the de�nition of the name or that the name is

unde�ned.

4

subtree. (We assume for the moment that the requesting client knows which manager covers the name and

thus sends the request directly to the right one.)

Integrating naming with object management in this way has several advantages. First, when a client

requests an operation on an object speci�ed by name, both the name lookup and the object operation can

be completed in a single message exchange. Further, the reliability of the naming matches that of the object

implementation: an object's name can be looked up whenever the object itself is available|whenever its

manager is up and accessible. This property of our design contrasts with designs in which a �le server can

be up and connected to the network, but unavailable for use because the (separate) name server is down.

Moreover, the replication of an object manager for added reliability results in the replication of the name

bindings of its objects as well. The close coupling of the name and object implementations also facilitates

maintaining consistency between objects, object names, and object properties, because all the information for

an object is maintained in one server. The naming implementation can be customized and optimized for each

type of object manager, where this is of bene�t.

5

Finally, the security mechanism for communicating with

the manager and controlling access to information can automatically be applied to the naming operations

as well.

Taken together, the managerial directories record every name-to-object binding in the system, but several

additional pieces are needed to construct a complete naming service. First, clients need a way to �nd out|

e�ciently, reliably, and securely|which manager covers any given name, so they can send their requests to

the right manager. Next, clients need a practical way to tell when a name is unbound. With the mechanism

described so far, some unbound names are not covered by any object manager, and clients have no way of

distinguishing such names from names bound by a manager that is temporarily down or unavailable. In

addition, some mechanism is needed to implement operations on directories above the managerial level|for

example, a means to list the entries in %edu/stanford/dsg, even though each entry is a managerial directory

that is implemented by a di�erent server machine.

The following subsections describe the parts of the design that implement these additional services.

E�cient, fault-tolerant manager location is provided by name pre�x caches and multicast, while coverage

of unbound names and management of higher-level directories are provided by administrational and global

directory managers.

2.2 Name Pre�x Caches and Multicast

Each client of the naming systemmaintains a name pre�x cache. The cache is a set of entries, each associating

a name pre�x

6

with a directory identi�er. A directory identi�er consists of two �elds: manager identi�er and

speci�c directory identi�er, where the speci�c directory identi�er is assigned to the directory by the manager.

When a client program invokes a name mapping operation, a runtime library routine in the client's address

space searches the client's cache for the longest entry that is a pre�x of the given name, and uses the result

to decide where to send the operation request. Binding and query operations also use the name cache to

locate the right manager.

A cache search is considered a hit when it returns a cache entry containing the name of a managerial

directory. In this case, the client sends its request directly to the server machine on which the manager

is running, using the manager identi�er in the cache entry to address it. When the manager receives the

request, it maps the given speci�c directory identi�er to a directory descriptor, veri�es that the name of that

directory matches the name pre�x speci�ed in the request, and maps the rest of the name starting from the

identi�ed directory, thereby saving the work of looking up the entire name. It then carries out the requested

operation if possible and returns the results to the client.

When the cache does not hit on a managerial directory, but does return some information, we call the

result a near miss. A near miss can either return a cache entry corresponding to a local administrational

directory, or an entry corresponding to a directory outside the local administration.

If the cache returns a local administrational entry, the client multicasts a probe request on the given name

to the group of managers speci�ed by the cache entry, adds the information in the response to its cache,

5

The V implementation also provides a standard library of manager naming routines, for use when customization is not

needed.

6

A pathname n

1

is considered a pre�x of n

2

if the components of n

1

respectively match the initial components of n

2

; so %a

is a pre�x of %a/b, but not of %ab.

5

and then proceeds as in the cache hit case. In general, a probe request takes a name as its argument, and

returns a cache entry associating a pre�x of the given name with a directory identi�er. The pre�x returned

is the shortest one that names a managerial directory, if any does, otherwise the whole name; the response

comes from the manager (or managers) that cover the pre�x. For example (referring to Figure 1), if the

name being mapped is %edu/stanford/dsg/user/smith/mail, and the client's cache contains an entry for

%edu/stanford/dsg/user, then the cache returns a directory identi�er (m; s) for this entry. The embedded

manager identi�er m addresses the group of object managers that collectively cover %edu/stanford/dsg/

user|the participants in that directory|in this case including DSG �le servers 2 and 3.

7

The probe

operation to the group m receives a response from �le server 2 containing the directory identi�er (m

0

; s

0

) for

%edu/stanford/dsg/user/smith; this information is added to the client cache; and the client proceeds by

sending its request to �le server 2 using the address m

0

.

If the name corresponds to a directory outside of the local administration, the cache returns a directory

identi�er that speci�es a liason server, a local server that serves as a cache and front-end to the global

directory system. The client then sends a probe request on the given name to the liason server. As above,

the probe request returns a name pre�x and directory identi�er for the �rst managerial directory in the given

pathname. (If the pathname is not long enough to reach a managerial directory, the probe operation returns

a directory identi�er specifying the liason server itself as the manager.)

The client ordinarily never experiences a complete miss, because the cache is primed with a cache entry

associating the root directory name (\%") with a local liason server. However, if this entry becomes stale

(due to a liason server crash, for example), as a last resort the client multicasts a probe request to all nearby

object managers and liason servers (say, all those within one hop on the internetwork). If any of those

managers covers the name, it responds to the probe, just as in the local administrational near miss case. In

addition, if a liason server receives the probe, it responds with a new cache entry for the root directory. This

mechanism can be implemented using scoped multicast|the ability to restrict a multicast to those members

of the addressed group that are within a speci�ed distance from the sender [8].

Cache consistency is maintained by detecting and discarding stale cache entries on use. A cache entry

becomes stale when its directory identi�er is out of date; either the speci�ed manager no longer covers the

name associated with the cache entry or the speci�c directory identi�er no longer identi�es a directory by

that name. Thus, when a client tries to use a stale cache entry, it ends up sending its name request or probe

to the wrong manager (or group), or providing an incorrect speci�c directory identi�er. If the manager no

longer exists, the client receives no reply and times out. If the manager exists but no longer covers the given

name, or the speci�c directory identi�er is incorrect, the manager reports that fact back to the client. In

either case, the client recognizes that its cache entry is (or may be) stale, deletes the entry, and issues a

probe for up-to-date cache data. If the client originally received the cached information from a liason server,

it asks the liason server to reverify the correctness of its information. This client feedback e�ectively causes

the liason server to detect stale data in its own cache on use (by clients) as well.

The name caching mechanism we have just described has three major advantages.

First, matching on a pre�x rather than on the full name allows a small number of cache entries to cover

a large number of names, resulting in high cache hit ratios and good performance, as detailed in Section 3.

For example, if %edu/stanford/dsg/lib is implemented on one manager, a single cache entry allows every

naming operation on �les in this subtree to go directly to the correct manager, without the overhead of a

multicast or global directory lookup. The subtree rooted at lib can reasonably contain thousands of �les.

Further, even when a client's cache does not hit on a managerial directory, a near miss can still provide

information that reduces the amount of work required of the shared naming system. In particular, a near

miss at the administrational level typically reduces the scope of multicast for the resulting probe to a small

subset of the administration's object managers, because the probe is only multicast to the participants

in the directory returned by the cache search. The longer the pre�x returned by a near miss, the more

work is saved. For instance, the participant group of %edu/stanford would include all object managers

at Stanford|hundreds, if not thousands of computers|making a multicast to this group very expensive.

But the participant group of %edu/stanford/dsg is much smaller, and that of %edu/stanford/dsg/user is

smaller yet.

7

As discussed in Section 2.4 below, an administrational directory manager is also included among the participants; it covers

the unbound names in the user directory.

6

Finally, with on-use cache consistency checking, there is no need to inform all clients when a cache datum

they are storing becomes invalid, yet stale data never causes a name to be mapped to the wrong object.

This consistency protocol exploits the fact that cache data is used only by clients to decide where to send

messages, not to allow them to perform operations locally. Thus, the correctness of the cached information

can be (and is) automatically checked on each use.

2.3 Re�nements

Several important re�nements on this basic caching scheme are incorporated into our V implementation.

First, directory identi�ers are temporary, volatile identi�ers. Their binding to directories need not be

preserved across server reboots, and they can be reused. In fact, a manager can freely invalidate a directory

identi�er at any time, the only penalty being poorer performance of name requests that subsequently use

that identi�er|cache entries that contain the identi�er become stale and must be refreshed the next time

they are used. On-use cache consistency checking ensures that invalidation and reuse of directory identi�ers

never causes names to be mapped incorrectly. For example, suppose a client adds to its cache an entry that

associates the name %edu/stanford/foo with the identi�er (142; 857), but (142; 857) is later invalidated

by the object manager and reused to identify %edu/stanford/bar. Then suppose the client attempts to

open a �le called %edu/stanford/foo/output. Although the client does �nd the stale entry in its cache,

prompting it to send object manager 142 a request citing speci�c directory identi�er 857, the manager does

not mistakenly open %edu/stanford/bar/output in place of the requested �le. Instead, after looking up

directory 857, the manager recognizes that the directory's name does not match the name provided in the

client's request, and returns an error indication to the client. The client then discards its stale cache entry

and probes for a new one.

It is useful for both manager identi�ers and speci�c directory identi�ers to be volatile. On the DARPA

Internet, for example, one might construct a manager's identi�er from the Internet address of the host

currently running it, together with a socket number or other local identi�er. With this representation, a

manager's identi�er must change whenever it migrates to another host, and it may change whenever the

manager program is restarted, depending on how socket numbers are allocated. Within each manager, one

might allocate speci�c directory identi�ers as hash indices into the manager's internal memory data struc-

tures, pointing to the associated directories. Thus, management of directory identi�ers can be implemented

entirely with in-memory data structures; they need no stable storage. We have found in-memory imple-

mentation to be particularly convenient for object managers running at the guest level in existing operating

systems, such as the one we have implemented on UNIX to provide �le access from V.

A further extension of the cache mechanism provides a simple and e�cient implementation of current

working directory, as in UNIX [23]. In V, the runtime system in each client's address space stores the

absolute name and directory identi�er for the client's current working directory. When the runtime system

syntactically recognizes a relative name, it pre�xes it with the working directory's absolute name, then (unless

a longer pre�x match exists in the cache), sends o� the request using the associated directory identi�er. The

client program is spared the inconvenience of supplying the absolute name on each request, and the object

manager is spared the work of looking up the entire name. If the working directory identi�er becomes invalid,

the runtime system discards it and requests a new one using the stored absolute name, just as is done with

stale cache entries.

Finally, client caches can be preloaded with a number of commonly used entries on initialization to reduce

the initial miss cost on startup. Cache preloading is particularly important in the V implementation, where

every program has a separate cache in its own address space. In this implementation, a program's initial

cache contents are inherited from its parent command interpreter or \shell." Placing a name cache in the

address space of every program makes the caches e�cient to access, simpli�es the implementation of on-use

consistency checking, and facilitates transparent program migration [31].

2.4 Administrational Directories

Administrational directories are implemented in a decentralized fashion using object managers and adminis-

trational directory managers; collectively the managers that cooperate in implementing an administrational

7

Name list

jones

drake

drake

smith

File Server 2

jones

smith

File Server 3

owner=drake, group=staff, ...

owner=jones, group=students, ...

owner=smith, group=students, ...

Figure 2: Distribution of Administrational Directory Information

directory are called its participants, and they form a multicast group called its participant group. An ad-

ministrational directory manager covers the unbound names in each directory it manages, while the bound

names are covered by the object managers that implement objects named relative to the directory. Figure 2

illustrates how information is distributed in the directory %edu/stanford/dsg/user of Figure 1. In the

example, we say that �le server 2 covers the name drake, because it knows what that name is bound to,

while �le server 3 covers the names jones and smith. The administrational directory manager holds a list

of bound names, but it is not considered to cover these names, because it does not know what objects they

are bound to.

8

The directory manager does, however, cover all the unbound names in the directory, because

it knows that any name not on its list of bound names is unbound.

As another example (again referring to Figure 1), the participants in %edu/stanford/dsg are �le servers

1, 2, and 3, plus a directory manager. File server 1 covers the names bin and lib, while both �le servers 2

and 3 covers user. The directory manager covers the remaining unbound names.

Each participant in an administrational directory responds to probes on the names it covers. For example,

�le server 3 would respond to a probe on the name %edu/stanford/dsg/user/jones, while the directory

manager would respond (with an error indication) to a probe on the unbound name %edu/stanford/dsg/

user/robinson. Every name is covered by at least one participant, so if a client probes a name and

receives no response, it can infer that the manager that covers the name is down or inaccessible. To get

more information about the problem, the client can then attempt to query the directory manager directly.

For example, if a client receives no response to its probe on %edu/stanford/dsg/lib, it can then query

the directory manager for %edu/stanford/dsg. If the directory manager responds, it con�rms that lib is

bound and return any information it has about lib's manager.

Administrational directory listing is coordinated by the directory's manager. A client that needs only a

list of names simply obtains it from the directory manager; if it needs more information about the named

objects, it contacts their managers. Note that if all administrational directory managers fail, local clients

can still obtain a \best e�orts" partial directory listing by multicasting a request to the group of participants

and collating the replies that come in. There is, however, no way to know if such a listing is complete|some

names will be missing if one of the participating managers is down or inaccessible over the network.

An administrational directory's manager can serves to coordinate access to the directory by clients located

outside the local administration. A client accesses a remote administrational directory through the local

liason server and the global directory system; these servers direct the client to the proper administrational

directory manager. Thus, a client can list an administrational directory and probe names in the directory

without having to multicast outside of its own administrational domain. (There is, in fact, no need in this

design to multicast over a domain larger than a single administration.)

The main advantage of this technique for implementing administrational directories is that it insulates

each object manager participating in an administrational directory from faults in the other participants|

even faults in the administrational directory manager itself. For example, even if �le server 3 and the

directory manager for %edu/stanford/dsg/user are both down, �le server 2 can still respond to name

mapping requests and probes on %edu/stanford/dsg/user/smith. The price one pays for this insulation

8

The directory manager may know which object manager covers each name on its list, but such information is not necessary

for name mapping; it is primarily useful in fault diagnosis and recovery.

8

is that probes are multicast to all participants, imposing a load on all of them. Probes, however, are only

generated when a client's cache misses, and as we show in Section 3, it is easy to achieve high enough cache

hit ratios to make the multicast load insigni�cant.

Although name mapping in an administrational directory can continue in the absence of its directory

manager, name binding and unbinding operations cannot (they require access to the list of bound names),

so it is still useful to replicate the manager, or at least to replicate the information it stores. We believe it

is most practical to implement an administrational directory manager as a simple, stateless program that

can run on any host, accessing data kept in an underlying replicated storage system|perhaps in �les on

replicated �le servers, or even in directories stored by the global directory servers. It seems convenient

to include the functions of the liason server in the same program as well, particularly if administrational

directory data is stored in the global directory service.

2.5 Global Directories

Unlike the administrational and managerial levels, directories at the global level store information that

is cooperatively managed and widely distributed among many administrations. Lampson [16] presents a

credible design for a truly global (worldwide) directory system of this type, with a high degree of replication

(using gradual propagation of updates) to support a high degree of availability. Demers et al. [13] also present

some algorithms for relaxed update of replicated information. We believe these approaches are sound bases

for the construction of a global directory system, and simply assume the existence of such a system with the

required scale and availability. Thus, we focus on interfacing to such a global directory system, not on its

design.

The global directory system is accessed through the liason servers, acting as front ends. They act as

intermediaries for all client operations at the global level, translating if necessary between the client protocol

(used at the managerial and administrative directory levels) and the global directory system client interface.

Thus, our design can be used with existing global directory systems and can easily be modi�ed to work with

new directory systems. The caching performed by the liason servers improves the expected response time

for global level queries and reduces the load on the global directory system. An alternative approach would

be to ask clients to deal with the global directory system directly. This approach requires that either the

client know the speci�c protocol used by the global directory system, or that the global system use the same

protocol as the managerial and administrational directory managers. It also eliminates the level of caching

provided in the directory managers.

If the global directory system becomes unavailable within some administration, that administration con-

tinues to function autonomously but loses its ability to reference remote objects (outside the administration).

Given the degree of replication used within the global directory system designs cited above, we expect this

scenario to arise only when the administration is disconnected from the rest of the world, in which case

remote objects would be inaccessible even if their names could be looked up.

This section has given a general description of our naming system design, partitioned into managerial,

administrational, and global directory levels. The following sections examine the performance, reliability,

and security aspects of this design.

3 Performance

Decentralized naming relies heavily on pre�x caching for performance; without caching, its name mapping

protocol would not be e�cient enough for use in large systems. The ine�ciency arises because each multicast

to an administrational directory's participant group imposes a load on every participant. With a high enough

cache hit ratio, however, multicast is avoided on most requests, dramatically improving the average e�ciency.

The hit ratio also plays a large role in determining where the boundary between global and administrational

directories should go. As it increases, multicasts become less frequent, so larger directories can be handled

satisfactorily with administrational techniques. Our discussion of performance therefore focuses on the

e�ectiveness of caching.

To simplify the exposition, we initially discuss systems con�gured with no global directories|systems

where even the root directory is implemented using administrational techniques|then extend the results to

9

global con�gurations.

3.1 Load Per Operation

We evaluate the processing load imposed by naming operations by counting packet events. A packet event is

the transmission or reception of a network packet. Thus, a unicast message costs two packet events|one at

the sender and one at the recipient. A multicast with g recipients costs a total of g + 1 packet events|one

at the sender, and one at each recipient. Packet events are a good metric here because the bulk of the

processing overhead that naming operations impose is in the generation and reception of network packets.

Our cost analysis assumes that no packets are dropped by the network and that responses are not delayed

long enough to trigger retransmissions by the requestor. We evaluate the cost of name mapping only; name

binding and the other naming operations are comparable [18].

Equation 1 is a conservative estimate for C

map

, the average number of packet events required to map a

name; its derivation is given below.

C

map

= 4h+ (r +m+ 7)(1� h) (1)

In this equation, h is the cache hit ratio, r is the number of retransmissions required to determine a host

is down, and m is the number of object managers in the system. Both client and server packet events are

counted. The equation is valid for names that are covered by exactly one manager (the normal case).

The derivation of Equation 1 uses a simple \hit or miss" model of cache behavior, in which a cache lookup

is considered to be a hit only if (1) the data it returns is still valid (not stale), and (2) the matched pre�x

refers to a managerial directory. All other outcomes are considered misses, and the worst-case miss cost is

charged for each, yielding a simpli�ed, conservative formula for C

map

.

9

When there is a cache hit, name mapping costs four packet events. The client unicasts its operation

request message directly to the correct object manager, and the manager's unicasts the operation result in

response. Thus the client sends one packet and receives one packet, and so does the manager, for a total of

four packet events.

When there is a cache miss, as many as r +m + 7 packet events may be needed. This worst-case cost

is incurred when the cache returns stale data referring to a host that is no longer up, and after the stale

data is discarded, there is no information about the given name left in the cache. In this case, the client

�rst sends o� a request to the address given in the stale cache entry. The client detects that the addressed

host is down by retransmitting its request r times and receiving no response (r packet events). At this point

the client discards its stale cache data, and is left (we have assumed) with no cached information about the

given name|not even a shorter pre�x that narrows down the lookup to a administrational directory below

the root. Thus, the client next multicasts a probe request to all m object managers participating in the

root directory (m + 1 packet events), and receives a unicast response from the object's manager (2 packet

events) containing a corrected cache entry. Finally, the client unicasts its request to the correct manager and

receives a unicast response (4 packet events). Summing these values, the total cost for this case is r+m+7.

Combining the two cases yields Equation 1 above.

It is clear from Equation 1 that C

map

is close to the optimum value 4 if the miss ratio 1 � h is small

compared to 1=(r + m + 7), as illustrated in Figure 3 below.

10

For example, C

map

is about 4.17 in an

installation with 50 object managers, r = 4, and h = 99:7%.

Because it includes the cache hit ratio as a parameter, Equation 1 says nothing in itself about the practical

usefulness of decentralized naming. Therefore we go on to consider what hit ratios can be expected in real

systems, and what those hit ratios imply about the practicality and scalability of decentralized naming

techniques.

9

Such an estimate is quite accurate when misses are infrequent [18].

10

The optimum is 4 because of the de�nition of name mapping: at least one message from client to manager is required to

carry the operation request, and one return message is required to acknowledge the request and carry the results, for a total of

four packet events.

10

400 6002000

6

4

2

0

h = hit ratio

Number of Managers

to map

(avg.)

a name

events

Packet

h=0.9900 h=0.9950 h=0.9970

h=0.9990

h=0.9999

Figure 3: Average Cost of Mapping as a Function of Number of Managers.

3.2 Cache Performance Model

In this subsection, we develop a statistical model from which the expected cache hit ratio for a given

decentralized naming installation can be computed in terms of other system parameters, and show that hit

ratios of well over 99% can be expected under realistic assumptions about those parameters. The input

parameters are (1) the number of name mapping requests issued per unit time, (2) the average length of

time a name cache entry is valid, (3) the average length of time a client cache remains in use before it is

discarded, and (4) the \locality of reference" observed in name usage. We begin by obtaining a formula

for the steady-state hit ratio, then evaluate the ratio for some typical parameter values, and �nally discuss

startup misses, which can make the observed hit ratio less than the steady-state hit ratio.

3.2.1 Steady State Hit Ratio

The steady-state hit ratio is the hit ratio for client caches that have been in existence long enough to have

gathered a (possibly stale) entry for every manager the client ever references. Section 3.2.3 below shows that

the hit ratio for an initially empty cache rapidly approaches the steady-state ratio after a few startup misses.

We derive the following formula for h, the steady-state cache hit ratio averaged across all clients:

h = 1�

X

j

X

k

�

�

j;k

+ v

k

(2)

The generation of name mapping requests is assumed to be a Poisson process, and the average interarrival

time for requests generated by client j that reference a name in managerial subtree k is denoted as �

j;k

.

11

The

symbol v

k

represents the expected validity time for a cache entry that identi�es which manager implements

names in subtree k; that is, the average interval from the time such a cache entry is acquired to the time it

becomes invalid. The summation is taken over all clients and all subtrees that exist at the moment for which

the hit ratio is being evaluated. Finally, � represents the global average interarrival time for name mapping

requests; it is equal to

�

P

j

P

k

�

�1

j;k

�

�1

. Equation 2 is derived as follows.

First, observe that the steady-state hit ratio for a single pair (j; k) is given by

h

j;k

= 1�

�

j;k

�

j;k

+ v

k

(3)

11

A managerial subtree of the global naming hierarchy is a complete subtree whose root is a managerial directory, and whose

root's parent is a administrational (or global) directory.

11

v

β

Time

request

request

request

request

request

cache miss

cache miss

Cache entry created

Cache entry becomes stale

Cache entry refreshed

Figure 4: Average Intermiss Time Equals v + �.

because the average time between misses is �

j;k

+v

k

, as illustrated in Figure 4. Whenever a miss occurs, the

client acquires a new cache entry that remains valid for a time v

0

. The next miss occurs on the �rst request

that arrives after the entry becomes invalid|that is, at time v

0

+�

0

for some �

0

� 0. Now, we know that the

average value of v

0

is v

k

, and because we have assumed that the generation of requests is a Poisson process,

we also know that the average time from the end of v

0

to the next request (i.e., the expected value of �

0

)

is equal to the Poisson parameter �

j;k

. Therefore, the average time between misses is �

j;k

+ v

k

. The miss

ratio can now be computed as the average number of misses per unit time divided by the average number of

requests per unit time, and the hit ratio as 1 minus the miss ratio, yielding Equation 3 above.

Equation 2 is then obtained by taking the average steady-state hit ratio across all client/subtree pairs,

weighted by the frequency with which requests are generated involving that pair. The average is formed by

multiplying each pairwise miss ratio by the corresponding request rate �

�1

j;k

, summing these terms, dividing

the result by the global request rate �

�1

, and simplifying.

3.2.2 Typical Values

We argue that it is reasonable to expect values of h in the range 99.00{99.98% for typical systems using

decentralized naming. We �rst show that values in this range can be expected for individual client/subtree

pairs with high tra�c, and then contend that such pairs should dominate the global average due to locality

of reference.

The graph in Figure 5 illustrates how the steady-state hit ratio for a given client/subtree pair varies with

the average validity time of cache data. In the graph, the average time between requests �

j;k

is normalized

to 1 unit, and the average validity time v

k

(plotted on the x-axis) varies from 100 to 5000. The steady-state

hit ratio h

j;k

is plotted on the y-axis. At v

k

= 100, h

j;k

= 0:9901, while at v

k

= 5000, h

j;k

= 0:9998.

One expects a strong locality of reference property to hold in applications of naming to large distributed

systems. For example, in a distributed system containing a mixture of personal workstations and shared �le

12

0
0.990

1.000

ratio

Hit

Validity time (interarrival time = 1 unit)

2000 4000

Figure 5: Hit Ratio as a Function of Validity Time.

servers, it is reasonable to expect a given user's workstation to use two or three �le servers almost exclusively

during the course of a day, even if hundreds of servers are available. The user probably keeps all his personal

�les on one �le server, all in the same managerial subtree, perhaps loads standard system programs (text

editor, compiler, etc.) from a subtree implemented by a second �le server, and perhaps references a third

server to access shared �les belonging to his work group. There may be a few references to other servers, but

most are to this small subset of the total available. Let us call (j; k) an active client/subtree pair if subtree

k is a member of the subset that client j is using frequently.

When this locality property holds, the vast majority of all name references involve active client/subtree

pairs, so their pairwise hit ratios h

j;k

dominate the global average hit ratio h. For example, suppose that a

given client j accesses subtrees 1, 2, and 3 frequently (once per unit time); subtrees 4, 5, and 6 infrequently

(once per 100 time units); and subtrees 7, 8, and 9 very rarely (once per 10000 time units). If v

k

= 1000 for

all nine subtrees, j's overall average hit ratio is 99.8%, quite close to its hit ratio with respect to 1, 2, or 3,

which is 99.9%. The hit ratio with respect to 7, 8, or 9 is only 9.1%, but these misses have little e�ect on

the overall average since the subtrees are accessed so infrequently.

Finally, it seems quite reasonable to expect the ratio of v

k

to �

j;k

to be 1000 or more for active client/

subtree pairs, putting the global average hit ratio into the desired range. Basically, only two types of event can

cause a cache entry to become invalid: (1) a server may crash and be restarted with a new low-level identi�er,

or (2) the assignment of subtrees to servers may change. Both these events should be rare compared to name

mapping requests. In a production system, crashes should be infrequent, so that it is quite reasonable to

expect each of a server's regular clients to access it more than 1000 times between successive crashes. It

is also reasonable to expect a subtree newly assigned to a particular server to (on average) be referenced

more than 1000 times by each of its regular clients before it (or a part of it) is reassigned to a new server.

For example, one does not frequently move trees of �les from one server to another, because this typically

involves copying a substantial amount of data from one disk to another or physically moving disk packs.

3.2.3 Startup Misses

The true hit ratio h for a decentralized naming installation is less than the steady-state hit ratio h, because

the latter does not count the initial misses that occur when a new, empty cache is created. Let us call such

misses startup misses. Startup misses have little e�ect on h if client caches have long lifetimes compared to

�

j;k

, but can reduce h substantially if the caches have short lifetimes. This e�ect is quanti�ed below.

Modifying Equation 2 to re
ect the initial misses that occur after a client cache is created can be shown

13

to yield Equation 4:

h = 1�

X

j

X

k

�

�

j;k

+ v

k

�max

�

0; 1�

�

j;k

l

j

�

(4)

In this equation, the symbol l

j

represents the lifetime of client cache j; that is, the number of time units

between the time it is created as an empty cache and the time it is discarded. Each term of the original

summation has been multiplied by max(0; 1� �

j;k

=l

j

).

The basic insight leading to Equation 4 is that for each client/subtree pair (j; k), j's �rst name reference

to k following the creation of its cache is always a miss, while the remainder are hits with probability h

j;k

.

Thus the probability of a reference from (j; k) being a startup miss is min(1; �

j;k

=l

j

). Equation 4 is then

obtained by writing an expression for the probability that a given reference is neither a startup miss nor a

steady-state miss (i.e., that it is a hit), then computing the weighted average over all client/subtree pairs.

Note that, as with h, one can expect the global average h to be dominated by the pairwise hit ratios of active

client/subtree pairs.

It is clear from Equation 4 that the observed hit ratio h depends strongly on the lifetimes of client caches.

If a typical client cache lives long enough for the client to make 1000 name references to each of the subtrees

it is actively using, h

j;k

equals 0:999 � h

j;k

|only a small reduction. On the other hand, if a typical client

cache only lives long enough for the client to make one name reference to each subtree, h

j;k

is reduced to

nearly zero. Thus, it is clearly important for an implementation of decentralized naming to preserve client

cache information as long as possible.

The V implementation uses cache inheritance to give cached data a long lifetime. Although each client

program has a separate cache in its own address space, it inherits its initial cache contents from its parent

program (usually the V command interpreter or \shell"). Our measurements indicate that this technique

gives nearly as high an overall hit ratio as a per-machine cache would.

3.3 Measurements

To validate our cache model and to give a concrete example of how decentralized naming performs, we now

present some measurements taken on the V implementation.

At the time the measurements were taken, our installation at Stanford consisted of about 35 Sun and

MicroVAX II workstations, three �le servers running the V kernel, and �ve VAX/UNIX systems providing

additional �le service, all interconnected by Ethernet. During the measurement period, the workstations

were being used in their normal fashion to support day-to-day tasks including software development, word

processing, and remote access to other hosts on the DARPA Internet.

3.3.1 Hit Ratio

The measured hit ratios were excellent, and in good agreement with the analytical model of Section 3.2.

Over about 24 days of 24-hour operation, our V installation showed an average cache hit ratio of 99.70%.

During the half hour for which the arrival rate of name requests was highest, the average hit ratio was

99.97%. Based on measurements of the request arrival rate, and estimates of the rate of client and server

reboots, the model predicts hit ratios of approximately 99.71% and 99.997% for these two periods.

Table 1 summarizes the statistics from which the 24-day average hit ratio was computed. Statistics were

reported for a total of 6:033 �10

7

seconds of workstation running time, with an average of 25.15 workstations

reporting each half hour. During this time, 386626 name mapping requests were issued, of which 385466

were cache hits (i.e., they were carried out with no need for a multicast probe), for a hit ratio of 99.7%.

Note that this measurement counts references to uncovered names (resulting in a failing multicast probe) as

cache misses, resulting in a conservative estimate of hit ratio.

12

Table 2 summarizes the statistics for the peak half hour of the measurement period. During this period,

30300 names were mapped|fully 7.8% of the 24-day total, and more than in any other half hour slice of the

measurement period. There were only 9 cache misses, for a hit ratio of 99.97%.

12

The reason so many uncovered names were mapped is that, at the time these measurements were taken, the V implemen-

tation did not include on-line administrational directory managers, so every unde�ned name in an administrational directory

appeared uncovered.

14

Experimental period: Oct 17{Nov 9, 1985

Workstation-seconds: 6:033 � 10

7

Average workstations reporting: 25.15

Total names mapped: 386626

Successful multicast probes: 780 (0.20%)

Failing multicast probes: 380 (0.10%)

No probe required: 385466 (99.70%)

Table 1: Overall Statistics.

Experimental period: 11:41{12:11, Nov 4, 1985

Workstation-seconds: 52383

Workstations reporting: 27

Total names mapped: 30300

Successful multicast probes: 8 (0.026%)

Failing multicast probes: 1 (0.0033%)

No probe required: 30291 (99.97%)

Table 2: Statistics for Peak Half Hour.

A rough computation based on the model of Section 3.2 shows reasonable agreement with these measure-

ments. Let us assume that each client made about the same number of name mapping requests during the

experiment, and that the global hit ratio was dominated by their interaction with our most frequently used

�le servers. The computation also assumes that name caches are per-workstation to avoid the complication of

modeling V's per-program caches with inheritance. Currently, two servers provide the bulk of all �le service

to our V installation, and they are each rebooted twice a week after dumps are taken, so let us assume that

v

k

is equal to 3.5 days for each. Workstations are rebooted more frequently, often more than once a day, so

let us take l

j

to be 18 hours for each workstation. From the data in Tables 1 and 2 we can compute �

j;k

to be

156.04 for the 24-day experiment, and 1.7288 for the peak half hour. Plugging these �gures into Equation 4

yields hit ratio estimates of 99.708% and 99.9968% respectively.

Several factors could account for the di�erence between the measured and predicted hit ratios. The

discrepancy in the 24-day value is small, and could easily be accounted for by slightly inaccurate estimates

of v

k

and l

j

, by the fact that V uses per-program caches with inheritance rather than per-machine caches,

or the other shortcuts taken in computing the prediction. The predicted hit ratio for the peak half hour

is, however, quite a bit higher than the observed value. This di�erence could be due to unusual behavior

during that particular half hour; for example, several references to little-used servers, or several workstation

reboots.

These �gures also indicate that name mapping is a common enough operation that it is important to

optimize its performance. During the peak half hour, for example, there were 0.578 name mapping operations

performed per workstation per second, for a total of 15.6 operations per second over all 27 workstations. In

a larger installation, of course, the overall total would be proportionately higher.

3.3.2 CPU Cost

Table 3 reports the results of an experiment performed to measure the CPU cost of decentralized name

mapping. The experiment measured the time required to perform a trivial operation (GetContextId) on

an object referenced by name, for each of three cases of interest. In the hit case, a cache hit allowed the

operation to be completed in a single unicast message transaction. In the miss/covered case, the given name

missed in the cache but was covered by some object manager, which responded to a multicast probe. In the

miss/uncovered case, the given name name was not covered by any object manager|the client multicasted

15

and received no response.

13

CPU time measurements were taken on the client workstation, on the server

covering the speci�ed name, and on another server participating in the naming system but not covering the

speci�ed name (a \bystander").

Case Client (ms) Server (ms) Bystander (ms)

Hit 3:38� 0:13 3:89� 0:082 0

Miss/covered 26:7� 5:5 11:6� 0:30 6:42� 0:21

Miss/uncovered 16:0� 1:1 | 9:29� 0:75

Table 3: CPU Cost Measurements.

The experiment was structured as follows. A test program, linked with the standard client naming library,

ran in a loop, repeatedly trying to map the same name. (For the miss/covered case, the program cleared the

name cache before each trial.) CPU usage measurements were taken on the test program, running on one

workstation, and on instances of a server program running on two other workstations. The server was the V

in-memory �le server (\RAM disk"). The tests were run on Sun-2/50 workstations with 10 MHz MC68010

processors and Ethernet interfaces based on the Intel 82586 chip. A test run measured the total time for

100 to 10000 trials; the average time per trial was obtained by dividing this total by the number of trials.

The table gives the means and sample standard deviations of the times obtained on four test runs.

These �gures, together with the statistics of Section 3.3.1, show that servers in our V installation spend

only a small fraction of their available CPU time in bystander processing. Assuming there are enough servers

that most servers are bystanders even on successful probes, we can compute an average of 0.0221 ms per

naming operation consumed on each server in processing operations in which it is a bystander. During the

experimental period, there were 386626 name mapping operations observed in 6:033�10

7

workstation-seconds,

for an average rate of 6:4 � 10

�3

operations per workstation per second|or taking the average number of

workstations to be 25, 0.16 operations per second. Thus on the average 0.000355% of each server's time was

consumed in bystander processing over a 24-hour period|a negligible amount. The peak load observed over

any half hour of the experimental period was 16.5 operations per second (with 27 workstations reporting).

During this period the cache miss ratio was only 0.025% and the uncovered ratio only 0.00625%, both much

lower than the daily average. Repeating the above computation with these peak load �gures, it appears

that 0.00361% of each server's time was consumed in bystander processing during the peak period|still

negligible.

These measurements provide support for the practicality of decentralized naming by showing that, in

our installation, only a small fraction of the available client and server CPU time is consumed in processing

name mapping requests. The small amount of time spent in bystander processing is of particular interest,

because (as discussed in Section 3.4 below) the cost of such processing is the major obstacle limiting the size

of administrational directories in large systems.

3.3.3 Elapsed Time

Table 4 lists the elapsed times required for name mapping in the same three cases measured in Section 3.3.2.

The experiment was performed using the same test program and the same hardware described in that section.

Although the elapsed times for the hit andmiss/covered cases are comparable to the sums of the client and

server CPU times, the time for the miss/uncovered case is quite long (over 5 seconds), because it includes a

timeout by the client. In general, such a timeout requires r�t

r

seconds, with r (the number of retransmissions,

counting the initial transmission) determined by the required resiliency of name mapping as compared

with the frequency of omission faults in the communication medium, and t

r

(the time interval between

retransmissions) determined by the expected time to receive a response. In our Ethernet-based V installation,

both the retransmission interval and the number of retransmissions could be reduced signi�cantly were it

13

The cost of detecting stale cache data was not measured. Detecting and replacing a stale cache entry that maps to an

existing server adds to the miss case approximately the time for mapping a name in the hit case; an entry that maps to a

nonexistent server adds approximately the time for the miss/uncovered case.

16

Case Elapsed Time (ms)

Hit 9:23� 0:24

Miss/covered 47:7� 9:2

Miss/uncovered 5379� 92

Table 4: Elapsed Time For Name Mapping.

not for the need to communicate with a guest-level implementation of the V interkernel protocol running on

our UNIX systems (outside the UNIX kernel). Fortunately, uncovered names are rarely encountered|even

in the preliminary implementation we measured, with no directory servers to cover the unbound names in

administrational directories, only 0.10% of all names mapped were uncovered. In a full implementation, a

name appears uncovered only when the server that covers it is down or inaccessible over the network.

3.3.4 Space Cost

One might expect decentralized naming to have a substantial space cost, because it places some global

naming information in every server, a name cache in every client, and some naming code in both clients and

servers. Experience with the V implementation, however, has shown that the cost is low|low enough that

there has been no need to put a size limit on the cache, and there apparently will be no need to do so even

in much larger installations.

In servers, the space cost for naming support is not large relative to the overall size of the servers. For

example, in the case of the V disk �le server, the server naming library (which compiles to 12408 bytes of

code and static data on the MC68000) represents only 14% of the total static size of the server, and is an

insigni�cant fraction of its run-time size, which consists mostly of disk bu�ers.

The static space cost in client programs is also small in comparison with their total size. The client

naming library for V occupies 4936 bytes on the MC68000 if all of its routines are used (not normally the

case). This space cost is comparable to that imposed by other standard library routines|for comparison,

doprnt (the main module that implements the C formatted printing routine printf) alone compiles to 1276

bytes on the MC68000.

The run-time space cost in client programs is due mostly to the name cache, which never grows very

large. Recall that a client's cache contains at most one entry for each managerial subtree that the client

has referenced. Because of locality, a given client is quite likely to reference only a small fraction of the

available subtrees during its lifetime, and to be actively using less than 5{10 at any given moment. In the

V implementation, each name cache entry occupies 22 bytes of memory plus the length of the name pre�x it

refers to, which is typically less than 32 bytes. Thus a name cache of 10 entries occupies less than 540 bytes

of memory.

3.4 Limits to Growth

There are some practical limits to how large a system can be built with an administrational directory at its

root. For example, although the V implementation works well on our network at Stanford, it would be quite

impractical to extend it to a nationwide or worldwide internetwork without adding a global directory level.

This subsection takes a detailed look at the limits to growth in decentralized naming systems without global

directories (administrational systems). The following subsection applies these observations to systems that

include global directories (global systems), where they set a practical limit on how large a directory can grow

before it must be implemented using global rather than administrational techniques.

3.4.1 Availability of Multicast

The availability of multicast is currently a technological limit on the size of network that an administrational

directory can span, but this limit may not exist for long. Today's network technology provides multicast only

within a local-area network, such as a single Ethernet cable, not across long-haul networks or even across

17

multiple Ethernets connected by gateways. This problem would seem to set a practical limit of around

1000 hosts on the maximum size of an administrational decentralized naming system. However, techniques

for internetwork multicast are currently under investigation [8], and of course techniques for internetwork

broadcast have long been known [3, 33]. Thus, it makes sense to assume the technological limits will be

overcome, and to ask what other limits are encountered as systems are expanded well beyond 1000 hosts.

3.4.2 Load Per Operation

Another limit to the growth of a administrational system arises from the linear increase of name mapping

cost with system size. The graph in Figure 3 (page 11) illustrates the problem: if the number of managers in

the system is increased while the hit ratio remains constant, the average load imposed by mapping a name

increases linearly, with the slope of the cost function equal to the miss ratio 1 � h. At some size, C

map

becomes unacceptably large. Increasing the hit ratio raises this limit but does not eliminate it.

In a system using global directory managers, on the other hand, the number of packet events required to

map a name in the cache miss case is proportional to the number of directory managers in the path from the

global root name server to an object, not to the total number of object managers. It therefore increases only

as the log of the system size, assuming directory managers at each level have about the same fanout (number

of links to managers at the next level). This growth property suggests that global directory managers should

be used for the uppermost levels of large hierarchical naming systems.

3.4.3 Load Per Manager

A further di�culty in scaling up a administrational decentralized naming system arises because the average

naming load per object manager contains a term that is proportional to the number of clients, but not

inversely proportional to the number of managers. That is, as the number of clients increases, there is a

component of the load on each server that increases proportionately and cannot be reduced by increasing the

number of object managers. (\Load" here is measured in packet events per unit time.) This load component

arises directly from the use of multicast to handle cache misses.

A computation similar to those of Section 3.1 yields the following expression for L, the average naming

load per manager, in a system with c clients and m object managers.

L = c � � �

�

1� h +

5� 3h

m

�

(5)

Here � is the average activity level of each client; that is, each client, on the average, generates � name

mapping requests per unit time. In the notation we have been using, � = c

�1

P

j

P

k

�

�1

j;k

. As before, h is

the cache hit ratio.

One way of interpreting Equation 5, illustrated in Figure 6, is that it implies a linear increase in the

naming load on each server as a system increases in size, with the slope of the increase depending on the

cache hit ratio. The graph plots the number of clients on the x-axis and the number of name mapping packet

events per server per unit time on the y-axis. It assumes that the ratio of client hosts to server hosts remains

constant as the system grows (that is, c = �m for some constant �), and that � also remains constant; in

this �gure, � = 10 clients per server and � = 1 request per time unit.

As the system continues to grow, the servers eventually become saturated by the increased naming load,

and it becomes necessary to reduce the number of clients per server to compensate. This observation leads

to another way of looking at the growth problem, illustrated in Figure 7. The graph assumes that (1) each

server has a �xed load-handling capacity L of 150 packet events per unit time, (2) there are an average of 8

non-naming packet events generated for every client name mapping request (so that naming represents 20%

of the packet events when there are no cache misses), and (3) the number of clients per server � is set just

low enough to keep the servers within that capacity. It plots � on the y-axis against c on the x-axis. Under

these assumptions, the number of clients that can be handled per server decreases linearly, but slowly, as

the total number of clients grows.

In light of the results of this and the previous section, it is clear that administrational decentralized

naming systems cannot be scaled up inde�nitely; however, it appears that systems including thousands of

hosts can be quite practical, at least from a performance standpoint.

18

400 6002000

40

20

0

h = hit ratio

events

per

server

unit

Packet

per

Number of clients (assuming 10 clients per server)

time

h=.9900 h=.9950 h=.9970

h=.9990

h=.9999

Figure 6: Load Per Server as a Function of System Size (With Constant �)

2000 40000

15

10

5

0

Number of clients

Max

clients

per

server

h=.9999
h=.9990
h=.9970
h=.9950

h=.9900

Figure 7: � as a Function of System Size (With Constant Total Load Per Server).

3.5 Extension to Global Systems

We argue that the above results for administrational systems can be used to establish a limit on how high

in a global naming hierarchy the boundary between administrational and global directories can be drawn.

That is, they determine which directories must be made global.

A global decentralized naming system can be viewed as a set of administrational subtrees hanging from

the common global directory mechanism.

14

Each subtree can then be analyzed as an independent system|

the global directory managers direct each client name request to exactly one subtree, so each one receives

some fraction of the total mass of requests.

The above analysis of name mapping in an administrational system applies almost without change to

14

An administrational subtree is a complete subtree of the global naming hierarchy, whose root is an administrational directory

that has a global directory as its parent.

19

an administrational subtree S in a global system, with the total number of managers (m) replaced by the

total number of participants in the root of the subtree (m

S

).

15

The only di�erence is that a worst-case

miss costs r + d + m + 7 instead of r + m + 7, where d is the number of packet events incurred in going

through the global directory managers to �nd the participant group for S. The term d is at most equal to

twice the path length from the global root to the root of S (because each global directory could be kept at

a di�erent directory manager, requiring one unicast packet from each directory's manager to the next). The

path length is roughly proportional to the log of the total number of global directories in the system; thus it

is small enough compared to m that it can be treated as a constant. It therefore has no more e�ect on the

analysis or results than would a change in the value of r.

Therefore, in a global system with similar parameters to the administrational systems discussed earlier,

any directory with more than a few thousand participants should be made global rather than administra-

tional. The exact cutover point depends on the relative values that are placed on performance and resilency.

Performance is improved by switching to global techniques in directories with fewer participants, but as

shown in the next section, these techniques give poorer resiliency. On the other hand, resiliency is improved

by using administrational techniques, but as was shown above, these techniques give poorer performance.

4 Fault Tolerance

A distributed naming system of the size we are interested in must be prepared to deal with faults in the

object manager hosts, client hosts, and communication network. In fact, some fraction of the total system

resources can be expected to be faulty at all times. We show that our decentralized naming design is both

highly reliable and highly resilient in the presence of faults. We say an operation is reliable with respect to

some class of faults F if, in spite of the occurrence of faults in F , it either succeeds, performing the requested

action and returning correct results to the invoker, or fails, returning an error message, as laid out in its

speci�cation.

16

An operation is resilient with respect to some class of faults F if a fault in this class cannot

cause the operation to fail. (A fault is said to cause an operation to fail if there is some set of arguments

and initial conditions under which the operation's speci�cation permits it to succeed, but in the presence of

the fault, the operation sometimes fails.)

We focus primarily on network omission (packet loss) and server crash faults. Client crash faults are

not considered, but present no additional problems for our algorithms. We concentrate on the problem

of achieving resiliency, given that reliability is relatively straightforward to achieve under this fault model.

Some remarks on tolerating Byzantine faults are included at the end of this section. We argue informally

throughout; for a more formal and complete treatment of this material, the reader is referred to Mann's

thesis [18].

The next three subsections discuss the fault tolerance of the three classes of decentralized naming

operations|mapping, query, and binding. In the �rst subsection, we show that decentralized name mapping

achieves optimum resiliency for names bound to objects with nearby managers|managers that are within

range of the multicast sent out when a client's cache misses. For other names, the resiliency of name map-

ping is dependent on the resiliency of the global directory system. The next subsection shows that query

operations would require full replication to achieve optimum resiliency, yet in practice provide acceptable

resiliency if the global directory system is acceptably resilient. The third subsection discusses the binding

and unbinding operations, focusing on the problem that increased replication can make these operations less

resilient and more costly. A �nal subsection discusses Byzantine faults.

4.1 Name Mapping

The name mapping operation accepts a name n and a message m as its arguments. If n is bound to an

object O

n

, the operation sends the name and message to the object's manager M (O

n

) and returns a reply,

15

Recall that a directory's participant set includes the union of the participant sets of all its descendants, so every manager

that names anything in a subtree participates in the subtree's root.

16

This concept of failure is similar to the notion of exception in programming languages or abort in transaction systems. A

failure is undesirable, but not catastrophic, because the system reports it and is prepared to deal with it.

20

or else fails, returning an error indication. If n is unbound, the operation always fails.

17

The optimumachievable resiliency for any implementation of name mapping is ABMA-resiliency. ABMA

stands for \all but manager access": an operation's implementation is said to be ABMA-resilient if the only

fault combinations that can cause it to fail are manager access faults|faults that prevent communication

with the speci�ed object's manager, such as a crash fault on the object manager or a network omission

fault that prevents communication with it. No implementation of name mapping can be more than ABMA-

resilient, because the de�nition of name mapping requires round-trip communicationwith the named object's

manager. But ABMA-resiliency is achievable (at least in theory); for example, one could achieve it by

multicasting all name mapping requests to a group including every object manager.

Decentralized name mapping does not achieve ABMA-resiliency for all objects, but it does achieve such

resiliency for a limited class of objects|those with nearby managers. As described in Section 2, a client

attempting to map a name n repeatedly examines its cache, discards (apparently) stale data, and issues

probes for more cache data. It does not stop until it has either (1) received a reply to its name mapping

request, (2) been informed that n is unbound, or (3) timed out on a multicast probe to the group of nearby

object managers. If n is bound to a nearby object, case (1) means success, case (2) cannot occur, and case

(3) can occur only if an access fault prevents the multicast from reaching the object's manager or prevents

the manager's reply from reaching the client. Thus, name mapping for nearby objects is resilient against all

but manager access faults.

For objects that are not nearby, a larger class of faults can cause name mapping to fail. First, of course,

manager access faults can cause failure. In addition, faults that a�ect the global directory servers can cause

failure by making necessary information inaccessible. For example, if a client at Berkeley attempts to map

the name %edu/stanford/dsg/smith, but all servers holding copies of the %edu directory are inaccessible

and the client does not have any information about %edu/stanford in its cache, the name mapping fails.

Finally, if all copies of an administrational directory's manager fail, clients in remote administrations can

no longer map names in that directory, because (as mentioned in Section 2.4), such clients are not able to

multicast to the directory's participants|they send their requests to the directory manager instead. For

example, if the administrational directory manager for %edu/stanford fails, clients at Stanford can continue

to map names in this directory using multicast, but clients at Berkeley cannot. In practice, we expect a

reasonable level of replication to make these additional failure modes rare.

No other classes of faults can cause name mapping to fail. For example, failure of a liason server cannot

cause name mapping to fail, because liason servers are stateless|a new liason server can be started up any

time an old one fails, on any host (assuming a copy of the server program is available). The loss of cached

data in the liason server can only cause performance degradation, not name mapping failure.

We believe this level of resiliency is reasonable, even though it is not optimum. Optimum resiliency

requires that each client be able to map any object's name, even if that client and object manager are the

only hosts in the system that are up and communicating. This in turn is possible only if each client is able

to multicast to every object manager (or at least, to every object manager for which the client does not have

complete, correct name coverage information). As was shown in Section 3, multicast to all managers is too

expensive to be practical in systems containing more than a few thousand manager hosts.

A name mapping request can fail with the return value \failure: no response," indicating that the client

runtime system was unable to get a response at some step of the name mapping protocol. For example,

the manager of the named object may have crashed. As another example, the name may be invalid at the

administrational level, but the administrational directory manager is unavailable and thus unable to indicate

the invalidity. In such cases, the name mapping fails without determining whether the name is bound or

not, information the client might require. We refer to this as the binding check problem, discussed in the

next subsection.

17

Name mapping on a replicated or distributed object|one that consists of multiple subobjects with distinct managers|is

considered to succeed if it communicates with at least one subobject manager. Any additional protocol required to communicate

with other managers for consistent access or update is object-type speci�c; it is implemented by the subobject managers, not

by the naming system. For example, in the UIO interface [6], each manager of a replicated object maintains a list of the other

managers storing replicas.

21

4.2 Query

We discuss two query operations in this section: binding check and directory listing. The binding check

operation takes a name n and returns the name's binding status (bound or unbound), or else fails, returning

an error message. Logically, whenever a server is binding a new name, a binding check is required to

determine whether the name is already de�ned, to prevent ambiguous names. Also, binding check can

provide additional information when a client's name mapping request times out|the client may be able

to determine that the name is bound even though the object manager that binds the name is down. The

directory listing operation takes a name n and lists the names that are bound in the directory speci�ed by

n, or fails, returning an error message. We show that it is impractical to implement these operations with

optimum resiliency, discuss the actual resiliency provided by a decentralized implementation, and argue that

the latter resiliency is a reasonable compromise for practical systems.

For a system in which every name is covered, optimum resiliency for binding check and directory listing

is achieved if (and only if) every host has complete, correct knowledge of which names are bound and which

are unbound. In this case, binding check and directory listing are purely local operations at each client|no

external servers or network communication are required|so they are resilient against all faults.

18

On the

other hand, if some client host C does not have information about some name n, C's implementation of

binding check on n (or directory listing on the directory containing n) cannot be resilient against all faults|

in particular, it is not resilient against a set of faults that completely cuts C o� from the network. Clearly,

however, it is not practical to replicate knowledge of every name's binding status at every node in a large

system where names are bound and unbound frequently.

As a practical compromise, decentralized naming provides a resiliency for binding check that is just slightly

better than the resiliency of name mapping, using a protocol that is a slight variant of the name mapping

protocol. When the name mapping protocol would call for a multicast probe, which can be answered only

by a manager that covers the name in question, the binding check protocol multicasts a query that can be

answered by any manager knowing the name's binding status. For example, if %x/y is an administrational

directory and %x/y/z is a managerial directory on manager M , the administrational directory manager

responds bound to a binding check query on %x/y/z even if its manager M is down. The protocols are

otherwise identical. Thus for bound names, binding check succeeds whenever name mapping would succeed,

plus the additional case just mentioned. For unbound names, binding check succeeds whenever a manager

that covers the name is accessible|generally, the manager of directory corresponding to the name's longest

bound pre�x. For example, if %x/y is bound but %x/y/w is unbound, binding check on %x/y/w succeeds

(returning unbound) if the manager of %x/y is accessible.

This level of resiliency is arguably a reasonable choice for practical implementations of naming. For �le

names, it is similar to that provided by other naming services. For example, in Lampson's design [16], the

global name service records the binding of each �le server's name, but not the names of individual �les on

the servers. So when an (unreplicated) �le server is down, binding check on its own name|that is, on the

name of its root directory|can still succeed, but on any �le below its root, the operation fails. The same is

true of decentralized naming.

In our design, each directory is assigned a manager (or replicated across several managers), so directory

listing is as resilient as name mapping|a directory can be listed whenever its manager can be contacted,

and a directory's manager is contacted by applying the name mapping protocol to the directory name. In

addition, administrational directory listing can be made more resilient at some cost in reliability. That

is, a client can multicast to an administrational directory's participants when the directory's manager is

unavailable, obtaining a list of the names each participant binds. Collating these lists produces a directory

listing. This protocol is unreliable, in the sense that it can produce an incomplete listing with no warning

to the client: the client has no way of knowing whether all participating managers received and responded

to its request. Nonetheless, information obtained in this way can be useful.

Although these query operations can be made more resilient, in general, increasing their resiliency requires

increasing the replication of directory information; this in turn increases the overhead for binding operations,

as described in the next subsection.

18

Resiliency against all faults is possible for binding check and directory listing, though it is impossible for name mapping,

because the speci�cation of name mapping requires communication with the object manager that binds the name, while the

speci�cations of binding check and directory listing do not.

22

4.3 Binding

Viewed abstractly, binding operations|operations that add, remove, or modify name bindings|are update

operations on (possibly) replicated data. The degree of replication varies across the managerial, administra-

tional, and global directory levels. Managerial directories are often not replicated; where they are, the choice

of replication and crash-recovery mechanisms is manager-speci�c. An administrational directory's entries

are partitioned across its participating managers; the list of bound names held by its directory manager may

or may not be replicated, depending on the manager implementation. Similarly, the degree to which global

directories are replicated is a design and con�guration choice for that part of the system.

With conventional techniques for managing replicated data, such as weighted voting [15], a high degree

of replication results in either a large write quorum, making updates expensive, or a large read quorum,

making queries expensive, or both. The techniques of Lampson [16] and Demers et al. [13] appear to be

e�ective ways to trade o� strict correctness (allowing temporary inconsistency) to obtain better resiliency

and performance for updates to global directories. It is less clear whether these techniques are necessary or

acceptable at the administrational or managerial level.

4.4 Other Fault Classes

Our naming design makes no attempt to handle Byzantine faults in their full generality. Although Byzantine

faults in distributed systems can in general be tolerated using replication coupled with Byzantine agreement

protocols, we expect many simple, unreplicated servers to use our naming system, and we expect that nearly

all clients will be unreplicated. Moreover, in many applications, the cost of running a multi-round Byzantine

agreement protocol outweighs the bene�ts of tolerating Byzantine faults, particularly given the rarity of such

faults.

19

Implementations of our design can, however, tolerate some fault classes beyond simple omission

and crash faults.

First, our V implementation handles timing faults by using timeouts and sequence numbers to convert

them to omission faults, a well-known technique. That is, a packet that is delivered too late is recognized as

such and discarded by the recipient. Such packets appear to have been dropped by the network.

Further, a large class of \malicious" faults is handled by the security mechanism we discuss in the

next section. Using this mechanism, authorization to cover any given name can be granted to some object

managers and denied to others, preventing the unauthorized managers from compromising the reliability

of operations on that name. For example, when a client multicasts a probe request, faulty or malicious

object managers that receive the request could issue incorrect responses. The security mechanism provides

a reliable way for the client to �lter out incorrect responses from unauthorized managers.

5 Security

A naming system is secure if it ensures that (1) servers do not provide information to clients that are

not authorized to have it, (2) servers do not accept unauthorized updates, and (3) clients do not accept

information from servers that are not authorized to provide it. The latter requirement is of particular

concern in a decentralized naming system, where it implies that clients must recognize and discard counterfeit

responses to their multicast naming requests. (We de�ne a counterfeit response to a naming request to be a

response sent by a manager that is not authorized to cover the portion of the name space in question.) We

assume that the system has some well-de�ned security policy that speci�es (1) which clients are authorized

to access each directory, and (2) which servers are authorized to cover each portion of the name space.

Providing secure directory access is straightforward; the access control mechanism for directories can be

modeled after the mechanism used for �le access control. That is, a manager checks each incoming naming

request and rejects those for which the requesting client does not appear on the access lists for the directories

involved.

20

19

Up to t + 1 rounds of messages among all replicas are required to tolerate t Byzantine faults [29].

20

We assume an authenticationmechanism (cryptographic signatures, for example) that allows the requesting client to prove

its identity.

23

Counterfeit rejection is the reverse problem|it requires clients to check the authorization on information

coming from managers. The counterfeit problem is similar to the classic problem of \authenticating the

system to the user" when logging onto a centralized computer system, but is more complex|there is not

just one system to authenticate, but many di�erent object managers, owned by di�erent administrations and

authorized to cover di�erent parts of the name space. Moreover, the client does not know in advance which

manager it wants to hear from, only that it wants the authorized manager for the name it is presenting.

We favor an approach in which each manager caches an unforgeable capability describing the portion of the

name space it is authorized to cover, which it returns in its response to each naming request. Conceptually,

a capability K is a document stating that \principal p(K) is authorized to perform action a(K) until time

t(K)," signed by some principal s(K), where s(K) is authorized to issue capabilities for a(K). Whenever

a manager p(K) responds to a client C's naming request, it includes an appropriate capability K with its

response, and applies its own signature to the whole package to certify that it is in fact coming from p(K).

These capabilities cannot be revoked, but they can be made to expire, allowing coverage authorization to be

changed from time to time. Every client is initialized with enough information to be able to check incoming

capabilities for validity. Thus, clients do not incur extra network tra�c. A manager only incurs additional

network tra�c when it receives a client request for which all its capabilities have expired, forcing it to request

a new capability before it can answer the request. Capabilities can be implemented using RSA [24] or any

other cryptosystem that provides digital signatures. Further details are given in Mann's thesis [18].

Capability-based security does have some cost, both in performance and in resiliency. The security

mechanism reduces resiliency because, if the authorization service fails or becomes inaccessible, servers can

no longer operate once their capabilities expire. It also introduces some performance overhead because of the

need for managers to include capabilities in their naming responses and for clients to verify them, and the need

for managers to acquire new capabilities after old ones expire. A trade-o� arises|between, on the one hand,

performance and resiliency, and on the other hand,
exibility and strength in the security mechanism|for

two reasons. First, capabilities can be made short-lived to make it possible to cancel authorization on short

notice and reduce the danger of compromise|but doing so imposes a higher performance and resiliency cost

on the managers. Similarly, one can improve security by strengthening the cryptosystem used to implement

capabilities|but doing so will typically also increase their size and increase the processing time needed to

generate and check them.

In general, reduced performance and resiliency are an unavoidable cost in any counterfeit-secure imple-

mentation of decentralized naming that allows coverage authorization to be granted and revoked dynamically.

Whenever a client and manager communicate, one or the other must contact a security authority occasionally

to verify that the server is (still) authorized to respond to the client's requests.

The above security mechanism has not been implemented to date; however, we do not see any signi�cant

di�culty in doing so. We have described it here to demonstrate the feasibility of making a decentralized

naming implementation secure.

6 Related Work

We have concentrated in this paper on the administrational and managerial levels of our naming design,

under the assumption that directories at the global level can be implemented using known name server

technology. Perhaps the most advanced work of that kind to date has been Lampson's design [1, 16], an

outgrowth of the work on Grapevine [2, 27] and the Clearinghouse [22]. The Domain Name service [19, 20] of

the DARPA Internet is a more limited system in the same class.

21

Additional work in this area is surveyed in

Terry's thesis [30]. These global name services are typically used to map from names to unique identi�ers for

hosts, mailboxes, or services. As mentioned previously, the reliability, security, and scalability requirements

on these systems impose a signi�cant performance cost on name lookup operations, so that the systems are

only practically applicable to names that do not need to be looked up frequently|it is too expensive to

invoke the global name service every time a �le is opened.

Our work can be viewed as extending these global directory system designs in three important ways. The

�rst, basic extension is that each object manager in our system knows the full global names of the objects

21

The Domain Name service design assumes manual addition or deletion of name bindings as well as manual placement and

update of directory replicas, simplifying the design over the other examples.

24

it maintains, making the other two extensions possible. Second, for improved performance, clients use a

name pre�x cache, with consistency maintained by on-use detection of stale entries. On-use detection is

made possible by the �rst extension|the manager receiving a request detects the client's use of a stale entry

by checking the client-supplied global name against the global names of the objects it implements. Third,

for improved resiliency, clients use multicast to locate objects with nearby managers, thereby functioning

independently of the global directory system for most cache misses. This technique is also made possible

by the �rst extension, which enables an object's manager to recognize the object's global name without

help from the remainder of the directory system. In addition to developing these extensions, this paper

contributes a careful examination of the performance, reliability, and security properties of our design by

analysis and measurement.

Welch and Ousterhout [34] describe an extension of the UNIX �le system using pre�x tables. Their pre�x

tables are similar to our name pre�x caches, but are less
exible. In their implementation, each pre�x table

is statically loaded with a set of pre�xes at boot time|although the referent for a pre�x can change during

operation, new pre�xes cannot be added to the table, nor can old ones be deleted.

22

Apart from the pre�x

tables, their system is quite di�erent from ours. In particular, their system includes no administrational

or global directories; instead, �le servers near the root of the directory tree use remote links, to mount �le

systems on other servers as subtrees. In general, the Welch-Ousterhout design seems to be targeted for a

campus-sized environment; it does not address the global issues we have considered paramount in our design.

The Locus [32] naming facility provides a similar network transparent name space for objects stored by

multiple servers, but its implementation di�ers markedly from ours. The Locus directory hierarchy is built

up of disjoint subtrees called �le groups, each stored by one or more server hosts. The �le groups correspond

to UNIX �le systems, and as in UNIX, they are assembled into a single tree by designating one group as

the root and mounting others below it. The root �le group is replicated at every node; it thus serves as a

sort of pre�x cache for the �le groups mounted below it|that is, when mapping a name, a client looks up

the �rst few components in its local copy of the root �le group, then references (possibly remote) directories

in other �le groups for the rest. The record of where each �le group is mounted is also replicated at every

node. The scalability of this design is limited by its replication of the root �le system and the mount table at

every node. It is also limited by the use of atomic update across all sites to maintain the consistency of the

root �le system (and other replicated �le groups).

23

A performance problem also arises from the fact that

clients read directories over the network to look up names in �le groups that are not stored locally. Sheltzer's

thesis [28] proposes a directory caching technique to solve this problem; however, his design maintains cache

consistency by requiring a directory's storage site to notify each holder of a cached directory page whenever

the page changes. As compared with on-use consistency, this technique places a signi�cant bookkeeping and

communication burden on each directory storage site, further limiting the system's scalability. Overall, we

are skeptical about the applicability of Locus techniques to systems of the scale we are contemplating.

The remote \mount" mechanism is also used by simple network �le systems such as Sun Microsystems'

NFS [26], the Newcastle Connection [4] and Cocanet UNIX [25]. Each of the cited systems links together a

network of UNIX [23] hosts by allowing hosts to mount foreign �le systems as subtrees of their own local �le

systems. As an example, host Laurel might mount host Hardy's root �le system as /hardy, allowing Laurel

to access Hardy's /usr/spool/news directory under the name /hardy/usr/spool/news. This approach is

simple and adequate in the limited scenario of a cluster of hosts accessing a set of shared �les. It does not,

however, provide a consistent global name space for all �les|the only way to ensure that all hosts use the

same name for the same �le is by careful manual management of each host's mount table. Systems using

this approach also do not scale well, because if every host mounts every other, the number of mount points

in the system is proportional to n

2

, producing a signi�cant management and computing overhead.

In general, we see our work as bridging the gap between conventional name service and �le directory

system technology. We have capitalized on the scalability, reliability, and security provided by global name

services, while maintaining the e�ciency and resiliency of local �le directory systems.

22

Their paper does discuss a planned extension to allow adding new pre�xes at runtime.

23

Locus ameliorates this problem to some degree by allowing directory updates to proceed even if some copies are

unreachable|in fact, even if the system is partitioned|and using an automatic merge procedure to reconcile the partitions

after they are rejoined and detect any name clashes that have arisen.

25

7 Conclusions

The decentralized naming architecture presented in this paper extends earlier work on global host and

mailbox naming systems, providing a fast and
exible naming facility for performance-critical objects in

distributed systems, such as �les, programs in execution, and windows. Both expected and observed per-

formance are close to optimum in terms of message tra�c and response time. Resiliency against crash and

omission faults is also close to optimum|the optimum is achieved for nearby objects, while for more distant

objects resiliency is limited only by the fault-tolerance of the global directory servers. The name service can

also be made secure against unauthorized behavior among the naming servers. Further, the design allows

existing name spaces (such as existing �le systems) to be incorporated as subtrees in the global name space

with no modi�cation to the existing system. These properties stem from several noteworthy aspects of the

design.

The e�ciency of the design derives from the fact that name handling for each object is implemented in

the manager that implements the object, enabling name mapping to be performed as part of each operation

that references an object by name. In contrast, implementing name handling as a separate lookup operation

increases network tra�c, server processing time, and response time to the client. Client-based name pre�x

caching allows the client, in the common case, to send each of its name mapping requests directly to the

manager that implements the named object, performing as though it had an oracle providing this information.

Name references relative to a client's working directory take even greater advantage of the caching mechanism,

shifting some of the processing load of name mapping from servers to clients. Finally, when a client's cache

misses, multicast provides parallel name lookup across a set of managers that might cover the name.

Some of these same features in the design also support fault tolerance. Because name handling is decen-

tralized among all the object managers and object managers can be located using multicast, a nearby object

is accessible by name whenever the object manager implementing the object is accessible.

These aspects of the design also contribute to its extensibility and
exibility. The name handling im-

plementation at each object manager is independent of the global directory service and other managers,

allowing the incorporation of pre-existing services into the name space. Naming conventions and even name

syntax within each manager's subtree can vary from one manager to another.

The design makes the global character-string name of an object its only unique identi�er, thereby avoiding

the implementation di�culties and cost associated with using low-level unique identi�ers. The directory

identi�ers used as cached hints in our design can be invalidated and reused at any time.

Our experience has also shown that the naming system works well in conjunction with �le caching on

client machines, a service recently added to V. In the V implementation, aliases for selected name pre�xes are

placed in each client's name cache, thereby directing requests for names in those subtrees of the name space

to the local �le caching server. For example, aliasing %bin to %local/filecache/edu/stanford/dsg/bin

causes �les from the DSG directory of system binaries to be cached under the name %bin. Each open request

on a �lename with the %bin pre�x is presented to the �le caching server, which satis�es the request if it has

the �le cached, or else opens the �le on the remote server and adds it to the cache. In this application, the

name cache provides a convenient place to store the aliases that redirect client requests to the �le caching

server. The name cache also functions in its normal role, reducing the name lookup load on the �le caching

server and reducing the need for multicast or name server access to locate remote resources.

There are two aspects to the design that we would cite as potential disadvantages. First, some name

handling code is duplicated in each object manager and in each client. Although this is a legitimate concern,

the amount of code for both servers and clients is modest, especially considering the current and expected

future cost of memory. Second, the design relies for its resiliency on a multicast facility. In applications

where lower resiliency is acceptable, the design could be modi�ed to eliminate the dependence on multicast,

relying entirely on the global directory service to respond to cache misses, but we do not believe such a

change is necessary or desirable. We regard multicast as an important facility for building robust,
exible

distributed systems, and we are working to make it more widely available [5, 8].

The design we have presented is primarily a protocol between clients and servers. An important next

step is to carefully specify this protocol and o�er it as an candidate for widespread use. Further work is also

needed on replication techniques for global directories. In addition, we would like to to implement and gain

experience with the secure version of the design. Nevertheless, based on the analysis we have presented in

26

this paper and the experience we have gained with the V implementation, we feel con�dent that the design

is a sound basis for large-scale, e�cient, reliable, and secure naming.

Acknowledgements

We are grateful to the Distributed Systems Group at Stanford for serving as a user community for the V

system naming implementation, for commenting on the ideas presented here, and for helping to implement

object managers that participate in the naming facility. We would especially like to thank Lance Berc, Peter

Brundrett, Cary Gray, Ross Finlayson, Keith Lantz, Joe Pallas, and Marvin Theimer.

References

[1] A. D. Birrell, B. W. Lampson, R. M. Needham, and M. D. Schroeder. A global authentication service

without global trust. In Proc. 1986 IEEE Symposium on Security and Privacy, pages 223{230. IEEE

Computer Society, April 1986.

[2] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder. Grapevine: An exercise in distributed

computing. Communications of the ACM, 25(4):260{274, April 1982.

[3] D. R. Boggs. Internet broadcasting. Tech. Report CSL-83-3, Xerox, October 1983.

[4] D. R. Brownbridge, L. F. Marshall, and B. Randell. The Newcastle Connection|or UNIXes of the

world unite! Software Practice and Experience, 12(12):1147{1162, December 1982.

[5] D. R. Cheriton. VMTP: A transport protocol for the next generation of communication systems. In

Proceedings of the SIGCOMM '86 Symposium: Communication Architectures and Protocols, pages 406{

415. ACM, August 1986. Also SIGCOMM Computer Communications Review 16(3).

[6] D. R. Cheriton. UIO: A uniform I/O system interface for distributed systems. ACM Transactions on

Computer Systems, 5(1):12{46, February 1987.

[7] D. R. Cheriton. The V distributed system. Communications of the ACM, 31(3):105{115, March 1988.

[8] D. R. Cheriton and S. E. Deering. Host groups: A multicast extension for datagram internetworks.

In Proceedings of the Ninth Data Communications Symposium. ACM, September 1985. Published as

Computer Communication Review 15(4).

[9] D. R. Cheriton and T. P. Mann. Uniform access to distributed name interpretation in the V-System. In

Proceedings of the Fourth International Conference on Distributed Computing Systems, pages 290{297.

IEEE, 1984.

[10] D. R. Cheriton and W. Zwaenepoel. Distributed process groups in the V kernel. ACM Transactions on

Computer Systems, 3(2), May 1985.

[11] S. E. Deering. Host extensions for ip multicasting. Technical Report RFC 988, Network Information

Center, SRI International, July 1986.

[12] S. E. Deering and D. R. Cheriton. Host groups: A multicast extension to the Internet Protocol. Technical

Report RFC 966, Network Information Center, SRI International, December 1985.

[13] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and

D. Terry. Epidemic algorithms for replicated database maintenance. In Proceedings of the 6th Annual

Symposium on Principles of Distributed Computing, pages 00{00, August 1987.

[14] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation. The Ethernet: A local area

network|data link layer and physical layer speci�cations, version 1.0. September 1980.

27

[15] D. K. Gi�ord. Information Storage in a Decentralized Computer System. PhD thesis, Stanford Univer-

sity, June 1981. Also available as Xerox PARC Technical Report CSL-81-8.

[16] B. W. Lampson. Designing a global name service. In Proceedings of the 5th Symposium on Principles

of Distributed Computing, pages 1{10. ACM, August 1986.

[17] S. Le�er, M. Karels, and M. McKusick. Measuring and improving the performance of 4.2BSD. In 1984

USENIX Summer Conference Proceedings, pages 237{252, June 1984.

[18] T. P. Mann. Decentralized Naming in Distributed Computer Systems. PhD thesis, Stanford University,

May 1987. Available as report STAN-CS-87-1179.

[19] P. Mockapetris. Domain names: Concepts and facilities. Technical Report RFC 882, Network Informa-

tion Center, SRI International, September 1983.

[20] P. Mockapetris. Domain names: Implementation and speci�cation. Technical Report RFC 883, Network

Information Center, SRI International, September 1983.

[21] J. C. Mogul. Representing Information About Files. PhD thesis, Stanford University, March 1986.

Available as Computer Science Technical Report STAN-CS-86-1103.

[22] D. C. Oppen and Y. K. Dalal. The Clearinghouse: A decentralized agent for locating named objects in

a distributed environment. ACM Transactions on O�ce Information Systems, 1(3):230{253, July 1983.

[23] D. M. Ritchie and K. Thompson. The UNIX timesharing system. Communications of the ACM,

17(7):365{375, July 1974.

[24] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2):120{126, February 1978.

[25] L. A. Rowe and K. P. Birman. A local network based on the UNIX operating system. IEEE Transactions

on Software Engineering, SE-8(2):137{146, March 1982.

[26] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of the Sun

network �lesystem. Technical report, Sun Microsystems, Inc., 1985.

[27] M. D. Schroeder, A. D. Birrell, and R. M. Needham. Experience with Grapevine: The growth of a

distributed system. ACM Transactions on Computer Systems, 2(1):3{23, February 1984.

[28] A. B. Sheltzer. Network Transparency in an Internetwork Environment. PhD thesis, University of

California, Los Angeles, 1985. Available as UCLA Technical Report CSD-850028.

[29] H. R. Strong and D. Dolev. Byzantine agreement. Research Report RJ 3714 (42930), IBM Research

Division, December 1982.

[30] D. B. Terry. Distributed Name Servers: Naming and Caching in Large Distributed Computing Environ-

ments. PhD thesis, University of California, Berkeley, 1985. Available as UCB/CSD Technical report

85/228, and as Xerox PARC Technical report CSL-85-1.

[31] M. M. Theimer, K. A. Lantz, and D. R. Cheriton. Preemptable remote execution facilities for the V

System. In Proceedings of the 10th Symposium on Operating System Principles. ACM, 1985.

[32] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed operating system. In

Proceedings of the 9th Symposium on Operating Systems Principles, pages 49{70. ACM, October 1983.

Published as Operating Systems Review 17(5).

[33] D. W. Wall. Mechanisms for broadcast and selective broadcast. Tech. Report 190, Computer Systems

Laboratory, Stanford University, June 1980.

[34] B. Welch and J. Ousterhout. Pre�x tables: A simple mechanism for locating �les in a distributed

system. Technical report, Computer Science Division, EECS Department, University of California,

Berkeley, October 1985.

28

