Uniform Access to
Distributed Name Interpretation
in the V-System

David R. Cheriton and Timothy P. Mann

Computer Science Department
Stanford University

Abstract

The naming of scrvices, objects, and operations is an important
issue in the design of a distributed system. We have been exploring
distributed name interpretation in the V-System, in which name
interpretation is distributed across the system servers, cach server
implementing the naming of the objects and opcrations it provides.
Access 1o this colicction of name spaces and name-handling servers
is unificd by two intentionally minimal mechanisms: a name-
handling protocol and a context management mechanism. The
name-handling protocol provides a uniform client interface across
all name-handling scrvers: any V server implementing name spaces
or contexts must conform to it. The context management system
provides convenient access to multiple contexts using per-user
context prefix servers, as well ‘as an ecfficient implementation of
current context.

We arguc that our approach is cfficient, encourages consistency
between names and named entities, and is particularly flexible in
name syntax and interpretation. It is also casily cxtensible to
existing systems and name spaces, such as computer mall which are
used in V but were developed elsewhere.”

1. Introduction

The naming problem in distributed systems is the problem of
assigning namcs to scrvices, objects, and operations, and providing a
mecans of mapping from names to the cntities they represent. For
cxample. onc needs o name files and to have 2 mechanism for
mapping file names to {iles. Good system design puts forward such
principles as uniformity, minimal duplication of function,
cxicnsibility, efficiency, and reliability. ‘These principles, however,
arc not always compatible with one another.

Uniformity suggests that a system should be designed to provide
a uniform syntax for names and uniform usc of opcrations on these
namcs. [‘or cxample, the operation
Delete(object_name)
should delete the named object, independent of what it is, how it is
implemented, and where it resides.

Minimizing the duplication of function suggests that name-

handling be isolated in one name-handling module which is made

availablc Lo processes in a distributed system as a server. ‘that is, the
name server cxecules this module in response to client requests,
whether as messages or as remote procedure calls. Much previous
work in naming has stressed the importance of uniform naming and
cxplored name scrvice as a separale scrvice from the services that
impicment the objects to be named.

*This research was supported by the Defense Advanced Research Projects
. Agency under contracts MIDA903-80-C-0102 and N00039-83-K-0431.

In contrast, we have been cxploring distributed name
interpretation in the V-System, with naming distributed across the
servers, and each server implementing the naming for the objects
and operations it provides. This collcction of name spaces and
name-handling scrvers is unified by two intentionally minimal
mechanisms. a name-handling protocol and a context management
mechanism,

The namc-handling protocol provides uniform client access to all
name-handling servers: any V server implementing one or more
name spaces or contexrs must conform o the namc-handling
protocol. The protocol imposes minimal restrictions on name
syntax, and no restrictions on name interpretation or the number of
name-handling servers. The context management system provides
symbolic naming of multiple contexts using clicnt-selectable context
prefix servers as well as an efficient implementation of current
context.

We argue that our approach is efficient, encourages consistency
between names and named cntities, and is particularly flexible in
name syntax and intcrpretation. I is also easily exicnsible to
exisling systems and name spaces. such as computer mail, which are
used in V but were developed independently.

The next section discusses approaches to the naming problem.
We then provide an overview of the V-System. Section 4 describes
V-System low-level naming, and scction $ discusses character-string
naming, including the namc-handling protocol and context prefix
servers. Scction 6 describes our current implementation and our
experience with it to date. from the standpoints of both performance
and functionality. We close with conclusions and an indication of
future dircctions.

2. Approaches to Naming

The naturc of a distributed system, in which scrvers and objects are
placed at diverse locations, makes the design of a uniform and
cfficient name-handling mechanism a difficult problem. One
difficulty consists in choosing wherc name mapping and
interpretation is to be done. We identify and contrast two possibie
solutions below.

2.1. TwoModels

In onc modcl, a logically centralized name server provides name
mapping as a scrvice. 'This centralized modcl is motivated primarily
by the considerations of uniformity and minimal duplication of
function mentioned above. Several distributed system dcsignsl' 2.3
havc identified maming as a service in this way and provided a
distinguished name scrver 1o perform this service. Ideally, cvery
server, object, and scrvice in such a system is registered with the
name server, and clients present the registered names 10 the name
server when referring to these entities.

The second, distributed model stores the names with the objects
themselves. This approach is motivated by considerations of
efficiency, refiability, and extensibility. By itself, this approach does
not seem to provide a full solution to the naming problem, since it is
not clear in general how to find an object given its name, if the name
is stored with the object.

There arc many hybrid approaches possible. For example, a
logically centralized name scrver can be given a distributed
implementation, in which definitions of names arc placed close (in
terms of communication costs) to the named objects. The basic
model is the same, but distributed techniques are used to increase
efficiency. In contrast, we have chosen to cxplore a hybrid based on
the distributed model, with centralized techiniques used only when
absolutely neccessary to provide the nceded functionality. Some of
our rcasons for taking this approach are indicated in the comparison
below.

2.2. Comparison

While the centratized approach has the advantage of localizing the
name-handling opcrations to onc server and thus imposing some
level of uniformity on the system, there are several advantages to the
distributed approach as well.

Efficiency. Scparating the name of an object from its
implementation introduces the extra cost of intcracting with one
more scrver—the name scrver—cevery time a name is referenced.
Caching the name in the client would introduce inconsistency
problems and only benefit the few applications that rcuse names.
Because of this cost, there arc few name servers that implement file
names scparate from a file server, cven though the name servers
implcment names for many other system entitics such as hosts and
users.

Consistency. Separating the naming impicmentation from the
implemeatation of the named cntity makes it more difficult to
ensure the name server's information is kept consistent with the
objects being named. lor cxample, delcting a named object
requires notifying the name server that its name for the object is
invalid. If onc of the scrvers crashes during the operation, the
system will be left inconsisient unless deletion as performed as a
multi-scrver atomic transaction. Such solutions to the consistency
problem reduce the efficiency of using name servers. Alternatively,
many scrvers and client programs must be prepared (o deal with
inconsistency in the name scrvice.

Iewer levels of naming. If objects and their names are kept
together, mapping from a name to its associaled object is an internal
operation (or the server that maintains -both. A name server, on the
other hand, cannot map a namc to an cntity, but only to another
name that can be used dircctly with the server implementing the
entity. ‘Thus, an additional level of naming is required between the
name scrver and other system servers. A common design is to use
low-level globally unique identificrs (c.g.. 48-bil valucs), with the
view that such identifiers are efficient to communicate and
manipulate.

We hold the view that uniquc identificrs are a generalization of
identificrs used internally in, for cxample, file sysiem
implementations, Making such identifiers cxternally visible, and
requiring them to be of a uniform formdt and globally unique, cither
imposcs a uniform scheme of internal naming on all servers. or
forces the unique identificrs Lo be treated as purcely external names
which arc mapped by cach scrver to the lower-level identifiers it
uscs internally,

Extensibility. A distributed system typically includes numerous

different established name spaces, name-handling servers, and
interpretations. For example, the names for mailboxes, such as
“cheriton@su-scorc. ARPA,” may be imposed by standards
established outside of the system in question. Such preexisting
servers fit well into a model in which names are normally
interpreted by the server providing the named objects, but are
difficult to accommodate in a system using a name server that
translates all names into low-ievel universal identifiers.

Reliability: If an object’s name is stored with the object, the name
will always be accessible if the object itself is accessible. A name
server, on the other hand, represents a central failure point, and its
failure can causc a situation in which objects cxisting at locations
where there have been no failures are inaccessible because they
cannot be named.

Although the distributed model offers a number of advantages, it
also has some drawbacks. The distributed model works best in the
case where a class of objects is implemented by a server, and the
objects are stored near the server. Files provided by a storage server
are an excelient example; it is convenient to store file names in
directory files on the same storage medium as the files they name,
and to implement the naming within the storage scrver. As another
example, servers that provide a small number of transient
objects — for instance, virtual terminal servers —can store names and
attributes of the objects in memory.

Extending the distributed model to cover the entire space of
named entitics in a distributed system is more difficult. It is
advantagcous for each server to provide name mapping for the
objects it implements, for the rcasons described above, but it is not
clecar how to define names for the servers themselves. One
possibility is to provide onc or more name scrvers to map from
scrver names to addresses or other low-lcvel identificrs for servers.
This partially centralized method shares several of the drawbacks of
fully centralized naming schemes.

Another mcthod would be to have each server store its own
name. A namc mapping request could then be broadceast or
multicast to a group of servers, and cach server would compare the
specified name with its own name. ‘This technique introduces an
additional cost, in that cach server in the group rcceives many
requests that are not dirccted to it, and must spend some processing
time in cxamining and discarding them. ‘There are also potential
problems of consistency —some care is required 1o prevent two
non-identical servers from storing identical names for themselves.

2.3. The V Naming Model

In the V naming modec!. we have combined aspects of the centralized
and distributed modcls using the technique of distributed name
interpretation. Names may have more than onc component (ie.,
they may be hicrarchical), and different components may be
interpreted by different servers. Lor example, the first component
may be interpreted by a context prefix server, which maps the
component 1o a low-level identifier designating a server, then
forwards the remainder of the name on to the server. The context
prefix server provides a central repository for the names of servers,
while the names of other objects are kept close to the objects
themselves.

In the casc of context prefix servers, we have tried to avoid the
drawbacks of centralized naming by providing multiple context
prefix servers (one per user), and experimenting with a variety of
mechanisms (o obtain initial name definitions to be stored by the
prefix servers. Planned future work includes cxperiments using a
newly introduced group send mechanism in the V kernet? to map
server names using the multicast technique mentioned above,

Our approach is also shaped by the recognition that the system is,
in part, a distributed database of information on the entities it
implements. The name of an entity is just one of its attributes.
Extending the name-handling mechanism to include a query
operation on objects fits naturally into our model because the server
interpreting a name generally also implements the named entity,
allowing it to provide additional information about the entity with
litde difficulty. In contrast. extending a name secrver to include
additional information about the entitics it names cxacerbates the
problems discussed in the previous section, particularly that of
maintaining consistency,

Before presenting the details of the naméhandling protocol, we
describe the basic system environment.

3. V-System Overview

The V-System is a distributed operating system designed to run on a
collection of personal workstations and server machines connected
by a high-spced local-arca network. It currently runs on SUN
workstations® connected by 3 or 10 Mbit Fthernct. The basic
structure of V is similar o that of a number of contemporary
distributed systems. The distributed V kerncel provides uniform
local and network interprocess communication by messages. Most
system services are implemented by dedicated scrver processes that
provide their services through message communication. Application
programs arc¢ written using a procedural interface to system services
provided by a collection of stub routines that arc part of the standard
run-time library. These routines hide the message interface from
applications that do not cxplicitly use interprocess communication.

The V kernel provides an idcal base for a distributed system
becausc it allows software above the kernel level to be designed and
implemented in the same way, independently of whether the clients
it serves and the services it uses are local or distributed. For
instance, we arc using diskicss personal workstations with ail file
access and program loading via IPC messages (o network file servers.
Adding a disk and local fite server process to a workstation requires
no changes to the workslation software other than adding a disk
driver to the kerncl.

3.1.V-System IPC Model

The foltowing briefly describes the 1PC model provided, the basic
IPC protocol, and its performance. For further dctails, the
interested reader is referred to a scparate in-depth sludy6.

The V interprocess communication design is derived from
Thoth? with scveral cxiensions for distributed operation. Basic
interprocess communication is in terms of three primitives— Send,
Receive. and Reply—hat implement a message transaction or
request-response pair of messages, as shown in Vigure 1.

The sender sends a message to the receiver and is blocked until
the message is received and replied to. The (ime for a

Send-Receive-Reply scquence using 32-byte messages between two -

processes on scparate 10 M1z SUN workstations connected by a 3
Mbit Ethernet is 2.56 milliscconds. A message may be forwarded by
the receiver to a third process, in which case it appears as though the
sender originally scnt to the third process, which is then expected to
reccive the message and reply to the sending process.

Largc data transfers are handled by separate primitives, MoveTo
and Movel'rom. which move an arbitrary number of bytces between
the sender and the receiver of a message while the sender is still
awaiting the reply message. Basically, the recipient of a message can
. use Movelrom and MoveTo to rcad and write the memory space of

~

the message sender up to the point that the reply message is sent.
Using MoveTo for program loading from a network file server into a
diskless SUN workstation (assuming the program text is already in
the file server's memory buffers), a 64 kilobyte program can be
loaded in 338 milliseconds on the 3 megabit Fthernet. This
performance is within 13 percent of the maximum speed at which a
SUN workstation can write packets out to the network when there is
no protocol overhead.

Sender Receiver
Send
request msg Receive

blocked blocked

time

v

Figure 1: Send-Receive-Reply Message Transaction

Streams can be impiemented cfficiently using the V IPC
primitives. Por instance, with a disk delivering a 512 byte page
every 15 milliseconds. a file can be read sequentially averaging 17.13
milliscconds per page. This is comparable to the performance of
highly tuned special-purpose file access prolocolss. With this
performance, the V IPC facility is also cntirely adequate as a
transport level for remote terminal access and file transfer.

3.2. Message Standards

One of the key aspects of building a cohcesive system on top of the V
kernel is adopling standards on the use of messages so that different
applications and servers can be interconncecled flexibly with minimal
difMicuity.

Messages specilying operations, called request messages, follow a
system standard message format in containing the request code
specifying the operation in the first field (16-bit word) of the
message. The operation code acts as a tag ficld in the request
message, similar to tag ficlds in Pascal variant records. specifying the
format of the rest of the message, ic., the number and type of
paramclers to the operation.

Reply messages sent by servers in responsce to request messages
have their format specificd by the requested operation as well,
relying on the tight coupling of reply messages 1o request messages
in the V message primitives. A reply code (usuatly onc of a sct of
standard system replies) appears at the beginning of cach reply
message, indicating whether the request succeeded or failed, and in
the latter case, the reason for failure.

Another V-System standard is the V 170 prolocol’. which
provides uniform connection of program input and output to a
varicty of data sources and sinks, including disk filcs, terminals,
pipes, network connections, graphics pointing devices, and memory
arrays. ‘'The 170 protocol uscs the 1PC provided by the kernel as a
transport layer. It is a presentation protocol in specifying
conventions on the format of messages and a scssion protocol in
specifying the legal sequence of opcrations for opening a file,

rcading and writing the file and closing the file. Basically, it
provides a data transfer protocol between any two processes, useful
when the data can be viewed as a file and communication between
processes can be structured with one process, the server,
implementing the file and the other process, the client, reading and
writing the file,

The use of the 170 protocol by all servers that support file-like
objects has bcen of utmost importance in the cohesiveness of
V. Buiiding on the expericnce with the 170 protocol over the past 3
years, we have designed and implemented a name-handling protocol
that provides uniform clicnt-server intcraction for handling names
whilc allowing flexible distributed name-handling by a variety of
different servers.

4. V-System Low-LevelNaming

V-System naming is structured as three levels: IPC, service, and
object. In this section, we discuss the low-level names used for these
entities. Becausc V is built on a message-based distributed kernel,
IPC is the most basic level.

4_1.1PC Naming

Communication in V takes place betwecn processcs, with senders of
data specifying the recipient as a process, as opposed to a port or
mailbox.” Similarly. the sender-of data is identified to the receiver
by its process identifier. A V process identilier (or pid) is a 32-bit
valuc that uniquely identifics a process within one V domain.*® A ¥
domain is a sct of logical hosts running the distributed V kernel,
usually machines connected by one local network, over which kernel
opcrations are transparent with respect 1o machine boundaries. AV
domain is basically onc V-System installation.

Process identifiers are structured as (wo 16-bit subfields: /logical
host and local process identifier, as shown in Figure 2.

I logical host I local process identifier l

Figure 2: Process Identificr Subficlds

The logical host ficld is mapped to a particular host address and
the local pid is mapped to a process on the machine at that address.
‘This structuring provides an cfficicnt means of locating a process. It
also allows cach logical host within a V domain to indcpendently
generale unique process identifiers without danger of conflict.
Finally, onc -can cfficiently dctermine from a process identifier
whether the named process is local or remote, an important issuc for
SOME SCrvers.

Process identifiers are the only absolutc names in a V domain.
All other names arc relative to cither a process identificr, typically
the identifier of a server process imiplementing a scrvice, or a
“logical process identifter” for a service, as described below.

.Altcmaﬁvely, one can think of a process as having exactly one mailbox
which is permanently associated with that process.

**A process identificr is spatially unique, but not unique in time, as it may

be reused at some point afler the process it currently namnes is terminated. We
. attempt to maximize the time before reuse.

~

4.2. Service Naming

V-System services include storage, printing, time, context
management, virtual graphics terminals, program loading, and
exception handling, among others. Most V-System scrvices are
provided by dedicated server processes. 1o name the service (as
opposed to the process that impiecments the service), the kernel
supports a simple naming facility that allows proccsses to register as
providing a particular service, .and allows clicnt processes to
determinc the process identifier of a registered server.

SetPid(service, pid, scope)
registers the process specified by pid as providing the specified
service within the given scope. Scope is onc of “local” to this
machine, “remote” or “both local and remote.” We have found it
important to distinguish between simple local servers and remotely-
available "public” scrvers, and even to allow both simultaneously
for the same service.

pid = GetPid(service, scope)
returns the process identifier, or pid, of a process registered as
providing the particular service within the specified scope. In
response to a GetPid, the kernel checks its local table and, if that
fails and the scope is not local, broadcasts to query other kernels on
the network.

Using this mechanism, programs are written in terms of services,
and the binding of scrvice to scrver process occurs at time of use.
With simple services like time, the client typically translates from
service to real server pid on cach operation. With file access, the pid
for a scrver process is acquired when the file is opened and used
subscquently without remapping from the service name. This
avoids the extra overhead of an indirection from service to process
on every communication, as arises in a sysiem using ports or
mailboxes. It docs, however, complicate rebinding when a server
fails, although this presumably rare event can then be handled
without imposing overhcad on normal opcration.

A service naming mcchanism separate {rom process naming is
requircd becausc a process identifier can only identify the process
currently implementing the service, and not the service itself. The
process may change while the service remains essentially the same,
IFor instance, i a storage server is recrcated after a crash with a
different process identifier, it is still the same service from the
client’s point of view, even though now implemented by a different
Process.

An alternative design for service naming is to make a
distinguished name scrver “well-known™ and usc it to name all other
services. This design can still be implemented using our kernel, but
the SetPid-GetPid mechanism would still be needed to obtain the
name scrver's pid, since the use of cven onc “fixed” process
identificr with the V kernel docs not suit its design, i.e., process
identificrs are always allocated randomly.

4.3. Object Naming

In general, many services consist of implementations of one or more
types of objects (in the data abstraction sense), with the operations
associated with the service being the operations on these objects, i.c.,
the server is an abstract data type manager.

There arc basically two catcgories of scrver objects with respect
to naming: temporary and permancnt. ‘Temporary objects typically
only cxist during the exccution of the program that requested their
creation. A lemporary object is named by a short, numeric identifier
(low-level name) gencrated by the server when the object is created.
The identifier need not be chosen by the user because it is only used
intcrnally by the program and the server. A temporary object is

uniquely specified by the server pid, type of object, and object
identifier. Normally, the type of object is derived from the type of
the request message, as specified by the operation code.

In V, temporary objects are named using short (16-bit) numeric
identifiers, called object instance identifiers. Servers attempt to
maximize the time before reusing a temporary object identifier after
the object has been destroyed.

Permanent objects typically exist beyond the exccution of the
program that created them. Thus, the name of the object must be
stored in a [ile or remembered by the user. Therefore, permanent
objects are named by users or applications for their convenience.

A permanent V objcct is named using a high-level character
string name. Character-string naming is discusscd in the next
section.

5. Character String Naming

V-System standards for character string naming arc specified by the
V-System Name Handling Protocol. The protocol specifies a
number of conventions for request messages that use character
string names to identify objects. The protocol includes:

® A mcthod for specifying the context in which a name is to be
interpreted, using a numeric identifier.

® Spccification of several common ficlds for all messages that
contain character string naimes.

® A standard procedure for mapping names, which may
involved forwarding partially interpreted names from onc
server to another.

® A mechanism for determining the objects named in a given
context, including general query and modification operations
on such objects.

@ Sevcral other operations that must be implemented by alt
servers participating in the protocol, and some that are
optional.

We first define some terms, then discuss the protocol itsclf. I‘he
section concludes with a discussion of context prefix servers.

5.1. Character String Names

A V-System character string name (or CSname) is a scquence of 7cro
or morce bytes, of a specified length or clse terminated by a null byte.
Although CSnames may contain arbitrary byles, they are usually
mcaningful human-rcadablc ASCII strings.

The term character string name handling server (CSNII server)
refers to any server that performs character string name mapping as
specificd by the name-handling protocol, regardlcss of what clse it
docs. We usc the term ('Sname request to refer to any request that
contains a character string name that must be mapped o an object
as part of the requested operation.

5.2. Contexts

In penceral, the interpretation of a character string name depends on
the context in which the name is used. Formally, a context is a sct of
(name, objcct)-tuples. A context can have an arbitrary set of
members in theory.

Multiple contexts on a single server can arise from scrvers
implementing more than onc type of object. For cxample, a file
server may implement both files and user accounts. Multiple
contex(s are also used to modily the interpretation of names within a
structured name space such as a hicrarchical fifc system. One can

regard the directories in a conventional file system as defining
multiple contexts. For example, the filename “naming.mss” could
refer to a file named “/ng/mann/naming.mss,” */ng/cheriton/
naming.mss,” or perhaps other files, depending upon which
fileserver the name was mapped by and which directory was current
at the time, i.c., upon which context it was interpreted in.

In the V-System, a context is specified by the pair (server-pid,
context-identifier). The server pid is a process identifier, specifying
the process which is to interpret the name. The context identifieris a
numeric identifier, specifying a particular context or name space
implemented by the server.

Ordinary context identifiers are server-assigned and valid only so
long as the server process continucs to exist. We have also found it
convenicnt to define several well-known context identifiers with
fixed values. These are used to specify generic name spaces such as
“home dircctory” and “standard program dircctory.” Also, when a
server implements only one context, the context identifier has little
meaning and uses a standard default value of 0.

Thus, a fully-qualified CSname includes a server pid, a context
identifier, and the byte string. Given such a spccification, the
interpretation of the name is fully specified independent of the
operation requested.

5.3. Message Format

Each CSname request specifies the name, length of name, index into
the name at which interpretation is to begin (or continue), and a
context identifier specifying the context in which to interpret it. The
server-pid portion of the context is implictly specified by sending
the message directly to the server in question.

This standard format serves as a skeleton for any request message
type that contains a CSname. 'The standard ficlds are a fixed part of
the message structure, always appearing in the samc place, while the
rest of the message is a variant part whose format depends on the
request’s operation code. Thus, a CSNII server can perform some
processing on any CSname request, cven if it docs not understand
the operation code. The importance of this is indicated below.

5.4. Name Mapping Procedure

A CSNII server follows the following algorithm in handling a
requcest containing a CSname.

If the server docs not provide pointers to contexts in other servers
as part of ils nhame space, it may interpret the name in any way it
chooses.

Otherwisce, the server begins by looking at the name itsclf, not the
operation code. Since this request may have been directed to
another server (to which it will cventuaily be forwarded by this
algorithm), the operation codc is irrclevant at this point.

Names are ordinarily interpreted lefi-to-right, if the server
implements hicrarchical naming, though this is not required. ‘The
server initializes the variable CurrentContext to the context id
specified in the request. As each component of the name is parsed,
it is looked up in the current context. If the name specifies a
context, the variable CurrentContext is updated. [f the new
context is implemented by some other server, the name index ficld
in the request message is updated to point to the first character of
the nanic not yct parsed, the context id field is set to the value of
CurrentContext, and the request is forwarded to the server that
implements the context.

5.5. Object Descriptions

One important operation provided on objects is a query operation to
get a description of the object, where the description is a list of
properties or attributes of the object. Since the type of the object
need not be specified by its name or known to the client, a query
operation returns a description record with the first field being a tag
field specifying the format of the record, similar to the technique
used with request messages. The tag ficld also allows the application
to check that the object is of the type it might be expecting. An
example description is shown in Figure 3.

Typetag = ContextPrefix
Name
Context type bits

Associated instance id (if any)

Server process id

Context id

Figure 3: Typical Object Description Record

Some of the ficlds of a description record are typically names of
other system objects, such as name of the owner. Thus, a uscr-level
description of an object can entail query operations not only on this
objcct but also on objects mentioned in the description record for
the original object.

It is also important in many cascs o be able to modify some
ficlds of an object’s description, for example, the access control bits
associaled with a file. The prolocol provides a uniform modification
opcration, which takes a description record of the proper type, and
“overwrites” the original description. Servers are free to ignore
changes to any ficlds which it makes no sense to change in this way.

The query and modification opcrations manipulate descriptions
of individual objccts. We introduce the concept of context
dircctorics for accessing descriptions of some or all of the objects in
a context.

5.6. Context Directories

A context dircctory is logically a file consisting ol a sequence of

description records, onc lor each object in the associaled context. A

client process can open and read a context direclory in the same way
it opens a file. 'The description records returned are identical to
those returned if the client had instcad invoked a query on each
object in the context. Wriling a description record has the same
semantics as invoking the modification operation on the
corresponding object.

The dircclory allows the clicnt to access cach object description
withoutl knowing the name of cach object in the context. It also
provides cfficient access for the client and the server when the
. context contains many objects of interest to the client.

A server need not store information about objects in the same
format as it is presented to the client in the context directories.
Instead, server data structures should be organized to maximize
server performance on critical operations with context directory
entries dynamically fabricated on demand. For example, a file
server may store file names separate from their descriptions with an
association maintained by internal indices, such as the “i-node
numbers” in Unix, but return both the name and the description in
response o a query operation or context directory read. Of course,
the cost of dynamically (abricating these records must be considered
as part of designing the server.

An alternative to this approach would be to provide an operation
that enumerates (or lists) the names of objects in a context. The
client would use the list of names in conjunction with the object
query operation to simulate the reading of a context directory. We
argue that our approach is preferable because with an increasing
diversity of objects in our distributed system, even the listing of
names of objects in a context requires some indication of the type of
each object Thus, a straight enumcration of names is rarely
sufficient and requircs an additional operation for each object at
considerable cost over the context directory approach. We also view
our approach as more consistent with the underlying model in which
namcs are attributcs in object descriptions.

The cost of our approach is the collation and transmission of
information that may not be required in all cases. Conscquently, we
have been considering extensions to context directories such as
pattern matching, which would cause the server to only include
objects that match the given pattern in the returned context
directory.

5.7. Standard Request Types

Besides the description query and modify operations just
mentioned, three standard operations and two optional oncs are
specified as part of the namc-handling protocol. As explained
above, there is no limil to the number of request message types that
may contain CSnamcs.

There is a standard opcration to map a CSname that specifies a
context into a (server-pid, context-id) pair, which is rcturncd in the
reply message. There are also standard operations to perform an
inverse mapping from a (server-pid, context-id) pair to a CSname, or
from a (server pid, object-instance-id) pair to a CSname.

‘There are also operations to add and dcelete names for an existing
context from another existing context. ‘These are optional, and are
ordinarily implemented only in context prelix servers (described
below). '

5.8. Context Prefixes for CSnames

Many scrvers (particularly file servers) implement a hicrarchically
structured space of names, Some others may implement arbitrary
dirccted graphs, but we will speak in terms of trees here. A flat
name space may be cousidered as a degencerate tree in which all
nodes are sons of the root. Thus, we may view the V-System name
space as a forest. where cach tree is associalcd with a scrver, as
illustrated in Figure 4. ‘The forwarding conventions in the naming
protocol atiow any server to include a pointer to a context on
another scrver as part of its name space (curved arrow in the figure),
but in practice, we do not expect enough such pointers to exist at
any onc time 1o unify the forest into a single graph.

‘Therefore, V makes available standard context prefix servers,
which provide cach user with locally defined character string names

for contexts on servers of intcrest. The context prefix server is a
CSNH server that allows users to add and delete names for contexts
in other servers, using the optional operation codes mentioned
above. A context prefix is simply the part of the CSname that is
parsed by the context server to determine where to forward the
request. The syntax is: any CSname starting with ‘[, with the prefix
terminated by a closing ‘]

Context Prefix Server

Server 1 Server 3

Server 2

Figure 4: The V Naming Forest

The standard V run-time routines check for such prefixes and
route any CSname request containing one to the context scrver in its
dcfault context. 'This procedure is described more fully in the next
scction.

6. Implementation

The model described in the previous section has been implemented
and in usc in the V-System for scveral months. In this scction, we
describe some details of interest regarding the implementation and
discuss our expericnce to date,

Our current configuration consists of scveral diskless SUN
workstations (about 30 counting those using V. but not necessarily
part ol our project) connccled by 3 and 10 megabit Lthernet. There
are 7 VAX/UNIX® systems running our file scrver software,
providing program loading and filc access for the workstations, We
arc in (he process of bringing up a V kernel-based file server on a
SUN. ‘There is also a V kernel-based faser printer server, and a
Intcrnet server that rtuns a vV kerncl-based implementation of
1P/TCP. Liach workslation also runs onc or more simple local server
processes, including a virtual graphics terminal server!9, exception
server, program manager, and context prefix scrver.

All of the servers that deal with CShames implement the name-
handling protocol described in the previous scction. In particular,

*VAX is a trademark of Digital Equipment Corporation; UNIX is a
. trademark of Bell Laboratories.

the file server software maps context identifiers onto directories that
act as starting points for interpreting relative pathnames, similar to
the current working directory in Unix!l. A pathname is interpreted
as a context prefix specifying the directory with the final file name
component being interpreted in the context defined by the
directory.

The context prefix server on cach workstation defines context
prefixes for the contexts being used by the user of the workstation.
Normally these include some standard context prefixes and some
corresponding lo the file scrvers being used, pius some special
contexts within the file servers, such as home directory, etc. It is
common procedure for a workstation user to be accessing several file
servers simuitancously, with several context prefixes defined for
each server. Because each user has his own context prefix server, the
top-level context prefixes can be user-specified and different for
each user, although in practice considerable use is made of standard
prefixes.

The context prefix server allows names to be defined for both
ordinary (process-id, context-id) pairs, and also (logicalpid,
well-known-context-id) pairs. I'or the latter type of name, the server
performs a GetPid operation cach lime the name is used. It has
proven uscful (o be able to give character string names to generic
services in this way, and scveral of the standard, predcfined prefixes
are of this type.

The system run-time routines provide several types of support for
the system naming conventions. When a new program is executed,
it is passed a process identifier and context identifier specifying its
current context. It may change this during the course of execution
using a function that is analogous to the “change dircclory” function
in Unix. When the program cxecules an Open call to access a
file-like object, the Upen routine checks whether the name specified
starts with the standard context prefix character, ‘[". If so, it sends
an Open request message to the workstation context prefix server
which parses the context prefix, modifies the message o indicate the
contexl corresponding to the prefix. and forwards the message to the
scrver implementing this context. If not, Open specifics the current
context identificr in the message and sends to the requcst directly to
the server implementing the current context, All other CSname-
handling routines operate similarly, including routines for removing,
renaming, querying, and changing the current context. (The code
that checks for the *[* character is localized in a single common
routine.)

The time for an Open (including creating the message, sending to
the server. and receiving and processing the reply, but excluding the
server-specific actions on Open) is 1.21 milliscconds in the current
context with the server local and 3.70 milliscconds in the current
context with the server remote. When a context prefix is specified
and the Open request thus goes through the context prefix scrver,
the time increases to 5.14 milliscconds with the server local, and 7.69
milliseconds with the server remote. The difference is identical
within the fimits of experimental crror in both cases (3.94 vs. 3.99
mitliseconds), beeause it reflects the processing lime in the context
prefix server, which is always local, cven though the server
performing the Open may be local or remote.

The context prefix server is 4.5 kilobytes of code plus 2.6
kilobytes of data (mostly space reserved for its context directory)
when compiled for the Motorola 68000. This space cost is not
significant on SUN workstations, which typically have one or two
megabytcs of main memory.

‘ach CSNII server also implements onc or more context
dircctorics. 'The initial type lag in cach entry specifics one of several
standard cntry formats. A single “list directory™ command lists the

objects in any one of sevcral different contexts, including programs
in execution, disk files, virtual terminals, TCP connectipns, and
context prefixes. This program and the typed representations it
relies on appear to extend well to the new contexts we are currently
implementing.

Requests are provided in the servers for dctermining the name of
a context from its context identifier as well as the name of, for
example, a file from its instance identifier. This provides the
required support for a program to determine the CSname of its
current context as well as the “absolute” name of, for example, an
open file. Unfortunately, this is the inverse mapping of a many-to-
onc function so the CSname may not be the one that was in fact
used. In fact, there is no guarantee that there is an inverse mapping,
given that, for example, the context prefix may no longer be defined.
The difficulty of inverting the name mapping to determine the
CSname for an object is made worse by the possibility that a name
request was forwarded from one server to another during the course
of name interpretation. For example, a component of the name in
one file server may be logically linked to a dircctory on another file
server. It is difficult, if not impossible, to determinc which server
forwarded the request when working backward from the object.

In general, this reverse mapping to cxtract a name appears quite
important and quite difficult. The pathological cases of strange or
non-cxistent rceverse mappings occur very rarely and thus are
difficult to motivate fixing. Still, they occasionally cause confusion
for users.

7. Conclusions

We have presented a model of naming which illustrates how
distributed system naming can be trcated as an aspect of most
services rather than as a scparate service in itself. We argue that this
approach has advantages in cfficiency, consistency, extensibility, and
rchiability because of the distributed interpretation of a name done
local to the implementation of the named object. Uniform access,
which is onc motivation for scparated standard name scrvers, is
provided by standard conventions on message formats and name
formats plus a context management system that logically unifies
different name spaces via the context prefix server.

‘This model has been implemented and in use in the V-System for
scveral months, running on multiple diskless SUN workstations.
The performance is good. 'The functionality matches well with our
multiplc window and cxccutive system and the flexibility they
provide.

The current deficiencics lie in reverse name mapping, c.g.,
determining the name of a filc from an open file. and handling crror
conditions in name mapping. As an cxample of the latter case, if a
name lookup fails after the name has been forwarded through a
series of servers, it is difTicult to properly inform the user, cspecially
when the faiture occurred at a level which is outside his model of the
system operation,

Our future work in the naming arca is focusing on context

directories and handling of querics for a varicty of different types of
objects. We arc also hoping 1o develop a concise semantic modcl of
the V-System naming. A ncar-lerm project is Lo replace the low-
level service naming using GerPid and SerPid with a mechanism
based on multicast Send* Using this mechanism, a single context
could be impiemented transparently by a group of scrvers working
in coopcration.

In general, we continue (o sce naming as an important aspect of a

distributed system dcsign. We put forward our modcl as onc that

has produced a successful implementation and provides greater
uniformity and extensibility than we have enjoyed in any other
system.

References

1. R.M. Needham and A.J Herbert, The Cambridge Distributed
Computing System, Addison-Wesley, 1982,

2, D.C. Oppen and Y.K. Dalal, “The Clearinghouse: A
decentralized agent for locating named objects in a
distributed environment,” Tech. report OPD-78103, Xerox
Office Products Division, 1981.

3 R.W. Watson, “Identifiers (naming) in distributed systems,”
in Distributed Systems - Architecture and Implementation:
An Advanced Course, Springer-Verlag, 1981,

4. D.R. Cheriton and W.Zwaenepoel, “One-to-Many
Interprocess Communication in the V-System,” Proceedings
of the "SIGCOMM 84 Symposium: Communications
Architectures and Protocols, ACM, 1984,

5. A. Bechtolsheim, F. Baskett, V.Pratt,, “The SUN
Workstation Architecture,” Tech. report, Computer Science
Department, Stanford University, January 1982.

6. D.R. Cheriton and W.Zwaenepoel, “The Distributed V
Kernel and its Performance for Diskless Workstations,”
Procecdings of the 9th Symposium on Operating System
Principles, ACM, 1983, pp. 129-140.

7. D.R. Cheriton, The Thoth System: Multi-process Structuring
and Portability, American Elsevier, 1982,

8. G. Popck, B. Walker, J.Chow, D.Edwards, C. Kline,
G.Rudisin, G. Thicl, "LOCUS: A Nectwork Transparent,
Iligh Rcliability Distributed System,” Proceedings of the 8th
Symposium on Operating Systems Principles, ACM,
December 1981, pp. 169-177.

9. D. Cheriton, “Distributed 170 using an Object-based
Protocol,” Tech. report 81-1, Computer Science, University
of British Columbia, 1981.

10. K.A. lantz, D.R. Cheriton and W.I. Nowicki, “Third
Generation Graphics for Distributed Systems,” Tech.
report STAN-CS-82-958. Department of Computer Science,
Stanford University, 1'cbruary 1983, To appear in ACM
Transactions on Graphics.

11. .M. Rilchic and K. Thompson, “The UNIX timesharing
system,” Comm. ACM, Vol. 17, No. 7, luly 1974, pp. 365-375.

