ALCOR SYSTEMS
800 W. Garland Ave.
Garland,Texas 75040

SOFTWARE LICENSE AGREEMENT
Please read this license agreement carefully.

All Alcor Systems programs are sold on the condition that the
purchaser agrees to the following license. If you do not agree to the
terms contained in this license, return the packaged diskette(s)
UNOPENED to the place of purchase, and the purchase price will be
refunded. If you agree .to the terms contained in this license, £ill
out the registration information and license agreement.

Alcor Systems may discontinue any license or terminate this Agreement
if the Customer fails to comply with any of the terms and condltlons
of this Agreement.

Alcor Systems hereby grants the undersigned customer a single
COMPUTER SYSTEM LICENSE which is non-transferable. A separate license
is required for each additional COMPUTER SYSTEM it is to be used with,
except herein described. All supplied materials are subject to this
LICENSE restriction including any printed material. Copies of printed
material must be obtained from Alcor Systems.

BACKUP

Any Licensed Programs supplied by Alcor Systems under this agreement
may be copied by the undersigned customer for backup or archival
purposes in sufficient number for customer's use of the licensed
programs.

The Customer agrees to maintain appropriate records of the number
and location of all such copies of Licensed Programs.

The Customer agrees to reproduce and include the copyright notice of
Alcor Systems on all copies, in whole or in part, in any form,
including partial copies or modifications, of Licensed Programs made
hereunder.

The Customer agrees not to provide or otherwise make available any
Licensed Program, including but not limited to, program listings,
object code and source code, in any form, to any person other than
customer's or Alcor Systems employees.

DISCLAIMER OF WARRANTY:

Alcor Systems makes no warranties with respect to the Licensed
Programs. The sole obligation of Alcor Systems shall be to make
available all published modifications or patches made by Alcor Systems
to Licensed Programs which are published within one (1) year from date
of purchase, provided the Customer has returned the Registration card,
and signed license agreement.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
WILL ALCOR SYSTEMS BE LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF ALCOR
SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

If any of the provisions, or portions thereof, of this Agreement are
invalid under any applicable statute or rule of law, they are to that
extent to be deemed omitted.

The intent of this Agreement is not to restrict in any way the
normal use of Alcor Systems software, but is simply to protect Alcor
Systems from any fraudulent use or mass reproduction and piracy of
it's software. This is a standard commercial software agreement and
gives more latitude than many such agreements. It's sole purpose is
to make the Customer responsible for the protection of Licensed
Programs. Alcor Systems feels that this approach is better than copy
protection schemes currently used by some companies. Any violations
of this agreement may be grounds for Alcor Systems to take appropriate
legal action against said Customer.

ADDENDUM: PROGRAMS PRODUCED WITH THE PASCAL LANGUAGE SYSTEM

The Customer may produce object programs that include Alcor Systems
runtime support and may distribute them as desired. The runtime
support referred to is the Pascal interpreter, and any Alcor Systems
system interface modules that are normally linked to the translated
program module with the Pascal linking loader or linkage editor. The
only requirement is that the documentation supplied by the Customer
with distributed programs that include Alcor Systems runtime support
must specifically include a notice that the program includes Alcor
Systems runtime support modules from the Alcor Systems Pascal Language
System.

I hereby the undersigned, understand and agree to the above
licensing agreement.

Signature

Date

ALCOR PASCAL REGISTRATION CARD

SERIAL NUMBER

Name

Address

City,State,Zip

Place of purchase

Date

ALCOR PASCAL SERVICE POLICY !

G Semm Sem

PATCHES
Patches are supplied by two different methods.

(1) Alcor Systems will send printed patches to
be applied by the customer using the Alcor
Pascal Patch program. All patches must be
applied by this method to ensure system
integrity simply due to the system size and
complexity.

(2) Alcor Systems will optionally send patches on diskette
media for use with the Alcor patch program. The diskettes
may be obtained directly from Alcor Systems for a nominal
charge. See the Alcor Pascal Newsletter for current
information.

VERSION UPGRADES

Any new Alcor Pascal release may be obtained by registered
customers for a version upgrade fee which is set at the
time of the release.

hkhhhkhkhkihkhkhkhkhkdhihdkiik IMPORTANT - READ THIS FIRST **%%kkkkhkhkhkkkhkkkhkhkhhdkhkkx

1)

2)

3)

Upon receipt of the Alcor Systems, ALCOR PASCAL please check the
contents of the supplied material for the following items: Beginners
manual, Editor manual, System manual, Pascal Tutorial manual, Language
Reference manual, two/three 5 -1/4 " diskettes with a TRS80 model I / III
and Quick Reference programming card.

Please observe the following steps carefully !

Read the license agreement and sign it. Fill out the registration

slip and return with the signed license agreement. This is an
important step. If the registration and license agreement is not
received within 30 days of purchase, your update services and warranty
may be void.

Remove the supplied diskettes and make a back-up immediately ! Use the
BACKUP technique that is applicable to your TRSDOS or CP/M compatible
operating system. The supplied formats are: TRSDOS Model I - 35

track, single density. Model III - 40 track double density. CPM - 77
track single density, single sided. All supplied 5 1/4 diskettes come
write protected with a small adhesive tab. Do not remove this tab.

All 8 " supplied diskettes are write protected without the adhesive tab.
Label the backup diskettes as the master Alcor Pascal diskettes.

Never use the original diskettes for normal use. This will prevent a
hardware or software failure from causing disaster.

Once diskette back-ups have been made, you may wish to reconfigure
additional diskettes by moving the various files around. This may be
particularly true on a TRS80. It has been found that a convenient
TRS80 configuration is to have the Blaise text editor on the operating
system diskette. Explanations of the supplied files may be found in
the Beginners guide. Additional information about the Blaise editing
systems files may be found in the Blaise editor manual. There are no
copy or locking systems on the Alcor Pascal system files. They may be
freely copied from diskette to diskette.

SUGGESTIONS ON HOW TO USE THE MANUALS

The supplied documentation set was designed to aid new Pascal
programmers. It is not simply a technical reference manual as many
language system vendors supply. A common practice in the industry is
to simply supply a Jensen and Wirth reference book and let beginners
beware. First read the Beginners section ! It describes how to invoke
the Blaise text editor and enter a simple Pascal program, translate it
and execute it. It is NOT a detailed explanation of all aspects of
the Alcor Pascal system. A next logical step would be to read the
Blaise text editor manual and try some of its advanced features. For
experienced Pascal programmers, the System Implementation manual, and
the Language Reference manual will provide all the help necessary to
write any Pascal program. If you are a novice, it is suggested that
you read the Pascal Tutorial and try entering and executing the
example programs. The Tutorial's example programs are supplied
on the diskette in source form. You may wish to compile and execute
them. A Master Cross Reference Index is supplied with the documentation.

Pascal 1.2A Release Notes

Overview

The differences between Pascal 1.2 and 1l.2A are primarily
internal patches to correct reported bugs. There are enhancements to
to the text editor which allow printable characters not on the TRS80
keyboard to be generated with clear key sequences. Pascal 1.2A
has all the known bugs at this time corrected. Registered Pascal
1.2 owners may apply patches to version 1.2 with the supplied
Alcor patch program.

Since this is not a major version upgrade, patches will be be
published in the first Alcor newsletter available sometime in
June 1982, or you may send $ 8.00 + shipping to Alcor Systems
for a disk containing the published patches for use in
conjunction with the Alcor Patch program. All REGISTERED owners
will receive the Alcor Newsletter. In printed form, the
patches are over 4 pages long.

kkkkRErhkhhhhx* NOTICE TO PASCAL 1.2A OWNERS **k*kkkkkkkxhk

The release disks have already been corrected and require no
patching of any kind to correct bugs. The only patching necessary
is for Pascal operation under the different operating systems. See
the supplied Patch instruction sheet,

Known Bugs in Pascal 1.2
PASCAL COMPILER
A. Sets
The IN operator sometimes returns true when <item> is not a
member of the set when the ordinal of the <item> is greater than

the ordinal of the highest member actually present in the
<set expression>.

B. Procedure calls

When making procedure calls of the form:
IF <expression> THEN <procedure call> else <statement>

the compiler will incorrectly flag a syntax error if the procedure
has no parameters.

(c) Copyright 1982 Alcor Systems

C. Hexadecimal constants

If hexadecimal constants are declared greater than #8000
<hex 8000> the compiler incorrectly stores the value.

D. File of Char

When a FILE OF CHAR 1is declared, and the generated file
contains the control characters CR <#0D>, LF <#0A>, TAB <#09>
and Control Z <#lA>, they will be treated like they are in a text
file and cause special processing when the file is read by Pascal.
The correction causes them to be treated like any other
character.

Known Bugs in Release 1.2
EDITOR

A. "RENAME FAILED CRASH"

Under certain conditions that are highly operating system
and data file dependent, upon exiting from the editor, a "RENAME
FAILED" error flag will be displayed. This occasionally results
in a file loss. This is caused by an improper filename termination
in the file descriptor <no CR termination of filename string>
by the editor runtime.

Enhancements in Release 1.2A
EDITOR

A. I/0 error detection and recovery

An enhancement to allow for better I/0 error correction and
recovery has been made in the text editor. When a disk error
has been detected, the message: :

IO ERROR
followed by the operating system error code is displayed. You

may type "Q" to allow the error to pass or any other key to cause
a retry.

(c) Copyright 1982 Alcor Systems

.

B. Screen update change

In 1.2 when the cursor is at the bottom of the display and the
enter key is hit, the screen is completely cleared and rewritten.
Release 1l.2A causes the screen to scroll by sending a line feed to
the screen driver. This increases the effective scroll rate.

C. Character generation

In 1.2A certain characters not available on the TRS80 keyboard
may be generated by using the clear key sequences. They are:

Sequence character
clear 1 —=====- [
clear 2 - —-=——=——- 1
clear 3 ===--—- -
clear 4 ~——-——--- {
clear 5 —-—-——-—- }
clear 6 ——=——-- |
clear 7 —=—=———- /

D. Clear key definition

An optional patch is available to allow the clear key to be
redefined to the: shift Down Arrow (Model I only)
or to the: / key on the Model I or Model III.

(c) Copyright 1982 Alcor Systems

Special Notice about the Alcor Pascal Patch program

IT IS RECOMMENDED THAT ALL PATCHING BE DONE UNDER TRSDOS

The Alcor Patch program may be used to apply any patches to
the system while operating under TRSDOS on the model I or III.
This includes patching the system with the supplied conversion
patches which allows the system to execute under the various
supported operating systems such as LDOS, NEWDOS and DOSPLUS.
(See the supplied patch program instructions for specific
information about your computer and operating system combination)
After patching has been performed under the TRSDOS operating system,
the Pascal system may then be copied to any of the ALCOR supported
operating systems using the normal operating system utilities.

IF YOU MUST PATCH WHILE EXECUTING UNDER ANY OF THE
ALCOR SUPPORTED OPERATING SYSTEMS OTHER THAN TRSDOS

Generally, if the Pascal system must be patched for execution
under your computer and operating system combinaticn, then
the PATCH program should be patched first. This particular
patch for the PATCH program may be applied while under ANY
of the Alcor supported operating systems.

The following patch may be entered into a text file with
any legal filename. IE; SPECIAL/PAT You may use the
text editor if creating this file under TRSDOS and copy it to
the desired operating system.

For Model I systems

F, PATCH/CMD, ALCOR
pP,0FAl,054E,0001,13,00
p,0B16,0529,0001,00,03
W,F589

E

For Model III systems

F, PATCH/CMD, ALCOR
p,0FA1,054E,0001,00,13
p,0B16,0529,0001,03,00
W,F589

E

(c) Copyright 1982 Alcor Systems

PATCH PROGRAM

———— ———————— o~ -

The initial release of ALCOR PASCAL requires patching to
execute correctly on some operating systems. This is due
to incompatibilities among the various TRS80 operating
systems. On the TRS80 model I, patches are applied for
NEWDOS80 and DOSPLUS. On the TRS80 model III, patches are
applied for LDOS.

hhhkhhdhhhhkhhhkhhkhhhkhkhkhkdkhhhkhhhkhkhhkhkhkhhhkhhkdkikk

* WARNING *
* NEVER apply patches to the original *
* release disk. Make a copy and *
* apply patches to the copy. *

Khkhhhkhkkhkhhhhhhhhhhkhhhhdhhhhkdhhhhhhkhhhkhkkkiihi

The Alcor pascal system includes a program for patching
disk files. This program is used to apply all current and
future patches to the pascal system. Initially, patches
are supplied to correct for incompatibilities among the
various TRS80 operating systems. These patches are contained
in files on the release disks.

All patches to pascal should be applied with the patch
program since it contains extensive error checking to assure
that patches have been entered and applied correctly. To
apply patches, follow the following steps:

1. Make a backup copy of the release disk.
Do not apply patches to the release disk.

2. The patches should be entered into a file. The initial
patches are supplied in this form. Printed patches should
be entered into a file using the text editor.

3. Load the disk containing the patch program and execute it
by typing "PATCH". If PATCH is a system command
(under LDOS for example), then the file PATCH/CMD should
be renamed. After the program has been loaded, the disk
containing it may be removed.

4. The patch program will prompt for the disk being used for
patches. All patches are made using this disk drive. The
program will prompt you to change disks when necessary.

Enter the disk drive number for the drive that will be used.

5. Enter the name of the file or device for the listing.

The patch program will echo the patches to this file or
device and will display any error messages there. ":L" will
specify the line printer.

6. Enter the name of the file containing the patches. This file
must remain on=-line during the entire patch process. On two
drive systems, this file should be on the system disk. The
procedure for single drive systems is covered below. The
patches required for both NEWDOS80 and DOSPLUS on the TRS80
model I are contained on release disk number 3 in a file named
"NEWDOS/PAT". The patches required for LDOS on the TRS80 model
IITI are on release disk number 2 in a file named "LDOS/PAT".

7. Change disks when prompted to do so. 1If any errors are
detected, error messages will be displayved and the patches
will not be applied.

Example Patch Session

The following is an example of how to patch the Pascal System
for execution under LDOS on the Model III. A two drive system
running TRSDOS 1.3 is assumed. The following steps should be
performed before any patching is attempted.

(1) RENAME PATCH/CMD to PATCHP/CMD

(To prevent conflicts with the system command)
(2) Copy LDOS/PAT to the system disk.
(3) Insert the disk with PATCHP/CMD and invoke PATCHP.
The following information will prompted for at the terminal.
Text after the ";" are comments in this manual and will not be
present in the terminal session.

ENTER DISK DRIVE FOR PATCHES: 1 ; Use drive number 1
LISTING = :L ;Echo listing to printer (:D for no device)
ALCOR SYSTEMS DISK PATCH UTILITY 1.0 (C) 1982
- PATCHES = LDOS/PAT:0 ;File containing patches on the system disk
LOAD DISK : ALCOR1l INTO DRIVE 1
PRESS <ENTER> WHEN READY ;Hit enter to start patching diskl
LOAD DISK : ALCOR2 INTO DRIVE 1
PRESS <ENTER> WHEN READY ;Hit enter to start patching disk2

STACK USED = 514 OF 4032 HEAP USED = 1574 OF 29832
TRSDOS READY

If :L was used for the listing device then the following listing
will appear at the printer.

ALCOR SYSTEMS DISK PATCH UTILITY 1.0 (C) 1982

TRS80 MODEL III FOR LDOS

ws W “wo

F, RUN/CMD, ALCOR1
P,1A2A,0558,0001,00,13
P,1433,0508,0001,03,00
W,F5A0

F, PASCAL/CMD, ALCORL

pP,11CpD,0577,0001,00,13
p,0D42,0526,0001,03,00
P,233E,0575,0001,20,4C
W, EFEE

F, ED/CMD, ALCOR1
P,11ED,057D,0001,00,13
p,0BD5,055E,0001,03,00
W,F525

F, LINKLOAD/CMD, ALCOR2
P,1A2A,0558,0001,00,13
P,1433,0508,0001,03,00
W,F5A0

F, PASCALB/CMD, ALCOR2
p,11¢p,0577,0001,00,13
pP,0D42,0526,0001,03,00
P,246E,0580,0001,20,4C
W,EFE3

E

. As supplied on diskette, the Alcor Pascal system requires a
valid operating system to always be resident in drive 0. It
may be one of the following:

MODEL I
* Trsdos 2.3, * Ldos 5.1, Newdos 2.0, Dosplus 3.3, 3.4

MODEL IIT
* Trsdos 1.3, Ldos 5.1, * Newdos 2.0, 2 Dosplus 3.3, 3.4

* - These operating systems will function as delivered on
diskette without patching. The others require patching
with tha Alcor patch program using the control files
supplied on diskette. The Pascal system files should be
patched under one of the "*" gsystems and then copied to
the desired system format.

Patching on single drive systems

On systems with only one disk drive, all patches will be applied
using the system disk. This requires a certain amount of file
copying. The patches will be applied a few files at a time.

The patch program ("PATCH/CMD") should be copied to a system disk.
Several system disks must be created. Each disk will contain

the file containing patches (NEWDOS/PAT or LDOS/PAT) and one or
more of the pascal files.

Execute the patch program using the procedure above. Once
the program has loaded, remove the system disk containing the
patch program and insert a system disk containing files to be
patched. Specify drive 0 for the patches and proceed with the
patching. Error messages will be generated for those files
that do not exist on the disk. These messages can be ignored.

SOFTWARE TROUBLE REPORT FORM

Name

Address

City,State,Zip

Phone

Compiler serial number

Version number

Operating System

* NOTE- A compiler listing of the program at fault must
be included. If the problem is associated with the runtime
execution then please include any data input and all

outputs. Please do not call, but simply send in this
STR.

Problem Type

[] Software [1 Editor [l Linking Loader

[l Documentation [] Compiler [1 Code generator

[l P-code optimizer [] RUN [] Overlayed Compiler
[] Other

Description of the problem:

Please send to: Alcor Systems

13534 Preston Rd. Suite 365
Dallas, Texas 75240

Qe Owe S fwm fum Dmm feau Guma Guw fmn fea O Sum fum Pem

PASCAL BEGINNERS GUIDE
Alcor Systems

Second Edition
First printing
1982

S Gom G Gew bum fen fmw Quu Jom um Qe Sum Swm Sue fme

Copyright (C) 1981 by Alcor Systems

SECOND EDITION
FIRST PRINTING-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from Alcor Systems.
No patent liability is assumed with respect to the use of
information contained herein. While every precaution has
been taken in the preparation of this book, Alcor Systems
assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use
of the information contained herein.

TRS80 and TRSDOS are trademarks of Tandy Corporation.

USCD Pascal is a trademark of UC Regents, San Diego campus.
Apple is a registered trademark of Apple Computer Inc.

Z-80 is a trademark of Zilog corporation.

CPM is a trademark of Digital Research.

Beginners quide

Introduction

Congratulations on your purchase of the Alcor Pascal System.
Alcor Pascal is a powerful language system that will increase the
effectiveness of your TRS80 microcomputer. Alcor Pascal is a full
implementation of the computer language Pascal with all of its
features intact, and therefore compatibility of source programs with
other standard Pascal implementations is greatly enhanced. A major
effort was expended to produce an efficient and compact Pascal System
for your TRS80 computer. Compiled source programs execute between 10
and 50 times faster than many interpreted language systems, and in
fact, faster than many Pascals on other systems. Benchmark test
results comparing it with other language implementations may be found
in the System Implementation Manual. Programs written in Alcor Pascal
may be executed on any model TRS80 microcomputer provided the proper
runtime package is installed. Runtime support packages are available
to licensed Alcor Pascal compiler owners that allow the system to be
used on any different model.

Alcor Pascal Basics

The process of developing a program with Alcor Pascal is
different than with most interpreted Basic lanquages. Alcor Pascal is
a partially compiled language. This means that the program must be
translated into a form that is understandable by the computer before
it may be executed. First the source program is entered onto a disk
storage file with the aid of the Blaise text editing system, and then
translated by the Alcor Pascal compiler into object code modules that
may be executed by the host computer. This necessitates the use of
disks to store the source program. Although compiled programs may
execute on TRS80 computers with less than 48 k bytes of memory and no
disk storage, it is recommended that a 48 k system with two
mini-floppy disk drives be used for all software development.

Beginners guide

The following items are included in your Alcor Pascal system
package:

MANUAL SET
I. BEGINNERS GUIDE
A quick introduction of how to use this system.
II. PASCAL TUTORIAL

A step by step introduction to Pascal, aimed at the
people with some knowledge of a computer language.
All of the Tutorial's example programs are included on
diskette in source form. You may compile, modify and
execute them while progressing through the Tutorial.
IIT. Alcor Pascal LANGUAGE REFERENCE Manual
A detailed guide to the entire Alcor Pascal language.
Iv. Alcor Pascal SYSTEM IMPLEMENTATION Manual
Detailed information on how to use the system.
V. Blaise EDITOR Manual
A guide on how to use the Blaise text editor.

VI. Quick Reference Programming Card.
VII. Documentation package X-Reference Index.
DISKETTES
I. DISKETTE NO. 1

(a) PASCAL/CMD Alcor Pascal non-overlayed compiler
(b) RUN/CMD Run utility for object code execution
(c) ED/CMD Blaise text editor
(d) ERRORS/DAT Compiler error message file
(e) HELP/HLP, CMD/HLP, KEY/HLP editor help files.
(£) T.../PCL The Tutorial manual example programs in

Pascal source form (Model III only)

II. DISKETTE NO. 2
(a) PASCALB/CMD Alcor Pascal overlayed compiler
(b) PASCAL/OV1-0V4 PASCALB overlay segments
(c) LINKLOAD/CMD Linking loader and interpreter

(d) TRSLIB/PCL External declarations for TRS80 library
(e) TRSLIB/OBJ Object for TRS80 runtime library
(f£) STRINGS/PCL External declarations for STRING library
(g) STRINGS/OBJ Object for TRS80 string library

* (h) T../PCL The Tutorial manual example programs

in Pascal source form
* (i) DATABASE/PCL Tutorial Data Base program in source form
* (3j) PATCH/CMD Patch program used to apply updates
* (k) LDOS/PAT Patch control file to convert system for
LDOS execution on the Model III only.
Not required for TRSDOS or DOSPLUS.
* Not on Model I version

MODEL I Version only
III. DISKETTE NO. 3
(a) T../PCL The Tutorial manual example programs
in Pascal source form
(b) DATABASE/PCL Tutorial Data Base program in source form
(c) PATCH/CMD Patch program used to apply updates
(d) NEWDOS/PAT Patch control file to convert the system
for execution under NEWDOS or DOSPLUS on
the Model I. Not required for the Model III.

Beginners guide

Overall system view

The program development process may be visualized by the
following diagram:

Vo o

! USER
___:____
!
! RUN <cmd> OR
ED <cmd> ! LINKLOAD <cmd>
o e e e

1 ! !

! ! PAS <cmd> !

! ! !

1 ! !
enter ! translate ! run !
Program ! program ! program or !

! ! build load !

1 1 module !

! ! i

——————— \Y V======== ==V

! ! ! 1 1

! Blaise ! ! Alcor Pascal ! ! LOADER

! TEXT EDITOR i ! COMPILER ! i PROGRAMS

! - [} - -

! read ! I save ! !
save ! source ! ! object ! !
source ! program ! ! program ! !
program ! ! ! ! !

! 1 1 RUN<cmd> ! !

! i ! load object ! !

! ! i and execute ! !

! ===V ! i

! ! i { !

—————————————————— >1! DISKETTE 1 !

1 STORAGE I {mmmmr e e e

————— == LINKLOAD <cmd>
load object and
build TRSDOS
/CMD file

b

Beginners guide
Entering a program

Blaise

PLACEMENT OF EDITOR ON DISKETTE

The text editor is supplied on a 5-1/4 " minifloppy diskette. On
the TRS80 Model I version, there is not enough free storage for
proper operation. The editor and its associated files should be
moved to a diskette with at least as much free storage as the size
of the file to be edited. The editor system is composed of the
main editor file labeled ED/CMD and several help files labeled with
the /HLP file extension name. These files may be copied to any
diskette for use. The help files contain HELP messages that may be
viewed while in the text editor. They are not required to be
present. If they are not present on the same diskette as the ED/CMD
program, no help information may be obtained during the edit
session.

The first action necessary to enter a source program is to invoke
the Blaise text editing system. Blaise allows you to enter your
program and to modify it as desired. It is a screen oriented text
editor that allows you to see exactly what you are editing as you make
changes. The edited file may be displayed on the terminal a section
at a time and then selectively modified. To use Blaise load diskette
no. 1 into the drive and type: ED <file name> The file name should be
the name of the file you want to edit in standard TRSDOS notation. 1If
the file name field is left blank, a new file will be created with the
name specified at the end of the edit session. If the file name is
created with a "/pcl" extension, Alcor Pascal will recognize any file
names with this extension as a Pascal source file. This notation will
help you keep source programs and translated object programs
separated. An example file name is : TEST/PCL:1 If the file name
field is left blank the terminal will display:

*EOB

At this point, you may insert blank lines into the file by depressing
the shift key while at the same time depressing the "@" key. Once
several blank lines have been inserted into the file, the cursor may
be positioned any place on the blank lines by using the arrow keys.

To insert the program, simply type it in. The following table lists a
few of the editor's key definitions. For a complete explanation of
Blaise , see the Blaise reference Manual.

Blaise key definition table

KEY

A

!
v

P

-

<enter key>

SHIFT ===
SHIFT ——>
CLEAR !

!
CLEAR \
SHIFT @
CLEAR C

MEANING

Cursor up one line

Cursor down one line

Cursor left one character
Cursor right one character

Move cursor to the beginning
of the next line.

Delete line under cursor.
Delete char under the cursor.
Roll one page towards the beginning

of the file

Roll one page towards the end
of file

Insert a blank line before the
line under the cursor.

Enter command mode

* Note - See BLAISE Reference Manual for complete
information on key definitions and commands.

jx
i
il

Beginners guide
Entering a program

Blaise

The thing to remember at this point is, what is displayed will be
stored on the disk file. By moving the cursor to any position, and
typing characters, text may be inserted into the file. 1If a character
is overstruck, the old character will be replaced by the new one.

This overwrite mode is the default mode in the editor. The following
program may be typed in at this point.

PROGRAM test;

BEGIN

WRITELN(“* I AM A PASCAL WIZARD”);
END.

Once this program has been correctly entered, depress the clear
key followed by the character C . This will cause Blaise to enter the
command mode. A pair of angle brackets should appear at the bottom
left side of the screen. Type the word exit. Then depress the enter
key. If any errors are made in typing exit, they may be corrected by
backspacing over the error and retyping. A backspace may be performed
by depressing left arrow key. After the enter key is depressed, a
prompt for the file name will appear. You may specify any legal
TRSDOS file name including the drive specifiers. Depress the enter
key and the file will be saved. The source program may now be
translated by Alcor Pascal .

Beginners guide

Compiling the program

Once the program has been entered into the computer and placed in
a disk file, the next step is to compile it. The pascal compiler
translates the source program into a form that the computer can
execute. For example, suppose that you have entered the previous
example. This program may be stored in a file called: TEST/PCL The
simplest method to execute this program is to type the two commands:

PASCAL TEST
RUN TEST

This will compile and execute your program. Let's examine the
process in more detail. The first line causes the operating system to
load and execute the pascal compiler. The compiler then translates
the pascal source code contained in the file: TEST/PCL into code that
can be run on the computer. This code is stored in a file called:
TEST/OBJ . A listing will be sent to the terminal. The listing shows
the source program and will contain error messages for any errors
detected. The listing will be described in more detail in the System
Implementation Manual. If errors are detected, code numbers and error
messages will be contained in the listing. The errors in the source
program must be corrected before the program can be executed.

Running the program

Once the program has been compiled without errors, it can be
executed with the "RUN" command. "RUN TEST" causes the object code
stored in the file: "TEST/OBJ" to be loaded into memory and executed
The first thing that a pascal program normally does is to open
the files "INPUT" and "OUTPUT". When this happens, the prompt:

INPUT

I

ouTPUT =

will appear on the screen. At this time you may enter the file or
device to be used when the program writes to input or output. If you
simply press the enter key, then input/output will be directed to the
terminal. When any file is opened by a pascal program (by calls to
RESET or REWRITE), a prompt will appear on the screen. To the left of
the equal sign will be the name of the file being opened. You should
type the name of the disk file or device to be associated with that
file.

Beginners guide

Running the program

The runtime mapping of pascal files to physical files and devices
allows a program to redirect its input and output without any changes
to the source program and without recompiling the program. For
example, you could execute the TEST program with the output going to
the screen. When you are satisfied with the results, the output can
be directed to a file or line printer instead.

The file names that you type to direct pascal input and output
are in the same format as normal TRSDOS file names. The disk drive
specification is optional as in TRSDOS. There is one extension :
Input and output to any pascal file can be sent to physical devices as
well as to a file. The device names are simple extensions to the disk
names used by TRSDOS. For example, the name of the line printer is
“:L”, and the name of the crt is “:C”. There is also a dummy device.
If a file is associated with “:D”, then no actual output occurs. This
is useful if you wish to run the program and discard some of its
output. Complete information concerning how to compile, link and run
Pascal programs may be found in the Alcor Pascal System Implementation
Manual.

Sma fum S Seus Oem Qmw few few Bam fom Own Gumw Gem Omw Bm

BLAISE TEXT EDITOR
Alcor Systems

Second edition
First printing
1982

Quas Dem Gams Oue Bem Sk $mw Oem Bem Gem fuw Som Sum Suw Omw

Copyright (C) 1981 by Alcor Systems

SECOND EDITION
FIRST PRINTING-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from Alcor Systems.
No patent liability is assumed with respect to the use of
information contained herein. While every precaution has
been taken in the preparation of this book, Alcor Systems
assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use
of the information contained herein.

TRS80 and TRSDOS are trademarks of Tandy Corporation.

USCD Pascal is a trademark of UC Regents, San Diego campus.
Apple is a registered trademark of Apple Computer Inc.

Z-80 is a trademark of Zilog corporation.

CPM is a trademark of Digital Research.

-- Blaise text editing manual --

INTRODUCTION

A text editor is simply a program that is used to input textual
data into a computer system in such a way that the information may be
saved and used at a later time. Usually, text editors may be divided
into two categories. They are either line or screen oriented. Most
TRS80 users are familiar with line oriented type because this is the
kind of editor that is supplied with the TRS80 basic system.

A line oriented text editor is characterized by its many commands
required to simply delete or insert a character. Also, as movement
through a document or program is performed, the screen is not updated
to reflect the current position in the storage file. If it is desired
to view the current line or page being edited, you must type a command
to view it. This hidden context of the file being edited makes it
hard to visualize changes, and remember what text is being changed.

A screen oriented text editor is characterized by its typewriter
like display of text. The screen usually is kept updated with the
current page of text that is being edited. To perform simple
character insertions or deletions, you simply move the blinking cursor
on the screen to the desired character and hit the delete character or
insert character key. Many other editing commands that are difficult
to use in a line text editor become very simple in a screen oriented
text editor. For example, scrolling the display through the file may
be performed by the touch of a key. Most software word processors are
simply powerful text editors. Word processors usually have additional
commands to insert information into the file such that when the file
is printed on a line printer, the page will have the desired format.
Needless to say, a good screen oriented text editor will make program
entry or document preparation much easier and faster.

The Alcor Systems Blaise Text Editor provides a convenient tool for
entering programs or other textual documents into any computer system.
Blaise is compatible with most TRSDOS files and may be used for
entering or editing: Basic source programs, Pascal source programs,
letters or any other written documents.

(C) copyright 1981 Alcor Systems -1 -

GETTING STARTED

The Alcor Systems Text Editor requires:

HARDWARE

(1) Model I or III TRS80 computer
(2) 48K of memory
(3) 1 disk drive

SOFTWARE

(1) TRSDOS, or TRSDOS compatible
operating system. (Not supplied)

PLACEMENT OF EDITOR ON DISKETTE

The text editor is supplied on a 5-1/4 " minifloppy diskette. The
editor system is composed of the main editor file labeled ED/CMD and
several help files labeled with the /HLP file extension name. These
files may be copied to any diskette for use. The help files contain
HELP messages that may be viewed while in the text editor. They are
not required to be present. If they are not present on the same
diskette as the ED/CMD program, no help information may be obtained
during the edit session.

EDITOR WORK FILE

The text editor creates a new text file that is a copy of the file
being edited. All editing changes are made to this work file.
(T011l/TMP - TRS80) This is a protection feature to prevent any
fatal hardware or software errors during the edit from destroying
the edited file. After the editor successfully exits, and '
consistency checks have been made, the work file becomes the new
copy of the edited file. The o0ld copy is then deleted. This
requires that there always be a minimal amount of disk space
available on the diskette where the work file exists. If during an
exit the drive on which the work file, or the original file is
placed runs out of disk space, the editor will flag an error message
allowing an abort or appropriate actions to be taken.

TYPE OF FILES THAT MAY BE EDITED

New or old files may be created or edited. The size of files that
may be edited is only limited by the disk space available on a
diskette. Files may not be split across diskette boundaries, i.e.;
the whole file must reside on a single diskette. The file name
syntax, i.e.; legal naming conventions are the same as that allowed by
the particular operating system in use. The text editor files are
compatible with: Normal TRSDOS Basic files, Alcor Pascal source and
object files, or any other ASCII formatted files that comply with
TRSDOS file conventions.

-~ Blaise text editing manual --

REMOVAL OF DISKETTES FROM DRIVES
DURING AN EDIT SESSION |

The diskette containing the ED/CMD file may be removed after an
edit session has begun, subject to the following restrictions :

(1) There always must be a diskette
with an operating system installed
in the designated system drive. This
diskette may be swapped during the
edit session as long as the new diskette
contains a valid operating system,
and the change does not violate
(2)-(4).

(2) Removal does not cause the file
containing the editor workfile
to be removed.

(3) If help files are removed, then »
no HELP messages will be available. |

(4) Before exiting the editor, or
appending lines to the text buffer,
the diskette containing the origional
file is replaced in the drive.

* If the above rules are followed, you
may change diskettes in order to use
the INSERT FILE command in the editor.

FUNDAMENTALS
EDITOR COMMANDS

Editor commands may be accessed by two different methods. One is
by hitting certain pre-defined key sequences, and the other is by
entering a mode that allows command names to be typed in.

For most commands there are two alternate key sequences that will
invoke the command. One is a control key sequence and the other is a
labeled key sequence.

A control key sequence on the TRS80 MODEL III is initiated by
simualtaneously holding the shift and down arrow keys depressed and
then hitting one of the printable characters "A-2" . Control key
sequences have the advantage that they are in effect single key stroke
operations. I.E.; if the Shift and down arrow keys are held down, vyou
may quickly strike any other key repeatedly such as a tab key. This
would be preferable to hitting the shift key and then the tab key.
That would be two keystrokes per movement. The TRS80 keyboard does
not lend itself to single keystroke commands.

A labeled key sequence is initiated by : (1) simply hitting a
labeled key. (2) Hitting the clear key then a labeled key. (3)
Holding the shift key down and then hitting a labeled key.

(C) copyright 1981 Alcor Systems -3 -

EDITOR COMMANDS
(continued)

ANY command that may be invoked by a keystroke segquence may be
invoked by entering it's command name. There are certain additional
commands that are only accessible in the the command name mode. They
primarily are used for setting editor parameters or for performing
commands that require prompted input from the user. For all following
discussions, the mode which allows key sequence commands shall be
referred to as the compose mode, and command name entry as the command
mode.

All editing is performed on text that is loaded into a RAM text
buffer. This buffer holds new text data entered or may append text
data from an existing TRSDOS file. As editing is performed, the
updated buffer may be written to the file as desired.

HOW TO START

To invoke the text editor simply type the TRSDOS command:
ED filename

NEW FILES

To create a new file, leave the filename field blank. The editor
will clear a new text buffer. The screen will be cleared and will
display:

*EOB

at the top left hand side. A cursor will be displayed in
column one of the display. The editor automatically enters the
compose mode upon startup. A blank line must be inserted into the
empty text buffer before any text may be inserted. A blank line may
be inserted by depressing the shift key while at the same time hitting
the key labeled "@" . The blank line will always be inserted before
the cursor line. After several blank lines have been inserted into
the buffer, text may be typed directly into the buffer. The text is
always entered into the buffer beginning at the position of the cursor.
If the cursor is positioned over any text, as each new character is
entered, the old character is overwritten. If text is to be inserted
in the middle of an existing line, simply depress the clear key
followed by the I key. Any new text typed will be inserted at the
cursor position causing the rest of the line to move to the right.
The insert setting is canceled when any command such as a cursor
movement is performed.

-~ Blaise text editing manual --

COMPOSE MODE
CURSOR MOVEMENT

The following denotes a key sequence.
Shift/key ====> depress shift and key simualtaneously.
Clear/key ====> Hit clear key then labeled key.

The cursor may be positioned any place on the screen by depressing
any of the following labeled keys while in the compose mode.

~ Cursor up one line. If the cursor is
at the top of screen, then the screen

scrolls one line.

Cursor down one line. If the cursor is
at the bottom of the screen, then the
v screen scrolls one line.

_—— Cursor to the right one character. If
cursor is at the right edge of the
screen, then no movement occurs.

e Cursor to the left one character. If

the cursor is at the left edge of the
screen, then no movement occurs.

enter Cursor to the beginning
of the next line.

Clear/ <==- Cursor to the beginning of line.
Clear/ ==-> Cursor to the end of line.
Clear/ ° Scroll the display one page

toward the beginning of file.

Clear/ v Scroll the display one page
toward the end of the file.

Clear/T Tab right. If the cursor is at the
right edge of the screen, then the
cursor wraps around to the leftmost
tab stop.

Clear/B Tab left. TIf the cursor is at the
left edge of the screen, then the
cursor wraps around to rightmost
tab stop.

Clear/H Positon cursor to the top left
of display. (Home)

(C) copyright 1981 Alcor Systems -5 -

Shift/ --->
Shift/ <--=-
Clear/K

Clear/I

Shift/@

Clear/D

Clear/A

Clear/s

Clear/Y

Clear/?

Clear/C

-- Blaise text editing manual --

TEXT DELETION

Delete character under the cursor.
Delete the entire line under the cursor.
Delete text from cursor to the

end of the line.

TEXT INSERTION

Enter insert character setting. Will
overide the text overwrite setting.
This allows text to be inserted
anyplace in an existing text line.
Place the cursor at the desired
location and initiate the the Clear/I
sequence and type in the text.

Insert a blank line into the text
buffer.

Duplicate the line above onto the cursor
line. Text to the right of the cursor
position is replaced by a copy of the
text on the line above.

EDITOR PARAMETERS AND SETTINGS

Toggle the auto indent setting. Auto
indent causes the enter key to align

the cursor with the first non-blank

on the next line. If the next line is
blank, the cursor is placed below the
first non-blank on the line above. This
feature is useful when Pascal programming
with indentation.

Sets the typewriter like tab stop
at the current cursor position.

If a tab exists at the current cursor
position then it is cleared.

Display the amount of unused memory
available for text buffering.

Enter command name mode.

(C) copyright 1981 Alcor Systems

-- Blaise text editing manual --
TEXT MODIFICATION

Clear /G Merge the line after the cursor with
the cursor line.

Clear /0O Split the cursor line into two lines
at the cursor position. ;

Clear/F Search forward in the text buffer
for the next occurrence of the string
in the find string buffer. The find
string buffer is loaded with the
search string in the command mode by
the FIND command.

" Clear/R Search forward in the text buffer for
the next occurrence of the string in
the find buffer and replace with the
contents of the replace buffer. The
buffers are loaded with strings in
the command mode by the REPLACE
command.

COMMAND MODE

If while in the compose mode a Clear/C key sequence is initiated,
Blaise will enter the command mode. A pair of angle brackets along
with the cursor should appear in the bottom left edge of the display.
Any command that is defined by a key sequence may now be invoked by
typing its two character mnemonic command name. Mnemonic command
names for all of the key sequence commands are listed in the command
table summary. There are 16 additional commands that are available in
command mode that are not accessable in the compose mode. They are
primarily used for setting editor parameters or require prompted
information from the user. After a command has been executed in the
command mode, Blaise will automatically re-enter the compose mode, and
place the cursor at it“s new position in the text. Command name
abbreviations are allowed for all commands.

When in command mode, the command line may be edited using the left
arrow key. Pressing the left arrow will delete the last character on
the line and move the cursor back one column. Command entry may be
aborted by pressing the shift/left arrow. This will return the editor
to compose mode.

(C) copyright 1981 Alcor Systems -7 -

-- Blaise text editing manual --

TEXT BUFFER MANAGEMENT
PRE-EXISTING FILES

If the file to be edited already exists when Blaise is invoked, it~”s
first action will be to load the text buffer with a portion of the
file. All editing of a file is performed to text that is stored in
the text buffer. Blaise has enough text buffer area to load
approximately 13 K bytes of text data at a time on a 48 K machine.
Upon start-up, Blaise will not load the entire buffer with data, but
preserves a preset amount for new lines and changes. If the section
of the file to be edited is not loaded into the text buffer, as
evidenced by scrolling through the buffer, it must be appended to the
end of the buffer with the APPEND command. During the scroll
operation, when the end of the current buffer is encountered, an
"*EOB" message will be displayed. Any desired number of lines may be
appended to the end of the buffer. Appending lines to the buffer does
not erase any current buffer data, but simply adds to it, therefor it
is possible for memory to become exhausted. 1If the buffer memory is
exhausted as evidenced by a memory message during an APPEND operation,
a portion of the text buffer must be written to the workfile to
release some buffer space. This is accomplished with the WRITE
command. The write command will write the specified number of lines
from the beginning of the text buffer to the workfile. Once these
lines are written, they may not be loaded into the buffer again during
the current edit session. By writing and appending to the text
buffer, any size file may be edited by Blaise. In fact, the file size
is limited only by the size of a file that may fit on a diskette, if
the following precautions are taken.

WORK FILE

As previously discussed, all editing is performed on the editor work
file. 1If the work file is placed on the same disk as the original
file, then there must be enough space on the diskette at all times for
two copies of the edited file. This effectively cuts the size of file
that may be edited by one-half. The placement of the workfile on a
specific drive and diskette is dependent on the how Blaise is invoked.
Under TRSDOS, if the file name drive specifier is not appended to the
file name upon bidding of the editor, Blaise will search the various
drives, and place the work file on the lowest numbered drive
encountered that has enough space. If the drive specifier is appended
to the file name upon bidding of the editor, then the work file will
be placed on the same diskette as the original file.

Under TRSDOS, if the file to edited is a new file, I.E.; the file
name field is left blank, the workfile will be placed on the lowest
numbered drive that has enough space.

(C) copyright 1981 Alcor Systems - 8 -

P

-~ Blaise text editing manual --
COMMAND PARAMETERS

Some commands that may be accessed in command mode require user
input parameters for execution. All such commands may be invoked by
two different methods in the command mode. Beginners may simply type
the command name and then hit the enter key. If any parameters are
required, Blaise will prompt the user for the parameters. All
parameter entries should be terminated by the user by hitting the
enter key. Advanced users may desire to enter the parameters after
the command name on the same line. 1If all of the parameters are
entered on the same line as the command name, hitting the enter key
will cause Blaise to immediately execute the command. If all of the
parameters were not entered on the command line, Blaise will prompt te
user for the remaining unspecified inputs. The rule for entering
command parameters on the command line is that any string parameter
such as a file name must be enclosed or delimited by double gquotes.
An example would be "file name" .

COMMAND EXPLANATIONS

The sixteen additional commands available in the command mode are
explained below. Where parameters are required, the command line form
is included.

APPEND numberoflines

The append command reads text from the original file and appends it
to the end of the text buffer. After the append executes, a message
will appear at the bottom of the display with the toctal number of
bytes available for additional text. If the memory becomes exhausted,
then text must be written to the work file by the WRITE command.

WRITE numberoflines

A WRITE command will write to the work file the specified number of
lines starting from the first line of the text buffer. As the write
occurs, buffer space will be released. Once the specific lines have
been written to the workfile, they may no longer be edited during the
current session. They are permanently saved in the workfile.

HELP topic

The help command will display help messages to the screen
concerning the specified topic if help information is available.
Supplied help topics include: HELP - General help information. CMD -
Command mode information. KEY - Key definitions and compose mode
information. If the subject is left blank, general help will be
displayed. The help information may be viewed by using the same
movement commands used in the showfile command. To exit, hit clear
followed by "C".

(C) copyright 1981 Alcor Systems -9 -

SHOWFILE "filename"

The showfile command will open the desired file and display a
portion of it. Several special commands may be issued while in the
showfile command. They are:

o e s et v e o s o s e

Clear/ - Scroll the display up
! one page in the file.

Clear/ ! Scroll the display down
v one page in the file.
linenumber Position absolutely to

line number in file.

+ linenumber Scroll specified number
~ linenumber of lines relative to current
cursor line. + rolls to the
end of buffer, - rolls to the
beginning of buffer.
Clear/C Return to editing

fwm S fem $mm Gem S S fem Sew S Sum dem Do S Pem Gwm

Ge> fun B Gum Sus fuw $ew fum Pum fum e Bee G Sum Pum e

SHOWLINE linenumber
The showline command is convenient for positioning absolutely to any
line number in the buffer. Showline 1 is a quick way for positioning to
the beginning of buffer, and Showline 9999 for positioning to the end
of buffer.

INSFILE "filename"” startline numberoflines

This command will insert a portion of any pre-existing file into
the text buffer starting at the cursor location.

FIND "string”

The find command will search forward in the text buffer, (starting
at the cursor position) for the specified string. If the string is
found, cursor will be positioned at the first occurrence, at the
beginning of the string. If the string is delimited by quotes, then
leading or trailing blanks will be included in the search string.

REPLACE "old string" "new string"

Replace will search forward in the text buffer for the old string.
(starting at the cursor position) If the old string is found, then the
first occurrence will be replaced with the newstring, and the cursor
repositioned at the beginning of the new string.

- 10 -

QUOTE “"string"

The gquote command is used when it is desired to insert some
non-printable character into a file. It is also useful for inserting
certain printable characters that are not on the TRS80 keyboard into
the file. The quoted string is inserted at the current cursor
position. Non-printable characters may be represented by a # followed
by the two character hexadecimal number. (ASCII representation) For
example, #5B is the left bracket.

+ numberoflines
- numberoflines

The plus and minus commands are used to position the cursor a
specified number of lines relative to the cursor line.
(The blank after the + or - is required)

ROLL numbercflines

Roll will set the page size for all scrolling commands. It is set
to 13 lines by default upon editor invocation.

HSCROLL column

The hscroll command will scroll the display horizontally to the

left or right. This feature allows editing of files wider than the
TRS80 screen. Once a horizontal scroll is performed, the display will
remain in this mode until repositioned by another horizontal scroll
command. The column parameter is the new column position for the

left edge of the screen. Max column for TRS80s is 16.

TABS integer
TABS = integer,integer,integer.....

TABS integer will set a tab stop every integer positions. All tabs
may be cleared by setting integer to 0. The editor defaults to a tab
stop every third character position. An alternate form of the command
exists. Tabs may be defined as: TAB = integer,integer,integer.... at
the specified columns.

QUIT "answer yes/no"

Will abort an edit session. All changes to the original file are
lost, and the original file is preserved.

EXIT "filename"

The exit command is used to successfully end an edit session. The
exit command will write out the entire text buffer to the workfile.
Any non-appended lines from the original file will also be written to
the workfile. Once consistency checks have been made, file renaming
or deletions will occur. If a filename was specified when entering
the editor, you can respond with the enter key to the filename prompt.
This will replace the old file that was edited. You can also specify
the name of a new file. If the filename was left out when bidding the
editor, a filename must be specified in the exit command.

-— Blaise text editing manual --

EDITOR CONTROL KEYS

KEY CONTROL MNEM FUNCTION
ONIC

~ CTL/U UP Cursor up

v CTL/J DN Cursor down

< CTL/H LF Cursor left

> CTL/R RT Cursor right
CLEAR ©~ C(CTL/B RB Roll backward
CLEAR v CTL/A RF Roll forward
CLEAR < BL Cursor to BOLN
CLEAR > EL Cursor to EOLN
SHFT > CTL/P DC Delete character
SHFT < CTL/N DL Delete line
SHFT @ CTL/O0 1IL Insert line
ENTER CTL/M NIL New line
CLEAR A AT Toggle auto indent
CLEAR B CTL/T BT Back tab
CLEAR C CcM Command mode
CLEAR D CTL/D DU Duplicate line
CLEAR F CTL/C FN Find next string
CLEAR G MG Merge two lines
CLEAR H CTL/TL. HM Home
CLEAR I CTL/Q 1IC Insert char mode
CLEAR K CTL/K DE Delete to EOLN
CLEAR O oL Open line at cursor
CLEAR R CTL/Z RN Replace next string
CLEAR S CTL/W ST Set tab
CLEAR T TB Tab
CLEAR Y cT Clear tab
CLEAR ? MM Display memory

EDITOR COMMANDS

APPEND Add text to buffer
EXIT Exit and save file
FIND Find string

HELP Display help

HS CROLL Horizontal scroll
INSFILE Insert file

QUIT Abort changes

QUOTE Insert literal string
REPLACE Replace string

ROLL Set roll

SHOWFILE Display a file
SHOWLINE Position to line
TABS Set tabs

WRITE Write text to file

+

(C) copyright 1981 Alcor Systems

Move forward by lines
Move backward by lines

12 -

Name

:L

:C
:D

Dec-
imal

’...l

OCWONJOAUTdWNDHO

DEVICE NAMES

Device
Line printer
Screen
DUMMY

ASCII Character Set

Hex

00
01l
02
03
04
05
06
07
08
09
oA

Name

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT

LF

Dec-
imal

11
12
13
14
15
16
17
18
19
20
21

Hex

0B
ocC
0D
OE
OF
10
11
12
13
14
15

Name

VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DV4
NAK

- 13 -

-- Blaise text editing manual --

ASCII Character Set
Dec- Hex Name Dec- Hex Name

imal imal

22 16 SYN 75 4B K
23 17 ETB 76 AC L
24 18 CAN 77 4D M
25 19 EM 78 4F N
26 1a SUB 79 AF 0
27 1B ESC 80 50 P
28 1c Fs 81 51 Q
29 1D GS 82 52 R
30 1E RS 83 53 S
31 1F Us 84 54 T
32 20 "o 85 55 U
33 21 ! 86 56 V
34 22 " 87 57 W
35 23 # 88 58 X
36 24§ 89 59 Y
37 25 % 90 52 Z
38 26 91 5B [
39 27 ° 92 5C \
40 28 (93 5D]
41 29) 94 5E ~
42 2 % 95 5F

43 2B + 96 60 =
44 2C ’ 97 61 a
45 2D - 98 62 b
46 2E . 99 63 ¢
47 2F / 100 64 d
48 30 O 101 65 e
49 31 1 102 66 £
50 32 2 103 67 g
51 33 3 104 68 h
52 34 4 105 69 i
53 35 5 106 6A 3
54 36 6 107 6B k
55 37 7 108 6C 1
56 38 8 109 6D m
57 39 9 110 6E n
58 3 111 6F o
59 3B ; 112 70 p
60 3¢ < 113 71 g
61l 30 = 114 72 r
62 3E > 115 73 s
63 3F 2 116 74 t
64 40 @ 117 75 u
65 41 A 118 76 v
66 42 B 119 77 W
67 43 C 120 78 X
68 44 D 121 79 y
69 45 E 122 7a z
70 46 F 123 7B

71 47 G 124 7C p
72 48 H 125 7D L
73 49 I 126 7B -
74 4A J 127 7F DEL

(C) copyright 1981 Alcor Systems - 14 -

S G Do tem B Sem fem S e Gew Smn em dem fum Gem e

System Implementation Manual
TRS -80- MODELS I , III
Alcor SYSTEMS

Second Edition
First Printing
1981

G Gt Gom fem femt Gvm Gem Sum fem Gum $um g dmn e Smn Sem

Copyright (C) 1981 by Alcor Systems

SECOND EDITION
FIRST PRINTING-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from Alcor Systems.
No patent liability is assumed with respect to the use of
information contained herein. While every precaution has
been taken in the preparation of this book, Alcor Systems
assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use
of the information contained herein.

TRS80 and TRSDOS are trademarks of Tandy Corporation.

USCD Pascal is a trademark of UC Regents, San Diego campus.
Apple is a registered trademark of Apple Computer Inc.

Z-80 is a trademark of Zilog corporation.

CPM is a trademark of Digital Research.

L

System Implementation Manual Alcor Pascal

INTRODUCTION

This manual describes the specific characteristics of Alcor Pascal
as implemented on the TRS -80- models I and III microcomputer. The
implementation of Alcor Pascal on the two different models is the same
except where noted. 1In every language system implementation, there
are certain language features that vary upon computer implementation.
One of the advantages of Pascal is that these variations are minor,
and if a programmer minimizes the use on non-standard language
extensions, source programs may be written that have a high degree of
portability. Other machine dependent characteristics are such items
as how to invoke the compiler and support utilities.

The process of building an executable pascal program may be
summarized by the following diagram.

(C) copyright 1981 Alcor Systems -1 -

i
i
i
i
|
|
i
{
|
H
i

e se se se oe o

System overview diagram

e e g ————

R =

o e ——
Bt 3 2 3353

3
[a]
o)
3
0
'—-J
3]
o
M
[oN
o]
o
.
D
Q
o+

file

P D ey y——

® & 8 9 © 9 0 S 8 C O S C O L OO SO OO I OGSO e O 600 S e e O

Optional development package

(1) Optimizer
(2) native code generator

® 0 86 0 8 0 0 PO 0O EO O OO L O L O e O O 0SS 00 @O DO 06 S C G

®e ee 90 c¢ s0 se o

e oo e s e e e S o ——— ——— ——

e e R e ——

User program executing
in computer memory

P e R e T T ————

G GmE pm
et S P

P b e R —
i S Sttt i+ 1+ 5333

Input/Output files for
user program

P R N ——

YR P
S G G

System Implementation Manual Alcor Pascal

System Description
Pascal Compiler

The Alcor Pascal compiler is simply a program that is written in
Pascal and that executes on the host computer. 1It”’s purpose is to
translate other Pascal source programs into an intermediate language
called P-CODE . The p-code is a low level language designed
specifically as a target language for the pascal compiler and
resembles the assembly language for a stack oriented computer. Once a
program has been compiled, the object p-code program is stored in an
intermediate file. The intermediate file may be loaded and executed
by the host computer or run through the optional development package.

Optional development package
(not supplied with Alcor Pascal)
Optimizer program

After the source program has been translated into object code, it
may be processed by the OPTIMIZER. The purpose of the optimizer is to
remove statement redundancy in the translated object code. This will
effectively reduce the final size of the program by approximately
25-30 per-cent. The optimizer should be used where program size is
important. The optimized p-code is an exceptionally compact
representation of the pascal program. This is evidenced by the fact
that the Pascal compiler itself (an 8500 line pascal program), can be
run on a 48k machine without resorting to overlays.

Codegen program

If program execution speed is important, the native code generator
(codegen) program may be used to process the object program file.
Codegen will generate native Z-80 code which may be directly executed
by the processor. Execution speed is usually increased by a factor of
3 - 5 times. One of the drawbacks of code generation is that the
resultant program will grow in object code size by a factor of 2 - 3
over the p-code version. For large Pascal programs, (such as the
compiler itself) the resultant program image may not fit into
available memory. For small programs this may not be a factor. To
combine the best of both worlds the optional codegen program will
allow selective code generation of specific modules in a program.
This allows the critical paths of a program to be translated into
native Z-80 instructions, while at the same time reducing the overall
program size by utilizing p-code for the rest of the program. If
program size is not a factor, full code-generation may be performed.

(C) copyright 1981 Alcor Systems - 3 -

System Implementation Manual Alcor Pascal

System Description
Standard linking loader

Included in the standard release package is the linking loader.
After the compiler has translated the source code into p~code, the
p-code file may be loaded into memory and executed. The program that
performs this is the LINKING LOADER. Its purpose is to load any
number of object modules into memory. This allows separate
compilation of procedures and functions. To perform separate
compilation of a program, procedure or function, the compiler NULLBODY
option must be used. For more information, see the Alcor Pascal
R«7erence Manual. The linking loader includes an interpreter in the
final load module that executes the p-code instructions when the
program is run. The linking loader alsc has the capability of storing
the memory image of the program as an executable command file. Once
an image has been saved, the program can be executed simply by typing
the file name at the TRSDOS command level. The linking loader and
interpreter is a 9000 line program written in 2780 assembly language.

ALCOR PASCAL EFFICIENCY

A benchmark program composed of Pascal source statements was used
to measure the efficiency of programs trans!asted by Alcor Pascal. The
benchmark program used was published by BYTE “AGAZINE, SEPTEMBER, 1981
. It is an unbiased benchmark program and represents a cross section
of what any Pascal implementation should execute efficiently. The
results clearly indicate Alcor Pascal”’s superiority to many other
Pascal implementations. The following tables represent a summary of
the author”s findings along with the data for Alcor Pascal added.

(C) copyright 1981 Alcor Systems - 4 -

[}

Results of Benchmark published in BYTE 09/81, page 182

T 0 S W~ T S - — — ——— . W W - W W —— ———— 0 - — . - S - P8 W N . W —) W W ———— -

(With Alcor Pascal added)

Interpreted langquages

Compiled Total

Language and machine bytes

Alcor Pascal

(4mhz Z-80) 300
UCSD Pascal {4 mhz Z-80) 282
UCSD Pascal TRS-80-model

IT (4mhz Z-80) 282
Alcor Pascal TRS-80-model 300
I11 (2 mhz 2-80)

Alcor Pascal TRS-80-model 300
I (1.7 mhz Z-80)

Pascal/M, (4 mhz 2Z-80) 301
JRT Pascal, (4 mhz 2-80) 232

UCSD Pascal, Apple II
(6502) 287

Microsoft MBASIC, (4 mhz 2Z-80) ====
Apple integer basic, 6502 ====
Applesoft (real) , 6502 -

Level II BASIC using integers 371
TRS~-80- model I (1.7 mhz)

Microsoft Cobol version
2.2, 72-80 786

Level ITI BASIC using real 371
TRS-80- model I (1.7 mhz)

* Microsoft MBASIC is a trademark of Microsoft

bytes

12,754
8282

8282
10,568

=====

17,605

6625

Compile

loa

(secs)

146

d

Execute
(secs)

173

239

274
344

403

450
470

516
2250
2320
2806
4753

5115
5404

(From BYTE September, 1981)

Native code Pascal

Compiled Total Compile Execute

Language and machine bytes bytes load (secs)
(secs)

Pascal MT + (4 mhz Z%-80) 308 3043 102 19
Alcor Pascal
(4mhz Z-80) - 851 13,305 48 49
Alcor Pascal TRS-80-model 851 11,119 96 98
III (2.0 mhz Z-80)
Ithaca Intersystems Pascal/Z
(4 mhz z-80) 761 3328 124 109
Alcor Pascal TRS-80-model 851 11,100 114 114

I (1.7 mhz z-80)

NOTE- LOAD MODULES DO NOT INCLUDE FLOATING POINT AND MOST
I/0 RUNTIME.

* Pascal MT is a trademark of Micro Systems
* Pascal Z 1is a trademark of Ithaca Intersystems

Overlayed pascal compiler

The size of a Pascal program that may be compiled is dependent on
the number of symbols used in the source program and not necessarily
the number of lines in the program. The non-overlayed compiler should
be able to compile a typical 1000 line program with all of its
associated symbols. A further improvement can sometimes be made by
Separately compiling procedures or functions. If the program is too
large for the non-overlayed compiler, the overlayed compiler may be
used. The overlayed compiler has been segmented such that parts of it
reside on the disk during execution, and are read into memory only as
needed. The overlayed compiler will execute more slowly than the
non-overlayed version, but generates identical object code. The
overlayed compiler has enough space to compile a typical 4000 line
Pascal program with all of its associated symbols.

System Implementation Manual Alcor Pascal

Using Alcor Pascal on the TRS80

The first step in developing a computer program is to define the
problem and develop algorithms for the solution. Once the algorithms
are specified, the next task is to translate them into a programming
language. Pascal is a particularly good expression language for a
large number of problems. The program is then entered into the,
computer and executed. This section describes the procedures for
performing the last two steps on the TRS80. If you are not familiar
with the Pascal language, refer to the Alcor systems pascal tutorial
for information on the language. For those familiar with pascal, the
pascal reference manual contains compact detailed information on the
features of Alcor pascal.

Once the program has been designed, the next step is to enter the
program into the computer. This is normally accomplished with the aid
of a text editor. A screen oriented text editor is supplied with the
compiler. For details on how to use this editor refer to the Editor
reference manual.

Compiling the program

Once the program has been entered into the computer and placed in a
disk file, the next step is to compile it. The pascal compiler
translates the source program into a form that the computer can
execute. For example, suppose that you have developed a program to
prepare your income tax return. This program may be stored in a file
called: TAXES/PCL. The simplest method to execute this program is to
type the two commands:

PASCAL TAXES
RUN TAXES

This will compile and execute your program. Let”s examine the
process in more detail. The first line causes the operating system to
load and execute the pascal compiler. The compiler then translates
the pascal source code contained in the file: TAXES/PCL into code that
can be run on the computer. This code is stored in a file called:
TAXES/OBJ . A listing will be sent to the CRT. The listing shows the
source program and will contain error messages for any errors
detected. The listing will be described in more detail in a later
section. If errors are detected, code numbers and error messages will
be contained in the listing. The errors in the source program must be
corrected before the program can be executed.

Once the program has been compiled without errors, it can be
executed with the "RUN" command. "RUN TAXES" causes the object code
stored in the file: "TAXES/OBJ" to be loaded into memory and executed.

(C) copyright 1981 Alcor Systems -7 -

System Implementation Manual Alcor Pascal

Using Alcor Pascal on the TRS80

The first thing that a pascal program normally does is to open

the files "INPUT" and "OUTPUT". When this happens, the prompts:
INPUT =
QUTPUT =
will appear on the screen. At this time you may enter the file or
device to be used when the program writes to input or output. If you

simply press the enter key, then input and output will be directed to
the screen. When any file is opened by a pascal program (by calls to
RESET or REWRITE), a prompt will appear on the screen. To the left of
the equal sign will be the name of the file being opened. You should
type the name of the disk file or device to be associated with that
file.

The runtime mapping of pascal files to physical files and devices
allows a program to redirect its input and output without any changes
to the source program and without recompiling the program. For
example, you could test the taxes program with the output going to the
screen. When you are satisfied with the results, the output can be
directed to a file or line printer instead.

The file names that you type to direct pascal input and output
are in the same format as normal TRSDOS file names. The disk drive
specification is optional as in TRSDOS. There is one extension.

Input and output to any pascal file can be sent to physical devices as
well as to a file. The device names are simple extensions to the disk
names used by TRSDOS. For example, the name of the line printer is
':L', and the name of the crt is ':C'. There is also a dummy device.
If a file is associated with ':D', then no actual output occurs. This
is useful if you wish to run the program and discard some of its
output,

THE PASCAL COMMAND

The PASCAL command causes the pascal compiler to be loaded and
executed. This command has several forms. The simplest form is:

(angle brackets required when stack is specified)

PASCAL <stack> file name

where file name is the name of a file containing a pascal program.
The <stack> is an optional parameter that sets an upper limit on
memory space that the compiler may use for stack manipulations. The
default size should be suitable for most applications. The default
stack size is 3.5K for the non overlayed compiler. 4.5K should be
suitable for most large programs. If more stack is allocated than
available, the compiler may terminate prematurely with unpredictable
results. The compiler itself is a pascal program and follows the
same conventions for stack and heap usage as other Pascal programs.

(See pages 9,10) In the short form, the extension for the source
file is assumed to be /PCL and the object code is sent to file
name/OBJ. Any extension typed in the command line will be ignored.
A disk drive name may be specified. For example,

(C) Copyright 1981 Alcor Systems - 8 -

System Implementation Manual Alcor Pascal

Using Alcor Pascal on the TRS80

PASCAL TAXES:1
will cause the program "TAXES/PCL:1" to be compiled and the object to
be stored on disk drive one. In this case the same disk drive will be
used for both source and object. If the disk drive is omitted, TRSDOS
will search all the drives for the first occurrence of TAXES/PCL and
will store the object on the lowest numbered drive with space
available. 1In the short form, the listing will always be displayed on
the crt screen.

The long form of the pascal command uses simply: PASCAL to invoke
the compiler. 1In this case, the file names for the source, object and
listing will be prompted for on the screen. You should type the name
of the actual files to be used. Normal TRSDOS syntax applies. 1In
this case the file names are used as specified. The source and cbject
can be on different disk drives and the listing can be placed in a
file, sent to the screen or sent to the line printer. For example,
the following sequence will cause the file: "TAXES/TMP" to be compiled
with the object code stored in "TAXES/OBJ" on disk drive 2 and the
listing will be sent to the line printer.

PASCAL <stack>

SOURCE = TAXES/TMP
OBJECT = TAXES/OBJ:2
LISTING = :L

THE RUN COMMAND

The run command is used to load and execute a previously compiled
pascal program. The object code will be loaded and the program
executed. The run command contains the object code for the TRS80
support routines (such as SETPOINT, CLEARSCREEN, etc). Any of these
routines can be called. If any other external procedures are
required, the linking loader must be used to link these external
procedures to the program. The run command is invoked as:

RUN program

Pascal programs use a stack to store local variables and to save
return addresses for procedure and function calls. This stack is
allocated when the program is run and the required size is determined
by the number and type of variables declared and the number of and
sequence of procedure calls. Methods of estimating the amount of
stack required for a program are included in a later section of this
manual.

(C) copyright 1981 Alcor Systems -9 -

Using Alcor Pascal on the TRS80

The run command allows the amount of stack space to be specified
on the command line. 1In the run command, the size of the stack is
selected by following the program name with the stack size, separated
with a blank or a comma. For example, the following line would cause
the program DATABASE to execute with 15K (15360 bytes) of stack space.
(No angle brackets around 15K required in run command)

RUN DATABASE 15K

The stack size can be specified as a decimal or hexadecimal
number. Hexadecimal numbers have a '#' or '>' as the first character.
This is the same notation as is used in the pascal language. The
letter 'K' means 1024, so 8K is equivalent to 8*1024 or 8192. If no
stack size is specified, then one half of the unused memory space is
allocated for the stack, and the other half to the heap. The heap is
the area of memory used by the pascal program for dynamic memory
storage as required by the procedures NEW and DISPOSE.

When execution of the program completes, the amount of stack and
heap used is displayed on the screen. These numbers reflect the
actual gquantity of memory used during execution.

THE PASCAL COMPILER LISTING

The pascal compiler reads the source program from a file and
produces two outputs. One of these is a file containing the object
code. This code is loaded when the program is executed. The other
output of the compiler is the listing. The listing contains the text
of the source program with some additional information.

The listing is divided into pages. At the top of each page is a
heading. The heading contains the version number of the compiler,
the time and date when the compile started, and the page number.

Each page after the first contains a form feed (contrcl/L or #0C)
character. The form feed will cause a page eject on most printers.

Each line on the listing has the address of the code being
generated on the left. This address is expressed in hexadecimal and
is relative to the beginning of the procedure. Each procedure starts
over at zero. These numbers may be used during debugging to identify
the location where an error occurred. When a runtime error is
detected, the runtime system displavs the location of the error on the
screen.

The starting address of each procedure in memory may be displayed
by the "S" command within the linking loader. 1If starting address of
the procedure in which the error occurred is subtracted from the
address of the error, the resulting displacement may be used to
identify the line within the source program where the error occurred.

System Implementation Manual Alcor Pascal

Using Alcor Pascal on the TRS80

If errors are detected by the Pascal compiler, error messages will
appear in the listing. Error message lines have a string of five
asterisks (“*****“) at the beginning of the line. An up arrow will
appear pointing at the approximate location within the line where the
error was detected. This will be followed by one or more error codes.
It is possible for a single error to generate more than one error
code. For example, a procedure argument which is an undefined
variable also does not match the type of the parameter. In most cases
the first error code identifies the cause of the error.

If any errors were detected, a summary of the meanings of the error
codes that were generated is printed at the end of the listing.

USING THE ALCOR PASCAL LINKING LOADER

This section describes the use of the Pascal linking loader. The
linking loader provides powerful facilities for configuring Pascal
programs. Separately compiled programs and procedures may be linked
together and executed. Programs may be linked and stored as command
files on disk and then later invoked from TRSDOS as commands. These
command files behave in the same way as the utilities supplied with
the operating system. This section assumes that the reader is
familiar with the Alcor Pascal reference manual and has some
experience with Pascal on the TRS80.

Invoking the loader:

The loader is executed by typing "LINKLOAD" at the TRSDOS command
level. At this point the linking loader is brought into memory from
disk. The first item displayed is a menu of commands followed by the
command prompt:

L=LOAD, R=RUN, T=TRSDOS, I=INIT, S=SYMBOLS, B=BUILD CMD
>>

Each of these commands will be described in detail later. All
commands require only single letter, although longer names will also
be accepted. A command is terminated with the ENTER key. To invoke a
command, simply type its first letter followed by ENTER. If more
information is required, additional prompts will be supplied. The
list of commands can be displayed by typing "H" or "?".

(C) copyright 1981 Alcor Systems - 11 -

System Implementation Manual Alcor Pascal
Using Alcor Pascal on the TRS80
Loading Programs:

The load command is used to load programs, procedures and functions
into memery. To load a program, type "L" and press the "ENTER" key.
The load command will ask for a file name. Type the name of the file
in standard TRSDOS notation. The file should contain object code as
generated from the Pascal compiler. The object file will be opened,
and the object code will be loaded into memory. Each time a program,
procedure or function is loaded, its name will be displayed on the
screen. This will allow you to monitor the load process, and shows
the identity of the procedures being loaded.

The object code for each Pascal procedure is compiled into a
separate entity. These are then linked together when they are loaded.
This allows procedures to be compiled separately and then joined.
Thus, a program may be compiled a piece at a time, and when changes
are made, only the parts affected by the change need to be recompiled.
This also allows the creation of libraries of utilities. These
utilities can be loaded with any program that needs them, but need be
compiled only once.

Symbols:

The linking loader records the name and address of each procedure
in a table as it is loaded. Also in this table are the names of
procedures that have been called (referenced) by another procedure,
but have not yet been loaded into memory. This symbol table can be
displayed to the screen with the "S" command.

The symbols command displays all currently defined or referenced
symbols on the screen. One procedure name is displayed per line.

" After the procedure name is a character that describes the use of that
procedure. A "D" indicates that the name is defined; that is, the
procedure has been loaded into memory. An "R" indicates that the
procedure has been referenced but not yet defined. This means that a
procedure that has already been loaded makes a call to this procedure.
All procedures that are called must be loaded before the program can
run. A "C" indicates that the symbol is the name of a common block.
Commons are used to provide statically allocated shared data. See the
Alcor Pascal reference manual for an explanation of the use of
commons .

The last item on the line is the address of the symbol. If the
symbol is defined ("D") then this is the address in memory where the
procedure begins. If the symbol has not been defined ("R") then this
is the address of the last place it was used (called).

(C) copyright 1981 Alcor Systems - 12 -

System Implementation Manual Alcor Pascal

Using Alcor Pascal on the TRS80

Running Programs:

After a program has been locaded, it can be executed with the Run
command. This command will prompt for two pieces of information. The
first prompt asks for the name of the program. More than one program
can be loaded at a time so you have the option of selecting which one
to execute. Simply type the name of the program in response to the
prompt. If the line is left blank (press enter only), then the most
recently loaded program is run. This is the last name that was
displayed during the LOAD command. If only one pascal object file is
loaded, the run command will always execute the main program in
response to a null entry.

The second prompt from the run command asks for the amount of stack
space required by the program. As in the RUN program, one-half of the
unused memory is allocated to stack, and the other half to the heap by
default. If these space allocations are sufficient, then simply press
the enter key. Otherwise enter a value. The size of the stack may be
expressed in decimal, hexadecimal (precede the number with ">" or
"#"), or in kilobytes. 8k means 8 times 1024, or 8192 bytes. Methods
of estimating the required stack size are included in a later section
of this manual.

The program will execute after the second prompt is answered. If
files are used by the program, the names of the files to be used will
be determined from the keyboard. When a file is opened with RESET or
REWRITE, the pascal file name will be displayed on the screen and you
will be requested to type the name of the actual file to be used. The
names are in standard TRSDOS notation. If you wish to use an Input or
Output device instead of a file, this can be specified in a manner
analogous to disk names. A device is designated by a colon followed
by a letter indicating the device. For example :L is the line printer
and :C is the crt and keyboard.

Building command files:

Once a program has been loaded, it may be saved on disk as a command
file. This is done by the build (B) command. The first two prompts
from this command are the same as for the run command and have the
same meaning. The build command then asks for a file name. This is
the name of the file that will contain the generated command. The
program will be saved on disk in TRSDOS loader format and may be run
at a later time by typing its name to TRSDOS. The build command then
returns control to TRSDOS. The program may be run by typing its name
to TRSDCS.

(C) copyright 1981 Alcor Systems - 13 =~

System Implementation Manual Alcor Pascal

Using Alcor Pascal on the TRS80

Init:

The init command clears the symbol table and redisplays the command
menu. This command may be used if the wrong program is loaded by
mistake. It is equivalent to exiting to TRSDOS and then running LOAD
again.

Trsdos:

The T command returns to the TRSDOS operating system.

ERROR MESSAGES

The following error messagdes are generated by the linking loader:
*** CANNOT OPEN FILE

This message is generated when you attempt to load and the loader
is unable to find a file by the name specified. This may be caused by
a misspelling, or the wrong disk being in the drive.

**%* UNRESOLVED REFERENCES

When you use the run command to execute a program, or the build
command to generate an image on disk, the loader checks that all of
the procedures that are called within the program have been loaded.
If there are procedures or functions that have been called but have
not been defined, then this message is generated. At this point, you
can load the required modules and repeat the command. The symbols
command can be used to list names of the procedures that are not vet
defined. These will have an "R" in the listing.

%% INVALID OBJECT TAG

This message is issued when a load is performed on a file that is
not in a valid object format. The most frequent cause of this error
is an attempt to load the source program instead of the object.

k%% SYMBOL TABLE FULL

The linking loader has room for 256 different external symbols. If

more procedures than this are loaded, the symbol table will become
full.

(C) copyright 1981 Alcor Systems - 14 -

Using Alcor Pascal on the TRS80

*** ILLEGAL REFERENCE

This message signifies an inconsistent structure in an object
file. It is an indication that the file has been damaged. The best
solution is to recompile the offending program.

Estimating Stack Size

Pascal programs use a stack to store local variables and to save
return addresses for procedure and function calls. This stack is
allocated when the program is run and the required size is determined
by the number and type of variables declared and the number of and
sequence of procedure calls. The stack is a dynamic structure. Space
is allocated when a procedure is called and released when the
procedure is exited.

The total stack size required by a program is determined from its
dynamic behavior at run time. Each time a procedure is called, space
is allocated for its local variables. The total stack in use is a
function of the number of procedures active at the time and the number
and sizes of variables used within those procedures. If two
procedures are never active at the same time, then the space used by
each can be shared. The total stack that must be allocated is
determined from the maximum size that is in use at any given time.

The simplest method of determining stack requirements is to run
the program. Specify enough stack for it to run, perhaps with an
excess. When the program terminates, the maximum stack used by the
program 1is printed on the CRT. A good rule of thumb is to allocate
20% more stack than is required for a typical execution of the
program.

The size of stack required can also be determined from the source
program. It is necessary to determine which procedures will be active
at a given time. Then add the size of the local variables for each
procedure., If too much or too little stack is allocated for the
program, it may terminate unpredictably.

The sizes of simple variables are summarized below:

type size in bytes
CHAR 1
BOOLEAN 1
INTEGER 2
STRING 2
REAL 4
REAL (double precision) 8
FILE 2
TEXT 2

- 15 -

System Implementation Manual Alcor Pascal
Using Alcor Pascal on the TRSS80

The size of an array is determined by multiplying the size of the
array (upper bound-lower bound+l) by the size of an element. The size
of a record is determined by adding the sizes of its individual
fields. Packing is on byte boundaries.

The size of a set is one plus the ordinal of its largest possible
member divided by 8. Enumerated types require one byte, and subranges
are one byte if the upper bound is within 255 of the lower bound and
two bytes otherwise. (0..255 requires one byte).

To calculate the total stack size required, you should also include
64 bytes for the predeclared files INPUT and OUTPUT. Active
procedures requiré space for their parameters as well as their local
variables. Parameters passed by value require storage based on the
size of the variable; parameters passed by reference require two bytes
each. Each active procedure also requires 9 bytes to store dynamic
return information.

PASCAL MEMORY USAGE

The pascal linking loader or RUN program is loaded by TRSDOS at #5200
in memory. The pascal program that is being executed will be loaded
immediately above the loader. The next segment above the program is
used to contain the pascal stack. The stack is used by pascal to
contain the local variables declared in the VAR section of each
program, procedure or function. It also contains return addresses and
linkage information.

The remainder of available memory is used for the heap. The heap
is a section of memory that is used for allocating dynamic storage.
Programs that use pointers and the procedure NEW, will use storage
from t“he heap. The heap also contains the buffers used to read from
and write to files.

The total amount of memory available to pascal is determined from a
TRSDOS system constant. On the TRS80 model I, the location of the top
of memory is stored at #4049 in system RAM. On the model III, the
location is #4411. 1If other programs are to reside in memory along
with pascal, they should be loaded at the top of memory. The top of
memory address should be changed to prevent pascal from using the
reserved locations.

(C) copyright 1981 Alcor Systems - 16 -

Using Alcor Pascal on the TRS80
Compiler memory constraints

The Alcor Pascal compiler requires approximately 33k of memory
for code. Of this total, 27k is the compiler itself and the remainder
is runtime support. The runtime support portion contains the drivers
for input and output devices, an interface to the file system and the
Pcode interpreter. TRSDOS occupies 4.5k of memory, which leaves 10.5k
bytes of memory for data. 4.5k of this total is used for stack space
by the compiler, with the result that the heap is approximately 6k
bytes. This is enough space for about 250 symbols to be defined. A
program that uses more than 250 symbols at a time will run out of heap
space during the compile.

There are some ways of saving memory during the compile so that
larger programs can be compiled. The limit on symbols is relative to
the number of symbols visible at any point within the program.

Symbols that are not available to the program are not retained by the
compiler. The use of symbol table space can be improved by defining
fewer global variables at the outer levels and making use of locals
whenever possible. This is also good programming practice.

The length of symbol names is not relevant in Pascal, unlike
BASIC. Use of long names has no effect on program size or compiler
memory usage. Extensive use of string constants will cause the
compiler to use more memory. If a string constant is used in more
than one place in the program, it will take less space if it is
declared as a constant.

PASCALB is the overlayed or segmented version of the compiler.
This version dynamically loads portions of the Pascal compiler from
- disk as needed. This increases the amount of memory available for
symbols and allows larger programs to be compiled. The overlaved
compiler will compile programs that are four times the size that can
be compiled with the non-overlayed compiler. I.E.; a typical 4000
line program will compile successfully. It also has the drawback that
the compiler runs more slowly.

REAL NUMBERS

Real numbers are either single precision or double precision.
The TRS80 rom routines are used for all floating point calculations,
and the precision and accuracy of calculations are the same as for
Basic programs. Whether real numbers in Alcor Pascal are considered
to be single or double precision by the compiler is set by a compiler
switch setting at compile time. See the Alcor Pascal Reference Manual
, "compiler options".

Single precision

Mantissa Exponent

6 digits -38..+38
Double precision

Mantissa Exponent

16 digits -38..+38

- 17 -

System Implementation Manual Alcor Pascal

TRS80 Procedure and Function Library

A set of functions and procedures to access the hardware features of
the TRS80 is provided with the Alcor Systems pascal compiler. These
procedures can be declared as external procedures within pascal
programs. The object code for these procedures and functions is
provided in two forms.

If the program is executed with the RUN command, the function
library is contained within the RUN program. Any of the library
procedures and functions can be called and the routine will be linked
to when the program is loaded. 1If the linking loader is used, these
routines are not automatically available. This allows programs that
do not need these routines to have more space available. The function
library is provided in object form on disk. This file can be loaded
with the load command from the linking loader. This will make all of
the library routines available.

Each of the library routines is described below. A pascal external
declaration is given. This declaration should be included in any
program that uses the routine.

The external declarations of the library routines are included in a
file on the release disk. Any or all of these declarations can be
inserted into the source program using the insert file command in the
text editor.

PROCEDURE CLEARGRAPHICS; EXTERNAL;

The purpose of this procedure is to clear the display when utilizing
the graphics routines. 1Its function is similar to the clearscreen
function but loads all hex 80”s into the display memory, instead of
hex 20”s as CLEARSCREEN does.

PROCEDURE SETPOINT (X, Y : INTEGER); EXTERNAL;

This procedure sets a graphics point on the screen. The location of
the point is specified with the x (horizontal) and y (vertical)
coordinates. The value of x should be in the range: 0 <= x <= 127 The
value of y should be in the range: 0 <= y <= 47

PROCEDURE RSETPOINT (X, Y : INTEGER); EXTERNAL;

This procedure clears a graphics point on the screen. The location
of the point is specified with the x (horizontal) and y (vertical)
coordinates. The value of x should be in the range: 0 <= x <= 127 The
value of y should be in the range: 0 <= y <= 47

FUNCTION TESTPOINT (X, Y) : BOOLEAN; EXTERNAL;

This function tests the state of a point on the screen in graphics
mode. X and Y are the horizontal and vertical coordinates of the
point to be tested. The function returns TRUE if the point is on
(white), and FALSE if the point is off.

(C) copyright 1981 Alcor Systems - 18 -

TRS80 Procedure and Function Library

TYPE
BYTE = 0..255;
FUNCTION PEEK(ADDRESS : INTEGER) : BYTE; EXTERNAL;

This function returns the contents of any memory location. It
may be used to examine memory or memory mapped input devices. ADDRESS
is the address being examined. An address may be passed if its value
is known. The addresses of pascal variables may be obtained by
calling the LOCATION function. (see Reference Manual)

PROCEDURE POKE(ADDRESS : INTEGER; VALUE : BYTE); EXTERNAL;
Poke is used to alter the contents of any location in memory. It
may also be used to write to memory mapped output devices such as the
printer port.

PROCEDURE GOTOXY (X, Y : INTEGER); EXTERNAL;

This procedure positions the cursor on the CRT to the specified
location. If a write is performed to a file connected to the screen
then the text will appear beginning at the addressed location. The
procedures WRITECH and WRITESTRING (see below) also use this location.
The value of x should be in the range: 0 <= x <= 63 The value of y
should be in the range: 0 <= y <= 15 If GOTOXY is used inconjunction
with Pascal READ or WRITE statements, then a call to the external
procedure NOBLANK at the beginning of the program is necessary. The
TRS80 ROM driver for the screen will automatically cle:r the next line
on the display when the carriage return character is r:ceived. The
can be detrimental when constructing menu displays. A call to NOBLANK
will cause the next line to always be re-displayed.

PROCEDURE NOBLANK(REDISPLAY : BOOLEAN); EXTERNAL;

The TRS80 ROM routine driver for the screen will automatically
clear the next line on the display when a CR character is received. A
call to NOBLANK with REDISPLAY := TRUE will cause the next line to
always be preserved if REDISPLAY := false, it will be blanked.

The Pascal logical files used for screen display must be RESET after
the NOBLANK call for it to take effect. This includes INPUT.

PROCEDURE READCURSOR(VAR X, Y : INTEGER); EXTERNAL;
This procedure returns the current position of the cursor on the
crt screen. X is the horizontal position (character) and Y is the
vertical position (line).

PROCEDURE WRITECH(CH : CHAR); EXTERNAL;

This procedure writes a single character to the CRT at the
current cursor location. The cursor location is advanced by one.

TRS80 Procedure and Function Library

TYPE
CHARSTRING = PACKED ARRAY[l..XX] OF CHAR;
PROCEDURE WRITESTRING (VAR S : CHARSTRING; FIRST, LAST : INTEGER):
EXTERNAL; (XX is any length)

This procedure writes a portion of a string of characters to the
screen. The text is written starting at the current cursor location.
FIRST is the index of the first character to be written, LAST is the
index of the last character to be written. The total number of
characters displayed is: LAST-FIRST+l. If last is less than first
then no characters are written.

PROCEDURE CLEARSCREEN; EXTERNAL;
A call to CLEARSCREEN causes the crt display to be cleared and
the display to be set to 64 character width.

PROCEDURE INKEY (VAR CH : CHAR; VAR READY : BOOLEAN); EXTERNAL;
This procedure scans the keyboard to determine if a key is being
pressed. If a key is currently pressed, then CH is the character
generated by that key and READY is set to TRUE. 1If no key is pressed,
then READY is FALSE and CH is the space character: *~ ~.

FUNCTION GETKEY : CHAR; EXTERNAL;
This function waits for and returns the next character from the
keyboard.

FUNCTION INP(PORT : BYTE) : BYTE; EXTERNAL;
This function performs input from a Z80 IO port. The port number
is passed to the function and the value read from that port is
returned as the function value.

PROCEDURE OUT (PORT, VALUE : BYTE); EXTERNAL;

This procedure performs physical output to a 280 port. It may be
used in conjunction with the function INP to communicate with devices
interfaced as input or output ports. The two parameters specifv the
port number and the value to be written to that port.

TRS80 Procedure and Function Library

PROCEDURE USER(ADDRESS : INTEGER; VAR DATA : INTEGER); EXTERNAL;

This procedure interfaces to assembly language routines resident
in the TRS80“s memory. ADDRESS is the physical address where the
routine is loaded. Any assembly language routines that are to be
called from pascal should be loaded in a portion of memory that is not
used by TRSDOS or PASCAL. The location of the top of memory can be
set by using the TRSDOS model I debugger to alter location #4049 in
RAM, or location #4411 on the model III. This location contains the
highest usable location in memory. Pascal will not use any memory
above this address, so assembly language routines can be loaded there.

Information is passed to the assembly language routine through
the DATA parameter. When the assembly language routine is called, the
HL register pair contains the value of DATA. When the routine exits,
the contents of the HL register pair is returned as the new value of
DATA. In cases where more than one word of information is required,
the value of DATA can be the address of a variable. The address of
any pascal variable can be obtained by a call to the predefined
function: LOCATION. This enables the called assembly language routine
to access arrays or buffer data areas. The assembly language routine
is entered with a standard 280 call instruction and should be exited
via a return. All 280 registers are available for use in the assembly
language subroutine.

PROCEDURE CALLS (ADDRESS : INTEGER; VAR A : BYTE;
VAR BC, DE, HL, IX, IY : INTEGER); EXTERNAL;

This procedure can be used in a similar manner to USER to call
assembly language subroutines. The difference is that CALLS permits
you to set up all of the %80 registers from pascal. The values passed
will be in the registers when the subroutine is called. When the
subroutine returns, the current contents of all registers are returned
to the pascal program via the reference parameters.

TYPE
ALPHA = PACKED ARRAY[1..8] OF CHAR;
PROCEDURE TIME (VAR T : ALPHA); EXTERNAL;
This procedure returns the current time of day. The time is in
the form of: hh:mm:ss

TYPE
ALPHA = PACKED ARRAY[l..8] OF CHAR;
PROCEDURE DATE (VAR T : ALPHA); EXTERNAL;
This procedure returns the current date as known to the operating
system. The date is returned as: mm/dd/yy

System Implementation Manual Alcor Pascal

TRS80 Procedure and Function Library

FUNCTION FILESSTATUS (VAR F : TEXT) : BYTE; EXTERNAL;

This function returns the status of a file. The file can be of any
type, but the external declaration must specify a type that matches
the type of file being tested. The byte returned is the error code
for the latest IO (input or output) error. If no errors have
occurred, then zero is returned. This function is used in conjunction

with IOSERROR and allows a program to detect and recover from its own
JO errors.

PROCEDURE IOSERROR(NEWSTATE : BOOLEAN;
VAR OLDSTATE : BOOLEAN); EXTERNAL:;

This procedure sets the state of the IO error recovery flag within
the pascal runtime system. This flag is used to determine whether a
program detects its own IO errors. If the flag is set to true, then
default error processing is performed. 1In case of an error on a file
or device, a message is displayed on the CRT and the program halts.

If the I0 error flag is set to false, then all IO errors are
ignored by the system, and it is up to the program to check for and
recover from IO errors. IO errors can be detected by calling the
function FILESSTATUS.

NEWSTATE is a boolean value that sets the new state of the IO error
recovery flag. OLDSTATE is used to return the previous value of the
flag. This allows a program to change the state temporarily and then
restore it.

PROCEDURE HPSERROR (NEWSTATE : BOOLEAN;
VAR OLDSTATE : BOOLEAN); EXTERNAL:;

This procedure sets the state of the heap error recovery flag within
the pascal runtime system. When this flag is set to true, then a call
to the procedure NEW will cause the program to terminate with an error
message if no more space is available. Setting this flag to false
causes the procedure NEW to return NIL if no space is available. The
calling program should check for NIL on each call to NEW when this
flag is set to false. This allows a program to use maximum memory
from the heap without danger of an abnormal termination when space is
exhausted.

(C) copyright 1981 Alcor Systems - 22 -

TRS80 Procedure and Function Library

TYPE
FILENM = PACKED ARRAY[1l..XX] OF CHAR;
ALPHA = PACKED ARRAY[l..8] OF CHAR;

(Where XX is any length long enough for the filename)

PROCEDURE SETS$SACNM(VAR F : TEXT; VAR file name : FILENM;
NAMELENGTH : INTEGER; VAR FILEID : ALPHA); EXTERNAL;

SETSACNM is used to set the name of the physical file or device
to be associated with a pascal file. It allows a program to compute
file names internally. For example, a database program may know the
name of the file containing the database. This procedure allows the
program to specify the file name rather than requesting it from the
keyboard.

The parameter F can be a file of any type. The external
declaration of SETSACNM that is included in the source program must
specify a type for F that matches the actual file type to be used.

File name is a string containing the text of the file name. This
string must be compatible with the operating system syntax for file
names. The physical devices: lineprinter (:L), crt (:C) and dummy
(:D) may also be used. NAMELENGTH is an integer that specifies the
length of the file name.

FILEID is an 8 character string that is used to identify the
Pascal name for the file, such as INPUT or OUTPUT.

If SETSACNM is called prior to a RESET or REWRITE on a file, then
Pascal will not prompt the CRT for the file name. All subsequent
RESET or REWRITES will not cause a prompt unless a CLOSE(file name) is
performed on the file. The file name association will remain as
previously defined by SETSACNM.

(Example program segment)

TYPE
FILENAME = PACKED ARRAY [1l..15]OF CHAR;
ALPHA = PACKED ARRAY [l..8]0OF CHAR;
VAR FNAME :FILENAME;

FILEID:ALPHA;

F : TEXT;

PROCEDURE SET$ACNM(VAR F:TEXT; VAR FNAME:FILENAME; LEN:INTEGER;
VAR FILEID:ALPHA); EXTERNAL;

BEGIN
(* THIS ASSIGNMENT STATEMENT REQUIRES THE NAME TO BE LEFT *)

(* JUSTIFIED, AND BLANK PADDED TO THE CORRECT ARRAY LENGTH *)
FNAME:='DATA/TXT:0 s

FILEID:='F '
SETSACNM(F,FNAME,10,FILEID) ;
RESET(F) ;

READ(F,CH) ;

(* AND ETC...v... *)

- 23 -

PROCEDURE SMEMORY (VAR STACK, HEAP : INTEGER); EXTERNAL;

This procedure allows a program to determine the amount of memory
currently available. The parameter STACK returns the current number
of stack bytes available and the parameter HEAP returns the amount of
heap available.

STRING FUNCTION LIBRARY

D oD s D € - s — D D o I D D A D - S D - —

The following functions are provided for handling string
manipulations. (See reference manual for additional information)

FUNCTION LEN(S : STRING) : INTEGER;
This function returns the length of a string.

FUNCTION LEFTS (S STRING; POSITION : INTEGER) : STRING;
This function returns the left portion of the string
ending at the specified position within the string.

FUNCTION RIGHTS$ (S : STRING; POSITION : INTFGER) : STRING:
This function returns the right portion of the string
starting at the specified position within the string.

FUNCTION MIDS (S : STRING; POSITION, LENGTH : INTEGER) : STRING;
This function returns the portion of the string starting
at the specified position and including the number of
characters specified by length.

FUNCTION STRS (LENGTH : INTEGER; CH : CHAR) : STRING;
This function returns a string of the specified length
which is filled with the specified character.

FUNCTION ENCODEI (N : INTEGER) : STRING;:
This function returns a string which is the character
representation of the specified integer.

FUNCTION ENCODER(R : REAL) : STRING:
This function returns a string which is the character
representation of the specified real. For single precision.

FUNCTION ENCODED(R : REAL} : STRING:
Same as ENCODER, but for double precision reals.

FUNCTION DECODEI (S : STRING) : INTEGER;
This function returns an integer number which is the binary
representation of the specified string.

FUNCTION DECODER(S : STRING) : REAL;
This function returns a real number which is the binary
representation of the specified string. For single precision.

FUNCTION DECODED(S : STRING) : REAL;
Same as DECODER, but for double precision reals.

FUNCTION CHARACTER(S : STRING; POSITION : INTEGER) : CHAR;
This function returns the character at the specified
position in the string.

TYPE COMPAREVALUE = (LESS, EQUAL, GREATER):

FUNCTION CMPSTR(S1, S2 : STRING) : COMPAREVALUE;
This function compares the two specified strings
and returns an enumerated value based on the
comparison. The returned value is LESS if S1<S82,
EQUAL if S1=S2, and GREATER if S1>S2.

FUNCTION CONC(S1l, S2 : STRING) : STRING;
This function returns a string which is the result of
the concatenation of the two specified strings.

FUNCTION CPYSTR(S : STRING) : STRING;
This function returns a copy of the specified string.
The typical use for this function is in the assignment
of one string variable to another. This prevents both
string variables from referencing the same string. EG.
STRING1l:=CPYSTR (STRING2) ; will cause STRING]1l to refer
to a different copy of STRING2. STRINGl:=STRING2; causes
STRINGl to refer to the same copy of STRING2Z and any changes
in the value of STRINGl would cause STRING2 to change also.

FUNCTION DELETE(S : STRING; POSITION, LENGTH : INTEGER) : STRING;
This function returns the string which results after deleting
a specified number of characters beginning at the specified

position.

FUNCTION FIND (SUBSTRING, S : STRING) : INTEGER;
This function returns an integer number which points to the
start of the specified substring within the specified string.

If the string does not contain the substring then the returned
value is 0.

FUNCTION INSERT (SUBSTRING, S : STRING; POSITION : INTEGER) : STRING;
This function returns a string which is the result of inserting
the specified substring into the specified string at the
specified position.

FUNCTION REPLACE (OLDSTRING, NEWSTRING , S : STRING) : STRING;

This function returns the string which results after
replacing the old substring with a new substring.

System Implementation Manual Alcor Pascal

Random Access Files

Random Access files refers to a file access method where any
record may be READ or WRITTEN to in any order. As most Pascal
programmers know, Pascal does not define the Random file type.

The following Pascal procedures and functions will allow random
access to files on the TRS80. The following Pascal routines are
supplied in object code format on the release disk.(RANDOM/OBJ)
When using random access files, these routines should be
declared as external in the main program. Then simply link to
the supplied object file of random access routines with the
linking loader to satisfy any external references.

All SOURCE and compiled obiect files for random access files are
on the patch disk available :o update 1.2 owners to 1.2A.
Registered owners may send $8.00 + shipping to Alcor for this
diskette.

The following declarations should be included in the source
program.

RANDOM FILE ROUTINES

PROCEDURE OPENRAND (VAR F:FILETYPE; RECORDLEN:INTEGER; PATHNAME:STRING;
VAR STATUS:INTEGER); EXTERNAL;

The purpose of this routine is to open a random file. The F
variable is of any file type. Random file types are fixed in
length and should be declared as a FILE OF DATATYPE. A text
file is not a particularly useful DATATYPE. The filetype may be
any structure such as an ARRAY, RECORD, etc... RECORDLEN must be
the size required for the filetype. The SIZE(J) fucntion may be
used to determine the RECORDLEN. PATHNAME is the physical

(C) Copyright ALCOR SYSTEMS 1982 - 26 -

System Implementation Manual Alcor Pascal

filename on disk. You must prompt the user if it is to be
changed at runtime. STATUS is a code returned by PASCAL and the
operating system. The status code returns the status of an
operation on a random file.

PROCEDURE READRAND(VAR F:FILETYPE; RECORDNUM:INTEGER;
VAR DAT:DATATYPE; VAR STATUS:INTEGER); EXTERNAL;

This routine is used to READ data from a random file. The
RECORDNUM is the record number to be read. DAT is the buffer
for the data and is declared to be of the same type the file
declared DATATYPE in the OPENRAND routine.

PROCEDURE WRITERAND(VAR F:FILETYPE; RECORDNUM:INTEGER;
VAR DAT:DATATYPE; VAR STATUS:INTEGER); EXTERNAL;

This routine is used to WRITE data to a random file. The
RECORDNUM is the record number to be written. DAT is the buffer
for the data and is declared to be of the same type the file
declared DATATYPE in the OPENRAND routine.

PROCEDURE CLOSERAND(VAR F:FILETYPE); EXTERNAL;

Random files on TRSDOS are required to be closed before program
termination. Failure to do so may result in a loss of data.

As with random files on any operating system, there are some
peculiarities about random files. For example:

(1) If you WRITE record number 1 and WRITE record number
100, and then read any record from 2 to 99, the
returned buffer will contain trash. The data will be
whatever was previously on the diskette, probably the
contents of an o0ld file. This is because the operating
system does not keep that much context. It is up to
the user to keep track of unwritten records so they
are not READ.

(2) Random file record sizes may be from 1 to 256 only.
All blocking is taken care of by the system.

(3) The standard functions EOLN, EOF have no meaning for
random files. The status codes as returned by the
above routines perform those fuctions where
applicable.

(C) Copyright ALCOR SYSTEMS 1982 - 27 -

System Implentation Manual Alcor Pascal

(4)

(5)
(6)

(7)

The procedure OPENRAND is used to open a file for
reading and writing to. Opening an empty file and
reading is perfectly legal. It is up to the user to
check the returned status on all random file
operations.

Random file record numbers are defined from 0..32,767 .

As with normal files, if a file is declared LOCALLY
within a procedure and opened, (Not passed in as a
parameter) once the procedure is exited, Pascal will
automatically close the file using the standard CLOSE
file routine for non random files and postion the EOF
mark in the directory at the last record read or
written to. This may not be the correct position as
desired by the programmer. An explicit call to
CLOSERAND should be used to close the random file and
position the EOF. This will always correctly place the
EOF mark.

You may declare a file to be:

(*WHERE XX IS ANY RECORD LENGTH FROM 1 TO 256%)
TYPE LINE = ARRAY(.l..XX.) OF CHAR;
VAR F:FILE OF LINE;

Once the file has been opened, you may access it by
using the READRAND and WRITERAND external procedures
even if the file was not created by Pascal. There is
only one procedure for opening random files. (no reset
and rewrite) You may read or write to a random file.

Random File Error Codes
Returned By External Procedures

15 - DISK WRITE PROTECTED

24 - FILE NOT FOUND

27 - DISK FULL

28 - END OF FILE

29 - RECORD NOT FOUND (PAST EOF)

128 - PATH NAME IS NULL OR TOO LONG

129 - RECORD LENGTH IS NOT BETWEEN 1 AND 256
130 - FILE IS ALREADY OPEN
131 - FILE IS NOT OPEN

(C) Copyright ALCOR SYSTEMS 1982 - 28 -

Sem fem Qmo fume fam fum Som Sow Sam fem fem Jum S Oem Qem

Pascal TUTORIAL
Alcor SYSTEMS

Second Edition
First printing
1982

Gom Som fwm G Gem Smw G gmm Dum Jum Qus fem Jume Qum Qe

Copyright (C) 1981 by Alcor Systems

SECOND EDITION
FIRST PRINTING-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording,
or otherwise, withcut written permission from Alcor Systems.
No patent liability is assumed with respect to the use of
information contained herein. While every precaution has
been taken in the preparation of this book, Alcor Systems
assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use
of the informaticn contained herein.

TRS80 and TRSDOS are trademarks of Tandy Corporation.

USCD Pascal is a trademark of UC Regents, San Diego campus.
Apple is a registered trademark of Apple Computer Inc.

Z-80 is a trademark of Zilog corporation.

CPM is a trademark of Digital Research.

Preface

This book is intended to be a tutorial for Pascal programming. It
was specifically designed as a learning aid for Alcor Pascal, and is
an intermediate level tutorial guide. It is assumed that the reader
has had some programming experience. This tutorial is an excellent
teaching aid for most other Pascals because Alcor Pascal is an
implementation of standard Pascal. Any extensions to the language are
covered in the Alcor Pascal Reference Manual. In this book the
standard Pascal referred to is defined by Pascal USER MANUAL AND
REPORT(2nd edition) by Kathleen Jensen and Nikalus Wirth
(Springer-verlag, 1975). People with some exposure to basic or other
programming languages should have no trouble understanding the
explanations or example programs. It may be helpful to refer to the
Alcor Pascal reference manual, for additional details and answers.
This tutorial was designed to be as clear and precise as possible for
the newcomer to Pascal. It avoids all tricky and confusing
explanations, and in many cases includes program segments as examples.
This greatly reduces the clutter that often gets in the way of
learning computer languages.

The first chapter examines the major advantages of Pascal as a
general programming language. You may skip this section and begin
reading at chapter two if you wish. However, there are many important
aspects about Pascal that are explained in chapter one. This tutorial
will provide a logical and structured approach to learning . After
all, that's what Pascal is all about.

(C) copyright 1981 Alcor Systems

Table of Contents

Chapter Page

1 INtroduction ...ieeeeeceeeeeeeeaococannnnneses 1
History of Pascal. Why Pascal ?

2 Starting CONCePES ceieeeceeeccecoanconcacoses oo 5
Program, begin, end, write, writeln.

3 Data Concepts cvieeeceeesnnoceoaccnceccanncoscse 8
Variables,Types: integer, real, char, text
and boolean. Const section.

4 Advanced I/0 ceeeccocosccecoccocsacoccoacoceees 12
Rewrite, write, writeln, reset, read, readln.

8 Statements .icceeeescosscocccoceaosscanaceconcsees 16
Assignment statements, compound statements,
multiply, divide, add, subtract.

6 Flow CONtrol ...ccceececancceecoccnsacnccnccss 22
For loop and case statement.

7 Decision testinNg c.eeeececevecscecconcoonsns cocas 26
Logical operators AND, OR, NOT. Relational
operators > , < , >= , <= , <> , = ., Flow

control: IF, WHILE, REPEAT loop control
statements.

8 Procedures and functionS ..c.eccecccooeccococcscaes 31
Global and local variables, parameters,
scoping, nesting.

9 Advanced data tyPeS .c.ceeccceeccccanccocnoaeoa 40
Structured data type: The array, record. With
statements. User defined types: Enumerated,
subrange. File of TYPE.

10 DYNamicC MEMOIY tececorseoocsooenancencnnnnoncss 51
Pointer types, new, dispose.

(C) copyright 1981 Alcor Systems

Table of contents

Chapter Page

.o....---oonqocooo---.no--o.--on-..... 58

11 Sets ...
Declarations, set operations.
AppendixA.....Q....-l'l."...@‘.l...l...l... 61

Data base program

72

Inde){ 0.900..0.0.0.-0".‘0.00!OCIOCUOQQUQQOOQC

(C) copyright 1981 Alcor Systems

Chapter 1

INTRODUCTION

Pascal was created by Professor Nicklaus Wirth at the Swiss
Technical Institute in Zurich Switzerland. It was first announced in
1965 when the most popular programming languages in use by the
computer industry were Fortran and Cobol. 1In teaching environments,
like Universities, Algol was a popular language for introducing
students to computer programming. Wirth felt that languages like
Fortran and Cobol were too loosely structured to promote good
programming habits to students. Algol, although more structured, had
significant drawbacks. Wirth decided to depart from normal teaching
practice and designed a new language patterned after Algol, to be his
new teaching language.

Pascal inherits the structured control statements of Algol and adds
powerful data structuring capability. The language was designed to
promote good programming practices and encourage clarity and
modularity in programs. Since the first implementation of Pascal on
the CDC-6600 computer system in 1971, Pascal has proven to be one of
the most popular programming languages in existence.

Pascal has the distinction of being created for the purpose of
making the development of computer programs a structured and logical
process. Pascal contains the best features of most high level
programming languages. Many college instructors at major universities
today use Pascal or Pascal like languages to teach structured
programming classes. Structured programming classes emphasize the use
of guidelines and rules for developing computer programs. Some of the
goals of structured programming are to encourage modularity and
functionality, promote good documentation and to generate programs
that have smooth flows of logic from the beginning to end. Programs
are usually developed in Pascal or an English like Pascal and then
hand translaced to any available computer language such as Basic, for
execution.

Although the implementation language may not be highly structured,
the final program will be more clear and readable. Indeed, that is
exactly what most Pascal programmers do when they need to use other
languages. However, this is no replacement for implementing the
program in Pascal, as there are no translations for the rich and
powerful data structures and many other features that exist in Pascal.

(C) copyright 1981 Alcor Systems -1 -

Introduction Chapter 1

Data types and structures are two important features of the
language. They comprise one of the largest differences between
languages such as Pascal and Basic. Most Basic programmers are
familiar with the data types integer and real. A data type is simply
the kind of information that may be stored in a variable. Pascal
includes nine predefined types: char, integer, real, set,
file,array,record, boolean and text plus an infinite variety more, as
you may invent data types at will.

Data structure is another name for a variable type such as the
array. Pascal allows you to build new data structures as desired.

The use of record data structures can be very powerful when building
or maintaining data bases. With one simple output statement, an
entire data structure may be written to a file.

Variables are assigned storage only as needed during program
execution, thus reducing demands on memory. They also may have names
with as many characters in them as desired provided that the first 8
characters form a unigque name. Long names don”“t require any more
storage space than short ones.

Extra spaces,tabs, and carriage control may be placed freely in a
source program, except in the middle of identifiers and character
strings. An identifier is defined to be a program, variable,
constant, type, procedure or function name. Comments may be inserted
anywhere spaces are allowed and are delimited by (* *) or { } . These
features don“t affect the speed or the size of the final program, and
greatly improve readability.

The concept of local variables is important. Variables declared in
this manner will have restricted access by other parts of the program.
This can prevent accidental changes in their values.

If there are a series of statements that need to be executed by
different sections of the program, they may be placed in a procedure
or function declaration. A procedure or function is just a collection
of program statements that may be called to perform their task at
various times during the program. Repetitive programming may be
prevented by creating libraries of commonly used procedures or
functions. Parameters may be passed to these subroutines by "value or
reference".

(C) copyright 1981 Alcor Systems -2 -

Introduction Chapter 1

When a parameter is passed by reference, the actual parameter is
pas:zad to the procedure, and if the procedure alters its value, the
parameter”s value is changed in the rest of the program. When a
parameter is passed by reference , the argument must be a variable.

When a parameter is passed by value, what is passed is a copy of
the argument. If the procedure alters the parameter”s value, the
value in the rest of the program is not changed. When a parameter is
passed by value, it”s argument may be a variable or any legal
aritnmetic expression. Parameters passed by value can prevent
accidental changes in a value by procedures.

A careful use of procedures and functions will make the program
mor=2 readable and will eliminate branching statements that are
difficult to follow.

The logical operators AND , OR, and NOT along with the relational
operators: greater than ">", less than "<", equal "=", not equal "<>",
greater than or equal ">=", less than or equal "<=" are available in
Pascal. Statements like : IF(count < 10) and (not FAILURE) then "do
the following", make control statements very clear.

There are six statements in Pascal used for the flow of control.
Loop control is performed by the FOR, REPEAT and WHILE statements.
Conditions are tested with the IF and CASE statements. Branching is
accomplished by the GOTO statement.

Program execution speed may be of particular importance in certain
applications. Alcor Pascal programs execute between 10 arc 50 times
fast~r than most interpreted Basics on the same computers. In fact,
the~ are significantly faster than many other Pascal implementations.
Actual benchmark test results comparing Alcor Pascal with other
language implementations may be found in the Alcor Pascal System
Implementation Manual.

(C) copyright 1981 Alcor Systems -3 -

Introduction Chapter 1

As a general programming language, Pascal has the following
advantages; It includes:

(1) The powerful ability to build new data types and
structures as desired.

(2) The control statements while, repeat, for, if,
case and goto.

(3) The logical operators AND, OR, NOT.

(4) The relational operators: equal to, less than,
greater than, less than or equal to, greater
than or equal, not equal to.

(5) Recursive procedures and functions with
parameter lists.

(6) The ability to insert blanks and comments
in the source program easily,and long
variable names, with no space or time penalty.

(7) User controlled dynamic memory management.

(8) Efficient memory management of
variables,functions and procedures.

(9) Arrays of one or more dimensions.

(10) Record data structures.

(11) Sets and set operations.

(1L2) Subrange and enumerated data types.

(13) Named constants.

(14) Read and write statements plus formatted write
statements.

(15) Built in functions and procedures.

Alcor Pascal has the added advantage of being a full implementation
of standard Pascal, thus program portability is greatly enhanced.
These features, and the fact that programs generated by Alcor Pascal
execute much faster than programs generated by most Basic or other
Pascal systems, make Alcor Pascal a logical choice as a general high
level programming language.

(C) copyright 1981 Alcor Systems -4 -

Chapter 2 =

STARTING CONCEPTS

At the simplest level of structure of a Pascal program are the
program, begin, and end statements. They may be thought of as the
outer shell that must be around all programs. The actual program is
placed between these begin and end statements. Example:

Listing 1.1

PROGRAM test;
BEGIN
END.

This is a completely legal Pascal program although it actually does
nothing. We can modify it by adding a writeln statement to it.

Listing 1.2

PROGRAM test;
BEGIN
WRITELN (OUTPUT, * Pascal is a very structured language.”):
WRITELN (OUTPUT, “* It promotes good programming habits.”):
END.

The program will write to the the file associated with
OUTPUT the following message.

* Pascal is a very structured language.
* It promotes good programming habits.

(C) copyright 1981 Alcor Systems -5 -

Starting concepts Chapter 2

The two writeln statements comprise the only action in the program.

The OUTPUT in the writeln tells the computer to write the message to

the file associated with the logical name OUTPUT. How this

association is accomplished is a computer dependent process, and is

explained in the System Implementation Manual. The string in single

gquotes is a text string that may be composed of printable characters.

Notice two things about this program. First, the text string may not

be broken up across line boundaries, however blanks may be used freely

elsewhere to make the program more readable. Secondly, a semi-colon

is required after each writeln statement. 1In fact, semi-colons are

required after most Pascal program statements. For now, a good rule

of thumb is to always include a semicolon after legal Pascal

statements. The program name is test, but may be any identifier where ,

the starting character is a letter. The "." must always occur after i

the last END statement in the program. ‘
Another output statement similar to the writeln statement is the

write statement. 1In the first sample program the two messages were

written to different lines on the file. The writeln statement caused

the file position pointer to reposition to the beginning of the next

line after each message was written. The file position pointer is

another name for the cursor when the file I/0 is directed to the

terminal. The write statement, does not reposition the cursor after

the message has been written. 1Instead, the cursor remains at the end

of the last message, and the next text will appear on the same line.

The cursor represents the point on a line where text will appear from

the next write statement.

Listing 2.1

PROGRAM test;

BEGIN
(* the purpose of this program is to give an example *)
(* of how to use the WRITE and WRITELN procedures *)

WRITE(OUTPUT,” * Now is the time”);

WRITE(OUTPUT,” for all good programmers”);
WRITE(OUTPUT,” to learn”);

WRITELN (OUTPUT,” Pascal.”);

(* The next statement starts on a new line *)

WRITELN (OUTPUT,” * You will become a Pascal magician.”);
END.

(C) copyright 1981 Alcor Systems - 6 -

Starting concepts

Chapter 2

The following message will be written to output.

* Now is the time for all good programmers to learn Pascal.

* You will become a

If you noticed, the
the program execution.
help clarify the logic
helpful later when you

Pascal magician.

text enclosed between the (* *) did not aff
They are simply comments by the programmer
in the program. Comments may be especially

have forgotten how the program functions.

ect
to

They

may be inserted anywhere except in the middle of identifiers or text
strings. An identifier is just another name for a program, variable,

constant, procedure or
be explained later.

Tutorial Quiz 2.0

function name. Procedures and functions wi

(1) The first statement of a Pascal program must be the
statement.

(2) The
beginning of

(3) The
beginning of

statement will not move the cursor to
the next 1line.

statement will move the cursor to the
the next line.

(4) Most Pascal statements are followed by a .

(5) The statement must be the last statement

of a program.

(6) Quoted

may not be broken up across

line boundaries.

11

(C) copyright 1981 Alcor Systems -7 =

Chapter 3

DATA CONCEPTS

Variables

Variables in Pascal serve the same purpose as they do in most other
programming languages. They serve as storage areas for the
information that the programmer may wish to manipulate. These storage
areas are referred to by names that are chosen by the programmer.

Each variable name must start with a letter. It may be composed of
any combination of letters and digits, although in many Pascal
implementations, the first eight characters must form a unigque name
within the program.

Reserved words

There are certain words in Pascal that have special meanings.
These words are called reserved words, and variables may not have
these names. For a complete list see the Alcor Pascal Language
Reference Manual.

Variable types

Variables must have associated with them a specific type. The type
is the kind of information that is going to be stored in that
variable. For example, the variable "taxnumber" may represent a
business tax number. This taxnumber might take on the numerical value
of 1 to 100 at any time in the program. This would be an example of
the type, integer.

Declaring variables

All variables must have their specific type declared in a special
section of Pascal programs called the var section. There are five
predefined variable types in Pascal that we will concern ourselves
with at this time. They are integer, real, char, text and boolean.
The var section of a program consists of the word VAR followed by any
number of variable declarations. A variable declaration has the form
of variable name: variable type; . A colon separates the variable
name from the variable type, and a semicolon must follow each variable
declaration.

(C) copyright 1981 Alcor Systems - 8 -

Variables and types Chapter 3

Integer variables

The type integer may be used to represent whole numbers. The
minimum and maximum size allowed by Pascal is computer dependent, but
on many micro computers they range from -32768 to 4+32767 . The
following is a program example of a variable declared as an integer.
Notice that a colon is required to separate the variable name
taxnumber, from the variable type, integer.

Listing 3.1

PROGRAM test;

VAR

taxnumber: INTEGER;
BEGIN

END.

Real variables

The type real may be used where a variable must store numbers that
may have fractional or decimal values. The numbers 2.98 , 3.047 ,
0.0009 , 0.009 and 37.0998 are all examples of real numbers. Real
numbers must start with a digit and may contain a decimal point. 1If a
decimal point is present, a digit must follow the decimal point. The
numbers .009, 10. are illegal real numbers, as there is no digit
before and after the decimal point. The size and precision of real
numbers are computer dependent . Real variables may represent the
dollar selling price of some product by a store, or an entry into your
checkbock. They are declared as follows:

Listing 3.2

PROGRAM test;

VAR
taxnumbr : INTEGER;
cost :REAL;

BEGIN

END.

Note that the indentation of the declaration section does not
affect the execution of the program.

(C) copyright 1981 Alcor Systems -9 -

Variables and types Chapter 3

Char variables

If a variable is declared as a char type, then it may represent a
single character such as the character “A”. 1In Pascal, the characters
may be composed of letters, digits and other special symbols. If a
digit is to be referred to as a character instead of a number, it is
enclosed in single quotes like the character string was in program
listing 2.1. The only difference is that a char variable may only
represent one character at a time.

Text variables

Variables declared to be of the type text are used to direct output
or input information to files on disks, or to other devices. Text is
predefined to be a special file of char.

Boolean variables

A variable declared as the type boolean may only have two values.
They are true and false. This kind of variable is primarily used in
flow control statements. Boolean variables are typically used in the
WHILE, IF or REPEAT control statements. These statements will be
covered in later chapters.

Const section

Often, specific variables will have fixed values during program
execution. In this case you may declare these values as constants.
In Pascal, they are declared in the CONST section. The const
declaration section is placed between the program and the first begin
statement of the program. Constants may have names like variables do.
In fact their names should reflect their nature. Constants may be
integers, real numbers or a text string. A text string constant is
any character string enclosed between single quotes. A string
constant generally may be used anywhere a packed array([l..n]Jof char
variable may be used. This variable type will be explained later.

(C) copyright 1981 Alcor Systems - 10 -

Tutorial Quiz 3.0 Chapter 3

(1) serve as storage areas for information
that the programmer may wish to manipulate.

(2) Variable types are declared in the
section of the program.

(3) Five predefined type of variables in
Pascal are ’ ’ ’

’ .

(4) The syntax of a variable declaration is
var variable name : R

(5) Variables declared as the type may take
on the value of letters, digits and other
special symbols.

(6) A variable declared to be of type is
used to direct I/0 to files.

(7) A value that is fixed in the program and will

not change may be declared as a constant
in the section of the program.

(C) copyright 1981 Alcor Systems - 11 -

Chapter 4

ADVANCED I/0

Procedures rewrite, writeln.

Can you guess what this program will do if you run it ?

Listing 4.1

PROGRAM alpha;

CONST

pie = 3.141597;

maxtax = 2000;

tstring = © I am a Pascal Wizard”;

VAR

out :TEXT;

max :REAL;

number : INTEGER;
BEGIN

REWRITE (out) ;
WRITELN (OUTPUT, “Program starting execution.”);
WRITELN(® The value pie = “,pie);
WRITELN(® The value maxtax = “,maxtax);
WRITELN(tstring);
WRITELN (out,“This program tests file I/07);
WRITELN (OUTPUT, “Program finished.”);

END.

From example 2.1 you already know that the first and last writeln
statement will cause the program to direct the messages to the file
associated with output. The following message will be written to
output.

Program starting execution.
The value pie = 3.14159

The value maxtax = 2000
I am a Pascal wizard
Program finished.

The message, "This program tests file I/O", will be written to the
file associated with out.

(C) copyright 1981 Alcor Systems - 12 -

ADVANCED 1I/0 Chapter 4

Examine the first writeln statement. In the specific case where
the first argument for the writeln statement is output, the user is
not required to declare output in the var section as with other files.
Notice also that there is no output argument in the second,third and
fourth writeln statements. In Pascal, it is not required to have
output as an argument. Output is a default argument. Ie; the
Statements writeln(output,” help”); and writeln(~ help”); are
equivalent in Pascal. In Pascal the write and writeln statements may
have multiple arguments. The first argument always directs the I/0
operation to a specific file except for the case previously explained.
In listing 2.1 the two arguments were output and a text string.
Constants and variables may also be arguments. The values of the
variables and constants will be written in the same order as they
appear in the argument list.

Rewrite statement

The purpose of the rewrite(logical filename) statement is to open a
file on some hardware device, and ready it for writing. ©Note that the
previous contents of any file used in a rewrite statement will be
lost. The specifics of how to associate the logical filename in
parentheses with a physical filename is implementation dependent and
is explained in the Alcor Pascal System Implementation Manual.
Standard Pascal does not require the file output to have a rewrite
performed on it before it is written to. Output is the only file in
Pascal that does not require a rewrite before it is written to. It is
predeclared to be a textfile by Pascal.

Reset statement

The purpose of the reset statement is to ready a file for reading to
a program. A reset (logical filename) statement will open the
physical file associated with the logical filename and read the first
line. 1In Alcor Pascal, the first line is not read until required by
an EOF or EOLN function call. These functions will be explained
later. All files that are to be used for reading must be reset,
except Input. 1Input is a predeclared textfile within Pascal.

Read, readln statements

The read statement is similar to the write statement, except that
it”s purpose is to read information into the Program instead of to
write information. The read statement will read a value into a
variable from a file and will leave the cursor at the last character
read.

(C) copyright 1981 Alcor Systems - 13 -

ADVANCED I/O Chapter 4

Specific reads on the same file will cause a series of inputs to
occur from the same line. When a read is performed on an integer or
real quantity in a text file, the read will start scanning the line
until any non-blank character is found. The next contiguous non-blank
characters will be interpreted by the read as the input value. If
another read is performed on the same file, the read procedure will
scan forward and repeat the process, until the end of line is reached.
If the end of line is reached before any integer is found, the scan
will continue at the beginning of the next line.

The readln statement performs the same function as the read
statement, except that the cursor will always be positioned to the
beginning of the next line after all inputs to the read statement are
satisfied, even if the end of line has not been reached. The readln
statement is not required to have arguments. The effect of such a
readln is to position the cursor to the beginning of the next line
without reading any values. The arguments allowed for the read
statement are variables. As with OUTPUT in the write statement, INPUT
is predeclared to be a text file. If a read statement does not have a
file argument, it is assumed to be the predeclared file INPUT.

Try running the following program. It will give you a little more
experience performing program I/O.

Listing 4.2

PROGRAM testIO;

(* Author- Alcor Systems *)
(* Purpose- the purpose of this program is to *)
(* demonstrate I/0 to a text file using integer and *)
(* real input variables. *)
VAR

taxnumbr, emnumber : INTEGER;

tax :REAL;

ID :PACKED ARRAY[1..72]0F CHAR;
BEGIN

WRITELN(QUTPUT,'* Enter your federal tax number: ');
READLN(INPUT, taxnumbr) ;
WRITELN(QUTPUT,'* Enter your dollar tax total: ');
READLN(INPUT,tax);
WRITELN

(OUTPUT,' * Enter your employee number,a space,');
WRITELN(OUTPUT,' followed by your business ID number:');
READ(INPUT,emnumber) ;
READLN(INPUT,ID);

WRITELN(OQUTPUT,' Tax number ,taxnumbr) ;

- !
WRITELN(OUTPUT,' Dollar tax total = ',tax);
WRITELN(OQUTPUT,' Employee number = ',emnumber);
WRITELN(OUTPUT,' Business I.D. = ',ID);

END.

(C) copyright 1981 Alcor Systems - 14 -

ADVANCED I/O Chapter 4

The following I/0 will occur at the terminal if the filename
associated with input and output is the local terminal.

* Enter your federal tax number:

32000 <user input>
* Enter your tax total:
2345.98 <user input>

* Enter your employee number,a space,
followed by your business ID number:
23455 4669 <user input>

Tax number = 32000
Dollar tax total = 2345.98
Employee number = 23455
Business I.D. = 4669
Tutorial Quiz 4.0
(1) The predefined file variables and

are not reguired to be declared in the var
section as the type text.

(2) The first argument in a R ’
statement directs I/0 to a file

14
or device.

(3) The purpose of the statement is to
open a file and ready it for writing.

(4) The purpose of the statement is to
open a file and ready it for reading.

(5) After a , the previous contents of
the file are lost.

(6) A or statement will change the
cursor”s position after execution.

(C) copyright 1981 Alcor Systems - 15 =

Chapter 5

STATEMENTS

Assignment statements

From previous examples, you know how to read a value into a
variable and how to write it. Now you will learn how to alter its
value within the program. The statement that does this is the
assignment statement. It allows you to set a variable”s value equal
to an expression. An expression may be a variable name or a series of
arithmetic or boolean operations. A simple assignment statement takes
the form of variablenamel := variablename2; . The " := " operator
causes the variable on the left hand side to become equal to the value
of the variable on the right hand side.

Listing 5.1

Program MAGIC;
VAR
intrate,principle,anint,calc:REAL;
BEGIN
WRITELN (” *****%* Tnterest rate problem *#**x%x%x%~”).
WRITELN (° Enter annual interest rate:”);
READLN (intrate); .
WRITELN(® Enter the principle amount of loan:”);
READLN (principle);
calc:= intrate * principle;
anint:=calc;
WRITELN(® Your annual interest payment = “,anint);
END.

Arithmetic operators

In the program listing 5.1 you may have noticed the statement
"calc:= intrate * principle" . The " * " is the multiply operator in
Pascal. There are seven arithmetic operators in Pascal with
precedence as follows :

(C) copyright 1981 Alcor Systems - 16 -

Statements Chapter 5

OPERATOR PRECEDENCE TABLE 5.1

Symbol Precedence Description

- (1) Highest Unary operator. Negates a single
argument.

* (2) Multiplies two arguments

/ (2) Divides two real arguments

div (2) Divides two integer arguments

mod (2) Divides two integer arguments and

keeps the remainder as the result.
+ (3) Lowest Adds two arguments

- (3) Lowest Subtracts two arguments

Operator precedencb

If an arithmetic expression is composed using different operators
without any parentheses, the order of evaluation is based on the above
table, where operations with the highest precedence are performed
first. Any operations at the same level are performed in left to
right order.

Parentheses

In Pascal, this natural order of precedence may be altered by
enclosing a portion of the expression in parentheses. The parentheses
has the highest precedence of all operators. Parentheses may be
nested to alter the evaluation sequence as desired. 1In this case,
operations buried deepest within are evaluated first.

(C) copyright 1981 Alcor Systems - 17 -

Statements Chapter 5

The following program will illustrate the use of the arithmetic

operators and parentheses.

Listing 5.2

PROGRAM math;

CONST
fudge = 100;
lossacre = 0.50;
VAR
acsoy,acgreen :INTEGER;

prsoy,prgreen ¢:REAL;
profit,overcost :REAL;
BEGIN

WRITELN(OUTPUT,” **** Farmers profit analysis program #**** “).

WRITELN (OUTPUT, * Please enter the following information:”);
WRITELN (OUTPUT, “* Acres planted in soy beans = 7);
READLN (INPUT ,acsoy);
WRITELN (OUTPUT, “* Profit per acre of soybeans = 7);
READLN (INPUT,prsoy);
WRITELN (OUTPUT, “* Acres planted in green beans = 7);
READLN (INPUT ,acgreen);
WRITELN (OUTPUT, “* Profit per acre of green beans = “);
READLN (INPUT,prgreen) ;
WRITELN (OUTPUT, “$$S$S COMPUTATION IN PROGRESS $$S$7);
profit:= acsoy * prsoy + acgreen * prgreen
-~ (fudge / (acsoy+acgreen) * lossacre);

WRITELN (OUTPUT, ~ Your computed profit is “);
WRITELN (OUTPUT,profit);

END.

The profit calculation uses parentheses to alter the normal

operator precedence. If the normal precedence is followed, the
calculation will yield the wrong result.

(C)

copyright 1981 Alcor Systems - 18 -

Statements Chapter 5

The order of evaluation without parentheses would be:

(1) acsoy and prsoy multiplied.

(2) acgreen and prgreen multiplied.
(3) fudge / acsoy

(4) acgreen * lossacre

(5) resultl + to result2

(6) results result3

(7) result4 + result 6

The desired result is obtained by including the parentheses as in
the example. The apparent order of evaluation would be:

profit := acsoy * prsoy + acgreen * prgreen
- (fudge / (acsoy+acgreen) * lossacre) ;

(1) acsoy added to acgreen
(2) fudge / resultl

(3) result2 * lossacre

(4) acsoy * prsoy

(5) acgreen * prgreen

(6) resultd + resultS

(7) result6 - result3

If two numbers are operated on, the normal result will have a type
that is dependent on the argument types. The variable tvpes required
to store the results of specific operations are summarized in the
following table.

* multiply real * integer = real result.
integer * real = real result.
real * real = real result.
integer * integer = integer result.

/ real divide real / real = real result.
real/integer = real result.
integer/real = real result.
integer/integer = real result

(C) copyright 1981 Alcor Systems - 19 -

Statements Chapter 5

div integer divide integer div integer = integer result.
integer arguments only.

mod integer mod integer = integer
(integer div integer= remainder)

+ add integer + integer = integer result.
integer + real = real result.
real + integer = real result.
real + real = real result.

- subtract integer - integer = integer result.
integer - real = real result.
real - integer = real result.
real - real = real result.

Compound statements

If a series of program statements are surrounded by a begin and end
statement, then the enclosed statements are considered ‘a compound
statement. Compound statements are normally used as arguments to
control structures such as the WHILE and IF. A compound statement may
occur by itself anywhere in a Pascal program, however, its meaning
would be the same as if the begin and end were not present. The
important thing to remember about Pascal is that anywhere a single
statement may be used, a compound statement may be used.

(C) copyright 1981 Alcor Systems - 20 -

Tutorial Quiz 5.0 Chapter 5

(1) is the symbol for the assignment operator.

(2) If a series of statements are surrounded by a begin and
end , it is called a statement.

(3) Operator precedence refers to the order in which an
is evaluated.

(4) The natural order of expression evaluation may be
altered by using .

(5) with the highest precedence will be evaluated
first.

(6) Operators that have the same level of precedence will
be evaluated in to order,

(7) After executing the following Pascal statement, variable
X will have the vaslue .

PROGRAM QUIZ;
VAR

X:integer
BEGIN

x:=4 + 5 * 2.
END.

(C) copyright 1981 Alcor Systems - 21 -

Chapter 6

FLOW CONTROL
FOR statements

If you wish to execute a series of statements a predetermined
number of times, you should use the FOR statement. The for statement
will cause a single or compound statement to execute a specific number
of times. Examine the following example .

Listing 6.1

PROGRAM math;

CONST
fudge = 100;
lossacre = 0.50;
pr soy = 195.98;
prgreen = 200.56;
VAR

acsoy,acgreen nofields,select,fieldnumber: INTEGER;
profit,overcost: REAL;
BEGIN
WRITELN (QUTPUT, “* Farmers planting analysis program * 7);
WRITELN (OQUTPUT, * How many fields do you have ?7);
READLN (INPUT,nofields);
FOR fieldnumber := 1 to nofields DO
BEGIN
WRITELN (OUTPUT, * For field number “,fieldnumber)
WRITELN (OUTPUT, * Acres planted in soy beans = 7)
READLN (INPUT ,acsoy) ;
WRITELN (OUTPUT, “Acres planted in green beans = 7);
READLN (INPUT ,acgreen);
profit:= acsoy * prsoy + acgreen * prgreen
~ (fudge / (acsoy+acgreen) * lossacre);
WRITE (OUTPUT, “* Your computed profit for field number
,fieldnumber,” is *);
WRITELN (OUTPUT ,profit);
END;

e “o

»

(C) copyright 1981 Alcor Systems - 22 =~

Flow control Chapter 6

The loop control variable is "fieldnumber®™ . This variable is
declared as an integer. When the loop starts its execution,
"fieldnumber” takes on the value of one for the first pass through the
loop. Successive loop iterations cause this value to be incremented
by one until its value is greater than "nofields" . At this point,
the loop will stop and control will be passed to the next statement in
the program. The lower and upper bounds on the loop control variable
do not have to be variables or constants, but may be arithmetic
expressions. The expression is evaluated one time, at the beginning
of the loop. The upper bound must be greater than or equal to the
lower bound for the lcop to execute at least once.

A variation on the for loop just described causes the loop control
variable to be decremented by one instead of incremented by one. The
syntax for this is the same as above except that the "to" in the for
statement is replaced with "downtce® . The initial upper bound on the
loop control variable must be larger than or equal to the lower bound
for the loop to execute at least once.

Case statement

The case statement is used as a selectiocn control statement. It is
used when you need to execute one statement from a list of statements.
Notice the following program. In front of every statement in the
list, is a case selector constant. This selector value must be of the
same type as the case selector variable, and may be composed of a list
of values for each statement it precedes. The "end" must follow the
last statement in the list in order to terminate a case statement. We
will be concerned with selector variable of type integer at this time.

(C) copyright 1981 Alcor Systems - 23 -

Flow control

Chapter 6

Listing 6.2

PROGRAM moonphase;

CONST
dayphcorr = 10;
lencycle = 28.3;
VAR

daynumber,intphase : INTEGER;
startphase,phase,month,day,year :INTEGER;
realphase,phasecorrection :REAL;

BEGIN
WRITE (OUTPUT,” *** Lunar Phase calculation program”);
WRITELN (OQUTPUT,” **%*7),
WRITELN (OUTPUT,” Enter the month/day/year:”);
READLN (INPUT ,month,day,year) ;
startphase := ((year-78) * 365)
CASE month of

l: daynumber:=1;

2: daynumber:=32;

3: daynumber:=60;

4: daynumber:=91;

5: daynumber:=121;

6: daynumber:=152;

7: daynumber:=182;
daynumber:=213;
daynumber:=243;

1 daynumber:=274;

1l: daynumber:=304;

12: daynumber:=334;
END; (*case¥*)
startphase := startphase + daynumber + day;
realphase := startphase / lencycle;
intphase := TRUNC (realphase);
realphase:=realphase-intphase;
phase:=realphase * lencycle;
CASE phase OF
1,2,3,4,5,6,7

+ dayphcorr ;

8
9
0

ee o5 o0

WRITELN (OUTPUT,

8,9,10,11,12,13,14
15,16,17,18,19,20,21
22,23,24,25,26,27,28

END;
END.

(*case*)

(*PROGRAM*)

“The moon is in its first quarter.”);
WRITELN (OUTPUT,

“The moon is in its second quarter.”);
WRITELN (OUTPUT,

“The moon is in its third quarter.”);
WRITELN (OUTPUT,

“The moon is in its fourth quarter.”);

(C) copyright 1981 Alcor Systems

- 24

Flow control Chapter 6

The purpose of the program in listing 6.2 is to compute the phase
of the moon. Several examples of case statements are used with
differing case selector lists. The calculations are based on a known
starting phase of the moon at some past day,and year. The initial
startphase calculation yields the number of days since this known
starting date as a function of the number of years, corrected for the
starting phase of the moon. The remainder of the calculations simply
adjust this value to yield the whole number of days since the known
starting phase, then divide the resultant number of days by the lunar
cycle length in days. This program does not consider the effect of
leap years. Notice that mixed mode expressions consisting of real and
integer arithmetic are used throughout the calculations. A careful
study of the previous type result tables will verify their validity.
Notice that the value of realphase is used as an argument for the
TRUNC function. This is a predefined function available in Pascal
that will truncate a real number and store the result in an integer.

Tutorial Quiz 6.0

(1) The statement is used to make a single or
compound statement execute a specific number of
times.

(2) In successive loop iterations in a loop,

the loop control variable is either incremented
by one or decremented by one.

(3) The statement is used to select a
statement to execute from a list of statements.

(4) The "downto"” and "to" are elements of the
statement.

(5) An statement must follow the case statement.

(C) copyright 1981 Alcor Systems - 25 -

e,

Chapter 7

DECISION TESTING

Often, it is necessary to make tests to determine the flow of
control in a program. The case statement is a simple example.
However, it may become necessary to perform more complex tests than
the case statement was intended for. Pascal has a powerful set of
logical and relational operators that make such testing easy. Most
logically complex programs use relational testing for advanced
control. The logical and relational operators are as follows :

Logical operators

and - Will evaluate two boolean expressions, then
perform a logical "and" on them, returning either
a boolean "true" or "false".

or - Will evaluate two boolean expressions, then
perform a logical "or" on them, returning either
a boolean "true" or "false".

not - Will change a boolean value to the opposite
value.

Relational operators

It is often necessary to compare several variables for equality in an
expression to determine the flow of control. This may be accomplished
by relational testing. There are six relational operators in Pascal,
all with equal precedence. Their precedence may be altered just like
the arithmetic operators by the use of parentheses. 1If the relational
test fails, a Boolean False is returned by the expression. If the
test succeeds, then a true is returned. The operators are as follows.

= Equal to <> Not equal to

> Greater than < Less than

>= Greater than or equal to <= Less than or
equal to

(C) copyright 1981 Alcor Systems - 26 -

Decision testing Chapter 7

There are two constructs in Pascal that often use relational
testing for loop control. They are the while and repeat statements.
Almost all goto and other branching constructs may be replaced with
these statements. Unlike the goto statement, these statements force
simple and clear design of locps, often eliminating the unclear
conditions for exiting. Usually, if it is not possible to formulate a
loop construct using the while, repeat and if statements, instead of a
goto, it is because the loop itself has not been properly defined.

Ie; the programmer does not have the specifics clear in his mind.

If statement -

A typical use of a relational test is illustrated in the if
statement. 1In the following example let the variables "Monday" and
"October"” be of the type boolean with their values both being true.

Listing 7.1

PROGRAM testIF:

VAR

Monday,0October:BOOLEAN:

BEGIN
Monday:=true;
October:=true;
IF October AND Monday THEN

WRITELN (OUTPUT, Its October and Monday”)

(*notice no semicolon after the previous statement*)
ELSE WRITELN (OUTPUT, “Date unknown.”):;

END.

This program will print the message, "Its October and Monday" since
October is true, and Monday is true. This example illustrates the use
of the " if then else " statement in Pascal. If the expression is
evaluated to be true, the first action will be taken. If it is false,
the statement following the else will execute. The statements may be

simple or compound. Notice that a semicolon may not precede the else
in the IF statement.

(C) copyright 1981 Alcor Systems - 27 -

Decision testing Chapter 7

Notice the following example where "income" has been declared as
the type integer and "president" is of type boolean.

IF (income > 32000) AND NOT(president) THEN
BEGIN '
WRITELN (OUTPUT, “You are being audited by the IRS.”);
WRITELN (OUTPUT, “Please justify your deductions.”);
END;

The value of the expression will be true if the integer value of
"income" is greater than 32000 and the boolean value of "president" is
false. When the value of "president" is false, the not operator will
reverse its value to true. This type of expression is one of the
strengths of Pascal. With a little experience, you will find it easy
to write expressions. This greatly improves the readability of
logically complex programs. Arguments for relational operators must
be of the same type. 1In the example, "income" must be declared as an
integer type for the statement to be valid in Pascal. For. now, we
will concern ourselves with integer and boolean comparisons.

While statement

The while forces a statement to execute while some condition is
satisfied. The condition is the value of a boolean variable or the
boolean result of some expression. Some computation inside the loop
should change one of the variables used in the test to cause the
relational test to fail, terminating the loop. The while statement
will perform the test at the beginning of every loop. The while loop
might never execute any of the enclosed statements as the initial test
occurs before the loop is entered. 1In the next example, cnt, cost and
unitprice are declared as type integer, and underbudget is of type
bcolean. Notice the following example syntax.

(C) copyright 1981 Alcor Systems - 28 -

Decision testing Chapter 7

cnt:=0;
underbudget:=true;
WHILE (cnt < 20) AND (underbudget) DO

BEGIN

cnt:= cnt + 1;

cost := cnt * unitprice ;

IF (cost > 200) THEN underbudget :=false;
END;

The previous example will execute as a conditional loop instead of
a predetermined number of times as in the for loop. When "cnt" gets
incremented to twenty one, or cost exceeds 200, the loop will
terminate., WNote that the "cost > 200" test could have been put in the
while expression just as easily.

Repeat statement

Another statement similar to the while is the repeat. A statement
or series of statements will be repeated until an expression becomes
true. The difference between the while and repeat may not be obvious.
The difference is that the repeat statement will always execute at
least once because the relational test occurs at the end of the loop.
The use of repeat sometimes causes problems for new programmers, as
there may be cases where you do not want the loop to execute at all,
however it will always execute at least once. An example of repeat is
as follows:

cnt:=0:
underbudget:=true:
REPEAT
cnt:=cnt + 1;
cost := cnt * unitprice;
inventory:=inventory +1:
IF (cost > 200) then underbudget:=false;
UNTIL(cnt >= 20) OR NOT(underbudget):

(C) copyright 1981 Alcor Systems - 29 -

Decision testing Chapter 7

Notice that the test was changed to use the OR operator instead of
the and operator. This is simply due to the different context of the
two statements. There is no begin or end required. The statement(s)
to be executed are simply placed between the repeat and until. What
happens to this loop if the initial value of "unitprice" is greater
than 200 ? The loop will terminate on the first iteration, but alters
the value of "inventory". This might not be the desired result and
could cause an illegal entry into the inventory. 1In this situation,
the while statement would be the proper choice of a looping construct,
as it would detect this before "inventory" is changed.

Tutorial Quiz 7.0

(1) The logical operators in Pascal are: and, ’ .

(2) The and operator will return a value of , 1f the
value of the both expressions it is evaluating is true.

(3) The or operator will return a value of , 1f one of
the expressions it is evaluating is true.

(4) The not operator will reverse the value of a
variable or expression.

(5) The IF statement will execute the else portion of the
statement, if the value of the expression is .

(6) The while statement will execute as long as the boolean
result of the expression is .

(7) The repeat will execute all statements between the
repeat and until as long as the expression is .

(C) copyright 1981 Alcor Systems - 30 -

Chapter 8

PROCEDURES AND FUNCTIONS

Procedures

In the introduction, one of the claimed strengths of Pascal was
that it promotes modularity. Modularity is another name for
organizing a program into sections, each of which performs a specific
function, instead of one large block of continuous statements. One of
the reasons that Pascal programs may have a high degree of modularity
is that the language was designed with procedures and functions in
mind. In a few languages, they are not even supported, and in others,
passing parameters can pecome a major chore. This is not the case in
Pascal, as several different methods are available to pass data to
subroutines that need it. Furthermore, there are rules about how
procedures may call other procedures and access their internally
defined variables. These scoping rules, as they are called, may seem
a little restrictive, but they provide valuable protection. This
partitioning of the problem eventually decreases program size and
improves readabilty to the programmer or anyone who must maintain it.
A simple way to decide whether a procedure or function should be used
is to examine the problem and to decide if there are a series of
statements that need to be executed several times, and in different
parts of the program. The identified program segments should be
placed in a procedure or function.

Procedure structure

Procedures may be thought of as complete sub~programs that have
data passed to them as needed. 1In many descriptions written about
Pascal, they are often called one of the basic blocks, and in this
manual, a block will be considered to be a program, procedure or
function. The structure of a procedure is the same as for the
original program with a few exceptions. The data that is passed to a
procedure block is passed through a parameter list. The parameter
list is placed after the procedure name. Examine the following
program.

(C) copyright 1981 Alcor Systems - 31 -

Procedures and functions Chapter 8

Listing 8.1
PROGRAM INSTRUCTIONAL;
VAR
number :INTEGER;
posnumber : INTEGER;

legal :BOOLEAN;
PROCEDURE readn (VAR number: INTEGER; VAR legal: BOOLEAN);
(* The purpose of this routine is to read *)
(* a positive number from a file in a *)
(* character format and convert it to an integer¥*)
(* format. *)
VAR
loopcontrol,forcntr,inc: INTEGER;
string :ARRAY [1..72]0OF CHAR:
BEGIN

FOR loopcontrol :=1 to 72 DO string[loopcontrol]:=" “;
loopcontrol :=0;
WHILE NOT EOLN(INPUT) DO
BEGIN
loopcontrol := loopcontrol + 1;
READ(string[loopcontrol]),
IF (string[loopcontrol]=" “)THEN -
(* Remove all leading blanks from array ¥*)
loopcontrol:=loopcontrol - 1;
END;
number :=0;
inc:=1;
FOR forcntr :=loopcontrol DOWNTO 1 DO
BEGIN
number :=number+ ((ord(string[forcntr])-ord(“0°))*inc);
inci=inc* 10
END;
IF {number < 0) THEN
BEGIN
legal := false:
WRITELN(“* Error - Illegal entry. Try again. “);
END
ELSE legal:= true;
END; (*procedure readn*)

BEGIN
legal:=false;
WHILE NOT legal DO
BEGIN
WRITELN (“Enter any positive number:”);
READN (posnumber,legal);
END;
END.

(C) copyright 1981 Alcor Systems

- 32 =~

Procedures and functions Chapter 8

The purpose of the program 8.1 is to read a positive integer in
from the file input and to check for illegal entries. This declared
procedure represents a typical use for a procedure, since it might be
called several times, from different places in the procram. Notice

the eoln(input) . Eoln is a boolean function that will return a true
value when an "end of a line" of the file specified in :the parentheses
is reache:i. As soon as the cursor :s moved from this position by

another readln, it”s value becomes false again. Notice also the
function call to ORD. ORD is a Pascal function that returns the
internal integer representation of a character.

Since there is only one copy of this procedure in memory no matter
how many calls there are, a considerable amcunt of memorv space can be
saved. 1In fact, a procedure”s variables do not occupy crorage space
until the procedure is actually called.

The procedure declaration comes after the const and var section,
and before the first begin statement of the block in which it resides.
Remember, a block may be a main program, procedure or function.

Local wvariables

Local variables are variables declared in a particular procedure,
function, or program. For example, the variable "forcntr" declared in
procedure readn, is local to "readn" and is accessible from "readn"
only. However, notice the variable "number" declared in the main
program block. 1Inside the procedure "readn" , the variable "number"
may be used without declaring it, since it appears in the calling
program. This means that if "readn" is called by the main program and
"readn" alters "number", then upon return to the main program,
"number” will have the altered value. This side effect can be avoided
by declaring "number" again in the procedure block. Then all
references to "number" will refer to a different variable. The use of
glcbal variables should always be kept to a minimum, so as to minimize
any accidental changes in their values.

Procedure parameters

An alternate method of changing global variables within a procedure
is to pass them as parameters in a parameter list. This allows
different variables to be passed at different times and makes the use
of the global variable more visible in the program. The parameter
list is placed in the procedure declaration after the keyword
procedure. 1In the parameter list, a variable may be passed by two
different methods. These two methods are referred to as passing by
reference, or passing by value.

(C) copyright 1981 Alcor Systems - 33 -

Procedures and functions Chapter 8

When a parameter is passed by reference, the actual argument is
passed to the procedure, and if the procedure alters its value, the
argument”s value is changed in the rest of the program. When a
parameter is passed by reference, the argument must be a variable.

When a parameter is passed by value, what is passed is a copy of
the argument. If the procedure alters the parameter”s value, the
value in the rest of the program is not changed. When a parameter is
passed by value, the argument may be a variable or any legal
arithmetic expression. Parameters passed by value will prevent
unwanted changes in a variable value by the called procedure. Notice
the following example parameter list. v

PROCEDURE test (date: INTEGER; VAR profit:REAL; cost:REAL);

The variables "cost" and "date" will be passed by value. The
variable "profit" will be passed by reference. Every time a variable
is to be passed by reference, the keyword "var" must precede it,
otherwise it will automatically be passed by value.

It is sometimes hard for new programmers to understand the
difference between letting variables be global when accessing them in
a procedure, versus passing them by reference. There is a major
difference, in that different variables may be passed to a procedure.
The only stipulation is that the variables must match the parameter
list. 1If they are declared as globals and alterd by a procedure, then
all values to be passed to the procedure must be transferred to these
global variables. A second major difference is that in large
programs, it is often difficult to determine what routines are
changing specific variables. Sometimes accidental changes may occur
in global variables. These changes are often referred to as side
effects.

By adhering to the convention of passing the variables to a
procedure, it is easier to determine how procedures alter external
variables and to minimize unwanted side effects. Certainly, global
variables do have use in Pascal programs, but many new Pascal
programmers have a tendency to over use them.

Calling procedures

Procedures are called simply by referencing their name followed by
an argument list enclosed in parentheses. The list should be composed
of variables of the same type and order as declared in the procedure
declaration section.

(C) copyright 1981 Alcor Systems - 34 -

Procedures and functions Chapter 8

Functions

Another block in Pascal similar to the procedure is the function.
Its internal structure is the same as the procedure with const, var
and type sections optional. The purpose of a function is similar to a
procedure. A procedure may stand alone as a statement, as the call to
"readn" illustrates in program 8.1 . A function may not stand alone.
It must be used in an expression, and may be used anywhere a variable
can be used. Consider the following program.

Listing 8.4
PROGRAM functiontest:
VAR

num: INTEGER:;

FUNCTION ABS(number: INTEGER) : INTEGER;

BEGIN
IF (number < 0) THEN ABS := -~ number
FELSE ABS := number;
END;
BEGIN
nur:= -=30;:
num := ABS (num);
WRITELN(® the absolute value of num = “,num);
END.

The result returned by the abs function is of the type integer.
The result must be used in an expression or assignment statement. It
is not valid to simply say abs (num) . The mechanism used to transfer
the functions calculated value back to the calling program is the use
of an assignment statement to assign the value to an identifier that
has the same name as the function name. This particular function is
already predefined in Pascal, and serves the same purpose as the
example.

(C) copyright 1981 Alcor Systems - 35 =

Procedures and functions Chapter 8

Advanced program structure

Pascal is a block structured language. This means that a program
is constructed in a block like manner. At a minimum, a program
consists of one block. More blocks are created through the use of
procedures and/or functions by placing them inside this outermost
"program block". The term for this process is called nesting. The
rule for nesting is that a block may lie entirely within another
block, but blocks do not overlap in any other way. A level of nesting
can be assigned to each block of a program. This provides an
appropriate tool for describing scope rules which are discussed later.
The block structured organization of a program can be represented
pictorially by the following diagram.

Diagram 8.1

Program Block (level 1)

Procedure Block (level 2)

Procedure Block (level 3)5

Function Block (level 2)

Procedure Block (level 3)5

Procedure Block (level 2)

A program then consists of at least one block, the program block,
and optionally it contains procedure and/or function blocks which are
nested within.

(C) copyright 1981 Alcor Systems - 36 -

Procedures and functions Chapter 8

Local variables are those variables declared within the var section
of a particular procedure. Locals can be accessed from the body of
the procedure in which they are declared and from those procedures
declared within it. If a variable is used within a procedure and is
not declared local to it, then a global variable is used. Global
variables are those variables declared in an outer enclosing block.

Listing 8.2

PROGRAM globals:
VAR

i ¢ INTEGER:
b : BOOLEAN:

PROCEDURE inner;

VAR
b : INTEGER;
BEGIN
b := 1 + 25:
i =1+ 1;
END:
BEGIN
i = 0;
writeln(i):
END.

In the above program, the i in the procedure refers to the variable
i in the main program. Since the program "global" is an enclosing
block to the procedure "inner", the variables declared within the
program are accessible to the procedure. 1In the case of the variable
"b", the var section of the procedure redeclares b to be an integer.
When b is referred to in the procedure inner, the local variable is
used. The declaration of b as a local variable "masks" the global
definition of b.

Scope rules

The rules of accessability of variables, types and constants are
referred to as scope. The scope of an identifier is the procedure in
which it is declared, and all procedures declared within that
procedure. All identifiers including types, constants, variables and
procedure declarations have scope.

(C) copyright 1981 Alcor Systems - 37 -

Procedures and functions Chapter 8

If an identifier is redeclared within its scope, the outer
definition becomes inaccessible within the scope of the inner
definition. In the example above, the declaration of b as an integer
within the inner procedure causes all references to b in that
procedure to refer to the local variable. The outer definition of b
as a boolean cannot be seen.

Pascal requires that all identifiers be declared before they are
used. If the declaration of an identifier has not yet been
encountered in the text of a program, then the identifier is
considered undefined. A procedure can be called from the body of the
block declaring it, from the procedures declared within it and from
the procedures declared within the same block. However, if procedure
A is declared before procedure B in the same block, then procedure B
can call A, but procedure A cannot call B. This is due to the fact
that the declaration of B has not been encountered in the source text
when the body of procedure A is being compiled.

The above visibility restriction can be avoided with the use of
forward declarations. 1In a forward declaration, the body of the
procedure is replaced with the word FORWARD. The actual body is then
supplied later. If all procedures within a block are declared
forward, then any one of them can call any other.

Listing 8.3

PROGRAM Outer;
VAR
i : INTEGER;
FUNCTION Distance(xl, x2 : INTEGER) : INTEGER:FORWARD;
FUNCTION Abs(tvalue : INTEGER) : INTEGER; FORWARD;

FUNCTION Distance(* (xl, x2 : INTEGER) : INTEGER *);

BEGIN
distance := abs(x2 - x1);
END;
FUNCTION Abs (* (tvalue : INTEGER) : INTEGER *):
BEGIN
if tvalue < 0 then abs := -tvalue
else abs := tvalue;
END;
BEGIN
WRITE (“DISTANCE = “,Distance(8,2));
END.

(C) copyright 1981 Alcor Systems - 38 -

Procedures and functions Chapter 8

If .a procedure is declared forward, its parameter list is supplied
by the forward declaration. The body appears later in the text. The
body is introduced by the procedure name followed by a semicolon. The
parameter list is not repeated. Notice that in the example, the
parameter list is commented out by putting (* *) around it. It is
good practice to include the parameter list of a forward procedure in
a comment. This makes the body of the procedure easier to read.

Tutorial Quiz 8.0

(1) and promote modularity and
functionality in programs.

(2) Data is passed to procedures and functions through a
list.

(3) Blocks may be within other blocks.
(4) Nesting affects the of blocks.

(5) A block nested within an outer block may access the
cuter blocks o

(6) Parameters may be passed by value or .

(7) When a variable is passed by , a copy of the
variable is passed.

(8) When a variable is passed by reference the keyword
must precede it in the parameter list.

(C) copyright 1981 Alcor Systems - 39 -

Chapter 9

ADVANCED DATA TYPES

Array data type

Another cousin to the data types already explained is the array.
Sometimes a large number of variables of a particular type are needed.
If for example you required seventy two variables of the type char to
represent a user”s input character string from a file, you could
declare them as previously explained. The disadvantage is obvious, as
the effort would be time consuming. Furthermore, accessing the
individual variables would be confusing, as each would have a
different name.

There is a simple answer to this problem and it is the data type
array. You may declare a variable as :

variablename : array [l..n] of type:

where type is any previously defined data type and n is the number of
variables desired. For now we will concern ourselves with integer
dimensions. 1Integer dimensions may be any positive or negative
numbers such that the range of dimensions do not cause a storage
overflow. This is a machine dependent constraint that varies among
implementations. Thus we may declare :

VAR line : array [1..72] of char;
varname: char;

To access a component of this array you would use a subscript
denoting the numerical element. An example assignment might be
varname := line[4]; . Varname would be set to the value of the fourth
element in the array line.

Any array may be declared with the word PACKED as a prefix. The
packed attribute tells the compiler to store the data elements as
efficiently as possible. In Standard Pascal, you may not pass
elements of packed structures by reference to procedures or functions,
and packed elements may not be used as arguments in READ statements.
In Alcor Pascal, there are no such restrictions.

(C) copyright 1981 Alcor Systems - 40 -

Advanced data types Chapter 9

Arrays

listing 9.1

PROGRAM onedimarravy;
VAR
stringl: PACKED ARRAY [l..72] OF CHAR;
BEGIN
WRITELN (“Enter command string”):
READLN (INPUT,stringl);
WRITELN (OUTPUT,stringl);
WRITELN (“Program complete”);
END.

If the I/0 is directed to the terminal, the program will display
the prompt: "Enter command string"” . At this point the user may type
up to seventy two characters cf input, terminated with the return key.
The input characters will be input to the array "stringl" left
justified. If the input character string is less than seventy two
characters in length, the remaining storage positions in the array
will contain blanks. At this point the input message will be echoed
to the terminal. 1In Alcor Pascal, an entire single dimension packed
or nonpacked array of char may be input/output by a single read/write.

Arrays in Pascal may have multiple dimensions. Suppose that you
had a number of input character strings as in the previous example,
and it was desired to store every character string. A simple answer
would be to declare the array line : array [l1..5,1..72] of char; .
This declaration is a Pascal short form for the declaration of
arrayl{l..5] of array[l..72]of char; .

If the data structure is a two dimensional array of char, then the
read command will not input the entire array automatically, but
instead requires that each individual sub-array be read in with a
separate read statement.

(C) copyright 1981 Alcor Systems - 41 -

Advanced data types Chapter 9

Remembering that any single dimension array may be input by a
single READ statement, leads to the following example array input
sequence. Examine the following program.

listing 9.2
PROGRAM arrayIO;
VAR
I : INTEGER;
stringl : ARRAY [l..5,1..72] OF CHAR;
BEGIN
FOR I:= 1 TO 5 DO
BEGIN
WRITELN (OUTPUT, “Enter command line “,I);
READLN (INPUT,stringl[I]);
END;
END.

This program will prompt the user for five different command lines.
In each case, the individual sub arrays are loaded into the array by
the program.

Since individual array elements are of the type char, any
operations that can be performed on a simple variable, of type char,
may be performed on an array element. Remember also that arrays may
be of any type such as boolean, integer or any user defined data
types, including arrays. Arrays may have upper and lower bounds
declared as constants in the declaration, and in fact, the name of
most simple data types may be substituted for the bounds. The number
of array elements in this case is determined by the number of elements
in the data type.

(C) copyright 1981 Alcor Systems - 42 -

Advanced data types Chapter 9

User defined data types

The data types explained so far have been pre-defined. 1In Pascal,
you may define new data types at will. These defined types have names
chosen by the programmer and are declared in the TYPE section. Once
declared, they may be used where predefined type names are allowed.
This is a very powerful feature. Take for example the case where a
programmer is manipulating an integer variable in Basic that may take
on one of four values, l..4. The numbers may represent the colors
red, green, blue and orange. When the value is 1 : a message is
written to the terminal saying that the color red is being processed,
2 : That the color green is being processed and so on. This is
typically known as decoding information from a variable”s value.
Needless to say, when Basic programs get very long, it is difficult to
determine their flow because of this decoding and encoding of
information. A simpler way would be to declare a variable that could
take on the value of red, green, blue and orange. Then tests could be
performed to see if the value of the variable is red, etc. Program
logic would be much clearer and easier to follow. 1In fact, this is
exactly what the following program does.

listing 9.3

PROGRAM usertypes;

TYPE difcolor = (red, green, blue, orange):
VAR
color: difcolor:
BEGIN
color := red:
REPEAT
CASE color of
red : WRITELN (OUTPUT,” The color is red”);
green : WRITELN (OUTPUT,” The color is green”);
blue : WRITELN(QUTPUT,” The color is blue”);
orange : WRITELN(OUTPUT,” The color is orange”);
END;

color := succ(color);
UNTIL(color = orange);
END.

(C) copyright 1981 Alcor Systems - 43 -

Advanced data types Chapter 9

Enumerated user defined types

Program 9.3 illustrates an enumerated user defined type, "difcolor"
An enumerated type is where a list of possible variable values are
given in the type declaration. The predefined function, "succ" is
available in Pascal, and is a convenient way of incrementing a user
defined variable type to the next possible value. In a simple program
using an integer variable, this could be accomplished by adding one to
the variable, but this would not make sense with a user defined type.
User defined enumerated data types may not have their values written
out. Program 9.3 gives an example of how that may be accomplished.

Subrange types

A variable may assume a value that is in a sub- interval of some
other simple type. 1In this case, it may be declared to be a subrange
type. For example, integer may represent all whole numbers between
-32,768 and 32,767. 1In the type section, a subrange user defined type
might be declared to be byte = 0..255 ; I.E.; any variable of the type
byte may take on the value from 0 to 255 . The same operations may be
performed on a subrange type that are applicable to the original type.
Also a subrange type may be the subrange of any user defined simple
type.

listing 9.4

Program subrange;

TYPE
baddate = 1900..1903;
uppercaseletters = “A”..7°2%;
lowercaseletters = “a”.."z2";
digits = “0°..797;
xaxis = =-100..100;

VAR
testyear : baddate:
upperletter : uppercaseletters;
lowerletter : lowercaseletters;
digit : digits;

BEGIN

END.

All of the above examples are valid subrange declarations. Named
subrange types are very helpful when a programmer wants to clearly
identify the data differences between specific variables to increase
readability. Also, the storage required for a subrange variable is
proportional to the interval it spans. This may be important when
building large data structures to be implemented on microcomputers.

(C) copyright 1981 Alcor Systems - 44 -

Advanced data types Chapter 9

RECORD data types

So far, the only structured data type examined has been the array.
The array is an excellent mechanism for storing large amounts of data
of the same TYPE. For example, the series of text strings input from
the terminal were efficiently stored using arrays of CHAR, and any
individual character was easily accessible. However, it is often
desired to keep variables of different data types grouped together.
Take for example, a list of a business”s customers along with vital
information about each customer. Suppose that you desired to keep the
following information about every customer:

Name

Customer category

Mailing address

Telephone number

Dollars spent in store

On catalog circulation list

This might represent a situation where the business would like to
keep a data base updated. 1In languages like Basic, the only way to
maintain this information would be multiple arrays containing encoded
information. This is not the case in Pascal, as you may build a
RECORD which can store all of the above information in a clear and
concise format. Furthermore, you may declare an array to be of this
user defined type.

Record data types

In Pascal, a RECORD is a predefined data structure which is
composed of component variables. These component fields may be
variables of any Pascal predefined, or user defined data types. The
purpose of a record is to group variable information into logical
entities, such that any particular component field may be operated on,
or the entire record may be referenced as a whole. The following is
an example of how the previous business record is declared in Pascal.

(C) copyright 1981 Alcor Systems - 45 -

Advanced data types Chapter 9

Listing 9.5

PROGRAM database:;

TYPE
custmrcategory = (business,individual);
custmrecord = RECORD
custmrtype : custmrcategory;
address : PACKED ARRAY[1..72] OF CHAR;
telephone : PACKED ARRAY[1..15]1 OF CHAR;
expenditures : REAL;
cataloglist : BOOLEAN;
END;
VAR
custmr : custmrecord;
custmrlist : ARRAY[1..100] OF custmrecord;
index : INTEGER;
ans : CHAR;

PROCEDURE custmrinp(VAR custmr:custmrecord) ;
VAR custyp : CHAR;
BEGIN
WRITELN('* Enter customer type: (business/individual)');
READLN(custyp);
IF(custyp="'1"')THEN
custmr.custmrtype:=individual
ELSE custmr.custmrtype:=business;
WRITELN('* Enter address:');
READLN(custmr.address) ;
WRITELN('* Enter telephone number:');
READLN(custmr. telephone) ;
WRITELN('* Enter expenditure in dollars:');
READLN(custmr.expenditures);

WRITELN('* Want on catalog circulation list: (true/false)');

READLN(custmr.cataloglist);
END;
BEGIN
index:=0;
ans:='N";
WRITELN('** BUSINESS XYZ CUSTOMER RECORD PROGRAM **'):
WHILE (ans <> 'S') DO
BEGIN
index:=index+1;
custmrinp(custmrlist(index]):
WRITELN('* MORE CUSTOMERS (STOP/CONTINUE)');
READLN(ans) ;
END;
END.

(C) copyright 1981 Alcor Systems -

46 -

Advanced data types Chapter 9

The outer shell that must enclose record type declarations is of

the form:
type name = RECORD
END;

The component field declarations reside between the RECORD and END; .
The field declarations are defined in the same way as the VAR section
of the program. In program 9.5, the user defined record name is
custmrecord. The component field declarations: custmrtype,
address, telephone, expenditures, and cataloglist are defined exactly
the same way as the the program variables are in the VAR section. All
the field components belong to the data type custmrecord. Since
custmrecord is treated like any other user defined type, we may now
declare a variable to be of type custmrecord in the program VAR
section.

The difference between a record and other simple user defined data
types is that there are component fields in a record that are really
variables themselves. 1In example 9.5, the variable custmr is of a
record type. When referring to custmr in expressions, to reference
the entire record, you simply use the variable name, custmr. To
access the component field, expenditures, you would prefix
expenditures with the record variable name, custmr, separated with a
'.' character. Example:

custmr.expenditures:= 99.95;

If another record named excustomer had been declared, the following
would be a valid statement.

excustomer ;=custmr;

In this case, all component fields in excustmr would be set to
the component fields in custmr. Variables of type record, and their
associated component fields, obey the same rules for use as all other
typed variables.

The purpose of program 9.5 is to perform record I/0 utilizing the -
predeclared text files input and output. Notice the read and write
statements utilize record component fields as arguments. Read and
write behave as though the component fields were variables declared in
the VAR section. As with other variables, I/0 may not be performed to
a text file through a component field that is of a user defined
enumerated type.

(C) copyright 1981 Alcor Systems - 47 -

Advanced data types Chapter 9

WITH statements

The use of records may often cause segments of the program that
reference them to become long and tedious, because every time a
component field is referenced, the record variable name must precede
it. Accessing component fields may be simplified by using the WITH
statement. Examine the following procedure, which could be included
in program 9.5 .

Listing 9.6
PROCEDURE custmroutput(VAR custmr:custmrrecord) ;

BEGIN
WRITELN('** CUSTOMER CUTPUT RECORD FOR BUSINESS XYY **');
WITH custmr DO

BEGIN

IF(custmrtype=business)then
WRITELN ('Customer type

ELSE WRITELN('Customer type

Business!')
Individual');

WRITELN ('Address : !',address);
WRITELN ('Telephone : ',telephone);
WRITELN ('Expenditures : ',expenditures);
WRITE ('Circulation list : ');

IF (cataloglist)THEN WRITELN('Yes')
ELSE WRITELN('No');
END;

END;

The action of the WITH statement is to eliminate the normally
required record variable name prefix when accessing component fields
of that record. The scope of the WITH is one statement, which in this
case is a compound statement.

i
8l

(C) copyright 1981 Alcor Systems - 48 -

Advanced data types Chapter 9

File of TYPE

INPUT and OUTPUT are examples of TEXT files in Pascal. These FILE
types have been used for all of the program examples so far. A TEXT
file is Alcor Pascal predeclared to be a special file of char, with
rules for performing I/0 using INTEGER, REAL and BOOLEAN variables.

In Alcor Pascal, there are extensions to allow for performing I/0O
using ARRAY variables in text files.

A FILE OF <any known type> may be declared in Pascal. Files of
types other than text are primarily used for storing data which will
be retrieved at some other time. For example, a FILE OF customerecord
could be defined in the type section. (customerecord as defined in
listing 9.5) A variable of type customerecord could be written to this
file. The important thing to remember is that an entire record may be
written (or read), by one I/0 statement. Component fields of this
record may not be read or written individually to a file of records.
When I/0 is performed with a FILE OF <any type except text>, no ASCII
encoding or decoding of information takes place. Instead, the binary
representation is used. This is not particularly useful when the I/O
is directed to a terminal, but is effective for storing large amounts
of information on disk media. The predeclared procedures WRITELN and
READLN are not valid when performing I/0 with a file of any type
except TEXT, although read and write perform normally. The program in
the appendix of this manual utilizes a FILE OF customerec for storing
information in a data base. This is a typical use for a FILE OF TYPE.

(C) copyright 1981 Alcor Systems - 49 -

Tutorial Quiz 9.0 Chapter

(1)

(2)

(3)

(4)

(5)

(6)

If a large number of variables of the same
TYPE need to be declared, the
may be the correct data structure to use.

Arravys in Pascal may have more than
dimension.

New user defined may be declared in
Pascal programs.

An TYPE is defined by a list of
identifiers given to be the different values
allowable for a variable.

A TYPE is any user defined TYPE
that is a sub-interval of another simple TYPE.

A TYPE is used to logically group
together data of different types.

(C) copyright 1981 Alcor Systems

- 50 -

Chapter 10

DYNAMIC DATA TYPE

All of the variable types discussed so far have been "static" in
nature. This means that the size of data structures such as the array
have to be defined before the program is compiled or executed. 1In
program 9.5, the size of the array customer list has an upper bound of
100 entries. If more than 100 storage locations are needed to store
the customer records, the array declaration has to be changed in the
source program, and the source recompiled. In most popular
micro-minicomputer Pascal implementations today. there are limits to
the number of storage locations that may be declared in a program.
This limitation is usually proportional to the size of the program in
conjunction with the type and number of variable declarations. It is
usually impractical due to these memory restrictions to declare arrays
and other data structures to be larger than required. The static
nature of variable declarations often create problems in some
programming applications. Suppose for example, that in program 9.5 it
was desired to keep a list of sales transactions for each customer
attached to each customer record. This could be accomplished by
declaring a component field of each customer record as being an array
of transaction records. Then 2t any time you could access the sales
transaction of every customer. This would require that the number of
sales transactions per customer be limited to a preset number by the
array declaration. It might be feasible to limit the number of
customers to 100, but the number of transactions per customer might
vary. There is a mechanism in Pascal to allow for dynamic variable
allocation at program execution time. It is possible to request a new
storage location for a variable by calling the Pascal pre-defined
procedure NEW.

Procedure NEW

By cailing the procedure NEW, it is possible to get a pointer to a
memory storage location that is the proper size for the argument
variable. It is important to remember that the same limitations on
the amount of memory available still apply, however dynamic allocation
of memory allows for better utilization of space. The variable used
as an argument for the NEW procedure call must have been declared in
the VAR section. It must be declared as a TYPE that is a pointer to

the actual data type. An example of a pointer data type declared in
the TYPE section is as follows:

(C) copyright 1981 Alcor Systems - 51 -

Dynamic data type Chapter 10

Listing 10.1

TYPE
trxptr = “trxrec;

trxrec = RECORD
nexttrx: trxptr

invoicenumber : INTEGER;
date ¢ ARRAY [1..10] OF CHAR;
transprice : REAL;
partnumberlist : ARRAY [1..10] OF CHAR;
END;

VAR

trx : trxptr;

In the example program segment, the variable trx is of type
trxptr. In the type section, trxptr is defined to be
a pointer to " trxrec " . The character " ° " denotes a
pointer in Pascal. Therefore, the variable trx is a pointer
to a storage location in memory of the size required to store the
RECORD trxrec. This storage location may be requested anytime
during program execution as opposed to program startup. Pointer types
to large data structures may be declared in a program with minimum
memory space penalty until the procedure NEW is called during program
execution. Notice at the "“trxrec" point in the type
declaration, trxrec has not been defined. 1In Pascal,
declaring a pointer to an as yet undefined type is valid.

The following program segment illustrates a few simple methods of
using pointer variable types.

(C) copyright 1981 Alcor Systems - 52 -

Dynamic data type Chapter 10

Listing 10.2
PROGRAM dynamic;
(* TYPE declaration section from listing 10.1 *)

VAR
trx : trxptr;
nexttrx : trxptr;
BEGIN
NEW(trx);
trx”.invoicenumber:=2345;
trx”.transprice :=99,95;
nexttrx:=trx:;
WRITELN('* Transaction invoicenumber : ',
trx”.invoicenumber);
WRITELN('* Transaction price s ',
trx.transprice);
DISPOSE(trx);
END.

If the pointer itself is being referenced, just the variable name is
used. In the example, the pointer variable nexttrx is set to
the value of trx. When referring to the contents of the

storage location, an " ~ " follows the variable name.
"trx”.transprice” refers to the value of the component field

stored at that location. These basics of pointer data type
manipulation are used to build "linked lists"™ . A linked list is a
chained list of dynamic storage areas.

Notice the procedure call to DISPOSE. The purpose of DISPOSE is to
release the storage area acquired in the NEW call. After the DISPOSE,
the data stored at the dynamic memory location is effectively lost.
This is an important feature of Pascal. Careful use of NEW and
DISPOSE can result in programs that dynamically grow and contract in
memory size as needed, and efficiently manage the computer resources.

LINKED LIST

A linked list is a programming technique that chains together a
series of variables. A thorough discussion of linked list processing
would entail several chapters, and is really a topic for a data
structures book. It will be covered briefly here because it is
integral to discussions about dynamic memory management.

(C) copyright 1981 Alcor Systems - 53 -

Dynamic data type Chapter 10

In example 10.1 , the data type trxrec has a component
field which is a pointer to a storage area of the same type as itself.
A pointer to another record node may be stored in this field. 1In the

record pointed to, a pointer to another record node could be stored

and so on.. .
together.

Listing 10.3

VAR
headnodeptr : trxptr;
headnodeptr
v
record number 1
trxrec = RECORD
nexttrx: trxptr; =000 @ mmm——e———————-
invoicenumber : INTEGER;
date : ARRAY [1l..10] OF CHAR;
transprice : REAL;
partnumberlist ARRAY [1..10] OF INTEGER;
END;
record number 2 <=
trxrec = RECORD ‘
nexttrx: trxptr; =0 @@mmm—m——ee——————-
invoicenumber : INTEGER;
date : ARRAY [1l..10] OF CHAR;
transprice : REAL;
partnumberlist : ARRAY [1l..10] OF INTEGER;
END;
record number 3 <-
trxrec = RECORD
nexttrx: trxptr; === 00 @mmmeecececccac——e-
invoicenumber : INTEGER;
date : ARRAY [1l..10] OF CHAR;
transprice : REAL;
partnumberlist : ARRAY [1..10] OF INTEGER;
END;
NIL <m—m—m—mm e

(C) copyright 1981 Alcor Systems

In this way, a series of record nodes may be linked
The following diagram will help to visualize this list.

Dynamic data type Chapter 10

The variable headnode is a pointer variable declared in the VAR
section of the program. At some point in the program, a NEW procedure
call could be made with headnode as its argument. Headnode would now
be a pointer to the start of the list. Notice the word NIL at the end
of the list. NIL is a reserved word in Pascal. This simply sets the
pointer to an initialized value that may be tested for in looping
statements. A word of caution when using pointers in Pascal. If a
rointer variable has been declared, but not set to any value, there is
no guarantee of its value. It will not necessarily be set to NIL
Most Pascal implementations do not perform a runtime check for
uninitialized values. Use of uninitialized pointers can lead to the
program writing over itself in memory with execution becoming
urwredictable. These kinds of programming errors will not show up at
cumpile time, and can be extremely hard to find during program
execution. The following segment illustrates how list 10.3 could be
built.

Listing 10.4

PROGRAM linkedlist(input,output);
TYPE
trxptr = “trxrec;
textline = PACKED ARRAY [1..10] OF CHAR;
trxrec = RECORD .
nexttrx: trxptr;
invoicenumber : INTEGER;

date : textline;
transprice : REAL;
partnumberlist : textline;
END;

VAR
headnode, transnode: trxptr;
I : INTEGER:;
PROCEDURE readtrx(VAR trx:trxrec);
(* The purpose of this routine is to prompt the user for *)
(* the purchaser's trx record *)
BEGIN
WITH trx DO
BEGIN
WRITELN('ENTER INVOICE NUMBER:');
READLN(invoicenumber) ;
WRITELN('ENTER DATE:'):;
READLN(date: ;
WRITELN('ENTER TOTAL PURCHASE PRICE:');
READLN(transprice);
WRITELN('ENTER PARTNUMBER(S) SEPARATED BY COMMAS:'):
READLN(partnumberlist):;
END;
END; (*readtrx*)

(C) copyright 1981 Alcor Systems - 55 -

Dynamic data type Chapter 10

Listing 10.5 (continuation 10.4)

PROCEDURE writetrx(VAR trx:trxrec);
(* The purpose of this routine is to write the purchaser *)
(* trx entry *)
VAR I:INTEGER;
BEGIN
WITH trx DO
BEGIN
FOR I:= 1 TO 35 DO WRITE('*');
WRITELN;

WRITELN('INVOICE NUMBER ,lnvoicenumber) ;

- '
WRITELN('DATE : ',date);
WRITELN('TOTAL PURCHASE PRICE : ',transprice:10);
WRITELN('PART NUMBER LIST : ',partnumberlist);

FOR I:=1 TO 35 DO WRITE('*');
WRITELN;
WRITELN:
END;
END; (*PROCEDURE writetrx¥*)

PROCEDURE listrxs(temptr : trxptr);
(* the purpose of this procedure is to traverse the linked¥)

(* list attached to the argument pointer, writing the *)
(* values of the trx records *)
VAR
loctrx : trxrec;
BEGIN

(* traverse trx linked list,writing trxs *)
WHILE (temptr <> NIL) DO
BEGIN
(* load the contents of localtrx with the *)
(* contents of temptr *)
loctrx:=temptr”;
writetrx(loctrx);
(* set temptr to the next node in the linked list *)
temptr := temptr”.nexttrx .
END;
END; (*listransactions¥*)

(C) copyright 1981 Alcor Systems - 56 -

Dynamic data type Chapter 10

Listing 10.6 (continuation 10.5)
BEGIN (* begin main program linkedlist *)
(* initialize pointer that will always reflect the *)
(* beginning cof the list. *)
(* this will set the end of the list to NIL during the first *)
(* pass through the FOR loop *)

headnode := NIL;
(* read 3 trxs and link each new one to the beginning ¥*)

(* of the list *)
FOR I := 1 to 3 DO
BEGIN

NEW(transnode) ;
(* insert the newnode in front of the o0ld headnode *)

(* link to the old headnode *)
transnode” .nexttrx := headnode;
(* make the newnode the new headnode *)

headnode := transnode;
(* load the actual data into the fields of the new node *)
readtrx(transnode”); ’
END ;
(* list all trxs entered *)
listrxs(headnode) ;
END. (*main program*)

(C) copyright 1981 Alcor Systems - 57 -

Chapter 11

Sets

Sets in Pascal have the same meaning as they do in the normal
mathematical sense. If a group of objects are declared in set A, and

a group of objects are declared in set B, a number of operations may
be performed on these sets such as :

(1) Membership and relational testing
(2) Set arithmetic (union,intersection,difference)

In the case of Pascal, the objects are simply data values. These
data values may be Pascal predefined or user defined. An example
would be a SET OF CHAR, or a SET OF digits where digits is a user
defined subrange type of CHAR. Testing could be performed to see if

the SET OF digits is in the SET OF CHAR if desired. The method of
declaring set variables is :

VAR A,B : SET OF <type> ;
This means that A and B may contain from one to all of the data
values declared by the type, however its membership is undefined until
it is initialized like any other variable. 1In the body of the
program, a set may be initialized to empty by :

A := [];
Membership testing

Once the set variables are initialized, a series of ROOLEAN

relational tests may be performed. The relational operators are as
follows:

setl = set2 Set equality- If (all members of first
set are in the second set and all
members of second set are in the
first set) : returns true.

setl <= set2 Subset- If (all members of first set
are in the second set) : returns true.

setl >= set2 Superset- If (all members of second set
are in the first set) :returns true.

(C) copyright 1981 Alcor Systems - 58 -

Sets Chapter 11

setl <> set2 Set inequality- If all members of first
set are in second set, and all members
of second set are in first set :
returns false.

Individual element membership may be tested by using the IN
operator. If a variable had been declared of the same type as the
base set type, the IN cperator may be used to check for set
membership. An example would be:

Listing 12.1

TYPE
DIGITS = '0'..'9";
VAR
DIGIT : SET OF DIGITS:
D : CHAR;
BEGIN
D:='a’';

DIGIT:=['0"'"..'9"'];

IF(D IN DIGIT)THEN DO (*action¥);

IF(D="0')OR(D="'1"')OR(D="2")OR(D="3")OR(D="4")OR(D="5")
OR(D='6")OR(D='7")OR(D='8'")OR(D="'9") THEN DO (*ACTION*)

The two IF statements in the above program segment are equivalent.
Notice that the equivalent IF statement using sets is a more concise
and readable statement. This represents a simple use for sets for the
average programmer.

Set arithmetic
There are three set operators in Pascal. Each requires two

arguments. Arguments should be sets of the same base type, and the
result will be of the same type. The operators are:

A+ B Gives the union of A and B
A * B Gives the intersection of A and B
A - B Gives the difference of A and B.

(C) copyright 1981 Alcor Systems - 59 -

Sets Chapter 11

The following segment program illustrates set operator use.

LISTING 12.2

PROGRAM TESTSET:
VAR
DIGITS ,LETTERS ,LOWERCASE ,UPPERCASE
ALPHANUMERIC,ALPHA
D : CHAR;
BEGIN
D:="1";
DIGITS:={"0".."
LOWERCASE:=["a"
UPPERCASE:=["A"..
LETTERS :=LOWERCASE + UPPERCASE:
ALPHANUMERIC:=LETTERS + DIGITS:
ALPHA :=ALPHANUMERIC - DIGITS;
IF (D IN ALPHANUMERIC * DIGITS) THEN
WRITELN (“PUNT") ;
END.

SET OF CHAR;
SET OF CHAR;

ss o8

(C) copyright 1981 Alcor Systems - 60 -

Appendix

On diskette there is a file named DATABASE/PCL . This source program
ties all of the previous program segments in chapters 9 and 10
together, to build a program that will build a data base for
business customers. This is not intended to be a comprehensive
program, but can serve as a starting point for an expansion. This
program requires approximately 15K of stack to RUN or execute.

Once compiled, it may be executed by typing:

RUN DATABSE/PCL 15K

The number of customers allowed in the data base array is set by
the constant "maxarray" , and may be changed to reflect local memory
restrictions. Customer transactions are linked to each customer
record by dynamic management of linked lists. Customer records are
kept on a separate file from the transactions in order to simplify
rebuilding of the linked lists when loading an existing data base.
The size of the data base accessible during a program invocation is
limited by the available memory, as the entire data base is loaded
into memory for operations. Large data bases may be accessed by
partitioning the data base between files and running the program
multiple times.

(C) copyright 1981 Alcor Systems - 61 -

Gum Ome few gem Swm fom Guw Sm fum S fam Qe Pam Seme Bume

Pascal Reference Manual
Alcor Systems

Second Edition
First printing
1982

S Gem Gen fuw Gme Gem Dme Sem fam Sow 0% fem fem fuw Suw

Copyright (C) 1981 by Alcor Systems

SECOND EDITION
FIRST PRINTING-1982

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopving, recording,
or otherwise, without written permission from Alcor Systems.
No patent liability is assumed with respect to the use of
information contdined herein. While every precaution has
been taken in the preparation of this book, Alcor Systems
assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resuliting from the use
of the information contained herein.

TRS80 and TRSDOS are trademarks of Tandy Corporation.

USCD Pascal is a trademark of UC Regents, San Diego campus.
Apple is a registered trademark of Apple Computer Inc.

Z-80 is a trademark of Z2ilog corporation.

CPM is a trademark of Digital Research.

TABLE OF CONTENTS

Notation and Terminology..ceseeeceescssscsaccccsnsccsccanoaasasd

Chapter 1

Program ElementS.ceececsosssccsoscscssasasccanosnsscsssaasnscal
A, TdentifierSe.iceeeecscosesesescecssenncononcscsnnscscssel
B. NUMDEILSeusceeeasosescocssnscscssscsssscscssasscosssessaed
C. Strings..... P |
D. Reserved WOrdS .seeeeoeosoceecsssosecccsacaosasessnesnoossas 9
E. Special SymbolsS....evaenes
Fe COMMENESeeeossccessosscoasances ceeecessscsceee e ..10
G. The SemicOloN..ceceecocsccccann e s seccssnsoscecscnnse 11

cesecessssssseseccnne ee..10

Chapter 2
Program Structur€.cceceess e ecsesacsscccscoscsascscseaos 12
A. Block HeadingS .sseeaeassssasssssssossscsaseaasseasl3
1. PROGRAM HeadinQg..eeeoseaeaeecsosasassossonsesssll
2. PROCEDURE Heading..ecoessececscceana cssenceassall
3. FUNCTION HeadinNg..eeeeeeosasoosconsancacas I)
B. BlOCK PartSccececsecacssocsscscsssesasosesssessscssnsclh
1. LABEL DeclarationS.cececescecsscsossscsacsasccas 17
2. CONSTant DefinitionS..cceoesceccccsccancsansaalB
. TYPE Definitions..ceecececescecencocccanscas eosolQ
. VARiable DeclarationS..cceceascscsassssscsascadll
. COMMON DeclarationS.cccscccecaccassecccnscasscadl
. ACCESS DeclarationS..... eescsceasesssescascsell
. PROCEDURE and FUNCTION DeclarationNS..ccseceecssa22
. Statement BOdy..ceeecesoscocecnsna ecescceasedl3

DN UL W

Chapter 3

Simple Data TyYDPeSeeeeecaessseossscessscssnosssossssscssasssld

A. Ordinal TypPeS.ccs.. ceeccasesccccsssessasasascascseeld

1, INTEGER:eoeooaeasasosoeossossanassosascssascesseld

2. CHAR. .2 cososcosesacscnssssnsoscas ceececcasaeseald

3. BOOLEAN:sccoeeecsesccossossasancsossosasosssssseldd

4, ENUNEratiONicececocecesacssoscescassccssssesssscalbd

5. SUPrange..cccccecccescocsascasceasscssosncasnsonall

Be REAL TYPC@:cecesescascccccsosnsscssscasssscsscssscacensll

Chapter 4
Structured Data TYPEeS.ceocescsscscsccssccnssccssssccasesell
A. ARRAY .:evsoosssosncssascssosssassssssesscsssonnsssssssssslB
B:e SET.cceesascescsscsnnsssscssosssscsssncsosscscscnasscacscsldd
O s 5) 4
1. Predefined Type TEXT.ceeecccoccossaccosannocsseall
D. RECORD:cesescescossssssssseassossessnscssecsncscsassnssseld

(C) copyright 1981 Alcor Systems -

(C)

Chapter

o — v o -

5

Pointer Data TypP€.eceeseenn

Chapter

6

OperatOr Sieceoscessnssasos

A.
B.
cC.

ArithmeticC..iceeececsos

Relational.ccceaceoeses

BOOleaN.ieeeeoesneeenes
PrecedenCe.ceeeeeeess
Type Transfer........

EXpPressionNS.ceccecoscccacs

Chapter

Statements..cceoeecae

A.
B.
C.

8

EAssignment....ceeeeea.
Compound.e.oeeeecascos
Repetitive.ccieeencns

1. FOReuvevoconsasa

2. WHILE:.cceooeoooow
3. REPEAT . ecevccess
Conditional .veeoesos .
R 1
2. CASEeseccscanacs
WITH. teeeecoososceconcces
GOTO.cveeesoscnoacsnas
ProceduUr@.cscececesss

Procedures and Functions..

A.
B.
C.
D.
E.

Scope RuleS.csecscasne
FORWARD :eeeonoseoooasnse
EXTERNAL e cosseoooass
RECUISION.eecveeseooes

.

Predeclared..cceeecocecs

copyright 1981 Alcor Systems

© 9 8 0 0 6 e e a0 e 000 0000 ee
© ¢ 6083 0098000600899 e0c0e .
® e 08 0000 s e 0 e 000
®© 000 e 8 ¢ 40 80000000008

© @68 00 0600 c e s 060 ce w00

® © 5 28 04 0808000800000

® ¢ 0 80 00000800 00 0ee s

4 0 ® 08 0@ e 90003000 e e e
© © 80 @ 0@ 00 e e 0000800 o0
e @ o @ © ® 0 0 6 9 0 e e e85 0 00
e © 008 2808 e o ¢ 0% e 60000 0
® © % 806 e 00206 & 8000 00 s 0
® 60 0000060803000 00000
* o 60600 e 008 s 00 e e o 9 e @
® & 00 e 800090 e e e 80000 e
¢ 2 8 0006008006000 S e o0 0 e
® ® 06200 080 © 600 600 " e e e

® & 55 606000508 008 009600

@ ® 8 9 300000006000 e e o

@ 8 o000 % © 00088 98 s 0L

------ © 8 e 8 e 0600008 08 %o

% ® 00 a0 8 e e 3680080000080

® ®© 5 00 e e 080506606000 6030

® © ® 00 2 0@ e 020 @009 930 e

.l.l‘..40

- X
- X
ceeoesadb
- 1
- ¥
ceeces..48

Y

eecceead3
L
eeoseeeb5
eeesasebdb
1
Y
ceeeese ST
oeeaeseDB
eeeee+a58
I 1Y)
ceseeeabl
ececeeeb3
ceveeeab3

cecenas 65
ceesasabbd
I 1
N
ceseecesll
B

Chapter 10
Input and OutPUt...ceeereeneceensccsaossacsnscaccccccacealb
“RAe RESET .csceececeseccceccososscescsceansncscssccssssncocseall
Be REWRITE. .oceeveosccscvocncsnoscsasansscsscssssssssscneeslB
o READ.ccecevencocacesnenscsocsanasssssacascsscssscssald
D:e WRITE. . cieeeeeaoesosnsosasesnscanceanonsosnasosccsceassll
E. READLN..cceeecsecosesseoscssscsascsccnscccscssoccncsecssBd
Fo WRITELN..eooeoeoseeasesaossacoasscssessosscsscasaccacsccsseldB
G
H
I

O

CLOSE...-n-o.oooo.o.oo.cco.o.n.no.oo.ooooooooeo.tcss

PAGEQoooo.o-.oo.o.l'.oo.t.o..-ono-.-.oo.-ooooooc0087

. MESSAGE...‘.QO..'...00.0.'.0..0...0.0‘.0.....0...087

APPENAiX..eueeensescecocscassssssacssassccsacacacccccanacasesB8
A. Compiler OptiONS..sccsescosssasccscscccccscacescecso88

B, Error MeSSageS.ceescoesccosscoscascsecosscsncsonssesal

C. ASCII Character Set.cecececssesoascsosscsacscasscscssald

D. Differences from Standard....cccececececcoscccsoacessd?

1. OMiSSiONS..ecccsesssosscscssccacensacaccocsonscsa?

2. EXtensSionS...cceeeesecsccccecsccccssceassoccnnesead?

3. Other Implementation CharacteristicS.....c.....99

E. StringS.cceeccecccecssscssccscacessesensanecensssssssal00

(C) copyright 1981 Alcor Systems : -3 -

This manual assumes that the reader is already somewhat familiar with
the Pascal language. It is organized to be used as a reference
manual. As such, the chapters group related topics in order to make
them easier to find. The result of this is that the manual does not
follow a progression of discussion which is well suited as a teacher
of the Pascal language. It is suggested that you first read the
Pascal Tutorial if this is your first experience with the language.

(C) copyright 1981 Alcor Systems

NOTATION AND TERMINOLOGY

The description of any programming langquage involves both the syntax
and the semantics of the language. The syntax refers to the
arrangement of program elements into a form which the compiler can
understand. The semantics refers to the meaning that the compiler
associates with a particular arrangement of the program elements. The
semantics of a language can be explained with words but the syntax is
best explained through the use of diagrams.

The syntax diagrams used throughout this manual describe the legal
syntax of a program. Each diagram has an entering and an exiting
point which is denoted by an arrow. Starting with the arrow entering
a diagram, the legal syntax can be determined by tracing a path which
follows the directions indicated by the arrows until the exiting arrow
is reached. Most diagrams have a multiple number of paths from
starting point to ending point. All paths describe a syntactically
correct form.

The following are sample syntax diagrams which describe the syntax
of an integer.

Syntax of an integer: Syntax of a digit:

_——D e ——

(C) copyright 1981 Alcor Systems - 5 -

The syntax diagram for an integer says that an integer is a
concatenation of one or more digits which is optionally preceded by a
Plus or minus sign. Entering the diagram, you have 3 possible paths
from which to choose. One path leads directly to "digit", one leads
to "+", and one leads to "-". The patias from both "+" and "-" then
lead to "digit". Passing through "digit", you have the option of
exiting the diagram or following the arrow which leads back to the
beginning of "digit". From this point, you pass through digi=« again
and optionally exit or return for another pass. Thus, an integer may
consist of one or more digits.

The second syntax diagram describes the correct forms of a digit.
Entering the diagram, you have ten possible paths from which to
choose. All paths lead to a single character, each of which is a
legal digit. Choosing a path, you follow it through a character and
end up at the exiting arrow. At this point, there is no alternative
but to exit the diagram. No other paths are available. Some exampl es
of integers then are 10, 4963, and -75.

In the diagrams used in this manual, upper case character strings
denote reserved words that must be present in the form shown. Lower
Ccase character strings denote the parts of the syntax where many legal
forms exist. For example, the word integer in a diagram in lower case
letters represents any legal integer. The word INTEGER in uppercase
letters represents a reserved word of the language.

In some cases, abbreviations are used to shorten a diagram. For
example, id is used in place of identifier. Also, expr is used in
place of expression. A few other abbreviations may occur but where
used, their meaning should be apparent from the surrounding text.

(C) copyright 1981 Alcor Systems -6 -

Program Elements Chapter 1 !

PROGRAM ELEMENTS

The elements of a program consist of the entities (identifiers,
numbers, strings, reserved words, and special symbols) which are
composed from a character set. The ASCII character set is the most
often used and is listed in the appendix.

A. Identifiers

An identifier serves to denote the program name, a constant, a type,
a variable, a procedure, or a function. It consists of a letter
followed by combinations of zero or more of the following characters:

(the 26 letters of the alphabet in lower or upper case,
the digits 0 through 9, the character $, the character).

Note:
no distinction is made between upper and lower case letters

in identifiers. The two identifiers, Apple and apple, are
considered identical.

The length of an identifier is arbitrary but only the first 8
characters are significant. For example, the identifiers A2345678 and
A23456789 would to the compiler be identical because it discards all
characters past the eighth character. Therefore, care should be taken
to make identifiers eight characters unique. It should also be noted

that an identifier cannot contain embedded blanks or span a line
boundary.

Examples: Factor$ DEPARTMENT A Div_10 B12345678$_

(C) copyright 1981 Alcor Systems -7 -

Program Elements Chapter 1

B. Numbers

Numbers are integer or real constants. Integers are allocated
sixteen bits of storage which imposes a size limitation. The range
for an integer is -32768 to +32767.

Syntax of integer numbers:

- wm - ——
Y
A% \Y%
———————————————————— > digit -=->
Examples of integer numbers:
30 -28934 0 32739

Real numbers are represented in either scientific or floating point
form. The floating point form consists of an integer part followed by
a decimal point and a fractional part. The scientific form consists
of a floating point part followed by an exponent part. The exponent
part is a multiplier. The value of a real number in scientific form
is the floating point part times (10 raised to the exponent part).
(See the System Implementation Manual for the size, range, and
accuracy of real numbers).

Syntax of real numbers:

- — — o— o — —— - o— ettt L S ——

--> integer --=> ., =-==> digit —————————- > E -—==> integer —--->
Examples of real numbers: *——> D —-I
Floating point form:
50.0 -100000.0 345.,22452
Scientific form:

0.239E3 -4.5921E-2 876 .0E+99 193.27D-3

0.239E3 is equivalent to 239.0
-4.5921E-2 is equivalent to -0.045921

NOTE: Using D instead of E in scientific form represents
a double precision real number.

(C) copyright 1981 Alcor Systems - 8 -

Program Elements Chapter 1

C. Strings

Strings are sequences of characters enclosed by single quote marks.
A string consisting of a single character is a constant of the type
CHAR. Strings consisting of n characters, where n is greater than
one, are constants of the type PACKED ARRAY[l..n] OF CHAR. 1If a
string is to contain a single quote mark, it must appear twice in the
Sequence.

Examples: “ABC” “12"QzZwW” “BEGIN ~ Ckkk . g

The string consisting of the single character “ is represented as
Characters in strings can also be denoted by hexadecimal numbers.
A hexadecimal number is composed from the characters 0 through 9 and A
through F. (See the ASCII character set in the appendix). The
character # followed by 2 hexadecimal characters represents a single
ascii character. The character represented is the one whose ordinal
position in the character set corresponds to the hexadecimal number
specified. This feature provides a mechanism for representing
nonprintable characters. A consequence of giving the character # a
special meaning is that it must appear twice in a string just as the
character “ must when the character itself is to be made a part of the
string. A string consisting of the single character # then is
represented by “##°.

Examples of hexadecimal character representation in strings:
“#30° is equivalent to “0~
“D#4FG” is equivalent to “DOG”

‘400~ corresponds to the nonprintable null character
“A#B” is illegal

D. Reserved Words

The following list of words are keywords and have special meaning in
a program. They may not be used as identifiers.

AND DOWNTO IF OR THEN
ARRAY ELSE IN PACKED TO
BEGIN END LABEL PROCEDURE TYPE
CASE FILE MOD PROGRAM UNTIL
CONST FOR NIL RECORD VAR
DIV FUNCTION NOT REPEAT WHILE
DO GOTO OF SET WITH

(C) copyright 1981 Alcor Systems -9 -

Program Elements Chapter 1

E. Special Symbols

The special symbols are used as operators and delimiters in a
program. Because character sets vary from system to system, alternate
representations are provided for some of the symbols.

Symbols with only one representation:

<>
)

o AN

LL |

~ ~ I +
H= - A *

Symbols with alternate representations:

symbol alternate
{ (*
} *)
- e

(

[.
] .)

F. Comments

Comments can be used in a program for documentation purposes. The
compiler generates no code for comments. The symbol { denotes the the
beginning of a comment while the symbol } denctes the end. All
characters in between are ignored by the compiler. As shown above,
the symbol { may be replaced by the symbol (* and the symbol } may be
replaced by the symbol *).

Examples: {this is a comment}
(*This is a comment
that spans more than one line*)

Note: Comments may not be nested. The following will generate
an error:

(*outer (*inner level*) level?*)

(C) copyright 1981 Alcor Systems - 10 -

Program Elements Chapter 1

G. The Semicolon

The semicolon is used extensively in the Pascal language. 1Its
purpose is to separate the individual components of a program. For
example, block headings must be separated from block parts, block
parts must be separated from one another, and individual definitions,
declarations, and statements within the block parts must be separated.
In general, they may be used freely throughout the program. However,
care should be taken not to include a semicolon in the middle of a
statement. This is a common source for error when using the IF
statement with one or more ELSE clauses. Since the ELSE clauses are a
part of the IF statement, they must not be separated from it by a
semicolon. An ELSE keyword should never be preceded by a semicolon.

example use of semicolons in an IF statement:

IF time > 12 THEN

(C) copyright 1981 Alcor Systems - 11 -

Program Structure Chapter 2

PROGRAM STRUCTURE

Pascal is a block structured language. This means that a program is
constructed in a block like manner. At a minimum, a program consists
of one block. More blocks are created through the use of procedures
and/or functions by placing them inside this outermost "program
block". The term for this process is called nesting. The rule for
nesting is that a block may lie entirely within another block, but
blocks do not overlap in any other way. A level of nesting can be
assigned to each block of a program. This provides an appropriate
tool for describing scope rules which are discussed in chapter 9. The
block structured organization of a program can be represented
pictorially by the following example:

Program Block A (Level 1)

Procedure Block B (lLevel 2)

Procedure RBlock C (Level 3)5

Function Block D (Level 2)

Procedure Block E{(level 3)

Procedure Block F (level 2)

A program then consists of at least one block, the program block, and
optionally it contains procedure and/or function blocks which are
nested within.

(C) copyright 1981 Alcor Systems - 12 -

Program Structure Chapter 2

A. Block Headings

The purpose of the block heading is to give the block a name and in
the case of procedure or function blocks, to define any parameters to
be passed to the block. There are three types of blocks: the program
block, the procedure block, and the function block. There is only one
program block, the outermost block of the program, while there may be
any number of procedure and function blocks. Each of the three types
of blocks has a different heading. (Procedures and functions are
discussed further in chapter 9)

A.l1 The Program Heading

The program heading must be the first non-comment in a program. 1Its
purpose is to signal the start of the program and to give the program
a name. Characters inside the parentheses are ignored by the
compiler.

Ssyntax of the program heading:

v
~=> PROGRAM =--> id =-=> (==> comments ==>) ===> 3 —=>
Example program headings:
PROGRAM lander; PROGRAM taxes (computes income tax);

A.2 The Procedure Heading

The procedure heading signals the start of a procedure block. It
gives the procedure a name and defines the parameters to be passed to
it.

Syntax of the procedure heading is:

- — i " - — ———— o ——_ o S D S

-

i

i
v
el
8
2
g
&

]

i
v
[N
Q

|

1

i
A\

e
v
3]
o]
3
(1]
t
1]
[a]
=
[
(1]
ct

[

|

i
A\

(C) copyright 1981 Alcor Systems - 13 -

Program Structure Chapter 2

The parameter list declares the variables which are used to pass data
into and out of a procedure. The variables are called formal
parameters. The procedure statement which activates (or calls) a
procedure has a corresponding list of parameters which are the actual
parameters. The actual parameters must match the formal parameters in
order and in tvpe. However, their names need not be the same.

There are two different kinds of formal parameters, pass by value
or pass by reference. A formal pass by value parameter causes its
corr2sponding actual parameter to be copied to another location and
then the formal parameter references the copied value. Therefore,
changing the value of the formal parameter inside the procedure does
not change the value of the corresponding actual parameter. 1In
contrast, a formal pass by reference parameter is passed the address
of the corresponding actual parameter. The formal parameter
references the same location as the actual parameter. Therefore,
changing the value of the formal parameter also causes the value of
the actual parameter to be changed. Variable declarations in the
parameter list which are preceded by the keyword VAR are pass by
reference parameters while the absence of the keyword represents pass
by value.

Syntax of the parameter list is:

Example procedure headings:
PROCEDURE out;
PROCEDURE cpu(pc : INTEGER);
PROCEDURE delete (VAR i,j :INTEGER; ch :CHAR; VAR X :REAL);
In procedure delete above, i and j are integers which are passed by

reference, ch is a character which is passed by value, and x is a real
which is passed by reference.

(C) copyright 1981 Alcor Systems - 14 -

Program Structure Chapter 2

As a general rule, pass by value parameters should be used to prevent
side affects. However, sometimes side affects are necessary. That
is, sometimes you need a change in the value of a formal parameter to
also change the value of its corresponding actual parameter. In such
a case, pass by reference must be used. Also, when passing large data
structures such as arrays, pass by reference should be used. This
speeds execution and saves memory because a pointer to the structure
is passed rather than copying the whole structure to another location.

A.3 The Function Heading

The function heading signals the start of a function block. It gives
the function a name and defines the parameters to be passed to it.
Unlike a procedure, a function has a type associated with it.
Functions, like variables, are assigned values. A function is
referenced by an expression and its value then substituted into the
expression.

syntax of the function heading:

-=> FUNCTION --> id =---> parameter list ---> : -=-> type id --> ; -->

The parameter list has the same form as the parameter list for a
procedure discussed on the previous page.

Example function headings:
FUNCTION number : REAL;

FUNCTION nextstate(currentstate : INTEGER) : INTEGER;

The function "number" is a real valued function which has no
parameters. The function "nextstate" is an integer valued function
which has one parameter, also of type INTEGER. 1In each function, a
value should be assigned to the function name. For example,
number:=5.3 and nextstate:=currentstate + 1 could appear inside each
of the respective functions to define values for them.

(C) copyright 1981 Alcor Systems - 15 -

Program Structure Chapter 2

B. Block Parts

A Block is composed from the following list of parts.

the label declarations

the constant definitions

the type definitions

the variable declarations

the common declarations

the access declarations

the procedure and function declarations
the statement body

O ~1O0Y U s LI D
L]

The label declarations are used to declare statement labels which can
be used for branching. The constant definitions are used to give
names to numbers or strings which are constants. Constant names are
assigned values at compile time. Type definitions are used to create
and give names to data types which are not predefined. Variable
declarations are used to associate variable names to specific data
types. A type defines the kind of data that can be stored in a
variable. It also defines the amount of storage required for the
variable. Variables are assigned values at run time. Common
declarations are used in the same manner as the variable declarations
to associate variable names to specific data types, but common
variables have a special property. Storage space for common variables
is created statically rather than dynamically. This means that when a
block terminates, the common v:riables declared in it do not become
undefined. Access declaration: are used to enable a block to access a
common variable. Procedures and functions are used for modularity.
They provide the mechanism for segmenting a block into subblocks. The
statement body contains the program statements which describe the
actions to be taken on data as well as the order in which the actions
take place.

A block does not have to include all eight parts described above.
At a minimum, a block must include the two keywords BEGIN and END
which bracket the statement body. The following is an example of a
minimum complete program. It contains only the program block which is
composed of only the heading and a null statement body.

PROGRAM donothing;

BEGIN (*The statement body contains no statements*)
END.

(C) copyright 1981 Alcor Systems - 16 -

Program Structure Chapter 2

The order in which the eight parts appear in a block is as follows:
The first six parts may be arranged in any order. The only
requirement is that an identifier be defined before it is used. For
example, a particular type definition must textually precede a
variable declaration of that type. The only exception to this is the
definition of pointer types which are discussed in chapter 5. It is
also worth noting that there may be more than one of a particular
part. For example, there could be two separate type definition parts.
The procedure and function declarations follow any use of the first

six parts. The statement body then follows the last procedure or
function declaration.

B.l The Label Declarations

Label declarations are used in conjunction with the GOTO statement.
A label declaration defines a label which can then be used to label a
statement. A GOTO statement can then reference the label causing a
branch to the statement which is prefixed by the corresponding label.
The label declaration part is signaled by the keyword LABEL.

Syntax of the label declaration part:

--> LABEL ~--=-> integer constant ---> ; --=>

Note:
A label must be declared in the same block in
which a GOTO statement which references it
appears. Branching outside a block is not
allowed. Also, all declared labels must appear
somewhere in the statement body.
Example label declaration part:
LABEL 100, 200, 300, 400, 500, 1000 ;
Syntax of labeled statement:
—-=--> LABEL --> : -=> statement --->
Example labeled statements:

100: x:=47;
200: IF x > 500 THEN GOTO 100:

(C) copyright 1981 Alcor Systems - 17 -

Program Structure Chapter 2

B.2 The Constant Definitions

o e T ———

The constant definitions are used to associate identifiers with
values which do not change. A constant identifier is assigned a value
at compile time and this value can not be changed. This means that a
constant identifier cannot have its value changed by an assigjnment
statement. The use of constant identifiers increases progran
readability because meaningful names can be used in the place of
actual values. The values which can be assigned to constant
identifiers are numbers, strings, or other identifiers which are
constants. This includes identifiers which are members of an
enumeration. The start of the constant definition part is signaled by
the keyword CONST.

Syntax of the constant definition part:

»
G G

Example constant definition part:

CONST low=32; high=88; pi=3.14159:
speedoflight=299792.0; separator="=——e——e—e—-— ‘s
positive=10; negative=-positive;
keydefinition=#61;

Note: Integer constants may also be expressed in
in hexadecimal by preceding the value with the %

There is a predefined constant MAXINT which

is defined to be equal to the largest positive
value an integer can take.

(C) copyright 1981 Alcor Systems - 18 -

Program Structure Chapter 2

B.3 The Type Definitions

Type definitions are used to create new data types. A type
definition associates a name with a user defined simple or structured
data type. The name can then be used in a variable declaration to
specify the type of the variable. Although a variable can declare its
type directly in the variable declaration part, it is nice and
sometimes necessary to have a name associated with a user defined
type. Type definitions are especially useful when using structured
types whose definitions are long and when more than one variable in
the program is to be declared of that type. Associating a name to the
type means that the type must be defined only once. In some cases,
type definitions are necessary. If comparisons are to be made between
two variables of a user defined type, then the variables must be
declared as the same type. Defining the type for each variable
separately in a variable declaration part will not work. Although the
variable declarations will look the same, the compiler will view them
as variables of two separate types. Also, declarations of variables
in the parameter list of a procedure or function must be to named
types. For example, if an array is to be passed as a parameter, the
array must be defined in a type definition and then the formal
parameter declared as that type.

The type definitions part is signaled by the keyword TYPE.

Syntax of the type definition part:

_________ 0 & s e o i e e
l
v
-=> TYPE ==-> id ~=> = —-=> type ===> ; -=>
Example type definition part:
TYPE colors = (red,blue,green,orange,purple);
weekdays = (sunday,monday,tuesday,wednesday,

thursday,friday,saturday);
wor kdays = monday..friday;
daysofmonth = 1..31;
letters = “A°..727;
list = ARRAY [0..25] of CHAR;
customer = RECORD

name : PACKED ARRAY[1l..20] OF CHAR;
address : PACKED ARRAY[1..40] OF CHAR;
END;

(C) copyright 1981 Alcor Systems - 19 -

Program Structure Chapter 2

B.4 Variable Declarations

All variables in a program must be declared before they are used.
This is done by associating the variable name with a type. The type
can be the name of a predefined simple data type, the name of a user
defined type which has previously been defined in a type definition
part, or the type can be defined directly. The start of the variable
declaration part is signaled with the keyword VAR.

Syntax of the variable declaration part:

-=> VAR =—===—- > id ===== > ¢ ==> type -=-> ; -=>

’

Example variable declaration part:

VAR X,V,2 : REAL:
ok : BOCT.EAN:;
i,j.,k : INTEGER:
fruit : colors:
alpha,beta : CHAR;:
characters : list;
mark : ARRAY [1..30] OF INTEGER;
byte : 0..255;
months : (jan,feb,mar,apr ,may,jun,jul,
aug,sep,oct,nov,dec) ;
account : RECORD
number, date : INTEGER;
END;

B.5 Common Declarations

The common declaration part is used in the same manner as the
variable declaration part to associate a variable name with a specifiec
data type. However, declaring a variable in the common declaration
part gives it a special property. Normally, storage space for
variables is allocated dynamically. This means that the variables
declared in a block are allocated storage space when the block is
activated and the space is freed when the block terminates.

Therefore, the local variables of a block become undefined when the
block terminates. 1In contrast, common variables are allocated storage
space statically at compile time. This means that the common

variables of a block retain their defined values even after the block
terminates.

(C) copyright 1981 Alcor Systems - 20 -

Program Structure Chapter 2

Common variables are scoped just the same as normal variables but a
common variable cannot be accessed in a block unless its name appears
in an access declaration of the same block. This feature is useful
for controlling access to global variables, providing protection and
better documentation of where global variables are used. Another very
valuable use for common variables is in external procedures. A
procedure which is often used by many separate programs can be
compiled separately and linked to the programs that use it. 1In the
case where the procedure must retain information between activations,
such as cursor position in a graphics procedure, common variables may
be used to prevent the need for declaring the necessary variables
globally in every program that uses the procedure.

Syntax of the common declaration part:

--> COMMON ----- > id ===-- > 1 ===> type -==> ; —===>
Example common declaration part:

COMMON cursorx , cursory : INTEGER:

B.6 Access Declarations

Access declarations are used in conjunction with common variables.
No common variable can be referenced unless its name appears in an
access declaration of the block which references it. The order in
which common variable names appear in an access declaration is
arbitrary.

Syntax of the access declarations part:

-=> ACCESS =-=====- > id ====—- > ;7 ===>
Example access declaration part:

ACCESS cursorx , Ccursory:

(C) copyright 1981 Alcor Systems - 21 -

Program Structure Chapter 2

B.7 Procedure and Function Declarations

Procedure and function declarations create new blocks. Each
declaration forms a complete new block composed from the block parts
discussed earlier. A procedure declaration consists of a procedure
heading followed by a block. A function declaration consists of a
function heading followed by a block. Procedure and function
declarations form subblocks within the block in which they appear.
Procedure and function declarations are discussed more fully in
chapter 9.

Syntax of procedure or function declaration:

--> function heading --

v
————— > procedure heading ----> block =--->

Example procedure declaration:

PROCEDURE getvalue (first,last :INTEGER; VAR word : buffer;
VAR value: INTEGER);:
(*Converts hex character string to decimal value:
buffer is a globally declared type --> PACKED ARRAY[1..8] OF CHAR;
word contains the hex character string
first and last are pointers into the string

value is the returned decimal wvalue *)
VAR 1i,n,factor : INTEGER;
ch : CHAR;
BEGIN
value := 0; factor := 1;
FOR i := last downto first DO
BEGIN
ch := word{i] :
IF ch = ° “ THEN n:=0 (*Blank character given value 0%)
ELSE
IF (ch>="0") AND (ch<="9") THEN (*character range 0..9 *)
n := ORD(ch)-ORD("0") (*convert ch to decimal¥*)
ELSE
IF (ch>="A”) AND (ch<=“F”) THEN (*character range A..F *)
n := ORD(ch) - ORD("A”) + 10; (*convert ch to decimal*)
value := value + factor * n;
factor := 16 * factor; (*hex is base 16%)
END;
END; (*procedure getvalue¥*)

(C) copyright 1981 Alcor Systems - 22 -

Program Structure Chapter 2

Example function declaration:

FUNCTION nextstate(currentstate : INTEGER) : INTEGER:
(* returns the next state given the current state #*)

BEGIN
CASE currentstate
l: nextstate
2: nextstate
3: nextstate
4: nextstate
END; _
END; (*function nextstate*)

N WO
Hh

os o se s
(L T}

~o w8 w8 e

B.8 Statement Body

The statement body of a block contains zero or more statements which
describe the actions of the block. The statement body must start with
the keyword BEGIN and stop with the keyword END. However, since
statements may also include BEGIN and END, the statement body may
contain many occurrences of these two keywords. The statement bodies
for the three types of blocks are identical, except that the
concluding END for the program block statement body must be followed
by a period while the concluding END for procedure and function
statement bodies must be followed by a semicolon.

Syntax of statement body: -—> 3 -—l
v
-==> BEGIN --> statements =-=> END -===> , ———=-- >
Example statement body:
BEGIN (* begin program block statement body *)
WHILE NOT EOF DO
BEGIN
READ(X,¥Y,2);
X = SQR(X); y := SOR(y): z := SQR(z);
WRITE (“squaredata * , X , Vv , 2);
END;
END. (* end of program *)

(C) copyright 1981 Alcor Systems - 23 -

Simple Data Types Chapter 3

SIMPLE DATA TYPES

The simple data types are the primitive data types of the language.
They form the base for building structured types. The simple data
types consist of ordinal types and the REAL type.

A. Ordinal Types

Ordinal types are characterized by a linear ordered set of distinct
values which can be mapped on the set of natural numbers. This
mapping is actually an enumeration of all the values which the type
can take. The predefined ordinal types are INTEGER, CHAR, and
BOOLEAN. New ordinal types can be defined by enumerating all the
values which the type can take. 1In addition, new ordinal types may be
defined as subranges of other ordinal types.

A.l1 The Type INTEGER

Variables declared as type INTEGER may take on values in the range
-32768 to +32767. All the arithmetic and relational operators can be
used with integer constants and variables. However, the relational
operator IN is used only in conjunction with sets (see chapter 4).

Syntax of type INTEGER:

--> INTEGER -->
Example declaration:
VAR i,j,k : INTEGER;
Example integer constants:

59 -1 0 329 -10000 29872

(C) copyright 1981 Alcor Systems - 24 -

Simple Data Types Chapter 3

A.2 The Type CHAR

Variables declared as type CHAR can take single characters as values.
The set of valid single characters is defined by a character set. Aall
characters have an associated ordinal number in the range 0 to 255. A
table of ASCII characters with associated ordinal numbers is listed in
the appendix. There are two functions which may be used in
conjunction with the character set. The function ORD(character)
returns the ordinal number of the character specified. The function
CHR(ordinal number) returns the character associated with the
specified ordinal number. These are known as transfer functions
because they are used to transfer a character value to an integer
value and vice versa. Constants of type CHAR are denoted by using
single character strings. All relational operators may be used with
variables and constants of type CHAR.

Syntax of type CHAR:
--> CHAR =-->

Example declaration:

VAR alpha , beta : CHAR;
Example character constants: Example relational expression:
‘9‘ ‘al A#QF‘ IAJ < IBI

A.3 The type BOOLEAN

The boolean type represents logical data. A logical value is
represented by the predefined identifiers FALSE and TRUE. These are
the only possible values of a boolean variable or expression.

Syntax of type BOOLEAN:
--> BOOLEAN -->

The boolean type is defined by the following enumeration:
BOOLEAN = (FALSE, TRUE)

The boolean operators AND, OR, and NOT take boolean operands and
yield boolean results. The relational operators = , <> , <= , < , > ,
>= , and IN all yield boolean results. See chapter 7 for examples of
boolean expressions.

Example declaration: Boolean Constants:

VAR switch : BOOLEAN; FALSE TRUE

(C) copyright 1981 Alcor Systems - 25 -

Simple Data Types Chapter 3

A.4 The Enumerated Type

Pascal allows you to define your own ordinal types. A new type may
be created by enumerating all the values that the type may take. This
is done by giving the new type a name and listing the values which the
new type can take.

Syntax of the enumerated type:

——> (==—==> id —====>) ==>

Example definitions of enumerated types:

]

names (Fred, Joe, Nancy, Susan);

[

foods (hotdog, hamburger):;

The values listed are identifiers. The order in which the
identifiers are listed defines a relationship. The identifiers can be
thought of as being mapped on to a set of natural numbers. The first
identifier maps to 0, the second to one, the third to two, and so on.
This implies that identifierl < identifier2 < identifier3...<
identifierN. For example, consider the predefined type:

BOOLEAN = (FALSE,TRUE)

The booclean value FALSE is less than the boolean value TRUE because
FALSE appears in the list before TRUE. This kind of ordered
relationship applies to any enumerated type. Consider the type
definition:

colors = (red, blue, green)

By this definition, a variable declared as type colors can take on
the the value red, blue, or green. The definition also implies that
red < blue < green.

The ordering means that enumerated values can be used in relational
expressions. It also means that they may be used for range
specifications. For example, consider the FOR statement. The range
of the loop control variable is defined by specifying a starting and
stopping value. These starting and stopping values could be the
values of an enumerated type. For example, if color has been declared
as type colors, the following statement is valid:

FOR color := red to green DO

(C) copyright 1981 Alcor Systems - 26 -

Simple Data Types Chapter 3

A.5 Subrange Types

A subrange type is simply a type defined to take on a subset of the
values representing some ordinal type.

Syntax of the subrange type:
--> constant --> .. --> constant -->

The use of subranges can sometimes save memory. For example, an é
integer variable whose values are always in the range of 0 to 255 E
could be declared as a subrange of the type INTEGER. You might define
a new type as follows:

byte = 0..255

Now, variables declared as type byte would be allocated 8 bits of
storage rather than the 16 bits which is allocated for variables
declared as type INTEGER. The compiler allocates the minimum amount
of storage required to represent the range of values specified by a
subrange type.

The use of subranges can better document a program by defining the
range of valid values a variable declared as the subrange type can
take on. Subrange types are also often used in conjunction with SET
types which are discussed in section B of chapter 4.

B. The Type REAL

The type REAL is used to represent fractional numerical data. The
implementation of reals is machine dependent. Information on the
size, range, and accuracy of reals is discussed in the System
Implementation Manual. See section B of chapter 1 for the syntax of
real constants.

Syntax of REAL:
-=> REAL ==>
Example declaration:

VAR X, vV, 2 : REAL:;

(C) copyright 1981 Alcor Systems - 27 -

Structured Data Types Chapter 4

STRUCTURED DATA TYPES

There are four kinds of structured data types: the ARRAY, the SET,
the FILE, and the RECORD. These four kinds of data types represent
four different ways of organizing the simple data types into a data
structure. A data structure can also include other data structures as
components. It is then possible to build very complex structures from
the basic simple data types. All structured data types can be packed.
This means that the most compact form of storage possible will be
used. Packing a data structure can sometimes save memory. However,
packing may cause access time to increase. The decision to pack or
not depends on the specific application. The keyword PACKED signals
the compiler to pack the data type into its most compact form. When
structured types contain other structured types, the keyword PACKED
must be applied to the innermost structure as well as the outermost to
have any effect.

A. The Type ARRAY

The ARRAY is a data type which defines a structure composed of a
fixed number of data elements which are all of the same type. The
data elements can be defined to be of any one type. They could be
defined as one of the simple types or as one of the structured types,
including ARRAY. Arrays can be defined to be of any dimension. The
number of dimensions, the number of eiements in each dimension, and
how the elements are accessed is specified by an index definition.
The index definition consists of a list of ordinal types (excluding the
type INTEGER for the reason that this would create an array tco large
to fit in memory). The number of types specified corresponds to the
number of dimensions of the array.

Syntax of the type ARRAY:

—-—-=> PACKED =---> ARRAY --> [---> ordinal type --->] =-=> OF --> type —-->

(C) copyright 1981 Alcor Systems - 28 -~

Structured Data Types Chapter 4

Example declarations:

TYPE table = ARRAY [0..5,1..10] OF INTEGER;
colors = (red, blue, green, yellow);
VAR report : ARRAY [l1..20] OF table;
day : ARRAY [l1..365] OF REAL;

class : ARRAY [0..8,0..5] OF INTEGER;
chart : ARRAY [cclors] OF INTEGER;

Elements of variables declared as type ARRAY are accessed by
specifiying the variable name and listing expressions which evaluate
to ordinal values that fall into the range of the ordinal types of the
index definition.

Examples of accessing array elements:

report(5,3,6] day[40] class|[0,0] chart[red]

B. The Type SET

A set is a collection of distinct elements which are all of the same
ordinal type. The elements of a set are called set members. There
may be up to 256 members in a set. The 256 member limit causes the
restriction that a set can not be defined to be of ordinal type
INTEGER. Also, subranges of type INTEGER which include negative
integers are not allowed as set base types. A set can have no members
in which case it is called an empty set.

Syntax of the type SET:

-=> SET --> OF --> ordinal type -->

Example declarations:

TYPE days = (sunday, monday, tuesday, wednesday,
thursday, friday, saturday):
VAR lowercase, digits, special : SET OF CHAR;
schooldays, workdays SET OF days:

day days; f
A variable declared as type SET can take on any values which are
subsets (including the empty set) of the values defined by the type of
the set. The type of the set is specified after the keyword OF.

Set values are denoted by listing set members within square

brackets. The individual members can be specified as ordinal
expressions.

(C) copyright 1981 Alcor Systems - 29 -

Structured Data Types Chapter 4

Syntax of set notation:

- 2 XS s D D R WD W WD S 2) o] o . - T " W S SN e S won W S

t ——————————————) Smm e ————
v \Y% A\
-—> [———— > ord expr ---> .. ==> ord eXpr —-—-——-- > 1 —-—>
The .. notation between two members specifies that all values in

between are also to be included as members. For example, [0..3,7..10]
would denote a set with members 0,1,2,3,7,8,9,10. The empty set is
dencted by [].

Example assignments to set variables:

schooldays:= [monday, wednesday, fridayl;
workdays := [monday..fridav];
lowercase := ["a”".."2z"];
digits = [707..797]
special = [7*7 787, 7@’
The relational operators which are applicable to sets are (IN , = ,

<> , <= , and >=)

IN
A single element can be tested to see if it is
a member of a set. The operator IN is used for
this testing of set membership. This operation
evaluates to TRUE if the single element on the
left is a member of the set on the right.

Two sets can be compared to see if they contain
exactly the same members. The operator = is used
to test for set equality. If each member of each
set is also a member of the other then the
operation evaluates to TRUE.

<> Two sets can be compared to see if they do not contain
exactly the same members. The operator <> is used
to test for set inequality. If any member of either
set is not also a member of the other then the operation
evaluates to TRUE.

(C) copyright 1981 Alcor Systems - 30 -

Structured Data Types Chapter 4

A set can be compared to another set to see if the
first set is a subset of the second set. The

operator <= is used to test for set inclusion. If all
the members of the set on the left are also members

of the set on the right then the operation evaluates
to TRUE.

A set can be compared to another set to see if the
first set is a superset of the second set. The
operator >= is used to test for set containment.

If there are no members in the set on the right which
are not also members of the set on the left then the
operation evaluates to TRUE.

Example use of relational operators:
IF day IN workdays THEN gotowork; (*gotowork is a procedure*)

IF character IN digit THEN WRITE (character);
IF workdays >= schooldays THEN noweekendclasses;

Relational Expression Evaluation

monday IN [monday, tuesday] TRUE
“A” IN ["a”.."z27] FALSE
(1, 2, 31 >= [0] FALSE
(1, 2, 31 >= [2] TRUE
[“8°] <= ["*7, “%7] TRUE
[] <= [tuesday] TRUE
[“a*, €7, “g"]1 = ["a”", “£°, “k~7] FALSE
[1] = [1] TRUE
The arithmetic operators which are applicable to sets are (+ , - ,

and *).

Two sets can be combined to form a third set
containing all elements that are members of either
set. The operator + performs the union of two sets.

A set can be formed as the difference between two sets.
The operator - performs set difference. The result
is a set containing all members of the set on the left
which are not also members of the set on the right.

(C) copyright 1981 Alcor Systems - 31 -

Structured Data Types Chapter 4

A set can be formed which contains only the members
which exist in both of two other sets. The operator *
performs the intersection of two sets.

Examples:

Expression Result
(1, 2, 31 + [4, 5, 6] [, 2, 3, 4, 5, 6]
(1, 2, 31 + [2, 3, 4] (1, 2, 3, 4]
[lr 2: 3] - [2] [ll 3]
(1, 2, 31 - [4] [(r, 2, 3]
(1, 2, 31 *~ (4, 5, 6] []
(1, 2, 31 * [2, 3, 4] (2, 3]

C. The Type FILE

The data type FILE provides the link between a program and the
peripheral equipment of the computer system. Variables declared as
type FILE represent logical files. Input and output operations always
refer to logical files. Each logical file has an associated physical
file. The physical file is the actual device to which an operation is
directed. A physical file is a device such as a terminal, printer,
disk file, etc... Since all input and output operations reference
logical files rather than physical files, a programs input or ocutput
can be redirected simply by associating the logical file with a
different physical fiie. The method of associating logical files to
physical files is discussed in the System Implementation Manual.

File data elements can be of any type except FILE or structured
types containing a component of type FILE. The use of the CLOSE
procedure will assure that file data will not be lost if the program
abnormzlly terminates and does not properly close the file. It may
also be used in conjunction with the external runtime routine
SETSACNM.

(see System Implementation manual)

(C) copyright 1981 Alcor Systems - 32 -

Structured Data Types Chapter 4

Syntax of type FILE:
--> FILE -=-> OF --> type -->

Input and output can be greatly simplified by declaring variables as
files of structured types. For example, a complete record can be read
or written to a file of records simply by specifying the file variable
name and the record variable name as parameters to an input or output
procedure.

Example of file declarations:

Type sales = RECORD
salesman : PACKED ARRAY[1l..20] OF CHAR;
quantitysold : INTEGER;
END;
VAR salesfile : FILE OF sales;
numbers : FILE OF INTEGER:;

The data elements of files declared as above are read and written in
binary format. Binary format is the form in which the data is
actually stored in memory. No translation of the data is done during
the I/0 process to a character readable form. The advantage of this
type of I/0 is speed of data transfer and minimization of disk storage
requirements. The disadvantage is that the data is in a non-readable
form.

A special type of file is provided for handling character formatted
data. 1In a TEXT file, data is stored as characters. Input and output
then involves a translation to and from the internal binary data
format.

C.1l The type TEXT

There is a predefined type of file called TEXT. Text files have
special characteristics. Unlike other file types, a text file is
divided into lines. There is some mechanism which is implementation
dependent which marks the separation between lines, each line being a
sequence of characters. The data types which can be input from and
output to text files are not restricted to characters only, even
though a text file is actually a file of characters. The characters
of a text file may represent string, integer, real, or boolean values.
The Pascal I/0 routines make the appropriate character to binary and
binary to character conversions with TEXT files. There are two
predeclared variables of type TEXT (INPUT and OUTPUT). These are the
default parameters for the I/0 procedures and functions discussed in
chapter 10.

(C) copyright 1981 Alcor Systems - 33 -~

Structured Data Types Chapter 4

Example declarations:

infile, outfile : TEXT;

There are two built in procedures and one built in function which
apply only to text files.

WRITELN
The procedure WRITELN terminates the current line
and positions a file pointer to the next line. 1If
any variables are specified t: be output by the
WRITELN, they are output first and then the file
pointer is advanced to the next line.

READLN
The procedure READLN causes the file pointer to be
positicned to the beginning of the next line. 1If any
variables are specified to be input by the READLN,
they are input first and then the file pointer is
advanced to the next line.

EOLN
The function EOLN is a boolean function which
evaluates to TRUE when the end of a line has been
reached. At all other times it evaluates to FALSE.

(See chapter 10 for details)

D. The type RECORD

The type RECORD is characterized by a fixed number of elements which
are called fields. The fields of a record can be of different types.
Record field identifiers can be declared to be of any type, including
RECORD. Therefore, records can be nested.

Syntax of the type RECORD:

—=—> PACKED -=-> RECORD --> field list ~--> ; —==> END --—>

(C) copyright 1981 Alcor Systems - 34 -

Structured Data Types Chapter 4

The field list describes the individual components of a record. All
the field identifiers within a record must be unique. However, field
identifiers are scoped within the record itself which means that an
identifier outside the record definition can be identical to a field
name within the record. The field list consists of two separate
parts, a fixed part and a variant part. A record can contain either
or both of these two parts. If both parts are present, the fixed part
must precede the variant part. The fixed part refers to the part of
the record which is always referenced in the same way. (ie. the
fields are fixed) The variant part refers to the part of the record
which may be referenced in multiple ways. (ie. the fields may vary)

Syntax of field list:

v
—I-> fixed part ---> ; --==> variant part —--->
Syntax of the fixed part of a record:
—————————————— ; e e i i s v s e s e
e ’ & e w0 oo
I
v Vv
—————— > id ======> : -=> type --—>
Example record using fixed fields:
RECORD
business: PACKED ARRAY[1..25] OF CHAR;
location: RECORD
street,
city,
state : PACKED ARRAY[1..15] OF CHAR;
zip : INTEGER;
END;

END;

(C) copyright 1981 Alcor Systems

Structured Data Types Chapter 4

A particular field of a record variable is referenced by the variable
name followed by the field name. A period separates the two names.
If the field name is itself a record, then a field within the nested

record is referenced by appending a period and the field name to the
other two names.

Syntax of record variable referencing:

-=> record variable id -==> ., ===> field id --->

Example referencing:

Assume customerrecord is defined to be of the above
record type in the type definition part and that
customer is declared as type customerrecord in the
variable declaration part,

then

customer .business references first field
customer.location references second field

The nested fields of the field "location" are referenced by:
customer.location.street
customer.location.city

customer.location.state
customer.location.zip

D.1l Record Variants

Sometimes it is useful to be able to define a storage area in a
record which can be accessed in multiple ways. Record variants
provide the ability to do this. 1In certain applications, they can
simplify a program and save storage space at the same time.

(C) copyright 1981 Alcor Systems - 36 -

Structured Data Types Chapter 4

A record variant defines a fixed size storage area of a record which
can be accessed in multiple ways. The size is determined by the
variant alternative which requires the largest amount of storage

space. The variant is defined using a form similar to that of the
CASE statement.

Syntax of the variant part of a record:

\Y
--> CASE ~---> tag field id -=> : ===> type -=> (OF =-=-
___________________ 7 K e o e e e e e e s e e e e e e
______) K=mm—e——
I
v \Y
————————— > constant ==-> : ==> (==> field list -=>) --->

Each alternative way of accessing the storage area of a variant is
defined by a field list. All field names within the variant
definition must be unique. The storage area can then be accessed in
the desired way simply by specifying the appropriate field name.

There are two forms of the variant. 1In one form, a tag is specified
and becomes a field in the record. The tag field resides in the
record just prior to the variant storage area. The purpose of the tag
field is to store a value which specifies for each record the
alternative of the variant which is in effect. The other form omits
the tag field which in some cases is not needed.

Example using no tag field:
PACKED RECORD
CASE BOOLEAN OF
FALSE: (whole :INTEGER) ;

TRUE : (bytel,byte2 :0..255;);
END;

() copyright 1981 Alcor Systems - 37 -

Structured Data Types Chapter 4

This variant definition would define a storage area of two bytes
(assuming an integer is 16 bits) which is the largest amount of
storage required for either of the two field lists. You could then
access the whole two byte storage area as an integer or you could
access each individual byte of the integer. The storage could be
pictured as follows:

“bytel
whole or
byte?2

The type BOOLEAN was chosen as the selector of the CASE because it
defines two possible values which is what is needed to specify the two
alternatives. Another type could have been defined and used just as
well. With the variant defined as above, you could now reference the
integer or the bytes simply by specifying the appropriate field name:
whole, bytel, or byte2. For example, if "number" is a variable
declared as this record type, then "number.whole", "number.bytel", and
"number .byt22" are the possible ways of referencing this storage area.
Care must pe taken w:en using variants for this purpose. The way in
which the fields of :he different forms of the variant overlap one
another is implementation dependent. Also in the above example, which
byte would be the low byte and which would be the high byte is
implementation dependent. (See the System Implementation Manual for
information on packing)

Example using tag field:

Assume the type definition:
itemtype = (circle, rectangle, triangle)

PACKED RECORD
xcoordinate, ycoordinate :REAL:

CASE item :itemtype OF
circle : (radius :REAL) ;
rectangle :(length,width :REAL) ;
triangle :(baselength :REAL;
angle :INTEGER) ;
END;

(C) copyright 1981 Alcor Systems - 38 -

Structured Data Types

Chapter 4

This record definition contains a fixed part as well as a variant

part with a tag field.
assume the following structures:

The storage allocation for this record could

xcoordinate xcoordinate xcoordinate
ycoordinate ycoordinate ycoordinate
tag or or
field--> item item item
radius length baselength
width angle

The storage allocated would be the amount required to store the the
two real numbers of the fixed part, the tag field, and the two real
numbers of the rectangle field list. The other field lists of the
variant require less storage than the rectangle list. The information
of which alternative of the variant is in effect can now be stored as
part of each record via the tag field. The tag field is referenced in
the same manner as the other fields.

Note:
Variants can be nested. That is, a variant can
contain a definition of another variant. However,
there can be only one variant at any cne level
and the variant definiton must follow any fixed
fields of a record.

(C) copyright 1981 Alcor Systems - 39 -

Pointer Data Type Chapter 5

POINTER DATA TYPE

The pointer data type is used in conjunction with dynamic storage
allocation. This refers to the creation of storage space for
variables during program execution. This is very useful when the
amount of data storage a program will require is unknown. The use of
pointer data types provides the ability to allocate storage as it is
needed. Variables for which storage is dynamically created cannot be
referenced in the usual manner. The reason is that they actually have
no identifiers cf their own. 1Instead, they are referenced through the
use of pecinters. A pointer is actually a variable which points to the
location in memory of a dynamically created variable.

The definition of a pointer type specifies the data type for which
storage will be allocated. The data type then determines the amount
of storage required for each allocation. The definition of a data
type does not have to precede the definiton of a pointer type which
references it. This is the only exception to the rule that
identifiers must be defined before they are used. This allows for a
field of a record to be declared as a pointer to the record itself.
Either the symbol "~ or the symbol @ may be used to signify a pointer

type.

Syntax of type pointer:

——————— > @ ~ww———=> type id -->
Example pointer declarations:

TYPE transptr = @transaction;
transaction = RECORD

item :INTEGER;
price :REAL;
link rtransptr;
END;

In the above declaration, transptr is a pointer type defined to be a
pointer to the data type transaction. Transaction is a record
consisting of three components (item, price, and link). Dynamic
variables of the type transaction can be created through the use of
pointer variables of type transptr. Notice that link is declared to
be of type transptr. This component of the record is a pointer
variable which may point to another dynamic variable of type
transaction. Therefore, a linked list of transaction records can be
formed with the link field of each record pointing to the next record.

(C) copyright 1981 Alcor Systems - 40 -

Pointer Data Type Chapter 5

The predeclared procedure NEW is used to allocate storage for dynamic
variables. It has one argument which is a pointer variable. The NEW
procedure allocates the amount of storage required by the data type
associated with the pointer and assigns the address of the allocated
storage to the pointer. The pointer is then used to reference the
alloccated storage. For example, consider the declaration:

list : transptr;

Then the statement NEW(list) would allocate the amount of space
required to store the three components of a transaction record at some
location in available memory ard assign the location in memory to the
variable list. The available memory is called the heap and its size
is set at run time. (See the System Implenentation Manual)

References to a variable which is pointed to by a pointer are made by
following the pointer name with either the symbol ~ or the symbol @.
In the above example, list@ would reference the dynamically created
transacticn record.

Syntax of referencing dynamic variables:

-—> pointer id > @ >

Example referencing of dynamic variables:

list@ references whole record

list@.item

list@.price references individual fields

list@.link

list@.link@ references record pointed to by link field
list@.1link@.item

list@.link@.price references individual fields
list@.1link@.1link

(C) copyright 1981 Alcor Systems - 41 -

Pointer Data Type Chapter 5

When a dynamically created variable is no longer needed, it may be
disposed of. This is the process of freeing the space consumed by the
variable for other uses. The predeclared procedure DISPOSE is
provided for this purpose. Like the NEW procedure, it has one
parameter which is a pointer. The DISPOSE procedure frees the memory
allocated to the variable pointed to by the pointer. Referring to the
above example, DISPOSE(list) would free the amount of memory which was
allocated to the dynamic transaction variable.

A predefined constant NIL can be used to assign a value to a
pointer. Other than using the procedure NEW, assignment to the
constant NIL is the only way of givinag a pointer a defined value. If
a pointers value is NIL, then it does not point to a dynamic variable.
This is often used with linked lists to give the pointer of the last
element in the list a defined value. It provides a way of detecting
when the end of the list has been reached.

Example procedures using pointer variables:

PROCEDURE create(VAR translist : transptr);

(* Creates a new transaction
Adds the transaction to the top of a transaction list
Returns a pointer to the new transaction via translist
New transaction becomes top of transaction list¥*)

VAR
trans (*new transaction pointer¥*)
: transptr;
(*note: translist should be initialized to NIL*)
BEGIN
NEW(trans); (*create new transaction¥®)
trans@.link:=translist; (*new transaction points to old top of list¥%)
translist:=trans; (*new transaction becomes top of list¥)
END; (*procedure create*)

(C) copyright 1981 Alcor Systems - 42 -

Pointer Data Type

Chapter 5

PROCEDURE destroy(translist, trans : transptr);

(* Removes the transaction pointed to by trans from the list

Recovers the memory used by the transaction *)
VAR
lead, (*points to next transaction in list¥)
trail (*saves location of current transaction

while lead is advanced to the next
transaction#%)
: transptr;

BEGIN
lead:=translist;

While lead <> trans DO (*search for trans*)

BEGIN

trail:=lead; (*save pointer to current transaction%)
lead:=lead@.link; (*advance pointer to next transaction¥)
END:

IF translist <> trans THEN
trail@.link:=1lead@.link
ELSE
translist:=lead@.link;
DISPOSE (trans);
END;

(C) copyright 1981 Alcor Systems

(*check if trans is at top of list¥*)
{*1ink around transaction¥*)

(*new top of list*¥*)
(*recover memory¥*)
(*destroy¥*)

Operators

There are four categories of operators:

boolean, and type transfer.

A. Arithmetic Operators

OPERATORS

arithmetic,

Chapter 6

The following table lists all the arithmetic operators, the
operations they perform, the type of operands which may be used, and

the type of result of the operation.
(eg.

supported.

Mixed mode arithmetic is
it is allowed to have an integer value added to a

relational,

real value) Also, automatic truncation occurs when an integer variable
is assigned a real value.

Operator Operation Type of Operands | Type of Result
addition integer, real integer, real
+
sets of compatible same type as
set union types the larger set
subtraction integer, real integer, real
- |
sets of compatible same type as
set difference types the larger set
multiplication integer, real integer, real
*
set sets of compatible same type as
intersection types the larger set
/ division integer, real real
truncated
DIV division integer integer
MOD modul us integer integer

Note: For sets to be of compatible types they must
have identical base types , one base type must
be a subrange of the other, or they may both
be subranges of the same base tvpe.

(C)

copyright 1981 Alcor Systems

Operators Chapter 6

B. Relational Operators

All relational operators perform operations which yield Boolean
results. The result is always either TRUE or FALSE. 1In general, both
operands of a relational operator must be expressions of identical
type, but the types REAL, INTEGER, and subranges of integer may be

mixed.

(Relaticnal operations may be performed on any types except files)

Operator Result of Operation

—— —— —— - o —— —————— o— — — ——— ——— — v———— T ——

= true if left operand is equal to right

<> true if left operand is not equal to right

< true if left operand is less than right

> true if left operand is greater than right

<= true if left operand is less than or equal to right

>= true if left operand is greater than or equal to right

To compare strings, the ordinal numbers of the characters composing
both strings are compared to one another until a pair of characters
are different or until the end of the strings is reached. 1If there
are no character pairs which differ then the strings are equal.
Otherwise, the first pair of characters which differ determine the
relationship. The string whose character ordinal number is the
largest is greater than the other string.

Operation Result
“abc”® = “cdf” FALSE
“abc” < “abd” TRUE
“bab” > “adf” TRUE

(C) copyright 1981 Alcor Systems - 45 -

Operators Chapter 6

The following operator tests for set membership. The left operand
may be any ordinal type and the right operand may be any set of the
same ordinal type.

IN true if left operand is a member of the right

operand type: set
(See section B of chapter 4)

C. Boolean Operators

The boolean operators, like the relational operators yield boolean
results. The result is always either TRUE or FALSE. The operands of
a boolean operator must be boolean expressions.

Operator Result of Operation
OR true if either one or both of the operands is true
AND true only if both operands are true
NOT true if operand is false
Operation Result
FALSE OR FALSE FALSE
TRUE OR FALSE TRUE
FALSE OR TRUE TRUE
TRUE OR TRUE TRUE
FALSE AND FALSE FALSE
TRUE AND FALSE FALSE
FALSE AND TRUE FALSE
TRUE AND TRUE TRUE
NOT TRUE FALSE
NOT FALSE TRUE

(C) copyright 1981 Alcor Systems - 46 -

Operators Chapter 6

D. Operator Precedence

Operator precedence defines the order in which operations take place
within expressions. 1In general, expressions are evaluated from left
to right. However, operations of higher precedence are performed
before operations of lower precedence. All operators are ranked by
precedence. Parentheses have the highest precedence and may be used
to alter the normal order of evaluation. Nested parentheses are
evaluated from the inside out.

Following is a list of the operators arranged by precedence.
Operators listed on the same line have equal precedence.

Highest
Precedence--> ()

+ , = when used as unary operators

* , / , DIV , MOD

+ ., -
=,<>,<,>,<=,>=,IN
NOT
AND
Lowest ‘
Precedence-~-> OR
Operation Equivalent To Result
T ek eeray a0
10-8/4%*2 10-((8/4)*2) 6
5 MOD 10-5 (5 MOD 10)-5 0
3<2 OR 6>8 AND TRUE (3<2) OR ((6>8) AND (TRUE)) FALSE
NOT 7*2<5 NOT ((7*2)<5) TRUE

- ——— ————_—- — T ———— — — " S — D P ——— ——— —— — — " " . - — ——— I — - — TS N — " - —

(C) copyright 1981 Alcor Systems - 47 -

Operators Chapter 6

E. Type Transfer

The type transfer operator is used to temporarily change the type of
an existing variable. This is useful when there is a need to
reference a variable in a manner which would normally not be allowed
by Pascal. For example, you might wish to access the lower and upper
byte of an integer variable. The type transfer operator allows you to
access parts of variables.

Syntax of type transfer:
-=-=> variable ===> ::; ===> type id —--->

A tvpe transferred variable may be used wherever a variable is
allcwved. Regardless of its original type, the type transferred
vari:ble is then accessed according tc the type indicated. The type
transfer operator tells the compiler to treat the variable as if it
were of the new type. No data conversion takes place. The variable
is simply referenced as if it were of the new type. Type transferred
variables must adhere to the same type matching rules as normal
variables.

Example use of type transfer operator:

TYPE byte = 0..%FF;
integrec = PACKED RECORD
upper, lower :byte:;
END;

pointer = @integrec

VAR nunber : ARRAY([1..10] OF INTEGER;
integr : integrec;
address: pointer;

Valid type transfer operations:

integr .upper := number{l]::byte;
number [1] ::byte := integr.lower;
READ (integr: : INTEGER) ;

number [S] := address: : INTEGER:
address: : INTEGER := 25 + number([31];

The fundamental use of type transfer is to overlay a type template on
a data structure so that components of the structure may be treated as
if “hey were of any desired type. This requires a precise
understanding of how the compiler represents the data type (how it is
stored) in order to insure the operation does what was intended.

. Because of this, it should be used with caution and only when
necessary. (See the System Implementation Manual for information on
data representation)

(C) copyright 1981 Alcor Systems - 48 -

Expressions Chapter 7

EXPRESSIONS

An expression is a variable, a constant, a function call, a set
notation, or a combination of these operands with a description of the
operations to be performed on them. The operators and operands of an
expression define an implicit type for the expression. When
evaluated, the expression yields a value of that type. For example,
an integer expression is composed of operands and operators which when
evaluated yield an integer result, a real expression yields a value of
the type REAL, an ordinal expression yields a value which is of one of
the ordinal data types, etc...

An expression can be just a simple expression or it can be a
boolean expression. A simple expression can yvield a value of any data
type. A boolean expression is composed of simple expressions but
always yields a value of the type BOOLEAN.

Syntax of expression:

--> boolean expression —---

v
~=-=> simple expression -—-—--- >
Syntax of simple expression:
PR S —— ——— - -
\Y v
———————————————————— > term -——->
Syntax of term:
-=-— MOD <--
--- DIV <--
[/ &
- K & v
v
————— > factor ——=-->

(C) copyright 1981 Alcor Systems - 49 -

Expressions Chapter 7

Syntax of factor:

--=> get notation ———

-=-=> function call ————

—— variable id -
—_——— constant -
v
~===> (=-=> expression ==>) —-——=->

For the syntax of set notation, refer to the structured data type
SET. A function call has the same form as the procedure statement.
The only difference is that a procedure call is a statement while a
function call is a part of an expression. Remember that a function
has a type associated with it. When a function call is encountered in
an expression, the named function is activated. Somewhere in the
function a value is assigned to the function name. When the function
terminates, the value assigned to it is substituted in the expression
for the function call.

Syntax of a function call:

---> function id ---> (---> expression —==-=>) ——=>

Example function calls:
salary

payment (interestrate,years)

sum (a+b)

(C) copyright 1981 Alcor Systems - 50 -

Expressions Chapter 7

Example simple expressions:

Expression Result

———E;;;-—— sa;;‘;;;e as time
weekday + [saturday,sunday] set
l12*payment (interestrate,years) integer or real depending on

type of function "payment"

entry MOD size integer

-10 DIV 4 + 9.2/6 -45 real
(varl+var2) *153/(var3-var4) real

Syntax of boolean expression:

—-===> boolean term =———=>

Syntax of boolean term:

~—~—=> boolean factor —--—-—--=>

Syntax of boolean factor:

———————— --> relational expression -=-

~==~=> NOT -—=————m————-— > factor ———=—m——cem—————— >

note: factor must be of type BOOLEAN

(c) copytight 1981 Alcor Systems - 51 -

(C)

Expressions Chapter 7

Syntax of relational expression:

- - —
—— & ——
—— > R
—_D K> ——
——> = -
—_—> >= -
v
--=-> simple expression =---> IN ----> simple expression —--->

Example boolean expressions:
a=b OR c<d AND switch
nl + n2 >= 20 AND n3-n4 <= 11
NOT here OR there
NOT alpha < beta AND gamma <> “R”

nunber IN [1..15] OR NOT letter IN [“a”.. 7 z7]

copyright 1981 Alcor Systems - 52 -

Statements Chapter 8

STATEMENTS

Statements are the Pascal sentences that describe the actions and

logic of a program. Statements reside in the statement body part of a
block.

A statement may be labeled or unlabeled. A labeled statement is
used in conjunction with the GOTO statement. If a statement is
labeled, the label must be declared in the LABEL declaration part of
the block in which the statement appears.

Syntax of a statement:

-=-> label --=-> : ---> unlabeled statement =-->
Syntax of an unlabeled statement:

--> procedure statement ---

-=> GOTO statement ———
—-——> WITH statement -
—— CASE statement ———
- IF statement -—-

—-_— REPEAT statement ——
- WHILE statement ———
- FOR statement ——

--> compound statement -——-

-=> assignment statement —---—

(C) copyright 1981 Alcor Systems - 53 -

Statements Chapter 8

A. The Assignment Statement

The assignment statement is used to assign values to variables and
functicn identifiers.

Syntax of the assignment statement:
--> function id ---
-—-=—-=> variable id --=--- > := =--> expression -->

The action of the assignment statement is to give the variable or
function identifier on the left side of the equal sign, the value of
the evaluated expression on the right side. The variable ~zy be of
any type except FILE. 1In general, the type of the variable or
function must be the same as the type of the evaluated expression.
However, there are some exceptions. An identifier of type REAL may be
assigned a value which is an integer or a subrange thereof. One side
may be a subrange of the other but the ~alue to be assigned should be
in the range of the left side. 1If the identifier on the left side is
a SET type, it may be assigned to a set which differs in type as long
as the set members of the right side are allowable members of the set
on the left side.

note: Variables of type file
should not be assigned.

Example assignment statements:

Assignment left hand side identifier types
a := 10 integer or real
x = 100.5 + 49 + 87/12 real
Yy := abs (10%z-30.3) real
test := sample < 10 boolean

(C) copyright 1981 Alcor Systems - 54 -

Statements Chapter 8

B. The Compound Statement

Statements which are bracketed by the two keywords BEGIN and END make
up what is termed a compound statement. The compound statement is
used in places where more than one statement is required. The
compound statement is essential for most of the control structures of
Pascal. For example, the FOR statement is a control structure used
for executing a statement repeatedly for a specified number of times.
The compound statement provides the ability to use this construct for
executing a sequence of statements rather than just one.

Syntax of the compound statement:

-=> BEGIN =---> statement -~--=> END =->

Example compound statement:

BEGIN

a := b * c;

d := a/l0 + 16.9;

e := 4d - 28.3 + 14;
END

C. Repetitve Statements

Repetitive statements are the structures used for loop control. They
specify that a statement or sequence of statements is to executed
repeatedly until some terminating condition occurs. Pascal provides
three such control structures.

(C) copyright 1981 Alcor Systems - 55 -

Statements Chapter 8

C.l The FOR Statement

The FOR loop is used when a statement is to be executed a predefined
number of times. The FOR loop is characterized by a loop variable
which serves as a counter for controlling the number of times a
statement is executed. The counter has defined starting and ending
values which are ordinal expressions. The expressions are evaluated
once upon entry into the loop. At the beginning of each time through
the loop, the counters value is compared to the ending value to
determine whether or not to end execution of the FOR. At the end of
each time through the loop the counters value changes by 1. If the
keyword TO is used, the counter is incremented each time through the
loop, while the use of the keyword DOWNTO causes the counter to be
decremented. The loop is terminated when the counter has incremented
or decremented past the ending value. The FOR statement is not
executed if the counters starting value is such that the ending value
would never be reached. For example, if the starting value was -1,
the ending value was 2, and DOWNTO was used, the FOR statement would
not be executed.

Note:
The loop control variable (counter) of a FOR statement need
not be declared. 1If the declaration is absent, the
compiler automatically makes the declaration.
If the declaration in not explicit, then the loop control
variable becomes undefined upon loop termination.
Also, global variables cannot be used as loop control
variables. (for a definition of global, see chapter 9)

Syntax of the FOR statement: (counter must be ordinal type)
--> DOWNTQO --—-
v
-=> FOR =--> counter id =-> := -=> ord expr —--————- > TO ————mem—m—

O S e 22—] > 40 R - T T S " - - G —) - — S 2 — —? " = e S~ > - i - -

---> ord expr =--> DO --> statement -->
Example FOR statements:

FOR i := 1 TO 30 DO writeln(” this gets written 30 times”)
FOR j := first DOWNTO last DO

BEGIN

initialscore[j] := 0;

time[j] := 60;

END

(C) copyright 1981 Alcor Systems - 56 -

Statements Chapter 8

C.2 The WHILE Statement

The WHILE statement uses a boolean expression to control repeated
execution of a statement.

Syntax of the WHILE statement:
~=> WHILE --> boolean expr =-> DO --> statement -->

The evaluation of the boolean expression precedes the execution of
the statement. If the expression evaluates to TRUE, the statement is
executed and then the expression is reevaluated. This loop continues
until the expression evaluates to FALSE. The first occurrence of a
FALSE evaluation causes termination of the WHILE statement.

Example WHILE statements:

WHILE NOT EOLN DO READ(character)

WHILE (a<b) AND (b<c) DO
BEGIN
WRITELN

(a
a := a +
c-

,b,C);
1;
1;

C.3 The REPEAT Statement

The REPEAT statement, like the WHILE, uses a boolean expression to
control repeated execution.

Syntax of the REPEAT statement:

-—-> REPEAT ---> statement ---> UNTIL --> boolean expr -->

(C) copyright 1981 Alcor Systems - 57 -

Statements Chapter 8

The REPEAT statement is defined such that a sequence of statements
which are bracketed by the two keywords REPEAT and UNTIL will be
executed at lw=ast once. Following the keyword UNTIL is a boolean
expression. If the expression evaluates to FALSE then execution
returns to the first statement following the REPEAT keyword. If the
expression evaluates to TRUE then execution continues with the
statement following the boolean expression.

Example REPEAT statement:

REPEAT
i e= i+l
j = j-1;
k[§] := (i + j) MOD 100;
1{i] =:= (i + j) MOD 200;
UNTIL i=j

D. Conditional Statements

Conditional statements are used when the execution of a statement
must be controlled by some predetermined condition or when one
statement out of a group of statements is to be selected for
executicn. There are two conditional statements.

D.1l The IF Statement

The IF statement uses a boolean expression to control the execution
of statements.

Syntax of the IF statement:

B Y T oy —,

~==-> IF --> bool expr --> THEN --> statement ---> ELSE --> statement —--->

(C) copyright 1981 Alcor Systems

Statements Chapter 8

In its simplest form, the IF statement involves the evaluation of a
boolean expression to determine whether or not to execute an
associated statement which follows the keyword THEN. If the
expression is TRUE, then the statement is executed, otherwise it is
not. The IF statement can also contain an ELSE clause. 1In this form,
if the boolean expression is TRUE, then the statement following the
keyword THEN is executed, otherwise the statement following the
keyword ELSE is executed.

Example IF statements:

IF finished THEN WRITELN(” operation complete”);

IF number < 10 THEN range := 1 ELSE range :=2;

IF alpha >= “0° AND alpha <= “9° THEN digit (alpha)
ELSE
IF alpha >= “A” AND alpha <= “Z° THEN letter (alpha)
ELSE
special (alpha):

IF contextlist = NIL THEN
BEGIN
NEW (context);
context@.link := NIL;
contextlist := context;
END

ELSE
BEGIN
temp := context;
NEW (context);
temp@.link := context;
context@.link := NIL;
END;

The statements following the keywords THEN or ELSE can themselves be
IF statements. In some forms, an ambiguity can exist in determining
which ELSE clause goes with which IF. For example, consider the
following case where bl and b2 represent boolean expressions and sl
and s2 represent statements.

IF bl THEN IF b2 THEN sl ELSE s2

(C) copyright 1981 Alcor Systems - 59 -

Statements Chapter 8

The ELSE could go with the first IF or the second IF. The rule used
for solving the ambiguity is to associate an ELSE clause with the
nearest IF. The above statement would then be equivalent to:

IF bl THEN
BEGIN
IF b2 THEN sl ELSE s2
END

Caution: Semicolons must not appear in the middle of a
statement. The most common error for beginning
programmers is to put a semicolon in an IF
statement which has an ELSE clause. While semicolons
are necessary for separation of the individual
statements within a compound statement, they must
not separate an ELSE from its corresponding IF.

D.2 The CASE Statement

The CASE statement uses an ordinal expression to select one statement
out of a group of statements for execution. The group of statements
represent alternatives. When a CASE statement is executed, one of the
alternatives is selected and executed and then control passes to the
st atement following the CASE statement.

Syntax of the CASE statement:

--> CASE -=> ord expr ==> (OF ==———e———————————

——— S —— T — " — > . T ——— —— " — D T ——— - —

________________ P K
o T
vV v
—————— > constant =--==-> : —-=> gtatement —--->———|
| b
------ > OTHERWISE --> statement ---> END ——>

(C) copyright 1981 Alcor Systems - 60 -

Statements

Chapter 8

The alternative statements of a CASE statement are preceded by
expression is evaluated and compared to the

constants. The ordinal
constants preceding the
the statement which has
evaluated expression is
take place in the event

alternative statements.

If a match is found,

the preceding constant that matches the

executed.
that no match is found.

There are two actions which can

By using the

OTHERWISE clause, you may specify a statement to be executed when no

match is found.

If the OTHERWISE clause is omitted and no match is

found, then execution continues with the statement which follows the

CASE statement.

Example CASE statements:

CASE nl+n2
10: x
11: x
12: x

END;

uwoun

CASE day OF
monday
tuesday
wednesday
thursday
friday
saturday,
sunday

END;

8 44 00 e

3

snack
snack
snack
snack
snack

honononon

BEGIN
weekend
snack
END;

E. The WITH Statement

Jdﬂ,‘e‘,

nothing;

CASE ch OF

, b”,”c”: token := 0;
“f“: token := 1l;
OTHERWISE token := 2;

The WITH statement is used in conjunction with variables of type

RECORD.

Syntax of the WITH statement:

It makes it possible to use a shorter notation when
referencing fields of record variables.

-~> WITH ----> variable -=--=-> DO --> statement -->

(C) copyright 1981 Alcor Systems

- 61 -

Statements Chapter 8

The variable list specifies the record variables whose fields are to
be referenced simply by specifiying the field name itself. When
fields of a record are nested (ie. a record is defined as a field of
another record), the record variable and the fields, down to the level
of the field which is to be referenced in short notation, may be
specified in the variable list. Then the nested field can be
referenced in the statement simply by specifying its field name.

There is a conflict inside the WITH statement when an identifier
corresponds to both a variable name and a field name of one of the
specified records. For example, vyou could have a record variable
named "weekday" with a field named "monday" and also a simple variable
named "monday". Then the following WITH statement might be used.

WITH weekday DO monday := 1
In such a case, the field name takes precedence over the variable
name and the field of the record is referenced. If nested WITH
statements are used and a field name inside occurs in more than one of
the specified records, then the closest WITH takes precedence.
Example WITH statements:

Assume the declarations:

customer : RECORD

name,
address,
city :PACKED ARRAY[1..20] OF CHAR:
date :RECORD
month,
day,
vear : INTEGER;
END;
END;
WITH customer DO
BEGIN
name := “JACK SLATE ‘.
address := “1216 MELODY LANE :
city := “TULSA, OKLAHOMA “:
END;
WITH customer.date DO
BEGIN
month := 10;
day := 23;
vear := 1981;
END;

(C) copyright 1981 Alcor Systems - 62 -

Statements Chapter 8

F. The GOTO Statement

The GOTQ statement is used to cause an unconditional branch to a
labeled statement.

Syntax of the GOTO statement:
-=> GOTO --> label -->

The label must be declared in the LABEL declaration part of the same
block which contains the GOTO referencing it. The GOTO statement
cannot specify a branch to a label outside the block in which it
resides. Care must be taken when using the GOTO statement. For
example, you should not branch inside a FOR loop from a statement
outside the loop. This could cause some very unpredictable results.

Example GOTO statement:

FOR i := 1 TO 1000 DO
IF a(i) <> b(i) THEN GOTO 10
ELSE a(i) == b(i);
10: a(i) := “$#0D":

G. The Procedure Statement

The procedure statement causes the activation of a procedure.
Control passes to the named procedure and then returns to the
statement following the procedure statement when the activated
procedure terminates. If a procedure has a parameter list, a
procedure statement which activates it must specify an argument for
each parameter of the parameter list. The arguments must match the
order and type of the parameters specified in the parameter list of
the procedure. An argument is specified as an expression. If a
parameter of a procedure is a pass by reference parameter (denoted by
VAR), the corresponding argument of a procedure statement must be a
single variable name. The variable may be a simple variable or a
component of a structured variable.

(C) copyright 1981 Alcor Systems - 63 -

Statements Chapter 8

Syntax of a procedure statement:

--> procedure id ---=> (—==> @XPr ===>) —==>

Example procedure statement (call):

(See the procedure declaration in section B.7 of chapter 2)
getvalue (n+3j,8,hexstring,value)
report

writeout (x,y,3.749.6/2)

(C) copyright 1981 Alcor Systems - 64 -

Procedures and Functions Chapter 9

PROCEDURES AND FUNCTIONS

(See chapter 2 for a description of the syntax of procedure
and function declarations. A discussion of parameter passing
is included with the discussion of the procedure heading.)

Procedures and functions are the tools used to modularize a program.
This is the process of breaking a program up into smaller and more
manageable pieces. They make a program much more readable and make
possible later modifications much easier to handle.

Procedures and functions can be compiled separately and then 1linked
to programs that use them. This allows for the development of
libraries of commonly used procedures and functions. Then all the
programs that use them can link them in rather than having to include
them in the program itself.

The variables declared in a procedure or function do not occupy
storage space until the procedure or function is activated. When
activated, storage space is allocated for the variables and when the
procedure or function terminates, the allocated space is released.
Therefore, the amount of storage ({(or stack) space required by a
program at any point in time is a function of the number of blocks
which are activated at that time.

A procedure is activated (or called) by a procedure statement. When
a procedure is called, control is passed from the point of the call to
the procedure. The statements in the procedure then are executed.
When the block END of the procedure is reached or when a call to the
ESCAPE procedure is made, control passes back to the statement
following that which activated the procedure.

A function is activated by an expression. When an expression which
contains a reference to a function is evaluated, the function
reference causes control to pass to the named function. The
statements in the function then are executed. Unlike procedures,
functions have a declared type. At some point inside the statement
body of a function, the function name should be assigned a value. The
value must be the same type as the type to which the function is
declared. When the block END of the function is reached or when a
call to the ESCAPE procedure is made, control passes back to the
evaluation of the expression which activated the function and the
function reference is replaced by the value assigned to the function.

(C) copyright 1981 Alcor Systems - 65 -

Procedures and Functions Chapter 9

A. Scope Rules

A procedure or function declaration forms a new block which is a
subblock of the block in which the declaration appears. The new block
formed is "nested" within the block which declares it. This process
of nesting which occurs every time a procedure or function is declared
produces a program structure such as the one shown on the first page
of chapter 2. Any block which is enclosed by another block is said to
be nested within that block. The level numbers on the diagram
indicate how deep the nesting goes beyond the program block which is
arbitrarily assigned level 1. The existence of procedures and
functions makes it necessary to talk about scope rules. Scope rules
describe the accessibility of identifiers from any particular place in
a program. The two terms local and global are helpful in discussing
scope rules.

An identifier is considered to be local to a block if the identifier
is declared within the same block. If there are no blocks nested
within the declaring block, then a local identifier can only be
referenced by the block which declares it. Enclosing blocks cannot
access a local identifier,

An identifier is considered to be global to blocks which are nested
within the block in which the identifier is declarad. 1If an
identifier is global to a particular block, then that block can
reference the identifier provided that it has not declared an
identifier of the same name. If a block declares an identifier with
the same name as a global identifier, then the global identifier is no
longer accsssible from that block. Aiso, any further nested blocks
will not have access to the original global identifier.

Identifiers declared in the program block are accessible from any
place in a program because all other blocks are nested within the
program block. Therefore, identifiers declared in the program block
are global to all procedures and functions of the program.
Identifiers declared in a procedure or function are local to that
procedure or function. The only places in the program which can
access these identifiers are the procedure or function itself and the
procedures or functions, if any, which are nested within. The nested
procedures or functions can access only the global identifiers which
they do not declare themselves.

(C) copyright 1981 Alcor Systems - 66 -

Procedures and Functions Chapter 9

A procedure or function declaration consists of a heading followed by
a block. It is important to note that the procedure or function name
of a heading is local to the block which declares it. The parameters
of the heading are local to the procedure or function itself. This
means for example that a procedure statement in the program block can
reference any procedure declared in the program block. However, a
procedure statement in the program block can not reference any
procedure declared within one these procedures.

As an example of how scoping effects the accessibility of
identifiers, consider the sample diagram on the first page of chapter
2. The following table shows for each block of the diagram, the
procedures and functions which are callable from that block, and the

constants, types, variables, etc. which can be referenced by the
block.

Block accessible procedures accessible constants,
and functions types, variables, etc.
A B, D, F A
s | B,c,o.F | a, 8
e s, c,o, ¢ | A, B, c
o | B,p,E, F | a, o
P B, p, . F | A, D, E
| B, o, ¢* | a, r

(C) copyright 1981 Alcor Systems - 67 -

Procedures and Functions Chapter 9

B. FORWARD

The rule that an identifier must be declared before it is referenced
means that a procedure or function must be declared before it is
referenced by a procedure statement or by an expression with a
function reference. Some calling seguences that occur among a group
of procedures or functions make it impossible to obey this rule. For
example, if two procedures call each other, then you can not declare
one without referencing the other. The keyword FORWARD provides the
mechanism for getting around this problem. Using the keyword FORWARD
with just the heading for a procedure or function declaration signals
the compiler that the procedure or function block will be declared at
some later point in the program. If the procedure or function has
parameters, the parameters are declared as well. Then the procedure
or function which has been forward declared may be referenced.

Syntax of forward declaring a procedure or function:

--> function heading -——I
v
-—==> procedure heading ----> FORWARD ==> ; —=>

(See chapter 2 for the syntax of procedure and function headings)

The actual declaration of a forward declared procedure or function
can appear at some later place in the program. The place that it
appears must be at the same level and scope as its forward
declaration. The actual declaration consists of the heading with no
parameters, followed by the block. Since the parameters were declared
in the forward declaration, they must not be declared again in the
actual declaration.

If a forward declared procedure or function does not have its
actual declaration present, then it is treated as an external
procedure or function.

Example use of forward:
PROCEDURE abc (pl, p2 : INTEGER); FORWARD;

PROCEDURE xvZz;

VAR pl, p2 : INTEGER:
BEGIN

abc (pl,p2);

END;

PROCEDURE abc;
BEGIN

END;

(C) copyright 1981 Alcor Systems - 68 -~

Procedures and Functions Chapter 9

C. EXTERNAL

An external procedure or function can be declared in a program by
specifying its heading followed by the keyword EXTERNAL.

Syntax of externally declared procedures or functions:

note: EXTERN also accepted
~=-> function heading ---

————— > procedure heading ==-=--=> EXTERNAL ==> ; ==->
Note:
for brevity the word "routine" will be used in place of
"procedure or function" in the following discussion.

The linking loader may be used to link separately compiled routines
to a program. By declaring a routine to be external, the actual
declaration does not have to appear in the program. This is very
useful when working with large programs. A large program may be
broken up into many routines which are declared as external. The
external routines can then be compiled individually. The linking
loader can then be used to link the compiled program to its
individually compiled routines. One advantage to this is that any
changes which are made to a particular routine will cause only that
routine to have to be recompiled. The linking process is then
repeated after the changed routine has been recompiled. Another
advantage is that slightly larger programs can be created by compiling
them in pieces and then linking the pieces together.

Perhaps one of most frequent use of external routines is to create a
file or library of commonly used routines. Then all the programs
which use the routines can link to them rather than having to declare
them in each program.

A compiler option must be used to compile a routine by itself. The
reason is that a routine by itself is not a legal Pascal program.
Therefore, a legal program must be constructed around the routine.
This would include a program heading, the environment of the routine,
the procedure or function declaration, and a statement body. The
environment consists of any constants or types which are in the scope
of and are used by the external routine. If global constants or types
are needed by the routine, they should be given the same names as
those used in the programs that use the routine. The scope refers to
the identifiers in a program which are accessible to the externally
declared routine.

(C) copyright 1981 Alcor Systems - 69 -

Procedures and Functions Chapter 9

Variables can also be included in the environment but this is not
recommended. If an external routine needs to access a global
variable, the variable should be passed as a parameter to the routine.
Otherwise, extreme care must be taken to assure that the environment
around the external routine matches the environment of the programs
which use the routine. The statement body contains the compiler
option which is called "nullbody”. The nullbody option tells the
compiler not to generate any code for the program. Only code for the
declared routine is generated.

The syntax for using the nullbody compiler option is shown in the
appendix along with all the other compiler options.

Example use of external procedure:

PROGRAM sample;

CONST ce oo
TYPE esense
VAR xmin,xmax,ymin,ymax : REAL;

® o 0 a0

PROCEDURE axes (xmin,xmax,ymin,ymax : REAL); EXTERNAL;
BEGIN
axes (xmin,xmax,ymin,ymax) ;

END. (*sample*)

I o e I ——— D — i ——- At T D —— S D > T D ——

Separate compile of procedure axes:

PROGRAM axesroutine:;
(*global environment, if any, goes here*)
PROCEDURE axes (xmin,xmax,ymin,ymax : REAL):
TYPE
VAR ce e
BEGIN

e o o s

END:; (*procedure axes¥*)
BEGIN

(*SNULLBODY*)
END.

(C) copyright 1981 Alcor Systems - 70 -

Procedures and Functions Chapter 9

D. Recursion

Pascal is a language which supports recursion. Recursion refers to
having more than one activation of a particular procedure or function
at the same time. There are two forms of recursion. Direct recursion
refers to a procedure or function which calls itself. 1Indirect
recursion refers to a procedure or function which makes a call which
eventually results in the procedure or function being activated again.
An example of this is two procedures that call each other. When
writing recursive procedures, some conditional statement must exist in
the procedure to halt the recursion at some point. Otherwise, there
would be an endless loop which would terminate only after the stack
was exhausted, crashing the program. Recall that each activation of a
procedure results in space being allocated for its local variables.

Example use of recursion:

PROCEDURE xyz;
(*declarations here®)
BEGIN
XYZ; (*procedure calls itself*)

END;

(C) copyright 1981 Alcor Systems - 71 -

Procedures and Functions Chapter 9

E. Predeclared Procedures and Functions

The predeclared procedures and functions are accessible from any
place in a program. They are declared in an imaginary block which
surrounds the program block. The names of predeclared procedures or
functions may be used as identifiers in programs. This means that the
name of a predeclared procedure or function may be used in a
declaration. If so, then the predeclared procedure or function whose
name is used in a declaration is no longer accessible to the program.
Its name is associated with the new declaration.

File Associated Procedures

B e Ly ————

RESET (£) Positions the file pointer of the
specified file to the beginning for the
purpose of reading. If the file is empty,
then the function EOF becomes true, else
it is false.

REWRITE(£f) Replaces the specified file with
an empty file. The file pointer
is positioned to the beginning of
the file.

PAGE (f) Outputs a formfeed to the specified file.
Formfeeds cause skipping to the top of the
next page when the file is printed.

CLOSE (£) Closes the specified file. This procedure
should be used if the file variable is not
a simple variable to insure the integrity
of the file.

MESSAGE (s) Outputs the specified string to the terminal
READ , READLN Read data from a device

WRITE, WRITELN Write data to a device
(See chapter 10 for details)

(C) copyright 1981 Alcor Systems - 72 -

(C)

Procedures and Functions Chapter 9

Arithmetic Functions

——— i 2o v o o

ABS (x)
SQOR (%)
SIN(x)
COs (x)
ARCTAN (x)

EXP(x)

LN (x)

SORT (x)

Operation Type of x Type of Result

absolute value integer, real same type as x

square integer, real same type as x
Sine integer, real real
cosine integer, real real
arctangent integer, real real

natural (base e)

exponential integer, real real
natural logarithm integer, real real
square root integer, real real

Boolean Functions

EOLN (x)

EOF (x)

copyright 1981 Alcor Systems

Operation: Returns true if x is odd, else false
Type of x: integer
Type of result: boolean

Operation: Returns true if the end of a line
in the file has been reached

Type of x: text

Type of result: boolean

Operation: Returns true if the end of the file
has been reached.

Type of x: file

Type of result: boolean

- 73

Procedures and

Functions Chapter 9

Transfer functions

- o—— — T = -~ =

TRUNC (x)

ROUND (x)

ORD (x)

CHR (x)

LOCATION (x)

SIZE (%)

HB (x)

LB (x)

Data transfer

- — . - o — - —— -

PACK (a,1,2z)

UNPACK (z ,a,1)

Operation: Truncates a real value to its
integer part

Type of x: real

Type of result: integer

Operation: Rounds a real value to the
nearest integer

Type of x: real

Type of result: integer

Operation: Returns the ordinal number of x.
Type of x: any ordinal type
Type of result: integer

Operation: Returns the character whose ordinal
number is x

Type of x: integer

Type of result: char

Operation: Returns the address of variable x
Type of %: any type
Type of result: integer

Operation: Returns the size of type x in bytes
Type of x: any type identifier
Type of result: integer

Operation: Returns the high byte of x
Type of x: integer
Type of result: integer

Operation: Returns the low byte of x
Tvpe of x: integer
Type of result: integer

procedures

2 e o 0 o o o

Operation: Copy the unpacked array a into the
packed array z. If the dimension of a
is m..n and the dimension of z is u..v
and n-m > v-u then the operation is
equivalent to:
for j:= u to v do z[j] := alj-u+i]

Unpacks the above array.

(C) copyright 1981 Alcor Systems -~ 74

Procedures and Functions Chapter 9

Dynamic allocation procedures

NEW(p) Allocates a new variable v and assigns the
pointer reference of v to the pointer variable
pP. Tag field values may appear as parameters
to NEW but are non-functional.

DISPOSE (p) Releases the storage occupied by the variable
pointed to by p.

Other functions

SUCC (x) Operation: Returns the successor of x which is
next higher value in the enumeration
of which x is a member

Type of x: any ordinal type
Type of result: same type as x

PRED (x) Operation: Returns the predecessor of x which is
the next lower value in the enumeration
of which x is a member

Type of x: any ordinal type
Type of result: same type as X

o e

Other procedures

ESCAPE Causes termination of a block just as if the
block end had been reached. 1If the block is
a procedure or function, then control returns to
the calling block. If the block is the program
block, then program execution is terminated.

note : IF files are declared locally within a procedure,
then the files must be closed using the procedure
CLOSE before calling ESCAPE. Normal termination
of a block results in files automatically being
closed.

(C) copyright 1981 Alcor Systems - 75 =

Input and Ouput Chapter 10

INPUT AND OUTPUT

Input and output is the communication of a program to the external
environment. A program communicates to the external environment
thrcugh the use of logical files. Logical files are the variables in
a program which are declared as type FILE or TEXT. The logical files
are then associated with physical files. ©Tthysical files are the
actual devices of the computer system. A physical file could be a
disk file, a terminal , a printer, or some other device. The method
of associating logical files to physical files is discussed in the
System Implementaion Manual.

Predeclared procedures and functions are provided for handling
input and output. These procedures and functions have a
characteristic unlike other procedures and functions. The number of
parameters passed to them can vary. They may be called with no
parameters or with several parameters. Since each input and output
routine performs an operation on a file, it must know which file to
operate on. If a routine is passed the logical file name, then it
operates on the specified file, otherwise it operates on a default
logical file. The two predeclared variables INPUT and OUTPUT are the
default logical files. They are both declared as type TEXT. The one
used as the default depends on the routine called. The input routines
default to INPUT and the output routines default to OUTPUT.

I/0 Routines

A LD . S o St S . T W W D D D WL $558, M o B) WO D ot S S S S S S W — T G S _ S 3 a2 WA D R S > N T - S

Procedures | Functions |
input output general ECF
————————————————————————— EOLN

RESET REWRITE CLOSE
READ WRITE
READLN WRITELN

PAGE

MESSAGE

0 M S S . S GO WD W —— T —— - —— 2 W D o - o) " WD S - T D - — > — o G W) S SR C3 A D D

(C) copyright 1981 Alcor Systems - 76 -

Input and Ouput Chapter 10

A file has associated with it a file pointer. The file pointer is
used to point to an individual component of a file. There are two
predeclared boolean functions which may be used to check the status of
a files pointer. Both functions may or may not take a logical file
name as a parameter. If no file parameter is passed, the default is
INPUT. The function EOF (file) returns the value TRUE if the pointer
is at the end of the file. Otherwise, the value returned is FALSE.
The function EOLN(file) can only be used with files of type TEXT. It
returns the value TRUE when the files pointer is at the end of a line.
Otherwise, the value returned is FALSE.

Syntax of function EOF or EOLN: (default: file = INPUT)
—=> EOLN —-== ==

————— > EQF———=—==—==> (-=> file -=>) ===>
Examples of using EOF and EOLN:

WHILE NOT ECOF (datain) DO IF EOF THEN quit
BEGIN ELSE
WHILE NOT EOLN(datain) DO READ (number) ;
BEGIN
READ (ch);
END;

END;

The RESET procedure opens a file so that it can be read from. No

input can be received from a file without this operation first being
performed on it.

Syntax of RESET: (default: file = INPUT)

--> RESET ——-> (==> file ==>) =—-=>

(C) copyright 1981 Alcor Systems - 77 -

Input and Ouput Chapter 10

The procedure positions the file pointer to the beginning of the
file. If the file is empty, then the function EOF (file) becomes TRUE.
If the file is not empty, then the function EOF(file) becomes FALSE.

The statement RESET (INPUT) is implicitly executed at the beginning of
a program that contains either implicit or explicit reference to the
logical file INPUT. Therefore, it is not necessary for a program to
open the default logiczl file INPUT.

Example use of RESET:

PROGRAM readdata;

VAR datain : TEXT;
BEGIN

RESET (datain); (*open file datain for reading¥*)
END.

Input and output to files is buffered. This is to prevent having to
access a physical device every time an operation is performed. Each
file used by a program has an associated buffer. Unlike standard
Pascal, the input buffer of a file is not filled when a reset is
performed. The input buffer becomes filled the first time a READ,
READLN, EOLN, or EOF is performed on the file. This prevents the
normal problems associated with reading from a terminal. Programs can
have their logical files remapped from a disk file to a terminal
without modification to the program itself.

(See the System Implementation Manual for a description
of how to associate logical files to physical files)

B. REWRITE

The REWRITE procedure opens a file so that it can be written to. No
output can be sent to a file without this operation first being
- performed on it.

Syntax of REWRITE: (default: file = OUTPUT)
|
v
==> REWRITE ===> (--> file ==>) —--—=>

(C) copyright 1981 Alcor Systems - 78 -

Input and Ouput Chapter 10

The procedure positions the file pointer to the beginning of the
file. The file becomes empty when this happens. This means that any
data in the file is lost.

The statement REWRITE(OUTPUT) is implicitily executed at the
beginning of a program that contains either implicit or explicit
reference to the logical file OUTPUT. Therefore, it is not necessary
for a program to open the default logical file OQUTPUT.

C. READ

The READ procedure assigns the value of components of a file to
variables.

Syntax of READ: (default: file = INPUT)

-=-> READ --> (===> file ==> , ==—=——- > variable =-->) -->

The number of variables passed to the procedure determines the number
of components read from the file. The components refer to the way the
file is logically separated into individual data elements. Each
component is of some data type which defines its size. Reading begins
with the component pointed to by the file pointer. The first variable
specified is assigned the value of this component and then the file
pointer is advanced to the next component. This process is continued
until all the variables specified are assigned values. The type of

each variable must match the type of the file component being assigned
to it.

Text files
If the file is of type TEXT, the variables can be type REAL, INTEGER,
subrange of integer, CHAR, or strings. Strings are declared as single
dimensioned packed arrays of the type CHAR. These types can be
intermixed as components of text files. Then they may be read by

specifiying variables which match in type and order, the components of
the file.

(C) copyright 1981 Alcor Systems - 79 -

Input and Ouput Chapter 10

If the variable is of type CHAR, then a single character is read from
the file. If the variable is an array of CHAR, then the dimension of
the array determines the number of characters read from the file. IFf
an end of line or file mark is encountered before the array is full,
then the characters read up to that point are left justified in the
array and the remaining elements are filled with blanks. Integer and
real numbers are represented in files as strings of characters.
Individual numbers in a file are separated by blanks or by an end of
line mark. When a number is read, the character string representing
the number is automatically converted to its real or integer value
before being assigned to the variable. With text files, consecutive
read operations automatically skip end of line marks when reading
integer, real, or boolean variables. When reading character or string
variables, the end of line mark is not skipped. 1In this case, the
procedure READLN must be executed to cause the file pointer to advance
to the next line.

Example use with text files:
Consider the following file of data:

SAM JONES 25 183.5 369
MARY SMITH 23 105.4 356

e ® © 3 o 8

© 0 s e o0

and the declarations:

VAR name : PACKED ARRAY[1l..10] OF CHAR:
number, total : INTEGER:
score : REAL;
students : TEXT;

If the file pointer of "students" points to the
beginning of a line (it does immediately after a RESET)
then:

READ (students,name ,number ,score,total)
would assign a string, integer, real, and integer value to

the 4 specified variables. The file pointer would then point
to the character immediately following the last value read.

(C) copyright 1981 Alcor Systems - 80 -

Input and Ouput Chapter 10

Non-text files
If the file is not of type TEXT, then all components of the file are
of the same type. The components of a file may be declared to be of
any type except the type FILE or structured types containing a
component of type FILE. This means for example, that you could
declare a file of records. Then an entire record can be read into a
variable of the same record type. This however, requires that the
file of records has previously been created through the use of the
procedure WRITE. The reason for this is that all files which are not
of type TEXT are read and written in binary form.

Example use with non-text files:

assume the following declarations:

TYPE food = RECORD
fruit : (orange, grape, apple);
vegetable : (corn, okra, beans);
cost : INTEGER;
END;
VAR groceries : FILE OF food;
item : food;
then:

READ (groceries, item)
would assign one record from the file to the variable "item".

Care should be taken not to read past the end of a file. The
function EOF is provided for preventing this from occuring. The
‘program will not abort if you try to read past the end of file, but
the value assigned to the variable will be some unknown value.

D. WRITE

The procedure WRITE appends values to a file. The number of values
passed to the procedure determines the number of values output to the
file. 1If a file is declared as type TEXT, then output values can be
specified as strings or expressions. If a file is declared as a type
other than type TEXT, then the output values are restricted to
variables of the same type only.

(C) copyright 1981 Alcor Systems - 81 -

Input and Ouput Chapter 10

Syntax of WRITE:

For non-text files:

\Y
-=> WRITE -=> (=-=> file =-> , -=-=> variable -==>) -=>
For text files: (default: file = OUTPUT)
_______________________ & e e e s o s e
\VARY
-=> WRITE ~~> (===> file =-=> , —====> write parameter —--->) ==>
Syntax of write parameter:
--> real expr --> : ==> integer expr -——»—T> : ==> integer expr --
‘——> integer expr --- v
--> boolean expr ———5
v v v
————> string —-————- > : -=> integer expr -=———=m——m——c—c— e —————— >
Syntax of string: (string variable = packed array of char)
-—-—= string variable —-——==——-
o S
% ! v
-—-> 7 —-==> character ---> 7 --=>

(C) copyright 1981 Alcor Systems - 82 -

Input and OQuput Chapter 10

Text files

If the file is of type TEXT, then the values output to the file may
be specified as strings or as boolean, integer, or real expressions.
If a string is specified, then the characters of the string are output
to the file. 1If a boolean expression is specified, then either the
characters “TRUE “ or “FALSE” are output to the file depending on the
value of the expression. If an integer or real expression is
specified, then the value of the expression is converted to a
character string before being output to the file. An integer
expression may be output in hexadecimal or decimal base
representation.

The number of characters to output for a value can be specified by an
integer expression which follows the value, separated by ":". If the
number of characters is not specified for a particular value, then a
default number of characters will be output.

---For a string---

If the number is less than the length of the string, then all the
characters of the string are output. If the number is greater than
the length of the string, then blanks will be appended to the string.
The default number is the length of the string.

Example: WRITE (© literal string” : 20)

---FOr a boolean expression-—---
The same rule applies for the strings “FALSE” and “TRUE”.

Example: WRITE (a AND b)

---For an integer expression---

If the number is less than the number of digits in the integer, then
all the digits are output. If the number is greater than the number
of digits, then the excess characters are output as blanks before the
integer is output. The default number of digits for integers is 8.
An integer value may be written in hexidecimal base format by
specifying : width HEX

Example: WRITE (outfile, n+5 :1i)

-—--For a real expression---

Two numbers may be specified for real values. The first number
specifies the total number of digits for the mantissa. The second
specifies the number of digits after the decimal point. For a
description of the effects of these specifications and for the
defaults used, see the System Implementation Manual.

Example: WRITE (2.5*random :5:3, random/x:3:6)

(C) copyright 1981 Alcor Systems - 83 -

Input and Cuput Chapter 10

Non-text files

If the file is not of type TEXT, then output values must be
variables. Output directed to non-text files is in binary form. This
means that values are output in the same form as they are stored. For

example, an integer is not converted to a character string before it
is output.

Example use with non-text files:

WRITE (groceries,item)

E. READLN
This procedure can be used only with files of type TEXT. (See
section C.1 of chapter 4 for a description of text files.)
The READLN procedure is similar to the READ procedure. The

difference is that at the end of the read operation, the file pointer
is advanced to the beginning of the next line.

Syntax of READLN: (default: file = INPUT)

e — . S —— - S — S o S - — o _— R " — —) T - NI WA N I — T S 0 ook oo D i i oty

—-=> READLN ===> (=—==> file —===>

The READLN procedure may be called without passing any variables to
be read. When no variables are specified, then the procedure just
advances the line pointer to the beginning of the next line.

The statement: READLN (varl,var2,var3)
is equivalent to: BEGIN READ(varl,var2,var3); READLN END

(C) copyright 1981 Alcor Systems - 84

Input and Ouput Chapter 10

The function EOLN can be used to determine whether or not a files
pointer is at the end of a line.

Example use of READLN:

i := 0;
WHILE NOT EOF DO
BEGIN
i = i41;
READLN{(a[i]) (*reads one value from each line¥)

END;

WHILE NOT EOF (infile) DO
BEGIN
WHILE NOT EOLN(infile) DO
BEGIN
READ(infile,ch):
END;
READLN (infile); (*advances file pointer to next line¥)

END:;

F. WRITELN

This procedure can only be used with files of type TEXT. (See
section C.l of chapter 4 for a description of text files).

The WRITELN procedure is similar to the WRITE procedure. The
difference is that at the end of the write operation, an end of line
mark is appended to the file.

Syntax of WRITELN: (default: file = QOUTPUT)

—— —— . > S W — A T T WS WD S T S W P S D — G o — — W — - 3 . - D > WD - TS . —— -

==> WRITELN ===> (===> file =-==> , ==—=—- > write parameter --->) —-==>

e - - — — - — . — T — — . -~ — - —— " =

(See WRITE for syntax of write parameter)

(C) copyright 1981 Alcor Systems - 85 -

Input and Ouput Chapter 10

The WRITELN procedure may be called without passing any values to
written. When no values are specified, then the procedure just
apwends an end of line mark to the file.

The statement: WRITELN (varl,var2,var3)
is equivalent to: BEGIN WRITE(varl,var2,var3); WRITELN END

Example use of WRITELN:

(*writes 2 values on each line%*)
FOR k := 1 TO 100 DO WRITELN(a[k],blk]l):

FOR j := 1 TO maximum DO
BEGIN
i := 0;
REPEAT
i = 1+1;
WRITE (number [j]);
UNTIL (i=5) OR (number[j]1>100);
WRITELN; (*advance file pointer to next line*)
END;

G. CLOSE

The use of the CLOSE procedure will assure that file data will not
be lost if the program abnormally terminates and does not properly
close the file. It may also be used in conjunction with the external
runtime routine SETSACNM.

(see System Implementation manual)

Syntax of CLOSE:

~=> CLOSE --> (=-=> file ==>) =—=>

(C) copyright 1981 Alcor Systems - 86 -

Input and Quput Chapter 10

H. PA@

The PAGE procedure appends a formfeed to a file. Formfeeds cause
printers to skip to the top of the next page. This procedure provides
a way of controlling the number of lines printed on a page.

This procedure may only be used with files of type TEXT.

Syntax of PAGE: V (default: file = OUTPUT)

————— ———— - — i — — _— —— ——— — ——

==> PAGE ---> (=-=-> file ==>) ===>

I. MESSAGE

The procedure MESSAGE may be used to output strings to the terminal.
It takes one parameter which is either a string constant or variable.
A string constant is a sequence of characters enclosed in single
quotes. A string variable is a variable declared as a packed array of
characters.

Syntax of MESSAGE:

-=> MESSAGE -=-> (==> string =-=>) -->
Programs which require only string output to the terminal can use
this procedure rather than the WRITE procedure.
Example use of MESSAGE:
MESSAGE (©* time to quit”);

MESSAGE (string);

(C) copyright 1981 Alcor Systems - 87 -

APPENDIX

A. COMPILER OPTIONS

Compiler options are provided to change the behavior of the Pascal
compiler. These options allow features to be enabled or disabled and
can alter the code generated at compile time.

Compiler options are specified in comments. A comment that
contains a dollar sign as the first character specifies an option.
All compiler options have two states, on and off. An option is turned
on by placing its name after the dollar sign. If the option name is
preceded by the word "NO", then the option is turned off. For

xample, the following line will cause all real variables to be double
precision.

(*$DOUBLE*)

— s s

This option specifies that all real variables within the program
should be double precision. This option must precede the program
statement. If it occurs anywhere else in the program, it will be
ignored. If the option is off (the default), then real variables are
single precision.

Example:

{*SDOUBLE?*)
PROGRAM DBL:
VAR

R : REAL:;
BEGIN
END.

In this program, the variable "R" will be declared as double
precision.

(C) copyright 1981 Alcor Systems - 88 -

This option is used to change the behavior of loop counters in FOR
statements. If the option is turned on(default is off), then all FOR
loop counters are treated as temporary variables. They do not need to
be declared, and even if a declaration is present, a new variable is
used rather than the declared variable. These FOR loop counters are
defined only within the loop and disappear when the loop is exited.

note: FOR loop counters are automatically declared
if not explicitly declared even with this
option off. However, temporary variables are
not used in place of declared variables.

Example:

PROGRAM FORLOOP:
(*SFORDECL *)
VAR

I : INTEGER;
BEGIN

0
0

I := 0 TO 4 DO A := A + I;
TELN (OUTPUT,I,A);

R
of:

END.

In the above program, the I used as a FOR loop counter is a different
variable from the I declared in the VAR section. When the write
statement is executed, the values 0 and 10 will be printed.

This option enables the predeclared files: INPUT and OUTPUT (default
is on). 1If this option is turned off before the PROGRAM statement,
then the files input and output will not be declared. This option
prevents the reset of INPUT and the rewrite of OUTPUT and can be used
in programs that do not perform normal pascal input and output.

(C) copyright 1981 Alcor Systems - 89 -

IF
The if option provides conditional compilation. The word IF is
followed by the name of a boolean constant. If the constant has the
value "TRUE", then compilation continues as if the option had not been
present. If the constant has the value "FALSE" then compilation stops
at that point, and all text is treated as comments until a (*$NO IF¥*)
is encountered. ©Note that IF options do not nest. That is, an IF
option should not occur within the scope of another if option. The if
option can be used to configure a program for different environments
with minimum changes to the source. It is also useful for removing
debugging statements once the program is working properly.

Example:

PROGRAM Test;
CONST
debug = false;

FUNCTION FACTORIAL(I : INTEGER) : REAL:

BEGIN
IF I = 0 THEN FACTORIAL := 1
ELSE BEGIN

(*SIF DEBUGY*)
WRITELN (OUTPUT, “CALLING FACTORIAL(”,I-1,")");

(*SNC IF*)
FACTORIAL := I * FACTORIAL(I-1):
END:
END; (* FACTORIAL *)
BEGIN
WRITELN (OUTPUT, “"FACTORIAL (20) =" ,FACTORIAL (20)) ;
END.

In the above program, the write statement within the recursive
function FACTORIAL could be turned on during debugging by setting
debug to TRUE. Once the program is running, it can be recompiled with
debug set to FALSE. The write statement will be effectively removed.
In fact, since no code is generated for it, the resulting object
program will be shorter. This has the same effect as removing the
statement with an editor or placing open and close comments arround
it. The advantage is that many statements can be disabled or enabled
with a single change to the source program. Also, it is simple to
reenable debugging statements should it become necessary in the
future.

(C) copyright 1981 Alcor Systems - 90 -

NULLBODY
The nullbody option is used to disable code generation for a
procedure, function or program. The nullbody option should occur
after the BEGIN that starts the block and before any executable
statements. Nullbody will prevent code from being generated and can
be used when procedures are being compiled separately. Since every
program must have a program statement and a main program body, it is
necessary to use nullbody to disable code generation for the main
program when a subroutine library is being compiled.

For example:

PROGRAM SUBLIBRARY;
TYPE
STRING = PACKED ARRAY[1..80] OF CHAR;

PROCEDURE CONCATENATE(VAR S1, S2, RESULT: STRING);
BEGIN

(* BODY OF CONCATENATE *)
END;

PROCEDURE MIDS(VAR S : STRING; FIRST, LAST : INTEGER;
VAR RESULT : STRING);
BEGIN
(* BODY OF MIDS *)
END;

BEGIN
(*$SNULLBODY*)
END.

If the above program is compiled, the object file will contain code
only for the two procedures: CONCATENATE and MID$. There will be no
main program. This allows these procedure to be linked to another
program.

(C) copyright 1981 Alcor Systems - 91 -

B. ERROR MESSAGES

2 IDENTIFIER EXPECTED
3 “PROGRAM® EXPECTED
4 ©)° EXPECTED
5 “:“ EXPECTED
6 ILLEGAL SYMBOL
8 “OF” EXPECTED
3 “(° EXPECTED
10 ERROR IN TYPE
11 LEFT BRACKET “[* OR “(.” EXPECTED
12 RIGHT BRACKET “1”° OR “.)” EXPECTED
13 “END” EXPECTED
14 “;” EXPECTED
15 INTEGER EXPECTED
16 “=" EXPECTED
17 “BEGIN” EXPECTED
20 °,” EXPECTED
22 *..” EXPECTED
23 .7 EXPECTED
49 “ARRAY” EXPECTED
50 CONSTANT EXPECTED
51 “:=" EXPECTED
52 “THEN” EXPECTED
53 “UNTIL” EXPECTED
54 “DO” EXPECTED
55 “TO”/“DOWNTO” EXPECTED
57 “FILE” EXPECTED
66 TYPE IDENTIFIER EXPECTED
80 OPEN COMMENT WITHIN A COMMENT
81 UNKNOWN OPTION
82 # REQUIRES A 2 CHARACTER HEX VALUE OR #%
101 IDENTIFIER DECLARED TWICE
102 LOWER BOUND EXCEEDS UPPER BOUND
103 IDENTIFIER IS NOT OF APPROPRIATE CLASS
104 UNDECLARED IDENTIFIER
105 CLASS OF IDENTIFER IS NOT VARIABLE
107 INCOMPATIBLE SUBRANGE TYPES
113 ARRAY BOUNDS MUST BE SCALAR
117 UNSATISFIED FORWARD REFERENCE TO A TYPE IDENTIFER OF A POINTER
119 “;” EXPECTED (PARAMETER LIST NOT ALLOWED)
120 FUNCTION RESULT MUST BE SCALAR, SUBRANGE, OR POINTER
123 FUNCTION RESULT EXPECTED
126 IMPROPER NUMBER CF PARAMETERS
127 TYPE OF ACTUAL PARAMETER DOES NOT MATCH FORMAIL PARAMETER
129 TYPE CONFLICT OF OPERANDS IN AN EXPRESSION
132 COMPARISON WITH “>° OR “<” NOT ALLOWED ON SETS
134 ILLEGAL TYPE OF OPERANDS
135 TYPE OF EXPRESSION MUST BE BOOLEAN

(C) copyright 1981 Alcor Systems - 92 -

136 SET ELEMENT TYPE MUST BE SOME ENUMERATION TYPE
138 TYPE OF VARIABLE IS NOT ARRAY

140 TYPE OF VARIABLE IS NOT RECORD

141 TYPE OF VARIABLE IS NOT POINTER

148 SET BOUNDS OUT OF RANGE

152 NO SUCH FIELD IN THIS RECORD

154 ACTUAL PARAMETER MUST BE A VARIABLE

156 MULTIDEFINED CASE LABEL

161 PROCEDURE OR FUNCTION ALREADY DECLARED AT A PREVIOUS LEVEL

165 LABEL ALREADY DEFINED

167 UNDECLARED LABEL

168 LABEL NOT DEFINED

182 "FOR" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
183 "CASE" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
184 "FOR" VARIABLE MUST BE LOCAL

185 OPERATION DEFINED FOR TEXT ONLY

186 OPERATION NOT DEFINED FOR TEXT FILES

193 ACCESS STATEMENT MISSING FOR COMMON

199 FEATURE NOT IMPLEMENTED

202 STRING CONSTANT CANNOT SPAN LINES

203 INTEGER CONSTANT TOO LARGE

210 FIELD WIDTH MUST BE INTEGER

211 FRACTION LENGTH MUST BE OF TYPE INTEGER

212 HEX FORMAT ALLOWED ONLY FOR TYPE INTEGER

219 PARAMETER MUST BE OF TYPE FILE

220 PARAMETER MUST BE OF TYPE INTEGER

223 PARAMETER MUST BE OF TYPE POINTER

230 ILLEGAL TYPE OF PARAMETER IN STANDARD PROCEDURE CALL
250 TOO MANY NESTED SCOPES - LIMIT IS 15

401 OPEN COMMENT ENCOUNTERED IN A COMMENT

403 TO MANY PROCEDURE NESTING LEVELS

404 ARRAY BOUNDS MUST BE SCALAR

(C) copyright 1981 Alcor Systems

93 -~

C. Standard 7-bit USASCII Character Set

Decimal Octal Hex Graphic
0. 000 00 ~a
1. 001 01l -\
2. 0602 02 "B
3. 003 03 e
4, 004 04 “D
5. 005 05 “E
6. 006 06 °F
7. 007 07 G
8. 010 08 “H
9. 011 09 T

10. 012 0): ~J
1. 013 0B “K
2. 014 0C L
13. 015 0D M
14. 016 0E N
15. 017 OoF "0
16, 020 10 P
17. 021 11 ~Q
18. 022 12 "R
19. 023 13 ~s
20. 024 14 ~
L. 025 15 ~u
22, 026 16 v
23. 027 17 W
24, 030 18 X
25. 031 19 Y
26. 032 ia "7
27. 033 1B o1
8. 034 ic “\
9. 035 1D]
30. 036 1E ~n
31. 037 1ir c
32. 040 20 wen
3. 041 21 !
34. 042 22 "
35, 043 23 #
26, 044 24 $
37. 045 25 %
38. 046 26 &
39. 047 27 ’
40. 050 28 (
41. 051 29)

(C) copyright 1981 Alcor Systems

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
ST
DLE
DC1
DC2
DC3
DC4
NAR
SYN
ETB
CAN
EM
SUEe

ESCAPE

F3
GS
RS
Us

Name
(used for padding) <null>
(start of header)
(start of text)
(end of text)
(end of transmission)
(enguiry)
(acknowledge)
(bell or alarm)
(backspace) <bs>
(horizontal tab)
(line feed) <1f>
(vertical tab)
(form feed, new page)
(carriage return) <cr»>
(shift out)
(shift in)
(data link escape)
(device control 1,
(device control 2)
(device control 3,
(device control 4)
{negative acknowledge)
(synchronous idle)
(end transmission block)
(cancel)
{end of medium)
{substitute)
(alter mode,
(file separator)
(group separator)
(record separator)
(unit separator), EOL on some sys

<tab>

<fFf>

XON)

XOFF)

SEL) <esc>

space or blank <sp>
exclamation mark
double quote

number sign

(hash mark)

dollar sign
percent sign
ampersand sign

single quote

(apostrophe)

left parenthesis
right parenthesis

- 94 -

42.
43.
44,
45.
46.
47.
48,
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
A5,

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.

-
1

88.
89.
90.

(C)

052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132

copyright 1981 Alcor Systems

2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46

48
49
4A
4B
aC
4D
4E
4F
50

52
53
54
55
56
57
58
59
5A

I ~ 4+ %

NHXS<<AHVWOUHWOZRIOCRUHIDTQAHEUODAQW P® YV I A o OOJAUTEWNDHON -

asterisk

(star)

plus sign

comma

minus sign (dash)

period

(right)
numeral
numeral
numeral
numeral
numeral
numeral
numeral
numeral

(decimal point)

slash
zero
one
two
three
four
five
six
seven

numeral eight

numeral nine

colon

semi~colon

less~than sign

equal sign

greater-than sign
guestion mark

atsign

upper—~case letter ABLE
upper—-case letter BAKER
upper—-case letter CHARLIE
upper-case letter DELTA
upper-case letter ECHO
upper-case letter FOXTROT
upper-~case letter GOLF
upper-case letter HOTEL
upper-case letter INDIA
upper-case letter JERICHO
upper—-case letter KAPPA
upper—-case letter LIMA
upper-case letter MIKE
upper—-case letter NOVEMBER
upper~case letter OSCAR
upper~case letter PAPPA
upper-case letter QUEBEC
upper—-case letter ROMEO
upper-case letter SIERRA
upper—-case letter TANGO
upper—-case letter UNICORN
upper—-case letter VICTOR
upper-case letter WHISKY
upper-case letter XRAY
upper—-case letter YANKEE
upper-case letter ZEBRA

- 95 -

91.

92.

93.

94,

95.

96.

97.

95.

99.
100.
101.
l102.
103.
104.
105.
106.
107.
108.
109.
110.
111,
112.
113.
114.
115.
11s6.
117.
1138.
119.
120.
121.
122.
123.
124,
125,
126.
127.

(C)

133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

5B
5C
5D
5E
5F

61
62
63
64
65
66
67
68
69
62
68
6C
6D
6E
&F
70
71

-
I

73
74
75
76
77
78
79
72
7B
e
7D
7E
7F

Ye— S

~ N X EIC N QUOIHFRALHITQHO LA T 4

<rubout>

copyright 1981 Alcor Systems

left square bracket
left slash (backslash)
right square bracket

uparrow (carat)
underscore

(single) back gquote

lower-case letter
lower—~-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower~case letter
lower—-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower~case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower-case letter
lower—-case letter
left curly brace
vertical bar
right curly brace
tilde

DEL

able
baker
charlie
delta
echo
foxtrot
golf
hotel
india
jericho
kappa
lima
mike
november
oscar
pappa
quebec
romeo
sierra
tango
unicorn
victor
whisky
Xray
yankee
zebra

- 96 -

D. Differences from Standard

D - — ———— - —— - — s W > S — — - V- —— o~

The standard used is defined by "User Manual and Report", second
edition, Jensen and Wirth, Springer-Verlag. The following sections
pertain to the differences in Alcor Systems implementation of Pascal
as compared to the standard. The extensions are added to provide
extra features for programs which are not expected to be transferred
to other machines which do not have Alcor Pascal. If transportability
is desired, it is advised not to include any of the below listed
extensions in the program.

D.l Omissions

1) The procedures GET and PUT along with associated file
buffer variables are not implemented.

2) Procedures or functions may not be passed as parameters
to other procedures or functions.

D.2 Extensions

l) Common variables which provide a mechanism for statically
allocating local variables are implemented through the use
two new declaration parts: COMMON and ACCESS.

2) The declaration sections LABEL, CONST, TYPE, VAR, COMMON, %
and ACCESS may appear any number of times and in any ‘
order within a block.

3) The Type Transfer Operator allows variables to be referenced
through the use of a type template.

4) Single elements of packed structures may be passed as
parameters.

5) The OTHERWISE clause is implemented in the CASE statement.
If omitted, and there is no match, execution transfers to the
next statement.

6) Identifiers can include the characters “ “ and “$°. Also, no
distinction is made between upper and lower case letters.

7) Integer constants or characters may be represented in hex.

(C) copyright 1981 Alcor Systems - 97 -

8)

9)

10)

11)

12)

13)

14)

15)

16)
17)
18)

19)

20)

21)

22)

23)

24)

Mixed mode arithmetic is implemented.

The procedures READ or READLN will accept string and boolean
variables.

External procedures or functions may be declared. This feat:t
provides a way of accessing external routines.

Input files are not opened until necessary. This eliminates
the synchronization problem when doing interactive input
from a terminal.

Labels may range from -32768 to 32767.

Alternate symbols are implemented for brackets and the
peinter symbol.

The LOCATION function allows the determination
of the address of a variable.

The SIZE function allows the size of a type
to be determined.

The EB function returns the high byte of an integer variable.
The LB function returns the low byte of an integer variable.

The procedure MESSAGE provides an additional method for
handling string output to a terminal.

The procedure CLOSE allows components of structured
variables to be declared as files.

Double precision reals are implemented through the use of
a compiler switch option.

FOR Loop counter variables are automatically declared if

a declaration for them is not present. A compiler switch
option may be used to force temporary variables to be used
as counters in all FOR statements.

Statements can be conditionally compiled through the use
of a compiler switch option. This provides an easy way
to turn debugging statements on and off.

Procedures and functions may be compiled separately through
the use of a compiler switch option.

Integer values may be output in hexidecimal or
decimal base format.

(C) copyright 1981 Alcor Systems - 98 -

D.2 Other Implementation Characteristics

The following is a list of specific implementation decisions
which are not defined by the standard.

1) Only the first 8 characters of an identifier are stored.
This means that identifier names should be selected such
that the first 8 characters form a unique name.

2) There is a limit of 256 elements for sets, enumerations, CASE
statement labels, and parameters to a procedure or function.

3) Pascal source is restricted to 72 columns. This allows room
for line numbers when listings are directed at an 80 column
terminal or printer.

The following is a list of characteristics which are slightly
altered from the standard.

l) Operator precedence has been altered to eliminate the need
for excessive use of parentheses in expressions. The
precedence is the same as that used in Basic. The
difference is the precedence assigned to the Boolean operators.
The precedence defined by the standard makes the Boolean
operator OR equal in precedence with + and -, the Boolean
operator AND equal in precedence with *, /, DIV, and MOD,
and NOT has the highest precedence of any operator except
the parentheses. Parentheses mav be used when transportable
programs are being written to maintain compatability with
the standard.

2) The PROGRAM statement is not used to associate logical
file names to physical files or devices. The association
is made either interactively from a terminal or through
a procedure call.

3) A GOTO statement may not reference a label outside the
block in which the statement appears.

(C) copyright 1981 Alcor Systems - 99 -

(C)

E. THE TYPE STRING

The standard Pascal string is defined to be a PACKED
ARRAY OF CHAR. Variables of this type are restricted to
a predetermined size. (ie. the size of the array
must be specified and cannot be altered during program
execution). The predefined type STRING is dynamic.
The size of a variable declared as type STRING is determined
during program execution. Variables of this type may change
in size as the program executes. In addition, variables of
type STRING may be used in conjunction with a runtime library
of string manipulation functions.

Syntax of type STRING:
-==> STRING —==>
Example:

VAR strl, str2, str3 : STRING:

Assigning values to dynamic string variables

A dynamic string may be created through the use of the
predeclared transfer function BLDSTR. This function
has one parameter which may be either a variable of the
type PACKED ARRAY OF CHAR or a string constant. The
function returns a dynamic string of the same length as the
array or string constant passed to it.

Example:
strl := BLDSTR(“literal string constant”);

str2 := BLDSTR(stringconstant);

str3 := BLDSTR(arrayvariable):

copyright 1981 Alcor Systems -

100 -

The procedures READ and READLN have been extended to accept
variables of the type STRING. When a variable of type STRING
is specified, all characters from the current file pointer to
the end of line mark are read. The size of the string is then
equal to the number of characters read. 1If a read is performed
while at the end of line mark, the string variable is assigned
an empty string. An empty string is a string of zero length.

Example:
READ (strl);

READLN (filename,str2):

A string variable may be assigned to another string
variable. An assignment between two string variables
results in both string variables referencing the same string.
(ie. both string variables point to the same location in
memory)

Example:

n
t
~
=
(1]
i
0
o+
la)
1
e

NOTE: For most applications, the preferred method of
assignment between two string variables is through
the use of the library function CPYSTRING.

A string variable may be assigned a string formed by one
of the string manipulation functions in the runtime library.
For example, there is a function provided which may be used
for assignment between two string variables., The function
CPYSTR takes a string variable as a parameter and copys it
to another location. The string appearing on the left side
of the equal sign then references the new location. 1In other
words, instead of having one copy of the string as in the
above example, there are now two copies.

Example:
strl := CPYSTR(str2);

(C) copyright 1981 Alcor Systems - 101 -

Outputing dynamic string variables

The WRITE and WRITELN procedures have been extended to
accept variables of the type STRING. When a dynamic
string is output, the number of characters written is
equal to the length of the string.

Converting a dynamic string inteo an array

S K 0 A TS i £ WD 0D D WA W S D D D S T T I D YR W WD T D S T WD W o e S D W

Dynamic strings can only be accessed as a whole. (ie. the
individual characters of the string cannot be accessed)
The predeclared procedure GETSTR will copy a dynamic
string variable into a variable of the type PACKED ARRAY
OF CHAR. It accepts two parameters. The first parameter
is the dynamic string variable. The seccnd parameter is
the array variable. The string is left justified in the
array. If the string is longer than the array, then it is
truncated. 1If the string is shorter than the array, then the
array is padded with blanks.

Example:
GETSTR(strl, arrayvariable);

Recovering memory used by a dynamic string

. T W G I TG < T IS S — N (2 S W D W WP S WD B G SH3) N S A S D e S S D R S ST AL W o

The memory used by a dynamic string may be
recovered through the use of the standard procedure
DISPOSE. When a string variable is passed to the DISPOSE
procedure, the memory used by the string is freed and the
string variable becomes undefined. 1In addition, any other
string variable which points to the same string will become
undefined. Each time a string variable is assigned a value,
it points to a new string and the old string is then lost.
The memory it uses cannot be recovered. Therefore, before
assigning the string variable a new value, the memory used
by the o0ld value should be recovered if space is important.

Example:
strl := BLDSTR(“this is the first value”);
DISPOSE({strl):
strl := BLDSTR(“this is the second”):

(C) copyright 1981 Alcor Systems - 102 -

Using the string library

There is a long list of string manipulation functions
available in the runtime library. 1In order for a program
to have access to these functions, it must include an external
declaration for each function used. A file of external
declarations for all the string functions is supplied on
disk. The text editor mav be used to insert this file into
the programs that use these functions. The declarations for
any functions which are not used may be deleted if desired.
If only one or two functions are used, you may prefer just to
type in the external declaration.
(See the System Implementation Manual for a description
of the string manipulation functions)

Example use of dynamic strings:
PROGRAM sample;
FUNCTION CONC(sl,s2 : STRING) : STRING; EXTERNAL;

(*conc is a library function which concatenates two strings%*)

VAR firstname, lastname,
space, fullname : STRING:;

BEGIN
space := BLDSTR(® “):
WRITELN(® enter first name”);
READLN (firstname)
WRITELN(® enter last name”):
READLN (lastname) ;
fullname := CONC(CONC (firstname,space),lastname) ;
WRITELN (fullname) ;

END;

(C) copyright 1981 Alcor Systems - 103 -

S

$MEMORY

+

ABORT

ABS
ACCESS
ADD
ADDRESS
ALGOL
ALGORITHM
AND
APPEND
ARCTAN
ARITHMETIC

ARRAY
ASCII
ASSEMBLY
ASSIGNMENT
AUTOINDENT
BASIC
BEGIN
BENCHMARK
BLAISE
BLDSTR
BLOCK
BOOLEAN
BRANCHING
BUFFERS
BUILD
BYTE
CALLS
CASE

CHAR
CHARACTER
CHR
CLEAR

CLEARGRAPHIC
CLEARSCREEN

CLOSE
CMPSTR
COBOL
CODEGEN
COMMAND

COMMAND FILE

COMMANDS
COMMENT
COMMON
COMPARE
COMPILE

MASTER CROSS REFERENCE INDEX

B = Beginners Guide E
= System Manual

524
E1l1l
Ell
E 7
R73,
R21
T20
S10
T1
S 7
R46
E 8,
R73
R44,
T59
R28,
E1l3,
s21
R54,
E 6
B 1,
R23,
S 4,
B 4,
R100
R12,
R25,
R63,
516
S13
S16
s21
R60Q,
R25,
S24
R25,
E 5
S18
S20
R86
524
T 1
s 2,
E 7,
S 4,
E 3,
R10,
RrR20,
R45,
s17

Editor Manual R = Reference Manual
Tutorial

T

T35, T38

E 9
T 3, Tlé, T17, T18, T23, T25, T26, T34, T58,

S16, T40
R94

T1l6

T2, T
R55, T 5, T20
S5, T

B5, B6, E1
R13, R16, T36
R52, T 8, T10

T27

T23, T24, T25
T 8, T10, T40, T49

R74

S 3
S11
S13
E1l2
T39
S1z2
T26

COMPILER
COMPILING
COMPONENT
COMPOSE
COMPOUND
CONC
CONDITIONAL
CONST
CONSTANTS
CONTROL/L
COORDINATE
COs
COUNTER
CPYSTR

CRT

CURSOR
DATA
DATABASE
DATE
DECIMAL
DECLARATION

DECODED
DECCDEI
DECODER
DEFAULT
DEFINED
DEFINITION
DELETE
DELETION
DELIMITERS
DEVICE
DIMENZION
DISK
DISKETTES
DISPOSE
DIV

DO

DOUBLE
DOWNTO
DUMMY
DYNAMIC
EDITOR
EFFICIENCY
ELSE
ENCODED
ENCODEI
ENCODER
END
ENUMERATED
ENUMERATION
EOB

EOF

EOLN
ERROR

MASTER CROSS REFERENCE INDEX

S 3, s 6, 59, s10

B 7

R35, T40, T45, T47, T48
E 4

R55

825

R58, T2¢9

R18, T10, T12
R 8, R 9, R18

S10

s18

R73

R56, R89

S25

S 8

E 5, 819, T 6

T 8

T62

S10, s21

T 9

R16, T 8, T10, T11, T33, T34, T37, T38, T39, T41,
T42, T44, T51, T53
524

524

S24

S13

s12

R16

525

E 6

R10

S 8, S13

R28, T41, T42, TS0
S 8, s 9

B 2

R42, S10

R44, T17, T20

R57

R88, S17

R56, T23, T25

B 8

R40, R41, R42, R100, S10, S15, S16, TS1
B 4, E 1

S 4

R58, T27, T30

524

S24

524

R23, R55, T 5, T 6
R26, S16, T44, T47
R25

E 8

R73, R76, R77, T13
R34, R73, R76, R77, T13, T33
R92, S10, S11, S14, S22

ERROR CODES
ERRORS
ESCAPE
EXECUTE
EXIT

EXP
EXPONENT
EXPRESSION
EXTENSION
EXTENSIONS
EXTERNAL
FIELDS
FILE

FILE NAME
FILESSTATUS
FILES

FIND

FOR
FORDECL
FORM FEED
FORWARD
FUNCTION
GETKEY
GETSTR
GLOBAL
GOTO
GOTOXY
GRAPHIC
HARDWARE
HB

HEADING
HEAP

HELP
HEXADECIMAL
HPSERROR
HSCROLL
IDENTIFIER
IF

IN

INIT
INITSFILE
INITIALIZE
INKEY
INOUT

INP

INPUT
INSERT
INSERTFILE
INSERTION
INTEGER
INTERPRETER
INTERSECTION
IOSERROR

MASTER CROSS REFERENCE INDEX

sl1,
S 7
R65,
S 9
Ell
R73
S17
R49,
S 8
R97
R69,
R34
R32,
s23
S22
S 9
E 7,
R56,
R89
s10
R68,
R22,
S20
R102
R66,
R17,
S19
sls8
S18
R74,
R13,
R41,
E 2,
R 9,
S22
Ell
R 7,
R58,
R30,
Sl4
S24
S24
S20
R89
s20
R33,
E 4,
E10
E 6
R 8,
S 4
R32,
S22

R92

R75

R70,

R33,

El0,
T22,

T38,
R65,

R69,
R63,

R98
R15,
s10,
E S
R83,

T 6,
RS0
R46

R76,
S26

R24,

R44

Tl6,

R98,

R34,

526
T23

T39
s18,

R70,
RS9,

S10
s13,

slo

T17,

R76 ’

T31,

s17,
T27

Sls 7

T35,

sl6,

T21,

sl8

SB,

T35,

T33,

s22,

T37,

T13,

T23

T6,

T36

T34,

S24

T38

T15

Tlo r

T37

T13,

T15,

T49

MASTER CROSS REFERENCE INDEX

K S10, S13

KEYBOARD 520

KEYS El2

KEYWORD R 9

LABEL R17, R53, R63

LB R74, R98

LEFTS 524

LEN 524

LIBRARIES R65, S12

LIBRARY R69, R91, S18

LINK S12

LINKED R21, R65, R91, T53, T54, T61l
LINKING S 4, s11, s14

LINKLOAD Sil

LISTING B 7, s 9, si0, s1l1

LITERAL R83

LN R61, R73

LOAD S1lé

LOADER sS4, S 9, €10, S11, sl4
LOADING s12

LOCAL R66, R67, R71, S15, s17, T33, T37, T38
LOCATION R74, S19, s21

LOGICAL R25, R32, R76

LOOP R55, R56, R57

MANTISSA Si7

MANUAL B 2

MAPPING B 8

MAXINT R18

MEMBERSHIP R30, R46, T58, T59

MEMORY E 6, s 3, s10, s13, s15, Sl1l6, S17
MEMORY USE 516

MERGE E 7

MESSAGE R72, R76, R87, R98, Sl4
MESSAGES S1l1

MIDS S24

MIXED R44

MOD R44, R47, R51, R58, T17, T20
NESTED R12, R66

NEW R41, R42, s10, S16, S22, T51, T52, T53, TS5
NIL R42, R59, S22, T54, T55
NOBLANK 519

NOT R46, R52, T26

NULLBODY R70, RY91, S 4

NUMBERS R 8

OBJECT S8, s9, s10, s12, s14, s15, S18
ODD R73

OF R28, R37, R60

OPENS R77, R78

OPERATOR T17

OPERATORS R4 4

OPTIMIZER S 2, 83

OPTIONS R88

OR

ORD
ORDINAL
OTHERWISE
ouT

OUTPUT
OVERLAY
OVERVIEW
PACK
PACKED
PACKING
PAGE
PARAMETER
PARAMETERS
PARENTHESES
PASCAL
PASCALB
PCODE

PEEK
POINTER
POKE
PRECEDENCE
PRECISION
PRED
PREDECLARED
PREDEFINED

PRINTER
PROCEDURE

PROGRAM
QUIT

QUOTE
RANDOM
READ
READCURSOR
READLN
REAL
RECORD

RECURSION
RECURSIVE
REFERENCE
REFERENCED
REGISTERS
RELATIONAL
REMOVAL
REPEAT
REPETITIVE
REPLACE
RESERVED
RESET
REWRITE

MASTER CROSS REFERENCE INDEX

R46,
R22,
R24
R60,
S20
R33,
S 6
B3p
R28,
R28,
Sl6
R87,
T3'
E S,
R47
B 1,
s17
S 3,
S19
R40,
S19
R47,
S17
R75
R72
R18,
T15,
S 8,
R13,
T34,
T66,
R12,
Ell
Ell,
s26,
R79,
S19
R34,
R 8,
R34,
T54,
R71
R71,
sl4,
sl2
s21
R45,
E 3
R57,
R55
E 7,
R 9,
R72,
R72,

R52
R25,

R61
R76,

5 2
R74
R38

s10
T4,
R13,

S 8,
S17
R4l,

Tle6,

R24,
T25,
S 9,
R22,
T35,
T67,
R13,

R 9
s27,
T13,

R76,
R27,
sle,
TS55

R90,
sl5
R46,
R58,
El0,
Slé

R76,
R76,

R74,

88,

T31'
R14,

S 9,

R42 ’

T17,

R25,
T35,
s10
RE3,
T36,
T68,
T 5,

528
Tl4 ’
R84,

s17,
T 2,

T 3,
T 3,
526

R77,
R78,

T32,

sle6,

T33,
Rls r

T 1

R43,

T18,

R26,
T43,

R65,
T37,

T69
T 6

T39,
T13,

T 2,
T 4,

T 4,

T 4,

R78,
R79 7

T33

T 5,

T34,
RSO,

T51 r

T21,

R33,
T44,

818 [4
T38 ?

T40,
T14,

TB,
T45,

T26,

T29,

TG'

T39
R63,

T52,

T26

R42,
T45 r

T2y
T39,

T4l 4
T4l 7

T 9,
T47,

T27,

T30

813 7
513,

T 7, T13, T1l4

Slé

T53, T54, T55

T2, T8, TiO, T11,
T58

T 3, T3l' T32' T33'
T62, T63, T64, T65,

T42, T47, T49
T42

T10, T19, T20, T25
T48, T49, T51, TS52,

T28, T29, TS58

S23, S24, T13
823, S24

MASTER CROSS REFERENCE INDEX

RIGHTS S24

ROLL Ell

ROM 519

ROUND R74

RSETPOINT s18

RUN B7,s8,s 9, s13, s18

RUNTIME S17

SCIENTIFIC R 8

SCOPE R66, R68, R69, T36, T37, T38, T48

SELECTOR R38, T23, T25

SEMI T 6

SEMICOLON R11l

SEPARATE S 4

SERIAL 510

SET R28, R29, R30, R31, R32, S16, T 2, T 4, T58, T59,
T60

SETSACNM 523

SETPOINT S18

SHIFT E 5

SHOWFILE E10

SHOWLINE E10

SIN R61, R73

SOURCE S 2, S 9, 810

SPLIT E 7

SQR R23, R73

SQRT R73

STACK R65, R71, § 9, 5810, S13, S15, Sl6, S24

STANDARD R78, R97, R99

STATEMENT R23, RS53

STATUS S22

STRING R S, R100, T 6, T10, T13, T40, T41l, T42

STRUCTURE T 5, T31, T35, T36

STRUCTURED R12, R28

STRS 524

SUBRANGE R27, S16

SUBROUTINES T 2, T31

SUBSET R27, R31, TS8

SUBTRACT T20

succ R75, T43, T44

SUPERSET R31, TS58

SYMBOL S1l2, s14

SYMBOLS R10, S 6, S17

SYNTAX R 5

TAB E 6, E11

TABLE S14

TAG S14

TESTPOINT 518

TEXT R33, R34, R76, R79, R83, R84, R85, T 7, T 8, T12,
T13, Tl4, T47, T49

THEN R58

TIME s$10, s21

TO R56

TRS80 B1l, s 7, 58,59, s11

MASTER CROSS REFERENCE INDEX

TRSDOS s 8 s 9, s11, s13, Sl4, s16
TRUNC R74, T25
TYPE R1S, R24, R27, R28, R40, R48, T 2, T 8, T 9, T10,

T1ll, T1S5, T40, T43, T44, T45, T49, TS50, T51, Ts52,
T53, TS4, TS5, TS8, T39, 757, TS8, T59, T62, T64,

T65
UNARY T17
UNION R31, R44, TS8, TS9
UNPACK R74
UNTIL R57, T29, T30
USER s21
VAR R20, T 8
- VARIANT R35, R37, R38, R39
VERSION slo0
WHILE R57, T20, T28, T29, T30
WITH R61, R62, T48
WORK FILE E 2, E 8
WRITE E 8, E 9, R76, R81, T 5, T 6, T13, T14
WRITECH Sl1l9
WRITELN R34, R76, R85, T 5, T 6, T1l2, T13, T14

WRITESTRING S20
280 S 3, s20

reres seatn e o Seme o S47en et Soiae e Sodms koo BG4S Se004 Fommé RS Soven Pt SHECS $0094 0 AANRS W S PO A S SSeks St Many s SUfeS 41004 Sreld SHTAT WA Sabmm HERO FOU4 Bhues et Mo tnare B Suree
H *

ALCOR FPASCAL VERSION: 1.2A 13000348 Q0:5Z:02 00/00/00

0000 {PROGRAM BUILDFILE(DATA725, OUTFUT) §

et AU 726

QOO0 VaR

QOO0 DATA725: TEXT;

OO0O |

QOO0 BEGIN

OO0 ! d REWRITE(DATA72S)

00474 WRITE(DATA72S, "36,100,21,58,33,100,28,747) 3
O0&6CH

OO6LCH END.
ND ERRORS DETECTED

SLCOR FPASCAL VERSTON: 1.326 15000548 00:54257 QO /QO /00 bt 1
QOO0 ! FROGRAM LOADL (QUTFUT,DATA725) 5 |
O000 ! VAR

QOO0 DATA72S5: TEXT;
QOO0 | HEADS, FEET: INTEGER; E‘ k B 1

QOO0

000G BEGIN h
0O0O0 | RESET (DATA725) 3 pc 4L

QOO47 3 WHILE NOT EOF (DATA723) DO

OO4F] BEGIN

OO4F 3 READ (DATA723,HEADS,FEET) 4
00611 WRITELN(HEADS, FEET) §
DO7D A END3

OO7F | END.
MO ERRORS DETECTED

Y 100
21 =4
) 100

28 74

Grem ot ve 3t er e s oree mepee e .

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf

