gl b >
o ?%‘-é}kﬁ%
i,

-
o
Uik
W
i

Network Pascal "

Student
Manual Radio fhaek

TRS-80

Computer
Education
Series

Cat. No. 26-2740

THIS WARRANTY SUPERSEDES ALL PRIOR WARRANTIES

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
1. CUSTOMER OBLIGATIONS
A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “Equipment”),
and any copies of Radio Shack software included with the Equipment or licensed separately (the “Software”) meets the
specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER.
B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase
of the Equipment, RADIO SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which
the Software is stored is free from manufacturing defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF
RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER
CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has
been subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the
defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio
Shack franchisee or Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original
CUSTOMER'’s sole and exclusive remedy in the event of a defect is limited to the correction of the defect by repair,
replacement, or refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no
obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
except as provided in this paragraph. Software is licensed on an “AS IS” basis, without warranty. The original CUSTOMER’S
exclusive remedy, in the event of a Software manufacturing defect, is its repair or replacement within thirty (30) calendar
days of the date of the Radio Shack sales document received upon license of the Software. The defective Software shall be
returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack
dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

111, LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO
CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED
OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY “EQUIPMENT” OR “SOFTWARE” SOLD, LEASED,
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE “EQUIPMENT” OR “SOFTWARE.” IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT” OR “SOFTWARE.”

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK’S LIABILITY
HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID
BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT” OR “SOFTWARE” INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or
Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two (2) years after the cause of action has accrued or more than four (4) years after the date of the Radio Shack
sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one
computer, subject to the following provisions:

A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to
CUSTOMER, but not title to the Software.

C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the
Software permits this function.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and
as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the Software.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the Software allows
a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a limited number of additional
copies for CUSTOMER'’S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions of this Software License shall also be applicable to third
parties receiving copies of the Software from CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a
sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys
such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions berein shall inure to the benefit of RADIO SHACK, the
author, owner and/or licensor of the Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS
The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may
have other rights which vary from state to stafe

NETWORK PASCAL

NOTICE TO PROGRAMMERS

By purchase of the Network Pascal package, you have obtained a license
to duplicate TRSDOS and TRS-80 Pascal only as necessary for your own
classroom use.

If you intend to sell or otherwise distribute Pascal applications
programs developed using this system, you must follow the procedure
below to avoid violation of this license and of copyright laws.

None of the Pascal programs provided with these diskettes may be
reproduced for resale (including the TRSDOS operating system, the
Pascal compiler, RUN program, and numerous auxiliary files).

TRS—-80 Pascal produces an intermediate code which may be executed by
the Pascal RUN utility. Alternately, the intermediate object code may
be processed by the Pascal LINKLOAD utility to produce TRSDOS command
files (/CMD extension files). These files contain TRS-80 Pascal
support and will execute as stand-alone programs. They may be copied
and sold freely with no royalty payments required. All programs that
you sell in this manner must document the fact that they contain
TRS-80 Pascal runtime support.

First Edition

TRSDOS Operating System:
© 1980, 1981 Tandy Corporation
All Rights Reserved.

Network Pascal Programs:
© 1984 Alcor Systems
All Rights Reserved.
Licensed to Tandy Corporation.

Model III Pascal Programs:
© 1983, 1984 Alcor Systems
All Rights Reserved.
Licensed to Tandy Corporation.

Network Pascal Manual:
© 1983, 1984 Alcor Systems
All Rights Reserved.
Licensed to Tandy Corporation.

Reproduction or use, without express written permission of Tandy
Corporation and Alcor Systems, of any portion of this manual is prohib-
ited. While reasonable efforts have been taken in the preparation of
this manual to assure its accuracy, Tandy Corporation and Alcor Sys-
tems assume no liability resulting from any errors or omissions in

this manual, or from the use of the information obtained herein.

Please refer to the Software License in the front of this manual for
limitations on use and reproduction of this software package.

INTRODUCTION

The Radio Shack ® TRS—80® Network Pascal package contains three

diskettes. The "Network Pascal' disk is designed for use on a Network 3
system with 48K Model III or Model 4 student stations and a 48K Host system
with two or more disk drives. 'Model III Pascal Disk One" and 'Model III
Pascal Disk Two'" are designed for use on a 48K Model III or Model 4
stand—-alone disk system.

The Network Pascal manual is divided into eight sections. The suggested
approach is to study sections A and B first, since section A presents the
fundamentals of using the programs in Network Pascal and section B presents
the fundamentals of programming with the Pascal language. Sections C
through E might be studied later, in the order in which they appear in this
manual. Section F is for stand-alone system users. The GLOSSARY and INDEX

should be referred to as needed. A summary of these sections follows:

SECTION A: NETWORK PASCAL BEGINNER'S GUIDE presents a hands-on
demonstration of using Network Pascal. Following the steps in the
BEGINNER'S GUIDE at a student station, you will enter, compile, and run a
short Pascal program.

SECTION B: TUTORIAL is a ten-chapter introduction to the Pascal
language, in a "textbook" format. Quizzes and activities allow you to test
your understanding of Pascal as you work through this TUTORIAL.

SECTION C: PASCAL EDITOR REFERENCE GUIDE has two parts. Part One
provides a complete overview of the Pascal editor, providing more details
than were given in the BEGINNER'S GUIDE. Part Two describes the Model III
Pascal editor program for stand-alone system users.

SECTION D: LANGUAGE REFERENCE GUIDE provides an in-depth look at the
Pascal language, providing more details than were given in the TUTORIAL.
Appendices to this section include a list of Pascal error codes (see page
D-88) and the standard ASCII character set (see page D-93).

SECTION E: NETWORK PASCAL SYSTEM REFERENCE GUIDE provides an overview of
the Network Pascal compiler (page E-2) and information on use of the
linking loader (page E-5). Appendices to this section list the Pascal
Procedure and Function Library, the String Function Library, and Random
Access File Routines.

SECTION F: MODEL III PASCAL SYSTEM REFERENCE GUIDE presents a hands-on
demonstration of using Model III Pascal on a stand-alone Model III or Model
4 disk system. Model III Pascal offers some Advanced Development Options,
which are discussed in this section. Material in this section is arranged
from least technical to most technical, and material toward the end of this
section is intended for advanced programmers.

The GLOSSARY defines programming terms that may be unfamiliar to you.

The INDEX cross-references Pascal concepts with the pages on which they
are discussed.

SECTION A:

TABLE OF CONTERTS

1. Diskettes in this Package . .

. . . .

2. Suggested Configurations for Network Pascal . .

NETWORK PASCAL BEGINNER'S GUIDE

. . .

3. Making a Backup Copy of Each Diskette . . + + + « « .

4. Using the Network Pascal Editor/Compiler Program . .

5. Demonstration:

ge

h.

6. Network Editor Command Summary
Appendix I:

Appendix II:

Ready the Network System
Load the Editor/Compiler
View the Main Menu . . .
Select an Option from the
Using Network
Entering a Program . . .
Compiling a Program . . .
Correcting Errors
Moving Your Program . . .
Exiting Network Pascal .
Using LINKLOAD to Run the

Moving a Program into the

- . . .

Menu .

Pascal

Program

Student

Deleting Files From Memory . . .

Backup Information

e © 3

o . .

.

Station'

Network Configuration Information

s

11

NETWORK PASCAL BEGIRNER'S GUIDE

1. DISKETTES IN THIS PACKAGE

The TRS-80 Network Pascal package contains three diskettes. The '"Network
Pascal' disk is for network use; '"Model III Pascal Disk One' and '"Model III
Pascal Disk Two'" are for optional use on a stand-alone Model III or 4 disk
system.

This BEGINNER'S GUIDE focuses on the use of Pascal on a network system.
The stand-alone diskettes are provided mainly to present the option of
using a stand-alone system for some operations, and their use is discussed
in the MODEL III PASCAL SYSTEM REFERENCE GUIDE (section F of this
documentation).

2. SUGGESTED CONFIGURATIONS FOR NETWORK PASCAL

Several network configurations are possible. Appendix I of this BEGINNER'S
GUIDE provides information to help the teacher decide on a configuration,
based on the hardware available and the number of students using Network
Pascal.

3. MAKING A BACKUP COPY OF EACH DISKETTE

Before the first time this Network Pascal package is used, a backup copy
should be made of each diskette provided with the package. These backup
copies should be used as working diskettes, and the original diskettes
provided with the package should be stored in a safe place. Appendix II of
this BEGINNER'S GUIDE provides complete instructions for making backup
copies.

4., USING THE NETWORK PASCAL EDITOR/COMPILER PROGRAM
4.a. Ready the Network System

1. Set up the network system for the configuration you have chosen,
by following the instructions in the Network or Hard Disk Network
manual (s) that came with the network hardware and software you are
using.

2. If you want to transfer Network Pascal files to the Hard Disk or
to the Network Operating System diskette (as mentioned in Appendix I)
and have not already done so, do it now.

3. Load the Host and Student Station operating software for the
system you are using (floppy controlled or Hard Disk controlled.)

4.b. Load the Editor/Compiler

At each Student Station, when the Network

3 prompt is showing,

type NETPCL and press ENTER. When the editor/compiler is loaded,
you'll see a list of options (the Main Menu).

4.c. View the Main Menu

Network Pascal's Main Menu displays the following options:

Network Pascal

Edit

~ U R vm
]

Pascal Compile
Move files
Delete files
exit to Network

e E to Edit lets you write a program and make any needed corrections.

e P for Pascal Compile compiles your program (translates it to

object code, a form that the computer

can use).

e M to Move files lets you copy a program from Student Station
memory to the Host disk, or from the Host disk to Student Station

memory .

@ D to Delete files lets you erase the source and/or object code

currently in memory.

@ N allows you to exit to the Network prompt.

4.d. Select an Option from the Menu

To select an option from this menu, you simply type that option's letter
(in upper or lower case). For example: to begin editing, you'd type E or
e. It is not necessary to press ENTER after typing an option selec-

tion. If you type a character other than
menu will be re-displayed.

When you select an option, Network Pascal
(a short portion of the program) from the
being loaded, the message Waiting will be
displayed for more than a few seconds, it
performing work for other students. When
the overlay, the message Loading appears.

the ones shown on the menu, the

may need to load a short overlay
network. While an overlay is
displayed. If the message is
means that the network is busy
the network begins to transfer
Overlays are loaded only when

they are needed; for example, when you change from editing to compiling.

A short demonstration designed to introduce these editor/compiler options

begins on the next page.
A -2

5. DEMONSTRATION: USING NETWORK PASCAL

Following along with this section will help you gain familiarity with Net-
work Pascal. 1In this demonstration, we'll write a short source program,
compile it into an object file that can be run, save the program onto a
disk at the host system, and then run the program.

NOTE: Since this demonstration requires a much greater than average
amount of disk access, it is probably not a good idea to have many
students completing these steps individually at their Student Stations.
Students might instead complete these steps as a group at one or two
Student Stations, or individuals might complete the demonstration at
low-traffic times.

5.a. Entering a Program

Let's begin by using the edit option. With the Main Menu displayed, type
E. Since there is not yet any text in memory, you'll see a relatively
blank screen:

EOF

LINES 4688 BYTES FREE

The message at the bottom of the screen displays the total number of lines
in the source file (in this case, zero) and the amount of memory (in
"bytes," or characters) that is available for program text at that Student
Station. The number of bytes free will partially depend on whether an
object file is already stored in memory.

In order to enter text, we first need to insert at least one blank line.
To insert a block of 16 blank lines, let's press the CLEAR key followed
by the E key. (Or you could insert lines one at a time by pressing
SHIFT @ or, on Model 4, the Fl key.)

By moving the cursor to any position and then typing, we can insert text
into the file. If a character is overstruck, the old character will be
replaced by the new one.

Now, let's enter a program into memory by typing the program lines shown
below, exactly as shown. At the end of each line, press ENTER to start a
new line. To correct a typing error, backspace using the left-arrow key.
For a list of all of the special keys that can be used to move the cursor
when editing a program, see page A - 8:

NOTE: The Alcor Pascal compiler does not distinguish between upper and
lower case. To switch between all upper case and upper and lower case,
hold down the SHIFT key and press @.

PROGRAM test;

BEGIN

WRITELR('* I am a Pascal wizard.');
END.

Once you have correctly entered the program, press the CLEAR key followed
by the letter C. A pair of angle brackets <> in the bottom left corner

of the screen indicate that you are now in command mode, where you can type
a command for the computer to follow immediately (commands typed in command
mode are not part of the program you are writing). Now type the command
exit (or EXIT) and press ENTER. The Main Menu will be re-displayed.

5.b. Compiling the Program

Once the program has been entered into the Student Station's memory, the
next step is to compile it. The Pascal compiler translates the source
program into a form that the computer can understand. At the same time, it
checks for errors in the source program and reports any errors it finds to
the programmer.

To use the Pascal compiler, type P at the Main Menu. You'll see the
message Waiting, and then the message Loading, as the Student Station
waits for disk access and then loads a program overlay from the Host.

When the compiler's overlay is loaded, you'll see the message Generate
object (Y/N)?. Let's assume that we think our program is correct, and we
want to go ahead and have the computer generate object code (code that we
can run) for the program. Type Y. You'll see the message Print

listing on printer?. If you want a printed listing, press Y for '"yes."
(You should usually press N for "no.") The program will then be
compiled, and a listing of the program will be sent to the screen or
printer (whichever you specified). If you made any typing errors, you'll
see a caret symbol (*) pointing to the line that contains the error,
and an error code number will be given. At the end of the listing, the
total number of errors is listed, and the <Press any key to continue>
prompt is displayed.

If your total number of errors is @, you have successfully completed the
compiling process, and you can now press any key to return to the Main
Menu. Skip to Moving Your Program on page A - 5.

If any errors are listed, you'll need to correct the errors and then
compile the program again.
A -4

5.c. Correcting errors

Since our demonstration program is short, errors should be fairly easy to
find. Before exiting the compiler, look closely at the lines where errors
are shown. If you see one error right away, but don't see any later
errors, don't be surprised. One error near the beginning of a program can
cause the computer to perceive errors in later lines that would otherwise
be correct. (For example, spelling "BEGIN" as "PEGIN" causes a total

of 3 errors!)

To correct errors, you'll need to get back into the editor program. To
exit the compiler, press ENTER. At the Main Menu, then press E.
Retype any incorrect characters.

Exit the editor program, try compiling the program again, and repeat the
process as many times as necessary until the program is correct.

Hint: When looking for errors, don't overlook punctuation.
Punctuation is very important in Pascal programs, but is easy for
beginners to overlook!

5.d. Moving Your Program

Before you can run your Pascal program, you need to move it to a disk at
the Host system. Moving the object code will allow you to run the program.
Moving the source code will allow you to do future editing on the program.
For this demonstration, let's move both. (If you exit Network Pascal
without moving the source and/or object code to disk, whatever is not moved
will be erased from the computer's memory and lost.)

At the Main Menu, press M to move files. Let's move the source program
first. At the message Source or Object (S/0): type 8 for source. At
the message Read from or Write to disk: type W to write to disk.

At the message File name:, you'll need to enter a unique name (a name
that is different from the name anyone else in the class is using). Your
filename can contain three parts:

® An alphanumeric name of up to eight characters, beginning with a
letter. Example: MYFILE

© An extension of up to three alphanumeric characters, beginning
with a letter. Example: /PCL. (/PCL is a common extension for
Pascal source programs.)

e A drive number. Example: :1
Specifying no drive number means that your program will be stored

on Drive # (the bottom drive of a floppy system or the Hard Disk
in a Hard Disk system).

The complete filename might look like: MYFILE/PCL:1

Now, repeat the process, specifying O for object code, and using a
different filename extension (for example, MYFILE/OBJ:1) to distinguish
the object code from the source code.

5.e. Exiting Network Pascal

Once your program has been moved onto a disk at the Host system, you can
safely exit Network Pascal.

At the Main Menu, type N to exit. As a safety precaution, the computer
will ask you to confirm that you really want to exit. At the message Are
you sure? type Y for 'yes."

5.f. Using LINKLOAD to Run the Program

When the Network 3 prompt is showing, you can run the program using the
module LINKLOAD, included on the Network Pascal disk. At the Network 3
prompt, type LINKLOAD and press ENTER. You'll see a row of options.

L=Load, R=Run, N=Network, I=Init, S=Symbols, B=Build CMD
>>

First, let's load the program. At the prompt (">>"), type L and press
ENTER. The computer screen will prompt you for the name of the file
("FILE="). Type the name of the Pascal object program (for example,
MYFILE/OBJ:1) and press ENTER. When the program is loaded, you'll see
the name that was typed on the first line of the program (in this case,
TEST) and the number of bytes of memory left.

Now let's run the program. At the >> prompt, type R and press ENTER.
As each of the following prompts appears, press ENTER once more:

STACK SIZE:
INPUT =
OUTPUT =

(Pressing ENTER for OUTPUT simply sends the program's output —— the
message it prints —-- to the screen. STACK SIZE and INPUT aren't things
we have to worry about for our example program.)

The program then runs. You should see the following message appear on the
screen:

* T am a Pascal wizard.

When the LINKLOAD options reappear, you caun type N and press ENTER to
get back to the Network 3 prompt.

CONGRATULATIONS! You have now successfully entered, compiled, and run a
short Pascal program. Before we leave this demonstration, let's learn how
to move Pascal programs back into student station memory. Let's begin by
entering NETPCL at the Network 3 prompt to get back into the Network
Pascal editor/compiler.

5.g. Moving a Program into the Student Station's Memory

Remember that earlier in this demonstration you moved your program's source
and object code from student station memory onto a disk at the Host system.
It is also possible to move Pascal source and object code from the Host
disk to the Student Station memory. At the Main Menu select E, and

confirm that the editor's storage area is empty. Then return to the Main
Menu by pressing CLEAR, then C, then typing exit and pressing

ENTER.

Now let's move your program's source code from the Host disk. (You can
also move the object code, but only the source code can be viewed using the
editor.) At the Main Menu, select M. Next, select S for source code

and R to read from disk. When asked for the filename, enter the filename
that you used when you saved the source code.

Once the file is transferred, the Main Menu will reappear. Now select E,

and note that the source code that was read from the Host's disk is listed
in memory, ready to be edited.

Now let's return to the Main Menu and explore one last option, the D
option to Delete file.

5.h. Deleting Files from Memory

The D option to Delete file may be used to erase the current source file
and/or object file from memory, making room for another program's source
and object code.

At this point in the demonstration, you have only source code in memory.
(Since you have the source code saved on the Host's disk, you can delete it
from memory and still retain the option of moving it back into memory at
another time.)

Start by selecting D at the Main Menu. At the message Source or Object
(s/0): specify source or object (in this case, S for source). (Or, if
you selected D by accident, press <CLEAR> instead of specifying source
or object, to return to the Main Menu.)

Once source or object is specified, the file is erased and the Main Menu
reappears.,

You are now ready to begin the Pascal TUTORIAL. For more information about
the Network Pascal editor/compiler, or for information on program develop-
ment using Pascal for stand-alone systems, consult the EDITOR GUIDE (sec-
tion C of this manual). This BEGINNER'S GUIDE ends with a summary of some
special keys and commands available in the Network Pascal editor.

A~-7

6. NETWORK EDITOR COMMAND SUMMARY

The following keys may be used to move the cursor, insert text, and delete
text. See the Appendix to the EDITOR GUIDE for a complete list.

NOTE: When SHIFT and a key are specified below, press SHIFT while
you press the key. When CLEAR and a key are specified, press CLEAR
and then press the key.

Key Function

u move cursor up

¥ move cursor down

& move cursor left

-» move cursor right
ENTER move cursor to beginning of next line
CLEAR 4 scroll (move quickly) up
CLEAR scroll down
CLEAR 4~ send cursor to beginning of current line
CLEAR =% send cursor to end of current line
SHIFT —% delete character
SHIFT &~ delete line
SHIFT @ insert line
CLEAR E insert block of 16 lines
CLEAR ? see how much memory remains
CLEAR C get into the editor's '"command mode"

Two command mode commands that may be useful to you at this point are shown
below. The remaining commands are discussed in the EDITOR GUIDE.

Exit exit editor (return to Main Menu)

Quit exit editor and delete current source program

APPENDIX I: NETWORK CONFIGURATION INFORMATION

Several network configurations are possible. In making your choice, you
should consider storage space and student access time:

Host Configurations

If students will be saving their programs on a disk at the Host system, be
sure to choose a configuration that allows for maximum free disk space.

1. Floppy System

The typical floppy-controlled Network system has the TRS-80 Network
Operating System disk in Drive @. Diskettes containing programs to be
run are then placed in Drive 1l and in any attached external drives.
Network Pascal can be run in this manner -- with the Network Pascal
diskette (and any other formatted disks, used to store Pascal programs)
in Drive 1 and/or higher drives.

To get more storage space, you can copy all programs on the Network
Pascal disk onto your working copy of the Network Operating System, for
use in Drive #. A formatted data diskette can then be placed in Drive
1, to store student programs.

2. Hard Disk System

Programs on the Network Pascal diskette can be copied onto a Hard Disk
and used without alteration. This provides more storage space and
faster loading than is available with floppy-controlled networks. See
your Hard Disk Network Operating System manual for general instructions
on transferring files to the Hard Disk. (Be careful that the files you
transfer do not have identical filenames to files already on the Hard
Disk.)

Programs on the two Model III Pascal diskettes (for a stand alone sys-
tem) must be PATCHed before being transferred to a Hard Disk. (You
don't really need them on the Hard Disk, unless you plan to sometimes
use the Host as a stand-alone system with the Hard Disk.) Information
on performing this PATCH is in the MODEL III PASCAL SYSTEM REFERENCE
GUIDE (section F).

Student Station Configurations

Network Pascal was designed to minimize disk access time. Once the Network
Pascal editor/compiler program is loaded into a student station, the stu-
dent can edit a program and then compile it with minimal impact on the net-
work. The Pascal source code and object code for the student's program are
stored in memory at the student station. During editing or compiling, the
network is not used. In switching between editing and compiling, a small
amount of time is required for loading program overlays.

Several configurations are possible. Option 1 is the best configuration
when many students are using the Network 3 system.

1.

The NETPCL editor/compiler (provided on the Network Pascal disk) is
running in 3/4 of the stations, with LINKLOAD (also a program on the
Network Pascal disk) set up as the "Run" module in the remaining 1/4.
Students can edit, compile, and save their programs at the stations
running NETPCL. Then they can move to the LINKLOAD stations to run
programs, and avoid having to re-load LINKLOAD each time.

The editor/compiler is running in all of the stations, with several
stand-alone Model III or 4 stations available to allow students to use
the RUN program (provided on stand-alone system diskette) to run
programs. (This involves removing from the Network the disk on which
the student programs were saved, so that you can use that disk at the
stand-alone system, OR copying student programs from the disk in the
Network to a disk that will be used at the stand-alone system.)

Each student is assigned a station, where he or she loads the editor/
compiler or the LINKLOAD or RUN program as needed (RUN is also provided
on the Network Pascal diskette). This configuration may be appropriate
when only a few students are using the network. If many students are
using the network, disk access time required for this option may be
prohibitive.

Network Pascal can handle small and medium-sized programs of up to 100 to
150 lines. This size of program is typical for teaching situatioms, partic-
ularly in beginning classes. The stand-alone disks in this package can be
used at stand-alone Model III or 4 disk systems to allow for longer and
more complex programs.

A - 10

APPERDIX II: BACKUP INFORMATION

Before doing anything else, you should make a backup copy of the three
diskettes provided with this package. These backup copies should be used
as working diskettes, for everyday use. The original diskettes provided
with the package should be stored in a safe place to protect them from
damage.

To make backup copies, complete these steps at a two-drive stand-alone
Model III or 4 disk system (the network's Host can be used as a stand-alome
system for these steps).

MAKING A BACKUP COPY OF THE NETWORK PASCAL DISKETTE

1. Turn on the computer. (The on/off switch is located under the
right edge of the keyboard.)

2. When the red light on the disk drive goes off, insert any Model
III TRSDOS system diskette into Drive @ (the bottom drive next to
the video screen), with the square notch to the left and the label
facing up. Then close the disk drive door.

(A TRSDOS system diskette is any diskette that contains the TRSDOS
operating system; for example, a TRSDOS diskette was provided when

you purchased the Host computer.)

3. 1Insert a new, blank diskette into Drive 1 (the top drive next to
the video screen). Then close the disk drive door.

4. Press the orange Reset button.

5. When you see the message Enter Date MM/DD/YY, type the date,
using two digits each for the month, day, and year. (Example:
02/22/85 for February 22, 1985.) Then press ENTER.

6. When you see the message Enter Time HH:MM:S88, press ENTER
to skip the time.

7. When you see TRSDOS Ready, type BACKUP and press ENTER.

8. When you see the message SOURCE Drive Number?, change diskettes
as described below:

a. Remove the TRSDOS system diskette from Drive {.

b. Place an adhesive tab (provided with new diskettes) over the
square notch on the Network Pascal diskette. (If you do not
have any adhesive tabs, use a small piece of cellophane tape.)

c. Insert the Network Pascal diskette into Drive @, with the

covered square notch to the left and the label facing up.
Then close the disk drive door.

A-11

9. Now, for SOURCE Drive Number?, type #§ and press ENTER.
10, For DESTINATION Drive Number?, type 1 and press ENTER.

11. For SOURCE Disk Master Password?, type PASSWORD and press
ENTER.

12. The computer will proceed to make a backup copy of the Network
Pascal diskette. When you see the message:

Backup Complete
Insert SYSTEM Diskette <ENTER>

remove the Network Pascal diskette from Drive @, and replace it

in its protective envelope. Insert the TRSDOS system diskette

into Drive @, close the disk drive door, and press ENTER. The
diskette in Drive 1 1is now an exact copy of the Network Pascal disk,

1f, after the drives stop spinning, the message **Backup Complete®** does
not appear, or if you see an error message of any kind, then remove the
Network Pascal disk from Drive # and replace it with the TRSDOS system
diskette. Press the orange Reset button and go back to step 7. If an
error still occurs, then get a new blank diskette or bulk erase the
diskette you have been using as the destination disk. With the TRSDOS
system diskette in Drive # and the new diskette in Drive 1, repeat the
instructions from step 7.

MAKING A BACKUP COPY OF THE TWO MODEL III PASCAL DISKETTES

Follow the steps below for each diskette that you want to make a backup
copy of.

1. Turn on the computer. (The on/off switch is located under the
right edge of the keyboard.)

2. When the red light on the disk drive goes off, insert the Model III
Pascal diskette into Drive @ (the bottom drive next to the video
screen), with the square notch to the left and the label facing up.
Then close the disk drive door.

3. Insert a new, blank diskette into Drive 1 (the top drive next to
the video screen). Then close the disk drive door.

4. Press the orange Reset button.
5. When you see the message Enter Date MM/DD/YY, type the date,
using two digits each for the month, day, and year. (Example:

#2/22/85 for February 22, 1985.) Then press ENTER.

6. When you see the message Enter Time HH:MM:SS, press ENTER
to skip the time.

7. When you see TRSDOS Ready, type BACKUP and press ENTER.

A - 12

8. For SOURCE Drive Number?, type # and press ENTER.
9. TFor DESTINATION Drive Number?, type 1 and press ENTER.

10. For SOURCE Disk Master Password?, type PASSWORD and press
ENTER.

11. The computer will proceed to make a backup copy of the diskette in
Drive @, onto the diskette in Drive 1. When the backup process is
complete, you will see the message **Backup Complete** and
TRSDOS Ready will reappear.

If, after the drives stop spinning, the message **Backup Complete** does
not appear, or if you see an error message of any kind, press the orange
Reset button and repeat the instructions from step 7. If an error still
occurs, then get a new blank diskette or bulk erase the diskette you have
been using as destination disk. Then insert the blank diskette in Drive 1,
press the Reset button, and go to step 7.

A-13

Introduction

Chapter
Chapter
Chapter

Chapter

Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

One:

Two:

Three:

Four:

Five:

Six:

Seven:

Eight:

Nine:

Ten:

SECTION B: TUTORIAL

TABLE OF CONTENTS

Introduction to Pascal Statements

Variables and Constants to Handle

Data .

Input and Qutput -- An Introduction . . .

Assigning Values to Variables

and Using Arithmetic Expressions .

Controlling the Program's Path of
Decision Testing :‘. .
Procedures and Functions
Advanced Data Types . « « « .+ . .
Dynamic Data Types . . « « . .+ .

SetsS ¢ & ¢ o 4 e 6 o e 6 s s s e

Execution

15

21

27

33

39

47

57

65

INTRODUCTION

Pascal was created by Professor Nicklaus Wirth at the Swiss Technical
Institute in Zurich, Switzerland. It was first announced in 1965, when the
languages most used by the computer industry were Fortran and COBOL, and
the language most used for introducing students (in universities and
elsewhere) to computer programming was Algol. Wirth thought languages like
Fortran and COBOL were too loosely structured to promote good programming
habits to students. Algol, although more structured, had significant
drawbacks. And so, Wirth decided to depart from standard teaching practice
and design a new language patterned after Algol. Pascal became his
teaching language.

Since the first implementation of Pascal on the CDC-6600 computer system in
1971, Pascal has become one of the most popular programming languages in
existence.

Pascal was created to make the development of computer programs a
structured and logical process. Pascal contains the best features of most
high-level programming languages, and for this reason Pascal is widely used
in structured programming classes at the college level. Structured
programming classes emphasize the use of guidelines and rules for
developing computer programs. Some of the goals of structured programming
are to encourage modularity and functionality, promote good documentation,
and generate programs that have smooth flows of logic from beginning to
end.

Features of Pascal include the following:

e The powerful ability to build new data types and structures as
desired.

@ The control statements WHILE, REPEAT, FOR, IF, CASE, GOTO.
e The logical operators AND, OR, NOT.

e The relational operators: equal to, less than, greater than, less than
or equal to, greater than or equal to, not equal to.

e Recursive procedures and functions with parameter lists.

e The ability to insert blanks and comments into the source program
easily. The ability to use long variable names, with no space or time
penalty.

® User—controlled dynamic memory management.

e Efficient memory management of variables, functions and procedures.

e Arrays of one or more dimension.

e Record data structures.

e Sets and set operations.

® Subrange and enumerated data types.

® Named constants.

® Read and write statements plus formatted write statements.

@ Built-in functions and procedures.

Network Pascal and Model III Pascal (the stand-alone system version) are
full implementations of the standard Pascal language. Thus, program
portability is greatly enhanced. Programs generated by TRS-80 Pascal
execute much faster than programs generated by most BASIC systems, making
TRS-80 Pascal a logical choice as a general high-level programming
language.

CHAPTER ONE

INTRODUCTION TO PASCAL STATEMENTS

PROGRAM STRUCTURE

A Pascal program is largely composed of statements. A statement is a
Pascal language word that instructs the computer to perform a specific
action. A statement may have arguments that provide information needed
to perform the action. For example: a statement that tells the computer
to write a message also should tell the computer what message to write
and where to write it.

Chapter One introduces some basic Pascal statements. Later chapters will
introduce more advanced statements, and will introduce the other kinds of
information needed in a Pascal program.

Three basic statements form the simplest level in a Pascal program:
PROGRAM, BEGIN, and END. These words can be thought of as the "outer
shell" that must be around all programs. Listing 1.1 is a legal Pascal
program. However, it does nothing because it contains no additional state-
ments, It simply begins, and then ends:

Listing 1.1

PROGRAM test;
BEGIN
END.

PROGRAM marks the beginning of a Pascal program. As you see in Listing
1.1, this statement also provides a place for the programmer to give the
program a name. A semicolon (;) must follow this statement.

BEGIN marks the beginning of the active part of the program. Statements
to make the computer process information are placed after the BEGIN state-

ment. {(Chapter Two will introduce you to information that may lie before
BEGIN.)

END followed by a period (.) marks the end of the entire program. By
adding a WRITELN statement (think "write-line'") to the listing of 1.1, we
can make the program do something:

Listing 1.2

PROGRAM test;
BEGIN
WRITELN(OUTPUT, '* Pascal is a very structured language.');
WRITELN(OUTPUT, '* It promotes good programming habits.');
END.

If someone ran the program of Listing 1.2, the program would write the fol-
lowing message:

* Pascal is a very structured language.
* It promotes good programming habits.

The argument OUTPUT in Listing 1.2 designates where the message is

written. OUTPUT is a buffer, or holding area within the program.

When the program is run, the user can indicate whether QUTPUT represents

a specific disk file, a printer, or the video screen. The message will
then be routed to the correct destination. This kind of buffer is known in
Pascal as a "file," but this "logical file" should not be confused with a
physical file for permanent storage on diskette.

PROGRAM STYLE

Let's take a closer look at Listing 1.2, so that we can begin to get a feel
for Pascal programming style.

Notice that BEGIN and END are the only two lines in the program that do

not end with a semicolon (;). Semicolons are required after most Pascal
programming statements. For now, a good rule of thumb is to always include
a semicolon after a Pascal statement.

NOTE: A Pascal statement that immediately precedes an END statement

is not required to end with a semicolon, but the programmer can place a
semicolon there if he or she desires. Program listings in this manual
illustrate both options. This rule is true whether the particular

END statement marks the end of the entire program, or just the end

of a sub-program (discussed later).

Notice how the program of Listing 1.2 is formatted. Lines in a Pascal
program may be indented at the programmer's discretion for easy reading.
Spaces may also be inserted for easy reading. One restriction is that a
message to be printed by a single WRITELN statement has to appear all on
one line. (In Listing 1.2, two WRITELN statements had to be used for
this very reason.) The message to be printed is enclosed in single quotes.
These messages are called "text strings," and may include letters,
numbers, or most other characters,

The program name in Listing 1.2 is "test', but any name could have been
used, as long as the first character was a letter. Upper or lower case may
be used. Spaces cannot appear in the program name.

THE WRITE AND WRITELN STATEMENTS

Let's look at another example. Listing 1.3 introduces the WRITE state-
ment., WRITE is similar to WRITELN with one important difference.

WRITELN prints a message and then executes a carriage return, causing the
next message to be printed on a new line. WRITE prints consecutive mess-—
ages on the same line, until a line is filled, and only then is a new line
started.

B-4

Listing 1.3

PROGRAM test;
BEGIN
(* the purpose of this program is to give an example %)
(* of how to use the WRITE and WRITELN statements *)
WRITE(OUTPUT,' * Now is the time');
WRITE(OUTPUT,' for all good programmers');
WRITE(OUTPUT,' to learn');
WRITELN(OUTPUT,' Pascal.');
(* The next message starts on a new line %)
WRITELN(OUTPUT,' * You will become a Pascal magician.');
END.

I1f someone ran the program of Listing 1.3, the following message would be
written to "OUTPUT":

* Now is the time for all good programmers to learn Pascal.
* You will become a Pascal magician.

PROGRAMMER COMMENTS

Listing 1.3 also demonstrates programmer comments. Notice the third and
fourth lines of the program, and the third line from the bottom. These
lines contain comments enclosed in parentheses and asterisks. Unlike the
messages in the WRITE statements, these comments are not written to a
file.

Comments are distinguished from program statements by being enclosed in a
pair of parentheses and a pair of asterisks:

(* This is an example of a comment. Testing, 1 2 3.%)

Braces may optionally replace parentheses and asterisks. When using Pascal
on a Model III or 4, you may create the left brace ({) by pressing

CLEAR and then 4. CLEAR and then 5 will create the right brace

M.

Comments, inserted into Pascal programs in the format shown, allow the pro-
grammer to document what his or her program does. Later, when the program-
mer or another person is reading through the program, the comments aid the
reader. Use of comments is particularly important in long, complex
programs.

Note that the asterisks in the WRITE and WRITELN statements are printed
along with the message. Any characters typed within the single quotes in a
message are considered to be part of the message.

Now that you have learned some of the basics of Pascal program structure,
let's take a short quiz and then complete a hands-on activity.

CHAPTER ONE QUIZ

The first statement of a Pascal program is the
statement.

The V ,,,,,,, ' statement will cause the next message to be
written on a new line.

The .7 statement will allow the next message that is
written to begin on the same line, if there is room on the line.

Most Pascal statements are followed by a(n) , §¥:::?;ML};§ .

The . < statement is the last statement of a program.

CHAPTER ONE ACTIVITY

Complete the following activities at a Network 3 Student Station. If you
need more help with entering the program than is given below, take a look
at the Summary/of Editor Commands in the Appendix to the EDITOR GUIDE (page
C-15) or on page A-8 of the BEGINNER'S GUIDE.

1.

When the Network 3 prompt is showing, type NETPCL and press ENTER
to get into Network Pascal.

A menu of options will appear. When the menu is showing, press E to
use the Network Pascal editor.

Enter the first line of the program of Listing 1.3 by completing these
steps:

a. Insert a blank line by holding down SHIFT and pressing @ once.

b. Type the line (in this case PROGRAM test;), then press ENTER.
(To switch between lowercase and uppercase mode, press SHIFT @,
or get into lowercase mode and then hold down SHIFT each time you
want to type a capital letter.)

Enter all the remaining lines of Listing 1.3. To indent, press the
space bar a few times at the beginning of the line. To correct a
typing error, backspace using the left-arrow key.

For now, make sure that you type each line exactly as shown.
When the entire program is entered, press CLEAR and then C. When
the angle brackets appear (<>), type EXIT and press ENTER. This

will get you back to the menu.

At the menu, type P to load the Pascal compiler. (Loading the
compiler may take a few moments.)

10.

11.

12.

13.

14.

When the compiler is loaded, you'll see the question ''Generate
object? (Y/N)". Type Y.

When you see the message "Print listing on printer?", type N,

The program will be compiled, and the compiler will tell you how
many errors were detected,

a. If you typed the program exactly as it appears in this book, no
errors were detected, Press ENTER to exit the compiler and then
go to step 10.

b. If the compiler detected any errors, press ENTER and then
type E to use the editor again. Proofread the program
carefully for errors. The most common errors will be in
punctuation, so make sure that your semicolons, parentheses,
commas, quote marks, and asterisks are in place. Correct any
errors, and then repeat these steps from step 5 above. (One
typing mistake can cause many errors, so if you only see one
error, try compiling again after you have corrected that error.)

At the menu, type M to move the program onto a diskette at the host
system. At the message "Source or Object (8/0):" type O to copy
the object (executable) program onto diskette.

At the message "Read from or Write to disk:' type W.

At the message 'File name:" type in a unique name -- a name that
is different from any name that anyone else in the class is using.
Then type the extension /OBJ. Finally, press ENTER. For

example:

GEORGE1/0BJ

The menu will reappear when your file has been properly copied.
NOW you can exit to Network 3 by typing N when the menu is
displayed.

At the Network 3 prompt, type LINKLOAD and press ENTER.

When the LINKLOAD options appear, type L and press ENTER. When
prompted for the file, enter the name that you entered at step 10.

When the angle brackets reappear, enter R to run the program. When'
each of the following three prompts appear, press ENTER:

STACK SIZE:
INPUT =
OUTPUT =

If you have followed the above steps correctly, you'll see this message
printed on the screen:

* Now is the time for all good programmers to learn Pascal.
* You will become a Pascal magician.

When you are ready and the angle brackets are showing, type N and press
ENTER to return to the Network 3 prompt.

CHAPTER TWO
USING VARIABLES AND CONSTANTS TO HANDLE DATA
Chapter One introduced some of the statements found in a Pascal program.

Chapter Two continues by introducing variables and constants, which are
used to hold information that the programmer wishes to manipulate.

VARIABLES

Variables in Pascal serve the same purpose as they do in most other
programming languages. That is, they can be used within a program to
temporarily store information (numbers, letters, and special characters)
that the programmer wishes to manipulate. A single Pascal variable can
hold different values at different points in a program. However, a single
variable can only hold one kind, or type, of information (an alphanumeric
character, an integer, etc.).

Think of a variable as a box that can hold a certain value. At any point
in the program, the programmer can put a value into the box, or can take a
value out of the box to put it elsewhere. The program can be made to check
the value currently in the box, and can perform certain actions based on
that value. A single variable can only hold one value at a time.

VARIABLE NAMES

Each variable must be given a name by the programmer. The name identifies
the particular variable. Each variable name must start with a letter. It
may be composed of as many letters and digits as desired, in any
combination. Good programming practice dictates that the name reflect the
kind of value to be held. For example: employeenumber, price,

testgrade. This is not required by Pascal, but does make the program
easier to read and understand.

"Reserved words'" must not be used as variable names. A reserved word in
Pascal is a keyword that has a set meaning, no matter which Pascal program
it is used in. For example, BEGIN and END, introduced in Chapter One,

are reserved words. A complete list of these words can be found on page
D-5.

NOTE: Alcor Pascal requires that the first eight characters of a
variable name be a unique name within the program.

VARIABLE TYPES

In order to use a variable, you must first declare it. That is, you must
formally associate the variable with the type of information that it will
hold. A variable named "taznumber" that might take on the value of 1 to
100 at any time in the program is an example of the variable type
INTEGER. (The value of "taxnumber' will always be expressed as an
integer.)

The simple variable types that are predefined by Pascal are outlined below.
They are: INTEGER, REAL, CHAR, TEXT, and BOOLEAN. (Other types
are available, but they will be discussed in later chapters.)

DECLARING VARIABLES

Declaring a variable is done in the "VAR" section of the program. The

VAR section consists of the word VAR followed by any number of variable
declarations. This section is placed between the PROGRAM statement and
the first BEGIN statement of the program.* For example:

Listing 2.1
PROGRAM test;
VAR
taxnumber: INTEGER;

BEGIN
END.

The VAR section of Listing 2.1 declares the variable taxnumber to be of
the type INTEGER. A variable declaration has the form:
variablename:TYPE;

A colon (:) separates the variable name from the variable type, and a
semicolon (;) must follow each variable declaration.

The declared section may be indented for easy reading, if the programmer
desires.

Several variables of the same type may be declared on a single line. For
example:

tazxnumber,employeenumber ,deptnumber, jobnumber: INTEGER;

*# Programs with more than one BEGIN statement are covered in later
chapters.

B - 10

INTEGER VARIABLES

Variables that will be used to store whole numbers are of the type
INTEGER. The maximum and minimum size of the whole numbers that can be
stored depends on the computer, On most microcomputers, including the
TRS-80 Model III, the range is -32768 to +32767.

REAL VARIABLES

Variables that will be used to store numbers with fractional or decimal
values are of the type REAL. (The number 2.98 is an example of a real
number.) Real numbers must start with a digit and may contain a decimal
point. They do nmot have to contain a decimal point. If a decimal point is
present, it must be followed by a digit. Example: The numbers .009 and
10. are illegal by these rules, while 0.009 and 10 or 10.00 (or 10.0,
10.000, etc.) are legal ways to express the same numbers.

A variable of the type REAL might represent a dollar selling price or a
checkbook entry. It might be declared as follows:

Listing 2.2

PROGRAM test;

VAR
taxnumber: INTEGER;
cost:REAL;

BEGIN

ERND.

CHAR VARIABLES

Variables that will be used to store single characters are of the type
CHAR. The character assigned to the variable may be a letter, digit, or
special symbol such as Z , enclosed in single quotatation marks. A
CHAR variable represents only one character at a time.

TEXT VARIABLES

A variable that will be used to store or retrieve information using files
is of type TEXT. In Chapter One, you learned how a string of characters
in single quotation marks could be written to a file called OUTPUT. This
writing process can be compared to the way that a value is assigned to a
variable. 1In fact, variables of type TEXT are always used in output and
input. That is, they serve as variables for routing messages between the
program and disk files, the screen, or a printer.

A variable of type TEXT can hold a string of one of more characters.

B - 11

BOOLEAN VARIABLES

A variable declared to be of the type BOOLEAN may store one of two
values: TRUE or FALSE. Boolean variables are primarily used in
flow-control statements -- statements that can make the program follow
different paths of execution depending on different conditions. BOOLEAN
variables are typically used with the control statements WHILE, IF and
REPEAT, covered in later chapters.

CONSTANTS

While a variable can hold different values at different points in the
program, a constant has a fixed value. In Pascal, constants are declared
in the CONST section of the program, which is placed between the program
name and the first BEGIN statement of the program. Constants are
declared using the format:

name = constant;

(Spacing between the name, equal sign, and constant is flexible.) For
example:

Listing 2.3

PROGRAM test;
CONST
pi = 3.141597;
maxnum = 2000;
tstring= ' I am a Pascal wizard.';
VAR
taxnumber : INTEGER;
BEGIN
END.

As shown in Listing 2.3, constants may be real numbers, integers, or text
strings. (A text-string constant is any string of characters enclosed by
single quotes.)

B~ 12

CHAPTER TWO QUIZ

, serve as storage areas for information that the
programmer may wish to manipulate._

%‘fﬁw »
2. Variables are declared in the giv section of the

program.

4. The syntax of a variable declaration is
VAR .
variablename: 7/

5. Variables declared as the type k L may take on the
value of a letter, a digit, or a special symbol.

6. A variable declared to be of the type may be used
to route information between the program and various input and
output devices.

7. A value that is fixed in the program
declared as a {7}/ =t/ in the
program.

not change) may be
' section of the

CHAPTER TWO ACTIVITY

For each of the values below, name a variable type discussed in Chapter Two
that could include that value. Challenge question: Could any of these
variables be matched with more than one type?

VALUE VARIABLE TYPE
1. 1500.25 J |
2. 1500
3. Z
4. I am a Pascal wizard.

B~-13

CHAPTER THREE

INPUT AND OUTPUT -- AN INTRODUCTION

Can you guess what the program of Listing 3.1 would do if you ranm it?
Listing 3.1

PROGRAM alpha;

CONST

pi = 3,141597;

maxtax = 2000;

tstring = ' I am a Pascal Wizard';
VAR

out : TEXT;
max :REAL;
number: INTEGER;
BEGIN
REWRITE (out);
WRITELN(OUTPUT, 'Program starting execution.');
WRITELN(' The value pi = ',pi);
WRITELN(' The value maxtax = ',maxtax);
WRITELN(tstring);
WRITELN(out, 'This program tests file I/0');
WRITELN(OUTPUT, 'Program finished.');
END.

The program would write messages to the files OUTPUT and out. Because
OUTPUT and out both receive information, they are known as 'output"
files -— the program '"outputs' information to them.

But in Listing 3.1, there are some extra steps that you didn't see when
WRITE and WRITELN were used in Chapter One. These extra steps are
required because this time two different output files are used. The file
"out'" had to be specially created and initialized before it could be
used.

WRITING TO FILES OTHER THAN "OUTPUT®

In Pascal, the file OUTPUT enjoys a special status. To write to a file
of any other name, you must complete certain steps that are not required
for OUTPUT. Let's take a look at these steps.

1. Declare the file as a TEXT variable in the VAR section of the
program.

Notice that out is declared in the VAR section of Listing 3.l as a
TEXT variable. Remember from Chapter Two that the TEXT variable can
act as an "extra'" file for routing information in and out of the
program. Whenever more than one file is needed in a Pascal program, a
file not named OUTPUT must be created as a TEXT variable.

B - 15

2‘

Use the REWRITE statement to initialize the file.

REWRITE must be used (only once in the program) for each file other
than OUTPUT that you are writing to. The REWRITE statement opens

the file that is named in its argument, and makes the file ready to
receive information. Then WRITELN or WRITE can be used on the file.
Any information previously in the file is lost when REWRITE is used.

The form of the REWRITE statement is:

REWRITE(variablename);

Provide two arguments for the WRITELN or WRITE statement.

The WRITELN or WRITE statement normally has two arguments. The
first argument names what is written to (for example: OUTPUT). The
second argument names what is written (for example, ' This message.').

Notice that the second, third, and fourth WRITELN statements of
Listing 3.1 have only one argument -~ the message. If you are writing
to the file named OUTPUT, Pascal does not require the file to be
named. If the file is not named, Pascal assumes it is OUTPUT.

Writing to any file other than OUTPUT requires that the name be
mentioned.

INPUT: READING INFORMATION FROM A FILE

Files that the program reads information from are called

"input" files.

Information is "input'" into the program using these files. Information is
read from the input device (keyboard or disk file) that is pointed to by
the input file.

The input file INPUT is similar to the output file OUTPUT. INPUT is
the assumed filename for an input file. Extra steps are required when you
read from any file not named INPUT. These steps are:

1. Declare the file as a TEXT variable in the VAR section of the

2.

program. For example:
VAR
in:TEXT;
Use the RESET statement to initialize the file.
RESET is to input files as REWRITE is to output files. RESET
prepares a file to have its information read into the program. INPUT
is the only file that does not require use of RESET before it can be

read. The format of the RESET statement is:

RESET(variablename);

B - 16

3. Provide two arguments for the READ and READLN statements. These
statements are described below.

READ AND READLN: STATEMENTS USED FOR INPUT

The READ and READLN statements are the input equivalents of the WRITE
and WRITELN statements. READ and READLN will read a value into the
program.,

Successive READs from the same file will cause a series of inputs from

the same line of that file. These "lines'" might be rows of characters in a
disk file, or they might be lines that have been typed in at the keyboard
and are displayed on the video screen.

When a READ is performed on an integer or real quantity in a text file,
the READ statement scans the current line of the file until a non-blank
character is found. Then it reads non-blank characters from that line
until the conditions of the READ are satisfied. The next READ will

begin scanning on the same line, right after the last character read, and
so on, until the end of the line is reached. If the end of the line is
reached before any integer is found, the scan will continue at the
beginning of the next line.

The READLN statement performs the same function as READ, except that

the cursor (acting as a place-marker) will always be moved to the beginning
of the next line after all inputs to the statement are satisfied, even if
the end of the line has not been reached.

When INPUT is the file being read, the READLN statement is not required

to have arguments. The READLN statement without arguments waits for the
computer operator to press ENTER, and then positions the cursor at the
beginning of the next line without reading any values. (It can be used to
skip a line or portion of a line.)

The arguments allowed for the READ statement are files and variables.
(Text or numbers are read from the file into the variable.) If a READ
statement does not have a file named as argument, the file is assumed to be

INPUT. The following are some examples of 1egaliREAD and READLN
statements:

READ(INPUT, taxnumber);
READ(taxnumber) ;
READ(in, taxnumber);
READLN;

READLN(INPUT, taxnumber);
READLN(taxnumber);
READLN(in, taxnumber);

B~ 17

INPUT -- AN EXAMPLE

An example may help illustrate the difference between READ and READLN,

and may help familiarize you with input concepts. Suppose that you typed
these lines in at the keyboard and they are displayed on the video display
in this format:

ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ

Now, suppose that your program is going to read part of this keyboard input

into a variable of type CHAR. Assume that a variable named letter has

been declared as type CHAR. The READ statement might look like this:
READ(INPUT, letter);

The first READ(INPUT,letter); statement of course reads the letter A.

The cursor (as place marker) is then positioned at B, and the next READ

or READLN statement reads beginning at B.

If we started with a READLN statement:
READLN(INPUT, letter);

the letter A would be read first. But, as soon as the A was read,
READLN would make the cursor jump to the beginning of the next line. The
next READ or READLN statement would read beginning with H.

B~ 18

CHAPTER THREE QUIZ

1. The predefined file variables and are not
required to be declared in the VAR section as the type TEXT,

2. The first argument in the s

s 3
and statements directs I/0 to or from a file or device.

3. The purpose of the statement is to open a file and ready
it for writing.

4. The purpose of the statement is to open a file and ready
it for reading.

5. After execution of a(n) , the previous contents of
an output file are lost.

6. A(n) or statement will cause a line feed
immediately after input or output occurs.

CHAPTER THREE ACTIVITY

Try running the program on the following page. It will give you a chance
to practice program I/0. If you need to, review the hands-on guidelines in
the Chapter Ome Activity for editing, compiling, and running the program on
the Network 3. When you run the program, press ENTER for INPUT and

OUTPUT to direct messages to the video screen and to read messages from

the keyboard.

NOTES:

e Open brackets ([) are produced by CLEAR 1. Close brackets are
produced using CLEAR 2.

@ Don't worry about the PACKED ARRAY declared in the VAR section.
Packed arrays are introduced in Chapter Eight.

e 'tax:8:2" in the third WRITELN statement from the end of the program
illustrates an option available when you are writing real numbers to
an output file. The first number specifies the total width of the
field, while the second number specifies the number of digits after the
decimal point.

B - 19

Listing 3.2

PROGRAM testIQ;

(* Purpose- the purpose of this program is to *)
(* demonstrate I/0 to a text file using integer and %)
(* real input variables. *)
VAR

taxnumbr, emnumber : INTEGER;

tax :REAL;

1D :PACKED ARRAY[1..72]OF CHAR;
BEGIN

WRITELN(OUTPUT, '* Enter your federal tax number: ');
READLN(INPUT, taxnumbr);
WRITELN(OUTPUT, '* Enter your dollar tax total: ');
READLN(INPUT, tax);
WRITELN

(OUTPUT,' * Enter your employee number, a space,');
WRITELN(OUTPUT,' followed by your business ID number:');
READ(INPUT, emnumber) ;
READLN(INPUT, ID);
WRITELN(OUTPUT,' Tax number
WRITELN(OUTPUT,' Dollar tax total
WRITELN(OUTPUT,' Employee number

', taxnumbr);
' tax:8:2);
' ,emnumber);

WRITELN(OUTPUT,®' Business I.D. ',ID);
END.
The following I/0 will appear on the screen:
* Enter your federal tax number:
32000 <{user input>
* Enter your tax total:
2345.98 {user input>

* Enter your employee number,a space,
followed by your business ID number:
23455 4669 <{user input>

Tax number = 32000
Dollar tax total = 2345.98
Employee number = 23455
Business I.D. = 4669

B - 20

CHAPTER FOUR

ASSIGNING VALUES TO VARIABLES AND USING ARITHMETIC EXPRESSIONS

In previous chapters you learned how to declare variables, and you learned
something about using varibles in input and output.

Now you will learn how to alter a variable's value by directly assigning a
specific value to it.

USING ASSIGNMENT STATEMENTS

An assignment statement sets a variable's value equal to an expression.
The expression may be the name of another variable, or it may be a series
of arithmetic or boolean operations. The form used is as follows:

variablenamel :=variablename2;
or
variablename:=expression;

if desired, spaces may be inserted between units of the statement for
easier reading. For example: variablename := expression;

Statements of this form cause the variable on the left-hand side to take on
the value of the variable or expression on the right-hand side. (The value
on the right-hand side is unchanged.)

Listing 4.1 demonstrates the use of statements that assign values to a vari-
able.

First, let's look at what the program of Listing 4.1 is doing. Let's
assume that the input and output device used by this program is the video
display. When the message "Enter annual interest rate:'" is printed on

the video display, the user enters an interest rate. This interest rate is
read into the program by the line READLN(intrate) and is stored in the
variable intrate, defined in the VAR section. Similarly, the variable
principle is made to store the real number entered as principle.

Listing 4.1

Program MAGIC;
VAR
intrate,principle,anint,calc:REAL;
BEGIN
WRITELN(' %#k%k%% Interest rate problem ¥¥¥k¥k%').
WRITELN(' Enter annual interest rate:');
READLN(intrate);
WRITELN(' Enter the principle amount of loan:');
READLN(principle);
calc:=intrate * principle;
anint:=calc;
WRITELN(' Your annual interest payment = ',anint);
ERD.

B - 21

Finally, the assignment statement is used:
calc:=intrate * principle;

This statement employs the arithmetic operation intrate * principle,
which multiplies the value of the variable intrate by the value of the
variable principle. ('"*" is the computer's symbol for multiplication.)
The result of multiplication is assigned to the variable calc.

A second example of assignment in Listing 4.1 is the statement
anint:=calc. This assignment simply passes the value of one variable to
another variable. 1In this example, the value is passed only to be printed
(from anint). The programmer might need to pass a value in this manner,
for example, if a later part of the program used the value of calc for

one purpose and the value of anint for another purpose.

Arithmetic Operators

In Listing 4.1 you saw the multiplication operator "*" used. Pascal
includes seven arithmetic operators, shown in the table below. They are
evaluated in order of the precedence shown below, with "1'" first and "3"
last. Operators of equal precedence are evaluated from left to right.
Parentheses may also alter the order of evaluation.

Table 4.1
Symbol Description Precedence Example
- negates one number 1 ~25
* multiplies numbers 2 5 %5 =25
/ divides real numbers 2 25/ 2 = 12.5
div divides integers 2 25 DIV 2 = 12
mod divides integers and
keeps the remainder as
the result 2 25 MOD 2 =1
+ adds 3 5+5 =10
- subtracts 3 5-5=0

Parentheses may alter the natural order of precedence. For example:
5+25 /5=10

(5+25)/5=6

B - 22

Listing 4.2 illustrates the use of the arithmetic operators and
parentheses,

Listing 4.2

PROGRAM math;

CONST
fudge = 100;
lossacre = 0.50;

VAR
acsoy,acgreen :INTEGER;
prsoy,prgreen ¢REAL;
profit,overcost :REAL;

BEGIN
WRITELN(OUTPUT,' *%%** Farmer profit analysis program #*¥¥¥% ').
WRITELN(OUTPUT, '* Please enter the following information:');
WRITELN(OUTPUT, '* Acres planted in soy beans = ');
READLN(INPUT, acsoy);
WRITELN(OUTPUT, '* Profit per acre of soybeans = ');
READLN(INPUT, prsoy);
WRITELN(OUTPUT, '* Acres planted in green beans = ');
READLN (INPUT, acgreen);
WRITELN(OUTPUT, '* Profit per acre of green beans = ');
READLN(INPUT, prgreen);
WRITELN(OUTPUT, '$$$ COMPUTATION IN PROGRESS $$$');
profit:= acsoy * prsoy + acgreen * prgreen

- (fudge / (acsoy+acgreen) * lossacre);

WRITELN(OUTPUT, ' Your computed profit is ');
WRITELN(OUTPUT, profit:10:2);

END.

The profit calculation (in the third line up from the END statement) uses
parentheses to alter the normal operator precedence. If the normal
precedence was followed, the calculation would yield the wrong result.

The order of evaluation without parentheses would be:

acsoy and prsoy multiplied
acgreen and prgreen multiplied
fudge divided by acsoy
acgreen * lossacre

resultl + result2

result5 - result3

result4 + resulté6

NN R WO e
.

B - 23

The desired result is obtained by including parentheses. The correct order
of evaluation is:

profit := acsoy * prsoy + acgreen * prgreen
-(fudge / (acsoytacgreen) * lossacre);

acsoy added to acgreen
fudge / resultl
result2 * lossacre
acsoy * prsoy

acgreen * prgreen
result4 + result5
resulté - result3

.

*

~NOoY W N
.

CONSIDERATIONS FOR VARIABLES DESIGNED TO HOLD THE RESULTS OF
ARITHMETIC OPERATIONS

I1f two numbers are operated on, the normal result will have a type that

is dependent on the types of the two numbers. The variable types required
to store the results of specific operations are summarized in the following
table.

Table 4.2

* multiply real * integer = real result.
integer * real = real result.
real * real = real result.
integer * integer = integer result.

/ real divide real / real = real result.
real/integer = real result.
integer/real = real result.
integer/integer = real result.

div integer divide integer div integer = integer result.
integer arguments only.

mod integer mod integer = integer
(integer div integer= remainder)

+ add integer + integer = integer result.
integer + real = real result.
real + integer = real result.
real + real = real result.

- subtract integer - integer = integer result,
integer - real = real result.
real - integer = real result.
real - real = real result.

B - 24

CHAPTER FOUR QUIZ

1. is used to assign a value to a variable.

2. Operator precedence refers to the order in which an

is evaluated.

3. The natural order of expression evaluation may be altered by using

4. The operator with the highest will be
evaluated first.

5. Operators that have the same level of precedence will be evaluated in
to order.

6. After execution of the following Pascal program, variable x will have
the value .

PROGRAM QUIZ;
VAR

x:integer;
BEGIN

x:=4 + 5 % 23
END.

CHAPTER FOUR ACTIVITY

Fill in the missing parts of the program below. Then, run the program to
test your work.

average;
VAR
numberofwidgets : H
,costperwidget : REAL;
BEGIN

WRITELN(OUTPUT, 'This program calculates cost per widget.');

WRITELN(OUTPUT, 'How many widgets d1d you buy?');

READLN(IRPUT,

WRITELN(OUTPUT, 'What was the total cost of the widgets?');

READLN(INPUT, totalcost);

:= totalcost numberofwidgets;
WRITELN(OUTPUT, 'The cost per widget = ',)

ERD.

ws

B - 25

CHAPTER F1VE

CONTROLLING THE PROGRAM'S PATH OF EXECUTION

Statements in a Pascal program are not always executed in top-to-bottom
order. The programmer can include statements in the program that alter the
path of execution. A group of statements might be executed repeatedly
before execution moves on to a second group of statements. Or, the
programmer might include statements to make the computer execute one
statement under certain conditions, but another statement under certain
other conditions. Statements that are used to alter program flow in this
way are called flow-control statements.

USING THE FOR STATEMENT TO LOOP

Executing a statement or series of statements a predetermined number of
times is called looping. If you wish to loop in a Pascal program, you
should use the FOR statement. Let's look at the following example .

Listing 5.1

PROGRAM math;

CONST
fudge = 100;
lossacre = 0.50;
prsoy = 195,.98;
prgreen = 200.56;
VAR

acsoy,acgreen,nofields,select,fieldnumber: INTEGER;
profit,overcost:REAL;
BEGIN
WRITELN(OUTPUT, '# Farmer planting analysis program * ');
WRITELN(OUTPUT, '* How many fields do you have?');
READLN(INPUT,nofields);
FOR fieldnumber := 1 to nofields DO
BEGIN
WRITELN(OUTPUT, '* For field number', fieldnumber);
WRITELN(OUTPUT, '* Acres planted in soy beans = ');
READLN(INPUT, acsoy);
WRITELN(OUTPUT, '* Acres planted in green beans = ');
READLN(INPUT, acgreen);
profit:= acsoy * prsoy + acgreen % prgreen
- (fudge / (acsoy+acgreen) * lossacre);
WRITE(OUTPUT, '* Your computed profit for field number '
,fieldnumber,' is ');
WRITELN(OUTPUT,profit:12:2);
END;
END.

B - 27

Notice that the program of Listing 5.1 contains two BEGIN and two END
statements. The first END statement is not followed by a period (marking
the end of the program) but instead is followed, like most program lines,
by a semicolon. This is our first example of a compound statement -- a
sub-program within the program.

A series of program statements surrounded by a BEGIN and an END

statement is considered a compound statement. Compound statements are
executed as a set, as if they formed a single statement. In Pascal,
anywhere a single statement may be used, a compound statement may be used.

In Listing 5.1, the variable fieldnumber controls the repeated execution
of the compound statement. Fieldnumber is declared as an integer. "For
fieldnumber :=1 to nofields" gives fieldnumber the value of one as the
computer begins to execute the compound statement for the first time. (The
DO on the end of the FOR statement tells the computer to '"do'" the

compound statement until the value of fieldnumber becomes equal to the
value of nofields -- the total number of fields owned by the farmer.)

Each time the compound statement is repeated, the value of fieldnumber is
incremented by one, until its value is greater than nofields. At that
point, the loop stops, and control is passed to the next statement in the
program.

The lower and upper limits controlling the loop may be variables (like
nofields), constants (like 1), or arithmetic expressions. The

expression is evaluated each time the computer is about to begin the loop.
The upper bound must be greater than or equal to the lower bound for the
loop to execute at least once.

A variation on the FOR loop just described causes the loop control
variable to be decremented by one instead of incremented by one. The
syntax for this is the same as above except that the to in the FOR
statement is replaced with downto. The initial upper bound on the loop
control variable must be larger than or equal to the lower bound for the
loop to execute at least once.

Examples of legal FOR statements

FOR a:=1 to 10 DO

FOR a:=1 to b DO

FOR a:=b - 1 to d * 3 DO
FOR a:=b downto 1 DO

FOR a:=100 downto b DO

FOR a:=b * 3 downto d - 1 DO

USING THE CASE STATEMENT

The CASE statement is used as a selection-control statement. That is,
it is used when you need to select for execution one statement from a list
of statements.

B - 28

Let's take a look at Listing 5.2. In front of every statement in the

list that follows 'CASE" is a case-selector constant. This selector

value must be of the same type as the case-selector variable, and may be
composed of a list of values for each statement it precedes. "END;"

(with a semicolon) must appear at the end of the list in order to terminate
the CASE statement. We will be concerned with selector variables of type

INTEGER at this time.
Listing 5.2

PROGRAM moonphase;

CONST
dayphcorr = 10;
lencycle = 28.3;
VAR
daynumber, intphase ¢ INTEGER;
startphase, phase,month,day,year :INTEGER;
realphase,phasecorrection :REAL;
BEGIN

WRITE(OUTPUT,' *** Lunar Phase calculation program');
WRITELN(OUTPUT, ' #*%%').
WRITELN(OUTPUT, ' Enter the month/day/year:');
READLN(INPUT,month,day,year);
startphase := ((year-78) * 365) + dayphcorr ;
CASE month OF
deynumber:=1;
daynumber:=32;
daynumber:=60;
daynumber:=9];
daynumber:=121;
daynumber:=152;
daynumber:=182;
daynumber:=213;
daynumber:=243;
10: daynumber:=274;
11: dayanumber:=304;
12: daynumber:=334;
END; (*case*)
startphase := startphase + daynumber + day;
realphase := startphase / lencycle;
intphase := TRUNC(realphase);
realphase:=realphase—-intphase;
phase:=realphase * lencycle;
CASE phase OF

4s se ve e se oo s e

Woo~NOVMPS WD -

1,2,3,4,5,6,7 : WRITELN(OUTPUT,
'"The moon is in its first quarter.');
8,9,10,11,12,13,14 : WRITELN(OUTPUT,

'The moon is inm its second quarter.');
15,16,17,18,19,20,21 : WRITELN(OUTPUT,

'The moon is in its third quarter.');
22,23,24,25,26,27,28 : WRITELN(OUTPUT,

'The moon is in its fourth quarter.');

e

END; (*case*)
END. (*PROGRAM*)

B - 29

The program of Listing 5.2 is designed to compute the phase of the moon.
Two CASE statements are used, with different case selector lists.

The first CASE statement assigns a value to the variable daynumber,
depending upon which integer you entered for month, two lines above. The
format of the statement is:

CASE variable OF
or, in this example:
CASE month OF

I1f, for example, you had entered 10 as the month, the CASE statement

would set the variable daynumber to 274, since the first day of the

tenth month happens to be day 274 of the year. (This program does not take
leap years into account.) The day of the month that you earlier entered is
then added to 274, to take into account any days that have passed since the
first day of the month.

The second CASE statement selects a particular message for output,
depending upon the resulting value calculated for the variable phase.

Now, we can take a broad look at the whole program. Calculations are based
on a known starting phase of the moon at some past day and year. The first
calculation for startphase yields the number of days since this known
starting date as a function of the number of years, corrected for the
starting phase of the moon.

The remainder of the calculations simply adjust the result value now stored

by startphase to yield the whole number of days since the known starting
phase, then divide the resultant number of days by the lunar cycle length
in days.

Notice that expressions consisting of mixed real and integer arithmetic are
used throughout the calculations. (Examples are:
realphase:=realphase-intphase and phase:=realphase * lencycle.) Study

of Table 4.2 will verify their validity.

Notice that the value of realphase is used as an argument for the TRUNC
function. TRUNC is a predefined function available in Pascal that will
truncate a real number (that is, drop of its decimal portion) and store
the result in an integer.

B - 30

CHAPTER FIVE QUIZ

1. ~The statement is used to make a single or compound
statement execute a specific number of times.

2. For successive iterations (repeats) of a loop that uses the

statement, the loop-control variable is either incremented by one or

decremented by one.

3. The statement is used to select a statement to
execute from a list of statements.

4. "Downto'" and 'to" are elements of the statement.

5. A(n) statement is used to terminate the CASE
statement,

CHAPTER FIVE ACTIVITY
Run (or simply examine) the program of Listing 5.2, and answer the
following questions:

1. If you enter 12 for the month, what value will be used for
daynumber in the second startphase calculation?

2. If you enter 5 for the month, what value will be used for
daynumber in the second startphase calculation?

3. If the phase calculation results in the value 21, which message
will be printed?

B - 31

CHAPTER SIX

DECISION TESTING

In Chapter Five, you learned how to use the CASE statement to make a test
that determined the flow of the program. However, it may become necessary
to perform more complex tests than the CASE statement was intended for.
Pascal has a powerful set of logical and relational operators that make
such testing easy.

LOGICAL AND RELATIONAL OPERATORS

Logical and relational operators are used in evaluating an expression to
return a value of true or false. This true or false value can then
be used to determine program flow.

LOGICAL OPERATORS

Pascal's logical operators are AND, OR, and NOT. These operators can

be used to evaluate variables of type BOOLEAN. (As you remember from
Chapter Two, a variable declared to be of type BOOLEAN can hold the value
true or false.) Logical operators can be used in expressions that
include numeric values and other kinds of variables.

AND evaluates two expressions. If both are true, AND returns the value
true. If one or both are false, the value false is returned. For
example, if two BOOLEAN variables, Monday and October, both held the
value true, then the operation:

Monday AND October

would return the value true.

OR evaluates two expressions and returns the value true if either is
true. If neither is true, the value false is returned.

NOT changes a BOOLEAN value to the opposite value. (For the moment,
you can think of NOT as being to a logical value as the negative sign is
to a number.) For example, the expression:

Saturday AND NOT(School)
would be evaluated as true if Saturday was true and School was false.
Although NOT is really a Boolean operator, its action may be more clearly
understood with a numeric example:

5+ 3 =8 AND NOT(5 + 3 = 9)

would be evaluated as true.

B ~ 33

Among logical operators, NOT has the highest precedence (that is, it is
evaluated first), with AND second and OR last. Parentheses may be used

to change the natural order of precedence. When logical operators are used
with mathematical expressions, the mathematical expressions have

precedence. Mathematical expressions are evaluated in the order described
in Chapter Four.

Below are some examples of legal expressions using the logical operators.
The letters "a'", "b", and "c" below may be replaced by the variable names
or by mathematical expressions.

Expression Evaluated as

a AND b a AND b
aORbD aORbD

a AND NOT b a AND (NOT b)
a AND b OR ¢ (a AND b) OR ¢
a AND (b OR ¢) a AND (b OR ¢)
a OR b AND ¢ a OR (b AND ¢)
a OR NOT b a OR (NOT b)

RELATIONAL OPERATORS

It is often necessary to compare several variables for equality in an
expression to determine the flow of control. This may be accomplished by
relational testing. Like the logical operators, the relational operators
can also return a value of true or false. There are six relational
operators in Pascal:

Operator Meaning

= equal to

> greater than

< less than

>= greater than or equal to
<= less than or equal to

<> not equal to

B - 34

All six relational operators have equal precedence. They are evaluated
after arithmetic operators, but before the logical operators. For example,
the expression:

5 + cost > 10 OR 5 + cost < 500 AND number <> 0

is evaluated as follows:

((5+ cost) >10) OR (((5 + cost) < 500) AND (number <> 0))
Precedence may be altered using parentheses.

If the relational test fails, the value of false is returned by the
expression. If the test succeeds, then true is returned.

As shown in the example above, variables and numbers may be mixed in a
relational expression. However, the arguments for a relational operator
must be of the same type. For example, for the expression number <> 0 to
be valid, number must be declared as a REAL or INTEGER variable.

THE IF THEN ELSE, WHILE, AND REPEAT STATEMENTS

THE IF THEN ELSE STATEMENT

The logical and relational operators are frequently used with the IF THEN
ELSE statement, which takes this basic form:

IF condition THEN
statement
ELSE statement;

The IF is followed by a condition. If the condition is met, THEN the
computer executes the statement following THEN. If the condition is not
met, the computer skips to the ELSE and executes the statement following
the ELSE. Notice that a semicolon must not precede the ELSE in the IF
THEN ELSE statement.

Listing 6.1 provides a simple example of the IF THEN ELSE statement used

with the logical operator AND. 1In this case, the variables Monday and
October are assigned the value true before being evaluated by AND:

B - 35

Listing 6.1

PROGRAM testIF;
VAR
Monday,October: BOOLEAN;
BEGIN
Monday:=true;
October:=true;
IF October AND Monday THEN
WRITELN(OUTPUT, 'It is October and Monday')
(*notice no semicolon after the previous statement¥)
ELSE WRITELN(OUTPUT, 'Date unknown.');
END.

This program will print the message "It is October and Monday", since the
conditions of the IF have been met.

Examine the program fragment of Listing 6.2, where income is a variable
of type INTEGER and president is a BOOLEAN variable. Notice how
variable of different types, a relational operator (>), and two logical
operators (AND and NOT), are used together to form a single expression.
Notice also that a compound statement is used after THEN:

Listing 6.2

IF (income > 32000) AND NOT(president) THEN
BEGIN
WRITELN(OUTPUT, 'You are being audited by the IRS.');
WRITELN(OUTPUT, 'Please justify your deductions.');
END;

(If an ELSE followed the END in Listing 6.2, then the semicolon after
END would have to be removed.)

The value of the expression in Listing 6.2 will be true if the integer
value of income is greater than 32000 and the boolean value of
president is false. (When the value of president is false, the

NOT operator will reverse its value to true.)

THE WHILE STATEMENT

WHILE causes a statement (or compound statement) to execute as long as

the condition named in the WHILE is true. The condition may be the

value of a boolean variable or the boolean result of some expression. Some
computation inside the loop should be able to change one of the variables
in the condition, causing the test to fail at an appropriate time. Examine
the program fragment of Listing 6.3, where cnt, cost, and unitprice

are INTEGER variables and underbudget is a BOOLEAN variable:

B - 36

Listing 6.3

ent:=0;

underbudget:=true;

WHILE (ent < 20) AND (underbudget) DO
BEGIN
cent:=cnt + 1;
cost:=cnt * unitprice;
IF (cost > 200) THEN underbudget:=false;
END;

This example will execute as a conditional loop, rather than executing a
predetermined number of times with the FOR statement. When ent becomes
21 or cost exceeds 200, the loop will terminate. (Note that the test
cost > 200 could have been put in the WHILE expression just as easily.)

THE REPEAT STATEMENT

The REPEAT statement is similar to the WHILE statement. REPEAT

repeats a statement or compound statement until an expression becomes true.
The major difference between WHILE and REPEAT is that the REPEAT

statement will always execute at least once because the test occurs at the
end of the loop. Beginning programmers should use REPEAT with care

(there may be times when you don't want the loop to execute at all). An
example of REPEAT is as follows:

Listing 6.4

cnt:=0;
underbudget:=true;
REPEAT
cnt:=cnt + 1;
cost:=¢cnt * unitprice;
inventory:=inventory + 1;
IF (cost > 200) then underbudget:=false;
UNTIL(cnt>=20) OR NOT(underbudget);

Notice that the test was changed to use the OR operator instead of the
AND operator. This is simply due to the different context of the two
statements. No BEGIN or END is required. The statement(s) to be
executed are simply placed between the REPEAT and UNTIL.

What happens to this loop if the initial value of unitprice is greater
than 200? The loop will terminate on the first iteration, after it
alters the value of inventory. This might not be the desired result and
could cause an illegal entry into the inventory. In that case, the WHILE
statement would have been a better choice.

B - 37

CHAPTER SIX QUIZ

The logical operators in Pascal are: R
and .
The AND operator will return a value of if the

value of the both expressions it is evaluating is true.

The OR operator will return a value of if one of
the expressions it is evaluating is true.

The operator will reverse the value of a boolean
variable or expression.

The IF statement will execute the ELSE portion of the
statement if the value of the expression is .

The WHILE statement will execute as long as the boolean
result of the expression is .

The statement will execute a statement or
compound statement UNTIL the expression at the end of the statement
is evaluated to be true.

CHAPTER SIX ACTIVITY

Tell whether the boolean value returned in each of the following situations
is true or false:

1.

3.

Tuesday:=true;
cornedbeef:=true;

Tuesday AND cornedbeef

Saturday:=true;
school:=false;

Saturday AND NOT(school)

5>10 0R 5 =10

B - 38

CHAPTER SEVEN
PROCEDURES AND FUNCTIONS

One of the strengths of Pascal is that it promotes modularity. A modular
program is organized into sections, each of which performs a specific
function. (Programs in many other languages can be written as one large
block of continuous statements.)

One of the reasons that Pascal programs may have a high degree of modular-
ity is that the language was designed with procedures and functions in
mind.

USING PASCAL PROCEDURES

Procedures may be thought of as complete sub-programs that have data

passed to them as needed. They can be thought of as building blocks of the
Pascal program. In Listing 7.1 on page B-40, notice that the procedure
readn is structured much like a complete program.

The purpose of the program of Listing 7.1 is to read a positive integer
from the file INPUT and to check for illegal entries. The procedure

readn represents the typical use for a procedure, as it might be called
(used) several times, from different points in the program. Since there is
only one copy of this procedure in memory, no matter how many times it is
called, considerable memory space is saved. (Further, a procedure's vari-
ables do not occupy memory space until the procedure is actually called.)

GENERAL CHARACTERISTICS OF A PROCEDURE:

The procedure name is followed by a parameter list. A parameter
list is a list of values that are passed from one program unit to
another. 1In this case, two of the variables declared in the main
program (number and legal) are passed to the procedure. Then,
the procedure goes on to declare some additional variables of its
own in the procedure's VAR section.

The procedure differs from a compound statement by having a name

and variables and constants of its own. It may contain one or

more compound statements. However, like the compound statement, the
procedure has a semicolon rather than a period after its END
statement.

Unlike the compound statement, the procedure can be executed
several times from different parts of the program.

B - 39

Listing 7.1

PROGRAM INSTRUCTIONAL;

VAR
number :INTEGER;
posnumber : INTEGER;
legal :BOOLEAN;

PROCEDURE readn (VAR number: INTEGER; VAR legal: BOOLEAN);

(* The purpose of this routine is to read *)
(* a positive number from a file in a *)
(* character format and convert it to an integer*)
(* format. *)
VAR

loopcontrol, forcntr,inc: INTEGER;

string :ARRAY [1..72]OF CHAR;
BEGIN

FOR loopcontrol :=1 to 72 DO string[loopcontrol]:=' *';
loopcontrol :=0;
WHILE NOT EOLN(INPUT) DO
BEGIN
loopcontrol := loopcontrol + 1;
READ(string[loopcontrol]);
IF(string[loopcontrol]=' ')THEN
(* Remove all leading blanks from array *)
loopcontrol:=loopcontrol - 1;
END;
number:=0;
inc:=1;
FOR forcntr :=loopcontrol DOWNTO 1 DO
BEGIN
number : =number+ ((ord(string| forcntr])-ord('0'))*inc);
inc:=inc*10;
END;
IF (number < Q) THEN
BEGIN
legal := false;
WRITELN('* Error - Illegal entry. Try again. ');

END
ELSE legal:= true;
READLN (INPUT) ;
END; (*procedure readn¥)

BEGIN
legal:=false;
WHILE NOT legal DO
BEGIN
WRITELN('Enter any positive number:');
READN (posnumber,legal);
IF legal THEN writeln('The number is ', posnumber)
ELSE WRITELN('ILLEGAL NUMBER')
END;

END.

B - 40

USING VARIABLES IN A PROCEDURE

Variables in a complex program are termed local or global, depending on
how they are used.

Local variables are used only within a procedure (or function, yet to be
introduced), or only within the main program. Local variables are declared
in the VAR section of the unit where they are used. Variables from the
main program which are redeclared within a procedure are considered to be
separate, local, variables.

Global variables are used in the main program and also in one or more sub-
programs.

There are several ways to use global variables. The first, non-recommended
way, is simply to use the variable in the sub-program, without declaring it
again. This is perfectly legal, since the variable has been declared once
already in the main program. The trouble lies in the fact that: If the
sub-program is called by the main program and the sub-program changes the
value of any global variable, then the global variable will have the
changed value when the main program again takes control. Global variables
of this kind should be kept to a minimum, to avoid any accidental changes
in their values.

BETTER WAYS TO USE GLOBAL VARIABLES

An alternate method of using global variables within a procedure is to pass
them as parameters in a parameter list, This allows different variables to
be passed at different times, and makes the use of the global variable much
more visible in the program. The parameter list is placed immediately
following the name of the procedure in the PROCEDURE declaration. A vari-
able may be passed in the parameter list by one of two methods: by
reference or by value.

When a variable 1s passed by reference, the actual variable with its value
is passed to the procedure. If the procedure then changes the value of the
variable, that value is changed in the entire program.

The format for passing a variable by reference is:

PROCEDURE procname (VAR varnamel:TYPE; VAR varname2:TYPE);
When a variable is passed by value, what is passed is a copy of that vari-
able's value. If the procedure alters the value, the value in the rest of
the program is not changed. Parameters passed by value will prevent
unwanted changes in a variable value by the called procedure. The format
for passing by value is:

PROCEDURE procname (varnamel:TYPE; varname2:TYPE);

Note that if the word VAR does not precede the variable's name, the
variable is automatically passed by value.

B - 41

It is perfectly legal for the same parameter list to contain some variables
passed by reference and some variables passed by value. For example:

PROCEDURE example (date:INTEGER; VAR profit:REAL: cost:REAL):

By adhering to the convention of passing variables to a procedure, the
programmer has an easler time determining how procedures alter external
variables, and unwanted side-effects are minimized. Certainly global
variables do have use in Pascal programs, but many new Pascal programmers
have a tendency to over—use them.

CALLING A PROCEDURE

A procedure may be called from anywhere in the body of the program. In the
call must be the procedure name, followed by a parameter list in
parentheses, For example:

procname (varnamel, varname2);

or example (date, profit, cost);

USING PASCAL FUNCTIONS

Another block in Pascal similar to the procedure is the function. Its
internal structure is the same as the procedure, with CONST and VAR
sections optional. The purpose of a function is similar to that of a

procedure., Unlike the procedure, the function may not stand alone as a
statement. Instead, the function is used like a variable, in an
expression. Consider the following program:

Listing 7.2

PROGRAM functiontest;
VAR
nuz: INTEGER;

FUNCTION ABS(number:INTEGER):INTEGER;

BEGIN

IF (number < 0) THEN ABS:= —number
ELSE ABS:=number;

END;

WRITELN(' the absolute value of num = ',num);
END.

B - 42

Between the BEGIN and END statement under the function declaration is a
definition of what ABS does. The result returned by the function named
ABS is declared to be of type INTEGER.

The result of any function must be used (like a variable) in an expression
or assignment statement. In this case, the function's calculated value is
transferred back to the calling program by an assignment statement that
assigns the value to an identifier of the same name as the function name.
The assignment statement num:=ABS(num); is needed. It would not be valid
to simply say ABS(num).

(The ABS function is already predefined in Pascal, although ABS is not

a reserved word. This doesn't affect the example.)

!

ADVANCED PROGRAM STRUCTURE

Pascal is a block-structured language. This means that a program is
constructed in a block-like manner. At a minimum, a program consists of
one block. More blocks are created through the use of procedures and/or
functions by placing them inside this outermost program block.

The term for this process is "nesting". The rule for nesting is that a
block may lie entirely within another block, but blocks do not overlap in
any other way. A level of nesting can be assigned to each block of a

program. This block structure can be represented pictorially by the
following diagram.

Program Block A (level 1)

Procedure Block B (level 2)

Procedure Block C (lvl. 3)

Function Block D (level 2)

Procedure Block E (lvl. 3)

Procedure Block F (level 2)

B - 43

This block structure provides illustration for our earlier discussion of
local and global variables. A global variable is declared in an outer
enclosing block and is used in more than one block. A local variable is
declared in an inner block and is used only in that block.

SCOPE RULES

Scope rules are the rules that govern accessing of variables, types, and
constants, in a nested program. In general, these identifiers may be
accessed in the program or procedure in which they are declared, or im any
procedure declared within that procedure. All identifiers, including
types, constants, variables, and procedure declarations, have scope
(boundaries on their use).

If an identifier is redeclared within its scope (area), the outer defini-
tion becomes inaccessible within the scope of the inner definition. (Remem-—
ber that you were earlier told that redeclaring a variable from the main
program in a procedure would cause the program to view the variable as a
separate entity within that procedure.) In the example below, declaration
of b as an INTEGER within the inner procedure causes all references to

b in that procedure to refer to the local variable -- not the BOOLEAN
variable b in the main procedure. Because i is not redeclared, it con-
tinues as the global variable 1i.

Listing 7.3

PROGRAM globals;
VAR

i:INTEGER;

b: BOOLEAN;

PROCEDURE inner;
VAR

b: INTEGER;
BEGIN

b:=i + 25;

ir=1 + 1;
END;

BEGIN
i:=0;
writeln(i);
END.

Pascal requires that all identifiers be declared before they are used. If
the declaration of an identifier has not been encountered in the text of a
program, then the identifier is considered undefined. This rule allows
some procedures to call other procedures that cannot in turn call them.

B - 44

A procedure can be called from the body of the block declaring it, from the
procedures declared within it, and from procedures declared within the same
block. However, if procedure A is declared before procedure B in the same
block, then procedure B can call A, but procedure A cannot call B. This is
because the declaration of B had not yet been encountered in the source
text (program listing) when the body of procedure A was being compiled.

The above "visibility" restriction (A cannot "see" B) can be avoided with
the use of FORWARD declarations. In a FORWARD declaration, the

procedure is declared near the beginning of an outer program, but the body
of the procedure is replaced by the word FORWARD. The actual body of the
procedure is supplied later. If all procedures within a block are declared
in this way, then any one of them can call any other.

Listing 7.4 provides an example of how FORWARD works. Note that the para-
meter list must be provided with the first declaration of each function or
procedure. Later declarations of the function repeat the parameter list
as a comment for documentation purposes. If the parameter list is
repeated, it must be as a comment.

Listing 7.4

PROGRAM outer;
VAR
i:INTEGER;
FUNCTION Distance(zl,x2:INTEGER):INTEGER; FORWARD;
FUNCTION ABS(tvalue:INTEGER):INTEGER; FORWARD;

FURCTION Distance (*(x1,x2:INTEGER):INTEGER*);

BEGIN
distance:=ABS(x2 - x1);
END;

FUNCTION ABS(*(tvalue:INTEGER):INTEGER*);
BEGIN

IF tvalue < 0 THEN ABS:= -tvalue

ELSE ABS:=tvalue;
END;

BEGIN

WRITE ('DISTANCE = ®,Distance(8,2));
END,

B - 45

CHAPTER SEVEN QUIZ

and promote modularity in programs.

Data may be passed to procedures and functions through a

list,
Blocks may be within other blocks.
Nesting affects the of blocks.
Parameters may be passed by value or .
When a variable is passed by , what is actually passed

is a copy of the variable.

When a variable is passed by reference, the keyword
must precede it in the parameter list.

CHAPTER SEVEN ACTIVITY

Look back at Listing 7.1 and complete the following statements about the
program.

1.

The variables and are passed to
the procedure READN. '

The variables s s , and
are local to the procedure READN.

As the program is currently written, which variables may not be
accessed by the main program?

Variables are passed to procedure READN by value or by reference?

B -~ 46

CHAPTER EIGHT

ADVANCED DATA TYPES

ARRAYS

The array is a variation on the data types already discussed. Sometimes
many variables of a particular type are needed. For example, if you needed
seventy—two variables of the type CHAR to represent a series of

characters to be input, you could declare all seventy-two separately.
However, this would be time-consuming. Furthermore, accessing the
individual variables would be confusing, since each would have a different
name.

The simple answer to this problem is the data type ARRAY. You may
declare an array as

arrayname:ARRAY (.1..n.) of TYPE;

where TYPE is any of the data types covered in Chapter Two.

(User-defined data types, covered later in this chapter, can also be used.)
The n is the number of variables desired. For example, the following
array would store a string of twenty-six characters:

alphabet :ARRAY (.1..26.) of CHAR;

NOTE: Standard Pascal uses brackets [l..n] instead of the parentheses
and periods. On Models III and 4, "(." replaces "[" and ".)"

replaces "]" —- or you can create "[" by pressing CLEAR 1 and "]"
by pressing CLEAR 2.

INPUT/OUTPUT USING ARRAYS

Let's take a look at the example program of Listing 8.1. to see how the
example might be used:

Listing 8.1

PROGRAM onedimarray;
VAR
alphabet:ARRAY (.1..26.) of CHAR;
BEGIN
WRITELN(*Enter the alphabet.');
READLN (INPUT,alphabet);
WRITELN(OUTPUT,alphabet);
WRITELN('Program complete.');
END.

If the input/output of this program is directed to the video display, the
program will display the prompt "Enter the alphabet." At this point, the
user types in a twenty-six character string. Any characters typed will be
considered as part of the string.

B - 47

Only at the end of the string does the user press ENTER. The characters
are then input to the array, left justified. If the length of the input
character string is less than the length of the array, the remaining
storage positions in the array will contain blanks. If the input string is
longer than the array, any extra characters will be ignored.

The program of Listing 8.1 will then output the string back to the video
display. In TRS-80 Pascal, a one-dimensional array like this one -- an
array of characters in one row —— may be input and output by a single
READ and WRITE,

ACCESSING INDIVIDUAL COMPONENTS OF AN ARRAY

Elements of an array may be assigned to variables of the same type as the
array. For the example we have been considering, this would be a variable
of type CHAR:

VAR
alphabet :ARRAY (.1..26.) of CHAR;
letter:CHAR;

To assign to letter a particular component of this array, you would use

the component variable name letter, plus the array name and a subscript

that denotes the position, in the array, of the component you want. The
assignment statement

letter:=alphabet(.4.);
would assign to letter the value of the fourth element in the array line.
(If the user entered the alphabet correctly, D would be the fourth

element.)

Components of an array may be accessed without use of a component variable.
For example: WRITE(alphabet(.4.));.

PACKED ARRAYS

Any array may be declared with the word PACKED as a prefix. PACKED
tells the compiler to store the data elements as efficiently as possible.

In some versions of Pascal, you may not pass elements of packed structures
by reference to procedures or functions, and packed elements may not be
used as arguments in READ statements. In TRS-80 Pascal, there are no

such restrictions.

B - 48

ARRAYS WITH MORE THAN ONE DIMENSION

So far, we have considered one-dimensional arrays. However, arrays in
Pascal may have several dimensions. Suppose that you have several strings
of characters for input, and you want to store every character string.
This can be done easily by declaring an array as follows:

arrayname : ARRAY (.l..n,l..z.) of TYPE;

The READ command will not input an entire multidimensional array
automatically. However, READ will input the one-dimensional sub-arrays,
one at a time. Listing 8.2 demonstrates use of a two-dimensional array:

Listing 8.2

PROGRAM arraylO;
VAR
I
stringl
BEGIN
FOR I:=1 TO 5 DO
BEGIN
WRITELN(OUTPUT, 'Enter command line ',I);
READLN(INPUT,stringl[X]);
END;

INTEGER;
ARRAY [1..5,1..72] OF CHAR;

se ss

END.

This program will prompt the user for five different command lines. Each
time the loop is executed, an individual sub-array is loaded into the
array.

Since the elements of this array are of type CHAR, any operations that
can be performed on a simple variable of type CHAR may be performed on an
element of this array.

Remember that an array may be of any type, such as BOOLEAN, INTEGER, or

any user—defined data type, including ARRAY. For most simple data types,
the name of the type may be substituted for the bounds, which are

declared as constants in the array declaration. In this case, the number of
elements in the data type is the number of elements in the array.

USER-DEFINED DATA TYPES

The data types explained so far are pre-defined by Pascal. But Pascal also
allows you to define new data types at will. These defined types have
names chosen by the programmer and are declared in the program's TYPE
section. Once declared, they may be used wherever declared data types are
allowed.

B - 49

Let's consider an example of when user-defined data types might be
desirable. Suppose that the programmer is manipulating an integer variable
in BASIC that may take on one of four values: 1, 2, 3, or 4. The numbers
may in fact represent the colors red, green, blue and orange. When the
value is 1, a message is written to the terminal saying that the color red
is being processed, and so on. This process is typically known as

decoding information from a variable's value.

Needless to say, when BASIC programs get very long, it is difficult to
determine their flow because of this decoding and encoding of information.
A simpler way would be to declare a variable that could directly take on
the value of red, green, blue or orange. Then tests could be

performed to see if the value of the variable is red, etc. Program logic
would be much clearer and easier to follow. In fact, this is exactly what
the following program does.

Listing 8.3

PROGRAM usertypes;
TYPE difcolor = (red, green, blue, orange);

VAR
color : difcolor;
BEGIN
color := red;
REPEAT
CASE color of
red : WRITELN(OUTPUT,' The color is red');
green : WRITELN(OUTPUT,' The color is green');
blue : WRITELN(OUTPUT,' The color is blue');

orange : WRITELN(OUTPUT,' The color is orange');
END;
color := SUCC(color);
UNTIL(color = orange);
END.

ENUMERATED USER-DEFINED TYPES

Program 8.3 illustrates an enumerated user defined type, difcolor. A type
is said to be enumerated if a list of possible variable values is given
in the type declaration.

The predefined function, SUCC is frequently used with user-defined
variable types, to increment to the next possible value. In a simple
program using an integer variable, this could be accomplished by adding 1
to the variable, but this would not make sense with a user-defined type.

User~defined enumerated data types may not have their values written out.
Program 8.3 gets around this limitation by selecting a literal message from
a CASE list, depending on the variable's value.

B - 50

SUBRANGE TYPES

A variable may assume a value that is a subset of some predefined type. In
this case, it may be declared to be a subrange type.

For example, the type INTEGER may represent any whole numbers between
-32,768 and 32,767. A subrange of the type INTEGER
might be declared as follows:

byte = 0..255;
In this example, any variable of the type BYTE may take on a value from 0
to 255. Any operations that may be performed on the original predefined
type may be performed on the subrange type.
A subrange type may also be the subrange of any user-defined simple type.
Listing 8.4 demonstrates a series of valid subrange declarations:

Listing 8.4

PROGRAM subrange;

TYPE
baddate = 1900..1903;
uppercaseletters = 'A'..'Z';
lowercaseletters = "a',,.'z";
digits = '0'..'9"';
xaxis = ~100..100;

VAR
testyear : baddate;
upperletter : uppercaseletters;
lowerletter : lowercaseletters;
digit : digits;
xpoint : xaxis;

BEGIN

END.

Named subrange types are useful when the programmer wants to increase
program readability by clearly identifying the data differences between
specific variables. Also, storage space may be saved by using subrange
variables. The storage required for a subrange variable depends on the
range of values. This consideration may be important when you are building
large data structures to be implemented on microcomputers. For example:
the type BYTE defined above only requires one byte (8 bits) of storage
while an INTEGER requires two bytes (16 bits).

B - 51

RECORD DATA TYPES

So far, the only structured data type examined has been the array.

The array is an excellent mechanism for storing large amounts of data

of the same type. In the example, a series of text strings was
efficiently stored using arrays of CHAR, and any individual character was
easily accessible.

However, you may want to group variables of different data types. For
example, suppose that a business wanted to keep the following information
about each of its customers:

Name

Customer category

Mailing address

Telephone number

Dollars spent in store

On catalog circulation list

In languages like BASIC, the usual way to maintain this information would
be multiple arrays containing encoded information. This is not the case in
Pascal. You can build a record which can store all of the above
information in a clear and concise format. Furthermore, you may declare
arrays to be of the user~defined type RECORD.

A record in Pascal is a predefined data structure which is composed of
component variables. These components may be variables of any Pascal
predefined, or user-defined data types. The purpose of a record is to
group variable information into logical entities, such that any particular
component may be operated on. The entire record may also be referenced as
a whole,

Program 8.5 on the following page is an example of how the business record
would be declared in Pascal.

B - 52

Listing 8.5

PROGRAM database;
TYPE

custmrcategory = (business,individual);
custmrecord = RECORD

custmrtype ¢ custmrcategory;
address : PACKED ARRAY[1..72] OF CHAR;
telephone : PACKED ARRAY[1..15] OF CHAR;
expenditures : REAL;
cataloglist : BOOLEAN;
END;
VAR
custmr : custmrecord;
custmrlist : ARRAY{1..100] OF custmrecord;
index :+ INTEGER;
ans : CHAR;

PROCEDURE custmrinp(VAR custmr:custmrecord);
VAR custyp : CHAR;
BEGIN
WRITELN('* Enter customer type: (business/individual)');
READLN(custyp);
IF(custyp='1"')THEN
custmr, custmrtype:=individual
ELSE custmr.custmrtype:=business;
WRITELN('#* Enter address:');
READLN(custmr, address);
WRITELN('* Enter telephone number:');
READLN(custmr. telephone);
WRITELN('* Enter expenditure in dollars:');
READLN (custmr. expenditures);
WRITELN('* Want on catalog circulation list: (true/false)');
READLN(custmr. cataloglist);
END;
BEGIN
index:=0;
ans:='N';
WRITELN('** BUSINESS XYZ CUSTOMER RECORD PROGRAM **%');
WHILE (ans <> 'S') DO
BEGIN
index:=index+1;
custmrinp(custmrlist[index]);
WRITELN('* MORE CUSTOMERS (STOP/CONTINUE)');
READLN(ans);
END;
END.

B - 53

The outer shell that must enclose record type declarations is of
the form:

typename = RECORD
END;

For example:

custmrecord = RECORD
END;

The component field (variable) declarations reside between RECORD and
END;. The field declarations are defined in the same way as they would
be in the VAR section of the program.

In Listing 8.5, the user-defined record name is custmrecord. The
component field declarations: custmrtype, address, telephone,
expenditures, and cataloglist are defined exactly the same way as the
program variables are in the VAR section. All of the field components
belong to the data type custmrecord.

Since custmrecord may be treated like any other user-defined type, we can
next declare a variable to be of type custmrecord in the VAR section of
the main program.

The difference between a record and the simple user-~defined data types 1is
that there are component fields in a record that are really variables
themselves. In example 8.5, the variable custmr is of a record type.
When referring to custmr in expressions, that variable name references
the entire record. To access the component field expenditures, you would
prefix expenditures with the record variable name, custmr and a period.
For example:

custmr, expenditures:= 99,95;

Values in one record may be transferred to another record. For example, if
a variable of type RECORD named excustomer had been declared, the

following statement would set all component fields in excustmr to the
component fields in custmr:

excustomer:=custmr;

Variables of type RECORD, and their associated component fields, obey the
same rules for use as all other types of wvariables.

The program of Listing 8.5 performs record I/0 using the predeclared text
files INPUT and OUTPUT. Notice that the READ and WRITE statements

use record component fields as arguments., READ and WRITE behave as
though the component fields were variables declared in the VAR section.

B - 54

THE WITH STATEMENT

Use of records may cause segments of the program that reference them to
become long and tedious. (Remember that every time a component field is
referenced, the record name must precede it.) The WITH statement can be
used to simplify the process of accessing component fields.

Examine the following procedure, which could have been used in Listing 8.5:
Listing 8.6
PROCEDURE custmroutput (VAR custmr:custmrecord);

BEGIN
WRITELN('#% CUSTOMER OUTPUT RECORD FOR BUSINESS XYY *%');
WITH custmr DO
BEGIN
IF (custmrtype=business)then

WRITELN ('Customer type : Business')
ELSE WRITELN('Customer type : Individual');
WRITELN ('Address : ',address);
WRITELN ('Telephone : ',telephone);
WRITELN ('Expenditures : ',expenditures);
WRITE (‘Circulation list : ');

IF (cataloglist)THEN WRITELN('Yes')
ELSE WRITELN('No');
END;

END;

The WITH statement eliminates the need to use the record name as a prefix
when referencing components of the record. The scope of the WITH is one
statement, which in this case is a compound statement.

FILE OF TYPE

INPUT and OUTPUT are examples of TEXT files in Pascal. TEXT files

have been used for all of the examples so far. A TEXT file is prede-
clared by Pascal to be a special file of CHAR, with rules for performing
1/0 using INTEGER, REAL and BOOLEAN variables.

In TRS-80 Pascal, there are extensions to allow for performing I/0 using
ARRAY variables in text files. A FILE OF <any known type> may be

declared in Pascal. Files of types other than text are primarily used for
storing data which will be retrieved at some other time. For example, a
FILE OF custmrecord could be defined in the type section. (custmrecord

was defined in listing 8.5) A variable of type custmrecord could be
written to this file. The important thing to remember is that an entire
record may be written (or read), by one I/0 statement. Component fields of
this record may not be read or written individually to a file of records.

B - 55

When I/0 is performed with a FILE OF <any type except text>, no ASCII
encoding or decoding of information takes place. Instead, the binary
representation is used. This is not particularly useful when the I/0
is directed to a terminal, but is effective for storing large amounts
of information on disk media. The predeclared procedures WRITELN and
READLN are not valid when performing I/0 with a file of any type
except TEXT, although READ and WRITE perform normally.

CHAPTER EIGHT QUIZ

1. If a large number of variables of the same TYPE need to be

declared, the may be the correct data structure to
use,
2. Arrays in Pascal may have one or more .
3. New user defined may be declared in Pascal programs.
4, A(n) TYPE is defined by a list of identifiers

given to be the different values allowable for a variable.

5. A TYPE is any user defined TYPE that is a
sub-interval of another simple type.

6. A TYPE is used to logically group together data
of different types.

CHAPTER EIGHT ACTIVITY

Using the program of listing 8.5 for guidance, write a short program that
includes a record. Compile and run the program.

B - 56

CHAPTER NIRE

DYNAMIC DATA TYPES

All of the variable types discussed so far have been "static" in nature,
meaning that their size had to be defined before the program was compiled
or executed. For example, in program 8.5, the size of the array
custmrlist has an upper bound of 100 entries. If more than 100 storage
locations were needed to store the customer records, the array declaration
would have to be changed in the source program, and the source code
recompiled.

Most Pascal implementations on microcomputers limit the number of storage
locations that may be declared in a program. This limitation is based on
the size of the program and the type and number of variable declarations.
Because of these memory restrictions, Pascal programmers should usually

declare arrays and other data structures to be only as large as required.

Static variable declarations create problems in some programming applica-
tions. For example, suppose that in program 8.5 you wanted to keep a list
of sales transactions for each customer along with each customer record.
You could accomplish this by adding a component field (an array of trans-
action records) to each customer record. Then at any time you could access
the sales transactions of customers. But, the number of sales transactions
per customer would have to be limited to a preset number by the array
declaration. The number of transactions per customer will probably vary,
so use of a static variable in this case is not very efficient.

Pascal does allow for dynamic variable allocation at program execution time
through the use of pointer variables and the Pascal predefined procedure
NEW, as described below.

POINTER TYPE DECLARATIONS

Listing 9.1 illustrates how pointer variables are declared:
Listing 9.1

TYPE
trxptr = “trxrec;

trxrec = RECORD
nexttrx : trxptr;
invoicenumber : INTEGER;

date :+ ARRAY [1..10] OF CHAR;
transprice : REAL;

partnumberlist : ARRAY [1..10] OF CHAR;
END;

VAR
trx : trxptr;

B - 57

In the TYPE section of Listing 9.1, trxptr = “trxrec declares the
user~defined type trxptr to be a pointer to trxrec. That is, variables
of type trxptr will point to a location in memory of the size required to
store the record trxrec. (The character """, created by pressing

CLEAR, then 3, denotes a pointer in Pascal. The character "@" can be
used in the place of "~".)

Notice that at the “trxrec point in the type declaration, trxrec has
not yet been defined. In Pascal, declaring a pointer as a yet undefined
type is valid.

In the VAR section, the variable trx is declared to be of the type
trxptr. Therefore, the variable trx will point to a storage location
for trxrec. This storage location may be requested anytime during
program execution. The component field nexttrx, embedded within the
record itself, is also a variable of type trxrec.

Pointer types to large data structures may be declared in a program with
minimum memory space penalty until the procedure NEW is called during
program execution. NEW performs the actual task of allocating storage
for the data structures that are pointed to.

PROCEDURE NEW

The procedure NEW has one argument, which is a pointer variable. NEW
allocates the amount of storage required by the data type that 1is
associated with the pointer (in the example above, the data type is a
record). Then NEW assigns the address of the allocated storage to the
pointer variable. The pointer is then used to reference the allocated
storage.

NEW does not increase the total amount of memory available, but dynamic
allocation of memory does allow for better utilization of space. The
variable used as an argument to the NEW procedure call must have been
declared in the VAR section, and must be declared as a type that is a
pointer to the actual data type.

The program segment of Listing 9.2 on page B-59 illustrates a few simple
methods of using pointer variables.

Notice in Listing 9.2 that variables for which storage is dynamically
created are not referenced like normal variables. The reason for this is
that these variables actually have no identifiers of their own. A pointer
must be used each time one of these variables is referenced. For example,
trx~.transprice refers to the value of a component field in the record
stored at the location pointed to by trx. When the contents of the
storage location are being referred to, """ follows the variable name.

When the pointer itself is being referenced, just the variable name is
used. For example, note how, in Listing 9.2, the pointer variable
pexttrx is set to the value of trx by the assignment statement
nexttrx:=trx;.

B - 58

Listing 9.2
PROGRAM dynamic;

TYPE
trxptr = “trxrec;

trxrec = RECORD

nexttrx + trxptr;
invoicenumber + INTEGER;
date : ARRAY [1..10] OF CHAR;
transprice : REAL;
partnumberlict : ARRAY [1..10] OF CHAR;
END;
VAR
trx : trxptr;
nexttrx : trxptr;
BEGIN
NEW(trx);

trx~.invoicenumber:=2345;

trx~.transprice :=99,95;

nexttrx:=trx;

WRITELN('* Transaction invoicenumber : ',
trx~.invoicenumber);

WRITELN('* Transaction price
trx".transprice);

DISPOSE(trx);

END.

PROCEDURE DISPOSE

Notice the call to the predefined procedure DISPOSE near the end of
Listing 9.2. DISPOSE releases the storage area acquired in the NEW
call. After the DISPOSE, the data stored at the dynamic memory location
is effectively lost.

This is an important feature of Pascal. Careful use of NEW and DISPOSE
can result in programs that dynamically grow and contract in memory size as
needed, and efficiently manage the computer resources.

LINKED LIST

A linked list is the result of a programming technique that chains
together a series of variables. A thorough discussion of linked 1list
processing would entail several chapters, and is really a topic for a data
structures book. It will be covered briefly here because it relates to
dynamic memory management.

B - 59

In example 9.1, the data type trxrec has a component field (nexttrx)

which is a pointer to a storage area of the same type as itself.
to another record node (storage area) may be stored in this field.

A pointer
In

the record pointed to, a pointer to another record node could be stored,
and so on. In this way, a series of record nodes may be linked together.

The diagram of Listing 9.3 will help you visualize this list.

The program

of Listing 9.4 illustrates how the structure in Listing 9.3 could actually

be built,
Listing 9.3

VAR

headnode : trxptr;

headnode

trxrec = RECORD
nexttrx: trxptr;

invoicenumber :
date :
transprice :
partnumberlist :
END;

record number 1

INTEGER;

ARRAY [1..10] OF CHAR;
REAL;

ARRAY [1..10] OF INTEGER;

trxrec = RECORD
nexttrx: trxptr;
invoicenumber :
date :
transprice :
partnumberlist :
END;

record number 2

INTEGER;

ARRAY [1..10] OF CHAR;
REAL;

ARRAY [1..10] OF INTEGER;

trxrec = RECORD
nexttrx: trxptr;
invoicenumber :
date :
transprice :
partnumberlist :
END;

record number 3

INTEGER;

ARRAY [1..10] OF CHAR;
REAL;

ARRAY [1..10] OF INTEGER;

NIL. P

B - 60

The variable headnode is a pointer variable declared in the VAR section

of the program. At some point in the program, a NEW procedure call could
be made with headnode as its argument. Headnode would now be a pointer

to the start of the list, Notice the word NIL at the end of the list.

NIL is a reserved word in Pascal. This simply sets the pointer to an
initialized value that may be tested for in looping statements. A word of
caution when using pointers in Pascal: if a pointer variable has been
declared, but not set to any value, there is no guarantee of its value., It
will not necessarily be set to NIL.

Most Pascal implementations do not perform a runtime check for
uninitialized values. Use of uninitialized pointers can lead to the
program writing over itself in memory with execution becoming
unpredictable. These kinds of programming errors will not show up at
compile time, and can be extremely hard to find during program execution.

Listing 9.4

PROGRAM linkedlist(input,output);
TYPE
trxptr = “trxrec;
textline = PACKED ARRAY [1..10] OF CHAR;
trxrec = RECORD
nexttrx: trxptr;

invoicenumber : INTEGER;
date : textline;
transprice : REAL;
partnumberlist : textline;
END;
VAR
headnode, transnode : trxptr;

I : INTEGER;
PROCEDURE readtrx(VAR trx:trxrec);
(* The purpose of this routine is to prompt the user for ¥)
(* the purchaser's trx record *)
BEGIN
WITH trx DO
BEGIN
WRITELN(' ENTER INVOICE NUMBER:');
READLN(invoicenumber);
WRITELN(' ENTER DATE:');
READLN(date);
WRITELN(' ENTER TOTAL PURCHASE PRICE:');
READLN(transprice);
WRITELN(' ENTER PARTNUMBER(S) SEPARATED BY COMMAS:');
READLN(partnumberlist);
END;
END; (* readtrx *)

B - 61

Listing 9.4 (continued)

PROCEDURE writetrx(VAR trx:trxrec);
(* The purpose of this routine is to write the purchaser *)
(* trx entry %)
VAR I : INTEGER;
BEGIN
WITH trx DO
BEGIN
FOR I :=1 TO 35 DO WRITE('*');
WRITELN;
WRITELN('INVOICE NUMBER
WRITELN('DATE
WRITELN('TOTAL PURCHASE PRICE
WRITELN('PART NUMBER LIST
FOR I := 1 TO 35 DO WRITE('*');
WRITELN;
WRITELN;
END;
END; (* PROCEDURE writetrx %)

',invoicenumber);
',date);

' ,transprice:10);
',partnumberlist);

se 2e se

PROCEDURE listrxs(temptr : trxptr);

(* the purpose of this procedure is to traverse the linked¥)
(* list attached to the argument pointer, writing the *)
(* values of the trx records %)

VAR
loctrx : trxrec;
BEGIN
(* traverse trx linked list,writing trxs *)
WHILE (temptr <> NIL) DO
BEGIN
(* load the contents of localtrx with the ¥)
(* contents of temptr *)
loctrx:=temptr”;
writetrx(loctrx);
(* set temptr to the next node in the linked list *)
temptr := temptr®.nexttrx;
END;
END; (*listransactions#)

B - 62

Listing 9.4 (continued)

BEGIN (* begin main program linkedlist %)
(* initialize pointer that will always reflect the *)
(* beginning of the list. ¥*)
(* this will set the end of the list to NIL during the first
(* pass through the FOR loop *)
headnode := NIL;
(* read 3 trxs and link each new one to the beginning *)
(* of the list *)
FOR I :=1 to 3 DO
BEGIN
NEW(transnode);
(* insert the newnode in front of the old headnode *)
(* link to the old headnode *)
transnode”.nexttrx := headnode;
(* make the newnode the new headnode *)
headnode := transnode;
(* load the actual data into the fields of the new node *)
readtrx(transnode”);
END;
(* list all trxs entered *)
listtrxs(headnode);
END. (*main program*)

B - 63

*)

CHAPTER NIRE QUIZ

1. A "linked list" is a

2. The symbol or indicates use of the pointer data
type.

3. The procedure releases the storage space that was
allocated by the procedure.

4, True or false?: When you refer to a component field of a data

structure for which storage was dynamically
allocated, "+" follows the variable name.

5. True or false When the pointer itself is being referred to,
only the variable name is used.

6. '"trx~,date" refers to a of a data
structure whose location is pointed to by the variable .

CHAPTER NINE ACTIVITY

Using the program that you constructed for the Chapter Eight activity as a
starting point, you may want to try developing a program that includes a
record data structure for which storage is dynamically allocated. Portions
of Listing 9.4 can provide helpful guidance.

For further information about the pointer data type, consult Chapter Five
of the LANGUAGE REFERENCE GUIDE (pages D-37 through D-39).

B - 64

CHAPTER TEN: SETS

Sets in Pascal have the same meaning as they do in the normal mathemat-
ical sense. If a group of objects is declared in set A, and a group of
objects is declared in set B, a number of operations may be performed on
these sets such as

(1) membership and relational testing
(2) set arithmetic (union, intersection, difference)

In the case of Pascal, the objects are simply data values. These data
values may be Pascal predefined or user defined. An example would be a
SET OF CHAR, or a SET OF digits where digits is a user—defined subrange
type of CHAR. Testing could be performed to see if the SET OF digits
is in the SET OF CHAR, if desired.

The method of declaring set variables is

VAR A,B : SET OF <type> ;
This means that A or B may contain from one to all of the data values
declared by the type, however its membership is undefined until it is
initialized like any other variable. In the body of the program, a set may

be initialized to empty by:

A :=[];

MEMBERSHIP TESTING

Once the set variables are initialized, a series of BOOLEAN relational
tests may be performed. The relational operators are as follows:

setl = set2 Set equality. If all members of first set are in
the second set and all members of second set are
in the first set, TRUE is returned,

setl <= get2 Subset. If all members of first set are in the
second set, TRUE is returned.

setl >= set2 Superset. If all members of the second set are in
the first set, TRUE is returned.

setl <& set2 Set inequality. If all members of the first set

are in the second set, and all members of the
second set are in the first set, FALSE is returned.

B - 65

Individual element membership may be tested by using the IN operator. If
a variable had been declared of the same type as the base set type, the

IN operator may be used to check for set membership. An example would
be:

Listing 10.1

TYPE
DIGITS = '0'..'9";
VAR
DIGIT : SET OF DIGITS;
D : CHAR;
BEGIN
D := |a|;

DIGIT := ['0'..'9'];

IF(D IN DIGIT)THEN DO (*actionk);

IF(D="0"')OR(D="1")OR(D="2"')OR(D="'3"')OR(D="4"')OR(D="5")
OR(D="'6')OR(D="7"')OR(D="8"')OR(D='9') THEN DO (*action*)

The two IF statements in the above program segment are equivalent.

Notice that the equivalent IF statement using sets is a more concise and
readable statement. This represents a simple use for sets for the average
programmer.

SET ARITHMETIC

There are three set operators in Pascal. Each requires two arguments.
Arguments should be sets of the same base type, and the result will be of
the same type. The operators are: +, *, and -. When arithmetic
operations are performed on two sets, these sets should be of compatible
types (that is, they should be of the same base type, or both subranges of
the same base type, or one must be a subrange of the other).

A+ B Gives the union of A and B
A*B Gives the intersection of A and B
A-~-B Gives the difference of A and B.

The segment program of Listing 12.2 illustrates set operator use.

B - 66

Listing 12.2

PROGRAM TESTSET;
VAR

DIGITS,LETTERS ,LOWERCASE ,UPPERCASE : SET OF CHAR;

ALPHANUMERIC, ALPHA

D : CHAR;

BEGIN
D :='"1";
DIGITS := ['0',,'9']
LOWERCASE := ['a'.
UPPERCASE := ['A',

: SET OF CHAR;

LETTERS := LOWERCASE + UPPERCASE;
ALPHANUMERIC := LETTERS + DIGITS;
ALPHA := ALPHANUMERIC - DIGITS;

IF (D IN ALPHANUMERIC * DIGITS) THEN

WRITELN('PUNT'
END.

B - 67

CHAPTER TEN QUIZ

1. True or false?: A set may contain any or all of the values declared
by its type, or may be empty (a null set).

2. True or false?: Applying the set operator "*" to two sets results
in a third set that contains all of the members
that are in one or both of the sets.

3. The two arguments of a set operator should be of compatible .

4. Two sets are of compatible if:

a. Both sets were declared as being of the same .

b. One set is a of the other set.

c. Both sets are subranges of the same .

CHAPTER TEN ACTIVITY

For each set operation, give the set that results:

Example:

(1, 2, 3] + [4, 5, 6] = (1, 2, 3, 4, 5, 6]
1. ['a'..'z'] * ['a'..'f'] = []
2. [monday, tuesday] - [monday] = []
3. [1..251 * [5, 7, 9] = []

For each relational expression, give the evaluation:
Example:
monday IN [monday, tuesday] TRUE
1. [1, 2, 3] = [2, 3, 4]
2. [1, 2, 3] <& [2, 3, 4]
3. [1, 2, 3] >= [2, 3]
4. [5, 6, 7] >= [3, 4, 5]
5. [1, 21 <= 1[0, 1, 2, 4, 8, 16]

B - 68

SECTION C: PASCAL EDITOR REFERENCE

TABLE OF CONTENTS

I. PART ONE: THE NETWORK PASCAL EDITOR . .

5.

II. PART TWO:

1.

3. Disk I/0 Error Detection and Recovery . . e . e
APPENDIX I: SUMMARY OF EDITOR COMMANDS FOR NETWORK AND MODEL III
PASCAL . . v v oo o o« o o o« & .« o e s
®
APPENDIX II: CREATING ALCOR PASCAL SOURCE FILES WITH SCRIPSIT

How to Load the Network Pascal Editor
How to Enter a New Program
How to Edit an Existing Program . .
The Special Editing Keys and Features
a. Compose Mode . . « « « « « « « .
b. Command Mode « ¢« « .+

Note About Editor Memory Use

Disk and File Information for Using the Model III

Pascal Editor . . « ¢« + + &
a. Editor Work File . . « « « « « .

b. Types of Files that May be Edited

GUIDE

THE BLAISE EDITOR FOR MODEL III PASCAL .

c. Removal of Diskettes During an Edit Session

d. Text Buffer Management
e. Work File . . ¢« v v v o o « & o
Editor Commands for Model III Pascal
a, How to Access the Editor
b. Compose Mode . . « « . .

c. Command Mode . . . « &+ o « « o &

10

10

10

11

12

12

12

12

14

15

17

PART ONE: THE NETWORK PASCAL EDITOR

The process of creating a Pascal program using Network Pascal involves four
or five steps, as listed below. This guide concentrates on the first of
these steps. The BEGINNER'S GUIDE (manual A) provided a demonstration of
the entire sequence.

1. Access the editor program and enter your Pascal program.

2. Use the Network Pascal compiler (an option on the editor/compiler
Main Menu) to compile the program (make it ready to run).

3. IF the compiler detected any errors, use the editor to correct
these errors, and then recompile the program.

4. Move the source and object code onto a disk at the Host system.
(Move is another option on the editor/compiler Main Menu.)

5. Exit the editor/compiler, and use the LINKLOAD or RUN program
to run your Pascal program.

All editing occurs to the source file located in the memory of the Student
Station. The user may move source and object files to and from the Host,
but the Network Pascal editor itself does not use the network and cannot
access files located on the Host.

1. HOW TO LOAD THE NETWORK PASCAL EDITOR

The Network Pascal editor is part of the NETPCL editor/compiler program
provided on the Network Pascal diskette. To load the editor/compiler, type
NETPCL and press ENTER at any Student Station that is displaying the
Network 3 prompt. The editor/compiler is then loaded, and a Main Menu is
displayed.

Selecting E for "Edit" at the Main Menu gets you into the Network Pascal
editor.

2. HOW TO ENTER A NEW PROGRAM

Unless a source program is currently stored in the Student Station's
memory, you will see an almost blank screen when you get into the Network
Pascal editor. The message EOF in the upper left cornmer of the screen
marks the "end of file." A line of text at the bottom of the screen
displays the number of program lines currently in the editor, and the
number of bytes available (that is, the number of characters that there is
room to add).

You enter a new program by entering Pascal program lines, using the special
editing keys and features described on the following pages. Before you can
type in a program line, you first need to add at least one line of blank
space. Hold down the SHIFT key and press @ to add one blank line, or

to add a block of 16 blank lines press CLEAR followed by E (or Model 4
users can press the Fl1 key to add a block of 16 blank lines). You can

then begin adding text, using the special keys and editing features in
compose mode and command mode as described below.

The screen can display up to 15 lines of the source file at any time. The
source file in the Student Station's memory can of course contain more than
15 lines.

3. HOW TO EDIT AN EXISTING PROGRAM

Editing an existing program involves the same keys and features as entering
a new program. If the program is not already in memory at the student
station, select M at the Main Menu and move the program into memory. Use
of the M option to '"Move files" is discussed on page A-5 of the

BEGINNER'S GUIDE.

4., THE SPECIAL EDITING KEYS AND FEATURES

The Network Pascal editor has two modes: compose mode and command

mode. In compose mode, editing functions are accomplished by using simple,
pre-defined key sequences. In command mode, editing functions are
accomplished by entering the name of a command, sometimes followed by
parameters for the command. Let's begin with a look at compose mode.

4.a. COMPOSE MODE

In compose mode, commands are available to move the cursor, delete text,
insert text, set tabs and indents, modify text format, and search through
program text. Descriptions of these commands follow. When SHIFT and a
key are indicated in the following descriptions, SHIFT should be held
down while the key is pressed. When CLEAR and a key are indicated,

CLEAR should be pressed and then the key should be pressed. The

Appendix to this EDITOR GUIDE lists these commands in brief, along with
alternate ways of representing some of these commands, using CTRL and
another key.

Cursor Movement

The cursor may be positioned anywhere on the screen by pressing any of the
following labeled keys while in the compose mode.

Moves cursor up one line. If the cursor is at the

+ top of the screen, then the screen scrolls one
line. If the cursor is at the top line of the
file, then this key has no effect.

3 Moves cursor down one line. If the cursor is at
the bottom of the screen, then the screen scrolls
one line. At the last line of the file, this key
has no effect.

-p Moves cursor to the right one character. If the
cursor is at the right edge of the screen, then
no movement occurs.

Moves cursor to the left one character. If the
cursor is at the left edge of the screen, then
no movement occurs.

ENTER Moves cursor to the beginning of the next line.
CLEAR 4~ Moves cursor to the beginning of the current line.
CLEAR —p Moves cursor to the end of the current line.

CLEAR Scrolls the display one page toward the beginning
of the file. (A "page'" is fourteen lines unless
you have used the ROLL command in '"command"

mode to otherwise define the "page.")

-)

CLEAR ‘ Scrolls the display one page toward the end of the
file.

CLEAR T Moves the cursor one tab position to the right.
If the cursor is at the right edge of the screen,
then the cursor wraps around to the leftmost tab
stop on the same line. (Tabs are set every three
characters unless you have used CLEAR S to
otherwise define tabs.)

CLEAR B Moves the cursor one tab position to the left. If
the cursor is at the left edge of the screenm, then
the cursor wraps around to the rightmost tab stop
on the same line.

CLEAR H Moves the cursor to the top left of the display
(""home").

Text Deletion

SHIFT —p Deletes the character at current cursor position.

SHIFT ¢~ Deletes the entire current line.

CLEAR K Deletes text from cursor to the end of the current
line.

NOTE: A special feature of the Network Pascal editor is that the last
line deleted with SHIFT and the left-arrow may be undeleted. If you
press CLEAR followed by U, the last line that was deleted will be
inserted into the text at the current cursor position. This feature
may be used (with care) to move lines of text. Simply delete a line,
move the cursor, and undelete it. Note that only one line is saved at
a time.

Text Insertion

CLEAR I Enters the "insert character" sub-mode. This
allows text to be inserted anywhere in an existing
text line. Steps: (1) place the cursor at the
desired location, (2) press CLEAR I, and (3)
type in the text. To exit this mode, press any
cursor movement key.

SHIFT @ Inserts a blank line into the text buffer.

CLEAR D Duplicates the line above the cursor onto the line
the cursor is currently on. Text to the right of
the cursor position is replaced by a copy of the
text on the line above.

Compose Mode Commands for Editor Parameters and Settings

CLEAR A Toggles the auto indent setting. If auto indent
is OFF, CLEAR A turns it ON; if ON, CLEAR A
turns it off. (Auto indent causes the ENTER key
to align the cursor with the first non-blank
character on the next line. If the next line is
blank, the cursor is placed below the first non-
blank character on the line above. This feature
is useful when programming with indentation.)

CLEAR S Sets a typewriter—like tab stop at the current
cursor position. (The editor has preset tab stops
every three characters which may be cleared in
command mode using the TABS command.)

CLEAR Y If a tab exists at the current cursor position, it
is cleared.

CLEAR ? Displays the amount of unused memory available in
the editor's text buffer.

CLEAR C Gets you into '"command" mode.

Text Modification

CLEAR G Appends the line after the cursor onto the end of
the current line.

CLEAR O© Splits the current line in two at the cursor
position.
CLEAR F Searches forward in the text buffer for the next

occurrence of a particular string. (The string to
be searched for must be loaded into the "find
string buffer'" using the command mode FIND
command .

CLEAR R Searches forward in the text buffer for the next
occurrence of the string in the "find string"
buffer, and replaces this string with another
string. The replacement string is specified in
command mode using the REPLACE command.

Special Characters

Pascal characters that are not on the TRS-80 keyboard may be generated by
pressing the CLEAR key followed by a digit. The entire list is shown
below.

Key sequence Character

CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR

WO WN—S
gt PPN Y d =y

¢ |

4.b. COMMAND MODE

To get into command mode, press the CLEAR key followed by the letter C
when you are in compose mode. Command mode is used to enter more complex
commands than those used in compose mode, or commands that require parame-
ters to be entered.

In command mode, angle brackets along with the cursor are displayed in the
lower left corner of the editor screen. The user simply enters the name of
an editor command. If you make a typing error in the command name, you can
use the left-arrow key to back up and edit the command name before pressing
ENTER. If you do not wish to complete the command you are typing, press
SHIFT €~ to return to compose mode.

Commands that have parameters can be entered in two ways. You can simply
enter the parameters on the same line as the command. For example: <DROLL
10 tells the editor that you want the screen to scroll 10 lines at a time
when CLEAR 4 or CLEAR & is used in compose mode. Alternately, you can
enter the command name by itself and the editor will prompt for the parame-
ters. If you enter <OROLL, the editor will respond with: <ROLL>LINES:.

At this point, you could type 1@ and press ENTER.

Commands available in Network Pascal's command mode are described below.
When parameters are required, lowercase words describe the parameters.

FIND "string"

The FIND command will search forward in the text buffer (starting at the
cursor position) for the specified string. If the string is found, the
cursor will be positioned at the first occurrence, at the

beginning of the string. If the string is delimited by quotation marks,
then leading or trailing blanks will be included in the search string.
(For subsequent serches for the same string, the compose mode's CLEAR F
command may be used.)

Example: FIND "INTEGER"

REPLACE "old string" '"new string"

REPLACE will search forward in the text buffer for the old string
(starting at the cursor position). If the old string is found, then

the first occurrence will be replaced with the new string, and the cursor
will be repositioned at the beginning of the new string. (For subsequent
searches and replaces using the same strings, the compose mode's CLEAR R
command may be used.)

Example: REPLACE "INTEGER"™ "REAL"

QUOTE "string"

The QUOTE command is used when it is desirable to insert some
non-printable characters into the file. It is also useful for inserting
certain printable characters that are not on the TRS=80 keyboard into the
file. The quoted string is inserted at the current cursor position.
Non-printable characters may be represented by a # followed by a two
character hexadecimal number (that character's ASCII representation). For
example, #5B is the left bracket. Non-printable characters such as
formfeed (##C) will not be displayed by the editor. However, the FIND
command may be used to locate such characters in the buffer.

+ numberoflines - numberoflines

The + and - commands are used to position the cursor a specified number
of lines forward or backward relative to the current cursor position. (The
blank after the + or - is required.)

ROLL numberoflines

ROLL will set the page size for all scrolling commands available in

compose mode. The "page" is defined as 14 lines by default upon editor
invocation.

SHOWLINE linenumber

The SHOWLINE command is useful for positioning the cursor absolutely to
any line in the source file.

POSITION

Positions cursor on the screen at the position specified. Prompts that the
user will see after entering this command are <POSITION>ROW: and
<POSITION>COL:. The upper left cormer of the screen is position #,d.

TABS integer
TABS = integer,integer,integer.....

TABS integer will set a tab stop every "integer" positions. All tabs may
be cleared by setting integer to @. The editor defaults to a tab stop
every third character position. (That is, tabs are set every three
character positions unless you specify otherwise.) An alternate form of
the command is TABS = integer,integer,integer..... This alternate form
sets tabs at each specified column.

C -7

QUIT (answer yes or no)

QUIT will abort an edit session and delete the current source file in

memory.

EXIT

EXIT ends an editing session and retains the current source file in
memory. The Main Menu is redisplayed.

5. NOTE ABOUT EDITOR MEMORY USE

All of the text manipulated by the Network Pascal editor is in the source
file in the student station's memory. The size of this file is limited by
the amount of memory available. When the editor runs out of memory, it
will display the message MEMORY EXHAUSTED.

One way to obtain more space is to delete the object file. Since the
source and object files must share an area in memory, space that is used
for one is not available to the other. It is possible that an object file
exists in memory from a previous compilation of the program you are working
on or from a previous program or user. To delete the object file, simply
exit the editor and use the D option. You can then enter the editor again
and continue editing.

The Network Pascal editor does not count blank spaces in your source code
as used memory. At any time, you can find out how much memory 1is available
by pressing CLEAR followed by the question mark (?).

PART TWO: THE BLAISE EDITOR FOR MODEL III PASCAL

NOTE: Before using TRS-80 Pascal with LDOS, turn to Appendix II
of the MODEL III PASCAL SYSTEM REFERENCE GUIDE for information on
patches you may need to make.

1. DISK AND FILE INFORMATION FOR USING THE MODEL III PASCAL EDITOR

The Blaise editor system for Pascal on a Model III or 4 stand-alone system
is composed of the main editor file named ED/CMD and several help files
labeled with the /HLP filename extension. These files are stored on

Model III Pascal Disk One, and may be copied to any disk for use on a
stand-alone Model III or 4 disk system.

The help files contain helpful messages that may be viewed while in the
text editor. They are not required to be present on the same disk as the
ED/CMD program; but if they are not, no help information may be obtained
during the edit session.

File management using TRS-80 Pascal differs significantly from Network
Pascal. The information that follows tells you what you need to know to
effectively edit files using TRS-80 Pascal (on a stand-alone system).

l.a. EDITOR WORK FILE

When you edit a currently existing file, the text editor creates a new text
file that is a copy of the file being edited. All editing changes are made
to this work file, which has the temporary filename TO11/TMP. This is a
protection feature, designed to insure that the file is not destroyed
through any hardware or software errors that may occur during the edit.

When the user executes an EXIT "filename" command (in command mode) to

stop editing, the editor exits, consistency checks are made, and the work
file becomes the new copy of the edited file. The old copy is then
deleted. Completion of this process requires that there always be some
free disk space available on the disk where the work file exists. If there
is not sufficient free space during an exit, the disk on which the work
file or the original file is placed will run out of disk space. In this
case, the editor will flag an error message, allowing an abort or
appropriate actions to be taken.

If an error occurs during the RENAME part of the exit command, (that is,
while the work file is being copied back to the original file) then
T011/TMP should contain the edited file. It may be used to restore the
original file should the original become damaged. The work file is placed
on the lowest numbered non-write-protected drive unless a file name with a
drive specifier was used when invoking the editor. (In this case, the work
file is placed on the specified drive.)

c-9

l1.b. TYPES OF FILES THAT MAY BE EDITED

New files may be created or old files edited using ED/MD. The size of
files that may be edited is only limited by the disk space available on a
disk. This allows creation of longer Pascal programs than is possible
with Network Pascal, where limitations are based on the size of memory in
Student Stations.

Files may not be split across disk boundaries. This means that the whole
file must reside on a single disk. The file name syntax (legal structure
of filenames) is identical with that of the operating system in use
(TRSDOS, LDOS, etc.). The text editor files are compatible with: normal
TRSDOS BASIC files, TRS-80 Pascal source and object files, or any other
ASCII-formatted files that comply with TRSDOS file conventions.

l.c. REMOVAL OF DISKETTES FROM DRIVES DURING AN EDIT SESSION

The diskette containing the ED/CMD file may be removed after an edit
session has begun, subject to the following restrictions:

1. There must always be a diskette with an operating system
installed in the designated system drive. This diskette may be
swapped during the edit session as long as the new diskette
contains a valid operating system and the change does not violate
conditions 2-4.

2. Removal must not cause the diskette containing the editor workfile
to be removed. -

3. If help files are removed, then no help messages will be available.

4. Before exiting the editor or appending lines to the text buffer,
you must replace in the drive the diskette containing the original
file.

NOTE: 1If the above rules are followed, you may change diskettes in order
to use the editor's INSFILE command (to insert a portion of an existing
file into the text buffer), as described on page C-14.

l1.d. TEXT BUFFER MANAGEMENT

The editor maintains a fixed-size buffer for storing text. The buffer will
hold approximately 13000 characters. All editor commands except for
specific file commands operate only on the text in this buffer. When you
are editing very large files, the file must be edited a section at a time.
Starting at the beginning of the file, a section is loaded into the text
buffer. Before another section of the file can be loaded into the buffer,
buffer space must be made available by writing the text out to a work file.
Then the next section may be loaded into the buffer. This process may be
repeated until the whole file has been loaded and edited.

c-10

When editing an existing file, the editor loads the first 100 lines only.
This leaves ample buffer space for adding more lines and performing the
various editing functions. If the file is longer than 100 lines, you can
use the APPEND command to load more text from the file into the buffer.
With this command, you specify how many lines to copy from the file to the
buffer. The copying begins one line past the last line previously loaded
from the file. The text being copied from the file is appended to the end
of the text in the buffer.

If the file is very large, it is possible for the buffer to become full.

If this happens, a MEMORY EXHAUSTED message is displayed. The WRITE
command must - then be used to write some of the text in the buffer back out
to a work file. With this command, you specify how many lines to copy from
the buffer to the work file. The copying begins with the first line in the
buffer and continues until either the buffer is empty or the specified
number of lines have been written. Once lines have been written from the
buffer to the work file, they may not be edited again during the current
edit session.

If the editor is exited before the entire file has been loaded into the
buffer, the editor will copy the remaining lines in the original file to
the work file.

l.e. WORK FILE

If the editor work file is placed on the same diskette as the original
file, then there must be enough space on the diskette at all times for two
copies of the edited file.

The placement of the work file on a specific drive and diskette depends on
how the editor is invoked. Under TRSDOS, if the filename drive specifier
is not appended to the filename when the editor is loaded, the editor will
search the various drives and place the work file on the lowest-numbered
drive encountered that has enough space. If a drive specifier is appended
to the filename when the editor is called, then the work file will be
placed on the same diskette as the original file.

Under TRSDOS, if the file being edited is a new file (and no filename is

specified when the editor is loaded), then the work file will be placed on
the lowest-numbered drive that has enough space.

c - 11

2. EDITOR COMMANDS FOR MODEL III PASCAL

This section assumes that you have already read PART ONE: THE NETWORK
PASCAL EDITOR (pages 1 - 8 of this EDITOR GUIDE). The Pascal editor for
stand-alone systems is quite similar to the Network Pascal editor. This
section is devoted mainly to a discussion of differences between the two
editors.

2.a. HOW TO ACCESS THE EDITOR

To create a new file, type ED when you see the TRSDOS Ready message,
and press ENTER.

To edit an existing file, type ED filename at TRSDOS Ready (where
filename is replaced by the name of the existing file), and press
ENTER.

As with the Network Pascal editor, once the TRS-80 Pascal editor is loaded
the screen will display either a blank area (for a new file) or the first
lines of the file (for an existing file). At this point, the editor
differs from the Network Pascal editor in two ways:

® Instead of the EOF (end of file) message, an EOB (end of
buffer) message is displayed.

° A block of 16 blank lines cannot be added using Model III Pascal.
Instead, blank lines are added one at a time when the user presses the
SHIFT @ key combination in compose mode.

2.b. COMPOSE MODE

Like the Network Pascal editor, ED/CMD has two modes: compose mode and
command mode,

The compose mode editing keys and features that can be used with ED/CMD
are identical to those used in the Network Pascal editor. See the Appendix
to this EDITOR GUIDE for the complete list.

2.c. COMMAND MODE

As in the Network Pascal editor, command mode is entered using the CLEAR
C key sequence in compose mode. Command mode is indicated by angle
brackets and the cursor in the lower left corner of the screen. The
command mode keys and features that can be used with ED/CMD are identical
to those used in the Network Pascal editor with the following additions:

c-12

APPEND numberoflines

The APPEND command reads text from the original file and appends it to
the end of the text buffer. After the append is executed, a message
will appear at the bottom of the display with the total number of bytes
available for additional text. If memory becomes exhausted, then text
must be written to the work file using the WRITE command.

WRITE numberoflines

The WRITE command will write to the work file the specified number of
lines, starting from the first line in the text buffer. As the write
occurs, buffer space is released. Once the lines have been written to
the work file, they may no longer be edited during the current session.
They are permanently saved in the work file.

HELP topic

The HELP command will display helpful messages on the screen regarding
the topic specified, if help for that topic is available. Supplied
topics are: HELP (which provides general help information), CMD

(which supplies command mode information), and KEY (which provides key
definitions and compose mode information). If a topic is not specified,
general help will be displayed. Help information may be viewed by using
the same cursor movement keys that are active for the SHOWFILE

command. To exit the help messages, press CLEAR followed by C.

SHOWFILE filename

The SHOWFILE command will open the specified file and show a portion
of it. Several special commands may be issued while using SHOWFILE.
They are:

CLEAR 4 Scrolls the display up one page in the file.

CLEAR +¢ Scrolls the display down one page in the file.

linenumber Positions absolutely to the line number in the
file.

+ linenumber

~ linenumber Scrolls the specified number of lines relative to the
current cursor position. + rolls toward the end of
the buffer; - rolls toward beginning of the buffer.

CLEAR C Return to editing.

c-13

INSFILE "filename” startline numberoflines

This command will insert a portion of any pre-existing file into the
text buffer starting at the current cursor location. Startline is the
position in the file that is being inserted, where the insertion starts
from. Numberoflines is the number of lines to insert. If the number
of lines is greater than the last line in the file, then the insertion
process stops at the last line. If the number of lines is greater than
available memory in the buffer, then only the number of lines that will
fit into memory will be inserted.

HSCROLL column

The HSCROLL command will scroll the display horizontally to the left

or right. This feature allows editing of files wider than the TRS-80
screen. Once a horizontal scroll is performed, the display will remain
in this mode until repositioned by another horizontal scroll command.
The column parameter is the new column position for the left edge of
the screen. Maximum column position that may be specified is 16.

EXIT "filename"

Unlike the Network Pascal editor's EXIT command, this command takes a
filename as parameter. The EXIT command in this case writes out the
entire text buffer to the work file. Any non-appended lines from the
original file will also be written to the work file. Once consistency
checks have been made, file renaming or deletions will occur. If you
specified a filename when you entered the editor, you can respond with
the ENTER key to the filename prompt. This will replace the old file
that was edited. You can also specify the name of a new file. If the
filename was left out when you called the editor, then a filename must
be specified in the EXIT command.

3. DISK I/0 ERROR DETECTION AND RECOVERY

When an error has been detected during diskette I/0 operations, the message
I0 ERROR followed by the operation system error code will be displayed.

You may type Q to allow the error to pass, or any other key to cause a
retry.

c - 14

APPENDIX I: SUMMARY OF EDITOR COMMANDS

CONTROL MODE

KEY ALTERNATE FUNCTION
Lo CTL/U Cursor up
¢ CTL/J Cursor down
= CTL/H Cursor left
- CTL/R

CLEAR ¢ CTL/B
CLEAR ¢ CTL/A
CLEAR ¢~

CLEAR ¥

SHFT - CTL/P
SHFT ¢~ CTL/N
SHFT @ CTL/O
ENTER CTL/M
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR

CTL/T

CTL/D
CTL/C

CTL/L
CTL/Q
CTL/K

CTL/Z
CTL/W

R HNWORHIORODO®m >

COMMAND MODE

APPEND
EXIT
FIND
HELP
HSCROLL
INSFILE
QUIT
QUOTE
REPLACE
ROLL
SHOWFILE
SHOWLINE

DEVICE NAMES

(= NeoNa

Cursor right

Roll backward

Roll forward
Cursor to BOLN
Cursor to EOLN
Delete character
Delete line

Insert line

New line

Toggle auto indent
Back tab

Command mode
Duplicate line
Find next string
Merge two lines
Home

Insert char mode
Delete to EOLN
Open line at cursor
Replace next string
Set tab

Tab

Clear tab

Display memory

Add text to buffer
Exit and save file
Find string
Display help
Horizontal scroll
Insert file

Abort changes
Insert literal string
Replace string

Set roll

Display a file
Display a line

Line printer
Screen
DUMMY FILE

c-15

APPERDIX II:

CREATING ALCOR PASCAL SOURCE FILES WITH SCRIPSIT

The Model III Pascal and Network Pascal compilers can have as their input
files created by any editor which is capable of outputting an ASCII file.
All that is necessary is that the file be in the proper format, and have
the proper source file syntax for the version of Pascal to be used.

®
For instance, to use Model III SuperSCRIPSIT to create/edit a file to
be used on Network Pascal:

l.

2.

<O>pen the file using any valid filename.

Write and edit the Pascal program, making sure that the column
conventions, syntax, and general form of Network Pascal are followed.

Press CLEAR Q to quit editing and save the file.

Use the A option to convert the file to ASCII. It is probably a
good idea to use a 'standard' Pascal source file name for the ASCII
file (that is, a filename ending in /PCL).

If you are using a floppy host for your network, then COPY the file
to a disk to be used on the network. If you have a hard disk-equipped
host, then CONVert it.

At the Student Station, load NETPCL, load the MOVE FILES overlay,
load the ASCII/PCL file, then load the compiler overlay and compile
the program.

Alternatively, you could have compiled the program (created on Super-
SCRIPSIT) using Model III (stand-alone) Pascal, and then COPYed or
CONVerted the object file to the network to be later RUN or
LINKLOADed.

c - 17

SECTION D:

TABLE OF CONTENTS

Introduction. « v o« v« & &« « o o &

Chapter

Chapter

1.

One: Program Elements .
Identifiers
Numbers
SErings « o v« 4 4 4 .
Reserved Words
Special Symbols
Comments . . . « + & + &
The Semicolon
Two: Program Structure .
Block Headings
a. The Program Heading .
b. The Procedure Heading
c. The Function Heading
Block Parts
a. Label Declarations. .
b. Constant Definitions,
¢. Type Definitions. . .
d. Variable Declarations
e. Common Declarations .

f. Access Declarations .

LANGUAGE REFERENCE GUIDE

g. Procedure and Function Declarations

h. Statement Body . . .

10

10

10

12

12

13

14

15

16

16

17

18

19

Chapter Three: Simple Data Types

1. Ordinal Types . . .
a. The Type INTEGER
b. The Type CHAR .

c¢. The Type BOOLEAN

d. The Enumerated Type

e. Subrange Types

2. The Type REAL . . .

.

-

-

Chapter Four: Structured Data Types .

1. The Type ARRAY . .
2. The Type SET . . .
3. The Type FILE . . .

a. The Type TEXT .
4. The Type RECORD . .

a. Record Variants

Chapter Five: The Pointer Data

Chapter Six: Operators . .
1. Arithmetic Operators
2. Relational Operators

3. BOOLEAN Operators .

4. Operator Precedence

.

5. Type Transfer Operators

Chapter Seven: Expressions . .

D - ii

21

21

21

22

22

23

24

24

25

25

26

29

29

31

33

37

41

41

42

43

43

44

47

Chapter Eight:

Statements .« ¢ ¢ o o o o » o

The Assignment Statement

The Compound Statement « .

Repetitive Statements

a. The FOR Statement . . « ¢ ¢ « o &

b. The WHILE Statement . . « « « « «

¢. The REPEAT Statement . « « o o &

Conditional Statements . .« « + « + &

a. The IF Statement . + o« ¢ o o o« &

b. The CASE Statement . + « « « + &

The WITH Statement . « o ¢ o o o o &

The GOTO Statement . « + o« o o o o &

The PROCEDURE Statement . . « o« + « =

Nine: Procedures and Functions . . .

Scope Rules

Forward

External

Recursion .
Predeclared

Ten: Input

RESET .

REWRITE

READ .

WRITE .

READLN

WRITELN

CLOSE .

PAGE .

MESSAGE

Procedures and Functions

and OQutput . . « « « . .

51

52

52

53

53

54

55

55

55

57

58

59

60

61

61

63

64

66

67

71

72

73

73

75

78

79

79

80

80

APPENDIX -- LANGUAGE REFERENCE

1.

Compiler Options

a. DOUBLE .
b. FORDECL.
c. INOUT .
d. IF . . .

e. NULLBODY
f. INCLUDE

g. LIST ..
h. PAGESIZE
i. WIDELIST
j. RANGECHK

k. PTRCHECK

Error Messages

a. Compiler Error

. . .

Codes

b. Runtime Error Codes

.

Standard 7-Bit USASCII Character

Differences from Standard

a. Omissions

b. Extensions

.

c. Other Implementation Characteristics

Type STRING

. . .

.

.

. °

a. Assigning Values to Dynamic otring Variables

b. Outputting Dynamic String Variables

c. Converting a Dynamic otring into an Array.

d. Recovering Memory Used by a Dynamic String

e. Using the String Library . . . « « « . . .

D - iv

.100

.100

.101

.101

I/0 Procedures GET and PUT
a. File Buffer Variables
b. The GET Procedure
¢. The PUT Procedure

Using Files in Structured Variables

Using Global Variables in External Routines

Using Common Variables . + & « + « « « o & &

.102

.102

.102

.103

.105

.108

.109

INTRODUCTION

Organization of the Network Pascal Language Reference Guide

This reference guide assumes that the reader is already somewhat familiar
with the Pascal language. It is organized as a reference source, with
topics grouped in such a way as to make them easy to find. The guide was
not intended to follow a progression of discussion that is well suited as
a teacher of the Pascal language. If this is your first experience with
the Pascal language, you should first work through the Pascal Tutorial
(section B). The tutorial provides an introduction to the fundamental
concepts and terminology of Pascal, and will give you the background you
need to use this reference guide effectively.

Notation and Terminology used in this Reference Guide

Both the syntax and the semantics of the programming language Pascal

are described in this reference guide. Syntax refers to the arrangement
of program elements into a form which the compiler can understand.
Semantics refers to the meaning that the compiler associates with a
particular arrangement of the program elements. The semantics of a
language can be explained with words, but the syntax is best explained
through the use of diagrams.

The syntax diagrams used throughout this reference guide describe the legal
(allowed) syntax of program elements. Several legal forms are shown for
most elements.

Each syntax diagram has an entering and an exiting point which is denoted
by an arrow. The paths followed by these arrows represent the various

different forms that the program element can take.

Let's consider an example. The following syntax diagram describes the
syntax of an integer:

Syntax of an integer:

—Q©

SN e B B

This diagram indicates that an integer consists of one or more digits
optionally preceded by a plus or minus sign. Upon entering the diagram,
you can select one of three possible paths. One path leads directly to
digit, one leads to +, and one leads to -. The paths from + and

—~ then lead to digit.

When you have passed through digit, you have so far constructed a one-
digit integer optionally preceded by a positive or negative sign (for
example, 2, -2, or +2). You now have the option of either exiting

the diagram or following the arrow which leads back to the beginning of
digit to add another digit (for example: 25, -25, +25). From this

point, you may pass through digit repeatedly, or may exit the process
after any pass. Thus, the diagram shows us that an integer may consist of
one or more digits, optionally preceded by a positive or negative sign.

Let's consider another example. This second syntax diagram describes the
ten correct forms that a digit may take. Entering the diagram, you have
ten possible paths from which to choose. Each path leads to a single char-
acter that is a legal digit. You choose a path, follow it to the character
and then exit the diagram.

Syntax of a digit:

In the syntax diagrams used in this reference guide, upper-case character
strings denote reserved words (words with a set meaning in the Pascal
language). These words must be present in the form shown. Lower-case
character strings denote the parts of the syntax where many legal forms
exist. For example, integer in a diagram represents any legal integer,
while INTEGER represents a reserved word which must appear as shown.

In some cases, abbreviations are used to shorten a diagram. For example,
id is used in place of identifier, and expr is used in place of
expression. Where other abbreviations are used, their meaning should be
apparent from the surrounding text.

CHAPTER ONE: PROGRAM ELEMENTS

The elements of TRS-80 Pascal (identifiers, numbers, strings, reserved
words, and special symbols) are composed from the ASCII character set,
listed in the appendix.

1. IDENTIFIERS

An identifier is a name that identifies a program, a constant, a type,
a variable, a procedure, or a function. It consists of a letter followed
by zero or more of the following characters:

any of the 26 letters of the alphabet in lower or upper case
any of the digits # through 9

the character $

the character _

Pascal makes no distinction between upper— and lower-case letters. The two
identifiers Name and name are considered identical.

The identifier may be of any length, but only the first eight characters
are significant to the compiler. Therefore, it is important to keep the
first eight characters of identifiers unique. (For example, the compiler
would read the identifiers A2345678 and A23456789 as identical, because
all characters past the eighth character are ignored.)

An identifier cannot contain blank spaces or span a line boundary.
Examples of legal identifiers are:

Factor$ DEPARTMENT A Div_10 B12345678$_ c$123

2. NUMBERS

Numbers are integer or real constants. The allowed range for an

integer is -32768 to +32767. This limitation is imposed because an integer
is allocated sixteen bits of storage. (You will remember that an integer
may not contain a fractional part.)

Syntax of an integer number:

®

Examples of integer numbers: 30 -28934 0 32739

Real numbers are represented in either exponential or fixed-point form.

The fixed-point form consists of an integer part followed by a decimal
point and a fractional part (for example: 25.567). The exponential

form consists of a fixed-point part followed by an exponent part which is a
multiplier (for example: 2.567El). The value of a real number expressed

in exponential form is:

fixed-point part * (10 raised to the exponent part)

Syntax of real numbers:

—-»—»@—I—a)r >® =--l->

]J

Fixed-point form: 50.0 -10000.0 345.22452

Examples of real numbers:

Exponential form: 0.239E3 -4.5921E-2 876.0E+33 193.27E-3
0.239E3 is equivalent to 239.0
-4 ,5921E~2 is equivalent to -0.045921

NOTES:
The allowed range for real numbers is (-)1.7E-38 to (-)1.7E+38.
Using D instead of E in exponential form represents a double-

precision real number. Single-precision real numbers are accurate to 6
digits; double-precision real numbers are accurate to 16 digits.

3. STRINGS

Strings are sequences of characters enclosed by single quotation marks. A
string ronsisting of a single character is a constant of the type CHAR.
Examples of legal strings are:

'ABC' '12"QzZW" ' BEGIN' ke ! 4
Strings consisting of n characters, where n is a number greater than

one, are constants of the type ARRAY[l..n] OF CHAR. (The array is a
structured data type discussed in Chapter Four of this reference guide.)

If a string is to contain a single quotation mark, the mark must appear

twice in the sequence. The string consisting of the single character '
is represented as: ''''.

Characters in strings can optionally be denoted by a pair of hexadecimal
numbers (base sixteen numbers composed of the characters 0 through 9 and A
through F). The character # followed by 2 hexadecimal characters repre-
sents a single character in the ASCII character set. (See the ASCII charac-
ter set in the Appendix to this guide for a key to what hexadecimal number
pairs represent what characters.) One reason for using hexadecimal numbers
is that they provide a mechanism for representing nonprintable characters.

To include the literal character # in a string, you must include it twice
in the string; just as the character ' must appear twice when the charac-
ter itself is to be made a part of the string. A string consisting of the
single character # is thus represented as: Y##.

Examples of hexadecimal character representation in strings:

'#30' is equivalent to the letter 'O

'D#4FG' is equivalent to 'DOG'

'HAL4FLAFHLTT is also equivalent to 'DOG'

'#00' corresponds to the nonprintable null character
'A#B' is illegal

4. RESERVED WORDS

The following words are Pascal keywords and have special meanings in a pro-
gram. They may not be used as identifiers:

AND DOWNTO IF OR THEN
ARRAY ELSE IN PACKED TO
BEGIN END LABEL PROCEDURE TYPE
CASE FILE MOD PROGRAM UNTIL
CONST FOR NIL RECORD VAR
DIV FUNCTION NOT REPEAT WHILE
Do GOTO OF SET WITH

5. SPECIAL SYMBOLS

The special characters below are used as operators and delimiters in a pro-
gram. Because character sets vary from system to system, alternate
representations are provided for some of the symbols.

Symbols with only one representation:
- /

<O <= >= >
) i= . ,

« o~ +
- *

-
H=
.

*e

Symbols with alternate representations:

symbol alternate
{ (*
} *)
- @
[.
] $)

The following symbols can be produced by the TRS-80 Models III and 4 by
using particular key combinations.

symbol key combination

[CLEAR 1
] CLEAR 2
- CLEAR 3
{ CLEAR 4
> CLEAR 5
| CLEAR 6

CLEAR 7

In addition, these two symbols can be produced by Network Pascal:

symbol key combination
CLEAR 8
> CLEAR 9
6. COMMENTS

Comments can be used in a program for documentation purposes. The compiler
generates no code for comments.

The symbol { or (* denotes the beginning of a comment. The symbol }
or *) denotes the end. All characters in between are ignored by the
compiler.

Examples of legal comments:

{This is a comment.)}

(*This is a comment
that spans more than one line.¥*)

Comments may not be nested. The following will generate an error:

(*outer (*inner level*) level*)

7. THE SEMICOLON

The semicolon is used extensively in the Pascal language to separate the
individual components of a program. For example, block headings must be
separated from block parts, block parts must be separated from one another,
and individual definitions, declarations, and statements within the block
parts must be separated.

In general, the semicolon may be used freely throughout the program.
However, care should be taken not to include a semicolon in the middle of a
statement. This is a common source of error when using the IF statement
with one or more ELSE clauses. [IF . . . ELSE is a conditional

statement, discussed in Chapter Eight of this guide.] Since the ELSE
clauses are a part of the IF statement, they must not be separated from

it by a semicolon. An ELSE keyword should never be preceded by a
semicolon.

This example shows correct use of semicolons in an IF statement:

IF time > 12 THEN

BEGIN

alpha := 'e';

beta := 'f';

END (*semicolon here would cause an error¥)
ELSE

BEGIN

alpha := 'g';

beta := 'h';

END;

Chapter One has covered the fundamental elements of TRS-80 Pascal:
identifiers, numbers, strings, reserved words, special symbols, and the
semicolon. Chapter Two goes on to introduce Pascal program structure.

CHAPTER TWO: PROGRAM STRUCTURE

Pascal is a block-structured language in that a Pascal program is construc~
ted out of units that can be compared to building blocks. A Pascal program
consists of a minimum of one block. Additional sub-blocks (procedures

and functions) may be created and placed within the '"program block". The
term for this process is "nesting." (Procedures and functions were covered
in the Tutorial and are reviewed in Chapter Nine of this guide.)

The rule for nesting is that a block may lie entirely within another block,
but blocks do not overlap in any other way. A level of nesting can be
assigned to each block of a program. The block-structured organization of
a program is represented pictorially by the following example:

Program Block A (level 1)

Procedure Block B (level 2)

“Procedure Block C (ivl. 3)

Function Block D (level 2)

Procedure Block E (lvl. 3)

Procedure Block F (level 2)

A program, then, consists of at least one block, the program block. Option-
ally it contains procedure and/or function blocks which are nested within.

1. BLOCK HEADINGS

The purpose of the block heading is to give the block a name and, in the
case of procedure or function blocks, to define any parameters (values) to
be passed to the block from the main program. There are three types of
blocks: the program block, the procedure block, and the function

block. A single program has only one program block, the outermost block of
the program. There may be any number of procedure and function blocks.
Each of the three types of blocks has a different kind of heading. Let's
look at these three kinds of headings.

l.a. The Program Heading

The program heading must be the first non-comment in a program. Its
purpose is to signal the start of the program and to give the program a
name. The heading consists of the word PROGRAM and an identifier (which
is constructed according to the rules on page D~3) and a semicolon.
Optionally, it may include comments enclosed by parentheses right before
the semicolon. (Characters inside the parentheses are ignored by the
compiler.)

Syntax of the program heading:

——> [proGRAM | —| id -[-)@——) >(O) 1 0

Example program headings:

A 4

PROGRAM demonstrate;

PROGRAM taxes (computes income tax);

1.b. The Procedure Heading

The procedure heading signals the start of a procedure block. It gives the
procedure a name and defines the parameters to be passed to it.

Syntax of the procedure heading:

~———3| PROCEDURE|—>| id I-L[parameter 1i3tl_l">@"'—'>

The parameter list declares the variables which are used to pass data
into and out of a procedure. Variables named in the parameter list are
called formal parameters.

D - 10

A statement outside of the procedure activates (or calls) the procedure.
This statement has a corresponding list of parameters which are called
actual parameters. The actual parameters must match the formal para-
meters in order and in type. However, their names need not be the same.

There are two kinds of formal parameters: pass—by-value or pass-by-
reference. A pass~by~value parameter causes its corresponding actual
parameter to be copied to another location and then the formal parameter
references the copied value. Therefore, changing the value of the formal
parameter inside the procedure does not change the value of the corres-
ponding actual parameter.

In contrast, what is passed to a formal pass-by-reference parameter is the
address of the corresponding actual parameter. The formal parameter refer-
ences the same location as the actual parameter. Therefore, changing the
value of the formal parameter also causes the value of the actual parameter
to be changed.

Variable declarations in the parameter list which are preceded by the

keyword VAR indicate pass-by~reference parameters. The absence of the
keyword indicates a parameter that is passed by value.

Syntax of the parameter list is:

©

[O
— O B [0 [ae i — 00—

Example procedure headings:

PROCEDURE out;
PROCEDURE cpu(pc : INTEGER);
PROCEDURE delete(VAR i,j : INTEGER; ch : CHAR; VAR x : REAL);

In procedure delete above, i and j are integers which are passed by
reference, ch is a character which is passed by value, and x is a real
number which is passed by reference.

As a general rule, pass~by-value parameters should be used to prevent
unpredictable side effects. However, side effects are sometimes desirable.
That is, sometimes you may want a change in the value of a formal parameter
to also change the value of its corresponding actual parameter. In such a
case, pass-by-reference parameters should be used. Also, when you are
passing large data structures such as arrays, pass by reference should be
used. This speeds execution and saves memory because the program passes a
pointer (address reference) that points to the structure rather than
copying the whole structure to another location.

D-11

l.c. The Function Heading

The function heading signals the start of a function block. It gives the
function a name and defines the parameters to be passed to the function.

Unlike a procedure, a function has a type associated with it, and, like a
variable, has a value assigned to it., A function is referenced by an

expression and its value is then substituted into the expression.

Syntax of the function heading:

—"}[FUNCTION]“—?I id I‘L[parameter list]—L)@—" @—?

The parameter list for a function has the same form as the parameter list
for a procedure, discussed on the previous page.

Example function headings:
FUNCTION number : REAL;

FUNCTION nextstate(currentstate : INTEGER) : INTEGER;

In the example headings above, the function number is declared as a
REAL-valued function which has no parameters. The function nextstate is
an INTEGER-valued function which has one parameter, also of type INTEGER.
Within each function, there should be an assignment statement which
assigns a value to the function. For example, number:=5.3 and
nextstate:=currentstate + 1 could appear inside the respective functions.

Note that a function may be of an ordinal type or of the type REAL

only. A type is ordinal if the values which it can take form a finite

set whose members can be placed in a linear order. The predefined ordinal
types are INTEGER, CHAR, and BOOLEAN. You can define a new ordinal

type by enumerating all of the values which the type can take.

2. Block Parts
A block may be composed of the following elements:

label declarations

constant definitions

type definitions

variable declarations

common declarations

access declarations

procedure and function declarations
the statement body

0 . .

O~V WN e

D - 12

A block does not have to include all eight parts. At a minimum, a block
must include the two keywords BEGIN and END which bracket the statement
body. The following is an example of a minimum complete program. It
contains only the program block, which is composed of only the heading and
a null statement body.

PROGRAM donothing;

BEGIN (*The statement body contains no statements.*)
END.

The eight parts listed are described in detail below. The first six of
these parts may appear in any order. The only requirement is that an
identifier must be defined before it is used. For example, the definition
of a user~defined type must textually precede the declaration of a variable
of that type. (The only exception to this is the definition of pointer
types which are discussed in Chapter Five.)

There may be more than one of any particular "part." For example, there
could be two separate type—definition parts.

The procedure and function declarations follow any use of the first six

parts. The statement body then follows the last procedure or function
declaration.

2.a. Label Declarations

Label declarations are used in conjunction with the GOTO statement, which
transfers program control to the destination named in its argument. A
label declaration provides a means of labeling that destination. A GOTO
statement can then reference the label, causing a branch to the statement.

The label declaration part is signaled by the keyword LABEL.

Syntax of the label declaration part:

()
—..__;-———-)linteger constantl %@ >

A label must be declared in the same block where the GOTO statement that
references it appears. Branching outside a block is not allowed. Several
labels may be declared on a single label declaration line. All declared
labels must appear somewhere in the statement body.

Example label declaration part:

LABEL 100, 200, 300, 400, 500, 1000;

D - 13

Syntax used to label the statement:

s [l — Frtme——

Examples of labeled statements:
100: x:=47;

200: IF x > 500 THEN GOTO 100;

2.b. Constant Definitions

A constant definition is used to associate an identifier with a value
which does not change. A constant identifier is assigned a value at
compile time and this value cannot be changed without the program being
recompiled. This means that a constant identifier cannot have its value
changed by an assignment statement. The use of constant identifiers
increases program readability because meaningful names (such as pi) can
be used in the place of actual values (such as 3.14159265).

The values which can be assigned to constant identifiers are numbers,
strings, or other identifiers which are constants. This includes
identifiers which are members of an enumeration (an enumeration is a list
of the values which a particular variable or type can take on). The start
of the constant definition "part" is signaled by the keyword CONST.

Syntax of the constant definition part:
NG N By e W v) B S

Example constant definition part:

CONST
low=32;
high=88;
pi=3.14159;
speedoflight=299792.0;
separator='————————- 's
positive=10;
negative=-positive;
keydefinition=#61;

NOTES:

Iﬂteger constants may optionally be expressed using hexadecimal
numbers preceded by #.

There is a predefined constant MAXINT which is defined to be
equal to the largest positive value an integer can take.

D - 14

l.c. Type Definitions

A type definition is used to create a new data type. (Some data types are
predefined by Pascal; others are user-defined, new data types created by
the Pascal programmer.) A type definition associates an identifier with a
user-defined simple or structured data type. The identifier can then be
used in a variable declaration to specify the type of the variable. For
example, the identifier colors might be associated with a data type
composed of the values red, blue, green, orange, purple.

A variable of a user-defined type can declare its type directly in the
variable declaration part. For example:

VAR
months : (jan,feb,mar,apr,may, jun, jul,
aug,sep,oct,nov,dec);

Even so, it is useful to have a name associated with a user-defined type,
particularly when you are using structured types whose definitions are
long, and when more than one variable in the program is to be declared of
that type. Associating a name with the type means that the type must be
defined only once.

In some cases, type definitions are necessary. If comparisons are to be
made between two variables of a user-defined type, then the variables must
be declared as the same type. Defining the type for each variable
separately in a variable declaration part will not work. Although the
variable declarations will look the same, the compiler will view them as
variables of two separate types. Also, declarations of variables in the
parameter list of a procedure or function must be to named types. For
example, if an array is to be passed as a parameter, the array must be
defined in a type definition and the formal parameter must then be declared
as that type.

The type definition "part" is signaled by the keyword TYPE.

Syntax of the type definition part:

6
— b E—o—rw e o——

Example type definition part:

TYPE colors = (red,blue,green,orange,purple);
weekdays = (sunday,monday,tuesday,wednesday,
thursday, friday,saturday);
workdays = monday..friday;
daysofmonth = 1..31;
letters = 'A',.'2°%;

D~ 15

2.d. Variable Declarations

Each variable in a program must be declared before it is used. This is
done by associating the variable name with a type. The type can be (1) the
name of a predefined simple data type, (2) the name of a user defined type
which has previously been defined in a type definition part, or (3) the
type can be defined when the variable is declared. The start of the
variable declaration part is signaled with the keyword VAR.

Syntax of the variable declaration part:

———— VAR >

Example variable declaration part:

VAR
X,¥,2 : REAL;
ok : BOOLEAN;
i,j.k : INTEGER;
fruit : colors;
alpha,beta : CHAR;
characters : list;
mark : ARRAY [1..30] OF INTEGER;
byte : 0..255;
months : (jan, feb,mar,apr,may, jun, jul,
aug,sep,oct,nov,dec);
account : RECORD
number ,date : INTEGER;
END;
In the example above, x,y,z : REAL; declares three variables to be of a

predefined simple data type; fruit : colors; declares a variable to be

of a user-defined type that has presumably been defined in the type declara-
tion part; and the type of the variable months is defined in the variable
declaration, by an enumeration of the values that months may take on.

2.e. Common Declarations (Available in Model III Pascal but not
in Network Pascal.)

The common declaration part 1s used in the same manner as the variable
declaration part to associate a variable name with a data type. However,
declaring a variable in the common declaration part gives it a special
property. Normally, storage space for variables is allocated dynamic-
ally. That is, variables declared in a block are allocated storage space
when the block is activated, and the space is freed when the block
terminates. Thus, the local variables of a block become undefined when the
block terminates. In contrast, common variables are allocated storage
space statically at compile time. This means that the common variables of
a block retain their defined values even after the block terminates.

D - 16

Common variables are '"scoped" similar to normal variables (see Chapter Nine
of this guide for a discussion of scoping rules). However, only one
storage location is reserved for each common variable name. Therefore, a
common variable declared locally within a procedure will reference the same
location as a common variable of the same name declared anywhere else in
the program.

A common variable cannot be accessed in a block unless its name appears in
an access declaration of the same block. This feature is useful for
controlling access to global variables, providing protection and better
documentation of where global variables are used.

Another valuable use for common variables is in external procedures. A
procedure which is often used by many separate programs can be compiled
separately and linked to the programs that use it. In the case where the
procedure must retain information between activations, such as information
on the cursor position in a graphics procedure, common variables may be
used to prevent the need for global variables.

Syntax of the common declaration part:

©,

—Q
—>{ camoy | *—¥—>]id —[_evpe] >

vV

“e

Example common declaration part:

COMMON cursorx,cursory : INTEGER;

2.f. Access Declarations

An access declaration is used in conjunction with a common variable. No
common variable can be referenced unless its name appears in an access
declaration of the block which references it. The order in which common

variable names appear in an access declaration is arbitrary.

Syntax of the access declaration part:

o
N8 G

Example access declaration part:

4
©
v

ACCESS cursorx, cursory;

D - 17

2.g. Procedure and Function Declarations

A procedure or function declaration creates a new block. A procedure
declaration consists of a procedure heading followed by a block. A
function declaration consists of a function heading followed by a block.
Procedure and function declarations form subblocks within the block in
which they appear.

Syntax of procedure or function declaration:

[ﬂ-—-—""[function heading l‘""‘“““‘jl
> |procedure heading,-—-———-; ——

Ll

Example procedure declaration:

PROCEDURE getvalue(first,last :INTEGER; VAR word : buffer;
VAR value: INTEGER);
(*¥Converts hex character string to decimal value:
buffer is a globally declared type ~-> PACKED ARRAY[1..8] OF CHAR;
word contains the hex character string
first and last are pointers into the string

value is the returned decimal value *)
VAR 1i,n,factor : INTEGER;
ch : CHAR;
BEGIN
value := 0; factor := 1;
FOR i := last DOWNTO first DO
BEGIN
ch := word[i];
IF ch = ' ' THEN n:=0 (*Blank character given value 0%)
ELSE
IF (ch>='0") AND (ch<='9') THEN (*character range 0..9 *)
n := ORD(ch)-ORD('0') (*convert ch to decimal*)
ELSE

IF (ch>='A') AND (ch<='F') THEN (*character range A..F %)
n := ORD(ch) - ORD('A') + 10; (*convert ch to decimal*)
value := value + factor * n;
factor:= 16 * factor; (*hex is base 16%)
END;
END; (*procedure getvalue*)

Example function declaration:
FUNCTION nextstate(currentstate : INTEGER) : INTEGER;

(* returns the next state given the current state %)
BEGIN

CASE currentstate OF
1: nextstate := 3;
2: nextstate := 4;
3: nextstate := 1;
4: nextstate := 2;
END;
END; (*function nextstate¥)

D - 18

2.h. Statement Body

The statement body of a block contains zero or more statements which

describe the actions of the block. The statement body must start with the

keyword BEGIN and end with the keyword END. However, since individual
statements may also include BEGIN and END, the statement body may

contain many occurrences of these two keywords. The statement bodies for

the three types of blocks are identical, except that the concluding END
for the program block statement body must be followed by a period. The
concluding END for procedure and function statement bodies must be
followed by a semicolon.

Syntax of statemeant body:

ECD-—-—
““——>r BEGIN]—4&tatements' END ><:> ¥

Example statement body:

BEGIN (* begin program block statement body ¥*)
WHILE NOT EOF DO
BEGIN
READ (x,y,z);
X :=SQR(x); y := SQR(y); z := SQR(z);
WRITE('squaredata ' , x , vy , z);
END;
END. (* end of program *)

Next, Chapter Three discusses the simple data types that are predefined
Pascal or may be defined by the user.

D - 19

in

CHAPTER THREE: SIMPLE DATA TYPES

The "simple" data types consist of ordinal types and the type REAL. They
form the base for building structured types.

1. ORDINAL TYPES

A type is said to be ordinal if it is characterized by a linear ordered
set of distinet values which can be mapped on the set of natural numbers.
This mapping is actually an enumeration (listing) of all the values which
the type can take. The predefined ordinal types are INTEGER, CHAR, and
BOOLEAN. New ordinal types can be defined by enumerating all the values
which the type can take. In addition, new ordinal types may be defined as
subranges of other ordinal types.

l.a. The Type INTEGER

Variables declared as type INTEGER may take on values in the range -32768
to +32767. All of the arithmetic operators (example: + and -) and

the relational operators (example: > and <) can be used with integer
constants and variables. [Note: The relational operator IN is used with
integers only in conjunction with sets of up to 256 non-negative members
(see Chapter Four).]

Integer calculations which cause an overflow will not generate an overflow
error. For example, adding one to the predefined constant MAXINT

(defined as the maximum value an integer can take on) causes a 'wrap-
around" to the lowest allowed integer value, —32768.

Syntax of type integer:

> ImeR >

Example declaration:
VAR i,j,k : INTEGER;
Example integer constants:

59 -1 8 329 ~-19000 29872

D - 21

1.b. The Type CHAR

Variables declared as type CHAR can take single characters as values.

The set of valid single characters is the ASCII character set. Each charac-
ter has an associated ordinal number in the range 0 to 255. (A table of
ASCII characters with associated ordinal numbers is listed in the Appendix
to this guide.)

There are two functions which may be used with the character set. The
function ORD('character') returns the ordinal number of the character
specified. The function CHAR(ordinal number) returns the character
associated with the ordinal number specified. For example:

ORD('A') would return the number 65

CHAR(65) would return the character A,
These are called "transfer functions' because they are used to transfer a
character value to an integer value and vice versa. Constants of the type
CHAR are denoted by using single-character strings. All relational

operators may be used with variables and constants of type CHAR.

Syntax of the type CHAR:

> CHAR =
Example declaration:
VAR alpha,beta : CHAR;
Example character constants: ‘9! ‘a' '#9F!
Example relational expression: TA' < 'B!

l.c. The Type BOOLEAN
The BOOLEAN type represents logical values, represented by the pre-
defined identifiers FALSE and TRUE. These are the only possible values
of a BOOLEAN variable or expression.
The boolean operators AND, OR, and NOT take boolean operands (expres-
sions that can be evaluated as true or false) and yield boolean results.
The relational operators listed below all yield boolean results:

= < > <= < = IN
An example of a boolean expression is:

NOT alpha < beta AND gamma = 5
Example declaration: VAR switch : BOOLEAN;
Boolean constants: TRUE FALSE

D - 22

l.d. The Enumerated Type
Pascal allows you to define your own ordinal types. You may create a new
type by giving the new type a name and enumerating all the values that the

type may take.

Syntax of the enumerated type:

©-
> (O > BN [:g{:] >

Examples of enumerated types:

,
v

names = (Fred, Joe, Nancy, Susan);

foods = (hotdog, hamburger);
The values listed are identifiers. The order in which the identifiers
are listed defines a relationship. The identifiers can be thought of as
being mapped on to a set of natural numbers. The first identifier maps to
0, the second to one, the third to two, and so on.
This implies that:

identifierl < identifier2 < identifier3...< identifierN.
For example, consider the predefined type:

BOOLEAN = (FALSE,TRUE);
The boolean value FALSE is less than the boolean value TRUE because FALSE
appears in the list before TRUE. This kind of ordered relationship applies
to any enumerated type. Consider the type definition:

colors = (red, blue, green);
By this definition, a variable declared as type colors can take on the
value red, blue, or green. The definition also implies that red <
blue < green.
This ordering means that enumerated values can be used in relational

expressions. It also means that they may be used for range specifications.
For example, consider the FOR statement. (FOR, introduced in Chapter

Eight, is used to direct the computer to repeat a series of actions —— that
is, to loop —- until a particular variable reaches a particular value.)

The range of the loop-control variable is defined by specifying a starting
and stopping value. These starting and stopping values could be the values
of an enumerated type. For example, if a variable color has been

declared as type colors, the following statement is valid:

FOR color := red to green DO

D~ 23

l.e. Subrange Types

A subrange type is simply a type defined to take on a subset of the values
representing some ordinal type.

Syntax of the subrange type:

The use of subranges can sometimes save memory. For example, an integer
variable whose values are always in the range of 0 to 255 could be declared
as a subrange of the type INTEGER. You might define a new type as

follows:

¥

byte = 0..255;

Now, variables declared as type byte would be allocated 8 bits of storage
rather than the 16 bits which are allocated for variables declared as type
INTEGER. (This is because the digits 0 through 255 can be expressed in

the computer's base-two number system using only eight binary digits.) The
compiler allocates the minimum amount of storage required to represent the
range of values specified by a subrange type.

Use of subranges can contribute to good documentation because they define
the range of legal values that a variable declared as the subrange type can
take on. Subrange types are also often used in conjunction with SET

types which are discussed in Chapter Four,

2. THE TYPE REAL

The type REAL is used to represent fractional numerical data. The
implementation of real numbers is dependent on the computer you are using.
For the TRS-80 Model III or Model 4, the allowed range is (~)1.7E-38
through (-)1.7E+38, where "E" indicates exponentiation. (That is, the
minimum and maximum ranges are (-)1.7 to the power of + or - 38.)

Real numbers are either single-precision (accurate to 6 digits) or
double-precision (accurate to 16 digits). See Chapter One of this language

reference guide for more information on real numbers.

Syntax of type REAL:

>| REAL >
Example Declaration: VAR X,V , z :REAL;
Example real constants: 2.3 -129.345 5.496E-14 -7983.851D+23

Chapter Three has provided a brief introduction to simple ordinal types.
More complex, structured data types are covered in Chapter Four.

D - 24

CHAPTER FOUR: STRUCTURED DATA TYPES

There are four kinds of structured data types: the ARRAY, the SET, the
FILE, and the RECORD. These four kinds of data types represent four
different ways of organizing the simple data types into a data structure.
Because a data structure can include as its components other data struc-
tures, it is possible to build very complex structures from the basic
simple data types.

All structured data types can be packed, by programmer request. The most
compact form of storage possible will be used for a packed data structure.
Packing a data structure can sometimes save memory. However, packing may
cause access time to increase, and so the decision to pack or not depends
on the specific application. The keyword PACKED signals the compiler to
pack the data type into its most compact form. When structured data types
contain other structured data types, the keyword PACKED must be applied

to the innermost structure as well as the outermost to have any effect.

1. THE TYPE ARRAY

An ARRAY is a structure composed of a fixed number of data elements which
are all of the same type. Data elements within the array can be defined to
be of any one type. They can be defined as one of the simple types or as
one of the structured types, including ARRAY. Arrays can be defined to

be of any dimension. (For example, an array of numbers in a row is a
one-dimensional array; an array of rows and columns is a two-dimensional
array; and so forth.)

Syntax of the type ARRAY:

2/
—L—>| pACKED]-L[ARRAY]--)@-‘LI ordinal type |[&>(Q)—lor |5 TrPE |—>

Example declarations:

TYPE table = ARRAY [0..5,1..10] OF INTEGER;
colors = (red, blue, green, yellow);
VAR report : ARRAY [1..20] OF table;
day ARRAY [1..365] OF REAL;

class : ARRAY [0..8,0..5] OF INTEGER;
chart : ARRAY [colors] OF INTEGER;

Member elements of the array are specified in the array's index defini-
tion (the portion shown in brackets above). The index definition speci-
fies the number of dimensions, the number of elements in each dimension,
and how the elements are to be accessed. For example, ARRAY [0..5,1..10]
OF INTEGER in the example above specifies a two—-dimensional array. The
first dimension of this array contains six elements (the integers 0 - 5)
which are to be accessed in the order 0, 1, 2, 3, 4, 5. The array chart,
declared as ARRAY [colors] OF INTEGER, is a one~dimensional array consis-
ting of the elements red, blue, green and yellow, which are to be
accessed in the order shown in the type definition.

D - 25

As shown by the example of the array chart, the index definition may

consist of a list of ordinal types (excluding the type INTEGER for the
reason that this would create an array too large to fit in memory). In

this case, the number of types specified corresponds to the number of dimen-
sions of the array.

To access one or more elements of a variable declared as type ARRAY,

first specify the variable name. Then list expressions which evaluate to
ordinal values that are within the range of the ordinal types of the index
definition.

Examples of accessing array elements:

report[5,3,6] day[40] class[0,0] chart[red]

NOTE: Remember that (. is read by Pascal as equivalent to [and that
.) 1s read as equivalent to]

2. THE TYPE SET

A set is a collection of distinct elements which are all of the same
ordinal type. The elements of a set are called set members. There may be
up to 256 members in a set. The 256 member limit causes the restriction
that a set can not be defined to be of ordinal type INTEGER. Also, sub-
ranges of type INTEGER which include negative integers are not allowed as
set base types. A set can have zero members, in which case it is called an
empty set.

Syntax of the type SET:

——> | SET | —>| OF |—>] ordinal type | ———3>

Example declarations:

TYPE days = (sunday, monday, tuesday, wednesday,
thursday, friday, saturday);

VAR lowercase, digits, special : SET OF CHARS;
schooldays, workdays : SET OF days;
day : days;

A variable declared as type SET can take on any values which are subsets
of the values defined as the type of the set. (This includes the empty
set.) For example, the variable schooldays declared above might take on
the values monday, tuesday, wednesday, thursday, friday, a subset of the
type days.

Set values are denoted by listing set members within square brackets. The
individual members can be specified as ordinal expressions.

D - 26

Syntax of set notation:

O«
>© L [o] — O — pre e LB D —

The ".." notation between two members specifies that all values in

between are also to be included as members. For example, [0..3,7..10]
would denote a set with members 0,1,2,3,7,8,9,10. The empty set is denoted
by [].

L.

Example assignments to set variables:

schooldays:= [monday, wednesday, friday];
workdays := [monday..fr1day],
lowercase := ['a'..'z'];
digits = ['0 .'9'];
[

special : AN A A H

The relational operators which are applicable to sets are the following,
discussed below:

L]

IN = <> { = >

IN

A single element can be tested to see if it is a member of a set.
The operator IN is used for this testing of set membership.

This operation evaluates to TRUE if the single element on the
left is a member of the set on the right.

Two sets can be compared to see if they contain exactly the same
members, The operator = is used to test for set equality. If
each member of each set is also a member of the other, then

the operation evaluates to TRUE.

<>

Two sets can be compared to see if they do not contain exactly
the same members., The operator < > is used to test for set
inequality. If any member of either set is not also a member of
the other, then the operation evaluates to TRUE.

< =

A set can be compared to another set to see if the first set is a
subset of the second set., The operator < = is used to test for
set inclusion, If all the members of the set on the left are

also members of the set on the right, then the operation evaluates
to TRUE.

D - 27

>=

A set can be compared to another set to see if the first set is a
superset of the second set. Thé operator >= is used to test

for set containment. If there are no members in the set on the
right which are not also members of the set on the left, then the
operation evaluates to TRUE.

Example use of these relational operators with sets:
IF day IN workdays THEN gotowork; (*gotowork is a procedure)

IF character IN digit THEN WRITE(character);
If workdays >= schooldays THEN noweekendclasses;

Relational Expression Evaluation
monday IN [monday, tuesday] TRUE

YA' IN ['a'..'z'] FALSE

TA' IN ['A'..'Z2'] TRUE

[1, 2, 3] >= [0] FALSE

[1, 2, 3] >= [2] TRUE

['Z2'] <= ['*', 'Z'] TRUE

[1 <= [tuesday] TRUE
[ta','f','g"'] = ['a','f','k'] FALSE

The arithmetic operators which are applicable to sets are described below.
When arithmetic operations are performed on two sets, these sets should be
of compatible types (that is, they must be of the same base type, or both
subranges of the same base type, or one must be a subrange of the other).

+

Two sets can be combined to form a third set containing all the
elements that are members of either set. The operator +
performs the union of two sets,

A set can be formed as the difference between two sets. The
operator — performs set difference. The result is a set
containing all members of the set on the left which are not also
members of the set on the right.

*

A set can be formed which contains only the members which
exist in both of two other sets. The operator * performs
the intersection of two sets.

D - 28

Examples:

Expression Result

(1, 2, 3] + [4, 5, 6] (1, 2, 3, 4, 5, 6]

[1, 2, 3] + [2, 3, 4] [1, 2, 3, 4]

(1, 2, 3] - [2] [1, 3]

(1, 2, 31 - [4] [1, 2, 3]

(1, 2, 3] * [4, 5, 6] []

[1, 2, 31 % [2, 3, 4] [2, 3]

[red, blue, yellow] + [pink] [red, blue, yellow, pink]

3. The Type FILE

The data type FILE provides the link between a program and the peripheral
equipment of the computer system. Variables declared as type FILE repre-
sent logical files. Input and output operations always refer to logical
files. Each logical file has an associated physical file. A physical file
is a device such as the computer screen or keyboard, a printer, a disk
file, or the "dummy'" file. Since all input and output operations reference
logical files rather than physical files, a program's input or output can
be redirected simply by associating the logical file with a different physi-
cal file. (This association is accomplished at the beginning of program
execution, when Pascal prompts the user to identify input and output
files.)

File data elements can be of any type except FILE, and may also not be of
structured types containing a component of type FILE.

Structured variables (for example, variables of type ARRAY or RECORD)

may contain components of type FILE. However, the Input/Output routines
(such as WRITE and READ, discussed in Chapter Ten) will accept only
simple variable names. Filenames such as customer.filel or files[2]

are not accepted by the I/0 routines. See the Appendix to this guide for
an example of how to work around this restriction.

Syntax of type FILE:

———— [FILE| =——>| OF | ——> |type| ————>

You can greatly simplify input and output by declaring variables as files
of structured types. For example, a complete record can be read or written
to a file of records simply by specifying the file variable name and the
record variable name as parameters to an input or output procedure.

D - 29

Example file declarations:

TYPE sales = RECORD
salesman : PACKED ARRAY[1..20] OF CHAR;
quantitysold: INTEGER;
END;

VAR salesfile : FILE OF sales;

numbers : FILE OF INTEGER;

The data elements of files declared as above are read and written in binary
(base two) format. Binary format is the form in which data is actually
stored in memory. During the I/0 process, the data is not translated to a
character-readable form. The advantage of this type of I/0 is speed of
data transfer, and minimized data storage requirements. The obvious
disadvantage is that data is in a non-readable form.

Next we'll discuss a special type of file that handles character-
formatted data, which you can read. In a TEXT file, data is stored as
characters. Input and output then involves a translation to and from the
binary format used by the computer.

3.a. The Type TEXT

Files of the predefined type TEXT have special characteristics. Unlike
other file types, a text file is divided into lines, each line being a
sequence of characters. The data types which can be input to, and output
from, text files, are not restricted to characters only, even though a text
file is actually a file of characters. The characters of a text file may
represent string, integer, real, or boolean values.

Pascal I/0 routines make the appropriate character-to-binary and
binary—-to-character conversions with files of type TEXT. There are two
predeclared variables of type TEXT, INPUT and OUTPUT. These

variables are used as the default files for input and output procedures and
functions, as described in Chapter Ten.

Example declarations:
VAR infile, outfile : TEXT;
There are two procedures and one function built into Pascal which apply
only to text files:
WRITELN
The procedure WRITELN terminates the current line and positions
a file pointer to the next line. If any variables are specified

to be output by the WRITELN, they are output first and then the
file pointer is advanced to the next line.

D - 30

READLN

The procedure READLN causes the file pointer to be positioned
to the beginning of the next line. If any variables are speci-
fied to be input by the READLN, they are input first and then
the file pointer is advanced to the next line.

EOLN

The function EOLN is a boolean function which evaluates to
TRUE when the end of a line has been reached. At all other
times, it evaluates to FALSE.

These I/0 procedures and functions are discussed further in
Chapter Ten.

4, THE TYPE RECORD

The type RECORD is characterized by a fixed number of elements which are
called fields. The fields of a record can be of different types. Record
field identifiers can be declared to be of any type, including RECORD.
Therefore, records can be nested.

Syntax of the type RECORD:

—L—ﬂ PACKED]—l-)[RECORD |—>|field list]——tg)l END |

The field list describes the individual components ("fields") of a
record. All field identifiers within a record must be unique. However,
field identifiers are limited in scope to the record itself, which means
that an identifier outside the record definition can be identical to a
field name within the record.

The field list consists of two separate parts, a fixed part and a variant
part. The fixed part refers to the part of the record which is always
referenced in the same way; that is, the fields are fixed. The variant
part refers to the part of the record which may be referenced in multiple
ways; that is, the fields may vary. Exactly what these two parts are will
become clear as the discussion progresses. A record can contain either or
both of these parts. If both parts are present, the fixed part must
precede the variant part.

Syntax of field list:

-—————-> ()@]‘)Ivariant partil—'l'——§

D - 31

Syntax of the fixed part of a record:

©%

©)
«
h | . >

» | 1d I@

Example record using fixed fields:

type

w7

RECORD
business : PACKED ARRAY{1..25] OF CHAR;
location : RECORD
street,
city,
state : PACKED ARRAY [1..15] OF CHAR;
zip : INTEGER;
END;
END;

A particular field of a record variable is referenced by the variable name
followed by the field name, with a period separating the two names. If the
field name is itself a record, then a field within the nested record is
referenced by appending a period and the field name to the other two names.

Syntax of record variable referencing:

A 4

field id|=——te—p>

b | record variable id l 3@

Example referencing:

Assume that the customer is a record variable as defined above.

Then:
customer.business (references first field)
customer.location (references second field)

The nested fields of the field location are referenced by:

customer.location.street
customer.location,city
customer.location.state
customer.location.zip

D - 32

4.a. Record Variants

Sometimes it is useful to be able to define a storage area in a record
which can be accessed in multiple ways. Record variants provide the
ability to do this. In certain applications, they can simplify a program
and save storage space at the same time.

A record variant defines a fixed-size storage area of a record, which can
be accessed in multiple ways. The size is determined by the variant
alternative (alternative way of accessing the variant) that requires the
largest amount of storage space. The variant is defined using a form
similar to that of the CASE statement.

Syntax of the variant part of a record:

—————>|CASE —[———ﬁ> tag field id -——-4><:)1L> type|—>| oF

(O

@“1
——g:xstant @"’@“9_”@ >

Each alternative way of accessing the storage area of a variant is defined
by a field list. All field names within the variant definition must be
unique. The storage area can then be accessed in the desired way simply by
specifying the appropriate field name.

There are two forms of the variant. 1In one form, a tag 1is specified and
becomes a field in the record. The tag field resides in the record just
prior to the variant storage area. The purpose of the tag field is to
store a value which specifies for each record the alternative of the

variant that is in effect. The other form omits the tag field, which in
some cases is not needed.

Example using no tag field:

PACKED RECORD
CASE BOOLEAN OF
FALSE: (whole
TRUE : (bytel, byte2

INTEGER);
0..255;);

END;

This variant definition defines a storage area of two bytes (assuming an
integer is 16 bits) which is the largest amount of storage required for
either of the two field lists. You could then access the whole two-byte
storage area as an integer, or you could access each individual byte of the
integer. The storage could be represented as follows:

D - 33

bytel

whole or
byte2

The type BOOLEAN was chosen as the selector of the CASE because it
defines two possible values, which is what is needed to specify the two
alternatives. Another type could have been defined and used just as well.
With the variant defined as above, you could now reference either the
integer or the separate bytes simply by specifying the appropriate field
name: whole, bytel, or byte2. For example, if number is a variable
declared as this record type, then the possible ways of referencing this
storage area are:

number.whole
number.bytel
number,.byte2

NOTE: Care should be taken when using variants for this purpose. The way
in which the fields of the different forms of the variant overlap one
another depends on your implementation (the computer you are using). Also
in the above example, which would be the low byte and which would be the
high byte is inplementation-dependent.

Example Using Tag Field:
Assume the type definition:

itemtype = (circle, rectangle, triangle);

PACKED RECORD
xcoordinate, ycoordinate : REAL;
CASE item : itemtype OF

circle : (radius :REAL);
rectangle: (length, width :REAL);
triangle : (baselength :REAL;
angle :INTEGER) ;
END;

This record definition contains a fixed part as well as a variant part with

a tag field. The storage allocation for this record could assume the
following structures:

xcoordinate xcoordinate xcoordinate
ycoordinate ycoordinate ycoordinate
tag or or
field w——> item item item
radius length baselength
width angle

D -34

The storage allocated would be the amount required to store the two real
numbers of the fixed part, the tag field, and the two real numbers of the
rectangle field list. The other field lists of the variant require less
storage than the rectangle list. Information on which alternative of the
variant is in effect can now be stored as part of each record via the tag
field. The tag field is referenced in the same way as the other fields.

NOTE: Variants can be nested. That is, a variant can contain a definition
of another variant. However, there can be only one variant at any one
level, and the variant definition must follow any fixed fields of a record.

D - 35

CHAPTER FIVE: THE POINTER DATA TYPE

The pointer data type is used in dynamic storage allocation (the creation
of storage space for variables during program execution, as that space is
needed). Dynamic storage allocation is particularly useful when the amount
of data storage a program will require is unknown.

Variables for which storage is dynamically created cannot be referenced in
the usual manner. The reason is that they actually have no identifiers of
their own. Instead, they are referenced through the use of pointers. A
pointer is a variable which points to the location in memory of a
dynamically created variable.

When the programmer defines a pointer data type, he or she specifies the
data type for which storage will be allocated. The data type specified
determines the amount of storage required for each allocation. The
definition of a data type does not have to precede the definition of a
pointer type which references it. This is the only exception to the rule
that identifiers must be defined before they are used. This exception
makes it possible for a field of a record to be declared as a pointer to
the record itself.

Either the symbol * or the symbol @ may be used to signify a pointer
type.

Syntax of type pointer:

¢
> @ —— [1] >

Example pointer declaration:

TYPE transptr = @transaction;
transaction = RECORD

item : INTEGER ;
price :REAL;
link :transptr;
END;

In the above declaration, transptr is a pointer type defined as a pointer
to the data type tramsaction. Transaction is a record consisting of
three components (item, price, and link). Dynamic variables of the

type transaction can be created through the use of pointer variables of
type transptr. Notice that link is declared to be of type tramsptr.

Link is a pointer variable which may point to another dynamic variable of
type transaction. Therefore, a linked list of transaction records can be
formed, with the link field of each record pointing to the next record.

D - 37

The procedure NEW, predeclared by Pascal, is used to allocate storage for
dynamic variables. It has one argument, which is a pointer variable. The
NEW procedure allocates the amount of storage required by the data type
associated with the pointer, and then assigns the address of the allocated
storage to the pointer. The pointer is then used to reference the allo-
cated storage. For example, consider the declaration:

list : transptr;

The statement NEW(list) would allocate the amount of space required to
store the three components of a transaction record at some location in
available memory, and assign the location in memory to the variable list.
(The available memory is called the "heap," and its size is set at run
time.)

References to a variable which is pointed to by a pointer are made by
following the pointer name with either the symbol * or the symbol @.
For example, list@ would reference the dynamically created transaction
record in the above example.

Syntax of referencing dynamic variables:

——>| pointer id]—r:%_l

——d,

Example referencing of dynamic variables:

list@ references whole record

list@.item

list@.price reference individual fields

list@.link

list@.1link@ reference record pointed to by link field
list@.link@.item

list@.1link@.price reference individual fields
list@.1link@.link

When a dynamically created variable is no longer needed, it may be disposed
of. This serves to free the space consumed by the variable for other uses.
The predeclared procedure DISPOSE is provided for this purpose. Like the
NEW procedure it has one parameter, which is a pointer. The DISPOSE
procedure frees the memory that is allocated to the variable pointed to by
the pointer. Referring to the above example, DISPOSE(list) would free

the amount of memory which was allocated to the dynamic transaction
variable,

D - 38

A predefined constant NIL can be used to assign a value to a pointer.

Other than using the procedure NEW, assignment to the constant NIL is

the only way of giving a pointer a defined value. If a pointer's value is
NIL, then it does not point to a dynamic variable. NIL is often used

with linked lists to give the pointer of the last element in the list a
defined value. It provides a way of detecting when the end of the list has
been reached.

Example procedures using pointer variables:

PROCEDURE create(VAR translist : transptr);

(* Creates a new transaction
Adds the transaction to the top of a transaction list
Returns a pointer to the new transaction via tranmslist
New transaction becomes top of transaction list *)

VAR

trans (*new transaction pointer¥)

transptr;

(* note: translist should be initialized to NIL #*)
BEGIN

NEW(trans); (*create mew transaction¥)

trans.link:=translist; (¥%new transaction points to old top

of list¥)

translist:=trans; (*new transaction becomes top of list¥)

END; (*procedure create¥)

PROCEDURE destroy(translist, trans : transptr);

(* Removes the transaction pointed to by trans from the list
Recovers the memory used by the transaction ¥)

VAR
lead, (*points to next transaction in list¥)
trail (*saves location of current transaction
while lead is advanced to the next transaction¥)
: transptr;
BEGIN
lead:=translist;
While lead <> trans DO (*search for trans¥)
BEGIN
trail:=lead; (*¥save pointer to current transaction¥)
lead:=lead@.1link; (*advance pointer to mext transaction¥)
END;
IF translist <> trans THEN (*check if trans is at top of list¥)
trail@.link:=lead@.link (*link around transaction*)
ELSE
translist:=lead@.link; (*new top of list¥)
DISPOSE (trans); i (*recover memory¥)
END; (*destroy*)

D - 39

CHAPTER SIX: OPERATORS

There are four categories of operators: arithmetic, relational, Boolean,
and type-transfer.

1. ARITHMETIC OPERATORS

The following table lists all the arithmetic operators, the operations they
perform, the type of operands which may be used, and the type of result of
the operation., Mixed-mode arithmetic is allowed (for example, an integer
value may be added to a real value). Also, automatic truncation occurs
when an integer variable is assigned to a real value (that is, the frac-
tional part is discarded -- the real value is '"truncated" or '"shortened" to
become an integer value).

Operator Operation Type of Operands Type of Result
+ addition integer, real integer, real
set union sets of compatible same type as the
types larger set
- subtraction integer, real integer, real
set difference sets of compatible same type as the
types larger set
* multiplication integer, real integer, real
set intersection sets of compatible same type as the
types larger set
/ division integer, real integer, real
DIV truncated integer integer
division
MOD modulus integer integer

NOTE: For sets to be of compatible types, they must be of the same base
type, or one base type must be a subrange of the other, or they must both
be subranges of the same base type.

D - 41

2. RELATIONAL OPERATORS

All relational operators perform operations which yield Boolean results.,
The result is always either TRUE or FALSE. In general, both operands of a
relational operator must be expressions of identical type, but the types
REAL, INTEGER, and subranges of INTEGER may be mixed.

(Relational operations may be performed on any types except files.)

Operator Result of Operation

= true if left operand is equal to right

< true if left operand is not equal to right
< true if left operand is less than right

> true if left operand is greater than right
<= true if left operand is less than or

equal to right

>= true if left operand is greater than or
equal to right

When character strings are compared, the ordinal numbers of the characters
composing both strings (that is, the numbers indicating the positions in
the ASCII table of the respective characters) are compared to one another
until a pair of characters are different or until the end of the strings is
reached. If there are no character pairs which differ, then the strings
are equal.

For unequal strings, the first pair of characters which differ determine
the relationship. The string whose character's ordinal number is the
largest is considered to be greater than the other string.

Operation Result
'abe' = 'cdf! FALSE
'abe' < 'abd' TRUE
"bab' > 'adf! TRUE

The relational operator IN is used exclusively to test for set
membership, The left operand may be of any ordinal type, and the right
operand may be any set of the same ordinal type.

IN TRUE if left operand is a member of the

right. (For more information on sets and
set membership, see Chapter Four.)

D - 42

3. BOOLEAR OPERATORS

The boolean operators, like the relational operators, yield boolean
results. The result is always either TRUE or FALSE. The operands of a
boolean operator must be boolean expressions.

Operator Result of Operation

OR true if either one or both of the operands is
true

AND true only if both operands are true

NOT true if operand is false

Operation Result

FALSE OR FALSE FALSE

TRUE OR FALSE TRUE

FALSE OR TRUE TRUE

TRUE OR TRUE TRUE

FALSE AND FALSE FALSE

TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

TRUE AND TRUE TRUE

NOT TRUE FALSE

NOT FALSE TRUE

4. OPERATOR PRECEDENCE

Operator precedence is the order in which operations take place within
expressions. In general, expressions are evaluated from left to right;
however, operations of higher precedence are performed before operations of
lower precedence. All operators are ranked by precedence. Parentheses
have the highest precedence, and may be used to alter the normal order of
evaluation. Nested parentheses are evaluated from the inside out.

Following is a list of the operators, arranged by precedence. Operators
listed on the same line have equal precedence.

Highest
Precedence --> ()
- when used as unary operators (that is,
as positive and negative sign)
* / DIV MOD
[S
= O £ > K= >= 1IN
NOT
AND
Lowest ——> OR

D - 43

Operation Equivalent To Result

8+3%4 8+(3%4) 20
10-8/4%2 10~ ((8/4)*2) 6
5 MOD 10-5 (5 MOD 10)-5 0
3<2 OR 6>8 AND TRUE (3<2) OR ((6>8) AND (TRUE)) FALSE
NOT 7%2<5 NOT ((7%2)<5) TRUE

5. TYPE TRANSFER

The type-transfer operator is used to temporarily change the type of an
existing variable. This is useful when there is a need to reference a
variable in a manner which would normally not be allowed by Pascal. For
example, you might wish to access the lower and upper bytes of an integer
variable. The type-transfer operator allows you to access parts of
variables. Also, it provides a mechanism for preventing the compiler from
checking type. This may be used in some cases where parameters of
differing types must be passed to a procedure.

Syntax of type transfer:

> frartanie ——> @) —— [mee 4] ——>

A type—transferred variable may be used wherever a variable is allowed.
Regardless of its original type, the type-transferred variable is then
accessed according to the type indicated. The type-transfer operator tells
the compiler to treat the variable as if it were of the new type. No data
conversion takes place. Type transferred variables must adhere to the same
type-matching rules as normal variables.

Example use of type-transfer operator:

TYPE byte = 0..#FF;
integrec = PACKED RECORD
lower, upper :byte;
END;
pointer = @integrec;
VAR number : ARRAY[1..10] OF INTEGER;

integr : integrec;
address: pointer;

Valid type-transfer operations:

integr.lower := number[1]::byte;
number[1]::byte := integr.lower;
READ(integr: : INTEGER);

number[5] := address::INTEGER;
address::INTEGER := 25 + number[3];

D - 44

The fundamental use of type transfer is to overlay a type template on a
data structure so that components of the structure may be treated as if
they were of any desired type. This requires a precise understanding of
how the compiler represents the data type (how it is stored) in order to
insure that the operation does as it was intended. Because of this, it
should be used with caution and only as necessary.

D - 45

CHAPTER SEVEN: EXPRESSIORS

An expression is a variable, a constant, a function call, a set
notation, or a combination of these operands with a description of the
operations to be performed on them., The operators and operands of an

expression define an implicit type for the expression. When evaluated,
the expression yields a value of that type.

For example, an integer expression is composed of operands and operators
which when evaluated yield an integer result. A real expression yields a
value of the type REAL, an ordinal expression yields a value which is

of one of the ordinal data types, etc. An expression can be just a simple
expression (which can yield a value of any data type), or it can be a
boolean expression. A boolean expression is composed of simple expressions
but always yields a value of the type BOOLEAN.

Syntax of expression:

. . ¥
simple expression >

[> boolean exEressionl)

Syntax of simple expression:

—() O«
=sls
> [Fera]

Syntax of term:

~

' MOD

L]

s ; DIV

A\ "4
)
2]

(¢}

il

Q

[a
A 4

D - 47

Syntax of factor:

D lset notation

IS

function call

i >| variable id

P—_—-_)—'—_‘ﬁ
congtant

—'—'a"@—)‘expression ""@ ‘—"AL—%

o ———————y,
s

. For the syntax of set notation, refer to the structured data type
SET.

e A function call has the same form as the PROCEDURE statement.
The only difference is that a procedure call is a statement while
a function call is a part of an expression. Remember that a
function has a type associated with it. When a function call is
encountered in an expression, the named function is activated.
Somewhere in the function, a value is assigned to the function
name. When the function terminates, the value assigned to it is
substituted in the expression for the function call.

NOTE: A function may be an ordinal type or the type REAL only,

Syntax of a function call:

I; /
P lfunction id s expression (:) —

Example function calls:

salary
payment (interestrate,years)

sum{a+b)

Example simple expressions:

Expression Result

time same type as time

weekday + [saturday, sunday] set

12*payment (interestrate,years) integer or real depending on the

type of function payment.

D - 48

entry MOD size integer
-10 DIV 4 + 9.2/6-45 real

(varl+var2)*153/ (var3-varé) real

Syntax of boolean expression:

>

‘[——_OR
‘[boolean termg]

Syntax of boolean term:

AND
_____4[——47[b001ean factogl

»f

Syntax of boolean factor:

relational expression

Note: factor must be of type BOOLEAN.

Syntax of relational expression:

e simple expression > S A

simple expression

Example boolean expressions:

a=b OR c<d AND switch

nl + n2 >= 20 AND n3-n4 <=l1

NOT here OR there

NOT alpha < beta AND gamma <> 'R’

number IN [1..15] OR NOT letter IN ['a'..'z']

D - 50

CHAPTER EIGHT: STATEMENTS

Statements are the Pascal sentences that describe the actions and logic
of a program. Statements reside in the statement body part of the block
(between and including the BEGIN and END statements).

A statement may be labeled or unlabeled. A labeled statement may be used
in conjunction with the GOTO statement. GOTO transfers program control

to the statement that is identified by the label named in the GOTO's
argument. Before a statement can be labeled, the label must be declared in
the LABEL declaration part of the block in which the statement appears.

Syntax of a statement:

—L—a >O]/ 3| unlabeled statement JI———— 4

Syntax of an unlabeled statement:

3| procedure statement| mmmm——

F—> 0TO statement |

P> WITH statement | =

—>| CASE statement]

—>| IF statement

> [_REPEAT statement |

———>[WHILE statement |

F—> FOR statement |

f———3| compound statement |
f——>lassipnment statement]

D - 51

1. THE ASSIGNMENT STATEMENT

The assignment statement is used to assign values to variables and function
identifiers.

Syntax of the assignment statement:

-——-9‘ function id

—t——3| variable id ?(:) > | expression| =————-3y

The action of the assignment statement is to give the variable or function
identifier on the left side of the equal sign, the value of the evaluated
expression on the right side. The variable may be of any type. In
general, the type of the variable or function must be the same as the type
of the evaluated expression. However, there are some exceptions. An
identifier of type REAL may be assigned a value which is an integer or a
subrange thereof. One side may be a subrange of the other, but the value
to be assigned should be in the range of the left side. If the identifier
on the left side is a SET type, it may be assigned to a set which differs
in type as long as the set members of the right side are allowable members
of the set on the left side.

Example assignment statements:

Assignment Left~hand side identifier type
a := 10 integer or real

x := 100.5 + 49 + 87/12 real

y := abs(10%*z-30.3) real

test := sample < 10 boolean

2. THE COMPOUND STATEMENT

Statements which are bracketed by the two keywords BEGIN and END make

up what is termed a compound statement. The compound statement is used in
places where more than one statement is required. The compound statement
is essential for most of the control structures of Pascal. For example,
the FOR statement is a control structure used for executing a statement
repeatedly for a specified number of times.

The compound statement provides the ability to use this construct for
executing a sequence of statements rather than just one.

D - 52

Syntax of the compound statement:

(:>,
SNy B 7

Example compound statement:

v
v

END

BEGIN

a :=b¥* c;

d := a/l10 + 16.9;

e :=d~ 28.3 + 14;
END

3. REPETITIVE STATEMERTS

Repetitive statements are structures used for loop control. They specify
that a statement or sequence of statements is to be executed repeatedly
until some terminating condition occurs. Pascal provides three such
control structures.

3.a. The FOR Statement

The FOR loop is used when a statement is to be executed a predefined
number of times. The FOR loop is characterized by a loop variable which
serves as a counter for controlling the number of times a statement is
executed.

The counter has defined starting and ending values which are ordinal
expressions. The expressions are evaluated once upon entry into the loop.
At the beginning of each time through the loop, the counter's value is
compared to the ending value to determine whether or not to end execution
of the FOR. At the end of each time through the loop, the counter's
value changes by 1. If the keyword TO is used, the counter is
incremented each time through the loop. Use of the keyword DOWNTO causes
the counter to be decremented.

The loop is terminated when the counter has incremented or decremented
past the ending value. The FOR statement is not executed if the
counter's starting value is such that the ending value would never be
reached. For example, if the starting value was -1, the ending value was
2, and DOWNTO was used, the FOR statement would not be executed.

NOTE: The compiler option FORDECL may be used to cause the compiler to
generate temporary variables for FOR loop counters. When this option is
used, it is not necessary to declare the counter variable.

D - 53

Syntax of the FOR statement (counter must be of an ordinal type):

\'4

L_______;ngi_EEBEL__J DO L__Qstatement]_______e>

Example FOR statements:

FOR i := 1 TO 30 DO WRITELN(' This gets written 30 times');

FOR j := first DOWNTO last DO
BEGIN
‘initialscore[j] := 0;
time[J] := 60;
END

3.b. The WHILE Statement

The WHILE statement uses a boolean expression to control repeated
execution of a statement.

Syntax of the WHILE statement:

——————-q>(WHILE L——;Iboolean expr] <>L22J | statement | e

The evaluation of the boolean expression precedes the execution of the
statement. If the expression evaluates to TRUE, the statement is executed
and then the expression is reevaluated. This loop continues until the
expression evaluates to FALSE. The first occurrence of a FALSE evaluation
causes termination of the WHILE statement.

Example WHILE statements:

WHILE NOT EOLN DO READ(character)

WHILE (a<b) AND (b<c) DO
BEGIN
WRITELN(a,b,c);

a := a + 1;
¢c:=c-1;
END

D - 54

3.c. The REPEAT Statement

The REPEAT statement, like the WHILE statement, uses a boolean

expression to control repeated execution. The major difference is that the
REPEAT is designed such that a sequence of statements which are bracketed
by the two keywords REPEAT and UNTIL will be executed at least once.
Following the keyword UNTIL is a boolean expression. If the expression
evaluates to FALSE, then execution returns to the first statement following
the REPEAT keyword. If the expression evaluates to TRUE, then execution
continues with the statement following the boolean expression.

Syntax of the REPEAT statement:

————————)[REPEAT -tate;:;:iJA”UNTILl-qﬁboolean expr]-——-—-—)

Example REPEAT statement:

REPEAT
i = 1+1;
b 1= j+l;
k[j] := (i + j) MOD 100;
1[i] := (i + j) MOD 200;
UNTIL i=j

4. CONDITIONAL STATEMENTS
Conditional statements are used when the execution of a statement must be
controlled by some predetermined condition, or when one statement out of a
group of statements is to be selected for execution. There are two
conditional statements: the IF statement and the CASE statement.

4.,a. The IF Statement

The IF statement uses a boolean expression to control the execution of
statements.

Syntax of the IF statement:

—> | 1F |—>pool exp]—>|THEN ———-b-Lé ELSE —-#-lk—-)

In its simplest form, the IF statement involves the evaluation of a
boolean expression to determine whether or not to execute an associated
statement which follows the keyword THEN. If the expression is TRUE,
then the statement is executed, otherwise it is not. The IF statement
can also contain an ELSE clause. 1In this form, if the boolean expression
is TRUE, then the statement following the keyword THEN is executed;
otherwise the statement following the keyword ELSE is executed.

D - 55

Example IF statements:
IF finished THEN WRITELN(' operation complete');
IF number < 10 THEN range := 1 ELSE range := 2;

IF alpha >= '0' AND alpha <= '9' THEN digit(alpha)

ELSE
IF alpha >='A' AND alpha <= 'Z' THEN letter(alpha)
ELSE
special(alpha);
IF contextlist = NIL THEN
BEGIN
NEW (context);

context@.link := NIL;
contextlist := context;

END
ELSE
BEGIN
temp = context;
NEW (context);

temp@.link := context;
context@,.link := NIL;
END;

The statements following the keywords THEN or ELSE can themselves be
IF statements. In some forms, an ambiguity can exist in determining
which ELSE clause goes with which IF. For example, consider the
following case in which bl and b2 represent boolean expressions and
sl and s2 represent statements.

IF bl THEN IF b2 THEN sl ELSE s2

The ELSE could go with the first IF or the second IF. The rule used

for solving the ambiguity is to associate an ELSE clause with the nearest
IF. The above statement would then be equivalent to:

IF bl THEN
BEGIN
IF b2 THEN sl ELSE s2
END

CAUTION: Semicolons must never appear in the middle of a statement, but a
common error for beginning programmers is to put a semicolon in an IF
statement which has an ELSE clause. While semicolons are necessary for
separation of the individual statements within a compound statement, they
must not separate an ELSE from its corresponding IF.

D - 56

4.b. The CASE Statement

The CASE statement uses an ordinal expression to select one statement out
of a group of statements for execution. The group of statements represent
alternatives. When a CASE statement is executed, one of the alternatives

is selected and executed and then control passes to the statement following
the CASE statement.

Syntax of the CASE statement:

——————3|cASE|—-3|ord expr|—®| oF

O
l SN]
“3{eons tant] —(D) —>fratenen]

N

)
L—L—» OTHERWISE -——-»Estatemenq-l—) END | =————3

The alternative statements of a CASE statement are preceded by constants.
The ordinal expression is evaluated and compared to the constants preceding
the alternative statements. If a match is found, the statement which has
the preceding constant that matches the evaluated expression is executed.

-

There are two actions that can take place in the event that no match is
found. By using the OTHERWISE clause, you may specify a statement to be
executed when no match is found. If the OTHERWISE clause is omitted and
no match is found, then execution continues with the statement which
follows the CASE statement.

Example CASE statements:

CASE nl+n2 OF
10: x := sin(x);
11: x := cos(x);
12: x := In(x);
END;

CASE ch OF
‘a','b','c': token :=
'd','e',"f': token :=
OTHERWISE token :

ERD;

D - 57

CASE day OF

monday : snack := apple;
tuesday : snack := orange;
wednesday : snack := grapes;
thursday : snack := pear;
friday : snack := candy;
saturday,
sunday : BEGIN
weekend := TRUE;
snack := nothing;
END;
END;

5. The WITH Statement

The WITH statement is used in conjunction with variables of type
RECORD. It makes it possible to use a shorter notation when referencing
fields of record variables.

Syntax of the WITH statement:

S

s]][50] ———

The variable list specifies the record variables whose fields are to be
referenced simply by specifying the field name itself. When fields of a
record are nested (that is, when a record is defined as a field of another
record), the record variable and the fields, down to the level of the field
which is to be referenced in short notation, may be specified in the
variable list. Then you can reference the nested field in the statement
simply by specifying its field name.

There is a conflict inside the WITH statement when an identifier
corresponds to both a variable name and a field name of one of the
specified records. For example, you could have a record variable named
weekday with a field named monday, and also have a simple variable
named monday. Then the following WITH statement might be used:

WITH weekday DO monday :=1

In such a case, the field name takes precedence over the variable name, and
the field of the record is referenced. 1If nested WITH statements are

used and a field name inside occurs in more than one of the specified
records, then the closest WITH takes precedence.

D - 58

Example WITH statements:
Assume these declarations:

customer : RECORD

name,
address,
city : PACKED ARRAY[1..17] OF CHAR;
date : RECORD
month,
day,
year : INTEGER;
END;
END;
WITH customer DO
BEGIN
name := 'JACK SLATE ',
address := '1216 MELODY LANE ';
city := 'TULSA, OKLAHOMA °';
END;
WITH customer.date DO
BEGIN
month = 10;
day = 23;
year = 1981;
END;

6. THE GOTO STATEMENT

The GOTO statement is used to cause an unconditional branch to a labeled
statement.

Syntax of the GOTO statement:

———[oo J—>[1abet J—>

The label must be declared in the LABEL declaration part of the same
block which contains the GOTO that references it. The GOTO statement
cannot specify a branch to a label outside the block in which it resides.
Care must be taken when using the GOTO statement. For example, you
should not branch to the inside of a FOR loop from a statement outside
the loop. This could cause some very unpredictable results.

Example GOTO statement:
FOR i := 1 TO 1000 DO
IF a[i] <> b[i] THEN GOTO 10
ELSE ali] := b[il;
10: a[i] := '#0D';

D - 59

7. THE PROCEDURE STATEMERT

The PROCEDURE statement causes the activation of a procedure. Control
passes to the named procedure, and then returns to the statement following
the PROCEDURE statement when the activated procedure terminates. If a
procedure has a parameter list, a procedure statement which activates it
must specify an argument for each parameter of the parameter list. The
arguments must match the order and type of the parameters specified in the
parameter list of the procedure. An argument is specified by an
expression., If a parameter of the procedure is a pass~by-reference
parameter (denoted by VAR), the corresponding argument of a procedure
statement must be a single variable name. The variable may be a simple
variable or a component of a structured variable.

Syntax of a PROCEDURE statement:

O
> procedure id L[@Ej@L

Example PROCEDURE statement (call):

(See the declaration of procedure getvalue in Chapter Two.)

getvalue(n+j,8,hexstring,value)
report

writeout(x,y,3.7+9.6/z)

D - 60

CHAPTER NINE: PROCEDURES ARD FUNCTIORS

NOTE: See Chapter Two for a description of the syntax of procedure and
function declarations. A discussion of parameter passing is included
with the discussion of the procedure heading.

Procedures and functions are the tools used to modularize a program. To
modularize a program is to break the program up into small, manageable
pieces. Procedures and functions increase the readability of a program and
make any later modifications easier to handle.

Procedures and functions can be compiled separately from the main program,
and then can be linked to the program(s) that use(s) them. This allows the
programmer to develop libraries of commonly used procedures and functions,
for use with many programs. Then all the programs that use a given
function can link to it rather than having to have the function included in
the body of the program.

The variables declared in a procedure or function do not occupy storage
space until the procedure or function is activated. When activated,
storage space is allocated for variables, and when the procedure or
function is terminated the allocated space is released. Therefore, the
amount of storage (or stack) space required by a program at any point in
time depends on the number of blocks which are activated at that time.

A procedure is activated (or called) by a procedure statement. When a
procedure is called, control is passed from the point of the call to the
procedure. The statements in the procedure are then executed. When the
block END of the procedure is reached or when a call to the ESCAPE
procedure is made, control passes back to the statement following that
which activated the procedure.

A function is activated by an expression. When an expression which
contains a reference to the function is evaluated, the function reference
causes control to pass to the named function. The statements in the
function are then executed. Unlike procedures, functions have a declared
type. At some point inside the statement pody of a function, the function
name should be assigned a value. The value must be the same type as the
type to which the function is declared. When the block END of the
function is reached or when a call to the ESCAPE procedure is made,
control passes back to the evaluation of the expression which activated the
function and the function reference is replaced by the value assigned to
the function.

1. SCOPE RULES

A procedure or function declaration forms a new block which is a subblock
of the block in which the declaration appears. The new block formed is
nested within the block which declares it. This process of nesting which
occurs every time a procedure or function is declared produces a program
structure such as the one shown on the first page of Chapter Two.

D - 61

Any block which is enclosed by another block is said to be nested within
that block. The level numbers on the diagram indicate how deep the nesting
goes beyond the program block which is arbitrarily assigned level one. The
existence of procedures and functions makes it necessary to talk about
scope rules. Scope rules describe the accessibility of identifiers from
any particular place in a program. The two terms local and global are
helpful in discussing scope rules.

An identifier is considered to be local to a block if the identifier is
declared within the same block. If there are no blocks nested within the
declaring block, then a local identifier can only be referenced by the
block which declares it. Enclosing blocks cannot access a local
identifier.

An identifier is considered to be global to blocks which are nested within
the block in which the identifier is declared. If an identifier is global
to a particular block, then that block can reference the identifier,
provided that it has not declared an identifier of the same name. If a
block declares an identifier with the same name as a global identifier,
then the global identifier is no longer accessible from that block. Also,
any further nested blocks will not have access to the original global
identifier.

Identifiers declared in the program block are accessible from any place in
a program because all other blocks are nested within the program block.
Therefore, identifiers declared in the program block are global to all
procedures and functions of the program. Identifiers declared in a
procedure or function are local to that procedure or function. The only
place in the program which can access these identifiers are the procedure
or function itself and the procedures or functions, if any, which are
nested within. The nested procedures or functions can access only the
global identifiers which they do not declare themselves.

A procedure or function declaration consists of a heading followed by a
block. It is important to note that the procedure or function name of a
heading is local to the block which declares it. The parameters of the
heading are local to the procedure or function itself. This means for
example that a procedure statement in the program block can reference any
procedure declared in the program block. However, a procedure statement in
the program block cannot reference any procedure declared within one of
these procedures.

As an example of how scoping affects the accessibility of identifiers,
consider the sample diagram on the first page of Chapter Two. The
following table shows for each block of the diagram, the procedures and
functions which may be called from that block, and the constants, types,
variables, etc., which can be referenced by the block.

D - 62

Block accessible procedures accessible constants,
and functions types, variables, etc.
A B, D, F A
B B, C, D, F A, B
C B, C, D, F A, B, C
D B, D, E, F A, D
E B, D, E, F A, D, E
F B, D, F A, F
2. FORWARD

The rule that an identifier must be declared before it is referenced means
that a procedure or function must be declared before it is referenced by a
procedure statement or by an expression with a function reference. Some
calling sequences that occur among a group of procedures or functions make
it impossible to obey this rule. For example, if two procedures call each
other, then you cannot declare one without referencing the other. The key-
word FORWARD provides the mechanism for getting around this problem.

Using the keyword FORWARD with just the heading for a procedure or func-
tion declaration signals the compiler that the procedure or function block
will be declared at some later point in the program. If the procedure or
function has parameters, the parameters are declared as well. Then the pro-
cedure or function which has been forward declared may be referenced.

Syntax of forward declaring a procedure or function:

Ifunction heading]]
——[:] procedure headingl -—)@ ——

The actual declaration of a forward declared procedure or function can
appear at some later place in the program. The place that it appears must
be at the same level and scope as its forward declaration. The actual
declaration consists of the heading with no parameters, followed by the
block. Since the parameters were declared in the forward declaration, they
must not be declared again in the actual declaration.

If a forward declared procedure or function does not have its actual declar-
ation present, then it is treated as an external procedure or function.

D~ 63

Example use of FORWARD:

PROCEDURE abc(pl, p2 : INTEGER); FORWARD;

PROCEDURE xyz;

VAR pl, p2 : INTEGER;
BEGIN

abe(pl,p2);

END;

PROCEDURE abc;
BEGIR

END;

3. EXTERRAL

An external procedure or function can be declared in a program by
specifying its heading followed by the keyword EXTERNAL.

Syntax of externally declared procedures or functions:

Note: EXTERN also accepted.
(___.ﬁgtfunction heading—1
)L procedure heading llLEXTERNALI"—)G e

NOTE: For brevity, the word "routine" will be used in place of
"procedure or function" in the following discussion.

The linking loader may be used to link separately compiled routines to a
program. When a routine is declared to be external, its actual declaration
does not have to appear in the program. This is very useful when you are
working with large programs. A large program may be broken up into many
routines which are declared as external. The external routines can then be
compiled individually. The linking loader can then be used to link the
compiled program to its individually compiled routines. One advantage to
this is that any changes which are made to a particular routine will cause
only that routine to have to be recompiled. The linking process is then
repeated after the changed routine has been recompiled. Another advantage
is that slightly larger programs can be created by compiling them in pieces
and then linking the pieces together.

Perhaps one of the most frequent uses of external routines is to create a
file or library of commonly used routines. The all the programs which use
the routines can link to them rather than having to declare them in each
program,

D - 64

A compiler option must be used to compile a routine by itself. The reason
is that a routine by itself is not a legal Pascal program. Therefore, a
legal program must be constructed around the routine. This would include a
program heading, the environment of the routine, the procedure or function
declaration, and a statement body. The environment consists of any con-
stants or types which are in the scope of and are used by the external
routine. If global constants or types are needed by the routine, they
should be given the same names as those used in the programs that use the
routine. The scope refers to the identifiers in a program which are access-—
ible to the externally declared routine.

Variables can also be included in the environment but this is not recom-
mended. If an external routine needs to access a global variable, the vari-
able should be passed as a parameter to the routine. Otherwise, extreme

care must be taken to assure that the enviroument around the external
routine matches the environment of the programs which use the routine. The
statement body contains the compiler option which is called NULLBODY.

The NULLBODY option tells the compiler not to generate any code for the
program. Only code for the declared routine is generated.

The syntax for using the NULLBODY compiler option is shown in the
appendix to this guide, along with all the other compiler optioms. An
example using global variables in an external procedure is also given.

Example use of external procedure:

PROGRAM sample;
CONST
TYPE
VAR xmin,xmax,ymin,ymax : REAL;

PROCEDURE axes(xmin,xmax,ymin,ymax : REAL); EXTERNAL;
BEGIN
axes(xmin,xmax,ymin,ymax);

END. (*sample*)
Separate compile of procedure axes:

PROGRAM axesroutine;
(*global enviromment, if any, goes here%)
PROCEDURE axes(xmin,xmax,ymin,ymax : REAL);
TYPE
VAR e e o e
BEGIN

END; (*procedure axes¥)
BEGIN

(*$NULLBODY*)
ERD.

D - 65

4, RECURSION

Pascal is a language which supports recursion. Recursion refers to having
more than one activation of a particular procedure or function at the same
time. There are two forms of recursion. Direct recursion refers to a pro-
cedure or function that calls itself. Indirect recursion refers to a
procedure or function that makes a call which eventually results in the
procedure or function being called again. An example of this is two proced-
ures which call each other. When writing recursive procedures, some condi-
tional statement must exist in the procedure to halt the recursion at some
point., Otherwise, there would be an endless loop that would terminate only
after the stack was exhausted, crashing the program. Recall that each
activation of the procedure results in space being allocated for its
variables.

Example use of recursion:

PROCEDURE XYZ;
(*DECLARATION HERE*)
BEGIN
XYZ; (*PROCEDURE CALLS ITSELF*)

END;

5. PREDECLARED PROCEDURES AND FUNCTIORNS

The predeclared procedures and functions are accessible from any place in a
program. They are declared in an imaginary block which surrounds the pro-
gram block. The names of predeclared procedures or functions may be used
as identifiers in programs. This means that the name of a predeclared
procedure or function may be used in a declaration. If so, then the
predeclared procedure or function whose name is used in a declaration is no
longer accessible to the program. Its name is associated with the new
declaration.

File-Associated Procedures (Replace f with a file specification.)

RESET(£) Positions the file pointer of the specified file
to the beginning for the purpose of reading. If
the file is empty, then the function EOF
becomes true, otherwise it is false.

REWRITE(f) Replaces the specified file with an empty file.
The file pointer is positioned to the beginning of
the file.

PAGE(f) Outputs a formfeed to the specified file. Form-

feeds cause skipping to the top of the next page
when the file is printed.

D - 66

CLOSE(f)

MESSAGE (s)

READ, READLN

WRITE, WRITELN

Closes the specified file. This procedure may

used to explicitly close a file at any time.

Outputs the specified string to the terminal.
S is CHAR or ARRAY OF CHAR.

Read data from a device.

Write data to a device--—see Chapter Ten for

Arithmetic Functions

ABS (x)
SQR(x)
SIN(x)
cos (x)
ARCTAN(x)

EXP(x)

LN(x)

SQRT (%)

Boolean Functions

0DD(x)

EOLN(x)

EOF(x)

details.
Operation Type of x Type of Result
absolute value INTEGER, REAL same type as X
square INTEGER, REAL same type as X
sine INTEGER, REAL REAL
cosine INTEGER, REAL REAL
arctangent INTEGER, REAL REAL
natural (base e)
exponential INTEGER, REAL REAL
natural logarithm INTEGER, REAL REAL
square root INTEGER, REAL REAL

Operation: Returns true if x is odd, else false.
Type of x: INTEGER
Type of result: BOOLEAN

Operation: Returns true if the end of a line in
in the file has been reached.

Type of x: TEXT

Type of result: BOOLEAN

Operation: Returns true if the end of the file
has been reached.

Type of x: FILE

Type of result: BOOLEAN

D - 67

be

Transfer Functions

TRUNC(x)

ROUND(x)

ORD(x)

CHR(x)

LOCATION(x)

SIZE(x)

HB(x)

LB(x)

Operation: Truncates a real value to its integer
part.

Type of x: REAL

Type of result: INTEGER

Operation: Rounds a real value to the nearest integer.
Type of x: REAL
Type of result: INTEGER

Operation: Returns the ordinal number of x.
Type of %x: any ordinal type
Type of result: INTEGER

Operation: Returns the character whose ordinal
number is x.

Type of x: INTEGER

Type of result: CHAR

Operation: Returns the address of variable x.
Type of x: any type (also may be a procedure name)
Type of result: INTEGER

Operation: Returns the size of type x in bytes.
Type of x: any type identifier
Type of result: INTEGER

Operation: Returns the high byte of x.
Type of x: INTEGER
Type of result: INTEGER

Operation: Returns the low byte of x.
Type of x: INTEGER
Type of result: INTEGER.

Data Transfer Procedures

PACK(a,i,z)

UNPACK(z,a,1i)

Operation: Copy the unpacked array a into the
packed array z. If the dimension of
a is m..n and the dimension of z is
u..v and n-m > v-u, then the operation
is equivalent to:
for j:= u to v do z[j] := al[j-u+l]

Operation: Unpacks the above array.

D - 68

Dynamic Allocation Procedures

NEW(p) Allocates a new variable v and assigns the pointer
reference of v to the pointer variable p. Tag field
values may appear as parameters to NEW, but are
non-functional.

DISPOSE (p) Releases the storage occupied by the variable
pointed to by p.

Other Functions

succ(x) Operation: Returns the successor of x which is
the next higher value in the enumeration of
which x is a member.
Type of x: any ordinal type
Type of result: same type as X

PRED(x) Operation: Returns the predecessor of x which is

the next lower value in the enumeration of
which x 1s a member.

Other Procedures

ESCAPE Causes termination of a block just as if the block
end had been reached. If the block is a procedure
or a function, then control returns to the calling
block. If the block is the program block, then
program execution is terminated.

NOTE: If files are declared logically within a pro-
cedure, then the files must be closed using the procedure
CLOSE before ESCAPE is called. Normal termination of

a block results in files automatically being closed.

D - 69

CHAPTER TEN: INPUT AND OUTPUT

Input and output refer to the communication of a program with the

external enviromment. A program communicates with the external enviroument
through the use of logical files. Logical files are the variables in a
program which are declared as type FILE or TEXT. The logical files are

then associated with physical files. Physical files are the actual devices
of a computer system. A physical file could be a disk file, a terminal, a
printer, or some other device. The method of associating logical files
with physical files is discussed on pages E-4 and E-5.

Predeclared procedures and functions are provided for handling input and
output. These procedures and functions have a characteristic unlike other
procedures and functions. The number of parameters passed to them can
vary. They may be called with no parameters or with several parameters.
Since each input and output routine performs an operation on a file, it
must know which file to operate on. If a routine is passed to the logical
file name, then it operates on the specified file, otherwise it operates on
a default logical file. The two predeclared variables INPUT and OUTPUT
are the default logical files. They are both declared as type TEXT. The
one used as the default depends on the routine called. The input routines
default to INPUT and the output routines default to OUTPUT.

I/0 Routines

Procedures Functions
input output general EQOF
EOLN

RESET REWRITE CLOSE
READ WRITE
READLN WRITELN

PAGE

MESSAGE

A file has associated with it a file pointer. The file pointer is used

to point to an individual component of a file. There are two predeclared
boolean functions which may be used to check the status of a file's
pointer. Both functions may or may not take a logical file name as a
parameter. If no file parameter is passed, the default is INPUT. The
function EOF(file) returns the value TRUE if the pointer is at the end of
the file. Otherwise, the value returned is FALSE. The function
EOLN(file) can only be used with files of type TEXT. It returns the

value TRUE when the file's pointer is at the end of a line. Otherwise, the
value returned is FALSE.

Syntax of EOF or EOLN: (default: file = INPUT)

—
[> ©— (] — O -

v

D-171

Examples of using EOF and EOLN:

WHILE NOT EOF(datain) DO
BEGIN
WHILE NOT EOLN(datain) DO
BEGIN
READ(datain,ch);
END;
READLN(datain);

END;

1. RESET

The RESET procedure opens a file so that it can be read. No input can be
received from a file (except for the default file INPUT) without this
operation first being performed.

Syntax of RESET: (default: file = INPUT)

sz O —~[E] 0 +—

The RESET procedure positions the file pointer to the beginning of the
file., 1If the file is empty, then the function EOF(file) becomes TRUE. If
the file is not empty, then the function EOF(file) becomes FALSE.

The statement RESET(INPUT) is implicitly executed at the beginning of a
program unless the NO INOUT compiler option is used. Therefore, it is
not necessary for a program to explicitly open the default logical file
INPUT.

Example use of RESET:

PROGRAM readdata;
VAR datain : TEST;

BEGIN
RESET(datain); (*open file datain for reading¥)

® o o ® o

END.

Input and output to files is buffered. This is to prevent having to access
a physical device every time an operation is performed. Each file used by
a program has an associated file buffer. 1In this implementation, the input
buffer of a file is not filled until a READ, READLN, EOLN, or EQF

is performed on the file. This prevents the normal problems associated
with reading from a terminal. Programs can have their logical files
remapped from a disk file to a terminal without modification to the program

itself.

D- 72

2. REWRITE
The REWRITE procedure opens a file so that it can be written. No output
can be sent to a file (except for the default file OUTPUT) without this

operation first being performed.

Syntax of REWRITE: (default: file = OUTPUT)

O E -0

The procedure positions the file pointer to the beginning of the file. The
file becomes empty when this happens. This means that any data in the file
is lost.

The statement REWRITE(OUTPUT) is implicitly executed at the beginning of
a program unless the NO INOUT compiler option is used. Therefore, it is

not necessary for a program to explicitly open the default logical file
OUTPUT.

3. READ
The READ procedure assigns the value of components of a file to
variables.

: i = INPUT
Syntax of READ: (default file)]

@)
-0 ot O

The number of variables passed to the procedure determines the number of
components read from the file. The components refer to the way the file is
logically separated into individual data elements. Each component is of
some data type which defines its size. Reading begins with the component
pointed to by the file pointer. The first variable specified is assigned
the value of this component and then the file pointer is advanced to the
next component. This process is continued until all the variables
specified are assigned values. The type of each variable must match the
type of the file component being assigned to it.

D-73

TEXT FILES

If the file is of type TEXT, the variables can be of type REAL,

INTEGER, subrange of INTEGER, CHAR, or strings. Strings are declared

as single-dimensioned packed arrays of the type CHAR. These types can be
intermixed as components of text files. Then they may be read by
specifying variables which match in type and order, the components of the
file.

NOTE: The following characters have special meaning in a text file and
may not be read as single characters. Use FILE OF CHAR to avoid
this special processing:

HT = #09 LF = #0A CR = #@D SUB = #1A

If the variable is of type CHAR, then a single character is read from the
file. 1If the variable is an array of CHAR, then the size of the array
determines the number of characters read from the file. If an end of line
or file mark is encountered before the array is full, then the characters
read up to that point are left-justified in the array and the remaining
elements are filled with blanks. Integer and real numbers are represented
in files as strings of characters. Individual numbers in a file are
separated by blanks or by an end of line mark. When a number is read, the
character string representing the number is automatically converted to its
real or integer value before being assigned to the variable. With text
files, consecutive READ operations automatically skip end of line marks
when reading integer, real, or boolean variables. When reading character
or string variables, the end of line mark is not skipped. In this case,
the procedure READLN must be executed to cause the file pointer to

advance to the next line.

Example use with text files:

Consider the following file of data:

SAM JONES 25 183.5 369
MARY SMITH 23 105.4 356

and the declarations:

VAR name : PACKED ARRAY[1..10] OF CHAR;
number, total: : INTEGER;

score : REAL;

students : TEST;

If the file pointer of '"students' points to the beginning of a line (as
it does immediately after a RESET) then:

READ(students,name,number,score, total)
would assign a string, integer, real, and integer value to the four
specified variables. The file pointer would then point to the character

immediately following the last value read.

D - 74

NON-TEXT FILES

If the file is not of type TEXT, then all components of the file are of

the same type. The components of a file may be declared to be of any type
except the type FILE or structured types containing a component of type
FILE. This means for example, that you could declare a file of records.
Then an entire record can be read into a variable of the same record type.
This however, requires that the file of records has been previously created
through the use of the procedure WRITE. The reason for this is that all
files which are not of type TEXT are read and written in binary form.

Example use with non-text files:

Assume the following declarations:

TYPE food = RECORD
fruit : (orange, grape, apple);
vegetable : (corn, okra, beans);
cost : INTEGER;
END;

VAR groceries : FILE OF food;

item : food;
then:

READ(groceries, item);

would assign one record from the file to the variable "item."

Care should be taken not to read past the end of a file. The function
EOF is provided for preventing this from occurring. The program will not
abort if you try to read past the end of file, but the value assigned to
the variable will be some unknown value.

4. WRITE

The procedure WRITE appends values to a file. The number of values

passed to the procedure determines the number of values output to the file.
If a file is declared as type TEXT, then output values can be specified

as strings or expressions. If a file is declared as a type other then type

TEXT, then output values are restricted to variables of the same type
only.

D-175

Syntax of WRITE:

For non-text files:

2.
s s QO O b O ——

For text files: (default: file = OUTPUT)

()<
-—-—-)-—)@ (;! file ,)@LL—qwrite parameter I'—-—*@—'—B

Syntax of write parameter:

.......,)@ }Linteger expr]——-—')@'—)l integer eXpr]

———9bnteger eXprJ

‘———9ﬁbolean expd

....___) ;O)Linteger expr}I

Syntax of string: (string variable = packed array of CHAR)

>'Lstring variabl%

0~]

>® >

TEXT FILES

If the file is of type TEXT, then the values output to the file may be
specified as strings or as boolean, integer, or real expressions. If a
string is specified, then the characters of the string are output to the
file. If a boolean expression is specified, then the characters forming
either "TRUE" or "FALSE" are output to the file, depending on the value of
the expression. If an integer or real expression is specified, then the
value of the expression is converted to a character string before being

output to the file. An integer expression may be output in hexadecimal or
decimal base representation.

D~ 176

The number of characters to output for a value can be specified by an
integer expression which follows the value, separated by a colon (:).

If the number of characters is not specified for a particular value, then a
default number of characters will be output.

For a string

If the number is less than the length of the string, then all the
characters in the string are output. If the number is greater than the
length of the string, then blanks will be appended to the string. The
default number is the length of the string.

Example: WRITE(' literal string' : 20)

For a Boolean expression

The same rule applies for the strings 'FALSE' and 'TRUE'.

Example: WRITE(a AND b : 10)

For an Integer expression

If the number is less than the number of digits in the integer, then all
the digits are output. If the number is greater than the number of digits,
then the excess characters are output as blanks before the integer is
output. The default number of digits for integers is 8. An integer value
may be written in hexadecimal base format by specifying:

+ width HEX

Example: WRITE(outfile, n+5 :i, j :4 HEX)

For a real expression

Two numbers may be specified for real values. The first number specifies
the total field width. The second specifies the number of digits after the
decimal point. If both are specified, the number will be written in fixed
format. Otherwise, the number will be written in exponential format. The
default field width for single precision is 12. The double precision
default is 20. The maximum field width is 32.

Example: WRITE(2.5%random :5, random/x:9:6)

NON-TEXT FILES

If the file is not of type TEXT, then output values must be variables.
Output directed to non-text files is in binary form. This means that values
are output in the same form as they are stored. For example, an integer is
not converted to a character string before 1t is output.

Example use with non-text files: WRITE(groceries, item)

D~ 77

5. READLN

This procedure can be used only with files of type TEXT. (See Chapter
Four for a description of text files.)

The READLN procedure is similar to the READ procedure. The difference
is that at the end of the read operation, the file pointer is advanced to

the beginning of the next line.

Syntax of READLN: (default: file = INPUT)

(:)<
—@bommpottpmg Lo

)

The READLN procedure may be called without passing any variables to be
read. When no variables are specified, then the procedure just advances
the line pointer to the beginning of the next line.

The statement: READLN(varl,var2,var3)
is equivalent to: BEGIN READ(varl,var2,var3); READLN END

The function EOLN can be used to determine whether or not a file's
pointer is at the end of a line.

Example use of READLN:

i = 0
WHILE NOT EOF DO
BEGIN
i =14+ 1;
READLN(a[i]); (*reads one value from each line¥)

e s e 80000

END;

WHILE NOT EOF (infile) DO
BEGIN
WHILE NOT EOLN(infile) DO
BEGIN
READ(infile,ch);
END;
READLN(infile); (*advances file pointer to next line¥)
END;

D - 78

6. WRITELHN

This procedure can only be used with files of type TEXT. (See section
3.a. of Chapter Four for a description of text files.)

The WRITELN procedure is similar to the WRITE procedure. The
difference is that at the end of the WRITE operation, an end-of-line mark
is appended to the file.

Syntax of WRITELN:

GH<
~———>| WRITELN| @—[—-) file l @l‘ [orite parameterl—%-—)@———-)

(See WRITE for syntax of "write parameter.')

The WRITELN procedure may be called without passing any values to be
written. When no values are specified, then the procedure just appends an
end-of-line mark to the file.

The statement: WRITELN(varl,var2,var3)

is equivalent to: BEGIN WRITE(varl,var2,var3); WRITELN END

Example use of WRITELN:

(*writes 2 values on each line%)
FOR k := 1 TO 100 DO WRITELN(a[kl],b[k]);

FOR j := 1 TO maximum DO
BEGIN
i = 0;
REPEAT
i = i+l
WRITE (number[j]);
UNTIL (i=5) OR (number[j]>100);
WRITELN; (*advance file pointer to next lime¥)
ERD;

7. CLOSE

The use of the CLOSE procedure will assure that file data will not be
lost if the program abnormally terminates and does not properly close the
file. The CLOSE procedure must be used with files which are components
of structured variables. (See the appendix.)

D-179

Syntax of CLOSE:

——[aose =0 — e —0O—

8. PAGE
The PAGE procedure appends a formfeed to a file. Formfeeds cause
printers to skip to the top of the next page. This procedure provides a
way of controlling the number of lines printed on the page.

This procedure may only be used with files of type TEXT.

Syntax of PAGE: (default: file = OUTPUT)

|

e o—EE o

9. MESSAGE

The procedure MESSAGE may be used to output strings to the terminal
(screen). It takes one parameter which is either a string constant or

variable. A string constant is a sequence of characters enclosed in single
quotation marks. A string variable is a variable declared as a packed
array of characters.

Syntax of MESSAGE:

e —O— G] — O

v

Programs which require only string output to the terminal can use this
procedure rather than the WRITE procedure.

Example use of MESSAGE:

MESSAGE(' time to quit'):
MESSAGE(string);

D - 80

APPERDIX -- LANGUAGE REFERENCE GUIDE

1. COMPILER OPTIONS

Compiler options are provided to change the behavior of the Pascal
compiler. These options allow features to be enabled or disabled and can
alter the code generated at compile time.

Compiler options are specified in comments. A comment that contains a
dollar sign as the first character specifies an option. All compiler
options have two states, on and off. An option is turned on by placing its
name after the dollar sign. If the option name is preceded by the word
'NO", then the option is turned off. Except where noted, the options may
appear any place in a program,

l.a. DOUBLE

This option specifies that all real variables within the program should be
double precision. This option must precede the PROGRAM statement. If it
occurs anywhere else in the program, it will be ignored. If the option is
off (the default), then real variables are single precision.

Example
(*$ DOUBLE*)
PROGRAM DBL;
VAR
R : REAL;
BEGIN
END.

In this program, the variable R will be declared as double precision.

1.b. FORDECL

This option is used to change the behavior of loop counters in FOR
statements. If the option is turned on ("off" is the default), then all
FOR loop counters are treated as temporary variables. They do not need
to be declared, and even if a declaration is present, a new variable is
used rather than the declared variable. These FOR loop counters are
defined only within the loop, and disappear when the loop is exited.

D - 81

Example:

PROGRAM FORLOOP;
(*$FORDECL*)
VAR

A,I : INTEGER;
BEGIN

=0 to 4 do A := A + 1;
WRITELN(OUTPUT,I,A);
END.

In the above program, the I used as a FOR loop counter is a different
variable from the I declared in the VAR section. When the WRITE
statement is executed, the values 0 and 10 will be printed.

l.c. IROUT

This option enables (makes available for use) the predeclared files INPUT
and OUTPUT. The default status of this option is "on." If this option is
turned off before the PROGRAM statement, then the files INPUT and

OUTPUT will not be declared. Turning this option off prevents the reset
of INPUT and the rewrite of OUTPUT, and can be used to avoid the

prompts "INPUT =" and "OUTPUT =" when a program is run.

Example:

(*$NO INOUT*)
PROGRAM NOPROMPTS;
BEGIN
MESSAGE('I WAS NOT PROMPTED FOR INPUT AND OUTPUT')
END.

1.d. 1IF

The IF option provides conditional compiiation. The word IF is

followed by the name of a boolean constant. If the constant has the value
"TRUE," then compilation continues as if the option had not been present.
If the constant has the value "FALSE," then compilation stops at that
point, and all text is treated as comments until a (*$NO IF¥) is
encountered. Note that IF options do not nest. That is, an IF option
should not occur within the scope of another IF option. The IF option

can be used to configure a program for different enviromments with minimum
changes to the source. It is also useful for removing debugging statements
once the program is working properly.

D - 82

Example use of IF option:

PROGRAM Test;
CONST
debug = false;

FUNCTIORN FACTORIAL(I : INTEGER) : REAL;
BEGIN
IF I = 0 THEN FACTORIAL := 1
ELSE BEGIN
(*$IF DEBUG*)
WRITELN(OUTPUT, ' CALLING FACTORIAL(',I-1,')');
(*$NO IF*)
FACTORIAL := I * FACTORIAL(I-1);
END;
END; (* FACTORIAL *)

BEGIN
WRITELN (OUTPUT, ' FACTORIAL (20)="',FACTORIAL(20));
ERD.

In the above program, the WRITE statement within the recursive function
FACTORIAL could be turned on during debugging by setting debug to TRUE,
Once the program is running, it can be recompiled with debug set to FALSE.
The WRITE statement will be effectively removed. In fact, since no code

is generated for it, the resulting object program will be shorter. This
has the same effect as removing the statement with an editor or placing
open and close comments around it. The advantage is that many statements
can be disabled or enabled with a single change to the source code. Also,
it is simple to reenable debugging statements should it become necessary in
the future.

l.e. NULLBODY

The nullbody option is used to disable code generation for a procedure,
function or program. The NULLBODY option should occur after the BEGIR
that starts the block and before any executable statements. NULLBODY
will prevent code from being generated and can be used when procedures are
being compiled separately. Since every program must have a PROGRAM
statement and a main program body, it is necessary to use NULLBODY to
disable code generation for the main program when a subroutine library is
being compiled.

D - 83

Example use of NULLBODY:

PROGRAM SUBLIBRARY;
TYPE
STRING = PACKED ARRAY[1..80] OF CHAR;

PROCEDURE CONCATENATE (VAR S1, S2, RESULT: STRING);
BEGIN

(* BODY OF CONCATERATE *)
END;

PROCEDURE MID$ (VAR S : STRING; FIRST, LAST : INTEGER;
VAR RESULT : STRING);

BEGIN
(* BODY OF MID$ *)
END;

BEGIN
(*$NULLBODY*)
END.

If the above program is compiled, the object file will contain code only
for the two procedures: CONCATENATE and MID$. There will be no main
program. This allows these procedures to be linked to another program.

1.f. IRCLUDE

The INCLUDE option is used to specify within a program, the name of a

file which contains Pascal statements which you want included in the
compilation process. When the compiler encounters an INCLUDE option, it
opens the specified file and compiles all the Pascal source code in the
file before continuing compilation of the current file. The INCLUDE
option allows you to include commonly used routines or declarations in a
program without actually having the code present. You simply tell the
compiler the name of the file containing the Pascal statements and it will
include those statements as it compiles.

The INCLUDE options may be nested. That is, you may include a file which
also contains an INCLUDE compiler option. There is no limit to the

number of nested INCLUDEs. However, the compiler must maintain a file
descriptor for each file that is open at any given time. The file
descriptors are allocated memory from the heap. If too many files are open
at a time, the compiler may run out of heap during the compile process.

Example use of the INCLUDE option:

PROGRAM sample;
{DECLARE contains the declarations for this program}
(*$INCLUDE 'DECLARE'*) {note the quotes}
BEGIN
{BODY contains the statement body for this program}
(*$INCLUDE 'BODY'*)
ERD.

D - 84

l.g. LIST

The LIST option allows you to turn the compiler listing on and off within

a program. "On" is the default. Therefore, the compiler will by default
generate a listing which contains all the lines of a program. If it is
desired to discard some of the lines of a program from the compiler
generated listing, (*$NO LIST*) may be used to tell the compiler to

discard all subsequent lines of the program from the listing. The compiler
does not stop compiling subsequent lines, it just does not output them to
the listing. Object code is still generated. If you wish to turn the
compiler listing back on, then, (¥$SLIST*) tells the compiler to start
outputting all subsequent lines to the listing again.

The LIST option may be useful when compiling frequently used routines

which you know will compile correctly. It provides a method to shorten com-
piler listings, saving paper when printing, and making it easier to locate
other procedures or functions by uncluttering lengthy program listings.

Example using the compiler LIST option:

PROGRAM sample;

VAR L]
PROCEDURE useoften;
(*$NO LIST*) {turn off listing for useoften}
VAR ...
BEGIN
END; {end of procedure useoften}
(*$LIST*) {turn listing back on for program}
BEGIN {beginning of main program}
END.

l.h. PAGESIZE

The listing generated by the compiler has printer control information (form-
feed between each page. The compiler outputs a formfeed (hex 0C) to the
listing every 62 lines. The formfeed causes most printers to advance the
paper to the top of the next page. The PAGESIZE option allows you to

change the number of lines that the compiler will output to the listing
between formfeeds. The actual number of lines output between formfeeds is

2 more than the number specified by the PAGESIZE optioun. This is to allow
for the heading.

Most operating systems control paging when outputting data to a line printer.
The operating system itself maintains a line counter and outputs a formfeed
to the line printer after so many lines have been sent to the printer. A
command is typically provided to set the number of lines per page or to turn
paging control off entirely. If the operating system is controlling paging,
the listing generated by the compiler may not be paged properly (i.e., the
compiler heading may not appear at the top of each page). The number of
lines per page used by the operating system should be equal to the number of
lines per page used by the compiler, or the operating system paging must be
turned off, if compiler-generated listings are to be printed properly.

Example use of the compiler PAGE option:

(*$PAGESIZE 50%) {set the number of lines/page to 50}
PROGRAM sample;
{the operating system paging should be set to 52
or be turned off entirely)
BEGIN

LI

END.

1.i. WIDELIST

The compiler now generates line numbers for each line of a listing. The
WIDELIST option is used to specify that you want the compiler to
additionally generate hexadecimal addresses which show the location of the
object code for a particular line relative to the start of the procedure,
function, or program in which the line appears. This information is useful
when used in conjunction with the linking loader to determine the location
within a program of a fatal error. You may use the S command of the
linking loader to display the starting address of each routine loaded.
Then use the R command to run the program. When the program terminates
with a fatal error, the absolute hex address of the error is displayed.
You may use this address along with the addresses displayed by the S
command to determine in which routine the error occurred. By subtracting
the address of the error from the starting address of the routine in which
the error occurred, you obtain the relative address of the error within
that routine. This address corresponds to the address printed on the
listing.

Example use of the compiler WIDELIST option:

(*$WIDELIST*) {tell the compiler to print hex addresses)
PROGRAM sample;
BEGIN

ERD.

1.j. RANGECHK

A common error which occurs in programs which utilize arrays is to index
the array with a value which is outside the array bounds (for example, an
array with bounds 1..10 is indexed with the value 11). A common error in
programs which utilize subranges is to assign a value which is outside the
subrange (for example, a variable is declared as type 0..225 and is
assigned the value 275). A common error in programs which utilize
enumerations is to increment or decrement past the first or last value of
the enumeration [for example, SUCC(color) is executed when color is

equal to blue and color is of type (red, green, blue)].

D - 86

All of these errors may be trapped, causing an appropriate runtime error
message to be displayed when such an error occurs during program execution.
The RANGECHK option tells the compiler to generate extra code to detect
and report errors of the above kind when the compiled program is executed.

Since the RANGECHK option does cause additional object code to be
generated, you should generally use it only during the debugging stage of
program development. The RANGECHK option may be turned on and off
throughout a program. The default is "off". The IF compiler option may

be used to conditionally turn the RANGECHK option on and off as needed
for debugging purposes.

Example use of the compiler RANGECHK option.

PROGRAM sample;

VAR A,B : ARRAY [1..200] OF CHAR;
J,K : INTEGER;

BEGIN

WRITE (OUTPUT, 'Enter size of array: ');

(*$RANGECHK*) {turn range checking on}

FOR K :=1 TO J DO A[K] := B[R+l];

(*$NO RARGECHK*) {turn range checking off)}
END.

NOTE: The RARGECHK option will not detect an error on subrange
variables which are assigned invalid values via a READ statement. To

trap these errors, you must assign the read-in value to a subrange
variable.

READ(VALUE) ;
SUBRARGE VARIABLE := VALUE;

1.k. PTRCHECK

A common error which occurs in programs which utilize dynamic pointer
variables is the inadvertent assignment of the value NIL to a pointer and
then the subsequent attempt to use the value pointed to in an expression or
in an assignment to a static variable. Another common error is the attempt
to utilize an uninitialized pointer. An uninitialized pointer may not
point to a location within the allocated heap of the program. It may point
into the executing code of the program, making it possible to write data
over the instructions, causing very unpredictable results.

The PTRCHECK option is used to tell the compiler to generate extra code

in the compiled program to detect and report either of the above types of
errors when the program executes. This extra code causes the program to
terminate and display an appropriate error message when an invalid use of a
pointer variable is detected. The PTRCHECK option may be turned on and

off throughout a program. The default is "off",

D - 87

Example use of the compiler PTRCHECK option:

PROGRAM sample;
TYPE customer = RECORD name,add : ARRAY[1..9] OF CHAR END;
VAR cust : “customer;
BEGIN
(*$PTRCHECK*)
WHILE cust<DNIL DO
ERND.

2. ERROR MESSAGES

2.a. Compiler Error Codes

Below is a list of the error codes that may be generated by the compiler

along with a brief explanation of their meanings.

2 IDENTIFIER EXPECTED

3 'PROGRAM' EXPECTED

4 ')' EXPECTED

5 ':' EXPECTED

6 ILLEGAL SYMBOL

8 'OF' EXPECTED

9 '(' EXPECTED

10 ERROR IN TYPE

11 LEFT BRACKET '[' OR '(.' EXPECTED
12 RIGHT BRACKET ']' OR '.)' EXPECTED
13 'END' EXPECTED

14 ';' EXPECTED

15 INTEGER EXPECTED

16 '=' EXPECTED
17 'BEGIN' EXPECTED
20 ',' EXPECTED

22 ',.' EXPECTED

23 '.' EXPECTED

49 'ARRAY' EXPECTED

50 CONSTANT EXPECTED

51 ':=' EXPECTED

52 'THEN' EXPECTED

53 'UNTIL' EXPECTED

54 'DO' EXPECTED

55 'TO'/'DOWNTO' EXPECTED

57 'FILE' EXPECTED

58 INVALID OR MISSING CPERAND IN AN EXPRESSION
62 DECIMAL PLACE ALLOWED ONLY FOR REAL

66 TYPE IDENTIFIER EXPECTED

80 OPEN COMMENT WITHIN A COMMENT

81 UNKNOWN OPTION

82 # REQUIRES A 2 CHARACTER HEX VALUE OR ##

D - 88

101 IDENTIFIER DECLARED TWICE

102 LOWER BOUND EXCEEDS UPPER BOUND

103 IDENTIFIER IS NOT OF APPROPRIATE CLASS

104 UNDECLARED IDENFITIER

105 CLASS OF IDENTIFIER IS NOT VARIABLE

107 INCOMPATIBLE SUBRANGE TYPES

113 ARRAY BOUNDS MUST BE SCALAR

117 UNSATISFIED FORWARD REFERENCE TO A TYPE IDENTIFIER OF A POINTER
119 ';' EXPECTED (PARAMETER LIST NOT ALLOWED)

120 FUNCTION RESULT MUST BE SCALAR, SUBRANGE, OR POINTER
123 FUNCTION RESULT EXPECTED

126 IMPROPER NUMBER OF PARAMETERS

127 TYPE OF ACTUAL PARAMETER DOES NOT MATCH FORMAL PARAMETER
129 TYPE CONFLICT OF OPERANDS IN AN EXPRESSION

132 COMPARISON WITH '>' OR '<' NOT ALLOWED ON SETS

134 ILLEGAL TYPE OF OPERANDS

135 TYPE OF EXPRESSION MUST BE BOOLEAN

136 SET ELEMENT TYPE MUST BE SOME ENUMERATION TYPE

138 TYPE OF VARIABLE IS NOT ARRAY

140 TYPE OF VARIABLE IS NOT RECORD

141 TYPE OF VARIABLE IS NOT POINTER

148 SET BOUNDS OUT OF RANGE

152 NO SUCH FIELD IN THIS RECORD

154 ACTUAL PARAMETER MUST BE A VARIABLE

156 MULTIDEFINED CASE LABEL

161 PROCEDURE OR FUNCTION ALREADY DECLARED AT A PREVIOUS LEVEL
165 LABEL ALREADY DEFINED

167 UNDECLARED LABEL

168 LABEL NOT DEFINED

182 "FOR" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
183 "CASE" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
184 "FOR" VARTABLE MUST BE LOCAL

185 OPERATION DEFINED FOR TEXT ONLY

186 OPERATION NOT DEFINED FOR TEXT FILES

193 ACCESS STATEMENT MISSING FOR COMMON

199 FEATURE NOT IMPLEMENTED

202 STRING CONSTANT CANNOT SPAN LINES

203 INTEGER CONSTANT TOO LARGE

210 FIELD WIDTH MUST BE INTEGER

211 FRACTION LENGTH MUST BE OF TYPE INTEGER

212 HEX FORMAT ALLOWED ONLY FOR TYPE INTEGER

219 PARAMETER MUST BE OF TYPE FILE

220 PARAMETER MUST BE OF TYPE INTEGER

223 PARAMETER MUST BE OF TYPE POINTER ,
230 ILLEGAL TYPE OF PARAMETER IN STANDARD PROCEDURE CALL
250 TOO MANY NESTED SCOPES - LIMIT IS 15

401 OPEN COMMENT ENCOUNTERED IN A COMMENT

403 TOO MANY PROCEDURE NESTING LEVELS

404 ARRAY BOUNDS MUST BE SCALAR

b - 89

2.b.

Runtime Error Codes

Below is a list of the error messages that can be generated during
execution of a Pascal program, along with their causes and solutions.

01) OUT OF STACK

cause:
cure

02)
cause:
cure

03)

cause:

cure:

04)

05)

06)

07)

insufficient amount of stack available

: If compiling

with PASCAL : switch to PASCALB

with PASCALB : specify more stack space
PASCALB <stack> file

If executing

with RUN : specify more stack space
RUN file stack
with /CMD : specify more stack space when using B

command of LINKLOAD

OUT OF HEAP
insufficient amount of heap available

: If compiling

with PASCAL : switch to PASCALB

with PASCALB : specify less stack space

If executing

with RUN : specify less stack space

with /CMD : specify less stack space when using
B command of LINKLOAD

BAD POINTER
damaged object file or error in program which causes
executing code to be overwritten with data
If executing one of the system /CMD files:
restore defective /(MD file from the original master disk
If executing a user written program:
recompile the program using the RANGECHK and
PTRCHECK options and execute once again. Invalid
array indexing and most invalid pointer referencing
will be trapped. If a range or pointer error message
is displayed, locate and fix the programming error.

BAD LEVEL
see error 03

DIVIDE BY 0
cause: an integer or real divide operation with a divisor of 0
cure : prevent divisor from becoming 0

UNDEFINED PCODE
see error 03

INVALID SET

cause: set operation results in set with more than 256 members
cure : restrict set operations to 256 member sets

D - 90

08)

09)

0A)

EB)

EC)

ED)

EE)

10)

11)

12)

13)

15)

16)

BAD RUNTIME CALL
see error 03

I0 ERROR
cause: 1 - file does not exist
2 - disk is full
3 - bad disk or hardware
cure : 1 - specify correct file name
2 - clear some space on the disk
3 - run diagnostics

SET ELEMENT TOO LARGE
cause: attempt to assign an ordinal value > 256 to a set
cure : limit sets to 256 members

ATTEMPT TO WRITE TO INPUT FILE
cause: opening an output file using RESET
cure : open the output file using REWRITE

FILE NOT OPER
cause: attempt to read or write an unopened file
cure : open the file using RESET or REWRITE

ATTEMPT TO READ OUTPUT FILE
cause: opening an input file using REWRITE
cure : open the input file using RESET

NO MEMORY FOR FILE BUFFER
cause: not enough space for file buffer in heap
cure : execute program using less stack

RARGE CHECK
cause: invalid array index, subrange value, or enumeration value
cure : correct invalid array indexing and/or invalid values

BAD DIGIT IN NUMBER
cause: attempt to READ or DECODE an invalid number
cure : make sure all numbers read or decoded are legal numbers

PUT ERROR
cause: attempt to output an undefined file buffer variable
cure : assign a proper value to the file buffer variable

OVERFLOW
cause: a real arithmetic calculation overflows
cure : limit real numbers to the maximum size

UNDERFLOW
cause: a real divide operation causes underflow
cure : limit real numbers to the minimum non-zero size

LOG NEGATIVE
cause: attempt to take the natural log of a number <= 0
cure : log is valid positive numbers only

b~91

17) SORT, XY NEGATIVE
cause: attempt to take the square root of a negative number or
attempt to raise a negative number to a real power
cure : square root is valid only for number >= 0
only positive numbers may be raised to a real power

D - 92

Decimal

11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42,
43,
44 .
45,
46.
47,
48,
49.

3.

Octa

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061

STANDARD 7-BIT USASCII CHARACTER SET

1 Hex

00
01
02
03
04
05
06
07
08
09
0A
OB
0c
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
ic
iD
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

Graphic

+ N - R

-

— O ™.

D - 93

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
S0
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB

Name

(used for padding) <aull>
(start of header)

(start of text)

(end of text)

(end of transmission)
(enquiry)

(acknowledge)

(bell or alarm)
(backspace) <bs>
(horizontal tab) <tab>
(line feed) <1£>
(vertical tab)

(form feed, new page) <ff>
(carriage return) <cr>
(shift out)

(shift in)

(data link escape)
(device control 1, XON)
(device control 2)
(device control 3, XOFF)
(device control 4)
(negative acknowledge)
(synchronous idle)

(end transmission block)
(cancel)

(end of medium)
(substitute)

ESCAPE (alter mode, SEL) <esc>

FS
GS
RS
Us

(file separator)
(group separator)
(record separator)
(unit separator)

space or blank <sp>
exclamation mark
double quote
number sign (hash mark)
dollar sign
percent sign
ampersand sign
single quote (apostrophe)
left parenthesis
right parenthesis
asterisk (star)
plus sign
comma
minus sign (dash)
period (decimal point)
(right) slash
numeral zero
numeral one

50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.
66 .
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94 .
95.
96.
97.
98.
99.
100.
101.
102.
103.
104 .

062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150

32
33

34
35

36
37

38
39
3A
3B
3¢C
3D
3E
3F
40
41

42

43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57

58
59
5A
5B
5¢C
5D
5E
5F
60
61

62

63
64

65

66

67

68

Y N R M E A CH NI OHOZENARUMIEITOABIAQAE DDV I Ave WOOO~NGUE WD

500 D D TR 7|

D - 9%

numeral two

numeral three
numeral four
numeral five

numeral six

numeral seven
numeral eight
numeral nine

colon
semi-colen

less—than sign

equal sign

greater-than sign
question mark

at sign

upper-case
upper-case
upper—case
upper—case
upper—case
upper-case
upper-case
upper-case
upper—case
upper—case
upper-case
upper-case
upper—-case
upper—case
upper—case
upper—case
upper—case
upper—case
upper—case
upper-case
upper-case
upper—case
upper-case
upper—case
upper-case
upper-case

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter

ABLE
BAKER
CHARLIE
DELTA
ECHO
FOXTROT
GOLF
HOTEL
INDIA
JERICHO
KAPPA
LIMA
MIKE
NOVEMBER
0SCAR
PAPPA
QUEBEC
ROMEO
SIERRA
TANGO
UNICORN
VICTOR
WHISKY
XRAY
YANKEE
ZEBRA

left square bracket
left slash (backslash)
right square bracket
up arrow (caret)

underscore

(single) back quote

lower~case
lower—case
lower—case
lower-case
lower—-case
lower—case
lower~case
lower~case

letter
letter
letter
letter
letter
letter
letter
letter

able
baker
charlie
delta
echo
foxtrot
golf
hotel

105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.

151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
1F

Il — ANSY X € <o mrnROT 0D B — &Lk

lower—case
lower—-case
lower—case
lower~-case
lower—case
lower—-case
lower—-case
lower~case
lower—case
lower-case
lower~case
lower~case
lower~case
lower—case
lower—-case
lower—-case
lower~case
lower—case
left curly

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
brace

vertical bar
right curly brace

tiide

{rubout> DEL

D - 95

india
jericho
kappa
lima
mike
november
oscar
pappa
quebec
romeo
sierra
tango
unicorn
victor
whisky
Xray
yankee
zebra

4, DIFFERENCES FROM STANDARD

The standard used is defined by "User Manual and Report'", second section,
Jensen and Wirth, Springer-Verlag. The following sections pertain to the
differences in Alcor Systems implementation of Pascal as compared to the
standard. The extensions are added to provide extra power to the language.
All implementations of Pascal by Alcor systems contain these added
features. If a program is to be transported to a computer system using
some other implementation of Pascal, these features should not be used in
the program.

4.a. Omissions

1) Procedures or functions may not be passed as parameters to other
procedures or functions.

4.b. Extensions

1) Common variables which provide a mechanism for statically allocating
local variables are implemented through the use of two new declaration
parts: COMMON and ACCESS.

2) The declaration sections LABEL, CONST, TYPE, VAR, COMMON, and

ACCESS may appear any number of times and in any order within a
block.

3) The Type Transfer Operator allows variables to be referenced through
the use of a type template.

4) Single elements of packed structures may be passed as parameters.
5) The OTHERWISE clause is implemented in the CASE statement. If
omitted, and there is no match, execution transfers to the next state-

ment,

6) Identifiers can include the characters '_' and '$'. Also, no
distinction is made between upper and lower case letters.

7) 1Integer constants or characters may be represented in hex.
8) Mixed mode arithmetic is implemented.

9) The procedures READ and READLN will accept string and boolean
variables.

10) External procedures or functions may be declared. This feature provides
a way of accessing external routines.

11) Input files are not opened until necessary. This eliminates the
synchronization problem when doing interactive input from a terminal.

D - 96

12)
13)

14)

15)
16)
17)

18)

19)

20)

21)

22)

23)

4.c.

The

Labels may range from -32768 to 32767.
Alternate symbols are implemented for brackets and the pointer symbol.

The LOCATIOR function allows the determination of the address of a
variable of a procedure.

The SIZE function allows the size of a type to be determined.
The HB functions returns the high byte of an integer variable.
The LB function returns the low byte of an integer variable.

The procedure MESSAGE provides an additional method for handling
string output to a terminal.

The procedure CLOSE allows files to be explicitly closed.

The procedure ESCAPE allows exiting a block at any point within the
block.

The type STRING is a predefined dynamic data type. A string function
library is provided for use with this data type.

Libraries are provided to access the hardware features of the specific
machine.

Compiler options are provided to control various functions.

Other Implementation Characteristics

following is a list of specific implementation decisions which are not

defined by the standard.

1)

2)

3)

4)

Only the first 8 characters of an identifier are stored. This means
that identifier names should be selected such that the first 8
characters form a unique name.

There is a limit of 256 elements for sets, enumerations, CASE state-
ment labels, and parameters to a procedure or function.

Pascal source code is restricted to 80 columns.

The association of logical files to physical devices is made either
interactively from the terminal or through a procedure call.

D - 97

The following is a list of characteristics which are slightly altered from
the standard.

1)

2)

3)

Operator precedence has been altered to eliminate the need for exces
sive use of parentheses in expressions. The precedence is the same as
that used in BASIC. The difference is the precedence assigned to the
Boolean operators. The precedence defined by the standard makes the
Boolean operator OR equal in precedence with + and -, the Boolean
operator AND equal in precedence with *, /, DIV, and MOD, and

NOT has the highest precedence of any operator except the parenthe-~
ses. Parentheses may be used when transportable programs are being
written to maintain compatability with the standard. This alteration
of precedence should not cause any problems when transferring programs
written in standard Pascal to Alcor Pascal.

Although structured variables may contain components of type FILE,
the I/0 routines will accept only simple variable names. Therefore,
files within structured variables may be used only in a restricted
manner.

A GOTO statement may not reference a label outside the block in which
the statement appears.

D - 98

5. THE TYPE STRIKNG

The standard Pascal string is defined to be a PACKED ARRAY OF CHAR.
Variables of this type are restricted to a predetermined size. (That is,
the size of the array must be specified and cannot be altered during
program execution). In contrast, the predefined type STRING is dynamic.
The size of a variable declared as type STRING is determined during
program execution. Variables of this type may change in size as the
program executes. In addition, variables of type STRING may be used in
conjunction with a ruantime library of string manipulation functions.

Syntax of type STRIKG:

Y

>[strive |

Example:

VAR strl, str2, str3 : STRING;

5.a. Assigning Values to Dynamic String Variables

A dynamic string may be created through the use of the predeclared transfer
function BLDSTR. This function has one parameter which may be either a
variable of the type PACKED ARRAY OF CHAR or a string constant. The func-
tion returns a dynamic string of the same length as the array or string
constant passed to it.

Example:

strl := BLDSTR ('literal string constant');

str2 := BLDSTR (stringconstant);

str3 := BLDSTR (arrayvariable);

The procedures READ and READLN have been extended to accept variables

of the type STRING. When a variable of type STRING is specified, all
characters from the current file pointer to the end of line mark are read.
The size of the string is then equal to the number of characters read. If
a read is performed while at the end of line mark, the string variable is
assigned an empty string. An empty string is a string of zero length.

Example:

READ (strl);

READLN (filename, str2);

D - 99

A string variable may be assigned to another string variable. An
assignment between two string variables results in both string variables
referencing the same string. (That is, both string variables point to the
same location in memory.)

Example:

strl := str2

ws

(1]

NOTE: For most applications, the preferred method of assignment
between two string variables is through the use of the library function
CPYSTRING. If two string variables point to the same location and

one is disposed (using DISPOSE), then both string variables will

become undefined.

A string variable may have assigned to it a string formed by one of the
string manipulation functions in the runtime library. For example, there
is a function provided which may be used for assignment between two string
variables. The function CPYSTR takes a string variable as a parameter

and copies it to another location. The string appearing on the left side
of the equal sign then references the new location. In other words,
instead of having one copy of the string as in the above example, there are
now two copies.

Example:

strl := CPYSTR (str2);

5.b. Outputting Dynamic String Variables

The WRITE and WRITELN procedures have been extended to accept variables
of the type STRING. When a dynamic string is output, the number of
characters written is equal to the length of the string.

5.c. Converting a Dynamic String Into an Array

Dynamic strings can only be accessed as a whole. (That is, the individual
characters of the string cannot be accessed). The predeclared procedure
GETSTR will copy a dynamic string variable into a variable of the type
PACKED ARRAY OF CHAR. It accepts two parameters. The first parameter is
the dynamic string variable. The second parameter is the array variable.
The string is left-justified in the array. If the string is longer than
the array, then it is truncated. If the string is shorter than the array,
then the array is padded with blanks.

Example:

GETSTR (strl, arrayvariable);

D - 100

5.d. Recovering Memory Used by a Dynamic String

The memory used by a dynamic string may be recovered through the use of the
standard procedure DISPOSE. When a string variable is passed to the
DISPOSE procedure, the memory used by the string is freed and the string
variable becomes undefined. In addition, any other string variable which
points to the same string will become undefined. Each time a string
variable is assigned a value, it points to a new string and the old string
is then lost. The memory it uses cannot be recovered. Therefore, before
assigning the string variable a new value, the memory used by the old value
should be recovered if space is important.

Example:

strl := BLDSTR ('this is the first value');
DISPOSE (strl);
strl := BLDSTR ('this is the second');

5.e. Using the String Library

There is a long list of string manipulation functions available in the
runtime library. 1In order for a program to have access to these functions,
it must include an external declaration for each function used. A file of
external declarations for all the string functions is supplied on disk. You
can use the Model III Pascal editor program to insert this file into the
programs that use these functions. The declarations for any functions which
are not used may be deleted if desired. If only one or two functions are
used, you may prefer to type in the external declaratioms. The NETIWORK
PASCAL SYSTEM REFERENCE GUIDE (page E-25) lists these functioms.

Example use of dynamic strings:

PROGRAM sample;

VAR firstname, lastname,
space, fullname : STRING;

FUNCTION CONC(sl,s2 : STRING) : STRING; EXTERNAL;
(*CONC is a string library function which concatenates 2 strings*)

BEGIN
space := BLDSTR (' ');
WRITELN (' enter first name');
READLN (firstname);
WRITELN (' enter last name');
READLN (last name);
fullname := CONC (CONC(firstname, space),lastname);
WRITELN (fullname)
END.

D - 101

6. 1/0 PROCEDURES GET AND PUT

File buffer variables and the procedures GET and PUT are I/0 features

of Pascal which are not often used. The procedures READ and WRITE are
abbreviated forms for accomplishing the same I/0 tasks. However, file buf-
fer variables do provide a means of performing "lookahead" in a file.

(That is, you may check the value of the next component in a file before
actually reading it.) The ability to perform "lookahead" may offer some
advantages in certain applications (for example, the scanner of a
compiler).

6.a. File Buffer Variables

There is a file buffer variable associated with each file in a program.

The buffer variable is used as temporary storage for file components as
they are passed to or from the associated file. The buffer variable is the
same size and type as an individual component of the file. The individual
components of TEXT files are characters. Therefore, the file buffer vari-
able associated with a file of type TEXT has a size of one byte (8 bits)
and is of type CHAR. A file declared as FILE OF INTEGER consists of
individual components of type INTEGER. The associated file buffer vari-
able will have a size of two bytes (that is, integers require two bytes of
storage) and will be of type INTEGER.

The buffer variable associated with a particular file may be referenced in
the same manner as pointer variables, using either the *~ or @ symbol.

The buffer variable of a particular file is referenced by following the
logical file name with either of these two symbols. For example, the
buffer variable of the logical file INPUT is referenced by either INPUT*
or INPUTG@.

Files are opened for reading or writing by the procedures RESET or

REWRITE, respectively. When a file is opened by RESET, the buffer

variable associated with the file is assigned the value of the first
component in the file. 1If the file is empty at the time it is opened, then
the value of the buffer variable is undefined. When a file is opened by
REWRITE, its associated buffer variable is undefined.

File buffer variables may be assigned values using the assignment state-
ment. For example, OUTPUT@ := 'A' will assign the character A to the
file buffer associated with the logical file OUTPUT. Additionally, the
procedures READ, READLN, and GET will alter values of file buffer var-
iables associated with input files. The buffer variables associated with
output files become undefined after performing the operation specified by
the WRITE, WRITELN, or PUT procedures.

6.b. The GET Procedure

The GET procedure assigns the value of the next component of a file to
the buffer variable associated with that file. If there is no next com-
ponent (that is, the end of the file has been reached), then EOF on that
file becomes TRUE and the value of the buffer variable is undefined.

D - 102

Syntax of GET: (default: file = IRPUT)

L)

——s @l so—sE—0
Examples:

GET {assigns the next character of the logical
file INPUT to the buffer variable IRPUT@)

GET(F) {assigns the next component of the logical
file F to the buffer variable F@)}

READ(f,x) {is equivalent to x := f@; GET(f))

6.c. The PUT Procedure

The PUT procedure appends the value of the buffer variable for a
particular file to the end of that file. After the operation, the value of
the buffer variable becomes undefined.

Syntax of PUT: (default: file = QUTPUT)

v

s E O EE—0

Examples:

PUT {appends value of the buffer variable OUTPUT@
to the end of the logical file OUTPUT)}

POUT(F) {appends the value of the buffer variable F@
to the end of the logical file F)

WRITE(f,x) {is equivalent to f@:=x; PUT(f))}

D - 103

Example use of GET and PUT and file buffer variables:

The following program copies the contents of logical file infile to
logical file outfile.

PROGRAM filecopy;

VAR infile, outfile : TEXT;
BEGIN
RESET(infile); {infile@ = first character)
REWRITE (outfile); {outfile@ is undefined)}
WHILE NOT EOF(infile) DO
BEGIN
WHILE NOT EOLN(infile) DO
BEGIN
outfile@ := infile@; {define outfile@)
PUT(outfile); {write outfile@)
GET(infile) {get next character}
END;
READLN(infile); {advance to next line}
WRITELR(outfile) {advance to next line)}
END
END.

D - 104

7. USING FILES IN STRUCTURED VARIABLES

This implementation of Pascal does not fully support the use of files which
are components of structured variables. The following declarations are
examples of the use of files in structured variables:

VAR

files : ARRAY [1..5] OF TEXT; {array of files)
student : RECORD
name : ARRAY[1..20] OF CHAR;
scores : FILE OF IRTEGER; {file in record)
END;

The above declarations are legal but the I/0 routines (see Chapter Ten of
the Language Reference Guide) will not accept file names which are not
simple. An example of a simple name is "outfile". With the above
declarations, the file names are not simple names. I1/0 statements like the
following would generate compile errors:

READLN(files[2],...
WRITELN(files([5],...
READ(student.scores,...

WHILE NOT EOF(student.scores) DO ...

For applications that need to use files as components of structures, there
is a method of avoiding the simple name restriction to file names. Simply
write your own I/O routines which act as interface to the Pascal I/0
routines. You may pass non-simple file names to these interface routines
which then use simple names in the actual I/0 operations (see the example
program on the following page). It is important to note that the file
variables should be passed by reference (that is, they should be preceded
by VAR in the parameter list).

When using files which are components of structures, make sure that the
following two operations are always performed on the files:

1)

2)

Before the file is opened, it must be initialized. The following
operation will initialize a file. The filename may be simple or
non-simple.

filename: : INTEGER :=0 {initializes file "filename")

Before the program is exited, the file must be explicitly closed by
the CLOSE procedure. Failure to do so will probably result in loss
of the file.

D - 105

(*SNO IROUT*)
PROGRAM files_in_ structures;

(* Sample program which uses array of files *)
(* This program prompts for a file name and

then sends the file to the line printer *)

VAR ch : CHAR;
files: ARRAY[1..2] OF TEXT;

PROCEDURE openr (VAR filename : TEXT);

BEGIN
filename: : INTEGER:=0; {initialize file}
RESET(filename) {open file for reading}
END;

PROCEDURE openw(VAR filename : TEXT; name : STRING);
PROCEDURE SETACNM (VAR f : TEXT; name : STRING); EXTERNAL;
BEGIN
filename: : INTEGER:=0; {initialize file}

SETACNM (filename, name); {eliminate prompt for filename}
REWRITE (filename) {open file for writing}

END;

PROCEDURE closefile(VAR f : TEXT);

BEGIN
CLOSE(£) {close file}

END;

PROCEDURE readfile(VAR f : TEXT; VAR data : CHAR);
BEGIN
READ(f,data) <{read from file}

END;
PROCEDURE writefile(VAR f : TEXT; data : CHAR);
BEGIN
WRITE(f,data) ({write to file)
END;
PROCEDURE writeline(VAR f : TEXT);
BEGIN
WRITELN(f) {advance to next line of output file}
END;
PROCEDURE readline(VAR f : TEXT);
BEGIN
READLN() {advance to next line of input file)}
ERD;

FUNCTION endfile(VAR f : TEXT) : BOOLEAN;
BEGIN

IF EOF(f) THEN endfile := TRUE else endfile := FALSE
END;

D - 106

FUNCTION endline(VAR f : TEXT) : BOOLEAN;
BEGIN

IF EOLN(f) THEN endline := TRUE else endline := FALSE
END;

BEGIN
openr(files[1]); {open input file}
{note to CP/M users ——> :L should be changed to LST:}
openw(files[2],BLDSTR(':L')); {open output file}
WHILE NOT endfile(files[1]) DO
BEGIN .
WHILE NOT endline(files[1]) DO
BEGIN
readfile(files[1],ch);
writefile(files[2],ch);
END;
readline(files[1]);
writeline(files[2])
END
END.

D - 107

8. TUSING GLOBAL VARIABLES IN EXTERNAL ROUTIRES

It is recommended that whenever possible, variables should be passed to
routines rather than allowing the routines to access global variables.
However, sometimes the use of global variables is necessary. When using
global variables in an external routine (that is, a routine that was
compiled separately), it is necessary to duplicate the exact global
environment when the external routine is compiled. Otherwise, referencing
of global variables within the external routine will not be correct.

The use of the compiler INCLUDE option is very helpful to insure that the
declarations used in the main program are exactly duplicated in the
separately compiled routine. The following example illustrates the use of
global variables in a separately compiled procedure.

File containing the main program:

PROGRAM main;
{the file GLOBAL contains the declarations for the main program}
{$INCLUDE 'GLOBAL'}
PROCEDURE separate; EXTERNAL;
BEGIN
letter:="a';
digit:=10;
separate;
END.

File containing the external procedure:

PROGRAM compile_separately;
{duplicate the global environment}
{$INCLUDE 'GLOBAL')}
PROCEDURE separate;
BEGIN
WRITELN('letter = ', letter);
WRITELN('digit = ',digit:2);
END;
BEGIN
{$NULLBODY }
END.

The file GLOBAL:

VAR letter
digit

CHAR;
INTEGER ;

s s»

D - 108

9. USING COMMON VARIABLES

Often when creating libraries, such as a set of graphics routines, it is
difficult to avoid the need for using global variables. There is usually a
routine which does some initial processing to define variables which are
needed by many of the other routines in the library. If these variables

are local to the routine, they become undefined when the routine termi-
nates. Of course, these variables could be retained if they were included
as parameters to the routine. However, often these variables are not perti-
nent to the functionality from an end user's point of view. Making them a
part of the parameter list complicates the use of the library routines.
Another alternative is to make these variables global. This is a problem
too, because each programmer which uses the library must know of these vari-
ables and make appropriate declarations for them. Common variables offer a
clean solution to this type of programming problem. They essentially pro-
vide the ability to use global variables in libraries without the need for
programs which use the library to even be aware of their existence. The
following example illustrates the use of common variables.

File containing library of routines:

PROGRAM library;
COMMON xscale, yscale : REAL;

PROCEDURE axis(xmin,xmax,ymin,ymax : REAL);
ACCESS xscale, yscale;
BEGIN
xscale := 512/ (xmax-xmin);
yscale := 256/ (ymax-ymin);
END;

PROCEDURE scale(x,y : REAL);
ACCESS xscale, yscale;
VAR 1ix,iy : INTEGER;
BEGIN
ix := ROUND(xscale¥x);
iy := ROUND(yscale*y);
WRITE('original values: x,y =
WRITELN('scaled values: x,y +
END;

BEGIN
{$NULLBODY)
END.

User program:

PROGRAM user;
VAR i : INTEGER;
PROCEDURE axis(xmin,xmax,ymin,ymax : REAL); EXTERNAL;
PROCEDURE scale(x,y : REAL); EXTERNAL;
BEGIN
axis(0.0,10.0,0.0,5.0);
FOR i := 0 TO 10 DO scale(i,i/2);
END.

D - 109

SECTION E: NETWORK PASCAL SYSTEM REFERENCE GUIDE

TABLE OF CONTENTS

1. Diskette Information+ ¢« &« « « « .+ .
2. NETPCL: The Network Pascal Editor/Compiler .
a. Editor Information . . . « & ¢ ¢« & & o« & &
b. Compiler OVerview . « « o« « s s o s o« & »
c. Memory Usage by the NETPCL Editof?Compiler

3. Using RUN to Execute a Program « . . .

4. Using the Linking Loader (LINKLOAD)
a. The Load Command . « &+ « + &+ « ¢« o « « s &
b. The Symbols Command . . . ¢« « + ¢ « « « &
c. The Run Command . . . « « & + ¢ « ¢« o« o &
d. The Build Conmand . . « « & & &+ o o « « &
e. The Init Command . . . « & « &+ & o & « &
f. The Network Command . . « + « « + « « o &
g. LINKLOAD Error Message . + 4 « « o & o o «

h. LINKLOAD Example . . « ¢ ¢« « ¢« & &« & & o &

5. Memory Usage for Program Execution: Estimating Stack Size

Appendix I: Network Pascal Error Codes
Appendix II: TRS-80 Pascal Procedure and Function
Appendix III: String Function Library
Appendix IV: Random Access Files + +« .+ .

A. Random File Routines

B. Random File Error Codes Returned
Procedures « « v ¢« v o o ¢ o o &

L R -

by External

. s e e . .

10

13

17

25

29

29

31

NETWORK PASCAL SYSTEM REFERERCE GUIDE

Before you study this section, you should have worked through the NETWORK
PASCAL BEGINNER'S GUIDE (section A) and should be comfortable with the
steps presented in that section. This REFERENCE GUIDE summarizes the
options available under Network Pascal and provides information that will
be useful to intermediate or advanced programmers.

1. DISKETTE INFORMATIOR

Network Pascal was designed specifically for use with TRS-80 Network
Operating Systems. It includes a full-screen text editor, a compiler for
the full Pascal language, and utility routines to move files to and from
the disk drives located on the network Host. The network is not used
during editing or compiling.

The Network Pascal disk contains the following programs:

NETPCL/CMD The main editor/compiler program for Network Pascal
NETPCL/0V1

NETPCL/0V2 Overlays for the Network Pascal editor/compiler.
NETPCL/0V3 NETPCL loads these into memory as needed.
LIRKLOAD/CMD The Network Pascal linking loader. LINKLOAD is used

to organize one or more object code files into an
executable command module, and to run the module.

EXAMPLE/PCL Source code for a short Pascal program, included on disk
as an example.

TRSLIB/OBJ An object file containing code for the TRS-80 Pascal
Procedure and Function Library, as listed in Appendix II
of this NETWORK PASCAL SYSTEM REFERENCE GUIDE.

STRINGS/OBJ An object file containing code for the String Function
Library, as listed in Appendix III,

RANDOM/OBJ An object file containing code for the Random File
Routines, as listed in Appendix IV.

RUN/CMD A program used to execute Pascal object code. RUN
includes object code for the Procedure and Function
Library, the String Function Library, and the Random
File Routines.

2. NETPCL: THE NETWORK PASCAL EDITOR/COMPILER

2.a. Editor Information

See the EDITOR GUIDE (section C of this documentation) for a complete
description of the Network Pascal editor.

2.b. Compiler Overview

The Network Pascal compiler accepts the same Pascal source language as the
Model III Pascal compiler. See the TUTORIAL (section B) and the LANGUAGE
REFERENCE GUIDE (section D) for descriptions of the Pascal language. In
the interest of saving space, one extension has been left out. Network
Pascal will not accept COMMON declarations.

The compiler allows you to compile with or without generating object code.
Sometimes it is desirable to compile without generating object code. The
compiler will execute faster if no object code is generated, and so
compiling without object code allows you to make a fast check for errors.
Further, if the program and its object are together too large to fit in the
memory of the student station, you can still use Network Pascal to edit the
program and to check it for syntax errors and then use the Model III Pascal
compiler at a stand-alone system to generate object code.

During compilation, the listing of the program is displayed on the screen
or printer and any errors detected by the compiler are identified by code
number. The meanings of these error codes are listed on pages D-88 and
D-89 in the LANGUAGE REFERENCE GUIDE (section D of this Network Pascal
documentation).

If no errors are found in the program, the message '"'"NO ERRORS DETECTED"

is displayed at the bottom of the listing. If errors are detected, then a
message indicating the number of errors detected appears at the bottom of
the listing. To return to the menu, press any key.

2.c. Memory Usage by the NETPCL Editor/Compiler

Each student station in the network should have 48K (49152 bytes) of
memory, or more. Part of this memory is used for the Network Operating
System. The remainder is used by Network Pascal. The memory used by
Network Pascal is divided into 5 different parts.

1. A major part of the memory contains the code for the NETPCL program.

2. A second section is used for portions of the code that do not reside
permanently in the student station. These sections of code are called
overlays and are loaded only when they are needed. The overlays are
much shorter than Network Pascal, so loading them takes much less time
than loading the entire program. In Network Pascal, you can edit,
compile, and transfer files with minimum impact on the Network.

E -2

3. The third part of memory contains the two memory files. This section is
partitioned to contain both a source file and an object file. The
boundary between these two files is not fixed, so either can grow to
fill as much space as required, limited only by available memory. The
memory files provide work space for the editor and compiler.

The source file in memory is used by the editor. The text that you

see on your screen when editing is the content of the source file. The
source file is also used to provide input to the Network Pascal
compiler. The source file is stored in a blank-compressed format to
save space. The source file can be copied to the host disk to allow for
future editing.

The object file contains the object code generated by the Pascal
compiler. This object code can be transferred to a disk file for
execution.

4. The fourth section of memory contains the stack. This stack is used
as work space for the editor and compiler. Under normal conditions,
there will be plenty of space in the stack. The only time that you will
run out of space in the stack is when compiling very complex programs.
If this occurs, the message "OUT OF STACK" will be displayed. Press
any key to return to the main menu, then get back into the editor
program and alter the program to use less stack during compilation by
reducing the complexity. Especially reduce the number of nested CASE
statements and the number of levels of parentheses in expressions.

5. The fifth section of memory is the heap. The heap is used to contain
the symbol table created by the compiler. These symbols represent the
names of the variables, types, procedures, and other programmer-defined

objects. There is enough heap space to contain approximately 100
symbols. This should be enough for most moderate-sized programs.

3. USING RUN TO EXECUTE A PROGRAM

After the Pascal program has been compiled, it may be executed by the RUN
program. This program will directly execute the compiled object code
without the use of the LINKLOAD program. To use RUN, you must first

use the editor/compiler M command to move your object file to the host
disk. Then use the N command to exit to the "Network" prompt.

The RUN command is entered at the '"Network" prompt as:

RUN filename

where filename is the name of the object program as stored on disk. An
extension of /OBJ is assumed by the RUN program. A drive number may be
specified.

The RUN command includes the object code for the TRS-80 support routines

(SETPOINT, CLEARSCREEN, etc.) This means that any of these routines
can be called from the program executing.

E-3

The RUN command allows the amount of stack space to be specified on the
command line. The stack is used by the Pascal program to store local
variables and to save return addresses for procedure and function calls.
This stack is allocated when the program is run, and the required size is
determined by the number and type of variables declared, and by the number
and sequence of procedure calls. Methods of estimating the amount of stack
required are described later in this section.

Stack size may be selected by following the program name with the stack
size, separated by a blank or comma. For example, the following line would
cause the program DATABASE to execute with 15K (15360 bytes) of stack
space. (No angle brackets around the number of K is required in the RUN
command)

RUN DATABASE 15K

The stack size can be specified as a decimal or hexadecimal number.
Hexadecimal numbers must have "#'" as the first character. This is the

same notation as is used in the Pascal language. The letter 'K' means
1024, so 8K is equivalent to 8 * 1024 or 8192. If no stack size is
specified, then 1/2 of the unused memory is allocated for the stack and the
other half for the heap. (The heap is the area of memory used by the
Pascal program for dynamic memory storage as required by the procedures
NEW and DISPOSE).

When execution of a program completes, the amount of stack and heap used is
displayed on the screen. These numbers reflect the actual quantity of
memory used during execution.

The first thing that a Pascal program normally does is to open the files
INPUT and OUTPUT. When this happens, the prompts

INPUT
OUTPUT

appear on the screen. You may then enter the name of the file or device to
be used when the program reads from INPUT or writes to OUTPUT.

If you simply press the ENTER key, then input and output devices will be
the keyboard and the screen. When any file is opened by a Pascal program
(by calls to RESET or REWRITE), a prompt will appear on the screen. To

the left of the equals sign will be the name of the file being opened. You
should type the name of the disk file or device to be associated with that
file.

NOTE: The INPUT and OUTPUT prompts that accompany the execution of
every program may be eliminated for a particular program by the use of
the $NO INOUT option, described on page D-82 (in the LANGUAGE REFER-
ENCE GUIDE).

The file names that you use to direct Pascal input and output are in the
same format as normal filenames of the operating system in use. The disk
drive specification is optional. Input and output to any Pascal file can
be directed using physical devices as well as disk files. The name of the
line printer is :L and the name of the video screen is :C. There is

also a dummy device, such that if a file is associated with :D, then no
actual output occurs. This is useful if you wish to run the program and
discard some of its output.

NOTE: RUN/CMD is also provided on Model III Pascal Disk One. You
might find it advantageous to use RUN on stand-alone systems and
LINKLOAD (as described in the BEGINNER'S GUIDE and below) on

Network for the following reason: RUN requires that both RUN and

the Pascal object code be loaded into the student station each time a
program is executed. With LINKLOAD, only the Pascal object code
needs to be reloaded each time. LINKLOAD remains loaded in the
student station until you ask to return to the "Network' prompt.
Therefore, LINKLOAD cuts down on host access time.

4. USING THE PASCAL LINKING LOADER (LINKLOAD)

The Network Pascal linking loader (LINKLOAD) provides powerful ways to
configure Pascal programs. Separately compiled programs and procedures may
be loaded into memory together and executed. The program that results from
linking can be stored as a command (/CMD) file on disk, allowing you to
execute it directly from the "Network" prompt by simply typing the

filename and pressing ENTER.

Unlike RUN, LINKLOAD does not contain object code for the Procedure and
Function Library, the String Functions, or the Random File Functionms.
However, you can use LINKLOAD to load any or all of these files
(TRSLIB/OBJ, STRINGS/OBJ, and RANDOM/OBJ) into memory with programs

that need them, and to build them into the executable command file along
with your program.

To invoke the linking load, type LINKLOAD when the '"Network'" prompt is
displayed. At this point, the linking loader is brought into memory from
disk. The first item displayed is a menu of commands followed by the
command prompt (">>"):

L=Load, R=Run, N=Network, I=Init, S=Symbols, B=Build CMD
>>

To use one of these commands, type the single letter (or, optionally, the
entire name) of the command and press ENTER. In cases where more
information is required, prompts will appear. To redisplay the list of
commands, enter "H" or "?".

4.a. The LOAD Command

The Load command is used to load programs, procedures, and functions into
memory., One or more programs or sub-programs can be in memory at a time;
this is what allows linking of programs.

To load a program, type L and press the ENTER key. The Load command

will ask for a filename. Enter the name of the file. The file that you
are attempting to load should contain object code as generated by the
Pascal compiler. The object file will be opened, and the object code will
be loaded into memory. Each time a program, procedure, or function is
loaded, its name will appear on the screen. This allows you to monitor the
load process, and shows the identity of the procedures being loaded.

LINRKLOAD allows procedures that were compiled separately (see pages D-64
and D-65 of the LANGUAGE REFERENCE GUIDE) to be joined. A program may be
compiled a piece at a time, and when changes are made only the parts
affected by the change need to be recompiled. This allows the programmer
to create libraries of utilities. These utilities can be loaded with any
program that needs them, but need to be compiled only once.

4.b. The SYMBOLS Command

The Symbols command displays all currently defined or referenced symbols on
the screen. One procedure name is displayed per line. After the procedure
name is a character that describes the use of that procedure. A "D"
indicates that the name is defined; that is, that the procedure has been
loaded into memory. An "R" indicates that the procedure has been

referenced but not yet defined. This means that a procedure that has been
loaded makes a call to this procedure., All procedures that are called must
be loaded before the program can run.

The last item on the line is the address of the symbol. If the symbol is
defined ("D"), then this is the address in memory where the procedure
begins. If the symbol has not been defined ("R"), then this is the
address of the last place it was used (called).

4.c. The RUN Command

After a program has been loaded, it can be executed with the linking
loader's Run command. As with the RUN program, one half of available
memory is allocated to stack and the other half to heap by default. If
these space allocations are sufficient, simply press ENTER when you see
the prompt STACK SIZE:, Otherwise, enter a value. The size of the stack
may be expressed as a decimal number of bytes, a hexadecimal number of
bytes (precede the number with the # sign), or a number of kilobytes
(example: 8K). A kilobyte is 1024 bytes. Methods of estimating the
required stack size appear on pages E-10 and E-11 in this section.

After the STACK SIZE:, INPUT:, and OUTPUT: prompts have been

answered, the program will execute. If a file is opened by REWRITE or
RESET, the Pascal filename will be displayed on the screen and you will
need to enter the name of the actual file or device to be used. (This name
can be the filename of a disk file, or else :L for the line printer, or

:C for the screen and keyboard, or :D for a '"dummy' device.)

NOTE: Running the program using LINKLOAD is a good way to
test program execution, but be aware that running the program
clears the program out of memory. If you use Run, you'll have
to reload all program segments before you use Build.

4.d. The BUILD Command

Once all of the parts of a program have been loaded, the master program may
be saved on disk as a command file. (If you have used the Run command

since the program's parts were loaded, you must repeat the loading process
first.)

The Build (B) command is used to save the master program. The first
prompt from this command is the same as for the Run command (STACK SIZE:)
and has the same meaning. The Build command then asks for a filename.
This is the name of the file that will contain the master program. The
filename that you enter must contain the /CMD extension, and may

contain a drive specification. For example:

MAINPROG/CMD: 2

Once you have entered the filename, the program will be saved on disk, and
you may run it at a later time simply by entering its name at the Network
prompt. For example: MAINPROG <ENTER>.

The Build command then returns control to the Network Operating System.

4.e. The INIT Command

The Init command clears the symbol table and redisplays the command menu.
This command can be used to start over if the wrong program is loaded by
mistake. It is equivalent to exiting to the Network Operating System and
then running LINKLOAD again.

4.f. The NETWORK Command

The N command returns control to the Network Operating System. The
"Network" prompt will reappear.

4.g. LINKLOAD Error Messages

The following error messages can be generated by the linking loader.

#*%% CANNOT OPEN FILE

%%% UNRESOLVED REFERENCES

*%% INVALID OBJECT TAG

*%% SYMBOL TABLE FULL

*%% JLLEGAL REFERENCE

4.h. LINKLOAD Example

This message is generated when you attempt to
load and the loader cannot find a file of the
name specified., This may be caused by a
misspelling or by the wrong disk being in the
drive.

When you use the Run command to execute a
program or the Build command to generate an
image on disk, the loader checks that all of
the procedures that are called within the
program have been loaded. If there are
procedures or functions that have been called
but have not been loaded, then this message is
generated. At this point, you can load the
required modules and repeat the command. The
Symbols command can be used to list names of
the procedures that are not yet defined.
These will have an '"R" in the listing.

This message is issued when a load is per-
formed on a file that is not in a valid object
format. The most frequent cause of this error
is an attempt to load the source program
instead of the object.

The linking loader has room for 256 different
external symbols. If more procedures than
this are loaded, the symbol table will become
full.

This message signifies an inconsistent
structure in an object file. It is an indica-
tion that the file has been damaged. The best
solution is to recompile the offending
program.

The listing on the next page illustrates a sample LINKLOAD session, as
prompts from the computer and responses from the user might appear on the

screen:

Network 3
LINKLOAD

L=Load, R=Run, N=Network, I=Init, S=Symbols, B=Build CMD
>> L

FILE = MAIN/OBJ
MAIN

31557 BYTES LEFT

>> L

FILE = TRSLIB/OBJ
GOTOXY

GETKEY

INKEY

CLEARSCR

CLEARGRA

WRITECH

WRITESTR

INP

GET$PROC

IO$ERROR

HP$ERROR

TIME

DATE

ITIME

SETPOINT

RSETPOIN

TESTPOIN

USER

CALLS

$MEMORY

NOBLANK

READCURS

PEEK

POKE

INITSFIL

FILESSTA

SET$ACNM

3@333 BYTES LEFT

>> B

STACK SIZE :

FILE = MAINPROG/CMD

5. MEMORY USAGE FOR PROGRAM EXECUTIOR; ESTIMATING STACK SIZE

The Pascal RUN program or the linking loader is loaded beginning at
address #5200 in the computer's memory. The Pascal program that is being
executed will be loaded immediately above the runtime program.

The next segment above the program is used to contain the Pascal stack.
Pascal programs use a stack to store local variables and to save return
addresses for procedure and function calls. This stack is allocated when
the program is run, and the required size is determined by the number and
type of variables declared and the number of and sequence of procedure
calls. The stack is a dynamic structure. Space is allocated when a pro-
cedure is called, and is released when the procedure is exited.

The remainder of available memory is used for the heap. Programs that use
pointers and the procedure NEW will use storage from the heap. The heap
also contains the buffers used to read from and write to files.

The total stack size required by a program is determined from its dynamic
behavior at run time. Each time a procedure is called, space is allocated
for its local variables. The total stack in use is a function of the num-
ber of procedures active at the time and the number and sizes of the vari-
ables used within those procedures. If two procedures are never active at
the same time, then the space used by each can be shared. The total stack
that must be allocated is determined from the maximum size that is in use
at any given time,

The simplest way to determine stack requirements is to run the program.
Specify enough stack for it to run, perhaps with an excess. When the
program terminates, the maximum stack used by the computer is printed on
the screen. A good rule of thumb is to allocate 20% more stack than is
required for a typical execution of the program.

The size of stack required can also be determined from the source program.
It is necessary to determine which procedures will be active at a given
time. Then add the size of the local variables for each procedure. If too
much or two little stack is allocated for the program, it may terminate
unpredictably.

The sizes of simple variables are summarized below:
type size in bytes

CHAR

BOOLEAN

INTEGER

STRING

REAL

REAL (double precision)
FILE

TEXT

NN OO NN b

w W

E - 10

The size of an array is determined by multiplying the number of elements in
the array (upper bound minus lower bound, plus 1) by the size of the ele-
ment. The size of a record is determined by adding the sizes of its
individual fields. Packing is on byte boundaries.

A set may require from 1 to 33 bytes depending on the number of possible
members. The set requires one byte plus one additional byte for each eight

possible members. For example, a set with 16 possible members requires 3
bytes.

Enumerated types require one byte, and subranges require one or two bytes.
(#..255 requires one byte.)

To calculate the total stack required, you should also include 64 bytes for
the predeclared files INPUT and OUTPUT. Also, active procedures

require space for their parameters as well as their local variables. Para-
meters passed by value require storage based on the size of the variable.
Parameters passed by reference require two bytes each. Each active
procedure also requires 9 bytes to store dynamic return informationm.

E ~- 11

APPENDIX I: NETWORK PASCAL ERROR CODES

Network Pascal can detect several types of errors. These errors and their
possible solutions are described below.

Editor Errors

UNKNOWN COMMAND A command was entered in command mode that is not
known to the editor. Check the spelling. Note
that command names can be abbreviated, but that
all characters that are actually entered must
match with the name of the command.

MEMORY EXHAUSTED The editor has run out of memory for the source
file. Delete the object file, or remove some text
from the source. You can also break the program
into separate pieces that can be separately
compiled, and then link them before execution.

STRING NOT FOUND A "find string'" command was executed and the
string was not found in the section of the file
between the cursor and the end of file. Either
the string was mistyped, or it exists in the file
before the cursor position, or the string is not
present.

Note that the editor begins with the string for
the find string command set to null.

Compiler Errors

~ddd (Where d represents a digit.) A one to 3 digit
error code appears in the listing. Find the
meaning of the error in the LANGUAGE REFERENCE
GUIDE (pages D-88 and D-89) and correct it in the
program,

OUT OF STACK The compiler has run out of working storage space.
Stack is used to _evaluate expressions and keep
track of nested statements. The solution is to
reduce the amount of nesting in the program. The.
best methods are to reduce the number of levels of
parentheses in expressions, or reduce the number
of nested CASE statements.

OUT OF HEAP The compiler has run out of space to store
symbols. Either reduce the number of names
present, or split the program so that portions of
it can be compiled separately.

E - 13

RUNTIME ERROR 09

Move errors

Can't open file

OUT OF SPACE

Move error

The compiler has run out of memory to store the
object code. Check to be sure that there are not
two programs concatenated in the source file. If
the source and the object together are too big to
fit in memory, then compile the source without
generating object code, to detect errors. When
all errors are corrected, use the Model III Pascal
compiler to compile and generate object code.

Move was unable to open the file. If a read was
being done, it means that the file is not present
on the disks located on the host. Check the
spelling of the filename and the identity of the
disks located on the host. If a write was being
done, then it is not possible to create the file.
The host disk may be write-protected, or out of
directory space.

The memory in the student station is full. Check
that you are not inadvertantly concatenating files
(that is, failing to delete an existing file
before moving a new one into memory). Also check
for a leftover file such as an object file from a
previous compile or from a previous user of that
station.

An operating system error was detected during the

move. This is usually a disk error (for example,
disk full). Correct the error and try again.

E -14

Common Programming Mistakes

1. For variable types to match in expressions and not generate compiler
error messages, they must be explicitly declared to be of the same type
in the variable declaration section. For example:

PROGRAM TEST;
VAR A:ARRAY[1..5]OF CHAR;
B:ARRAY[1..5]OF CHAR;
BEGIN
A := B;
END.

will generate a type conflict message by the compiler although the types
appear to match. The following example will not generate an error
message and is perfectly legal in Pascal.

PROGRAM TEST;
VAR A,B:ARRAY[1..5]OF CHAR;
BEGIN
A := B;
END.

or:

PROGRAM TEST;
TYPE D = ARRAY[1..5]OF CHAR;
VAR A,B : D;
BEGIN
A := B;
END.

2. A procedure declaration that has non-named types in the parameter list
is illegal in Pascal. (That is, the following is illegal.)

PROGRAM TEST;

PROCEDURE EXAMPLE(VAR A:ARRAY[1..5]0F CHAR); EXTERNAL;
BEGIN
END.

The following is legal:

PROGRAM TEST;
TYPE D = ARRAY[1..5]OF CHAR;
PROCEDURE EXAMPLE(VAR A:D); EXTERNAL;
BEGIN
END.

3. Placing a semicolon character (;) before the ELSE part of an IF
THEN ELSE statement is illegal.

E - 15

APPENDIX 1I1:
TRS~80 PASCAL PROCEDURE AND FUNCTION LIBRARY

A set of functions and procedures to access the hardware features of the
TRS-80 is provided with the Pascal compiler. These procedures can be
declared as external procedures within Pascal programs. The object code
for these procedures and functions is provided in two forms:

1. If the program is executed with the RUN command, the function library
is contained within the RUN program. Any of the library procedures
and functions can be called and the routine will be linked to when the
program is loaded.

2. 1If the linking loader is used, these routines are not automatically
available. This allows programs that do not need these routines to
have more space available. The function library is provided in object
form on disk. This file (TRSLIB/OBJ) can be loaded using the load
command from the linking loader. This will make all of the library
routines available,

Each of the library routines is described below. A Pascal external
declaration is given. This declaration should be included in any program
that uses the routine.

NOTE for Model III (non-network) Pascal Users Only: The external
declarations of the library routines are included in a file on Model
III Pascal Disk One (TRSLIB/PCL). Any or all of these declarations
can be inserted into the source program using the insert file command
available through the Model III Pascal ED/CMD program.

PROCEDURE CLEARGRAPHICS; EXTERNAL;

The purpose of this procedure is to clear the display when utilizing the
graphics routines, Its function is similar to the CLEARSCREEN function
(see page E-19) but it loads all hex 80's into the display memory, instead
of hex 20's as CLEARSCREEN does.

PROCEDURE SETPOINT(X, Y : INTEGER); EXTERNAL;

This procedure sets a graphics point on the screen. The location of the
point is specified with the x (horizontal) and y (vertical)

coordinates. The value of x should be in the range 0 <= x <{= 127. The
value of y should be in the range 0 <= y <= 47.

PROCEDURE RSETPOINT(X, Y : INTEGER); EXTERNAL;

This procedure clears a graphics point on the screen. The location of the
point is specified with the x (horizontal) and y (vertical)

coordinates. The value of x should be in the range 0 <= x <= 127. The
value of y should be in the range 0 <= y <= 47,

E - 17

FUNCTION TESTPOINT(X,Y:INTEGER) : BOOLEAN; EXTERNAL;

This function tests the state of a point on the screen in graphics mode.

X and y are the horizontal and vertical coordinates of the point to be
tested. The function returns TRUE if the point is on (white), and FALSE if
the point is off.

TYPE
BYTE = 0..255;
FUNCTION PEEK(ADDRESS : INTEGER) : BYTE; EXTERNAL;

This function returns the contents of any memory location. It may be used
to examine memory or memory-mapped input devices. ADDRESS is the address
being examined. An address may be passed if its value is known. The
addresses of Pascal variables may be obtained by calling the LOCATION
function, described on page D-68 in the LANGUAGE REFERENCE GUIDE.

PROCEDURE POKE (ADDRESS : INTEGER; VALUE : BYTE); EXTERNAL;

POKE is used to alter the contents of any location in memory. It may
also be used to write to memory-mapped output devices such as the printer
port.

PROCEDURE GOTOXY(X, Y : INTEGER); EXTERNAL;

GOTOXY positions the cursor on the screen at the specified location. If
a write is performed to a file that represents the screen, the text will
appear beginning at the addressed location. Procedures WRITECH and
WRITESTRING described below also use this location. The value of x
should be in the range 0 <=x <= 63. The value of y should be in the
range 0 <= y <= 15. If GOTOXY is used with the READ or WRITE
statements, then a call to the external procedure NOBLANK at the
beginning of the program is necessary. The TRS-80 ROM driver for the
screen will automatically clear the next line on the display when the
carriage return character is received. This can be detrimental when
constructing menu displays. A call to NOBLANK will cause the next line
to always be redisplayed.

PROCEDURE NOBLANK(REDISPLAY : BOOLEAN); EXTERNAL;

The TRS-80 ROM routine driver for the screen will automatically clear the
next line on the display when a carriage return character is received. A
call to NOBLANK with REDISPLAY := TRUE will cause the next line to

always be preserved. If REDISPLAY := FALSE, it will be blanked. The
Pascal logical files used for screen display must be RESET after the
NOBLANK call for it to take effect. This includes the default file
INPUT.

PROCEDURE READCURSOR(VAR X, Y :INTEGER); EXTERNAL;

This procedure returns the current position of the cursor on the CRT
screen. X is the horizontal position (character) and y is the vertical
position (line).

E - 18

PROCEDURE WRITECH(CH : CHAR); EXTERNAL;

This procedure writes a single character to the computer screen at the
current cursor location. The cursor location is advanced by one.

TYPE
CHARSTRING = PACKED ARRAY [1..XX] OF CHAR;
PROCEDURE WRITESTRING(VAR S : CHARSTRING; FIRST, LAST : INTEGER);
EXTERNAL; (*XX IS ANY LENGTH*)

This procedure writes a portion of a string of characters to the screen.
The text is written starting at the current cursor location. FIRST is

the index of the first character to be written, LAST is the index of the
last character to be written. The total number of characters displayed is:
LAST-FIRST+1. If last is less than first, then no character is written.

PROCEDURE CLEARSCREEN; EXTERNAL;

A call to CLEARSCREEN causes the screen display to be cleared and the
display to be set to 64 character width.

PROCEDURE INKEY(VAR CH : CHAR; VAR READY : BOOLEAN); EXTERNAL;

This procedure scans the keyboard to determine if a key is being pressed.
If a key is currently pressed, then CH is the character generated by that
key and READY is set to TRUE. If no key is pressed, then READY is

FALSE, and CH is the space character (one blank space).

FUNCTION GETKEY : CHAR; EXTERNAL;

This function waits for and returns the next character from the keyboard.

FUNCTION INP(PORT : BYTE) : BYTE; EXTERNAL;

This function performs input from a Z80 I/O port. The port number is
passed to the function and the value read from that port is returned as the
function value,

PROCEDURE OUT(PORT, VALUE : BYTE); EXTERNAL;
This procedure performs physical output to a Z80 port. It may be used in
conjunction with the function INP to communicate with devices interfaced

as input or output ports. The two parameters specify the port number and
the value to be written to that port.

E - 19

FURCTION FILE$STATUS(VAR F : TEXT) : BYTE; EXTERNAL;

This function returns the status of a file. The file can be of any type,
but the external declaration must specify a type that matches the type of
the file being tested. The byte returned is the error code for the latest
I/0 (input or output) error. If no errors have occurred, then zero is
returned. This function is used in conjunction with IO$ERROR and allows

a program to detect and recover from its own IO errors.

PROCEDURE IO$ERROR(NEWSTATE : BOOLEAN;
VAR OLDSTATE : BOOLEAN); EXTERNAL;

This procedure sets the state of the I/O error recovery flag within the
Pascal runtime system. This flag is used to determine whether a program
detects its own I/0 errors. If the flag is set to TRUE, then default error
processing is performed. 1In case of an error on a file or device, a
message is displayed on the screen and the program halts.

If the I/0 error flag is set to false, then all I/O errors are ignored by
the system, and it is up to the program to check for and recover from I/0O
errors. I/0 errors can be detected by calling the function FILE$STATUS.

NEWSTATE is a boolean value that sets the new state of the I/O error
recovery flag. OLDSTATE is used to return the previous value of the
flag. This allows a program to change the state temporarily and then
restore it.

PROCEDURE HP$ERROR(NEWSTATE : BOOLEAN;
VAR OLDSTATE : BOOLEAN); EXTERNAL;

This procedure sets the state of the heap error recovery flag within the
Pascal runtime system. When this flag is set to true, then a call to the
procedure NEW will cause the program to terminate with an error message

if no more space is available. Setting this flag to FALSE causes the pro-
cedure NEW to return NIL if no space is available. The calling program
should check for NIL on each call to NEW when this flag is set to

FALSE. This allows a program to use maximum memory from the heap without
danger of an abnormal termination when space is exhausted.

NOTE : Both NEWSTATE and OLDSTATE must be initialized before IOS$SERROR
or HPSERROR is called.
PROCEDURE $MEMORY (VAR STACK, HEAP : INTEGER); EXTERNAL;
This procedure allows a program to determine the amount of memory currently

available. The parameter STACK returns the current number of stack bytes
available and the procedure HEAP returns the amount of heap available.

E - 20

TYPE
FILENM = PACKED ARRAY[]..XX] OF CHAR;
ALPHA = PACKED ARRAY[1..8] OF CHAR;
(* XX IS ANY LENGTH LONG ENOUGH FOR THE FILENAME *%)

PROCEDURE SET$ACNM (VAR F : TEXT; VAR filename :FILENM;
NAMELENGTH : INTEGER; VAR FILEID : ALPHA) ; EXTERNAL;

SET$ACNM is used to set the name of the physical file or device to be
associated with a Pascal file. It allows a program to compute file names
internally. For example, a database program may know the name of the file
containing the database. This procedure allows the program to specify the
filename rather than requesting it from the keyboard.

The parameter F can be a file of any type. The external declaration of
SET$ACNM that is included in the source program must specify a type for
F that matches the actual file type to be used.

Filename is a string containing the text of the filename. This string
must be compatible with the operating system syntax for filenames. The
physical devices (lineprinter = :L, computer screen = :C, and dummy
device = :D) may also be used. NAMELENGTH is an integer that specifies
the length of the filename.

FILEID is an eight-character string that is used to identify the Pascal
name for the file, such as INPUT or OUTPUT.

If SET$ACNM is called prior to a RESET or REWRITE on a file, then
Pascal will not prompt for a filename. All subsequent uses of RESET or

REWRITE will not cause a prompt unless a CLOSE(filename) is performed
on the file. The filename association will remain as previously defined by

SET$ACNM.
(Example program segment)

TYPE
FILENAME = PACKED ARRAY [1..15] OF CHAR;
ALPHA = PACKED ARRAY [1..8] OF CHAR;

VAR FNAME : FILENAME;
FILEID : ALPHA;
F : TEXT;

PROCEDURE SET$ACNM(VAR F:TEXT; VAR FNAME:FILENAME; LEN:INTEGER;
VAR FILEID:ALPHA); EXTERNAL;
BEGIN
(* THIS ASSIGNMENT STATEMENT REQUIRES THE NAME TO BE LEFT *)
(* JUSTIFIED, AND BLANK PADDED TO THE CORRECT ARRAY LENGTH¥*)

FNAME := 'DATA/TXT:0 's
FILEID := 'F ',
SET$ACNM(F,FNAME,10,FILEID);
RESET(F);

READ(F,CH);

(* ANDETC e 0000880 *)

E - 21

PROCEDURE SETACNM(VAR logical : filetype;

physical: STRING); EXTERNAL;
The library procedure SETACNM serves the same purpose as SET$ACNM but
is simpler to use. The procedure takes only two parameters, the Pascal
logical file variable, and the physical file or device name to associate
with it. Filetype is any legal Pascal file type. The physical name
parameter is a dynamic string. The SETACNM procedure disposes this
string before exiting to recover the space.

I1f multiple file types are used in a program, the type transfer operator
(::) may be use to allow SETACNM to be called with different file

types. The external declaration of SETACNM may specify one of the file
types used. The type transfer operator must then be used with the other
file types to avoid a type mismatch error during the compile. FEach of the
other types must be type transferred to the same type as the one used in
the declaration. The following example illustrates the use of SETACNM.

(*$N0 INOUT*) (*eliminate the prompt for INPUT and OUTPUT*)
PROGRAM sample;

VAR printer : TEXT;
out : FILE OF IRTEGER;

PROCEDURE SETACNM(VAR F : TEXT; name : STRING); EXTERNAL;

BEGIR (*main body of program sample*)
(*map logical file "printer" to the line printer*)
SETACNM(printer ,BLDSTR(':L"'));
(*no prompt will occur when REWRITE(printer)is executed¥)
REWRITE(printer);
(*map logical file "out" to disk file "OUT/DAT"*)
SETACNM(out : : TEXT, BLDSTR(' OUT/DAT')) ;
(*no prompt will occur when REWRITE(out) is executed*)
REWRITE (out);

L)

END. (*end of program sample*)

PROCEDURE USER(ADDRESS : INTEGER; VAR DATA : INTEGER); EXTERRNAL;

This procedure interfaces to assembly language routines resident in the
TRS-80's memory. ADDRESS is the physical address where the routine is
loaded. Any assembly language routines that are to be called from Pascal
should be loaded in a portion of memory that is not used by TRSDOS (or the
Network Operating System) or Pascal.

E - 22

On a stand-alone Model III or 4, the location of the top of memory can be
set by using the TRSDOS utility DEBUG, to change the value in location
#4411 on the Model III or 4. Pascal will not use any memory above this
address, so assembly language routines can be loaded there. DEBUG cannot
be used on a Student Station that is participating in a Network situation.
The address of the highest usable location in memory for a student station
of 48K or more is 65535 (decimal). Your assembly language routine should
be loaded in as close as possible to the top of memory, to avoid conflicts
with your own Pascal program and the runtime program you are using.

Information is passed to the assembly language routine through the DATA
parameter. When the assembly language routine is called, the HL register
pair contains the value of DATA. When the routine exits, the content of
the HL register pair is returned as the new value of DATA. 1In cases
where more than one word of information is required, the value of DATA
can be the address of a variable. The address of any Pascal varible can be
obtained by a call to the predefined function: LOCATION. This enables the
called assembly language routine to access arrays or buffer data areas.
The assembly language routine is entered with a standard Z80 call
instruction and should be exited via a return. All Z80 registers are
available for use in the assembly language subroutine.

PROCEDURE CALLS$ (ADDRESS : INTEGER; VAR A, STATUS : BYTE;
VAR BC, DE, HL, IX, 1Y : INTEGER); EXTERNAL;

This procedure can be used in a similar manner to USER to call assembly
language subroutines., The difference is that CALL$ allows you to set up
all of the Z80 registers from Pascal. The values passed will be in the
registers when the subroutine is called. When the subroutine returns, the
current content of each register is returned to the Pascal program via the
reference parameters. STATUS is the Z80 flag register.

TYPE
ALPHA = PACKED ARRAY [1..8] OF CHAR;
PROCEDURE TIME(VAR T : ALPHA); EXTERNAL;

This procedure returns the current time of day, as known to the Student
Station. The time is in the form HH:MM:SS. (See the Network Operating
System manual for information on setting the time at a Student Station.)

TYPE
ALPHA = PACKED ARRAY [1..8] OF CHAR;
PROCEDURE DATE(VAR T : ALPHA); EXTERNAL;

This procedure returns the current date, as known to the Student Station.

The time is in the form MM/DD/YY. (See the Network Operating System
manual for information on setting the date at a Student Station.)

E - 23

APPENDIX III:
STRING FUNCTION LIBRARY

The following functions are provided for handling dynamic string manipula-

tions. (See pages D-99 through D~101 of the LANGUAGE REFERENCE GUIDE for
additional information.)

FUNCTION LEN(S : STRING) : INTEGER;

This function returns the length of a string.

FUNCTION LEFT$(S : STRING; POSITION : INTEGER) : STRING;
This function returns the left portion of the string, ending at the
specified position within the string.

FUNCTION RIGHT$(S : STRING; POSITION : INTEGER) : STRING;
This function returns the right portion of the string, starting at the
specified position and including the number of characters specified by
length.

FUNCTION MID$(S : STRING; POSITION, LENGTH : INTEGER) : STRING;
This function returns the portion of the string starting at the speci-
fied position and including the number of characters specified by
length.

FUNCTION STR$(LENGTH : INTEGER; CH : CHAR) : STRING;
This function returns a string of the specified length which is filled
with the specified character.

FUNCTION ENCODEI(N : INTEGER) : STRING;
This function returns a string which is the character representation of
the specified integer.

FUNCTION ENCODER(R : REAL) : STRING;
This function returns a string which is the character representation of
the specified real. For single precision.

FUNCTION ENCODED(R : REAL) : STRING;
Same as ENCODER, but for double-precision reals.

E - 25

FUNCTION DECODEI(S : STRING) : INTEGER;
This function returns an integer number which is the binary representa-
tion of the specified string.

FUNCTION DECODER(S : STRING) : REAL;
This function returns a real number which is the binary representation
of the specified string. For single precision.

FUNCTION DECODED(S : STRING) : REAL;

Same as DECODER, but for double-precision reals.

FUNCTION CHARACTER(S : STRING; POSITION : INTEGER) : CHAR;

This function returns the character at the specified position in the
string.

TYPE COMPAREVALUE = (LESS, EQUAL, GREATER);
FUNCTION CMPSTR(S1, S2 : STRING) : COMPAREVALUE;

This function compares the two specified strings and returns an
enumerated value based on the comparison. The returned value is LESS
if 81<S2, EQUAL if S81=82, and GREATER if S1>82.

FUNCTION CONC(S1, S2 : STRING) : STRING;

This function returns a string which is the result of the concatenation
of the two specified strings.

FUNCTION CPYSTR(S : STRING) : STRING;

This function returns a copy of the specified string. The typical use
for this function is the assigmment of one string variable to another.
This prevents both string variables from referencing the same string.
For example, STRINGl := CPYSTR(STRING2); will cause STRINGl to refer
to a different copy of STRING2. STRING1 := STRING2; causes STRING1

to refer to the same copy of STRING2 and any changes in the value of
STRING1 would cause STRING2 to change also.

FUNCTION DELETE(S : STRING; POSITION, LENGTH : INTEGER) : STRING;
This function returns the string which results after deletion of a

specified number of characters beginning at the specified position in
the string.

E - 26

FURCTION FIND(SUBSTRING, S : STRING) : INTEGER;
This function returns an integer number which points to the start of

the specified substring within the specified string. If the string
does not contain the substring, then the returned value is O.

FUNCTION INSERT(SUBSTRING, S : STRING; POSITION : INTEGER) : STRING;

This function returns a string which is the result of inserting the
specified substring into the specified string at the specified position.

FUNCTION REPLACE (OLDSTRING, NEWSTRING, S : STRING) : STRING;

This function returns the string which results after replacing the old
substring with a new substring within string S.

E - 27

APPENDIX 1IV:

RANDOM ACCESS FILES

Random access refers to a file access method where any record may be read
or written to in any order. Pascal does not define the Random file type.
The following Pascal procedures and functions will allow random access to
files on the TRS-80. The following Pascal routines are supplied with this
package, in object code format on disk in the file RANDOM/OBJ. When

using random access files, you should declare these routines as external in
the main program. Then simply link to the supplied object file of random
access routines (RANDOM/OBJ on the Network Pascal disk and on Model III
Pascal Disk Two) with the linking loader to satisfy any external
references.

The object code for random files is built into the RUN command.

The following declarations should be included in the source program.

A. RANDOM FILE ROUTINES

PROCEDURE OPERAND(VAR F:FILETYPE; RECORDLEN:INTEGER; PATHNAME:STRING;
VAR STATUS:INTEGER); EXTERNAL;

The purpose of this routine is to open a random file. The F variable is
of any fixed type. Random file types are fixed in length and should be
declared as a FILE OF DATATYPE. A text file is not a particularly useful
DATATYPE. The filetype may be any structure such as an ARRAY,

RECORD, etc. RECORDLEN must be the size required for the datatype.

The SIZE(J) function may be used to determine the RECORDLEN. PATHNAME

is the physical filename on disk. You must prompt the user if it 1s to be
changed at runtime. STATUS is a code returned by Pascal or the operating
system. The status code returns the status of an operation on a random
file.

PROCEDURE READRAND(VAR F: FILETYPE; RECORDNUM: INTEGER; VAR DAT:DATATYPE;
VAR STATUS:INTEGER); EXTERNAL;

This routine is used to READ data from a random file. The RECORDNUM is
the record number to be read. DAT is the buffer for the data and is

declared to be of the same type as the components of the filetype (for
example, if FILETYPE = FILE OF INTEGER; then DATATYPE = INTEGER;).

PROCEDURE WRITERAND(VAR F:FILETYPE: RECORDNUM: INTEGER; VAR DAT: DATATYPE;
VAR STATUS: INTEGER); EXTERNAL;
This routine is used to WRITE data to a random file. The RECORDNUM is

the record number to be written. DAT is the buffer for the data and is
declared to be of the same type as the components of the filetype.

E - 29

PROCEDURE CLOSERAND(VAR F:FILETYPE); EXTERNAL;

Random files on TRSDOS are required to be closed before program termina-
tion. Failure to do so may result in a loss of data.

As with any operating system, there are some peculiarities about random
files. For example:

1. If you WRITE record number 1 and WRITE record number 100, and then
read any record from 2 to 99, the returned buffer will contain trash.
The data will be whatever was previously on the diskette -~ probably the
contents of an old file., This is because the operating system does not
keep that much context. It is up to the user to keep track of unwritten
records so that they are not read.

2. Random file record sizes may be from 1 to 256 bytes only. All blocking
is taken care of by the system.

3. The standard functions EOLN, EQF have no meaning for random files.
The status codes as returned by the above routines perform those func-
tions where applicable.

4. The procedure OPENRAND is used to open a file for reading and writing.
Opening an empty file and reading is perfectly legal. It is up to the
user to check the returned status on all random file operations.

5. Random file record numbers are defined from 0..32767.

6. As with normal files, if a file is declared locally within a procedure
and opened (not passed in as a parameter), once the procedure is exited
Pascal will automatically close the file using the standard CLOSE file
routine for non-random files, and will position the EOF marker in the
directory at the last record read or written. This may not be the
correct position as desired by the program. An explicit call to
CLOSERAND should always be used to close the random file and position
the EOF. This will always correctly place the EOF mark.

7. You may declare a file to be:

(*where XX is any record length from 1 to 256%)
TYPE LINE = ARRAY[1..XX] OF CHAR;
VAR F: FILE OF LINE;

Once the file has been opened, you may access it by using the READRAND
and WRITERAND external procedures, even if the file was not created by
Pascal. There is only one procedure for opening random files (no reset or
rewrite). You may read or write to a random file.

E - 30

B. RANDOM FILE ERROR CODES RETURNED BY EXTERNAL PROCEDURES
Generated by the operating system:

15 DISK WRITE PROTECTED

24 FILE NOT FOUND

27 DISK FULL

28 END OF FILE

29 RECORD NOT FOUND (PAST EOF)

Generated by the random file routines:

128 PATH NAME IS RULL OR TOO LONG

129 RECORD LENGTH IS NOT BETWEEN 1 AND 256
130 FILE IS ALREADY OPEN

131 FILE IS NOT OPEN

If multiple random file types are used in a program, the type transfer
operator (::) may be used to allow the random file routines to be called
with different file and data types. The declarations may specify one of
the file and data types used in the program. Any other file and data types
must be type transferred to the same types used in the declarations to
avoid a type mismatch error during the compile. The following example
illustrates the use of the random file routines. The status may be checked
after each random file operation to determine if an error occurred. The
returned status will be 0 if no error is detected during an operation.

PROGRAM sample;
TYPE filel = FILE OF CHAR;
file2 = FILE OF INTEGER;
VAR f1 : filel;
£2 : file2;
valuel, ch : CHAR;
value2, status, number : INTEGER;
PROCEDURE OPENRAND(VAR f : filel; length : INTEGER;
name : STRING; VAR status : INTEGER); EXTERNAL;
PROCEDURE CLOSERAND(VAR f : filel); EXTERNAL;
PROCEDURE READRAND(VAR f : filel; number : INTEGER;
VAR data : CHAR; VAR status : INTEGER); EXTERNAL;
PROCEDURE WRITERAND(VAR f: filel; number : INTEGER;
VAR data : CHAR; VAR status : INTEGER); EXTERNAL;
PROCEDURE checktatus(status : INTEGER);
BEGIN
IF status <> O THER
WRITELN('* I/0 ERROR: code number = f,status:3,' *')
END;
BEGIN
(* open file "F1/DAT"™ *)
OPENRAND(£1,SIZE (CHAR),/BLDSTR('F1/DAT'),status);
(* open file “F2/DAT"™ #*)
OPENRAND(£2::filel ,SIZE(INTEGER),BLDSTR('F2/DAT'),status);
FOR number := 0 TO 255 DO

(continued)

E - 31

BEGIN
(* write the ASCII character set to F1/DAT *)
ch := CHR(number);
WRITERAND(f1,number,ch,status);
(* write the ordinal values of the character set to F2/DAT*)
WRITERAND(f2::filel,number ,number: :CHAR,status);
END;
FOR number := 0 TO 255 DO
BEGIN
(* read the ASCII character set from F1/DAT *)
READRAND(f1,number,valuel,status);
(* read the ordinal values of the character set from F2/DAT *)
READRAND(f2:: filel ,number,value2::CHAR,status);

END;
checkstatus(status); (* check error status *)
CLOSERAND(f1); (* close F1/DAT *)
CLOSERAND(f2::filel); (* close F2/DAT %)
END.

E - 32

SECTION F: MODEL III PASCAL SYSTEM REFERENCE GUIDE

TABLE OF CONTENTS

Diskette Information . v ¢ « « « & o o ¢ s s o o o s o

Demonstration: Using Model III Pascal on a Stand-Alone System

a. Using the Editor to Enter a Program « « + « .
b. Using the Compiler to Compile the Program
c. Using the Editor to Correct Programming Errors . . .
d. Using RUN Program to Execute the Program
€. SUMMATY . & &« « o o s o s s o o o o s o s o s o o » o
The Model III Pascal Compiler . . . « « « ¢« & ¢ « o « & &
a. The PASCAL Command . . + ¢ o + o o o o « o s s o o o
b. The Pascal Compiler Listing . « o o o« =« « « « o o« o &
c. Compiler Memory Constraints and the Overlaid Compiler

Using the Pascal Linking Loader (LINKLOAD) on a
Stand-Alone System . « + « ¢ o« ¢ o o s e s . .

Advanced Development Programs -- The Optimizer
a. When to Use the Optimizer . + v o o « o « o « o « » &
b. How to Use the Optimizer . . o« « + o o o o o o o + =
¢. Example Use of the Optimizer . . « & &« o o « o o« « &
Advanced Development Programs -- The Code Generator . . .
a. When to Use the Code Generator. . . + « « o« o o o o
b. How to Use the Code Generator . . « « o « o o s o o =
¢. Example Use of the Code Generator . . . « « « + « + &
Mixed Mode Operation . . « o « v o « o o s o s o s o o
a. When to Use Mixed Mode . « & & ¢ & ¢ ¢ o o o o o o
b. How to Use Mixed Mode . « « « & o ¢ o s o o o o o o

c. Example of Mixed Mode Operation . . . « « « « « « .« &

Appendix II:

Appendix III:

Appendix IV:

The LDOS Patch

Program Storage . . .

Troubleshooting Guide

Information

8. Technical Overview of the System
a. The Compiler . . . v & « ¢ o « o o &
b, The Pcode . . « v ¢ v ¢ o « o o o o &
c. The Interpreter . . ¢« « « o« o o « o &
d. The Runtime Support . . +« & o« & « « &
e. The Memory Map . .+ « & &« ¢ o« o« o « &
f. How the Optimizer Works
g. How the Code Generator Works
9., For Assembly Language Programmers:
OQutput . + ¢« ¢ & & o ¢ o o o &
a. Assembly Language Produced by CODEGEN
b. CODEGEN Assembly Language Structure .
c. CODEGEN Assembly Language Format . .
d. List of Pseudo-Ops . « + ¢ o « « & &
e. Object Format . . « v ¢ & « o « & & &
f. Splitting Object Modules
Appendix I: General Loading Instructions

- . o o

. . L3 °

F - ii

Diskette Management —-—- Creating More Space for

.22

.22

.22

.22

.23

.23

.24

o 24

.25

.25

.25

.26

.26

.27

.28

.31

.33

.37

.39

MODEL III PASCAL SYSTEM REFERERCE GUIDE

DISKETTE INFORMATION

Model III Pascal Disks One and Two are designed for use on a 48K TRS-80
Model III or Model 4 disk system. The TRSDOS 1.3 operating system is
supplied on both of these diskettes. To execute under the LDOS operating
system (floppy or hard disk versions), Model III Pascal must first be
patched. See Appendix II of this guide for information on executing this
patch. Model III Pascal may be used with the NEWDOS 2.0 and DOSPLUS 3.3
and 3.4 operating systems without patching.

For information on making a backup copy of each of the two stand-alone
system diskettes, see the BEGINNER'S GUIDE. Never use the diskettes
supplied with this package, except for making backup '"working" copies.

Programs on the two Model III Pascal diskettes are:

Model III Pascal Disk One

PASCAL/CMD

RUN/CMD

ERRORS/DAT

ED/CMD
HELP/HLP

KEY/HLP
CMD/HLP

TRSLIB/PCL

STRINGS/PCL

PATCHER/CMD
LDOS/PAT

DATABASE

The Model III Pascal compiler program.

The Model III Pascal "run" program (identical to
the Network RUN program described in section
E).

Contains text of error messages for Pascal com-
piler. You won't work directly with this file.

The Model III Pascal editor program.

Contain helpful information that can be dis-
played to the user through the ED/CMD program,
using the editor's HELP command. See page
C-13 of the EDITOR GUIDE.

Source code for external declarations of the
Procedure and Function Library, as listed in
Appendix II of the NETWORK PASCAL SYSTEM
REFERENCE GUIDE.

Source code for external declarations of the
String Function Library, as listed in Appendix
III of the NETWORK PASCAL SYSTEM REFERENCE
GUIDE.

Files used in completing the LDOS patch, as
described in Appendix II of this section.

Source code for a database program, included
on the diskette as an example.

TG11/TMP

Model III Pascal Disk Two

PASCALB/CMD

PASCAL/OV1
PASCAL/OV2
PASCAL/0V3
PASCAL/OV4

LINKLOAD/CMD

CODEGEN/CMD

CODEINIT/CMD

OPTIMIZE/CMD

TRSLIB/OBJ

STRINGS/OBJ

RANDOM/OBJ

Under normal conditions, the user does not
directly work with this file., It is used by the
Model III Pascal editor program as a temporary
storage file for the program being edited. In
case an error occurs while you are exiting the
editor program and the program you are editing
becomes damaged, TO11/TMP should still contain

a good copy of the edited program.

The overlaid compiler, designed to allow compil~
ation of larger programs,.

Overlays used by PASCALB. The overlaid
compiler loads these in as needed.

The Model III Pascal version of the linking
loader. Except for a few minor details covered
in this section, Model III LINKLOAD works

just like Network Pascal LINKLOAD, covered in
section E.

The Model III Pascal code generator —-- an
Advanced Development program covered in this
section.

A file used by CODEGEN for initialization.
You will not need to work directly with this
file, but it should be on the diskette when
CODEGEN is used.

The Model III Pascal optimizer -- an Advanced
Development program covered in this section.

Object code for the Procedure and Function
Library. This file can be linked to programs
that use it, by the LINKLOAD program.

Object code for the String Function Library.
LINKLOAD can link this file to programs that
use it,

Object code for the Random File Routines, as
listed in Appendix IV of the NETWORK PASCAL
REFERENCE GUIDE. LINKLOAD can link this file
to programs that use it,

2. DEMONSTRATION: USING MODEL III PASCAL ON A STAND-ALONE SYSTEM

Following along with this section will help you become familiar with using
TRS-80 Pascal on a stand-alone Model III or Model 4 system. In this
demonstration, we'll write a short source program, compile it into an
object file that can be run, and then run the program.

Notice that this demonstration closely parallels the BEGINNER'S GUIDE for
Network Pascal. This structure should help highlight for you the important

differences between using Network Pascal and using TRS-80 Pascal for the
stand-alone systems,

Steps in this demonstration may be completed using any Model III or Model 4
system with at least 48K of memory. Programs featured in this
demonstration are on Model III Pascal Disk One.

NOTE: 1If you are using the LDOS operating system, please turn to
Appendix II of this guide for important steps you need to complete
before using TRS-80 Pascal.

2.a. Using the Editor to Enter a Program

Let's begin by using the TRS-80 Pascal editor program (ED/CMD) to enter a
Pascal program. Turn on the computer. Insert Model III Pascal Disk One
into Drive @ (the bottom drive) with the square notch to the left and the
label facing up. Press the RESET button. When TRSDOS requests the date,
enter the date in the form MM/DD/YY. When TRSDOS requests the time,
simply press ENTER.

When TRSDOS Ready is displayed, type ED and press ENTER. In a moment
the Pascal editor will be loaded. Since you did not specify a filename
after "ED", the editor is ready for you to enter a new program, and a
nearly blank screen is displayed:

*EOB

"XEOB" in the upper corner of the screen marks the "End of Buffer" (the
bottom boundary of the temporary program storage area).

In order to enter text, we first need to insert at least one blank line.
Blank lines may be added one at a time by holding down SHIFT and pressing
@, or by pressing the Fl key if you are using a Model 4. (Model III
Pascal does not have the CLEAR E function to add 16 lines at once, though
Network Pascal does.)

By moving the cursor to any position and then typing, we can insert text
into the file, (providing that a blank line has been inserted at that
position). If a character is overstruck, the old character is replaced by
the new one. Now let's enter a program into memory by typing the program
lines on screen, exactly as shown. At the end of each line, press ENTER
to start a new line. To correct a typing error, backspace using the
left-arrow key. For a complete list of the special keys that can be used
in editing a program, see the Appendix to the EDITOR GUIDE.

PROGRAM test;

BEGIN

WRITELN('* I am a Pascal wizard.');
END.

Once you have correctly entered the program, press the CLEAR key followed
by the letter C. A pair of angle brackets < > in the bottom left

corner of the screen indicates that you are now in command mode, where

you can type commands for the computer to follow immediately, without these
commands being considered part of the program. Now type the command exit
(or EXIT) and press ENTER. You'll see the message <EXITDFILE:. Type

the filename that you would like to save this program under, plus the
extension /PCL, plus a drive number if desired. In the example below,
we'll use the filename "TEST" and omit the drive number:

TEST/PCL

The editor will proceed to save the source program onto disk, and will then
return to the operating system prompt.

NOTE: As a rule, you should always use the extension /PCL when
saving your Pascal program. The simple form of the PASCAL command
(used to compile a Pascal program) requires that the file to be com-
piled have this extension,

2.b. Using the Compiler to Compile the Program

Once the source code is saved on disk, the next step is to compile the
program. The Pascal compiler translates the source program into a form
that the computer can understand. At the same time, it checks for errors
in the source program and reports any errors it finds to the programmer.

To compile our example program "TEST'", type the following at the
operating system prompt, and press ENTER:

PASCAL TEST

Note that the compiler assumes that the filename has the extension /PCL,
and it appends this extension to the filename.

The command PASCAL TEST causes the operating system to load and execute

the Pascal compiler; the compiler then translates the source code contained
in the file TEST/PCL into object code that can be run on the computer.

The compiler then stores the resulting object code in a file called
TEST/OBJ. A listing is sent to the screen, showing the source program

and error messages for any errors detected. If you made any typing errors
in entering the program of this demonstration, you'll see a caret symbol
(*) pointing to the line with the error, and an error code number will be
given. At the end of the listing, the total number of errors is shown.

If your total number of errors is zero, you have successfully compiled the
program and you can now execute the program. Skip to "RUNNING THE PROGRAM"

at the bottom of this page.

If any errors are listed, you'll need to use the editor again to correct
these errors, as described below. Then you'll need to compile the program
again.,

2.c. Using the Editor to Correct Programming Errors

Since our demonstration program is short, errors should be fairly easy to
find, With the compiler listing still displayed, look closely at the lines
where any errors are shown. If you see one error right away but do not see
any later errors, don't be surprised. One error near the beginning of a
program can cause the compiler to perceive errors in later lines that would
otherwise be correct. (For example, spelling "BEGIN" as "PEGIN'" causes

a total of 3 errors.)

To correct errors, first get back into the editor program, making sure that
you specify that you want to work with this program (type ED TEST/PCL and
then press ENTER). Retype any incorrect characters, and then press

ENTER at the end of each corrected line.

Exit the editor program (specifying TEST/PCL for the filename) and try
compiling the program again. Repeat the process as many times as necessary
until the program compiles without error.

Hint: When looking for errors, pay close attention to punctuation.

Punctuation is very important in Pascal programs, and is easy for beginners
to overlook.

2.d. Using RUN Program to Execute the Program

When the program is successfully compiled and the operating system prompt
has reappeared, you can run the program using the program RUN/CMD on Disk
Two of Network Pascal. The format used to run a program is RUN filename
followed by a press of ENTER. For this demonstration, you'd enter RUN
TEST. The RUN program assumes that the extension is /OBJ. RUN TEST
causes the object code stored in the file TEST/OBJ to be loaded into
memory and executed.

Next you'll see the message "INPUT =", Pascal is asking you to name your
input file. INPUT and OUTPUT are discussed in the TUTORIAL, but for

now just press ENTER for IRPUT and ENTER for OUTPUT. This will

send the output of the program (the message it prints) to the video
display.

Once INPUT and OUTPUT are specified, the program runs and the TRSDOS
prompt returns. You should see the message "* I am a Pascal wizard."
printed on the screen by the program.

You have now successfully entered, compiled, and run a short Pascal
program. In addition, you have the source code for the program stored on
disk under the filename TEST/PCL and the executable object code stored on
disk under the filename TEST/OBJ. The permanent copy of the object code
allows you to run the program in the future if desired. The permanent copy
of the source code means that you can edit and recompile the program in the
future if desired.

2.e. Summary

In brief, the process of developing a Pascal program on a stand~alone Model
IITI or Model 4 is as follows:

1. Use the Pascal editor ED/CMD to develop source code.

2. Use the Pascal compiler PASCAL/CMD to generate object code and
screen the program for errors.

3. If any errors are detected, use the Pascal editor to correct those
errors; then use the compiler to recompile the program.

4. Optionally, use the OPTIMIZE or CODEGEN utilities to reduce the
size of the program or to increase the speed of the program.

5. Execute the program by using the RUN module to execute the
program, or by using the LINKLOAD utility to build and execute
a command file.

Detailed information on the use of the TRS-80 Pascal editor can be found in
Part Two of the EDITOR GUIDE. Detailed information on RUN and

LINKLOAD can be found in the NETWORK PASCAL REFERENCE GUIDE. Details on
the Model III Pascal compiler, and on OPTIMIZE and CODEGEN, can be

found on the following pages.

3. THE MODEL III PASCAL COMPILER

The TRS-80 Pascal compiler is simply a program, written in Pascal, whose
purpose is to translate the source code for other Pascal programs into an
intermediate language called pcode. The pcode is a low-level language
designed specifically to be the output of the Pascal compiler. Pcode
resembles the assembly language for a stack-oriented computer. Once a
program has been compiled, the pcode object program is stored in a file
with the extension /OBJ. This object file may then be loaded and
executed by the computer.

NOTE: When the compiler is running, you can abort compilation and
return to TRSDOS by pressing the BREAK key.

3.a. The PASCAL Command

The PASCAL command causes the Pascal compiler to be loaded and executed.
This command has two forms.

The short form:

The simplest form is:
PASCAL <stack> filename

where filemame is the name of a file containing a Pascal program.

The '<stack>" is an optional parameter that sets an upper limit on
memory space that the compiler may use for stack manipulations. If
stack is specified, angle brackets are required. If stack is not
specified, a default stack size of 4K is used. 4K should be sufficient
for most programs.

The extension for the source file is assumed to be /PCL and the
object file is sent to a file of the same name but with the extension
/OBJ. Any extension typed in the command line will be ignored. (And
any source file whose filename does not include the extension /PCL
will not be found by the compiler when the short form of the PASCAL
command is used.) A disk drive may be specified.

As an example, the command:
PASCAL TEST:1

will cause the program TEST/PCL on drive 1 to be compiled and the
object code to be stored on drive 1. When the disk drive is specified,
the same disk drive will be used for both source and object. If the
disk drive is not specified, the operating system will search all the
drives for the first occurrence of TEST/PCL; the object code will be
stored on the lowest-numbered drive that is not write~protected.

The short form of the PASCAL command always displays a listing on
the computer screen.

The. long form:

To use the long form of the PASCAL command, begin by simply entering
the word PASCAL at the operating system prompt. To specify stack,
you would enter PASCAL <stack>. For example:

PASCAL <3K>

Default for stack is 4K. The compiler then prompts for the names of
the source and object code, and for the name of the disk file or device
that is the destination of the listing. You should type the names of
the files to be used. The source and object files can be on different
drives. The listing can be placed in a disk file, sent to the screen
(:C), or sent to a line printer (:L).

The compiler automatically outputs the lines of a program which contain
errors to a file named PASCAL/ERR. If this file does not already
exist, then the compiler creates it the first time an error is detected
during a compile. For each line containing an error, the line number,
the line itself, and the error number(s) are sent to this file. This
makes it possible to discard the compiler listing (map to :D, the
"dummy" device) and still be able to determine what errors were
detected during a compile.

The following sequence will cause the file TEST/TMP to be
compiled. The object code is then stored in TEST/OBJ on Drive 2,
and the listing is sent to the line printer,

PASCAL

SOURCE = TEST/TMP
LISTIRG = :L

OBJECT = TEST/0BJ:2

3.b. The PASCAL Compiler Listing

The Pascal compiler reads the source program from a file and produces two
outputs. One of these is a file containing the object code, used to exe-
cute the program. The other output of the compiler is the listing. The
listing contains the text of the original source program, plus some addi-
tional information.

The listing is divided into '"pages" with a heading at the top of each page.
The heading contains the version number of the compiler and the page
number. Each page after the first begins with a form feed [CTRL L or

0C character], which will cause most printers to begin a new page. The
number of lines per page is 62 unless this default page size is changed
using the compiler option PAGESIZE, described on page D-85.

Each line of the listing is numbered, and the compiler also may generate
hexadecimal addresses for each line of the program, if the user has invoked
the compiler option WIDELIST, as described on page D-86. The hexadecimal
addresses represent the locations of the generated object code, relative to
the start of the program. If the program contains procedures or functions,
the addresses for these routines are relative to the start of the routine.

F-38

If errors are detected by the Pascal compiler, error messages will appear
in the compiler listing. An error message line, placed immediately below
the line in error, begins with a string of five asterisks (*%%%%) and
includes a caret symbol (*) that points to the approximate location

within the line where the error was detected. The caret symbol is followed
by one or more error codes. It is possible for a single error to generate
more than one error code, but in most cases the first error code identifies
the cause of the error.

If any errors were detected, a summary of the meanings of the error codes
that were generated appears at the end of the listing.

3.c. COMPILER MEMORY CONSTRAIRTS AND THE OVERLAID COMPILER

The TRS-80 Pascal compiler requires approximately 33K of memory for code.
Of this total, approximately 27K is the compiler itself and the remainder
is runtime support. The runtime support portion contains the drivers for
input and output devices, an interface to the file system, and the pcode

interpreter. TRSDOS occupies 4.5K of memory, which leaves 10.5K bytes of
memory for data in a 48K Model III microcomputer running TRSDOS.

4K of the remaining 10.5K is used for stack space by the compiler, with the
result that the heap is about 6K -~ enough space for about 250 symbols to
be defined. A program that uses more than 250 symbols at a time will run
out of heap space during the compile.

There are some ways of saving memory during the compile so that larger
programs can be compiled. The limit on symbols is relative to the number
of symbols visible at any point within the program. Symbols that are not
available to the program are not retained by the compiler. The use of
symbol table space can be improved by defining fewer global variables at
the outer levels of the program, and making use of local variables whenever
possible. This is also good programming practice.

The length of symbol names is not relevant to Pascal, unlike BASIC. Use of
long names has no effect on program size or compiler memory usage. But
extensive use of string constants will cause the compiler to use more
memory. If a string constant is used in more than one place in a program,
it will take less space if it is defined as a constant.

PASCALB is the overlaid, or segmented, version of the compiler. This
version dynamically loads portions of the Pascal compiler from disk as
needed. This increases the amount of memory available for symbols and
allows longer programs to be compiled. The overlaid compiler will compile
programs that are four times the size that can be compiled with the
non-overlaid compiler (that is, a typical 4000 line program will compile
successfully). The overlaid compiler does run more slowly than the
non~overlaid compiler.

To invoke the overlaid compiler, use either format of the PASCAL command,
substituting PASCALB for PASCAL.

4. USING THE PASCAL LINKING LOADER (LINKLOAD) ON A STAND-ALONE SYSTEM

The Model III version of LINKLOAD provided on Model III Pascal Disk Two
is identical to the Network Pascal version of LINKLOAD, except as
outlined below. Network LINKLOAD was described at length in section E
(pages E-5 through E-9).

e The "N=Network'" option listed in the Network LINKLOAD command menu
appears in the Model III version as "T=TRSDOS". Both return you to
the operating system prompt.

e The Symbols command in Network LINKLOAD will label a "defined"
procedure name with a "D" and a "referenced" procedure name with an
"RY, Model III LINKLOAD has a third symbol -- "C" to indicate
a common block. Commons are used to provide statically allocated
shared data and are not available in Network Pascal. (Commons are
discussed on pages D-16 and D-109 in the LANGUAGE REFERENCE GUIIE.)

5. ADVANCED DEVELOPMENT PROGRAMS -- THE OPTIMIZER

The optimizer is a program that takes the pcode generated by the compiler
as input and outputs a compact, optimized form of the same pcode.
Optimized pcode will execute faster than non-optimized pcode, but the main
purpose of the optimization is to make the pcode more compact.

The amount of memory space gained by optimizing a program's pcode depends
on the types of language features utilized by the original source program.
Typically, the percent reduction in program size is between 10 and 30
percent. Quite often, this will enable the execution of a program that
otherwise would abort due to lack of memory.

5.a. When to Use the Optimizer

The optimizer should be used any time program size is an important factor.
The amount of memory required by a program is determined by the number of
instructions to be executed and the number and sizes of the variables used.
The factor that the optimizer addresses is the number and length of
instructions. The greatest benefit will then be realized when optimizing
long programs (>1000 lines). *

In many cases, optimized code is slightly faster than non-optimized code,
and even short programs will sometimes benefit enough to make optimization
worthwhile. If a short program requires lots of data storage, optimization
will maximize the amount of memory available for the data.

NOTE: Only pcode object files may be optimized. Do not attempt to

optimize command files (/CMD) or files generated by the code
generator (/COD).

F -~ 10

S.b. How to Use the Optimizer

Any pcode object file may be used as input to the optimizer program. That
is, any compiled Pascal program or separately compiled portion of a Pascal
program may be optimized. The optimizer assumes that the file to be
optimized has the filename extension /OBJ, which is the extension that

the stand-alone system version of Pascal automatically appends to each
pcode object file at the time it is compiled.

The optimizer program is stored as a command file and therefore may be
executed simply by typing OPTIMIZE from the top level of the operating
system. Like the compiler, it can be invoked using either of two forms.

The Short Form:

OPTIMIZE filename

"filename" may include a drive specifier, but should not include an
extension. The output of the optimizer (the optimized pcode) is placed
in a file of the same name, but with the extension /OPT. If a drive
was specified when the optimizer was invoked, the /OPT file will be
placed on the same drive as the /OBJ file. Otherwise, the operating
system decides which drive to use. The /OPT file may then be exe-

cuted just like any fOBJ file is, using the RUN or LINKLOAD
command.

The Long Form:

OPTIMIZE

LISTING = listingfile/ext or device (:C, :L, or :D)
INP_OBJ = inputfile/ext

OUT_OBJ = outputfile/ext

The long form requires that you enter the full filename, including
extension, for both the input file (non-optimized) and the output file
(optimized). The LISTING will show the name of each separate module
in the input pcode file as it is processed. After each name will
appear its original size in bytes followed by its optimized size in
bytes. The LISTING may be directed to a file or a device (simply
pressing ENTER will direct the LISTING to the computer screen).

All filenames may include drive specifiers.

At completion, the optimizer program will display on the listing the
size of the non-optimized pcode used as input and the optimized pcode
generated as output.

ORIGINAL LENGTH = size in bytes
OPTIMIZED LENGTH = size in bytes

F-11

5.¢.

Example Use of the Optimizer

The following is an example of optimizing the DATABASE program supplied

with the TRS-80 Pascal System (on Model III Pascal Disk Two).

This example

demonstrates use of the optimizer in both the short and long forms.

NOTE: Before working through this example and the later examples in
this section, you should make a diskette that has plenty of free space
for program storage.

See Appendix III,

Compile the DATABASE program.

PASCAL
SOURCE
LISTIRG
OBJECT

<ENTER>
DATABASE <ENTER>

:C

DATABASE/OBJ

Optimize the program's pcode in file DATABASE/OBJ.

Short form example

OPTIMIZE DATABASE

Results:

Long form example

OPTIMIZE

LISTING = :L

INP_OBJ = DATABASE/OBJ
OUT_OPT = DATABASE/OPT

Both the short form and the long form above would produce the
same results.

The short form would

The pcode in file DATABASE/OBJ would be optimized
and output to the file DATABASE/OPT.

direct the listing to the computer screen, while the long form in
this particular example would direct the listing to the line

printer (because :L was used).

below:

NOCUSTMR
PRESS
NEWSPACE
READDBAS
WRITEDBA
CUSTMROU
READTRAN
WRITETRA
DISPLAYD
LISTTRAN
LISTCUST
HEADING
MAINMENU
QUERYMEN
ADDCUSTM

15
56
43
226
389
525
269
415
114
130
64
70
743
462
193

13
49
29
162
312
423
208
325
84
91
50
64
667
416
153

F -~ 12

The output would appear as shown

QUERYTRA 213 161
ADDTRANS 349 266
SEARCHCU 284 218
QUERY 170 132
DATABASE 302 264
ORIGINAL LENGTH = 5437
OPTIMIZED LENGTH= 4418

6. ADVARCED DEVELOPMENT PROGRAMS -~ THE CODE GENERATOR

The code generator is a program that translates pcode instructions to
native machine code instructions. Any compiler-generated pcode object file
or optimized pcode file may be used as input to the code generator program.
Whole programs or separately compiled parts of programs may be "code-gened"
to increase execution speed.

The speed increase realized by the code generator depends on the original
program, but the typical code-gened program will be three to five times
faster than the original program.

6.a. When to Use the Code Generator

The code generator increases execution speed by translating pcode
instructions to machine instructions. Since each pcode instruction is
equivalent to several machine language instructions, code generation also
causes an increase in the size of the program. Therefore, the decision of
whether or not to perform code generation on a program must not only be
based on speed requirements, but also on program size. Typically, code
generation will cause the size of the object to increase to two or three
times the size of the original pure pcode program.

The execution speed of most programs will be adequate even when left in
pcode form. However, programs which do lots of calculations within loops
may benefit significantly from code generation. Also, when a program
contains one or more procedures which are frequently called, code
generation on these sections of the program can provide quite an
improvement in execution speed.

To determine whether or not to code-gen a program, first run the program in
pcode form. If the execution speed is determined to be slow, the next step
is to determine whether to code-gen the whole program or selected parts of
the program. As a general rule, small programs should be totally
code-gened. The size increase for small programs will probably be
insignificant. However, for large programs, the size increase may be very
significant. For programs longer than about 1000 lines, an increase of two
or three times in the size of the object code will significantly reduce the
amount of memory left for the program data area (stack and heap). In cases.
where the size increase would not allow enough room for data area, selected
procedures should be declared as externals and compiled separately.

F - 13

The procedures selected for code gemeration should be the ones which most
affect execution speed. After code generation, these procedures may then
be linked to the main program using LINKLOAD. This process will allow
for an increase in speed without causing the size to increase to a level
that prevents the program from being executed.

The code generator performs most of the optimizations performed by the
optimizer. Therefore, it is not necessary to optimize a program before
performing code generation.

6.b. How to Use the Code Generator

Any compiler generated or optimized pcode file may be used as input to the
code generator. The compiler generates files with the default extension of
/OBJ. The optimizer generates files with a default extension of /OPT.
Whole programs or separately compiled programs may be code-~gened. In
either case, simply compile the Pascal source and run the code generator
program, using the compiler-generated object file as input. Of course,
optimized pcode files may alsoc be used as input,

The code generator program is stored as a command file and therefore may be
executed simply by typing CODEGER from the top level of the operating
system (that is, from TRSDOS Ready if you are using TRSDOS). Like the
compiler and the optimizer, it has two forms: a short form and a long form.

NOTE: The file CODEINIT/DAT must be on a disk at the computer when
you use CODEGEN. CODEGEN uses this file for initilization.

The short form:

CODEGEN filename

"filename" may include a drive specifier but should not include an
extension. Example: BENCHMARK:2. The code generator assumes that

the extension is /OBJ. For this reason, if you are generating code
for an optimized program, you should use the long form of the command.

The output of the code generator is placed in a file of the

same name, but with the extension /COD. If a drive was specified
when the code generator was invoked, the /COD file is placed on the
same drive as the /OBJ file. Otherwise, the operating system decides
which drive to use.

The /COD file that is the output of the code generator may be used
just as any /OBJ or /OPT file, in conjunction with the RUN or
LINKLOAD commands. However, do not attempt to optimize a /COD

file. The /COD files contain machine instructions and the optimizer
accepts only pcode instructions,

F - 14

The long form:

CODEGEN

INP_OBJ = inputfile/ext

OUT_COD = outputfile/ext

DO YOU WANT ASSEMBLY LANGUAGE SOURCE? (Y/N): y or n

The long form requires that you enter the full file name, including
extensions, for both input and output files. Filenames may also
include drive specifiers (example, BENCHMARK/OBJ:2). If assembly
language output is desired, answer Y to the last prompt. Otherwise,
answer N. If assembly language output is requested, the following
prompt will appear: SOURCE = file/ext

The additional assembly language output will be directed to the file
specified.

6.c. Example Use of the Code Gemerator

The following is an example of generating code for a program called
BERCHMK.

step 1 compile BENCHMK/PCL
command: PASCAL BENCHMK/PCL

step 2 generate code for the compiled program

command (short form example):
CODEGEN BENCHMK

The above example causes BENCHMK/OBJ to be used as input, and directs
output to a file called BENCHMK/COD.

Step 2, using the long form to invoke the code generator, might be:

CODEGEN

INP_OBJ = BENCHMK/OBJ

OUT_COD = BENCHMK/COD

DO YOU WANT ASSEMBLY LANGUAGE SOURCE ? (Y,N): N

The above example does exactly the same thing as the short form example.
The example below does the same thing as the previous examples except that

it also generates an assembly language output which is directed to the file
BENCHMK/SRC.

CODEGEN

INP_OBJ = BENCHMK/OBJ

OUT COD = BENCHMK/COD

DO YOU WANT ASSEMBLY LANGUAGE SOURCE ? (Y,N): ¥
SOURCE = BENCHMK/SRC

F - 15

7. MIZED HODE OPERATION

Through the use of the linking loader (LIRKLOAD), pure pcode object

(/OBJ) files may be linked with code-gened (/COD) files. Executable
programs (/CMD files) may then be built which contain mixed instructions,
both pcode and machine code. This ability is important when you are
writing large programs. It allows you to select and code-gen only those
parts of a program which most affect the speed of execution. The remaining
parts of the program can be left in pcode form. This mixed mode operation
allows you to increase execution speed without dramatically increasing
program size.

7.a. When to Use Mixed Hode

The use of mixed mode is usually not important until you start developing
large programs. Small programs can be totally code-gened without the size
increase becoming a significant factor. However, completely code-gening
large programs (>1000 lines) may cause a size increase which will prevent
the program from being executed. The code size of the program can become
so large that there is no longer enough room for data storage. This of
course depends on the data storage requirements of the program.

When developing large programs, you should not consider code generation
until after you have executed the program in pcode form. Observe the
execution speed to determine whether or not it is adequate for your
application. If not, the next step is to decide what areas of the program
are most affecting the speed. Long loops are typical areas in the program
where most of the execution time is spent. Another area might be a low
level procedure or several procedures which are called frequently
throughout the program. After deciding which areas of the program are
affecting execution speed the most, separate them from the rest of the
program and code-gen them.

The selection and separation process is easiest if the program is well
modularized. That is, the program is already segmented into modules, each
performing a distinct and well-defined function.

7.b. How to Usze Mixed Mode

Once particular areas of a program have been selected for code generation,
they must be separated from the rest of the program. Any selected modules
(procedures and/or functioms) should be declared as externals. (How to
declare externals is discussed in Chapter Nine of the Language Reference
Guide.)

These separate areas should then be compiled separately from the rest of
the program. The compiler $NULLBODY option is required to compile
procedures and/or functions which are separated from the main program body.
Once compiled, the selected areas may be code-gened and then linked to the
remainder of the program using the linking loader. Once linked, a command
file can be built using the BUILD command of the linking loader.

F -~ 16

NOTE: There is an alternative way of separating modules of a program
without separating them in the Pascal source. The pcode object
(/OBJ) file can be split (see page F-28).

7.c. Exzample of Mizxed Mode Operation

The process of mixed-mode operation is summarized in the following list of
steps.

1. Select the areas which most affect program speed.

2. Separate the selected parts of the program from the remainder of the
program. Any selected procedures or functions should be declared as
EXTERNAL in the main program. Place the separated modules in a
separate file or files. Use the $NULLBODY compiler option to put the
separated modules in a form suitable for the compiler.

3. Compile all parts of the program.

4. CODEGER the parts of the program that were selected to increase
execution speed.

5. LINKLOAD all compiled parts of the program together and build an
executable command file.

The example below demonstrates this process. The program used for this
demonstration (listed on page F-20) does not perform any useful function,
but merely demonstrates mixed mode operation. In reality, a program of the
size demonstrated should be totally translated to machine instructions
rather than using mixed mode. The size increase due to code generation is
insignificant for such small programs.

NOTE: If you want to follow along with this demonstration, begin

by making a diskette that has plenty of storage space. See Appendix
II1 for details.

Step 1: Select the areas affecting execution speed the most.

Examining the program, you can see that the procedure named

LOOP contains a very long FOR loop (1 to 10000). Inside this loop

is a long calculation. Any long loop containing a significant number
of statements or calculations will benefit substantially from code
generation. The procedure LOOP is where the majority of program
execution time is spent. Therefore, it is a good choice for code
generation,

F~- 17

(*$NO IROUT*®)
PROGRAM MIXED MODE;

TYPE

VAR

PROCEDURE TIME(VAR T

ALPHA = ARRAY(.1..8.) OF CHAR;
FILENM = ARRAY(.l1l..72.) OF CHAR;
FN : FILENAME;

ID,T : ALPHA;

OUTPUT : TEXT;

ALPHA); EXTERNAL;

PROCEDURE SET$ACNM(F : TEXT; VAR FN : FILENM; LEN : INTEGER;

ID : ALPHA); EXTERNAL;

PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)

VAR

CALCULATION : INTEGER;

BEGIN

END;

FOR I:=1 TO 10000 DO
BEGIN
CALCULATION:=14+243+4+54+6+74+849+10+11412413+14+15
END

(* END LOOP *)

BEGIN (* MAIN PROGRAM *)

END.

(* DIRECT OUTPUT TO THE SCREEN #*)

FN(.1.):=":"'; FN(.2.):='C';

ID:='0UTPUT °';

SET$ACNM(OUTPUT,FN,2,1D);

REWRITE (OUTPUT) ;

TIME(T);

WRITELN(OUTPUT, 'STARTING TIME : ', T);

LOOP;

TIME(T);

WRITELN(OUTPUT, 'FINISHING TIME : ', T);
(* END PROGRAM *)

Step 2: Separate the selected modules from the rest of the program,
declaring them as externals in the main program and putting them into a
form suitable for compiling.

The following listing shows the procedure LOOP separated from the

main program. It is declared as an external procedure within the main
program and the compiler $NULLBODY option is used to turn the
procedure into a valid Pascal program. The main program and the
procedure LOOP must be placed in separate files. For example, the
main program could be placed in a file named MAIN/PCL and the
procedure placed in a file named LOOP/PCL.

F - 18

(*$NO IROUT*)
PROGRAM MIXED MODE;
TYPE ALPHA = ARRAY(.1..8.) OF CHAR;
FILENM = ARRAY(.1..72.) OF CHAR;
VAR FN : FILENAME;
ID,T : ALPHA;
OUTPUT : TEXT;

PROCEDURE TIME (VAR T : ALPHA); EXTERNAL;
PROCEDURE SETSACNM(F : TEXT; VAR FN : FILENM; LEN : INTEGER;
ID : ALPHA); EXTERNAL;

o se

PROCEDURE LOOP; EXTERNAL;
BEGIN (* MAIN PROGRAM *)
(* DIRECT OUTPUT TO THE SCREEN *)
FN(.1.):=':"'; FN(.2.):='C';
ID:='QUTPUT °';
SET$ACNM(OUTPUT,FN,2,1ID);
REWRITE (OUTPUT) ;
TIME(T);
WRITELN(OUTPUT, 'STARTING TIME : ', T);
LOOP;
TIME(T);
WRITELN(OUTPUT,'FINISHING TIME : ', T);
END. (* END PROGRAM *)

PROGRAM SEPARATE COMPILATION;

PROCEDURE LOOP;

(* MODULE TO BE CODEGERED *)

VAR CALCULATION : INTEGER;

BEGIN
FOR I:=1 TO 10000 DO
BEGIN
CALCULATION:=14+243+4+5+6+7+849+10+11+12+13+14+15
END

ERD; (* END LOOP ¥*)

BEGIN (* MAIN PROGRAM *)

(*$RULLBODY*)
END.

F-19

Step Three: Compile all parts of the program.

TRSDOS Ready

PASCAL MAINR

TRS-80 PASCAL VERSIOR: 2.0 00:01:28 05/03/82 PAGE

1 (*$HO INOUT*)

2 PROGRAM MIXED MODE;

3 TYPE ALPHA = ARRAY(.1..8.) OF CHAR;

4 FILERM = ARRAY(.1..72.) OF CHAR;

5 VAR FN : FILENAME;

6 ID,T : ALPHA;

7 OUTPUT : TEXT;

8

9 PROCEDURE TIME(VAR T : ALPHA); EXTERNAL;

10 PROCEDURE SET$ACNM(F : TEXT; VAR FN : FILERM; LEN : INTEGER;
11 ID : ALPHA); EXTERRAL;

12

13 PROCEDURE LOOP; EXTERNAL;

14

15 BEGIN (* MAIN PROGRAM *)

16 (* DIRECT OUTPUT TO THE SCREEN *)

17 FN(.1.):=":'; FR(.2.):="C';

18 ID:='0UTPUT °';

19 SET$ACNM(OUTPUT,FN,2,1ID);
20 REWRITE (OUTPUT) ;
21 TIME(T);

22 WRITELN(OUTPUT, 'STARTING TIME : ', T);
23 LOOP;

24 TIME(T);

25 WRITELN(OUTPUT, 'FINISHING TIME : ', T);
26 END. (* END PROGRAM *)
NO ERRORS DETECTED

TRSDOS Ready
PASCAL LOOP

TRS-80 PASCAL VERSION: 2.0 00:03:34 05/{03/82 PAGE

WO WN

PROGRAM SEPARATE COMPILATION;
PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)
VAR CALCULATION : INTEGER;
BEGIN
FOR I:=1 TO 10000 DO
BEGIN
CALCULATION:=14+2434445+6474+84+9+10+11+124+13+14+15
END
END; (* ERD LOOP *)
BEGIN (* MAIN PROGRAM #)
(*$RULLBODY*)
END.

ERRORS DETECTED

F - 20

Step Four: CODEGEN the parts selected to increase speed.

TRSDOS Ready
CODEGEN LOOP
LOOP

STACK USED = 15915 of 17344 HEAP USED = 882 of 3756

Step Five: LIRKLOAD all compiled parts of the program and build an
executable command file.

TRSDOS Ready
LINKLOAD

L=LOAD, R=RUN, T=TRSDOS, I=INIT, S=SYMBOLS, B=BUILD CMD
>> L

FILE = MAIN/OBJ
MIXED MO

32239 BYTES LEFT

>> L

FILE = TRSLIB/OBJ
SETCSR

GOTOXY

GETKEY

INKEY

CLEARSCR

CLEARGRA

WRITECH

INP

GET$PROC

IO$ERROR

HPSERROR

TIME

DATE

ITIME

SETPOINT

RSETPOIN

TESTPOIN

USER

CALLS

$MEMORY

NOBLANK

READCURS

PEEK

POKE

INITSFIL

FILE$STA

SET$ACNM

30669 BYTES LEFT
>> B

STACK SIZE:

FILE = MIXED/CMD

F - 21

The program, stored under the filename MIXED/CMD, may now be executed by
typing and entering MIXED.

TRSDOS Ready
MIXED

STARTIRG TIME : 00:02:
FINISHING TIME : 00:02

The execution time spent inside the LOOP procedure may be calculated by
subtracting the starting time from the finishing time. With the LOOP
procedure code-gened, execution time is saved. To find out the exact time
difference, use LINKLOAD again, this time linking LOOP/OBJ instead of
LOOP/COD.

8. TECHNICAL OVERVIEW OF THE SYSTEM

8.a. The Compiler

The Model III Pascal compiler for the stand-alone Model III or Model 4 is
an 8500 line Pascal program which has itself been compiled into a very
compact pcode form. The pcode form of the compiler has further been
reduced in size by the optimizer. Optimization was necessary in order to
make the compiler run in a 48K system. The pcode form of the compiler was
reduced in size by approximately 287% from 39K down to 28K.

8.b. The Pcode

The pcode generated by the compiler was specifically designed for the
Pascal language. The pcode resembles the assembly language for a stack
machine. The pcode was designed to efficiently implement Pascal functionms.
Therefore, each pcode instruction performs a much more complex function
than a machine instruction. In fact, a pcode instruction is equivalent to
an assembly language subroutine. This is the reason that pcode is so much
more compact than native machine code.

8.c. The Interpreter

The interpreter is a highly optimized assembly language program whose
purpose is to interpret pcodes. Since the computer hardware cannot under-
stand pcode instructions, the interpreter is necessary to execute programs
which have been compiled into pcode instructions. The interpreter can be
thought of as a processor whose instruction set is the set of pcodes.

F - 22

The interpreter has the ability to switch between pcode and machine code.
A particular pcode instruction tells the interpreter that native machine
instructions follow. The interpreter then points the program counter (PC)
register to the first of the native machine instructions and the hardware
begins executing instructions. The ability of the interpreter to switch
between pcode and machine code allows programs to contain mixed instruc-
tions. This means that parts of a program may be code-gened for speed
while the remainder of the program is left in pcode form for compactness.

8.d. The Runtime Support

The runtime support consists of the interpreter, a loader, a routine to set
up the Pascal stack and heap, and all the input/output (I/0) routines.

When building command files with the linking loader, all the runtime
support is included with the program being built. Therefore, the total size
of an executable program is determined by adding the size of the runtime to
the size of the object program. The object program may be pcode, native
code, or a mixture of both. The size of the object also includes any
libraries which are linked, such as the string library.

8.e. The Memory Map

The following diagram shows the layout of memory usage by the Pascal
system. The runtime area is approximately 10K bytes long. The memory
remaining after subtracting off the operating system, the runtime, and the

program area, is allocated to stack and heap. This is the data area for
the program.

The stack is used for storing the program's static variables. The size of
the stack is specified at the time the program is run using the RUN
command, or built using the LINKLOAD command. The remainder of memory is
allocated to the heap, which is used for storing dynamic variables.

TRS—80
Hex ¢00¢

ROM
4000

Operating
System

5209
Runtime
Support

User Program

Program
Stack

Program
Heap

FFFF

F - 23

8.f. How the Optimizer Works

The optimizer is a program which contains a loader for loading pcode object
files. The loader loads and operates on one module (procedure or functionm)
at a time, maintaining context as it operates on each individual module

The pcode instructions are analyzed to determine whether or not they may be
compressed into shorter instructionms.

Since the compiler is one pass, it must generate some branch and addressing
instructions without knowing the actual displacements. This makes it
necessary to allocate two-byte operands for unknown displacements in order
to handle all cases. However, in many cases, the displacements can be
specified using one byte. The optimizer looks for such cases and
compresses the pcode instructions in order to take advantage of the need
for only a single byte operand.

The optimizer also looks for other types of situations where compression of
instructions is possible. For example, all "multiply by two'" instructions
are converted to '"add" instructioms. In certain cases, consecutive
instructions can cancel one another out (for example, an increment followed
by a decrement). The optimizer eliminates such cases. The optimizer also
performs constant folding (that is, it replaces arithmetic operations
involving only constant operands with a single constant value). For
example, 2+2 would be replaced by the single constant 4.

8.g. How the Code Gemerator Works

The code generator is a program which contains a loader for loading pcode
object files. The code generator loads one module (procedure or function)
at a time and translates the pcode instructions to machine instructions.
As noted earlier, a pcode instruction is equivalent to several machine
instructions, so the translation process will increase the total number of
instructions in the object (/COD) file.

There are a few pcode instructions which perform very complex functions.
To perform equivalent functions in machine code would require a very large
number of instructions. Therefore, a few selected pcode instructions are
not translated to machine instructions. They are left in pcode form and
executed as subroutine calls to assembly language routines within the
interpreter. Handling complex functions in this manner prevents the /COD
file from becoming as large as it would with complete translation.

F - 24

9. FOR ASSEMBLY LANGUAGE PROGRAMMERS: IRFORMATION ABOUT SYSTEM OUTPUT

9.a. Assembly Language Produced by CODEGER

The native code generator has the capability of producing assembly language
source code in addition to object code. It is not necessary in normal
circumstances to assemble the source, since the object code emitted by
CODEGEN is exactly equivalent to the result of assembling the source.

The assembly language is provided as a means for the programmer to examine
the code produced by the native code generator. In some cases, the
programmer may wish to optimize the code by hand and assemble it. It is
expected that the need to do this will be rare, since the effort is
substantial and the improvements that can be made are minor. If you wish
to assemble the source output of CODEGEN, then the Alcor Systems
multiprocessor assembler is required.

The source output of CODEGEN is useful to the assembly language
programmer who wishes to link assembly language modules to Pascal and to
call them as Pascal procedures or functions. A possible technique to
accomplish this is to write a Pascal procedure or function with the same
name and calling sequence as the assembly language routine. The actugal
code can be left out and accessed by a template that merely accesses the
parameters that will be used in assembly language.

The dummy procedure produced above can be compiled by Pascal and run
through the code generator with the source option enabled. Pascal and
CODEGEN will generate the proper Pascal procedure or function linkage and

will calculate the addresses of variables and parameters referenced in the
body of the procedure. The generated code can then be used as a skeleton
for the assembly language that actually implements the functions required.

9.b. CODEGEN Assembly Language Structure

The assembly language code emitted by CODEGEN is designed for assembly by
the Alcor Systems multiprocessor assembler. This assembler provides the
features required to support Pascal and the ability to mix Z80 code (or
6502 code or 1802 code or 8080 code) with Pcode. Essential assembler
features include the ability to switch among target processors (Z80 to
pcode), the ability to define and reference external symbols (externals are
resolved at link edit or load time) and the ability to generate pcode
addressing modes (program counter relative, stack displacement, access to
common blocks).

Each Pascal procedure or function forms a separate module. All symbols,
labels, and instructions are local to the module and reference other
modules only through explicit external references. Modules begin with a
module identification. For Pascal generated code, the module name is the
name of the procedure or function truncated to 8 characters. Each
procedure or function also contains an external definition of the procedure
name. This is signaled with the "DEF" assembler directive. The DEF
statement causes the name and its value to be defined externally so that
other modules can call it.

F - 25

Switching between modes (mative vs. pcode) takes place within the proced-
ure. Some operations performed by Pascal are sufficiently complex that they
are implemented with subroutines. Inclusion of the actual code in-line
would make the generated code unreasonably large. When these operations
(such as input, output, or set operations) are performed, the code genera-
tor produces a call to a runtime procedure. These runtime procedures are
already part of the pcode interpreter. Rather than reference them again
(and require another copy) the processor is switched back to pcode mode and
the interpreter is allowed to perform the operations.

When in mixed mode, all procedure calling is performed using the pcode
interpreter. Since code for each module is separate, and since modules may
be split before being loaded, it is unknown whether the procedure being
called is pcode or native code. Therefore, every module is entered in
pcode mode. If the module is native code, the processor is switched to
native mode immediately after entry to the procedure.

9.c. CODEGEN Assembly Language Format

The native code emitted by CODEGEN uses extended 8080 mnemonics. This is
done primarily for historical reasons and since the 8080 instruction set
more clearly distinguishes instructions by format. Use of 8080 extended
mnemonics affects only the source output of CODEGEN, as the Z80 instruc-
tion set is used and converted directly to object code by CODEGEN. Each
instruction occupies one line. Labels are left-justified and begin with a
letter. Each instruction has an op code which is either an 8080 instruction
or a 280 instruction. There are also pseudo-operators (pseudo-ops) that
provide instructions to the assembler rather than generating code.

Operands use standard register names. In many cases, the names of the Z80
index registers are merged with the opcode (for example, PUSHIX pushes

the IX index register). This simplifies interpretation by the assembler.
Operands may also use symbolic labels and constants. Constants are

normally expressed in hexadecimal (base 16) with a leading greater-than
sign () to specify hexadecimal to the assembler.

9.d. List of Pseudo-Ops
IDT identifies the module and gives it a name

EQU defines the value of the label to the result of evaluating
the operand

DEF defines the operand as an external symbol

REF specifies that the operand is an external symbol that is
defined in another module

CSEG specifies the name and size of a common block

QLIST selects the compact format for the assembler listing

F - 26

END signals the end of the module

ENTRY defines an entry point into the module
SETCPU selects the processor whose assembly language is being
assembled

9.e. Object Format

TRS-80 Pascal uses its own format for the object code. The main reason for
this is that support for many of the features of TRS-80 Pascal are not
present in existing object formats. For example, TRS-80 Pascal supports
common blocks for statistically allocated variable storage and the object
format must in turn allow for this.

The pcode generated by the compiler is address independent. That is, it
contains no absolute memory addresses and can execute without change when
loaded anywhere in memory. All branching and calling of procedures within
the pcode is done relative to the current program counter. Since
procedures are compiled into separate modules, calculation of these
relative addresses must be done when the code is loaded. The object format
supports external references that are program counter relative.

The object code is tagged hexadecimal and is emitted in a line-oriented
stream that is compatible with a Pascal text file. In particular, the
object code is character oriented and contains only printable ASCII
characters. This allows the object to be manipulated by text editors or
transmitted over modems. This is not possible with bit oriented formats.

Each item in the object file begins with a tag which is usually an
upper-case letter. The tag defines the type of item and the number and
size of the fields to follow. Tags are followed by one or more fields that
specify the information to be loaded. Three types of fields exist.

Bytes are specified with a two-character hexadecimal number. Words

consist of a four-character hex number with the most significant byte
first. Labels consist of eight-character names that are the names of
external symbols, common blocks, etc.

Following is a table which lists all the tags used in an object file. All
tags are followed by one to three fields of information, each field being
either a byte, word, or label. The meaning of each tag is also shown.

Tag Fieldl Field2 Field3 Meaning

A byte Absolute (non-relocatable) byte
E End of module

F End of line

G word label Definition of external symbol

I word label External reference declaration
J label Module name

Q word Reference to external symbol

M word word label Definition of common block

F - 27

Tag Fieldl Field2 Field3 Meaning

N word Reference to common block

0 word word Overlay definition

P word Code (PC) origin

K word Relative reference to external
W word Relocatable word

X word Absolute word

Y word Entry point definition

: End of file

9.f. Splitting Object Modules

Since object files are in ASCII format, they may be edited with a text
editor or used as input to a Pascal program. The following is a list of
the pure pcode output (/OBJ) file for the LOOP procedure in the mixed
mode operation example. Following it is a listing of the object (/COD)
file which results from running the pcode object through the code
generator. As you can see, the code generation has caused the code to
approximately double in size.

Pure pcode listing (/OBJ):

JLOOP PO000GOOOOLOOP A01X0000A38A02A03X0001A15A04A10A04A03X2710A07F
Al15A06A2BA4EX0000A03X0001A03X0002A22A03X0003A22A03X0004A22A03X0005A22A03F
X00006A22A03X0007A22A03X0008A22A03X0009A22A03X000AA22A03X000BA22A03X000CF

A22A03X000DA232A03X000EA22A03X000FA22A15A02A10A04A30X0004A10A06A27A21AB9F
P00014X0047P005DA3AP0O001X0006E

Native code listing:

JLOOP G0003L00P AC1AEBAE9AO01X0006A38A02A55A21X0001ADDA75A04ADDA74F
AO5ADDAGEAO4ADDA66AOSAESA21X2710AESADDA7S5SAO6ADDAT4AOGTACIAE 1A78AACAEDA42F
A28A09A47A3FAIFAA8AO7AE6A01A18A02A3EAOO0AA7AC2X0000A21X0001AE5A21X0002AC1F
AO9AE5A21X0003ACIAO9AE5A21X0004AC1A09AE5A21X0005AC1A09AE5A21X0006AC1A09F
AE5A21X0007AC1A09AE5A21X0008AC1AO0AE5A21X0009AC1A09AE5A21X000AAC1AO9AESF
A21X000BAC1AO9AE5A21X000CACIAO9AE5A2 1X000DACIAO9AE5A21X000EAC1AO9AES5A21F
X000FAC1AG9ADDA75A02ADDA74A03ADDAGEAO4ADDA66AOSAE5ADDAESAE 1AQ01X0004A09F
A4EA23A46A03A70A2BA71ADDAGEAO6ADDA66AO7ACI1AAFAEDA42A20A01A3CAATACAWOO3AF
PO038WOOBDPOOBDACDWOOO0CA3AE

.

Each module in an object file ‘begins with the module name. Therefore it is
possible to split a file containing several modules into several files,
each containing one module. This is an alternate method of segmenting
large programs where it is desired to perform code generation on only
selected parts.

F - 28

There are two ways to split the object modules. One is to text edit them.
The other more desirable method is to write a Pascal program to split them.
A simple program may be written to read the pcode (/OBJ) file. Each time
a module is encountered, open a file of the same name as the module and
write the module to that file. Once all the modules are separated into
different files, selected modules may be input to the code generator and
translated to native machine instructions. The linking loader may then be

used to link the individual modules and build an executable command
(/cMD) file.

F - 29

APPENDIX I:
GENERAL LOADING INSTRUCTIONS FOR MODEL III/4
NOTE: Before doing anything else, you should make a backup copy of the

Model III Pascal disks that came with this package. Directions for
making backup copies begin on page A-12.

Two-Drive System

1.

2.

Turn on the computer. The on/off switch is located under the right
edge of the keyboard.

When the red light goes off, insert the Model III Pascal diskette that
you want to use into Drive @ (the bottom drive next to the video
screen), with the square notch to the left and the label facing up.
Then close the disk drive door.

Insert the other Model III Pascal diskette (OR insert a formatted
diskette or a TRSDOS diskette, to be used for storing student programs)
into Drive 1. Close the disk drive door. (Instructions for making a
formatted diskette appear on page F-37.)

Press the orange Reset button.

When you see the message Enter Date MM/DD/YY, type the date, using
two digits each for the month, day, and year. (Example: #2/22/85
for February 22, 1985.) Then press ENTER.

When you see the message Enter Time HH:MM:SS, press ENTER to skip
the time.

When you see TRSDOS Ready, the computer is ready to receive a
command. This command will probably be the name of a Pascal program.
For example, you'd type and enter ED/CMD or simply ED to use the
Pascal editor.

One-Drive System

Follow steps 1-2 and 4-7 above. One-drive users should read Appendix III
to learn how to create space for storing Pascal programs.

F - 31

APPERDIX II:

THE LDOS PATICH

NOTE: The following information applies only to TRS-80 Pascal for a
non-network Model III or Model 4 system. Network Pascal does not require
that any patches be made -- even if you are using the hard disk.

TRSDOS USERS:

e If you intend to execute the TRS-80 Pascal system with the supplied
TRSDOS 1.3 operating system on a Model III or 4 system, you may skip
the following pages on patching the system.

LDOS USERS:

e If you intend to execute TRS-80 Pascal using the LDOS operating system
Model III/4 floppy or hard disk versions, you must patch the TRS-80
PASCAL system for proper execution. Failure to do so will cause unpre-
dictable results. All patching should be performed while using TRSDOS
(LDOS not supplied).

Note that "LDOS" in this manual refers to the floppy-based version 5.1
and the Radio Shack Hard Disk Operating System for stand-alone Model III
computers (or for Model 4 in Model III mode).

HARD DISK USERS:

e Once the Pascal files have been patched for execution under LDOS, they
may be copied to the hard disk drive just like any other user file. For
further details, see the Hard Disk Operating System manual. Do not
copy the TRSDOS system files to the hard disk drive.

A. THE PATCH PROCESS

The TRS-80 Pascal system includes a program for patching disk files. This
program is used to apply all current and future patches to the Pascal
system, All patches to TRS-80 Pascal files should be applied with the
PATCHER program since it contains extensive error checking to assure that
patches have been applied correctly. On the next page is an outline of the
patch process.

F - 33

WARNING: NEVER APPLY PATCHES TO THE ORIGINAL DISKETTES. MAKE A BACKUP
COPY AND APPLY PATCHES TO THE COPY.

1. Make a backup copy of the release diskette. Do not apply patches to
the original release diskette.

2. The text of the patches should be entered into a file using the text
editor if in printed form.

3. Load the diskette containing the file named PATCHER/CMD and type:
PATCHER. After the program has been loaded, the diskette containing
the program may be removed.

4. The program will prompt for the drive number to be used for the
patching process. All diskettes that are to be patched must be
inserted into this drive during the patch process.

5. Enter the name of the file or device to be used for the listing. The
patch program will echo a patch file listing to this file, and will
display any error messages there. Instead of a filename, :L may
be entered. This causes the listing to go to the printer.

6. Enter the name of the file containing the patches. This is known as
the patch control file. The patch control file must remain on-line
during the entire patching process. On two drive systems, the patch
control file should be on the system diskette. (The patch control file
required to modify TRS-80 Pascal for operation with LDOS and the Model
III is on TRS-80 Pascal Disk One in a file named LDOS/PAT.)

7. Change diskettes when prompted to do so. If any errors are detected,
error messages will be displayed and the patches will not be applied.
If a patch file requires diskettes to be changed, and they are not,
error messages will be generated for those files not present on the
diskette in the patch drive. They may be ignored if those files are not
required to be patched.

NOTE: Once a file has been successfully patched, it may not be patched
again using the same patch control file. This is because all patch control
files contain information about the text that was previously in the file to
be patched. Once the file has been altered, then that information is no
longer valid. If you are not sure that the patches have been applied
properly, make a backup of the master diskette and re-apply the patches
using the patch control file.

F - 34

B. EXAMPLE PATCH SESSIOR

The following is an example of how to patch the Pascal system for execution
under LDOS on the Model III. A two-drive system running TRSDOS 1.3 is
assumed. The following steps should be performed before any patching is
attempted.

1. Copy LDOS/PAT to the system disk.
2. Insert the disk with PATCHER/CMD and invoke PATCHER.

The following information will be prompted for at the terminal. Text after
the ";" are comments in this manual and will not be present in the
terminal session.

NOTE: After the patch process is complete, use the LDOS CONV utility to
convert the TRSDOS formatted diskettes to LDOS format.

ENTER DISK DRIVE FOR PATCHES: 1 ; Use drive number 1
LISTING = :L ; Echo listing to printer (:D for no device)
ALCOR SYSTEMS DISK PATCH UTILITY 1.0 (C) 1982
PATCHES = LDOS/PAT:0 ; File containing patches on the system disk
LOAD DISK : PASCAL]l INTO DRIVE 1

PRESS <ENTER> WHEN READY ; Hit enter to start patching diskl
LOAD DISK : PASCAL2 INTO DRIVE 1

PRESS <ENTER> WHEN READY ; Hit enter to start patching disk2
STACK USED = 514 of 4032 HEAP USED = 1574 OF 29832
TRSDOS READY

If ":L" was used for the listing device, then the following listing will
appear at the printer.

ALCOR SYSTEMS DISK PATCH UTILITY 1.0 (C) 1982

TRS80 MODEL III FOR LDOS

ws we we

F, RUN/CMD, PASCALI
P,15BC,0578,0001,00,13
P,ODFF,05AC,0001,03,00
W,F4DC

, PASCAL/CMD, PASCALl1
,134C,054A,0001,00,13
,0ED1,0554,0001,03,00
,F562

v E gD e

F, ED/CMD, PASCAL1
P,11ED,057D,0001,00,13
P,0BD5,055E,0001,03,00
W,F525

F, PATCHER/CMD, PASCALIL
P,0FAl,054E,0001,00,13
P,0B16,0529,0001,03,00
W,F589

F-35

F, LINKLOAD/CMD, PASCAL2
P,15BC,0578,0001,00,13
P,O0DFF,05AC,0001,03,00
W,F4DC

’

F, PASCALB/CMD, PASCAL2
P.0D5C,056E,0001,00,13
P,1575,051E,0001,03,00
W,F574

F, CODEGEN/CMD, PASCAL2
P.111A.0535,0001,00,13
P,0C9F,0583,0001,03,00
W,F548

F, OPTIMIZE/CMD, PASCAL2
P,111A,0535,0001,00,13
P,0C9F,0583,0001,03,00
W,F548

E

F - 36

APPENDIX III:

DISKETTE MANAGEMENT -~ CREATING MORE SPACE FOR PROGRAM STORAGE
Model III Pascal Disks One and Two do not contain enough free space to
store student Pascal programs in addition to the Pascal development
programs that were provided on the disks. The information below should
help you make a diskette that has sufficient storage space for your
programs.
Two-Drive Users
Two-drive users can make a formatted diskette to use in Drive 1 for program
storage. Drive @ would contain Model III Pascal Disk One or Disk Two —-
whichever contained the development program currently in use.
A formatted diskette is a diskette that has been prepared to receive data.
The formatted diskette does not contain the TRSDOS operating system, and
therefore it cannot be used in Drive #.
To format a diskette, follow these steps:

1. Turn on the computer.

2. When the red light goes off, insert any TRSDOS diskette (any diskette
that contains the TRSDOS operating system) in Drive .

3. 1Insert a new, blank diskette into Drive 1.

4. Press the orange Reset button.

5. When askéd for the date, enter the date as described on page F-31.
6. When asked for the time, press ENTER.

7. When TRSDOS Ready appears, type FORMAT and press ENTER.

8. When you see the message Format Which Drive?, type 1 and press
ENTER.

9. When you see the message Diskette Name?, type PROGRAMS (or type
any other name of eight or fewer alphanumeric characters, beginning
with a letter), and press ENTER.

10. For Master Password, type PASSWORD and press ENTER.
When the formatting process is successfully completed, "#@ Flawed Tracks"
will be displayed and TRSDOS Ready will reappear. If you see any number

except "@@" for ''Flawed Tracks", or if an error message appears, use
another new, blank diskette and repeat the instructions from step 3.

F - 37

One-Drive Users

One-drive users cannot use formatted diskettes. But you can use a TRSDOS
system diskette that has room both for your programs and for some of the
Pascal development system programs. You can do this by copying to a TRSDOS
system diskette only those Model III Pascal files that you will be using.
(Pages F-1 and F-2 provide details on the purpose of each program on the
two Model III Pascal diskettes.)

Individual files may be copied from one disk to another using the
TRSDOS COPY command. The process is as follows:

l. With a TRSDOS system diskette in the drive and the TRSDOS Ready
prompt showing, type the following and press ENTER (be sure to sub-
stitute the filename and extension of the program that you want to
copy for the words filename/ext below):

COPY filename/ext:§ :§

2. When you see the message Insert SOURCE Disk (ENTER), make sure
that the diskette in the drive is the disk that already contains
the program (your SOURCE disk). If not, change disks. Then press
ERTER.

3. When you see the message Insert DESTINATION Disk (ENTER), remove
the SOURCE disk and insert the disk that you want to copy the
program onto (your DESTINATION disk). Then press ENTER.

4. Continue to switch disks as directed by the computer. When the
copying is complete, TRSDOS Ready will reappear.

F - 38

1.

APPENDIX 1V:

TROUBLE SHOOTING GUIDE

A. MISCELLANEOUS ERRORS

Problem: While a file is being edited, the latter part of the file is
found to be missing.

Solution: Use the APPEND command to page the latter part of the
file into the text buffer. APPEND is explained in the Editor Guide.

Problem: Upon exiting the editor, you see an 10 ERROR message
displayed.

Cause/Solution: The diskette was full or not in the drive. See the

Editor Guide for information on recovering the original file from the
TO11/TMP work file.

Problem: During a compile, the Pascal compiler abnormally terminates
with a FATAL ERROR - OUT OF HEAP or OUT OF STACK message.

Cause/Solution: The compiler has insufficient memory space, due to:

(a) Too large a program (use PASCALB version of compiler)

(b) There are high memory drivers in place that limit the amount of
space the compiler has (such as the KSM driver in LDOS or a
printer spooler). Remove the high memory driver or use PASCALB.
See page F-7 for information on invoking the compiler using a
stack parameter.

Problem: When executing your compiled program with the RUN command,
or when executing a command (/CMD) file built with the LINKLOAD
utility, the program abnormally terminates with the FATAL ERROR - OUT
OF HEAP or OUT OF STACK.

Solution: Increase the stack specification when invoking the RUN
command, or increase the stack specification when building the command
file with the LINKLOAD utility.

Problem: After you executed the compiler using the long form, where
the object and listing files are specified by the user, the original
source file suddenly contains object code.

Cause: You specified the source file as the object file when
you invoked the Pascal compiler.

F - 39

6. Problem: When executing under LDOS, the RUN command is invoked
with a Pascal object code file as an argument and the error message
Load file format error is displayed.

Cause/Solution: The Pascal RUN command must be renamed to RUNP

or something that does not conflict with the LDOS RUN command. You
are attempting to execute Pascal object code with the LDOS RUN
utility.

7. Problem: During an edit, you try to insert the external Pascal
declarations for the TRSLIB library by specifying individual function
and procedure names, and nothing is inserted by the editor.

Solution: All of the declarations are contained in a file named
TRSLIB/PCL. This file must be inserted to place the declarations
into the source file.

8. Problem: The compiler continues to compile after the end of the
entered source code is encountered. Garbage text is displayed in the
listing.

Solution: The Pascal system files have not been patched for execution
under LDOS.

B. COMMOR ERROR MESSAGES GENERATED BY THE COMPILER

1. Missing end There must be an END statement for every BEGIN
statement in a Pascal program.

2, Undeclared identifier All variables must be declared in the variable
declaration section. Failure to do so will cause the
compiler to generate this message.

3. Type of parameter does not match formal parameter An attempt has been
made to call a procedure or function using an argument
that does not match the formal parameter that was
declared in the procedure declaration statement. In
special cases, the type matching requirements may be
overridden by using the type transfer operator, as
described in the Language Reference Guide.

NOTE: See the Language Reference Guide for a complete listing of all
error codes generated by the Pascal compiler.

F - 40

GLOSSARY

ABS - The predefined Pascal function ABS returns the absolute value of
the number in its argument. Example: ABS(-5) = 5.

alphanumeric character - An "alphanumeric character'" is one of the numbers
0-9, or a letter a-z or A-Z.

AND - One of three logical operators in Pascal, ARD causes two expres-
sions to be evaluated. If both are true, AND returns the value "true."
If one or both are false, the value '"false" is returned. Example: If
two Boolean operators, Saturday and zoo, both held the value "true,"
then the operation Saturday AND zoo would return the value 'true."

argument - A piece of information that accompanies a Pascal statement in
order to provide data needed to execute the statement is the statement's
"argument." In the following example, the argument to the WRITE
statement tells what to write:
WRITE('Testing, testing, 1, 2, 3.');

arithmetic operator - An "arithmetic operator" is a symbol that is used in
an arithmetic expression to determine how the expression is evaluated.
The arithmetic operators in their order of precedence are:

- negation
* multiplication
/ real-number division
div integer division
mod integer division with the remainder kept as result
+ addition
- subtraction
ARRAY - The ARRAY is a structured data type consisting of a series of

variables of a single type. (See Chapter Eight of the TUTORIAL.)

assignment statement - The "assignment statement" is used to assign a
particular value to a variable. For example, assuming that the variable
letter had been properly declared as a variable of type CHAR, the
following statement would assign the value "a" to letter:

letter := aj;

BEGIN - BEGIN is the word used to mark the start of the program section
that contains Pascal statements (you might think of the part BEGIN
heads as the "active" part of the program).

block-structured language - A "block-structured" language is used to
construct programs in a block-like manner, with well-defined sectionms,
rather than writing programs which are linear lists of commands. Pascal
allows program blocks to be "nested" such that one block may lie entirely
within another block, but blocks do not overlap in any other way.

BOOLEAR - One of the five simple variable types predefined by Pascal.

Variables of type BOOLEAN may take on either of two values: '"true" or
"false."
call - To "call" a procedure or function is to access that procedure or

function in order to execute 1it.

carriage return -~ A "carriage return'" ends one line of text and places the
cursor at the beginning of the next line. (This term is used in talking
about screen or keyboard output or input, or output to a printer.)
An example of a carriage return is a press of the ENTER key.

CASE -~ The CASE statement is a selection-control statement, used when you
need to select for execution one statement from a list of statements.
In front of every statement in the list that follows the CASE statement
is a case-selector constant. The statement whose case-selector constant
matches the value in the case-selector variable is the statement that is
executed., END with a semicolon appears at the end of the list to
terminate the CASE statement.

CHAR - One of the five simple variable types predefined by Pascal. A
variable of type CHAR may take on as its value any single character in
the ASCII character set (see chart on pages D-93 through D-95).

comment - A "comment" is text that the programmer inserts into a program
to explain what the program is doing. Comments inserted between special
brace characters ("{" and "}" or "(*" and "¥)") are not con-
sidered to be part of the program and are ignored by the compiler.

compile - To "compile" a program is to translate it from source code
that a programmer can easily read, to object code that a computer or
an interpreter program can easily read.

compiler - A program used to translate programs from source to object code.

component field - A "component field" holds one piece of information within
a record. For example, an INTEGER variable customernumber might be a
component field of a RECORD that contains other component fields such
as customername.

component variable - A 'component variable' can take on the value of a
single item within an ARRAY. The component variable is of the same
type as the array

compound statement - A "compound statement" is a series of statements
surrounded by BEGIN and END. Compound statements are executed as
if they formed one statement.

CONST - CONST marks the program section in which constants are
declared.
constant - A "constant" is an identifier that represents a certain value

that never changes (the value remains constant).

declare - To define the value(s) that can be taken on by a variable, data
type, or constant.

decoding - The process of translating a variable into a value such as
"blue" or "green." Decoding and encoding can often be avoided in Pascal
because variables of user-defined data types can be made to take on
these values directly.

decrement - To decrease the value of a number by a certain amount.

default - A "default" is a value that is assumed by Pascal if no value is
specified by the programmer or user.

DISPOSE - The DISPOSE statement releases storage space that was allocated
using the NEW statement.

document - To "document'" a program is to insert comments into it that
explain what the program is doing.

dynamic data type - A '"dynamic data type'" is a data type for which storage
is allocated as needed. Chapter Nine of the TUTORIAL and Chapter Five of
the LANGUAGE REFERENCE GUIDE provide information on dynamic storage allo-

cation.

END - The statement that marks the end of a Pascal program or program
block.

enumerated type - A type is said to be "enumerated" if a list of all

possible variable values is given in the type declaration.

execute - The computer 'executes' a program or statement when it encounters
the program or statement and performs whatever action(s) are directed by
the program or statement. To execute a program is to run it.

expression - An "expression'" is something that can be evaluated. The
following are examples of expressions:
5+ 2 NOT tuesday cost * number
file (logical) - A logical file is an identifier used within a program to

route input or output data.

file (physical) - A physical file is actual input or output device which
the logical file represents. A physical file may be a disk file, the
printer, the computer keyboard and screen, or a '"dummy" file (in which
case no I/0 occurs).

FILE OF <any known type> - a "FILE OF <any known type>" can be declared
in Pascal for purposes of storing data to be retrieved at some other
time.

flow-control statements - A ''flow-control statement'" is a statement that is

used to alter normal program flow. This may be a statement that causes
repeated execution of a statement or set of statements, or it may cause
one statement to be executed under certain conditions and some other
statement to be executed under certain other conditions.

G-3

function - A '"function" is a program block whose results must be used (like
a variable) in an expression or assignment statement.

global variable - A variable is '"'global" if it is shared by two or more
program blocks.

GOTO - The "GOTO" statement transfers control to the statement named in
its argument.

heap - The "heap" is the area of memory reserved to contain a program's
symbol table while that program is being compiled. During program
execution, programs that use pointers and the procedure NEW will use
storage from the heap. The heap also contains the buffers used to read
from and write to files.

input -~ "Input" is the act of bringing data into a program, and can also
refer to the data that is brought in.

increment -~ To "increment" a number is to increase its value by a certain
amount,
IRTEGER - One of the five simple data types predefined by Pascal. An

"integer" is a number that consists of one or more digits, optionally
preceded by a positive or negative sign. No decimal point or fractional
portion is allowed.

linked list - A '"linked list" is a programming structure in which one
dynamically stored data structure contains a variable that points to
another such data structure, and so on. (See Chapter Nine of the TUTOR-
IAL.)

local variable - A variable is said to be "local" if it is used only within
a single program block.

logical operator - Pascal's logical operators are AND, OR, and NOT.
loop - To loop within a program is to execute a single statement or group
of statements repeatedly. The programming structure which sets up this

repetition is called a "loop."

modular program - A ''modular program' is organized into sections, each of
which performs a specific function.

node - The word "node" can be used to refer to a unit of data storage.
A single record within a file can be termed a record ''node."

NOT - The logical operator NOT changes a Boolean value to the opposite
value. (NOT is to a logical value as a negative sign is to a number.)

null - '"Null" means "having no value." A "null" set is an empty set.

object code - Object code is the executable (run-able) program that
results when a Pascal source code program is compiled.

one~dimensional array - An array is one-dimensional if it consists of one
row of values. An array of this kind is declared as:

ARBRAY [l..n] of TYPE
In contrast, a two dimensional array is declared as:
ARRAY [l..n,l..n] of TYPE

ordinal - A data type is said to be "ordinal" if all of its possible values
can be arranged in sequence from lesser to greater. For example, a data
type that consists of the integers from 1 to 100 is ordinal. The values
of an ordinal type need not be numeric, but they do need to be able to
be mapped to a sequence of numbers.

output - '"Output" is the act of sending data out of a program (for example,
to a printer). '"Output" can also refer to the data that is sent out.

OR - One of three logical operators in Pascal, OR causes two expressions
to be evaluated. If either of the expressions is true, OR returns the
value "true."

PACKED -~ Any array may be declared with the word PACKED as a prefix.
PACKED tells the computer to store the data elements as efficiently as
possible.

parameter list - A "parameter list" is the list of values that are being
passed to a procedure.

pass-by-reference variable - A variable is "passed by reference" if it
is specifically named in the parameter list and is immediately preceded
by the word VAR.

pass-by-value variable - A variable is "passed by value" if it is specific-
ally named in the parameter list, but is not immediately preceded by the
word VAR.

pointer - A "pointer" is a variable that, instead of directly taking on a

value, points to the location in memory where a data structure is stored.
Pointers are used in dynamically allocating storage to data structures.

procedure - A "procedure'" is a Pascal sub-program that performs a specific
task within a complete Pascal program.

READ - The READ statement causes the program to input data from an out-
side device (such as the keyboard).

READLN - The READLN statement works like the READ statement, except
that once data has been read, READLN sets a marker at the beginning of
the line following the line read from -- even if the end of the line was

not reached.

REAL - One of the five simple data types predefined by Pascal. A ‘''real"
number consists of one or more digits, optionally preceded by a positive
or negative sign, and optionally followed by a decimal point and one or
more digits.

RECORD - A RECORD is a data structure made up of component variables.
Examples of the RECORD data type appear in Chapter Eight of the TUTOR~

IAL.
G-5

relational operator - A "relational operator" is used in comparing two
values. Examples of relational operators are: < > = <=

reserved word - A "reserved word" in Pascal is a Pascal language word
that has a fixed meaning. These words cannot be used as identi-
fiers. The list of reserved words appears on page D-5.

RESET -~ RESET is used to prepare an input file to be read, as discussed
in Chapter Three of the TUTORIAL.

REWRITE - REWRITE is used to prepare an output file to receive data, as
discussed in Chapter Three of the TUTORIAL.

scope - The boundary within which an identifier can be used is that identi-
fier's "scope." For example, scope rules dictate that an identifier
declared in an inner program block cannot be used in an outer program
block.

selection control statement - A "selection control statement" causes a spe-
cific statement out of a series of statements to be executed. In Pascal,
CASE is a selection control statement.

set operators - The set operators are " + " (gives the union of two sets),
" % " (gives the intersection of two sets), and " - " gives the differ-
ence of two sets, as explained in Chapter Ten of the TUTORIAL.

source code - The "source code" of a Pascal program is the program as it
is typed in by the programmer, using the editor program. Source code
must be compiled before the program can be executed.

statement -~ A "statement" is a Pascal programming word or phrase that
causes the computer to perform a specific action.

static data types - A data type whose storage size is defined before the
program is compiled or executed is a "static data type." The size of
such data types is fixed.

string - A "string" is a series of characters.

structured data types - A '"structured data type" is a data type such as an
array or record, that is made up of component variables or fields.

subrange - A data type is said to be a '"subrange'" of another data type if
it consists exclusively of some, but not all, of the members of the other
type. A data type encompassing the numbers from 1 to 5 is a subrange of
type INTEGER.

syntax - '"'Syntax'" refers to the rules that govern how elements of a lang-
uage must be arranged in order to have any meaning.

TEXT

-~ One of the five simple data types predefined by Pascal. Variables
of type TEXT are used in routing data for input and output, as
described in Chapter Three of the TUTORIAL.

truncate - To "truncate" a number or string of characters is to drop off a

type

certain part of it. This most commonly refers to dropping the fractional
portion of a real number, and an integer number is the result of this
truncation.

- The "type" of a variable determines the kind and range of values
that the variable may take on. A variable may be of a predefined type
(such as INTEGER, REAL, etc.) or a new type may be declared by the
user in the TYPE section of the program.

user-defined data type - The programmer may define a new data type by

VAR

giving the type a name and listing all of the values that the type
encompasses. The new type is declared in the TYPE section using this
format:

newtype = (valuel, value2, value3, ... valueN);

- Variables are declared in the VAR section of the program using
this format:
varname : TYPE;

variable - A '"variable" is an identifier that can hold a single value at

WRITE

any given time, and may change value any number of times within the
program. A single variable may hold only one kind (or "type") of data.

- The WRITE statement causes the value named in its argument to
be output to a logical file. The default file is OUTPUT, or a file
may be specified.

WRITELN - The WRITELN statement works like WRITE, except that it causes

a line feed after the value is output. The next value that is output
after a WRITELN statement will begin on a new line.

INDEX

ABS —— used as an example of function B-43, arithmetic function D-67

access declarations -- used with COMMON variable D-17

addition -— B~22, B-24

address -~ E-18, F-27

altering the path of execution —-- B-27

AND -- B-33

APPEND -~ C-11, C-13, C-15

ARCTAN —- arithmetic function D-67

argument -— B-3

arithmetic operators —- B-22, major discussion D-41, used with sets D-28

ARRAY -- B-47, I/0 using B—47, accessing individual components of B-48,
packed 8-48, dimensions of B-49, discussion D-25

ASCII character set —-- chart D-93

assembly language -— output of CODEGEN F-25

assignment -~ B-21, D-52

auto indent -— C-4

BACKUP —- A-1, A-11

BEGIN -- B-3, D-52

BLDSTR -- D-99

block structure of Pascal -- B-43, D-9, block headings D-10, block parts D-12
BOOLEAN ~- B-10, discussion B-12, D-43

branching —- discussion of commands used B-27, D-51
BREAK key —- E-7
buffers ~- used in output B-4

Build —- command of LINKLOAD E-6, F-21

CALLS -~ E-23

CASE statement -~ B-28, B-57
case (upper versus lower) —— A-4
CHAR —— B-10, discussion B-11
character —— B-11, E-26

CHR -- transfer function D-68
CLEARGRAPHICS -~ E-~17
CLEARSCREEN ~-- E-19

CLOSE —- D-79, D-105
CLOSERAND -~ E-30

CMPSTR ~- E~26

colon -~ used in VAR declarations B-10
command mode —— of Network editor C-6, of Model III editor C-12
comment -- B-5, D-6

COMMON -- variable declarations (Model III Pascal only) D-16, D-109

compare —-— D-42

compatible types —- D-41

compiler —- Network compiler introduction A-2, A-4, compller options D-81,
Network compiler summary E-2, compiler llstlng A-4, E-2, F-8, memory usage
by (Model III version) F-9, technical information (Model III version)
F-22

1 -- INDEX

component -~ field of a RECORD B-54, variable of an ARRAY B-48

compose mode -- of Network editor C-2, of Model III Pascal editor C-12
compound statement -~ defined B-28, discussed D-52

CONC - E-26

conditional statements -- B-27, D-55

CONST —- B-12, D-14

constants —-- B-9, discussed B-12, constant definitions D-14

C0S —-- D-67

counter -~ used in looping D-53, D-81

CPYSTR -~ E-26

cursor —- use in editing A-3

DATABASE ~-- F-1, F-12

declaration -- of regular variables B-10, of advanced data types B-47, of
dynamic variables B-57

DECODED -- E-26

DECODEI -— E~-26

DECODER —- E-26

delete —— Network Pascal option to delete file A-2, E~26, delete character,
line, A-3, C-15

device names -~ C-15

dimension -— of arrays B-49

disk access - Network -- general information A-9, and demonstration A-3,

loading overlay A-4
DISPOSE -- B-59, D-38, used with strings D-101, D-69
DO ~- B-28
DOSPLUS == F-1
DOUBLE -- compiler option D-81
DOWNTO -- B-28, D-53
dummy -- C-15
dynamic -- B-57, D-37

editor -- Network version introduced and demonstrated A-3, discussed C-1,
Model III version introduced and demonstrated F-3, discussed C-9

ELSE —- B-35, D-55

ENCODED -- E-25

ENCODEI -~ E-25

ENCODER -- E-25

END -- B-3

enumerated / enumeration -— D~14, enumerated user-defined types B-50, D-23
EOB -~ message on Model III Pascal editor screen F-3

EOF -- boolean function D-67, message on Network Pascal editor screen A-3

EOLN -~ boolean function D-31, D-67

errors -- LINKLOAD E-8, compiler D-88, Network E-18, random file E-31, correc-
tion of errors while typing A-4, compiler error report pA-4, editing to
correct errors A-5

ESCAPE -~ Pascal procedure D-69

execute —— (See "RUN" or "LINKLOAD".)

exit -- C-8, C-14

EXP -- D-67

expression —- defined and discussed D-47

extension —— to a filename A-5, A-6, using /CMD when building a file with
LINKLOAD E-7, using /PCL when exiting Model III version editor F-4,
F-7

extensions to this implementation of Pascal -~ D-96

EXTERNAL -- D-64

2 —-- INDEX

fields -—— D-31

field list of a RECORD -- D-31

file — as a data type D-29, used in structured variables D-105, used in 1/0
B-15, file of type B-55

FILE$STATUS ~- E~20

FIND —— C-6, E-27

flow~control statements —— B-27
FOR —— B-27, used with enumerated types D-23, discussion D-53, with TO versus
DOWNTO D-53

FORDECL -- used with FOR to generate temporary variables D-53, discussed D-81

FORWARD -- used to get around scope limitations B-45, D-63

function ——- B-42, D-12, declarations of D-18, function calls and expressions
D-48, predeclared D-66, procedure and function library E-17, string
function library E-25

GET -~ D-102

GETKEY -~ E~19

GETSTR -— D-100

global variables -- B-41, D-62, used in external routines D-108
GOTO -- D~59

GOTOXY -- E-18

hard disk —— A-9, F-33

hardware —— A-9

HB —— transfer function D-68

heading -- block headings D-10

heap —— E-10

HELP -~ C-13

hexadecimal -- in ASCII chart D-93, in strings D-4, with CHR function D-68
HPSERROR -~ E-20

HSCROLL -- C-14

identifier —- scope of B-44, discussion D-3

IF -- conditional statement (IF THEN ELSE) B-35, D-55, compiler option for
conditional compilation D-82

IN —— B-66, D-27

INCLUDE -- D-84, D-108

index definition of an array —- D-25

Init -- command of LINKLOAD E-7

INKEY -~ E-19

INOUT -- D-82

INP -- E-19

INPUT —— B-15, D-71, E-4

INSERT -~ E-27

INSFILE -- C-14

integer —— discussion B-11, range of B-11, D-21

interpreter -— F-22

intersection -- and sets D-28, D-41

IOSERROR ~- E-20

keywords -— D-5

3 —— INDEX

labels —— declarations of D-13, labeling statements D-51

LB -~ transfer function D-68

LDOS -~ patch for Model III versiom users F-33

LEFT$ -- E-25

LEN -~ E-25

library —— developed by programmer D-61, procedure and function library E-1,
E-17, F-1, F-2, string functions E-1, E-25, F-1, F-2

linked list -~ B-59

LINKLOAD -~ A-6, E-5, F-21

LIST -— compiler option D-85

listing — produced by compiler A-4, E-2, F-8

literal -- characters in strings D-4

LN —— arithmetic function D-67

Load -- command of LINKLOAD E-6

loading information -- A-1, A-2, F-31

local variables -- B-41, D-62

LOCATION -- D-68

logical file -- B-4

logical operators -- B-33

loop =~ B-27

MAXINT -- D-14

membership —— of sets B-65, D-26
$MEMORY -- E-20

memory map -~ F-23

merge — C-10

message —— D-67

MID$ —- E-25

mixed mode —— F-16

MOD -- B-22, D-41

native code -- F-13

nested / nesting -- B-43, diagram D-9
NEW -- B-57, B-58, D-38, E-10, D-69
NEWDOS -- F-1

NIL -- B-61, D-39

NOBLANK —-- E-18

NOT -~ B-33

NULLBODY -- D-83

numbers -- D-3

ODD -~ D-67

OF -- B-30, D-57

open -~ using RESET B-17, D-72, E-4
operand —— E-29

operators —-— D-41
optimizer — F-10
OR —— B-33

ORD —— D-68

ordinal types —- D-21
otherwise —— D-57

OUT -- E-19
output -- B-4, B-15, D-71, E~4
overlay -- Network Pascal program overlays A-2, E-1, overlaid compiler F-9

4 —— INDEX

PACK -~ data transfer procedure D-68

packed -~ B-48

PAGE -- D-80

PAGESIZE -- D-85

parameter -- listed in procedure calls B-39, pass by reference versus pass by
value B-41, list used with FORWARD B-45, discussion D-10, formal D-10,
actual D-11

parentheses -- used to alter precedence B-23, B-34, B-35

PASCAL -~ compiler command F-7

PASCALB --compiler command F-9

pass by reference ~- B-41, D-11

pass by value -- B-41, D-11

patch -- F-33

pcode —- F-~22

PEEK -- E-18

pointer -— variables B-57, data type D-37

POKE -- E-18

position -- C-7

precedence -~ of arithmetic operators B~22, using parentheses to alter B~23,
B-34, B-35, of logical operators B-34, of relational operators B-35,
D~43

precision ~— D-4

PRED -~ D-69

predeclared —— D-66

predefined -- B-10, B~15, D-21, D-22, D-23, D-71

procedures —— B-39, calling B-42, parameters (variables) B-39, headings D-10,
declarations D-18, procedure statement D-60, D-61, predeclared procedures
and functions D-66

PROGRAM -~ statement B-3, block heading D-10

PTRCHECK -~ compiler option D-87

PUT -- D~103

QUIT -- C-8
QUOTE -~ C-7

random access files ~ E-29

RANGECHK -- D-86

READ -- B-17, D-73, with Text files D-74, with non-Text files D-75
READCURSOR — E-18

READRAND -- E-29

READLN -- B-17, D-31, discussion D-78

REAL -- B-10, discussion B-11, D-24

RECORD -~ B-52, D-31

record variants -— D-33

recursion -~ D-66

register —- E-23

relational operators ~- B-33, D-42, discussion B-34, applicable to sets D-27

REPEAT -- B-37, D-55

REPLACE — E-27, C-6

reserved words -- and identifiers B-9, listed D-5
RESET -- B-17, D-72, E-4

REWRITE -- B-16, D-73, E-4

RIGHTS$ -- E-25

ROLL -~ C-7

ROM -~ E-18

5 —-— INDEX

ROUND -- D-68

RSETPOINT —- E-17

RUN -- command program E-3
runtime support —— F-23

scope rules -— B-44, D-61

selection-control statement -- B-28
selector -~ B-28, D-57
semicolon -- introduced B-3, general rule B-4, D-7

SETACNM -- E~22

SET$ACNM -- E-21

set -- B-65, D-26, membership testing B-65, arithmetic with B-66, relationmal
operators and D-27, arithmetic operators and D-28

SETPOINT -- E-17

shift -- SHIFT @ to insert lines A-3, SHIFT 0 to switch between upper and
upper/lower case A-4, SHIFT used in editing C-15

SHOWFILE -- C-13

SHOWLINE - C-7

SIN —— D-67

SIZE -~ D-68

spaces -- may be inserted for easy reading B-4
splitting object modules -- F-28

SQR -- D-67

SQRT - D-67

stack -~ E-4, E~10, F-7

standard Pascal -- comparison of this version with D~96
statement -- B~3, B-51

static variable declarations -- B-57

strings -- defined D-4, single quotation marks in D-5, hexadecimal numbers in
D-5, the type STRING D-99, dynamic string variables D-99, using library

101
structure ——- B-43, D-9, D-10, D-12
structured -- B-1
STR$ ~- E-25
subrange types B-51, D-24
subroutines -~ (See 'procedures" and "functions.')

subset -~ B-65, D-27

subtraction -~ B-21, D-41

sucC -~ D-69

superset -- B-65, D-~27

symbols -- command of LINKLOAD E-6, special Pascal symbols listed D-5, D-6
syntax -- explanation of diagrams D-1

TABS —- C-~7

testpoint -- E-18

TEXT -- B~10, B-11, D-30

THEN -- B-25, D-55

TIME -- E-23

TO —- B-28, D-53

TRUNC -— B-30, "truncation" D-41, transfer function D-68

type -- simple predefined B-9, advanced B-47, user-defined B-49, enumerated
B-50, type definitions D-15

type transfer operator —— D-44

6 —- INDEX

union -- B-65, B~66, D-28
UNPACK —— D-68

UNTIL -~ B-37

USER =-- E-22

VAR -- B-10
variable B-9, local vs. global B-41, declarations B-10, D-16
variant -~ D-31

WHILE -- B-36, D-54

WIDELIST -~ D-86

WITH - B-55, D-58

work file -~ C~-11, F-1

WRITE -- B-4, B-16, D~75, D-76, D-77
WRITECH — E-19

WRITELN -- B-3, B-4, B-16, D-30, D-79
WRITESTRING -- E~19

WRITERAND - E~29

7 -— INDEX

RADIO SHACK -=-C§ A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM u. K.

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

