- MICROSOFT
- EDTOR/ - 1™
ASSEMBLER-
PLUS

ijiiilthliHIHHJ_HIIHHV“

vvvvvvvvvv cW s i

EDITOR/ASSEMBLER-PLUS UPDATE REPORT

A small bug has been discovered in the assembler portion of
Editor/Assembler-Plus. The problem occurs if you attempt to
assemble into memory using the Manual Origin switch (A/IM/MO).
The computer responds to such attempts with the error message
“BAD ADDRESS.”

To permanently fix this bug, you may patch the program and
punch a new tape using the following procedure. Use a spare tape
when punching out the patched version of EDTASM-PLUS to pro-
tect your original EDTASM-PLUS tape. In following this procedure,
remember that the $ symbol is used to represent the ESCAPE
charécter which is entered as SHIFT, up arrow.

1. Load EDTASM-PLUS using the normal procedure as described
on page 12 of the manual.

2. Type Z, then press ENTER to enter Z-BUG.
3. Type $W to enter WORD examination mode.

4. Once in WORD examination mode, examine and modify the
following words, using the normal procedure as described on
pahges 89 and 90 of the manual. Use the ENTER key after each
change.

ADDRESS OLD WORD NEW WORD
. 44A6/ 50EA 4532
4488/ 50EA 722B

5. Type $B to enter BYTE examination mode.

6. Once in BYTE mode, examine and modify the following bytes
in memory, using the same procedure as above.
ADDRESS OLD WORD NEW WORD

43E2/ 1 0
S54EA/ 36 0C2
54EB/ OFF OBE
54EC/ 0C2 55
54ED/ OBE 36
54EE/ 55 OFF

9. Punch out this patched version of EDTASM-PLUS on the spare
tape using Z-BUG's punch command as described on page 106
of the manual with the following parameters.

4380 7263 4380 EDTASMSP

Alternate Approach: If, for some reason, you do not wish to patch
the current version of EDTASM-PLUS and punch a new tape, you
can get the effect of the /MO assembly by using an ORG statement
to set the first address of the program to the desired location, and
then assembling with the Absolute Origin switch set (A/IM/AO).

For example, suppose the following program is to be assembled
starting at location 7400H.

00100 START LD Al

00110 LD B,2
00120 JP START
00130 END

The assembly may be accomplished by adding an ORG statement..
and assembling with the Absolute Origin switch (A/IM/AQO).. "

00090 ORG 7400H
00100 START LD Al
00110 LD B,2
00120 JP START
00130 END

Use of $N and $S

Some users have expressed confusion as to the function of the $N
and $S modes in Z-BUG. Keep in mind that $N and $S only affect
the display mode for data, not addresses. Addresses arg ays

displayed in symbolic mode. To determine the numeric. value of -
the current address, the command . = (period equals) can be used.

Editor B Command and the Expansion Interface

The Editor B Command is a reset command that is used to return
to BASIC. Since it is impossible to reset a TRS-80 with expansion
interface and no disks without holding down the BREAK key, the
Editor B Command does not work with this hardware configura-
tion. To reset the machine with this hardware configuration, ac-
tivate the Reset switch while holding down the BREAK key.

EDITOR/
ASSEMBLER-PLUS

Produced by Microsoft
Written by Mark L. Chamberlin and William E. Yates
Instruction Booklet by William Barden Jr.

Microsoft Consumer Products
10800 Northeast Eighth, Suite 507, Bellevue, WA 98004

COPYRIGHT NOTICE

Microsoft Editor/Assembler-Plus is copyrighted under United States
Copyright laws by Microsoft.

It is against the law to copy Editor/Assembler-Plus on cassette tape,
disk, or any other medium for any purpose other than personal conve-
nience,

It is against the law to give away or resell copies of Microsoft
Editor/Assembler-Plus. Any unauthorized distribution of this product
deprives the authors of their deserved royalties. Microsoft will take full
legal recourse against violators,

If you have questions on this copyright, please contact:

Microsoft Consumer Products
10800 Northeast Eighth, Suite 507
Bellevue, WA 98004

Copyright © Microsoft, 1979
All Rights Reserved
Printed in USA

Table of Contents

Chapter One
Getting Started With EDTASM-PLUS

What is Editor/Assembler-Plus?......... 8
The Designers. 9
A Word About Microsoft. 10
The Right Hardware. 11
EDTASM-PLUS Cassette. 11
How To Load EDTASM-PLUS. 12
What To Do About Loading Problems. 13
EDTASM-PLUS Line Input and Output. . . .14
RESET Recovery Procedure. 15
Chapter Two

EDTASM-Plus Editor

A Review of the Basic Editor Commands. . .18

A Review of the Editor Subcommands. . . .24
A New Way To Specify Ranges of Lines29
Specifying Line Number Offsets. 30
A Way To Edit a Set of Lines

Without Individual E Commands. 31

How To Move and Copy Blocks of Lines. . .31

Finding Strings and Substituting
A New String foranOM. 33

Automatic Extend (X) Subcommands
OveraRange.................... 36

Using the Quash Command

To Obtain More Memory for Edits. 37
Editor Error Messages. 39
Chapter Three
EDTASM-PLUS Assembler
A Review of the Assembler Operation. 42
A Review of Pseudo-Operations. 45
Assembler Switches. 49

Assembling Into Memory-Automatic

Origin 50
Assembling Into Memory-Manual

Origin 53
Assembling With An Absolute Origin. 55
Assembler Expression Evaluation. 56
Conditional Assembly............... 59

Chapter Four
Assembler Macro Capability

WhatlsaMacro?.................. 64
Using Parameters in Macros. 67
When Can Macros BeUsed?. 70
Rules for Macro Definitions. 72
Rules for Macro Reference. 74

4

Suppressing the Listing of a Macro. 76

Macro Labels Using #8YM. 76
Further Samples of MacroUsage. 78
Symbol Table Codes. 81
Assembler Error Messages. 83

Chapter Five

EDTASM-PLUS Z-BUG

Basic Z-BUG Operation. 86
Displaying and Modifying Memory

Locations in Hexadecimal 87
Displaying and Modifying Memory

Locations in Decimal and Octal. 920
Symbolic Debugging. 93
Free Use of Symbols, Expressions,

and Constants. 96
Displaying a Block of Locations. 97
Displaying and Modifying

Registers and Flags. 928
One Time Type Outs and

Examining the Addressed Location. 929
Breakpointing 101
Single Stepping Through a Program. 105
Loading and Saving System Format Tapes106
Loading Stand-Alone Z-BUG. 107

Z-BUG Cautions and Error Messages. . . . 108

5

Chapter One
Getting Started With EDTASM-PLUS

What is Editor/Assembler-Plus?

The Designers

A Word About Microsoft

The Right Hardware

EDTASM-PLUS Cassette

How To Load EDTASM-PLUS

What To Do About Loading Problems
EDTASM-PLUS Line Input and Output
RESET Recovery Procedure

What is Editor/Assembler-Plus?

Editor/Assembler-Plus (EDTASM-PLUS) is a software package,
supplied on cassette tape, that includes a complete Editor, Macro
Assembler, and Debug program. The Editor and Assembler include
Radio Shack’s EDTASM commands as a subset, but add many power-
ful features to the basic capability of that package. The Debug
package, called Z-BUG, is a completely new design of a “big-system”
debugger.

EDTASM-PLUS is designed to be used on a TRS-80 Model | Computer
with Level Il BASIC and 16K or more of RAM memory.

EDTASM-PLUS gives you the capability to assembie TRS-80 assembly
language programs directly into memory, without having to write out
object programs to cassette tape and then load them. in addition,
EDTASM-PLUS provides a macro capability to automatically
generate in-line code by invoking an assembly-language macro, or set
of predefined instructions.

As the Editor, Assembler, and Z-BUG are all resident at one time, it
is a simple matter to efficiently edit source programs, assemble them
into RAM memory, and then debug them. This process can be
repeated over and over until the assembly-language program is check-
ed out; the time required to switch between Editor and Assembler,
between Assembler and Z-BUG, and from Z-BUG to Editor is a frac-
tion of a second.

The Editor portion of EDTASM-PLUS includes the basic commands of
EDTASM, but adds such features as line number offsets, new line
range specifications, a block edit, moves and copies of blocks, string
find and substitution commands, automatic line extension, and the
ability to “quash” portions of EDTASM-PLUS to obtain additional text
buffer area.

The Z-BUG debugger of EDTASM-PLUS provides functions normally
only found in larger computer systems, including symbolic debug-
ging based on the assembler symbol table, byte, word, mnemonic,
and ASCIl formats, up to eight breakpoints, user-defined number
bases, and single instruction stepping.

The people at Microsoft hope you will be pleased with these new tools
to facilitate your assembly-language programming of the TRS-80.

8

The Designers

Microsoft Editor/Assembler-Plus was written by Mark L. Chamberlin
and William E. Yates, consultants to Microsoft. Mr. Chamberlin is the
author of the original Radio Shack Editor/Assembler.

A Word About Microsoft

Microsoft produces high-quality, concise software for today’s
MiCroprocessors.

Microsoft’'s BASIC Interpreter, in its several versions, has become the
standard high-level programming language used in microcomputers. In
addition to Radio Shack TRS-80 Level Il BASIC, and TRS-80 Disk
BASIC, Microsoft has supplied BASIC Interpreters for the Commodore
PET, the Apple Il Computer, NCR 7200, Compucolor I, OSI, Pertec
Altair, and many others.

Microsoft’s careful approach to the development of microprocessor
software has allowed the production of large amounts of bug-free, well-
designed code in a minimum amount of time. Currently available:
BASIC interpreters for the 8080, 6800, and 6502 microprocessors; a
FORTRAN compiler, assembler, loader and runtime library package for
the 8080, and Z-80 microprocessors; an ANS-74 COBOL compiler for
the 8080 and Z-80; and a complete offering of systems software for the
new 16-bit microprocessors.

Microsoft Consumer Products was founded as a division of Microsoft
in the summer of 1979 to provide microcomputer users with high quali-
ty system and utility software as well as application software.

EDTASM-PLUS is just one of many Microsoft products being planned
for the end-user or consumer market. All of these software packages
will be marketed by Microsoft Consumer Products.

Microsoft Consumer Products is dedicated to providing only the best,
most reliable microcomputer software.

For more information on Microsoft Consumer Products software, please
write to:

Microsoft Consumer Products
10800 NE Eighth, Suite 507
Bellevue, WA 98004

10

The Right Hardware

EDTASM-PLUS can be used with the Radio Shack TRS-80 Model |
Microcomputer with Level 1l BASIC and 16K RAM minimum memory.

EDTASM-PLUS Cassette

The EDTASM-PLUS Cassette that comes in your EDTASM-PLUS
package is a high quality recording from Microsoft.

The EDTASM-PLUS program is recorded two times on the side of the
cassette tape with EDITOR/ASSEMBLER-PLUS printed on it. A length
of leader tape precedes each recording. If you listen to the tape, you will
hear a steady pilot tone during these leader sections.

Side Two of the cassette tape contains two recordings of Stand-Alone
Z-BUG. Instructions for the use of Stand-Alone Z-BUG are given in
Chapter 5.

11

How to Load EDTASM-PLUS

To load EDTASM-PLUS from cassette, use the following instructions:

1. Put the EDTASM-PLUS cassette into the TRS-80 recorder so
that the side with Editor/Assembler-Plus is facing up.

2. Rewind the tape to its beginning.

3. Enter the command, SYSTEM, and press the | ENTER] key.

4. In response to the %? prompt, enter: EDTASM [ENTER] .

5. Press the PLAY button on the TRS-80 recoraes. Tiere should
soon be two asterisks in the upper-right corner of the TRS-80
screen (the one on the right “blinks”). These two asterisks signify
that EDTASM-PLUS is loading.

6. A successful load will result in another *? prompt. In response
to this prompt, enter: [/] [ENTER].

7. Assuming that all goes well, the screen will display a
MICROSOFT COPYRIGHT notice, followed by an asterisk prompt
character: *

WARNING:

Before loading EDTASM-PLUS or any other recordings into the TRS-80
microcomputer, we strongly urge you to disconnect the smallest gray
plug that is normally inserted into the “MIC” jack of the tape recorder.

If for any reason during the actual reading of a tape the TRS-80 turns off
the recorder (via the smallest gray plug), a “spike” may be recorded on
the tape. Should this happen, the recording you are entering will be per-
manently damaged.

Our experience shows that this is most likely to occur when using the
Radio Shack CTR-80 recorder, but we recommend that you still discon-
nect the smallest gray plug no matter what recorder you are using.

12

What To Do About Loading Problems

The TRS-80 is known to be “volume sensitive” when it comes to
loading programs from cassette.

The most common loading problem is finding the correct settings
for the TONE and VOLUME controls on the TRS-80 recorder. We sug-
gest that you start with a low VOLUME setting and adjust it up one
half level each time you attempt a load. The TONE control is not as
important, but change it also.

Since the sensitivity of individual cassette recorders varies significant-
ly, there is no way to determine specific settings. Once a tape loads, it
is a good idea to write down the settings on the cassette label for
future reference.

If you still cannot load a tape, you might try cleaning and demagnetiz-
ing the head of your TRS-80 recorder. Use a high-quality head cleaner
and an inexpensive head demagnetizer for these tasks. Both can be
purchased at Radio Shack or many other electronics outlets for under
$10 (at the time of this writing). We don't recommend so-called
“cleaner tapes” as they are often abrasive and may damage the head
of your recorder.

Other suggestions to try before taking the matter up with your Radio
Shack dealer include the following:

1. Try loading the second recording on your EDTASM-PLUS
cassette.

2. Try loading the tape with a different cassette recorder.

3. Dust and other particles can sometimes prevent a load. To
remove particles, run the tape through REWIND and FAST
FORWARD a few times.

4, Don't try loading the TRS-80 when you first turn it on. Let it
warm up a few minutes instead.

5. Remove the earphone jack and run the tape to listen for the
leader tones and digital signals of the files. If you don't hear
these sounds, try a different recorder. If you still don't hear
them, chances are you have a blank tape.

12

6. Ask your Radio Shack dealer about Radio Shack’s “cassette
modification” fix. This hardware correction should make your
EDTASM-PLUS less dependent upon exact VOLUME settings.

EDTASM-PLUS
Line Input and Output

EDTASM-PLUS uses a backspace to delete the previous
character just as is done in other TRS-80 programs. The entire input
line may also be deleted by means of a left arrow[=] .

Portions of EDTASM-PLUS use an “ESCAPE” character, which

is entered by a up arrow [¢], and displayed as a “$”. The
ESCAPE character cannot be deleted by a backspace or line deletion

in Z-BUG.

The command will “hold” the display during rapid
listing of lines. Hitting any key except will restart the dispiay.

The key can generally be used to return to the EDTASM.
PLUS “command” level at any point during the middle of line input or
after the messages “READY PRINTER” or “READY CASSETTE”. This is a
means to effectively cancel the current line or action.

14

RESET Recovery Procedure

Under certain conditions control over EDTASM-PLUS may be
lost. This is a (relatively) common occurrence during user program
debugging when the user has not anticipated all of his program’s ac-
tions. EDTASM-PLUS may also infrequently “hang” during line printer
or cassette /O due to hardware malfunctions.

To regain control at any time, press [BREAK|. If [BREAK]| does
not return control to ESTASM-PLUS, use the following procedure:

1. If using a system with no expansion interface, press
RESET | on the left rear of the cpu. If using a system with an
expansion interface, press [RESET| while holding down

2. Enter for “MEMORY SIZE?” if your system has an ex-

pansion interface.

3. Enter SYSTEM mode by inputting “SYSTEM” in response to
the LEVEL Il BASIC “ > ” prompt.

4. Enter one of the following addresses to reenter EDTASM-
PLUS:

a. 117280 restarts EDTASM-PLUS and destroys the con-
tents of the edit buffer.

b. /17283 restarts EDTASM-PLUS with the contents of the
edit buffer preserved.

c. /17286 restarts EDTASM-PLUS with Z-BUG breakpoints
and the contents of the edit buffer preserved.

Bear in mind that if control was lost during debugging, portions of
EDTASM-PLUS and/or the user program may have been destroyed
and further use of EDTASM-PLUS without reloading may cause un-
predictable results!

15

16

Chapter Two
EDTASM-PLUS Editor

A Review of the Basic Editor Commands
A Review of the Editor Subcommands
A New Way To Specify Ranges of Lines
Specifying Line Number Offsets

A Way To Edit a Set of Lines
Without Individual E Commands

How To Move and Copy Blocks of Lines

Finding Strings and Substituting a New
String for an Old

Automatic Extend (X) Subcommands
Over a Range

Using the Quash Command To Obtain
More Memory for Edits

Editor Error Messages

17

A Review of the
Basic Editor Commands

The Editor portion of EDTASM-PLUS adds many new and powerful
commands to the basic Editor commands. Let's review the basic
Editor operation and commands, and then discuss the additional
capabilities.

The Editor builds a buffer of text data in RAM memory. Usually this
text data represents assembly-language source lines, although it can
be any text data. Each source line is made up of four segments, or
fields. The first field is the optional label field, the second is the Z-80
instruction operation code or pseudo-operation code, the third is the
operands for the operation, and the fourth field is the optional
remarks for the instruction. The typical assembly source line

~START LD A23 ;LOAD THE A REGISTER WITH 23

has a labél of “START", an operation code of “LD”, operands of “A”
and “23”, and remarks starting with “;LOAD”. Note that the remarks
field is always started by a semicolon (*;”).

The Editor commands are used to read or write a source file from
cassette tape, to insert or delete source code lines in the edit buffer, to
replace source code lines with new lines, to display lines in the text
buffer on the video display or to print them on the system line printer,
to find a given character string in the text buffer, and to position the
cursor to the proper line and tab position along the line.

Let's construct a short source file and write it to cassette to show how
the commands are used. Load EDTASM-PLUS as described in the first
chapter. After a successful load, the title should be displayed, followed
by the “#” prompt character.

A two-line source file can be created in the text buffer by using the
l(nsert) command:

100,10
00100 START LD A23 :LOAD THE A REGISTER WITH 23
00110 END START ;START ADDRESS FOR LOADER

00120 (press)

The “100” in the (nsert) command is the starting line number for the
insert, while the “10” is the number of lines to increment for each new

18

line. Both the starting line number and increment are optional; the
default starting line is 100 and the default increment is 10 on in-
itialization, or the current line and last entered increment after use.
Now the source file of two lines may be written to cassette by the
Wirite) command:

#*W TWOLN
READY CASSETTE (hit any key except |BREAK |)
&

The source file from the edit buffer will be written out to cassette tape
under the name “TWOLN". The name, by the way, is optional. If a
name is not specified, no name will be used. If a name is used it may
be 1 to 6 alphanumeric characters, starting with an alphabetic
character.

The cassette file can now be read back into the edit buffer by the
L(oad) command, after first deleting the two lines by the D(elete) com-
Frland.

% D100:110 (delete the two lines)

%L TWOLN (load the source file)

READY CASSETTE (hit any key except | BREAK |)
ES

The L command does not require a file name. If none is given, the

. next file on the. cassette is loaded. Notice that a range of lines was

specified by the _colon (") between the starting and ending line
numbers for the delete.

To verify that the file has been loaded properly from cassette, we can
display the edit buffer by the Pfrint) command:

% P (display the buffer)

The s ecnal symbols “#' and "x" reoreeent the first line of the edit
bu??eran the laslme 3 ively. We can use
“These symbols rather than havmg to remember the actual line
numbers.

If our system has a line printer, the contents of the edit buffer may be
printed by the H command

s Mt (print buffer on line printer,
READY PRINTER (hit any key except [BREAK)
*

19

A variation on the H command allows only the text of the edit
buffer to be printed—no line numbers are output:

S THo% (print text only)

To insert additional lines between two existing lines, another insert
command may be performed. To insert the line

LD (BE20H),A ;STORE IN CENTER OF SCREEN

between lines 100 and 110, for example, the Knsert) below could be
done

#1105

00105 LD (BE20H),A ;STORE IN CENTER OF SCREEN
NO ROOM BETWEEN LINES

*

The Editor assumed the increment value was 10 as it was not
specified, accepted the first line, and then gave an error message
when the next line, 115, would not fit in between lines 105 and 110.

There comes a time in every programmer’s life when all the lines be-
tween lines 100 and 110 have been used. As the Editor does not use
fractional line numbers, the source lines in the edit buffer must be
renumbered by the N(umber) command:

£N100,10,

%P#x

00100 START LD A23 ;LOAD THE A REGISTER WITH 23
00110 LD (BE20H),A ;STORE IN CENTER OF SCREEN
00120 END START ;START ADDRESS FOR LOADER
*

In this example, the renumber command was used to renumber the
three lines with a starting line number of 100 and an increment of 10.

The N(umber) line command is also handy when two or more edit
files are L(oaded) into the edit buffer. The Editor does not “interlace”
the lines by line number, but appends each successive file. The N
command will automatically renumber the entire edit buffer properly
in such a case.

The R(eplace) command is used to replace one line with another line
or gfoup of lines. We can replace the first line by another, for exam-
ple, in the sequence:

20

* R100,10

00100 START LD A41H ;LOAD A WITH ASCH ‘A’
NO ROOM BETWEEN LINES

*

Here again, if the Editor “runs out of room” between lines, it will res-
pond with the “NO ROOM...” message. We could have replaced line
100 with up to nine lines by:

* R100,1

00100

00101

Positioning commands enable us to find text within the edit buffer.
The Editor maintains a pointer to the current edit line of the edit buf-
fer. When the symbol “#” is specified, the Editor line pointer is set to
the first line of the edit buffer. Specifying “#” sets the Editor line
pointer to the last line of the edit buffer. We've seen how these sym-
bols are used when we printed the entire edit buffer by the P#:% com-
mand.

A third symbol, the period, “.”, refers to the current line in the edit
. buffer. We can scroll up and down the entire’edit buffer by using the
up [}] and down D] arrows. Once positioned to the proper line, we
can use the “.” symbol to reference the current line as in the print
command

*P.
which displays the current edit buffer line on the screen.

Another way of positioning the Editor line pointer is bv F(inding) a
known character string in the edit buffer. The character suing we
would typically search for would be a unique string. If a label for a line
of our source code was called by a unique name such as “TST34", for
example, we could perform the following command to find the line:

* F§TST34

00550 TST34 CP 50 ;TEST FOR A LESS THAN 50
*P.

00550 TST34 CP 50 ;TEST FOR A LESS THAN 50
*

21

The “$” in the command F$TST34 is not a dollar sign
character! It is used to represent an “ESCAPE” character, which in

the TRS-80 is equivalent to a [SHIFT |, up arrow [#] . It is used here
as a “delimiter” (see “Finding Strings...” later in this chapter).

The line in which the character string appears is printed out with its
number. Displaying the current line (*.”) by a P. would again print the
line. If the string is not found, the message “STRING NOT FOUND" is

displayed.

Notice that we must be aware of the position of the current line in the
edit buffer. The search for the F command goes forward, so it is best
to scroll back by using the up arrow or to perform a P# to posi-
tion the line pointer before the expected position of the search string
or at the very top of the edit buffer.

The search string in the F command may be any 1 to 16 character
string that appears somewhere in the edit buffer. If the string appears
more than one time in the edit buffer, the F(ind) command may still
be used; the Editor will display the next occurrence of the string.

All of the above Edit commands allow us to add, replace, delete,
display, print, renumber, or otherwise manipulate edit buffer lines. In
the next section we'll review how a line may be edited on a character
by character basis.

The Editor commands for line manipulation are shown below. These
commands do not include the new EDTASM-PLUS commands and
features that we will be discussing later in the chapter.

Command Format Sample

Basic B *B Return to Level I BASIC

Delete D[line1 [:lineZ]] #D100:x Deletes line 100 through
end of buffer

Find F$[string] #*F$RALPH Finds string "RALPH". (“$”
is)
Insert l[line1 [,inc]] *1109,3 Insert following lines start-

ing at line 109 and in-
crementing by 3
(112,115,..)

22

Command Format Sample

Hardcopy H[Iine1 Lline2]] #H#221 Output lines from start of
buffer through 221 to
printer

Load L[bfilename] #L TEST Load file “TEST” from
cassette tape

Number N[Iine[,inc]] #N100,5 Renumber lines starting at
line 100 and incrementing
by 5 (105,110,...)

Print P *P Display the next 16 lines

Print P[Iine1 [:IineZ}] #P100:123 Display lines 100 through
123

Replace H[Iine[,inc]] *R3003 Replace line 300 with follow-
ing lines

Type T[Iine1 Lline2]] #T#: % Print only text on system
line printer

Write W[tfilename] %W JOHN Write edit buffer to
cassette tape with name
“JOHN"

Ikl %]croll up [#] or down

Notes:

1. Brackets indicate optional arguments and B indicates
optional blanks.

2. “Line” defaults to current line if none entered.

3. “Inc” defaults to last entered increment if none entered.

23

A Review of the
Editor Subcommands

The Editor subcommands are commands that allow characters within
an edit buffer line to be edited on a character by character basis. Of
course, a line could simply be edited by deletion and insertion using the
Editor commands, but if only a portion of a line is to be edited, then the
subcommands are much more efficient.

The subcommand mode is entered by the Editor command “E”. To edit
line number 552, for example, the command entry would be:

*EBB2
00552 __

Notice that after the command is entered, the line number of the line to
be edited is displayed and the cursor positioned on the first character
position of the line, ready for the first subcommand.

If you have Level Il BASIC you will see that the Editor subcommands are
identical to those in the Edit mode of Level Il BASIC.

We will use a well known programming axiom to illustrate
subcommand use:

00522 __
The underline marks the cursor position, and the shaded area denotes
the portion of the line that is not displayed, but in the buffer.

We can position the cursor alon? the line by the and by

the left arrow E The [SPACEBAR] moves the cursor to the right, and
the left arrow moves the cursor to the left. If a number precedes the
space or left arrow, then the cursor moves that number of spaces to the

right or left. Entering 20 followed by [SPACE BAR], for example,

displays
00522 PROGRAMS TEND TO OCC__*"

Entering 3 followed by a left arrow E then displays
00522 PROGRAMS TEND TO i i fara iy i

Once the cursor is positioned we can delete, modify, or insert characters
in the same manner we performed these operations on lines.

24

To insert characters, the “I" subcommand is used. The cursor is posi-
tioned on the character of the line before the point at which new
characters are to be inserted. Then the | command is entered, followed
by the characters to be inserted. When all the characters desired have
been entered, a up arrow [}] is entered. The is
used to tell the editor that we wish to escape from the edit mode sub-
command. This special character is necessary because the insert ac-
cepts all normal characters as characters to be inserted.

The [§] may be used at any time to end the insert and
other edit modes.

To see how the | subcommand works, let’s add a word before “MORE”
in our axiom, First position the cursor:

00522 PROGRAMS TEND TO OCCUPY__:/

Now, type 1, followed by “BMUCH" followed by -
00522 PROGRAMS TEND TO OCCUPY MUCH__ 0

Deletions are performed by positioning the cursor on the character to
be deleted and entering “D”. If more than one character is to be deleted,
a value can be entered before the D. To delete “MUCH”, position the
cursor on the M of MUCH, enter 5D, and the string will be deleted.

00522 PROGRAMS TEND TO OCCUPY __ i 82niilsiy (iad

The format for C(hange) is similar to that for deletions. If the C is
preceded by a value, then the specified number of characters are to be
replaced by a string that follows the “C". If no value is used, then only
one character is specified for the change.

To change “MORE” to “LESS" in the sample axiom, enter 4CLESS after
positioning the cursor under the “M” in “MORE". The result will be:

00522 PROGRAMS TEND TO OCCUPY LESS_ ¥

The S(earch) subcommand allows us to find a specified character in
our test line. For example, we could search for the “Y” by entering “SY”

25

while we were in the Edit mode. If the cursor were positioned
somewhere before the "Y”, the S subcommand would result in:

00522 PROGRAMS TEND TO OCCUP__

If a value was used before the S, the nth occurrence of the specified
character would be found. If we were at the beginning of the line and
“3SE” was entered, for example, the result would be:

00522 PROGRAMS TEND TO OCCUPY MORE M__ '«

Two other positioning commands are L and X. The L subcommand is
used to print the entire line and then position the cursor at the begin-
ning of the line. This is useful to see the remainder of the line at any
time:

00522 PROGRAMS TEND TO OCCUP__ %

00522 PROGRAMS TEND TO OCCUPY MORE MEMORY THAN IS
AVAILABLE.
00522 _ iviiissan

The X subcommand does somewhat the same thing, in that it displays
the entire line, but it then positions the cursor to the end of the line and
sets the insert mode. This is useful for adding to the end of the line:

00522 PROGRAMS TEND TO OCCUPY MORE MEMORY THAN IS
AVAILABLE __

Two somewhat violent commands, H(ack) and K(ill), allow the user
to delete a segment of a line. The H subcommand hacks off the re-
mainder of the line from the current cursor position and sets the insert
mode. Hacking here:

00522 PROGRAMS TEND TO OCCUP__ /10 ticiariny o

causes the following result, with the insert mode active:
00522 PROGRAMS TEND TO OCCUP__

K deletes a segment of a line up to the nth occurrence of a specified
character. The nth occurrence of the character is found as in the S sub-
command. If the cursor is at the start of the line and “2KM” is entered,
the following line results:

26

00522

There are a number of subcommands to restart or terminate the Edit
mode. If a mistake is made while editing a line and the user wishes to
cancel all previous editing changes, the A(gain) subcommand can be
given to restart the edit with the cursor positioned at the beginning of
the line as in:
00522 PROGRAMS TEND TO OCCUPY MORE MEMORY THAN
00522 __

If the line was mistakenly edited and the user wishes to simply restore
the old line, then a Q(uit) can be entered to ignore changes.

If all of the changes have been made correctly, then an E(nd edit) or
simply the key can be used to enter the editing changes.

00522 PROGRAMS TEND TO OCCUPY MORE MEMORY AND TIME
THAN AVAILABLE.
£

The subcommands for the Edit mode are shown below.

Subcommand Format Description

Again A Cancel all changes and restart

Backspace ne— Move cursor n positions left

Change nCstring Change n characters at current
cursor position to string
characters

Delete nD Delete n characters at current
cursor position

End edit E End edit and enter all changes
without displaying remainder of
line

End edit End edit and enter all changes
and display remainder of line

Extend line X Move to the end of the line and

enter insert mode

27

Subcommand Format Description

Hack H Delete line from current cursor
position to end and enter insert
mode

Insert Istring Enter insert mode before current
cursor position. Terminate with

SHIFT | , up arrow [¢] .

Kill nKs Kill all characters from current
cursor position to nth occurrence
of “s”

List line L List line and position cursor to
start of line in following line

Quit Q Quit Edit mode and ignore all
changes

Search nSs Search for the nth occurrence of
g

Space nspace Move cursor n positions right.

28

A New Way To
Specify Ranges of Lines

EDTASM-PLUS extends the way that line number ranges can be
specified. In the previous version of EDTASM, a colon was used when
arange of lines was specified, as in * P100:300 which displayed all lines
from 100 through 300. This method of specifying lines is still valid, but
is supplemented by the ability to express a range by a starting number
and the total number of lines in the range.

Using this specification, it is easy to get “the first five lines of the edit
buffer” or the “next six lines following line 1001”. This is especially han-
dy when all of the line numbers are not known, as in a recently edited
source program.

The format for this method of specification is
SUNIn

SLN is tne “starting line number” and may be any valid line number for
a line in the edit buffer. “!” is a symbol that designates that a line count
rather than an ending line number will be used. “n” is the line count —
the number of lines, including the starting line number, that are to be
used in the range.

To display the first five lines of the edit buffer, for instance, we can enter
* P#15
To delete the 10 lines in the edit buffer starting with line number 1011,
we enter
*D1011110
Of course, just as in the case of the “starting line:ending line” specifica-
tion, the range of lines must be in the edit buffer or a “BAD LINE
NUMBER” error will result. If the range of lines is partially in the edit buf-

fer, or if the starting line number does not exist, then the Editor works
on all the lines within the range it can find, as one would expect.

The “for how many lines” specification may be used in place of
the “starting line number:ending line number” specification for
any Edit command.

29

Specifying Line Number Offsets

EDTASM-PLUS provides a way to reference lines by offsets
from a given line number. This feature makes it possible to reference
the “line five lines above line 1770” or the “line 15 lines after line
2022". Here again, as in the case of the “how many lines” specifica-
tion, lines can be referenced without knowing all the line numbers in a
set of lines.

This type of line reference is very handy in positioning the Edit line
pointer prior to searches, displays or prints. For example, if we want
to start a search 5 lines back from the current line we could enter the
following sequence:

*P.-5

00550 THIS IS LINE 550 DISPLAYED BY THE P.-5 COMMAND.
* F$LOST CHORD

00580 THIS IS THE LOST CHORD LINE.

®

The first command displays the current line less five lines and posi-
tions the Editor line pointer in preparation for the search. The F com-
mand searches for the LOST CHORD and displays the line when it is
found.

The offset method of specifying line numbers can be used any
time that a line number is called for. It can not only be used with

the symbol for current line (*.”), but also with the symbol for start of

buffer (“#") and the symbol for end of buffer (“*). To print the last six
lines in the edit buffer, for instance, we could enter

* Pk -5%

and to print the first six lines at the beginning of the buffer we could
enter

*PH##+5

Another format, of course, is to use the offset with an actual line
number as in

*P1010+5

Of course if the resulting line number is nonexistent, as in the expres-
sion #~2 or % +3, a “BAD LINE NUMBER” error message results.

30

A Way To Edit a Set of Lines
Without Individual E Commands

EDTASM-PLUS adds a new way of using the E command. If
there is a set of lines that requires editing, then a collective E(dit)
command can be given to remain in the Edit moae for uie entife
range rather than entering an E for each line.

This is a feature that makes editing go much more smoothly when
more than one line is to be edited. Suppose that lines 1010 through
1050 need to be edited. Using the collective edit command we simply
say

E1010:1050 or E1010:1010+ 4 or E101015

The Editor will now stay in the Edit mode until lines 1010 through
1050 have been edited and will then return to the command driver.

If you've made a mistake and really don't want to remain through the
entire range, simply type a @Q to quit the Edit mode. The and
E subcommands are used as before to enter the line after editing.

The new format for E, then, is used with any range specification when
a set of contiguous lines is to be edited, and is not used when just
one line is to be edited as before.

How To Move and Copy
Blocks of Lines

Two new commands have been added to EDTASM-PLUS to
enable the user to move a block (or range) of lines or to copy a
block of lines.

The move command allows us to take a specified block of lines and
move them to a new area of the edit buffer. The old block of lines is
deleted. Previously, this action would have been accomplished by in-
serting the lines in the new area and then deleting the old lines. The
M(ove) command is a powerful feature as it allows us to rearrange sec-
tions of assembly-language programs easily.

The format of the move command is
MTLN,RNG,INC (increment optional)

31

“TLN" is the “target” line number, the starting line number for the new
block. “RNG" is the specification for the old block of lines; RNG can
use any of the range specifications that we have mentioned previous-
ly, as, for example, 100:200, 100:100 + 5, or 100!5. “INC” is the incre-
ment for line numbering on the new block.

As an example, suppose that we want to make a subroutine out of
some assembly language code to shift the HL register pair four bit
positions left. The initial code is:

#P500:500 + 3

00500 SHIFT ADD HLHL ;SHIFT HL 1 BIT LEFT
00510 ADD HLHL ;SHIFT HL 2 BITS LEFT
00520 ADD HLHL ;SHIFT HL 3 BITS LEFT
00530 ADD HLHL ;SHIFT HL 4 BITS LEFT
k)

This code is “imbedded” in other code, and we would like to move it
to a common subroutine area at the end of all other code. We can
easily move the code to a new area starting with line 10000 by:

* M10000,500!4,10

This move transfers lines 500 through 530 (500!4) into a new block of
lines 10000 through 10030. The target line number was 10000, and
the incremerit for the new block was 10. The old lines 500 through
530 were deleted after the move.

About the only thing to watch for in the move is that the new range of
lines does not conflict with existing lines in the edit buffer. If there is a
previous line number which is the same number as the starting line
number in the move command, the Editor will attempt to make the
move by starting at the starting line number plus the increment. If line
number 10000 already was used in the previous example, the new
block would start at 10010.

If there is not enough room to add all of the lines in the move, a “NO
ROOM BETWEEN LINES” error will result. This would have happened in
the previous example if line 10030 had been in use, for instance.

The copy command is similar in format and concept to the move.
The only difference between the move and C(opy) commands is that
move deletes the old block of lines, but copy keeps them intact. The
format of the copy is:

32

CTLN,RNG,INC (increment optional)
We could have copied the lines of the previous example by:
* C10000,50014,1

This command would have moved the four lines at 500 through 530 in-
to the new block of 10000 through 10003, but retained the lines at 500
through 530, assuming a previous (default) increment of 10.

Just as in the move command, if there is not enough room to insert all
of the lines in the new block, a “NOT ENOUGH ROOM” error results.
Likewise, the starting line number is changed to the target line plus the
increment if the target line number already exists.

“INC” defaults to the current increment if not specified, for both
Move and Copy.

Finding Strings and Substituting
a New String for an Old

We have already discussed the F(ind) command in our review of the
basic Editor commands. EDTASM-PLUS extends the usefulness
of this command with its new methods of specifying ranges of lines.
Recall that in the previous approach, the Editor line pointer must be
positioned to a line before the block of lines to be searched. In
EDTASM-PLUS, a range of lines can be specified for the search.

The format for this type of search is:
FRNG8$string

“RNG” is a range specification in any of the formats we have been
using — 100:300, 100!15, or 100:100 + 23, for example. (The string
to be searched for is preceded by a “$” delimiter, which is not a
dollar sign, but an ESCAPE character,)]

The benefit of this approach is that we do not have to first position the
Editor line pointer; the search simply takes place over the specified
range of lines.

When a range is specified for a search, all lines containing the
search string are displayed.

33

Suppose that we have mistakenly used the mnemonic “LDDIR” instead
of the correct assembler mnemonic “LDIR”. We can find all occurrences
of the error in the last 20 lines of the edit buffer as follows:

F%-19: % $LDDIR

02005 MOVE1 LDDIR ;MOVE THE BLOCK

02200 LDDIR ;MOVE THE BUFFER

02300 LDDIR ;MOVE HEAVEN AND EARTH
*

In the above code there were three lines that contained the character
string “LDDIR”. The three lines were displayed, and the Editor line
pointer set to the last line to be displayed.

The Substitute command works pretty much the same as the F(ind)
command when a range is specified. If we had wanted to substitute a
string of “LDIR” for the erroneous string “LDDIR” we could have used
the same format to specify the search string, but appended a string to
be substituted:

S% ~19:% $LDDIRSLDIR

T
RANGE SUBSTITUTE STRING
SEARCH STRING

The Editor would then have searched for the LDDIR string over
the entire range and substituted the LDIR string at each occur-
rence of LDDIR. In this case the lines containing the newly substituted
strings are displayed:

#* S% -19:% SLDDIRSLDIR

02005 MOVE1 LDIR ;MOVE THE BLOCK
02200 LDIR ;MOVE THE BUFFER
02300 LDIR ;MOVE HEAVEN AND EARTH

In both the F(ind) and S(ubstitute) commands, the specified strings for
the search and replacement strings must be 16 characters or less. If a
substitute is performed and a new line results that is greater than 128
characters, a “NEW LINE TOO LONG” message is displayed. This can
happen, of course, if the original line is long to begin with, and the
substitute string is longer than the search string.

The S(ubstitute) command can be used without a range, just as
the F(ind) command can be used without a range of lines. In this case,

34

the Editor finds the first occurrence of the string, makes the substitution
of the second string, and then displays the line. The line pointer is set to
the line containing the string. The format in this case is:

* S$string (where $ is the ESCAPE,[sHIFT | [#])

The Find and Substitute commands may be used with a new range, but
without a new string. In this case, the Editor simply uses the last entered
string as a default string.

The F and S commands may be used without a string(s) or range. In
this case the Editor searches for the current string from the current line.

The F and S commands are extremely powerful when used to find and
correct erroneous mnemonics or operands in source code, an operation
which is necessary far more frequently than assembly-language pro-
grammers would hope for!

35

Automatic Extend (X)
Subcommands Over a Range

EDTASM-PLUS adds the capability of entering the extend (X)
subcommand mode for a range of lines. One use for this feature is to
add comments to lines of assembly-language source code.

The format of the Extend command is
XRNG {RNG usually specified but optional)

where RNG is a range of lines, specified by any of the methods that we
have described above, for example 100:1000, 333-45:300, or 1000112,
If RNG is not specified, only the current line will be extended. After the
range of lines has been entered, the Editor automatically enters the Edit
mode for the first line, positions the cursor after the last character of the
line, and sets the insert mode. Characters can then be added to the line
(or other editing subcommands can be performed). When all characters
have been added, an E or is input, and the Editor displays the
next line of the range in the same fashion. This process is repeated over
the entire range of lines that has been specified.

Let us see how this command works. Suppose that we wish to add com-
ments to lines 1000 through 1020. The sequence used follows:

* X1000:1020
01000 LD A15__

(comment added to above line, followed by)
01010 LD HLBUFFER__

(comment added to above line, followed by)
1020 LD B,40H

(comment added to above line, followed by [ENTER])
*

To get out of the autornatic Extend mode at any time, simply entera Q@
in place of the E or after changes have been made. Remember
that a Q or E must be preceded by a 1

36

Using the Quash Command to
Obtain More Memory for Edits

During normal operation in EDTASM-PLUS, the Editor, Assembler,
and Z-BUG are “resident” at the same time. These three segments of
EDTASM-PLUS use 12.5K bytes of RAM memory and are arranged as
shown 1T u€ Tigure below;

LOW RAM
MEMORY MACHINE 1O
EDITOR
ASSEMBLER
Z-BUG
= 7200H
EDIT BUFFER
SYMBOL TABLE >VARIABLE
HIGH RAM | USER |
MEMORY | RAM |
P i

The edit buffer uses available RAM memory for text storage. If more
space is required to hold text in the edit buffer, either the Z-BUG or
Assembler and Z-BUG areas may be released to the system for an ex-
tension to the edit buffer area,

The command for this action is the Quash command. If only the
Z-BUG portion of the system is to be used for the edit buffer, then the

Qz

command is entered. If both the Z-BUG and Assembler portions are
to be used as edit buffer area, then

QA
is entered.

37

Quashing Z-BUG adds an additional 3.2K bytes for the edit buffer, while
quashing both Z-BUG and the Assembler adds an additional 8.1K bytes
for editing.

The Quash command preserves the current text in the edit buffer
so that it does not have to be reentered after the Quash.

Because this is a catastrophic action if the command is erroneously
entered, EDTASM-PLUS asks the user “QUASH?” to make certain that
he wants to quash. If the user has made a mistake, a may
be typed to abort the quash; hitting any other key causes the
quash to take place.

Of course once the Quash command has been acted upon, any
Assembler or Z-BUG command will result in the error message “BAD
COMMAND” if that function has indeed been quashed. QZ disables the Z
command and QA disables the Z, A, Q, and O commands.

The Quash command is meant to provide more space for general
text editing or for situations where there are too many source lines to
be held without quashing a portion of the package. Bear in mind that if
the assembler is also quashed, it probably will not be possible to assem-
ble a source program even by reloading as there will not be enough
space in the edit buffer to accomplish the reload. The most practical ap-
proach with the source programs is to quash only the Z-BUG portion,
assemble the program, output the object to cassette tape, and then
reload the object program with Stand-Alone Z-BUG for debugging.

Use the quash capability only when absolutely necessary, as its
use deletes many of the powerful assembly and debug features of
EDTASM-PLUS that we will be discussing shortly.

38

Editor Error Messages

The following is a list of error messages that may occur during Editor

operation:
Message
BAD COMMAND
BAD LINE NUMBER

BAD PARAMETERS
BUFFER EMPTY

BUFFER FULL

NEW LINE TOO
LONG

Description and Corrective Action
Editor does not recognize command. Is it valid?

Editor cannot find line number. Check to see if
line is actually present in the edit buffer.

Editor cannot decode the operands for the com-
mand. Check format.

User has specified operation on a line when buf-
fer is empty. Reload or reenter text.

No more room in the edit buffer. Quash Z-BUG
or Z-BUG and Assembler to get more space, or
break up program into separate modules.

Substitute has been performed that resulted in a
line greater than 128 characters. Shorten the
line.

NO ROOM BETWEEN Insert, move, or copy action resulted in too

LINES

many lines to fit between existing lines.
Renumber existing lines with larger increment.

STRING NOT FOUND Find or substitute command specified a string

that cannot be found. Check the search string
for proper characters.

39

40

Chapter Three
EDTASM-PLUS Assembler

A Review of the Assembler Operation

A Review of Pseudo-Operations

Assembler Switches

Assembling Into Memory-Automatic Origin
Assembling Into Memory-Manual Origin
Assembling With an Absolute Origin
Assembler Expression Evaluation
Conditional Assembly

41

A Review of the
Assembler Operation

EDTASM-PLUS adds many new features to the basic assembling ability
of the Editor/Assembler. Before we discuss the new capabilities, let us
review the basic assembly process, pseudo-operations, and assembly
commands.

The Assembler operates from source code stored in the edit buffer,
The source code is generated from the keyboard, using the Editor, or is
loaded from a previously written source file on cassette tape.

The source code consists of source lines. Each line of source code
generally produces one machine tanguage instruction, although under
certain conditions no instructions are generated, data is generated, or
some other Assembler action takes place.

The usual assembly-language source line consists of four fields: an op-
tional label, an operation code, operands, and optional remarks:

MERGE ADD HL,BC ;ADD DISPLACEMENT TO ADDRESS

e {

Label Operation Operands Remarks
Code

The operation code is the heart of the assembly-language line, It
is @ mnemonic name that represents one of the hundreds of individual
instructions that are in the instruction repertoire (or set) of the Z-80
microprocessor used in the TRS-80.

Each of the instructions found in the Z-80 has a predefined format, and
a certain number of operands associated with its operation. Some in-
structions require no operands, while others require two or three,
Operands may be register names, data values in decimal or hex-
adecimal, symbols, expressions, or combinations of these things.

The remarks column js strictly optional, When used, the remarks field
must stait with a semi-colon (;) to delimit the remarks from other fields.
The source line may also consist entirely of a remark with a starting
semi-colon.

The label column.is.another optional column. | abels are used in lieu
ot BASIC line numbers so that one instruction may reference another,

42

primarily for conditional and unconditional jumps.

The fields of each source line are “free-form” fields, that is, they do not
have to start at specific columns. Each field of the source line need only
be separated by a blank, and the remarks field roist have a8 semi-colon
Zeumiter. For convenience and readability, however, the right arrow will
tap to predefined tab positions, and the four fields can be put into nice,
neat columns during Edit.

Let us assemble a sample program to review how the Assembler
operates. The source program below clears the display by storing
blanks in all of the 1024 character positions. We will assume that the
Editor has been used to produce this set of lines in the edit buffer.

00100 ORG 7000H

00110 CLEAR LD HL3C00H ;ADDRESS OF SCREEN START
00120 LD BC%024 ;COUNT OF POSITIONS
00130 LOOP LD A20H :LOAD BLANK

00140 LD (HLA :STORE BLANK

00150 INC HL :BUMP POINTER

00160 DEC BC :DECREMENT COUNT
00170 LD AB “TEST DONE

00180 OR C :MERGE LS BYTE

00190 JR NZLOOP ;GO IF MORE TO STORE
00200 END

The source code above represents the clear program in symbolic
form. It cannot, of course, be loaded into the TRS-80 in this form for ex-
ecution, but must first be translated from the symbolic source form
above into machine language instructions that the Z-80 will recognize.

Two labels have been used — “LOOP” and “CLEAR”. Many times we do
not know where each instruction will reside in memory and for that
reason do not assign absolute memory addresses to the instructions.
The symbolic location of the LD A,20H instruction is at LOOP and we
have referenced that location in the “Jump Relative if Not Zero” instruc-
tion, which will cause a jump to location LOOP 1023 times through the
loop.

One important point about the symbolic form of the program: We
could, in fact, sit down and laboriously hand assemble these instruc-
tions into machine language form by reference to the Z-80 manual. The
symbolic form, however, relieves us of this chore and lets the Assembler
do all of the calculations.

43

Entering the command “A” takes the contents of the edit buffer and
translates the symbolic form of the program into machine code.

7000 00100 ORG 7000H

7000 21003C 00100 CLEAR LD HL,3CO0H ;ADDRESS OF SCREEN
START

7003 010004 00120 LD BC,1024 ;COUNT OF POSITIONS

7006 3E20 00130 LOOP LD A 20H ;LOAD BLANK

7008 77 00140 LD (HL),A ;STORE BLANK

7009 23 00150 INC HL ;BUMP POINTER

700A 0B 00160 DEC BC ;DECREMENT COUNT

700B 78 00170 LD AB ;TEST DONE

700C Bt 00180 OR C ;MERGE LS BYTE

700D 20F7 00190 JR NZLOOP ;GO IF MORE TO
STORE

0000 00200 END

00000 TOTAL ERRORS

CLEAR 7000

LOOP 7006

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column,

+

The assembly listing shown above consists of four parts. The
right section is the “source line image,” simply a repetition of the
source code from the edit buffer. The third column from the left lists
the corresponding source line number for each line of code.

The two columns qr eft are the locations at which the instructions
will reside, and the actual machine Iénquagg‘?‘grm of tne mstructions.
By specifying the special assembler “pseudo-operation” ORG, tor
origin, we have informed the assembler to assemble the code starting
at location 7000H, 1024 bytes down from the top of RAM in a 16K
system.

The machine language form of the instruction consists of one to four
bytes of data. Fach byte of data is represented by two hexadecimal

44

digits, so there may be from two to eight hex digits in the second col-

umn for the corresponding instruction. The location co}umn on the far

left is incremented to reflect the number of bytes in istruction. A
R R A Yo

two-byte instruction, for example, adds two to the address for the next

instruction.

The machine language code represented by the data in the second col-
umn is the obiect code produced by the assembler. This object code
may be saved on cassette tape for reloading by a debug package or by
the monitor (SYSTEM) mode logic in Level Il or Disk BASIC. Alter-
natively, it may simply be kept in memory for on the spot debugging
with Z-BUG. This in-memory assembly is not generally possible with
assembler packages and is one of the powerful features of EDTASM-
PLUS we will be talking about shortly.

A Review of
Pseudo-Operations

When is an opcode not an opcode? When it is a pseudo-operation! As
we mentioned earlier, most source lines cause one machine-language
instruction to be generated. The exception to this, however is.source
lnes that do not_contain instriiction opc 1nne pics, but contain
Serations 1o be performed by t mbler. These instructions are
‘éﬁ@ﬁ%ua’o -ops as they are written in the opcode column of the

source line.

The EnD pseudo-op sxmply marks the end of the assembly source
code. The Assembler makes several passes to resolve forward
references and the like, and it must know where the end of the source
code is.

The END may have an argument that specnfles the starting address
for the program. This is used by both Level Il BASIC SYSTEM mode and
by the EDTASM-PLUS Z-BUG Load command as the default starting
address.

The ORG pseudo-op tells the Assembler where the program witi
be loaded for execution. It is generally the first command in the

45

source code. The ORG may also be used within the source code to in-
dicate where sections of the program are to reside, or for reserving
blocks of storage (see discussion of DEFS).

The ORG is a necessity for the old version of EDTASM. In EDTASM-
PLUS, however, although we may use ORG to assemble absolute
programs, it is generally not necessary. (We will explain in detail later
in this chapter.)

There are four pseudo-gps that are used to generate data in_place of
machine-lanquage instructions. Data values genefatea by these
pseudo-ops are useu as general constants, table values, or other types
of data.

The first of the four generates one byte of data at the current
assembly location. The DEFine Byte below will create a single byte of
100.

01000 HUND DEFB 64H ;GENERATE CONSTANT OF 100

A second pseudo-op, DEFine Word, generates two bytes (16 bits) of
data. This data is ahnost always address data, arranged least
significant byte followed by most significant byte, in standard
Z-80 address format.

01001 LOCNT DEFW START ;ADDRESS OF START
01002 DEFW LAST ;ADDRESS OF LAST
01003 DEFW MID ;ADDRESS OF IN BETWEEN

The third pseudo-op, DEFR with a character operand in auotes, is
much like the normal DEFb except that an ASCH character is
generated. ASCIl is the seven bit code (most significant bit is a zero)
used by all TRS-80 input and output devices for character representa-
tion.

02010 DEFB ‘S ;GENERATE AN ASCII S

A related pseudo-op, DEFine Message, generates a string of ASCI
characters used as a message for output to the screen or printer.

03020 MESSG1 DEFM ‘| NEVER USED A PROGRAM | DIDNT LIKE’

All of the pseudo-ops in the last group generated data which would
be loaded along with machine language instructions. The DEFS
pseudo-op, however, does not generate data, but simply tells the

46

assembler to reserve a block of storage locations. The DEFine
Storaage pseudo-op simply causes the Assembler location counter 1o
pe incremented by the number of bytes specified by the operand.
When the object code is loaded, the loader bypasses the block defined
in the DEFS, storing nothing there. This code shows the use of
DEFS:

7000 C3CB70 03000 JP NEXT ;CONTINUE
7003 03010 TABLE DEFS 200 ;RESERVE TABLE OF 200
BYTES

70CB 3E02 03020 NEXT LD A2 ;TWO TIMES THROUGH

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column,

Note that in the object code above, the LD instruction was assigned a
Jocation CBH, or 200 decimal bytes past the first instruction at 7000H
through 7002H.

Another way of performing exactly the same action would be to use a
second ORG pseudo-op to reset the assembler (and loader) location
counter:

7000 C3CB70 00110 JP NEXT ;CONTINUE

7003 00120 TABLE EQU § ;START OF TABLE

70CB 00130 ORG $+200 ;RESERVE TABLE OF 200
BYTES

70CB 3E02 00140 NEXT LD A2 ;TWO TIMES THROUGH

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column.

In the above code we used another pseudo-op, the EQUate
pseudo-op. This pseudo-op equated a label to the value of the curient
assembler location counter (“$7). As the assembler scans the source
lines, it builds a table of symbols and associated values called the
symbol table.

47

Many of the values in the symbol table are the locations of the names
of instructions which are then filled in for jumps and other instructions
as the numeric values. Other values equated with symbols, however,
may represent different data. If we used the ASCIl character for “turn
on cursor” (14) many times in a program, we might choose to call it
“ONCUR” by an EQU:

02000 ONCUR EQU 14 ;TURN ON CURSOR CHARACTER

Thereafter, every time we wanted to load, compare, or utilize the
character, we could use "ONCUR” in place of 14 as in:

04000 CP ONCUR ;TEST FOR 14 ON CURSOR CHAR

When the operand of an EQUate is “$”, then the label used in the
EQU is equated to the current Assembler location counter value,
which is simply the address for which the next instruction or data will
be assembled.

The last pseudo-op is DEFL.. DEFL is used similarly to EQU, but the
label used with DEFL may e redefined later in the source code. We
could, for example, have:

02000 COUNT DEFL 100 ;SET COUNT

(other source code)

04000 COUNT DEFL 200 ;SET COUNT

Most of the pseudo-ops can use a general expression as an
operand.

Assembler Switches

The basic command to start assembly is “A”. When this com-
mand is given, the Assembler will rapidly assemble the code in the
source buffer and display it on the screen as it does so. At the end of
the listing on the screen, the symbol table for the assembly will be
listed in alphabetical order.

The symbol table contains all user labels from the assembly. Each
symbol is displayed along with the corresponding value for that sym-
bol. In many cases this value represents the location of the symbol in
the assembled program; in other cases the value is a result of an
EQUate.

At the end of the listing of the assembly and symbol table, the
Assembler is ready to output the object to cassette tape. The
assembler asks “READY CASSETTE” so that the user can prepare the
cassette. Hitting any key other than [BREAK] or [SHIFT | after
this prompt results in the object code of the assembly being output to
cassette tape.

If no file name is used, the object file will be output with file name
“NONAME”. If a name is used, the Assembler will use the name
from the A command:

* ABNAME (b is optional space)

There are various options, called “switches”, that may be used
with the assembler “A” command.

The output of object code can be disabled by the “/NO”, No Object
switch. Many times it is convenient to assemble on a trial basis before
producing an object tape. Any assembly errors can then be corrected,
and the object tape produced after all assembly errors have been dealt
with. The format for this option is

* AINO

The listing and/or symbol table output may be suppressed by the “NL”
and “NS” switches. If a hardcopy of the listing is required, the “LP”
switch causes the listing and symbol table output to be sent to the
system line printer. An assembly with no symbol table printout, no
object, and output to the line printer, for example, would be specified
by:

49

* AINO/LPINS

The switches may be used in any order.

The "WE" switch causes the assembler to wait on errors. This switch is
useful when the listing is being displayed on the screen, as the
assembly is displayed so rapidly that the individual errors cannot be
seen. Pressing any key except or after the error wait
causes the Assembler to continue and wait on errors. Pressing [BREAK |
aborts the assembly. Pressing continues the assembly without
waiting on further errors.

The above switches were used in the previous version of EDTASM.
They are still valid in EDTASM-PLUS. EDTASM-PLUS adds additional
assembly switches that are used in the same fashion. The new
switches are “IM” to assemble directly into memory, "MO" for manual
origin, and "AQ" for absolute origin. We will discuss these in the next
section of this chapter, as they all relate to assembling programs
directly into memory.

For reference, the Assembler switches are:

Switch Description

INO Suppress object output

INS Suppress symbol table printout or display
/NL Suppress listing printout or display

/LP Output listing and symbol table to line printer
IWE Wait on errors until key depressed

IM Assemble object code directly into memory
MO Assemble with user-specified origin

IAO Assemble with absolute origin

Assembling Into
Memory-Automatic Origin

EDTASM-PLUS adds a powerful new feature to the basic
Editor/Assembler, the ability to assemble source programs direct-
ly into memory. This “assemble into memory” capability lets the
user avoid the time consuming portion of assemblies during debug-

50

ging — creating and loading an object tape. Furthermore, as the
Z-BUG debugger is a part of EDTASM-PLUS, programs assembled in-
to memory may be immediately debugged.

A second important quality of assembling into memory is that the
assembler will automatically relocate the object code to a convenient
portion of memory; the user is relieved of the task of figuring out
where he should place the object code.

Typically, the assemble into memory feature can be used during the
debugging phase of assembly-language program development. Once
the program has been fully debugged, it can then be output in final
form to cassette tape for subsequent loads by the SYSTEM command
in BASIC.

To see how this feature works, let us assemble a sample program. The
command A/IM assembles the program from page 43 and produces
the listing shown below:

71AD 21003C 00110 CLEAR LD HL3C00H ;ADDRESS OF
SCREEN START

71B0 010004 00120 LD BC,1024 ;C(_)“%NJSOF POSI-

71B3 3E20 00130 LOOP LD A20H ;LOAD BLANK

7185 77 00140 LD (HLA ;STORE BLANK

71B6 23 00150 INC HL ;BUMP POINTER

71B7 0B 00160 DEC BC ;DECREMENT
COUNT

71B8 78 00170 LD AB ;TEST DONE

71B9 Bt 00180 OR C ;MERGE LS BYTE

71BA 20F7 00180 JR NZLOOP ;GO IF MORE TO
STORE

0000 00200 END

00000 TOTAL ERRORS

CLEAR 71AD

LOOP 71B3

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a
second line with the information continued beneath
the last column.

51

One of the statements that we left out of the above assembly was the
ORG, which specified the origin of the program. This was left out on
purpose, as the Assembler automatically determines the origin for in
memory assembly; it uses the first available memory location above
the space used for EDTASM-PLUS, the Edit buffer, and the symbol
table.

We can see from the listing that this program was assembled starting
at location 71ADH. (This location may vary depending upon the ver-
sion of EDTASM-PLUS that you are using.)

If we look back to the figure in Chapter 2, we can see how the
assembler allocates memory for in memory assembly. The areas for
machine VO, Editor, Assembler, and Z-BUG are fixed in size. The Edit
buffer, of course, holds whatever source program we have entered and
is therefore variable size. The symbol table is also variable size and
depends on the number of symbols that we are using in our source
program. Each symbol takes from 4 to 9 bytes, dependent upon the
number of characters in the symbol.

As the Assembler generates object code, it is built upward towards
high memory from the symbol table end. The total area available for
long assemblies ranges from the automatic origin to the end of RAM
memory in the TRS-80. In a minimum system, this would be up to
location 7FFFH; in a maximum system the upper limit would be
FFFFH.

ORG pseudo-ops should, in general, not be used when assembling
into memory with an automatic origin. If they are used, the effective
address of the ORG will be the ORG address plus the value of the
automatic origin. If the automatic origin is 71ADH, for example, the
pseudo-op

ORG 200H

produces an origin of 73ADH, which is probably meaningless uniess
the user plays special tricks to reference data or code to the start of
the program.

52

Assembling Into
Memory-Manual Origin

It is possible for the user to specify a manual origin in EDTASM-
PLUS. There are times when the user might like to determine the area
of memory in which his program is to be assembled. The program,
for example, might normally reside at 0COO0H when it is loaded by the
SYSTEM command in BASIC; it is convenient to be able to generate
object code at this location so that the user can debug the actual loca-
tions for the program.

The O(rigin) command allows the user to specify this manual origin.
Note that this is an EDTASM-PLUS command and not an assembler
pseudo-operation. When the O command is entered, the Assembler
responds with the following message:

%0
FIRST=7088 LAST=XFFE USRORG=XFFF USRORG=

The meaning of these parameters is shown below. FIRST is the first
location after the Edit buffer, which is the first location of the symbol
table for the program in the Edit buffer. LAST is the last location that
the system can use. This is one less than the maximum RAM memory
location. USRORG is the user specified manual origin. Initially this is
the last location in memory.

A new USRORG may be specified by typing in a value between FIRST
and LAST. When this is done, the user defines a User Ram Area into
which he may assemble by the manual origin switch, MO. If an
assembly into memory is then performed with a “/MO”, the Assembler
will assemble the object code starting at the user origin.

Suppose, for example, the user specifies a manual origin, or USRORG,
of 8000H

%0

FIRST=7088 LAST=XFFE USRORG=XFFF USRORG=8000
If he then starts an assembly by:

* AIIM/MO
the object code will be assembled into memory starting at location
8000H, and continuing upward from that location.

53

The default value for USRORG is the last available memory location.
This value should be reentered if assemblies with automatic origins are
to be done to provide maximum space for the symbol table and object
code. For 16K RAM systems this value is 7FFF, for 32K systems BFFF,
and for 48K systems FFFF.

As in automatic origin assemblies, no ORG is necessary. ORGs present
in source code result in an origin value of the ORG operand plus the
USRORG value, which is generally meaningless.

LOW RAM /O EDITOR,
MEMORY
EMOR ASSEMBLER,
ZBUG
— FIXED
BUFFER
FIRST —» SYMBOL \VAR]ABLE
TABLE
................... /
USRORG — USER RAM
AREA
LAST —
(USRORG DEFAULT) —

If the USRORG has been redefined by entering a new value after an “O”
command, the area from USRORG to LAST becomes a protected
memory area for automatic assemblies, similar to protecting RAM by
the BASIC “MEMORY SIZE" option. If assemblies into memory are per-
formed with automatic origin (no /MO switch), the assembler will only
use the available RAM up to USRORG. The user RAM area may be used
to hold other programs or data as desired,

The edit buffer is also limited by USRORG; it connot go beyond
this location.

54

Assembling With an Absolute Origin

There is another switch associated with in memory assemblies, the
Absolute Origin switch, /AO.

All assemblies that are performed that are mot to memory (no /iM
switch) must have an absolute origin by means of an ORG statement
as we have seen. For example, to assemble a program that will load at
8000H, we specify

ORG 8000H ;PROGRAM ORIGIN

and assemble by means of *A/LP, or other “A” command with swit-
ches.
The default condition for non-memory assemblies is an assembly with
absolute origin and is equivalent to

* AJAO
All assemblies in which the object code is written to cassette tape are
absolute assemblies.

EDTASM-PLUS is primarily designed for in-memory assemblies with
the origin determined automatically by EDTASM-PLUS or the user
(/MO). In these cases no user ORG pseudo-ops are required. It is possi-
ble to perform in-memory absolute assemblies with user-specified
ORGs, but this technique is not recommended.

Absolute assemblies may be performed in memory by the sequence
* AIIM/AO or * A/IMAO/MO

When an absolute origin assembly is done, ORG pseudo-ops after the
first are not relative to the starting address of the program as they are
when /AO is not used. In an absolute origin assembly, the source line

ORG $+100 ;LEAVE TABLE AREA

will adjust the Assembler location counter by 100 as we described
earlier in this chapter.

55

Assembler Expression Evaluation

EDTASM-PLUS includes many new operators and expression
evaluation features. Expressions may be used in the assembly to
simplify the programmer's task by automatically generating such
things as table lengths, string lengths, constants, addresses, and other
data. Let us see how these operators ...uh...operate.

Addition and subtraction are represented by “+ " and “~", respec-
tively. Some examples of their use are shown in the code below:

TABLE DEFB 23+80H ;FLAG AND CONSTANT
DEFB 25+80H
DEFB 17+80H
DEFB 35+ 80H

TABSZ DEFB $-TABLE ;FIND SIZE OF TABLE

In this example a table of constants is generated, with bit 7, the most
significant bit, being set for each entry. Adding the 80H to set the bit
is less abstract than calculating the value by hand for the DEFB
operand.

The size of the table is nicely defined by the expression “$-TABLE”,
which generates a symbol TABSZ that is equal to the number of en-
tries in TABLE. Additional entries may be added to the table (by
reassembling) without having to refigure the size, TABSZ can be used
as immediate data:

LD B,TABSZ ;LOAD SIZE OF TABLE

Multiplication and division are represented by “%" and /", respec-
tively. Their use is less frequent than addition and subtraction, but in
certain cases they may be very handy.

One example of the use of multiply might be the generation of a table
size based on two variables, NENT, the number of entries in the table,
and ENTSZ, the number of bytes per entry. These parameters could

easily be changed by reassembling without affecting calculations
related to the size of the table.

LD BC,NENT*ENTSZ ;COMPUTE TABLE SIZE

The example below uses the division operator to find the starting
point for a binary search based on table size.

56

LD HLNENT % ENTSZ/2 + TABLE

When a divide is performed, the division is done in integer fashion. If
the result is not an integer, as in 13/2, the quotient is used as the
result and the remainder is ignored. In general, expressions used in
assemblies must be able to be equated to a 16-bit integer.

Logical operators allow the user to perform logical ANDs, ORs, and
exclusive ORs on address and constant data in assemblies. These
operators are used infrequently, but may be quite useful for
generating certain types of data. The logical OR function is
represented by “.OR.” or “I”, the logical AND by “.AND.” or “&", and
the logical exclusive OR by “.XOR.” These operators must be used
between two terms in an expression.

0000 0A 00100 DEFB 0OA.OR2 ;LOGICAL OR

0001 0B 00101 DEFB O0A!3 ;LOGICAL OR

0002 07 00110 DEFB 1FH.AND.7 ;LOGICAL AND

0003 07 60111 DEFB 1FH&7 ;LOGICAL AND

0004 18 00120 DEFB 1FH.XOR7 ;LOGICAL EXCLUSIVE OR
0000 00130 END

00000 TOTAL ERRORS

The .NOT. operator takes the one’s complement of a value or ex-
pression. The .NOT. is used before one term.

0000 AA 00100 DEFB .NOT.55H ;ONE'S COMPLEMENT
0001 55 00110 DEFB .NOT.AAH ;ONE'S COMPLEMENT

The shift operator is represented by a less than symbol (<). The
shift operator may be used to generate data shifted left any number
of bit positions by a pesitive shift count or right any number of bit
positions by a negative shift count.

7173 38 00100 DEFB 7< 3 ;SET BITS 54,3
7174 001E 00110 DEFW 3C00H<-1 ;GENERATE WORD

ADDRESS
0000 00120 END

00000 TOTAL ERRORS

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column.

57

The modulo operator is represented by a ".MOD.” The modulo
operator is used to find the remainder result of a division of two
numbers. The remainder result is then used as the data value.

0000 02 00100 DEFB 56.MOD6 ;56/6 IS 9 REMAINDER 2
0001 03 00110 DEFB 111.MODS ;111/9 IS 12 REMAINDER 3
0000 00120 END

00000 TOTAL ERRORS

The equals (.EQU.) and not equals (.NEQ.) operators are used
between two terms in an expression. If the result of the expression is
true, a OFFH value is generated; if the result is false, a O value is pro-
duced. These operators find limited use, but may be used in the con-
ditional assembly feature discussed next in this chapter.

0000 FF 00100 DEFB 1.NEQ.O
0001 00 00120 DEFB 1.NEQ1
0000 00130 END

00000 TOTAL ERRORS
Parentheses ”()" may be used to group parts of an expression if the
first operator in an expression is not a left parenthesis. For ex-
ample,
LD HL3%(5+2)
is valid, but
LD HLB+2)%3
is invalid and will cause an error.

Constants may be used in an expression, of course. Constants with
an O or @ suffix are octal constants, constants with an H suffix are
hexadecimal, and unsuffixed constants or those with a T suffix are
decimal. An ASCIi character is always bracketed by single quotes.

77TH=1670=167Q=119T =119
‘A’=ASCI A

The Assembler location counter is represented by a dollar sign ($}
or period (.}.

The operators that may be used in assembly, and their order of
precedence are shown on the next page. The order of precedence is
used to determine which parts of the expression will be evaluated first.

58

Operator Operation Precedence

Level
Lowest
Precedence .EQU. (or =) equals 1
NEQ. not equals 1
+ addition 2
- subtraction 2
.OR. (or 1) logical OR 3
.XOR. logical exclusive OR 3
.AND. (or &) logical AND 4
* multiplication 5
/ division 5
< shift 5
Y .MOD. modulo 5
Highest .NOT. NOT (1's complement) 6
Precedence () parentheses 7

Operations of the same precedence are applied left to right.

Conditional Assembly

EDTASM-PLUS includes two pseudo-ops that we have not discussed
up to this point. The COND(itional) and ENDC(onditional) pseudo-ops
permit conditional assembly. The formats of the COND and ENDC
pseudo-ops are

COND (expression) (label not allowed)
ENDC (label not allowed)

If the value of the expression is non-zero (true), then the source code
between the COND and the matching ENDC is assembled; if the value
of the expression is zero (false), then the source code between the
COND and ENDC is not assembled.

Let us see how this is utilized.

COND M48K ;ASSEMBLE IF 48K RAM

LD SP,OCO00H INITIALIZE STACK POINTER
LD HLOAFB0H INITIALIZE BUFFER POINTER
ENDC ;END CONDITIONAL

59

In the example on the preceding page, the two load instructions are
assembled if and only if symbol M48K is equal to a non-zero value.
Typically this would be done by:

M48K EQU 1 ;SET 48K

Any number of conditional assembly sets may be used; they may even
be nested as in

COND M48K ;ASSEMBLE IF 48K RAM

LD SP,OCO00OH ;INITIALIZE STACK POINTER
LD HL,OAF80H ;INITIALIZE BUFFER POINTER
COND CASS ;ASSEMBLE IF CASSETTE

LD Al ;SET CASSETTE FLAG

LD (CASSF),A ;STORE

ENDC

ENDC

Every COND must have a corresponding ENDC, and they may be
nested up to 255 levels (although that is somewhat outrageous!).

Suppose that we have two sets of conflicting code. One set is to be
assembled if memory is 64K while the other is not assembled for 64K,
and vice versa. We can use the “.NEQ.” operator to assemble either one
set or the other:

COND MB4K.NEQ.O ;ASSEMBLE FOR 64K SYSTEMS

LD SP,0 ;INITIALIZE STACK POINTER

ENDC

COND M64K.EQU.0 ;ASSEMBLE FOR NON-64K SYSTEMS
LD SP,7FO0H ;INITIALIZE STACK POINTER

ENDC

If MB4K is non-zero, the stack pointer is loaded with O, while if M64K is
zero, the stack pointer is loaded with 7FOOH.

We now come to a philosophical question...Why do we want to condi-
tionally assemble code? For some very good reasons. Suppose that you
are in the software business producing TRS-80 software for various con-
figurations of systems. Some systems have one cassette and one disk
and 48K of RAM, other systems have four disks, no cassettes, and 32K
of RAM, and so forth. It is very convenient to write one master version of
a program that will handle all possible configurations of systems by
conditionally assembling only that code which is applicable to the in-
dividual system.

60

The alternative to a master version is a separate version for each con-
figuration. If this approach is used, every version must be changed if
new code is put in, or existing code modified. It is much more conve-
nient and accurate to change only one master version and use condi-
tional assemnbly.

When the conditional assembly approach is used, the symbols for each
COND are usually conveniently grouped at the beginning of the listing,
so that they may be modified to reflect the desired configuration before

assembly:
;CHANGE THESE PARAMETERS FOR SYSTEM GENERATION

NODISK EQU 1 ;NUMBER OF DISKS

NOCAS EQU 1 ;NUMBER OF CASSETTES
MEMSZ EQU 48 ;MEMORY SIZE

LP EQU 1 ;LINE PRINTER=1, NONE=0
SERIAL EQU O ;RS-232=1, NONE=0

;END OF SYSTEM EQUATES

61

62

Chapter Four
Assembler Macro Capability

What Is a Macro?

Using Parameters in Macros

When Can Macros Be Used?

Rules for Macro Definitions

Rules for Macro Reference
Suppressing the Listing of a Macro
Macro Labels Using #$YM

Further Samples of Macro Usage
Symbol Table Codes

Assembler Error Messages

63

What Is a Macro?

A macro is a way of automatically generating assembly-
language instructions. One way to think of macros is as “in-line”
subroutines. Suppose, for example, that in an assembly-language
program that we are writing we use the HL register pair to hold 16-bit
values that need to be shifted left n number of bit positions. If we hold
a shift count in the B register, then an easy set of instructions to do
this would be

00400 LOOP ADD HLHL SHIFT HL LEFT, LOGICAL
00410 DJNZ LOOP ;CONTINUE FOR N TIMES

This code performs a left shift on the HL register by adding it to itself
n times, where n is a count of 1-15 in the B register. (The DJNZ in-
struction decrements the count in the B register and jumps to LOOP if
the result of the decrement is not zero.)

Now, one way to generalize this function is to make it a
subroutine by adding a RET(urn) instruction and moving it to an area
of the assembly-language program where it can be CALLed every
time we want to perform a shift of HL. Before each call, the B register
is loaded with a count of 1 through 15 that represents the number of
times HL is to be shifted. Two CALLs and the subroutine itself are
shown in the code below:

00100 LD B3 ;LOAD B FOR SHIFT OF HL 3
BITS

00110 CALL SHFTHL ;SHIFT HL

00550 LD B,10 ;LOAD B FOR SHIFT OF HL 10
BITS

00560 CALL SHFTHL ;SHIFT HL

10000 SHFTHL ADD HLHL ;SHIFT HL LEFT, LOGICAL
10010 DJNZ SHFTHL ;CONTINUE FOR N TIMES
10020 RET ;RETURN TO CALLING CODE

NOTE. Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column.

In the code above, we have used three dots to represent intervening
code between the two CALLs and the actual subroutine.

A second way of generalizing the shift HL function is to make it a
macro. First, we define the two steps for the shift as a macro defini-
tion and give this definition a name:

00018 SHFTHL MACRO ;DEFINE MACRO

00020 ADD HLHL ;SHIFT HL, LOGICAL
00022 DINZ $-1 ;CONTINUE FOR N TIMES
00024 ENDM ;END DEFINITION

The first pseudo-op, MACRO, essentially told the assembler that the
following code was a macro named “SHFTHL”". The second pseudo-
op, ENDM, defined the end of the macro.

Note that this code does not generate any instructions at this
point — it is simply a definition that the assembler notes.

We can reference the macro by referring to the macro name. Each
time we use the macro name in the opcode field of an assembly-
language line, the assembler decodes the name as a macro reference,
finds the corresponding macro definition, and generates the instruc-
tions that have been defined for that macro. The complete source
code for two references to the macro and the macro definition is:

00018 SHFTHL MACRO ;DEFINE MACRO

00020 ADD HLHL ;SHIFT HL, LOGICAL

00022 DINZ $-1 ;CONTINUE FOR N TIMES

00024 ENDM ;END DEFINITION

00100 LD B3 ;LOAD B FOR SHIFT OF HL 3 BITS
00102 SHFTHL ;SHIFT HL MACRO

00550 LD B,10 ;LOAD B FOR SHIFT OF HL 10 BITS
00560 SHFTHL ;SHIFT HL MACRO

01000 END

65

The assembled version of this source code shows that the macro
references are expanded into sets of the two instructions defined in
the macro definition. The macro definition itself is simply listed
without generating any code at that point.

00018 SHFTHL MACRO ;DEFINE MACRO
00020 ADD HLHL ;SHIFT HL, LOGICAL
00022 DINZ $-1 ;CONTINUE FOR N
TIMES
00024 ENDM ;END DEFINITION
0000 0603 00100 LD B,3 ;LOAD B FOR SHIFT
OF HL 3 BITS
00102 SHFTHL ;SHIFT HL MACRO
0002 29 ADD HLHL SHIFT HL, LOGICAL
0003 10FD DINZ $-1 ;CONTINUE FOR N
TIMES
ENDM ;END DEFINITION
0005060A 00550 LD B,10 ;LOAD B FOR SHIFT
OF HL 10 BITS
00560 SHFTHL ;SHIFT HL MACRO
0007 29 ADD HLHL SHIFT HL, LOGICAL
0008 10FD DINZ -1 ;CONTINUE FOR N
TIMES
ENDM ;END DEFINITION
0000 01000 END

00000 TOTAL ERRORS

NOTE. Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column.

Note that in the macro definition, we avoided using labels other
than the macro name itself. The reason for this is that as the
Assembler simply reproduces the macro definition every time it en-
counters a macro reference, it would reproduce the labels as well.
More than one macro reference would produce doubly defined
labels, which would result in an Assembler error diagnostic message.
For a technique to use labels inside macros, see the section in this
chapter labeled “Macro Labels Using #3SYM”.

66

Using Parameters in Macros

Using the macro on the preceeding page, we can easily and
automatically generate the code for the shift function anytime we
reference the macro by using the name in the op code field of an
assembly-language source line.

This technique can be used for any number of lines of code that are
defined by a macro definition and for any number of individual
macros. Fach macro definition, of course, must have a unique name
to be referenced.

Generating a set of predefined instructions is only a portion of the
power of macro usage, however. We can generate not only a set of
specific instructions, but sets of instructions that use different
parameters expressed in the macro reference. Let us see how this
works.

In the SHFTHL macro above, we had to load the B register with a
count prior to referencing the macro. By using the count as a
parameter, we can automnatically generate the proper load B instruc-
tion. The macro definition for this is:

00018 SHFTHL MACRO #COUNT ;DEFINE MACRO

00020 LD B,#COUNT ;LOAD COUNT

00022 ADD HL,HL ;SHIFT HL, LOGICAL
00024 DJNZ $-1 ;CONTINUE FOR N TIMES
00026 ENDM

The macro definition line here has one parameter expressed as an ar-
bitrary name. This name is used in the macro definition code as a
general parameter. When the macro is referenced by invoking it with
the name SHFTHL, the reference also includes a parameter which will
take the place of #COUNT in the macro expansion. A sample
reference is:

00550 SHFTHL. 10 (SHIFT HL 10 BITS
and the expansion for this reference is:
00550 SHFTHL. 10 (SHIFT HL 10 BITS
LD B,10 ;LOAD COUNT
ADD HLHL (SHIFT HL, LOGICAL
DJNZ $-1 ;CONTINUE FOR N TIMES
ENDM

&7

We have left out the source code generated by the macro expansion,
but the reader can see that the LD B instruction has used the
parameter of 10 from the macro reference line as the parameter to be
used in the load. The Assembler has automatically generated a
set of instructions with the specified parameter.

The number of parameters used in a macro may be any number that
may fit into a source line. Let us try another example that illustrates
how several parameters may be used. In this example, we will use the
block move instruction of the Z-80, the LDIR. The LDIR moves a block
of data from a source location to a destination location. Prior to the
LDIR, the HL register is loaded with the source address, the DE
register is loaded with the destination address, and the BC register is
loaded with the number of bytes to move. A typical sequence is:

01000 LD HL,17000 ;SOURCE ADDRESS

01010 LD DE,18000 ;DESTINATION ADDRESS

01020 LD BC,64H ;100 BYTES IN BLOCK

01030 LDIR ;MOVE SRCE BLK TO DEST BLK

The above code moves the bytes in locations 17000 through 17099 to
locations 18000 through 18099.

Now, let us take the above code and make a general macro out of it,
using the source address, destination address, and number of bytes to
move as parameters. When we finish we will have a general macro
that can be used anytime we want to move a block of data.

00050 MOVE MACRO #SRCE#DEST#NUM

00052 LD HL#SRCE ;LOAD SOURCE ADDRESS
00054 LD DE#DEST ;LOAD DESTINATION ADDRESS
00056 LD BC#NUM ;LOAD BYTE COUNT

00058 LDIR ;MOVE BLOCK

00060 ENDM

The above macro definition uses three parameters, #SRCE, #DEST,
and #NUM, which are referenced inside the macro. To reference the
MOVE macro, the reference line would include three parameters to be
used in the macro expansion. These parameters could be any values,
symbols, or expressions that would normally be used in coding the
four instructions. Typical references for the MOVE macro would be

02000 MOVE 17000,18000,64H
which duplicates the “typical” sequence for LDIR we saw previously,

68

03000 MOVE BUFF1,SCREEN, 1024

which uses symbolic addresses for the source and destination, and
04000 MOVE BUFF2 + 1024,3C00H,1024

which uses an expression for one of the parameters.

The macro expansion for the first example would be

02000 MOVE 17000,18000,64H
LD HL,17000 ;LOAD SOURCE ADDRESS
LD DE, 18000 ;LOAD DESTINATION ADDRESS
LD BC,64H ;LOAD BYTE COUNT
LDIR ;MOVE BLOCK
ENDM

Parameter usage in the macro may involve simple loads as we have
seen above, or may be much more complicated. There is no reason
that we could not subtract two parameters, such as #ARG2-#ARG1, or
perform other manipulations with the parameters, just as we do in
writing in-line code.

69

When Can Macros Be Used?

What are the relative merits of macros versus subroutines? In the
subroutine case the code is generated only one time and exists in
one area of memory. Aside from the overhead of the CALL and
RET(urn) instructions, subroutine usage is very efficient in terms
of speed and extremely efficient in use of memory. When one
must perform a set of predefined instructions over and over,
subroutines may be used to advantage.

However, when parameters are involved, referencing the
macro and having the Assembler automatically generate the pro-
per code is extremely efficient in terms of program development
time. Nobody likes to sit down and write long sequences of in-
structions, and EDTASM-PLUS makes the task much easier by
the use of macros.

The one disadvantage of macros, of course, is the amount of
memory that is used when many macros are expanded. In the ear-
ly days of computers (five years ago), this was a critical factor.
However, memory is very inexpensive today, and programming
time is much more important. For all intents and purposes, the
amount of memory used by macros can be ignored.

As a matter of fact, using macros in EDTASM-PLUS will probably
result in less memory being used! This is because the edit buffer
also uses memory space. One-time definitions of macros with
macro references are much more efficient in terms of number of
characters of source code than repeating the source code without
using macros!

Macro usage has many exciting possibilities on the TRS-80.
Because each macro definition may have many arguments, and
there may be any reasonable number of macro definitions, whole
applications languages may be defined and utilized. For exam-
ple, it is not hard to visualize a high-speed word processing
language written almost entirely in macros. We will whet your ap-
petite by showing a sample of how this could be performed:

70

01000 ;THIS SEQUENCE DELETES A PARAGRAPH
01010 SCAN PILBACK ;SCAN FOR PARAGRAPH MARK

01020 JP MNNFND ;GO IF NOT FOUND
01030 SCAN PILFWRD ;SCAN FOR PARAGRAPH MARK
01040 JP M,NFND ;GO IF NOT FOUND

01050 DELS CS,CE ;DELETE SCREEN CHARACTERS
01060 DELB BS,BE ;DELETE BUFFER CHARACTERS

Another example of macro use is the simulation of another
assembly-language on the TRS-80. Using macros, it is relatively easy
to construct a cross-assembler to, say, assemble source code for the
6800 microprocessor on the TRS-80, or to assemble source code and
to execute code for a purely hypothetical machine!

An example of macros for the 6800 is shown below:
02000 QE200 LDX BUFFER ;LOAD INDEX WITH ADDRESS

02010 LDAA 256 ;NUMBER OF BYTES

02020 ADDB 23 ;ADJUST B REGISTER

02030 BNE QE302 ;GO IF NOT EQUAL

02040 JMP QE125 ;GO FOR NEXT SET OF VALUES

The corresponding macro definition for the JMP macro would assem:-
ble the proper machine language code for the 6800 by:

00100 JMP MACRO #ARG1 ;JJMP DEFINITION
00101 DEFB 7EH ;OP CODE FOR JMP
00102 DEFB #ARG1/256 ;EXTENDED ADDRESS
00103 DEFB #ARG1.MOD.256

00104 ENDM

Before showing some further examples of macro usage, let us first set
down the rules for macro definitions and references.

71

Rules for Macro Definitions

As we have seen in the previous example, all macros in EDTASM-
PLUS consist of a macro definition line, a body of code, and an
end macro line:

NAME MACRO #P1,#P2 #P3,. #PN
(body of macro)
ENDM

The label, or macro name, is required and can be any valid
assembly-language label. The parameters are optional depending
upon the code in the body of the macro. Here are the rules for the
parameters:

The first character of the dummy parameter must be a “#".

The maximum length of the dummy parameter string is 16
characters, including the “#”.

Commas must be used between parameters.

The last parameter string must be terminated by a carriage
return, space, tab, or semicolon.

Parameter strings may contain any characters except delimiters
(“,”, space, tab, ;") or the “#" symbol.

The ENDM is always the last statement in the macro. It cannot
have a label, or the Assembler will not recognize it as an end macro
pseudo-op.

The body of the macro can consist of any valid assembly-language
lines with Z-80 operation codes, pseudo-ops, operands, and com-
ments. Normally, labels are not permitted in the body as they will
cause doubly-defined labels if the macro is referenced more than
once. (We will explain a special technique for label use later in this
chapter.) Dummy arguments referenced within the body of the macro
use the same strings as defined in the MACRO line.

Mested macros are not permitted. This is an important point. We
cannot have a macro definition such as:

72

00030 SHIFT MACRO #ARG1 ;SHIFT MACRO

00031 LD B,#ARG1 ;LOAD SHIFT COUNT
00032 ADD HLHL ;SHIFT ONE BIT POS'N
00033 TEST MACRO ;TEST BIT 2

00034 BIT 2C ;SET FLAG

00035 ENDM

00036 DJINZ $-3 ;LOOP IF NOT DONE
00037 ENDM

1t is also illegal for a macro definition to contain a macro reference.

As we have seen, the macro definition does not generate any code at
the time of definition, Code is only generated when the macro is
referenced. The macro definition is normally listed with line numbers,
but without generated code. This listing can be suppressed by the
% LIST ON and *LIST OFF Assembler commands, just as any source
lines may be controlled.

Two new Assembler commands, *MLIST ON and *MLIST
OFF, allow the listing of macro expansions to be suppressed. We will
discuss these in a later section.

73

Rules for Macro Reference

We have already seen a few examples of macro definition and expan-
sion. One point that was implied, but may not be obvious, is that the
macro definition must come before any reference to it. It is con-
sidered good assembly-language programming practice to group all
of the macro definitions close to the beginning of the assembly-
language program so that the Assembler will have processed the
definitions before any reference to them. A “MACRO FWD
REFERENCE” error occurs if this is not done.

The label on a macro reference line is optional and causes no pro-
blem if used, as it is not a part of the actual macro expansion.

Parameters are optional and depend upon the parameters used in
the macro definition. The parameters are substituted in the same
order as they are defined in the macro definition. The first parameter :
corresponds to the first dummy, the second to the second dummy,
and so forth.

The rules for the parameters in the macro reference line are:
Each parameter string must be less than 16 characters.
Each parameter must be separated by commas.

The last parameter must be terminated by a space, car-
riage return, tab, or semi-colon.

Delimiters (space, semi-colon, tab, comma) may be used
in a parameter string if they are enclosed by single
quotes.

The last point may be somewhat confusing. If a text parameter is used
in the body of the macro, then a delimiter, such as a blank imbedded
in the text, may confuse the assembler.

An example of this is shown in the macro and reference on the op-
posite page which uses a DEFM, DEFine Message, within the body of
the macro to assemble a text parameter. We would like to have the
message “AN EVEN BREAK” assemble into the macro reference. The
imbedded blank, however, fools the Assembler into terminating the
parameter after “AN" and only the “A” and “N” are generated.

74

00100 TEXT MACRO #ARG1

00110 DEFM #ARGY

00120 ENDM

00130 TEXT AN EVEN BREAK
0000 41 DEFM ‘AN’
0001 4E

ENDM

0000 00140 END
00000 TOTAL ERRORS
TEXT 652C

This error can be remedied by enclosing the entire parameter in
quotes in the macro reference. The assembler then treats the text as a
single parameter and the message is assembled properly.

When a single quote must be generated itself, a special case arises.
The single quote is denoted by two successive single quotes. The text
string “ABCDEF” must be coded in the macro reference line above as
‘ABC"DEF” with quotes around the entire text and a pair of single
quotes to represent the desired single quote.

75

Suppressing the Listing of a Macro

It is often desirable to suppress the listing of macro expansions.
This is not done so much to keep proprietary code from prying eyes
(although this is a use), but to reduce the listing to a more
manageable and readable form. The % MLIST OFF command sets the
no print mode for macro expansions and the xMLIST ON restores
printing. The MLIST commands are completely separate from the
LIST commands. The #LIST commands control all assembly line
printing while the % MLIST commands control only printing for macro
expansions. In the example below note that the “LD D,4" instruction is
not in a macro expansion and is printed even though the macro ex-
pansion is not.

00100 PRINT MACRO #ARG1,#ARG2#ARG3

00110 LD A#ARGT
00120 LD B,#ARG2
00130 LD C#ARG3
00140 ENDM
00150 * MLIST OFF
0000 1604 00160 LD D4
0002 00170 PRINT 123
00180 MLIST ON
0008 00190 PRINT 456
0008 3E04 LD A4
000A 0605 LD B,5
000C OEO06 LD cH
ENDM
0000 00200 END

00000 TOTAL ERRORS

Macro Labels Using #$YM

Every time a macro is expanded, an implicit parameter named #$YM
is generated. In effect, this parameter is set equal to the number of
times all macros have been expanded. If five macros have been used
since the start of assembly, #YM=>5; if 15 macros have been ex-
panded since the start of assembly, #3YM = 15.

76

As the value of #8YM is unique for each macro expansion, it may be
used to create a label for a macro without causing doubly defined
labels. Let us see how this works.

Every time #$YM is used in a macro, a four-character string represen-
ting the current value (macro count) of #$YM is substituted in place of
the string #8YM. Labels can therefore be created in the macro by
defining such strings as A#$YM or B#$YM. When the macro is ex-
panded, these labels will become A000, A0003, B0015, or other
unique labels for the macro.

The example below shows the use of #8YM in creating labels for two
macros, each of which is expanded twice.

7000 00100 ORG 7000H
00110 FIRST MACRO
00115 A#SYM JP AHSYM
00120 ENDM
00130 SECND MACRO
00135 B#SYM JP B#SYM
00140 ENDM
00150 FIRST ;#EYM = 0000
7000 C30070 AQ0O0 JP A0000
ENDM
00160 SECND ;#3YM = 0001
7003 C30370 BOOO1 JP B00O1
ENDM
00170 FIRST HIYM = 0002
7006 C30670 A0002 JP A0002
ENDM
00180 SECND ;#EYM = 0003
7009 C30870 BOOO3 JP B00O3
ENDM
0000 00190 END

00000 TOTAL ERRORS

77

Further Samples of Macro Usage

In this section we will illustrate further use of macros by two examples,
a macro for subroutine calls, and a macro to fill a portion of the
screen with a given character.

Using macros for subroutine calls combines the advantages of
both macros and subroutines. Subroutines take up minimal memory,
but may require a great deal of overhead in loading parameters before
a CALL is actually made to the subroutine.

In this example, we define a macro that sets up the necessary
parameters for a CALL to a subroutine that performs disk reads and
writes. The parameters that must be initialized before the subroutine is
called are:

Disk drive number in A register

Sector number of read or write in B register
Track number of read or write in C register
Function in D register: O =read, 1 =write
Buffer address in HL register

Normally these must be defined by performing five loads before the
CALL to DISKIO, but this macro permits us to write the parameters in
a single line:

00100 DISKIO MACRO #ARG1#ARG2#ARG3,

#ARG4,#ARGS

00110 LD A#ARG1

00120 LD B,#ARG2

00130 LD C#ARG3

00140 LD D#ARG4

00150 LD HL #ARG5

00160 CALL DISKDR

00170 ENDM

00180 ; EXAMPLE OF EQUATE FOR FUNCTIONS
0000 00190 READ EQU 0
0001 00200 WRITE EQU 1

00210 ; EXAMPLE OF MACRO USE FOR READING
TRACK 10, SECTOR 5 INTO

78

7235
7237
7239
723B
723D
7240

7243
0000

3EO01

OECA
1600
210080
CDA4372

00220 ; BUFFER AT 8000H FROM DISK DRIVE 1

00230 ;
00240

DISKIO
LD

LD

LD

LD

LD
CALL
ENDM

(Single line caii)
1,510, READ,8000H7

A =
B,5 §
c,10 ;
D,READ g
HL,8000H g.
DISKDR 2

00250 ; DUMMY ADDRESS FOR DISKDR

00260
00270

00000 TOTAL ERRORS

NOTE. Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a
second line with the information continued beneath
the last column.

SUBROUTINE
DISKDR EQU
END

$

The macro for filling a screen segment uses four arguments for the
screen starting and ending position and one argument for the fill
character. When the macro is expanded, the HL register pair is loaded
with the screen address of the starting line and character position
(#ARG1 * 64 + #ARG2 + 3CO0H), the BC register pair with the screen
address of the ending line and character position (ARG#3*64
+ ARG4 + 3CO0H), and the A register with the character to be filled.
This character is filled to the screen as long as HL and BC are not
equal; HL is incremented by one each time through the loop.

Two #$YM type labels are used within the macro to prevent duplicate
references for expansion of more than one macro.

00100 FILLSC MACRO

00110

00120

LD

LD

79

#ARG1,#ARG2#ARG3,
#ARG4#ARGS

HL#ARG1 % 64 + #ARG2
+ 3C00H

BC#ARG3* 64 + #ARG4
+ 3CO0H

00130 LD A#ARGS

00140 D#SYM LD (HL),A
00150 PUSH HL
00160 OR A

00170 SBC HL,BC
00180 POP HL
00190 JR ZF#SYM
00200 INC HL
00210 JR D#$YM
00220 F#$YM EQU 3

00230 ENDM

00240 ; SAMPLE CALL TO FILL LINE 7,
CHARACTER POSITION 7

00250 ; THROUGH LINE 9, CHARACTER POSITION
23 WITH A CHARS.

00260 ; (single line invokes macro) 7

00270 FILLSC 7,79,23 A
721E 21C73D LD HL,7%64 + 7 + 3CO0H
7221 01573E LD BC,9% 64 + 23 + 3CO0H
7224 3E41 LD AA
7226 77 DO000 LD HLLA
7227 E5 PUSH HL
7228 B7 OR A 5
7229 ED42 SBC HL,BC
722B E1 POP HL
722C 2803 JR Z,FO000
72E 23 INC HL
722F 18F5 JR DO000
7231 FOO00 EQU $

ENDM

0000 00280 END

00000 TOTAL ERRORS

NOTE. Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a
second line with the information continued beneath
the last column.

80

(uoisuedxa oideuw)

Symbol Table Codes

Every time an assembly is run, the symbol table is compiled by the
Assembler and listed (if the /NS switch is inactive). The Assembler
uses special codes to help the user recognize what various labels in

the symbol table represent.

An undefined code (“U") is listed if the symbol is erroneously

referenced but never defined.
UNDEFINED SYMBOL

0000 3E00 00100 LD AVALUE ;LOAD VALUE
0000 00110 END

00001 TOTAL ERRORS

VALUE 0000 U

A macro code ("M”) is listed if the symbol is a macro name.
00100 EXMPLE MACRO

00110 LD A, 20
00120 ENDM
00130 EXMPLE
0000 3E14 LD A 20
ENDM
0000 00140 END
00000 TOTAL ERRORS
EXMPLE M

A forward reference code (“F”) is listed if the symbol is a macro

name referenced before definition of the macro.

BAD OPCODE

00090 EXMPLE
MACRO FWD REF

00100 EXMPLE MACRO

00110 LD A, 20
00120 ENDM

0000 00140 END

00002 TOTAL ERRORS

EXMPLE UMF

The redefined symbol code ('R”) is listed if the symbol is erroneous-

ly defined more than one time.

81

MULTIPLE DEFINITION

0000 3E14 00100 LOOP LD A, 20
MULTIPLE DEFINITION

0002 3E14 00110 LOOP LD A20
0000 00120 END

00002 TOTAL ERRORS

LOOP 0000 R

The DEFLed symbol code ("D") is listed if the symbol is defined by
a DEFL pseudo-op.

000A 00100 EXMPLE DEFL 10
0014 00110 EXMPLE DEFL 20
0000 00120 END

00000 TOTAL ERRORS
EXMPLE 0014 D

82

Assembler Error Messages

The following messages are used in the assembly listing to inform the
user of assembly errors. The error message is used just prior to the
source line in which the error occurs. The source line is then displayed
or printed following the error message.

Message Description and Corrective Action

BAD ADDRESS Invalid address defined for USRORG command
or address above LAST or below USRORG on
assembly. Use an address between LAST and

FIRST.
BAD ADDRES- Operands use incorrect addressing mode. Use
SING MODE valid addressing for the instruction.
BAD EXPRES- Syntax of expression in source line incorrect.
SION Redefine.
BAD MEMORY Assemble into memory verify does not compare.
Check RAM.
BAD LABEL Invalid label has been used. Use 1 to 6 character

label, starting with an alphabetic character. Do
not use “reserved” (system) words; check label.

BAD OPCODE Invalid opcode or pseudo-op mnemonic has
been used. Check spelling.

BRANCH OUT Relative address displacement on JR or other in-
OF RANGE struction is greater than + 127 or less than
-128. Use JP or another instruction.

DIVISION BY 0 Expression used 0 as a divisor. Use non-zero

value.
ENDC WITHOUT ENDC encountered without a prior COND.
COND Check for existence of COND.
ENDM WITHOUT ENDM encountered without a prior MACRO.
MACRO Check for existence of MACRO.
FIELD OVER- Instruction field cannot hold value used as
FLOW operand. Change value to fit.
MACRO FWD Macro invoked before definition. Define macro
REF before reference.

83

Message
MISSING
INFORMATION

MULTIPLY
DEFINED
SYMBOL

MULTIPLE
DEFINITION

NESTED
MACROS

NO END STATE-
MENT

STACK OVER-
FLOW

SYMBOL TABLE
OVERFLOW

SYNTAX ERROR

UNDEFINED
SYMBOL

Description and Corrective Action

Operands missing or incomplete in source line.
Check format of instruction or pseudo-op.

Reference to multiply defined symbol (see next
error).

Same label was used again. Change to one uni-
que label for each line.

Nested macros are not allowed. Redefine
macros.

No END pseudo-op at end of source code. Add
END.

Expression too involved for stack. (Should rarely
occur.)

Too many labels used in source program.
Shorten or delete labels (use $).

Macro syntax incorrect. Check.

Symbol encountered that is not defined as label,
EQU, DEFL, or MACRO. Define.

84

Chapter Five
EDTASM-PLUS Z-BUG

Basic Z-BUG Operation

Displaying and Modifying Memory
Locations in Hexadecimal
Displaying and Modifying Memory
Location in Decimal and Octal
Symbolic Debugging

Free Use of Symbols, Expressions, and
Constants

Displaying a Block of Locations
Displaying and Modifying Registers and
Flags

One Time Type Outs and Examining the
Addressed Location

Breakpointing

Single Stepping Through a Program
Loading and Saving System Format
Tapes

Loading Stand-Alone Z-BUG

Z-BUG Cautions and Error Messages

85

Basic Z-BUG Operation

The Z-BUG portion of EDTASM is a newly designed, powerful
debug package that can be used to debug in-memory assemblies or
any other machine language code.

Some of the functions that Z-BUG can perform are:

A display of the contents of memory locations in byte
form, word form, ASCIl form, and Z-80 mnemonic form.
Madification of memory locations by many of the above
formats

Breakpointing of up to eight locations

Single-stepping through programs

Symbolic referencing of symbols in the assembly symbol
table

Calculator mode operations

Because Z-BUG is normally resident together with the Assembler and
Editor, the entire EDTASM-PLUS package is extremely interactive.
After errors are found by using Z-BUG, the source program in the Edit
buffer may be modified, a rapid in-memory assembly performed, and
another level of debug carried out, all without time-consuming
cassette activity.

in the following chapter we will explain the capabilities of Z-BUG in
detail and use an example of actual program development.

Z-BUG is entered by entering “Z” while in the system command mode.
After receiving control, Z-BUG prints the prompt character “#° as
shown below:

*Z

Z-BUG

#

To return to the system command mode at any time, type an “$E”
after the # prompt (the “$” is a [sHIFT | [1]).

#3E
#*

86

Displaying and Modifying Memory
Locations in Hexadecimal

When Z-BAG is initially entered, the “examination mode” is
mnemonic. Any locations that display in this mode are in the form of
Z-80 mnemonics. The following sequence shows the effects of this

mode:
Z-BUG
#o/ DI (enter)
1 XOR A (enter)
2 JP 674 (enter)
5/ JP 4000 (enter | ENTER]|)
#

As you can see from the sequence, a location is examined by typing
in the value of the location, followed by a slash . Subsequent
locations are examined by entering a down arrow

In this mode, consecutive instructions are displayed, rather than con-
secutive bytes. If an instruction is three bytes long, for example, the
Z-BUG location pointer is incremented to the next instruction for
. display.

The mnemonic examination mode can be set at any time by entering
an “$M” after a Z-BUG “#” prompt. The dollar sign character is not
a dollar sign, but is an ESCAPE character, represented by a
(4] . Many Z-BUG instructions use the ESCAPE in this
fashion.

#3M (set mnemonic examination mode)

SHIFT prints as $

There are three other examination modes in Z-BUG. If $B is entered at
any time, the examination mode is set to byte mode. Byte mode
displays the data in memory one byte at a time with a value of O
through OFFH displayed as the byte contents. As in the preceding ex-
ample, we can look at consecutive bytes by using the down arrow

87

#5B8

#0/ OF3
1 0AF
2 0C3
3/ 74
4 6

Word mode is set by entering an $W after a # prompt. Word mode
displays two consecutive bytes as a16-bit word. This mode is used to
look at locations containing memory addresses or 16-bit data. The
display of data is a value from O through OFFFFH, with the data ar-
ranged second byte, first byte in standard Z-80 address orientation.
Compare these locations with the display from byte mode, for exam-
ple:

#3wW
#0/ OAFF3
2 74C3

If the specified address in word mode starts on an odd location, odd
numbered words are displayed:

#H$w
1 OC3AF
3/ 674

ASCII mode is set by entering a $A after a # prompt. ASCll mode
displays the memory locations one byte at a time in ASCI. (The ex-
amination mode is set to byte and the type-out mode to ASCIL)

#$A (Byte Mode Equivalent)
#111/ R #1111/ 52

112 A 112 41

113/ D 113/ 44

114/ | 114/ 49

115/ o] 115/ 4F

116/ 116/ 20

1171 S 117/ 53

118/ H 118/ 48

In the example above, a valid ASCll message is displayed, as shown.
Z-BUG will attempt to display the 7-bit ASCll equivalent, even if the
contents of the memory locations do not represent an ASCli message,
as in:

88

#BA

#0/ S o OF3
1 / 1 0AF
2 C 2 0C3

To display any memory location using Z-BUG, set the proper ex-
amination mode by typing in $M, $B, $W, or $A. This mode will re-
main in force until it is again_changed. Then enter any hexadecimal
address followed by a slash [7].

We have a number of options during the display of memory
locations. If we want to keep on displaying consecutive locations we
can do so by entering a down arrow , as we have seen. If we want
to display the previous location we can enter an up arrow [{], as
shown in this sequence:

#100A/ 71 ()
1009/ 41 ()
1008/ 1 ()
1007/ 20

Regardless of the examination mode, the up arrow [}]| displays
the last byte. This means that use of the up arrow in the mnemonic
and word modes may be somewhat ambiguous, unless the up arrow is
simply used for positioning the current location back to a new starting
- point.

If we want to stop the display of consecutive locations at any time we

can “close” the current location by typing in an [ENTER], bringing us
back to the # prompt of Z-BUG:

#1007/ 20 (hit [ENTER])

#

To modify the current memory location type in the new value in
hexadecimal, followed by a down arrow [§] or| ENTER JIf the examina-
tion mode is the byte mode, mnemonic mode, or ASCll mode, one or
two hexadecimal digits can be entered, with any leading hex “A”
through “F” prefixed by a zero:

#8001/ 5 12 (changes 5 to 12H)
8002/ 7 oC {changes 7 to OCH)
8003/ 0AA 0BB (changes OAA to OBBH) ENTER

#

89

If the examination mode is the word mode, up to four hexadecimal
digits can be entered, with an appropriate leading zero for non-
numeric digits:
#8000/ OFFFF 1234 (changes FFFF to 1234H) {
8002/ OFFFF 5678 (changes FFFF to 5678H) (1
(
i

8004/ OFFFF 9ABC (changes FFFF to SABCH)
8006/ OFFFF ODEFA (changes FFFF to ODEFAH)
#

To modify the current location to an ASCII character while in
any mode, type in the ASCI character with a leading and trailing
single quotation mark:

ENTER

#8000/ — N
8001/ - ‘o
8002/ — ‘W
8003/ — o
8004/ — i
8005/ — =

The slash E may be used by itself without a location value
preceding it to reopen the “current” location for any mode.

Displaying and Modifying
Memory Locations in Decimal
and Octal

EDTASM-PLUS has the capability to not only display or accept input
in hexadecimal, but to handle data in decimal or octal. Octal is base
8 format which is not frequently used on the Z-80, and we will confine
most of our discussion here to decimal display and input.

There are two control words that determine the number base used in
type outs and inputs. The command “$O” sets the Output radix
(number base) control word to 8, 10, or 16. The command “$1” sets
the Input radix to any radix between 2 and 16.

The format of the $O command is
(radix)$O

90

where radix is 8, 10, or 16. The default radix is 16, and this is the output
format when Z-BUG is initially entered. The radix may be changed at
any time by entering the $O command.

To see how this works, look at the following sequence, which first prints
several locations in hexadecimal, and then prints the same locations in
decimal and octal.

#1630 .
#1000/ 20 (enter [{])
1000/ 28 (enter [¥])
1002/ 7 ([ENTERT)
#1030

#1000/ 327 (enter [§])
40977/ 40T (enter [T])
40987/ 4l ((ENTER])
#3830

1000/ 40Q (enter :{_)
10001QY 50Q (enter
10002Q0 7Q ({ENTER])
#

The suffix of “T” denotes a decimal number as we can see above,
while a “Q" is used to represent an octal number,

. It is important to note that the input radix remains hexadecimal while
the output radix is changed. The input and output radices are com-
pletely separate and set by two different commands. Of course, in
most cases the two will be the same radix to avoid confusion.

The format of the $1 command is
(radix)$!
where radix is any number from 2 through 16. The default radix is 16,

and this is the format when Z-BUG is initially entered. The radix may
be changed at any time by the $]1 command.

The following sequence sets both the input and output radix to
decimal and then modifies the decimal locations to the values shown.
Note that the “T" suffix is used after every display of a decimal
number.

91

#1081

#1030

#32000T/ 255T 128 (change 255 t0123) ()
320017/ 2557 156 (change 255 to 156) ()
32002T/ 255T 189 {change 255 to 189) ()
320037/ 2507 111 (change 250 to 111) (| ENTER]|)

#

Although the input radix can be any number from 2 through 16, most
input operations we would typically want to perform would be either
decimal, for table data, or hexadecimal, for instruction data. Occa-
sionally it might be useful to enter data in binary when bit processing is
involved. Entering data in base 7 or 13 would probably have somewhat
more limited applications.

The suffixes of “T” for decimal, “H” for hexadecimal, and “O” or “Q” for
octal may be used anytime data is entered, regardless of the input radix
setting. If we are in the hexadecimal input mode (1631), for example, we
can enter hexadecimal data by typing hexadecimal digits (with a leading
zero for non-numeric), decimal data by typing decimal digits with a “T”
suffix, or octal data by typing octal digits with a “Q” suffix:

#1630

#16%!

#8000/ 12 0AA {change to OAAH) ()
8001/ OFF 12 (change to 12H) ([{])
8002/ 15 12T (change to 12

decimal) ()
8003/ 0A5 99T (change to 99

decimal) (Dj)
8004/ 32 77Q (change to 77 oc-

tal) ([entER])

The slash may be used at any time to reopen the “current” location.

92

Symbolic Debugging

EDTASM-PLUS permits another way of entering or displaying data. If
an in-memory assembly has been run and Z-BUG is entered, then we
may choose to make symbolic references. In this mode of opera-
tion, we can refer to locations in the in-memory object code by their
labels instead of by reference to absolute locations.

This is a very powerful feature of EDTASM-PLUS, made possible by
the fact that the symbol table is resident in memory at the same time
as the object code and debugger.

Let us investigate how this type of reference functions. We will use the
same program we used in an earlier chapter on in-memory assembly.

71AD 21003C 00110 CLEAR LD HL,3COOH ;ADDRESS OF
SCREEN START

71B0 010004 00120 LD BC1024 ;COUNT OF POSI-
TIONS

71B3 3E20 00130 LOOP LD A20H ;LOAD BLANK

71B5 77 00140 LD (HLA ;STORE BLANK

71B6 23 00150 INC HL ;BUMP POINTER

71B7 0B 00160 DEC BC ;DECREMENT
COUNT

71B8 78 00170 LD AB ;TEST DONE

71B9 B1 00180 OR C ;MERGE LS BYTE

71BA 20F7 00180 JR NZLOOP ;GO IF MORE TO
STORE

0000 00200 END

00000 TOTAL ERRORS

CLEAR 71AD

LOOP 71B3

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a se-
cond line with the information continued beneath
the last column.

This program has two labels, "CLEAR” and “LOOP”. The instructions
corresponding to the two labels are at 71ADH and 71B3H, respective-
ly (these addresses may vary dependent upon the version of
EDTASM-PLUS in use).

a

The symbolic debugging mode is set by the Z-BUG command “$S”. 1t
is also the default (initial) mode. To get back to the numeric mode, a
second command, “$N", is used. When the numeric mode is in force,
all data will be displayed as in the previous examples.

If we have assembled the program above in memory (A/IM), then we
can set the symbolic mode and reference locations by their symbolic
names:

#$S

#3B

H#CLEAR/ 21 (4l
CLEAR +1/ 0 ()
CLEAR +2/ 3C ()
CLEAR +3/ 1 ()
CLEAR +4/ 0 ()
CLEAR +5/ 4 (4
LOOP/ 3E ()
LOOP + 1/ 20 ()
LOOP +2/ 77 ()
LOOP +3/ 23 ([ENTER])
#

Initially we typed in the “CLEAR”; for every following location Z-BUG
supplied the proper symbolic name of the location.

Note that Z-BUG references every location to the last symbol if no new
label is found. When a new label is found, consecutive locations are
referenced to the new label.

Of course, we can use the symbolic mode with any examination
mode; they are two separate functions:

#$S
#5M

#CLEAR/ LD HL,3C00 (Ea)
CLEAR+3/ LD BCA400)
LOOP/ LD A20

We can also enter expressions that include symbolic terms at any
time. For example if we were in the word examination mode we
could alter location LOOP + 10 (out of the program) to a 16-bit ad-
dress of LOOP + 4!

94

H#W

#3S
#LOOP+10/ 0 LOOP+4 ([ENTER])
#LOOP+10/ LOOP+4 ([ENTER])
#N

#71B3+ 10/ 7187

LOOP

In the sequence above, we first set word mode ($3W) and symbolic
mode ($S). We then examined location LOOP + 10H and modified the
location with the value of LOOP +4. When we again examined
LOOP + 10 it had the value of LOOP + 4 in it. In numeric format ($N)
LOOP is equal to 71B3, and LOOP +4 is 71B7.

In processing the above, Z-BUG looked up the symbol LOOP in the
symbol table to try to resolve every input reference using it. In the
symbolic mode, Z-BUG also prints out every output in terms of values
in the symbol table, if it finds a symbol in the approximate range of
the value involved. If no symbol is in the approximate range, Z-BUG
reverts back to output of values in whatever numeric radix is in effect.

Any operator normally used for assemblies may be used in an expres-
sion, except that “.DIV.” must be used for divide as “/” is used to open
a location for display.

The use of “$” to indicate the current location (as in the
Assembler) is not recommended as it may be confused with an
ESCAPE. Use a period (*.”) instead.

Z-BUG has an expression evaluator command, “=", that allows a
calculator-style typeout of all types of expressions. Normally it can be
used to find the locations of a symbol plus or minus a displacement,
but the command may be used for any expression, including those for
hexadecimal arithmetic. Some examples are shown here:

#5+ OEF =0F4

#TABLE +200=71B5
#8014-15E = 7EB6

#AAA + 10T +377Q =5B3

Symbolic debugging can be used with great convenience in examin-
ing and modifying tables of data, variables, and constants, and in us-
ing some of the other Z-BUG commands we will be discussing shortly.

95

Free Use of Symbols,
Expressions and Constants

Z-BUG is extremely flexible in allowing use of symbols at any
time, regardless of input or output mode. A non-numeric string that
is input to open a location or to modify a location will cause Z-BUG to
scan the current symbol table (if any) to find an equivalent value for
the string.

Likewise, any expression may be used to open or modify locations.
The expressions may contain symbols, constants, and operators in any
combination.

Suffixes may be used after numeric data for opening or modifying a
location regardless of the input radix. Suffixes may also be used in ex-
pressions in any combination. Of course, no suffix is necessary for in-
putting data in the current input radix. ‘

96

Displaying a Block
of Locations

A block of locations may easily be displayed in Z-BUG by using the
$T command. The format of $T is

(first address)¥(last address)$T where b is a blank

This command will Type out the block from first address through last
address in whatever examination mode and output radix has been

specified.

#1000 100E$T
1000/ 20
1001/ 28
1002/ 7
1003/ 78
1004/ 0B9
1005/ OE
1006/ 2A
1007/ 20
1008/ 1
1009/ 41
100A/ 71
1008/ 0D7
100C/ 28
100D/ 14
100E/ OFE

#

The [sHIFT | or [BREAK | may be used to hold or abort output for

the T command.

97

Displaying and Modifying

Registers and Flags

The $R command of Z-BUG causes a display of all registers, except
the R register, in hexadecimal. (The R register changes its value with

each new instruction for memory refresh and examining its contents is
somewhat meaningless.)

The format of the register display is

#$5R

A=XX F=XX= B=XXC=XXD=XX E=XX H=XX L =XX
A=XX F=XX= B'=XX C=XX D’=XX F=XX H'=XX L'=XX
SP=XXXX PC=XXXX X=0XKXX Y =X 1=XX

#

Individual registers or register pairs can also be examined and.
modified by entering the register or register pair name followed by the
“open” symbol, /.

#A/ 255T
#HL/ 300007

The register or register pair names follow standard Z-80 mnemonics
— A, B, C, D H L BC DE, HL, SP, PC, IX, IY, or |, or their primed
equivalents.

It is not recommended that the PC or SP registers be modified
by the user. The PC is used to hold the address of the current instruc-
tion of the user’s program for G(o) and single-step commands and
changing the PC during debugging may be disastrous. The SP points
to the user’s stack area and changing the SP may be equally bad.

Registers can be examined after a breakpoint in an object program
to see that they hold expected results. They may be modified before
continuing from a breakpoint or single step or before transferring
control back to an object program routine. We will show some ex-
amples of this action later in the chapter.

Flags may be examined by typing F/ or by using the $R command.
The format of the flags printout is

=SZHP/VNC
If the individual flags are set they will be listed; if the individual flags

98

are reset they will not be listed. The display
=SP/V

for example, indicates that the S and P/V flags=1 and that Z, H, N,
and C=0.

One Time Type Outs and
Examining the Addressed

Location
There are four additional Z-BUG commands that are used during ex-
amination of memory, the “;” command, the “=" command, the right

cursor [+ command, and the “:" command.

The “;” command is used after the Z-BUG prompt or after displaying
a location with a slash. It forces the contents of the current location to
be displayed in numeric mode and would typically be used to temp-
orarily display the numeric value of a location while in the symbolic
mode.

If we were in mnemonic mode ($M), for example, we would be dis-
playing instruction mnemonics. If we also were in symbolic mode
" ($S), we would be displaying the instructions with symbolic addresses
rather than absolute addresses. In the case of our previous program
example, a display of the instruction at 71BAH would result in:

#M
#3$S
#71BA/ JR NZ,LOOP

If we wanted to find out the equivalent absolute address for “LOOP”
we could immediately enter a “;” after the mnemonic typeout to ob-
tain

#71BA/ JR NZILLOOP ; JR 71B3

The “ =" command is used in similar fashion, either after a “#” to
display the current location or after display caused by a slash. It
displays the current location in byte examination mode ($B) and
numeric mode ($N) regardless of the current examination and
numeric/symbolic mode.

99

The “=" command would typically be used when we were confused
about the contents of a location displayed in mnemonic or symbolic
form. This could easily happen if we were in mnemonic examination
mode and we started displaying data from a table, for example. The
data might well be converted to equivalent instructions, and we could
print out the data in numeric form by entering the “=" command.

#8000/ RST 38 =0FF

The [+{ command is used to open a new location based on the
addressed location in the current instruction (mnemonic mode) or
the address represented by the current location and the current
location plus one.

It is convenient to be able to perform this action for a number of
reasons. In the case of instructions that reference memory locations,
the [+ can be used to examine the contents of the locations that are
being loaded or used for storage or to follow the sequence of,
instructions for instructions that jump to other locations. When in
byte, word, or ASCIl mode, the may be used to examine the
location pointed to by the address found in the two current bytes; this
is handy for examining routines or data pointed to by tables of
addresses.

Suppose that we are in mnemonic mode and are examining an
instruction that loads a variable "COUNT”. We can examine the
contents of COUNT by entering a right arrow after the mnemonic
print out:

#START/ LD A(COUNT) ()

COUNT/ LD HLOFFFF =21
In the sequence above, START was examined in mnemonic mode.
The instruction at START referenced COUNT, and by typing =
location COUNT was opened and printed out in mnemonic form. We
then converted the mnemonic form into numeric form by =", which
printed the first byte, or the contents of COUNT. As another example,
suppose that we had been in word examination mode and
investigating a table of subroutine addresses. We could open the
location corresponding to any of the addresses by using -+ :

#TABLE/ 70FC (=
70FC/ 203E

#SM

#

70FC/ LD A20

100

The “ : " command is used to display the current location in flags mode
format (=SZHP/VNC). This command would normally be used to ex-
amine a byte representing Z-80 flags, such as stack data created by
PUSH AF.

Breakpointing

A breakpoint is very similar to a STOP command in BASIC; it is a
way of breaking out of program execution at a predetermined point in
the program.

The breakpoint is invaluable during program debugging because:

1. It informs us that we reached the breakpoint
2. It allows us to examine intermediate results in
registers or memory.

Let us see how breakpointing can be used with Z-BUG. We will use the
program we have been working with in this chapter and the chapter
on in memory assembly:

71AD 21003C 00100 CLEAR LD HL3CO0H ;ADDRESS OF
SCREEN START

71B0 010004 00110 LD BC1024 ;COUNT OF POSI-
TIONS

7183 3E20 00120 LOOP LD A,20H ;LOAD BLANK

71B5 77 00130 LD (HLA ;STORE BLANK

71B6 23 00140 INC HL ;BUMP POINTER

7187 0B 00150 DEC BC ;DECREMENT
COUNT

71B8 78 00160 LD AB ;TEST DONE

71B9 B1 00170 OR C ;MERGE LS BYTE

71BA 20F7 00180 JR NZLOOP ;GO IF MORE TO
STORE

0000 00190 END

00000 TOTAL ERRORS

CLEAR 71AD

LOOP 71B3

NOTE: Some lines which fit as one line on your
computer screen will not fit on this manual page as
one line. These lines have been continued on a

101

second line with the information continued beneath
the last column.

We would like to execute the program to see if it actually does clear the
screen. We will put in a breakpoint at LOOP so that we can check the
registers (we have never learned to completely trust computers. . .).

Z-BUG allows up to eight separate breakpoints, numbered 0 through 7.
The format of the command to set a breakpoint is:

(address)$X

The address value can be a symbolic address, a numeric address, or a
symbolic expression. We could, for example, use

#LOOPSX or #71B3$X or #CLEAR+6$X

Z-BUG uses the next available breakpoint number. Since no other
breakpoints are in force at this point, Z-BUG uses breakpoint number
0. We can display all breakpoints used at any time by the com-
mand $D:

#LOOPSX
#$D
0 @ LOCP

The display above tells us that one breakpoint is in effect @ LOOP,
and that the number of the breakpoint is 0.

Now we are ready to execute the program. We can execute from any
address by using the $G command of Z-BUG. The format of the $G
command is

(address)$G

Here again the address may be symbolic, numeric, or an expression.
We will execute starting at CLEAR:

#CLEARSG
0 BRK @ LOOP
#

The $G command caused program execution starting at CLEAR. The
two instructions at CLEAR and CLEAR+3 were executed, and a
breakpoint then occurred at LOOP before execution of the instruc-
tion at LOOP.

102

At this point we can perform any operations that we think might be
useful, including examining registers or memory, changing registers
or memory, or setting additional breakpoints. We will display the
registers to allay some of our fears about computers:

#IW

#HU 3C00
#BC/ 400
#

After making any examinations that we desire, we can then C{ontinue)
from the current breakpoint by the $C command. The format of the
$C command is:

(continue county$C where (continue count) is interpreted as
decimal

The continue count tells Z-BUG not to stop at the current breakpoint
until the current breakpoint has been reached the number of times
equal to the count. If no count is used, a default value of 1 is assum-
ed. If we continued by $C, we would execute the instruction at
LOOP, and then continue execution of the program. The program in
this case brings us back to the breakpoint at LOOP

#3C
0 BRK @LOOP
#

We could stop at the 500th time through the loop by 500$C as shown
here:

#5008C

0 BRK @LOOP
#BC/ 208
#

The count in BC has been decremented down to 523 at this point
(notice that the upper portion of the screen has been cleared).

Before we continue, we had better put in a breakpoint at the end of
the program to guarantee our return to Z-BUG. If this is not done, we
will never regain control. The last instruction of the program is at
71BAH. We should like to breakpoint at the last instruction plus one
instruction. Although there is no instruction there (there is gar-
bage of some type), we can breakpoint at 71BC anyway and simulate

103

the non-existent instruction.

#71BC$X
#$D

0 @ LOOP
1@ LOOP+9
#

At this point there is probably no need for the breakpoint at LOOP. We
can delete it by another Z-BUG breakpoint instruction, $Y(ank). The $Y
can be used to yank all breakpoints by entering:

#EY

We can also selectively yank or delete breakpoints by specifying a
breakpoint number for deletion:

#0SY

The command above deletes the breakpoint at LOOP, number 0. When
a breakpoint is yanked, it is released to the pool of eight possible break-
points and could immediately be used again. The number specified
before the $Y is always interpreted as a decimal number.

We now have one breakpoint, at LOOP +9;

#$D
1@ LOOP+9
#

If we continue from this point, we will go through the remainder of the
loop, clearing the screen and finally “fall through” to the breakpoint at
LOOP +9. At that point we can delete the breakpoint and continue fur-
ther debugging, if necessary.

#5C

1BRK @ LOOP+9
#Y
#

Up to 8 breakpoints can be used in the fashion above to generally cover
all paths through the program for debugging. The combination of
multiple breakpoints and “continue for n times” is a powerful debugg-
ing tool that should let the user have complete control over program
checkout.

104

Single Stepping Through a Program

Z-BUG also provides the capability to single-step through a program.
In this mode, one instruction at a time is executed with a display of
the next instruction to be executed and the contents of that location.

The format of the single step command is
(address)@

To initially start the single step sequence, a numeric or symbolic ad-
dress can be specified as in:

#CLEAR®@
CLEAR+3/ LD BC,400
#

Thereafter only the “@” is necessary to continue stepping through se-
quential instructions:

#CLEAR®@

CLEAR-+3/ LD BC,400
#@

LOOP/ LD A20

#a

LOOP+2/ LD (HL),A

. At any time after the display of the current instruction, other Z-BUG
commands may be used, such as commands to examine registers and
memory locations. Single stepping may thus be used to trace the
flow of the program and the contents of registers and memory loca-
tions.

Single stepping may be used after a breakpoint. ESCAPE “C”
without a continue count can be used to resume program ex:
ecution after single stepping.

105

Loading and Saving System
Format Tapes

Z.BUG has the capability of saving any RAM memory area on
cassette tape under a file name in “SYSTEM” format. A tape file
created in the $P(unch) command may be reloaded by either the
Z-BUG $l(oad) command or by the SYSTEM command in Level li
BASIC.

The 8P command can be used to save “patched” (partially debug-
ged) assembly-language programs, several programs that have been
merged into one file, data areas, or any other convenient set of
instructions or data or both.

The format of the $P command is
{first) Blast) dexecution) PINAMESP where B is blank

First is the first memory location to be saved, last is the last memory
location to be saved, execution is the starting address (if any), and
NAME is a 1 to 6 character file name. If NAME is omitted, the name
“NONAME” is used.

After the $P string has been entered, Z-BUG displays the message
“READY CASSETTE". When the cassette is positioned, any key can be
pressed and the block of locations from first to last is written to
cassette.

If no execution address is required, simply type in a “dummy”
address for the above sequence.

To reload the saved file under Z-BUG enter
#NAMESL

If no file name is used, Z-BUG will reload the next cassette file into
memory. After the load, the Z-BUG prompt character “#” will be
displayed.

The starting address on the tape is loaded into the user PC register
(examine it by “PC/").

If a checksum error occurs during the load, a “C” will be displayed in
place of the “tape load” asterisk; if a memory verify fails, an “M” will
be displayed. In either failure case, the tape will continue the load un-
til the end of the cassette file.

106

Z-BUG will skip over files that do not have the correct file name.
Previous problems in certain TRS-80 software relating to tape searches
for named files are not present in EDTASM-PLUS, and more than one
named file may be stored on cassette (and also retrieved).

Z-BUG uses the same format for cassette files as Level Il BASIC
SYSTEM mode, so files P(unched) under Z-BUG can be loaded under
Level Il BASIC by:

>8YSTEM (enter SYSTEM mode)
* ?NAME (read cassette file)
*7/ (transfer to “execution” address)

EDTASM-PLUS object files created by the EDTASM-PLUS
Assembler may also be loaded by the Z-BUG L. command.

Loading Stand-Alone Z-BUG

Z-BUG may be loaded alone, without the Editor and Assembler, to
provide more room for large assembly-language programs that are to
be debugged.

To load Z-BUG in this “stand-alone” fashion, position the EDTASM-
PLUS cassette tape directly before the Z-BUG file (SIDE TWO) and
‘load using the SYSTEM command:

>8YSTEM (enter SYSTEM mode)
*?ZBUG (load Z-BUG)
* 2 (start execution)

The MICROSOFT COPYRIGHT notice, followed by “STAND-ALONE
Z-BUG” will be displayed, followed by the Z-BUG prompt character “#”.
Normal Z-BUG (not Editor or Assembler!) operations can now be car-
ried out.

Stand-Alone Z-BUG occupies about 7K bytes of RAM with the
user RAM area starting at about 5B80H. Do not attempt to use
RAM memory below 5B80OH.

107

Z-BUG Cautions and
Error Messages

Z-BUG utilizes ReSTart (RST) instructions as either calls to ROM
routines or breakpoint control, and therefore RSTs cannot be used
in user programs that are run under Z-BUG.

When a user executes a program under Z-BUG, an internal (toc Z-BUG)
stack is utilized as a user stack. This stack area is approximately 50
bytes long and will suffice for most user programs. If the user's pro-
gram contains many levels of stack use, however, he should set up his
own stack area in the user RAM by performing an

LD SP,TOPSTK

where “TOPSTK" is a user-defined “top-of-stack” address. This top of
stack will usually be the maximum memory location available plus
one, but may be any high memory area away from the object code.

Z-BUG error messages include “BAD EXPRESSION”, “BAD MEMORY”,
“DIVISION BY 0", “STACK OVERFLOW", and “UNDEFINED SYMBOL” with
the same meanings as the corresponding Assembler messages.

The “ZERR” message is also used to denote one of the following
conditions:

1. Expression followed by semicolon instead of an equal
sign.

2. lllegal ESCAPE command character.

3. Internal breakpoint problem.

4. lllegal input or output radix specification.

5. Attempting to set more than eight breakpoints.

6. Attempting to set a breakpoint at a location where one
already exists.

7. Attempting to breakpoint a register or register pair.

8. Attempting to breakpoint an RST instruction.

9. Specifying a continue count ($C) of 0.

10. Attempting to continue ($C) without being in a break-

pointed condition.

108

General Index

#SYMilabels e 76, 77
Absolute assemblies 55
Absolute origin i55
“Addressed” location displayccociiiiiiiiii e, 100
AND, logicalo i e 57
ASClimode, ZBUG ... e e 88
Assembler expression evaluation 5659
Assembler operation i 42-45
Assembler switches e 49, 50
Assembling into memory i, 50-54
Assembly listing i i 44
Automatic extend, editorcommand 36
Automaticorigin e 50-52
Block, displaycc 97
Breakpointing 101-104
Bytemode, ZBUG e 87
Cassette spike ... 12
Cassette format for EDTASMPLUS ... ooia... 11
Change, Editor subcommand 25
Collective edit e 31
Commands, Editor i i e 18-23
Conditional assembly 59-61
Copy, Editorcommandttt 32
Cross assembler i e 71
DEFB, PseUdo-Opttt 46
DEFL, pseudo-opcvinniiiiiiii i 48
DEFM, pseudo-opot e e 46
DEFS, pseudo-opttt 47
DEFW, pseudo-op 46
Deletions, character i 25
Display, addressed location oo L 100
Displaying a blocko i i 97
Displaying memory e 87-92

Displaying registers i i i, 98

Editorcommands i 18-23
END, pseudo-op ...t e ..45
ENDM L 72
EQU, pseudo-op ... e 47, 48
Equalsoperator i 58
Error messages, Editor i 39
Error messages, Assemblerl 83, 84
Error messages, Z-BUG il 108
Examples, macros it 78-80
Expression evaluation i, 95
Extend, Editor subcommand 26
Flelds ... 42
Find, Editorcommand 21, 22
Freeformfields 43
Hack, Editor subcommandl 26
Hardcopy, Editorcommand 19
Hardware forsystem ... 11
Input number base, ZZBUG 91
Insert, Editor commandc i 18, 20
Insert, Editor subcommand o 25
Insertions, charactero 25
Kill, Editorsubcommand 26
Labelcolumn 42
Label, inmacros ... i 76
Left arrow, Editor subcommand 24
Line, Editor subcommand o 26
Line number offsets i 30
Load, Editor command ... 19
Loading EDTASM-PLUS from cassette 12
Loadingproblems 13
Loading Stand-Alone Z-BUGo, 107
Loading System Tapes i 106
Logical Operators.t 57, 58
Macro definition oo 64-67, 72-73

Macro examples e 78-80

MaCrO NAME .. ittt e et ettt et ea e 65, 72
Macro reference e 74-75
MaACTO USE & ot ettt i e s 70-71
MACIOS . ettt ettt e e 64-80
Macros for subroutine calls 78
Manual origin 53, 54
Memory, displaying e 87-92
Memory modifying ... 87-92
MICIOSOft ot e e e e 10
MLIST commandot i 76
Modifying memoryo e 87-92
Modifying registerst 98
Modulo OPEratorttt e 58
Move, Editor command i 31
Nested Macrosovvviinnn e A 72-73
Not equals operatorot 58
NOT operatorvvuuir e i iinnas 57
Number, Editor commandl 20
Object codeot e 45
Offsets, line number i 30
One time typeoutsttt 99-101
Operands i e 42
Operation code . ..ot 42
OR, logicaloovviii e 57
ORG PSEUAO-OP + v ettt te et ettt e 45, 46
OQutput numberbase, Z-BUGo, 90-91
Parameters, in macros o i 67-69, 74-75
Positioning commands, Editor 21, 22
Precedence, operators i i 59
Print, Editor commandt 19
Pseudo operationsco i i 45-48
Quash commandt 37, 38
Ranges of iNes i 29

Registers, displaying 98-99

Registers, modifying e 98-99
Relocatable programst 45, 46
Remarks COIUMNo ittt 42
Replace, Editorcommand ... 20, 21
RESET recovery procedurecooivviiiiiincnennnnannn 15
Saving SYSTEMtapest 106
Search, Editorsubcommand ool 25
Shift Operator e 57
Single Stepping ... e 105
Source lNes ... i e 42
Subcommands, Editor ool 24-28
Subroutine callswithmacrosooo ool 78
Substitute, Editorcommand i 34, 35
Suppressing listingof macros oo 76 ¢
Switches, assemblero i i 49, 50
Symboltable 47, 48
Symbol tablecodes oo 81-82
Symbolic debugging e 93-95
Symbolicformo i 43
Symbolicmode. ...l 93.95
Wordmode, ZBUG ... e 88
Write, Editor commando 19
XOR, logical .. o.vvvii i 57
ZBUG .. e e 86-108
ZBUG Cautions e e 108
Z-BUG operationeiiiiii it 86
Z-BUG, Stand-Alone 107

112

10800 Northeast Eighth, Suite 507
Bellevue, WA 98004

Catalog No. 1104
Part No. 10F04

Printed in U.S.A.

	000a.pdf
	000b.pdf
	000c.pdf
	000d.pdf
	001.pdf
	002.pdf
	003.pdf
	003d.pdf
	004.pdf
	004d.pdf
	005.pdf
	005k.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	019b.pdf
	019d.pdf
	020b.pdf
	020c.pdf
	020d.pdf
	021.pdf
	021c.pdf
	022.pdf
	023.pdf
	024.pdf
	024c.pdf
	025.pdf
	025c.pdf
	026.pdf
	026c.pdf
	027.pdf
	028.pdf
	029b.pdf
	030.pdf
	031b.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037b.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	042b.pdf
	042c.pdf
	043.pdf
	043c.pdf
	044.pdf
	044b.pdf
	044c.pdf
	044e.pdf
	045.pdf
	045c.pdf
	046.pdf
	046b.pdf
	046c.pdf
	046e.pdf
	047.pdf
	047b.pdf
	047c.pdf
	048.pdf
	048b.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	081c.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	109b.pdf
	111.pdf
	111b.pdf
	999.pdf

