M- ZAL

iii

M-ZAL SYSTEM MANUAL

'INTRODUCTION SECTION

I b4 SYSTEM OVERVIEW ® S ® 0 000 9GSOV OL O SN L OO L eSSBS OOGESIOEESEES
II P THE M-'ZAL DISKETTE LA BB A L BB A B R IR B AR B I A N N A N R R R
III Y THE MODULE CONCEPT ® © 0000 20 P00 OO LS eSO NP OISO OISIGCEEDS

ww

TEXT EDITOR SECTION

I. INVOKING THE EDITOR ccceccccsccescccocccccccnncsonncnces O
II. INTRODUCTION TO EDITING ceecescecscccccccccsccnsccacece 6
III. NORMAL EDIT MODE
1) Changlng a Character or a String of Characters 7
2) Moving the Blinking CULSOr eeeeeecccccecccceee 7
3) Deleting Characterseeccececcceccescasecsses B8
4) Inserting Characterscceececcccccecocccaces 9
5) SCrolling ceceeecceccecescccccncecsscsasannsaea 9
Iv. LINE COMMANDS
Delete Line .tiiieeceeccccecsccccccccanosonnanse 11
Insert Line ..i.ciieeeeecencccenccnnseannancaneas 12
COPY LiN@ ceveeervocacceccsncnccenccconannnsnae 12
MOVE LiNE@ .uvececeesssecsssccconcconnsosasnaes 12
Move/Copy Line to HEre ..eeeeeesecoccesscccees 12
6) Blocks Of LiNeS seveeeeececcceccesnonascaseesas 13
V. OTHER COMMANDS INVOKED WITH THE CLEAR KEY
1) SCroll £O TOD tveeececcceecccacsconsncncnccoae 14
2) Repeat Find ..cieeerececececcceccesasnccncases 15
3) Invoke Extended Command Processor
VI. EXTENDED COMMAND PROCESSOR
1) Renumber

U WwWwN -
R S

® o o0 e 000000 15

® ® 0000008000000 0000000s000000esseLGRE 15

) Search for Line NUmberceceeececcccccesee 15
) Find Character String ...eceeeecececcececceeeas 16
) Change Character String ...ceeeececececesceess 16
) Print ceeeveeceeccencccncecccesanscacsaccsncees 17
) Load from Tape teceseccccctccctttttrccccenesss 17
7) Write tO TAPE cieeeccccccccncccecccascncecenes 17
VII. EXITING FROM THE EDITOR
1) Return £0 EGit civeeeeeeeeesesoocnocconnneeeas 18
2) Restart the Editor
3) Return tO DOS teveeeeeossoconsnccccccenceenaes 18
4) Save Text Buffer to Disk
5) Add Text from Disk
VIII. EDITING SCENARIOS
IX. ERROR MESSAGES T S .
X. SUMMARY OF COMMANDS AND MODES
XI. CUSTOMIZING THE EDITOR

AU Wi

® © 0500000200000 000 s000sB000ee 17
® © 8000000000000 00ceeeesee 18

® 6 0500000000000 s0s00eo0 18
® 0 5000000000000 0000se0eB000e 18

® 5 0000000006000 000s00s00sPELGEOLELBBOIEGLE lg

® & 605000000000 eLsev e 20

® % 0000000000900 000000000e00meeoe 21

ASSEMBLER SECTION

I. INTRODUCTION TO ASMBLR
1) File NOtation .'..I.......‘..I.....'.......I'- 22

2) Output of the Assembler ® & & & 6 2 00 ¢ " O 0 SO e E e PSS 23

1

II.

III.

Iv.

VI.

VII.

VIII.
IX.
X.

INVOKING THE ASSEMBLER
1) Using the Full Screen Option Menucc...
2) Starting an Assembly ccceccesccccccccccccccncne
3) Control during Assembly ccececscccccescccaccss
4) Returning tO DOS cececcccscssscccccsccscacsccsns
ASSEMBLER OPTIONS
1) Object to DISK/TAPE ccceccccecccccsccccsccccncs
2) Wait on PAUSE/ERRORS cceccccccscccscsccccnccnns
3) List to DISPLAY/PRINTER .ccccscsscccscccccscce
4) Symbols LIST/XREF ..eececccssscccccccssacccces
5) Generate /RLD ccecessccccccscscsasccsscssacnocsscs
ASSEMBLER LANGUAGE SYNTAX

1
2
3
4

VALUE

1
2
3
4

)
)
)
)

)
)
)
)

LabelsQ..0.0‘.l.‘..D'...O.i..........'

OPCOAES sececoccscsccsnssscsccccscssscscsaccccccns
OpPerandsS .cceesecccscssccsscscesccscccscscaccoss
Comments
OPERANDS
CONStantsS ceecccecececcssccccccccccccccccanncs
EXDPreSSiONS .cceeeeccsccscsccccccccsscccaccccns
Relocation ConsiderationNS ccecececceccccccccccsccs
Linking Considerations ..cccecccccecccccncocsse

€ ® © 9 08 5 0088 ¢ 0660080080080 00SsCsLSSSREEOCOSTS

PSEUDO-OPCODES

1l
2

wodJoau W
~ N N N S S

10
11
12

)
)

)
)
)

ORG'0..“..................OOUOCQCOQIOD
EQU ...O.co...Q...o...o‘...'..0-..0.--..-0..00
DEFL ...Il'....'..‘..‘.Q...........Ol'.ll..l.‘.

END o..l"..‘o.c.'...'.-...lQ"Q.O.o."......OO

DEFS
BYTES
WORDS
DEFB

DEFW © 9 060 560 0 0606808006060 000005 C000COLsssLIOELIOSOLIDLCOCES

.-.0..0.00-.0.-‘..0.0“......ooooo....oo.
€ © 600686 5500060606 0060060 0080800000800l
© 8 © © 90 99 6500685060608 9606080060000 0000808000090

© 9 060 6 068 0 9600008060000 00000 LLSIOSNDSIESTEOETSO

DEFM © 9 6 5 6 06 0060060850000 0 0000000000008 00s00e00ne
ENTRY © ® ® © 9 0 60060809 000505000 SO0 LELSSsN0eS e

EXTRN © © © 6 928 90085066000 E0 S 0S00EsEOSLSSOSCDSTSTODS

ASSEMBLER COMMAND STATEMENTS

1
2
3
4
5
6
7

)
)
)
)
)
)
)

*LIST OFF ccecececvccscccccccccccscscscssssscscccsns
X*TIST ON cccecccccsscscscsscsccccscscsssssssccocccs
*EJECT
*SPACE

*TITLE PP e e A O NN RN B BN R IR B B I A L I A A

2 © 06 860 58 05 © 06 0680600050000 080 000s0essOsess

© © ® ¢ 0 09 ® 086000 80605006885 6060000000009 00s0 000

*PAUSE © 606 6006006606600 0005606056080 00 0¢9 0088000

*INCL 9 060 58 © 06060000 0606060600608 0060080800000 0s00s0sss0s0s0so

THE ASSEMBILER LISTING R EEEEE I I A R BRI BN S B AL I
THE SYMBOL TABI-IE LISTING ® © 9 ® 8 8 806 005 8 8 0000000080000

ERROR

1

o ~JoaudWwWwhN

)

)
)
)
)
)
)
)

MESSAGES

INVALID LABEL cccccccccccccscscccscccsccanccccss
NO OPCODE ccccccccccsscvsssscccsscscsscssassoccscs
INVALID OPCODE .cccccscscscnscccscsscssccssccccse
INVALID OPERAND(S) cceccccceccse
UNDEFINED LABLE(S) cccsecescscsccccssscccancccs
MULTIPLE DEFINED LABEL ecececcccccccccccnccccsns
EXPRESSION OUT OF RANGE ccccccscccccccsccccccce
JR OUT OF RANGE .ccccevcacscccsccnsccssaccvcceos

® ®® o0 000008055900

iv

24
25
25
26

26
26
26
26
27

27
28
28
29

29
31
32
33

34
34
34
35
35
35
36
36
36

37
37

38
38
38
38
39
39
39
41
41

42
42
42
43
43
43
43
43

9) & OR < OPERATOR ON RELOCATABLE LABEL(S) .ec... 43
10) INVALID USE OF RELOCATABLE LABELS .ccccccecces 44
11) NO END STATEMENT .cccccceccccscsccsccscscscccccccs 44
12) OUT OF MEMORY .ceeccocscccscscsosncccccsscssacncccss 44
13) DOS ERRORS ececcccccccccscssscscsscscscccssscscscsnsoece 44
XI. PHASES OF ASSEMBLY
1) PhaASE 1 cccecescosccscscssccscssssssssccncscccs 45
2) PhasSe@ 2 seececccsccscccscscscnscssssossccscssscsscnse 46
3) PhaSe@ 3 cececescsascccccssscsscsscnsssssscnccnnss 46

LINKER SECTION

I. THE PURPOSE OF THE LINKER .ccecceccccrsccscscscccccccs 47
II. INVOKRKING THE LINKER ccccccscccscscsnsccccsosscsccscccccas 48
III. LINKER COMMANDS

1) Specify Origin = ORG cccecesccccccccccaccccccs 49
Load and Relocate = LOADR eeececccssccccecccss 49
Load Absolute = LOADA ..ceccccsscscccccccssscs 49
Display Module Map = MAP .ceccecccccccccccsncs 50
Display Symbol Table Cross-Reference - XREF .. 50
Specify Transfer Address = TRAN ...cccocevcnne 50
Create Composite /CMD File = BUILD ecceeesscss 5l
Create Composite SYSTEM Tape = TAPE ..ceeeses. 51
Set Symbol's Address Value = SET ..ceccececsces 52-
Initialize Linker = INIT .ccceevcccssccocaccccss 52

11) Terminate Linker = END .ccceccescccecccsccccans 52

12) Execute Control File = EXEC .cecccsccccacesans 52
Iv. SAMPLE LINKER SESSION .cecveccecccscccccccsanancssee O3
v. MULTI-EXTENT OBJECT FILES
VI. ERROR MESSAGES ecccescscccsccccsscsscccscsccsscscccccsosssaans 57
VII. LINRKER COMMAND SUMMARY .ccceececsccccscaccosccsscscsccon 59

WAV dWN
N S N S N S N

H
o
~

® © 0 006 0 6 085 0 0@ 00000 Se eSO 56

APPENDICES

A, M-ZAL MEMORY USAGE
B. CUSTOMIZING TXEDIT veceecccoscsscacccccccscasssansss 6Ol
C. FORMAT OF TEXT FILES
D. FORMAT OF /RLD FILES ecceececsscccsscsccccsscccsnscacs 04
E. FORMAT OF /CMD FILES «coceccccccccsscssccscssssssccnas 05
F. FORMAT OF SYSTEM TAPES .vcececccccscaccccscccssscccs 66
G. HEXCONV SUBROUTINE PACKAGE eeceececcocccsccccsssases 67
H. DECCONV SUBROUTINE PACKAGE

..'.'l........................000 60

R EEEEEE I A BRI R R I B R B LRI A 2 A 63

® 6 ® © 8 © O S 8 5SS VOB O SSPE e eI 68

INTRODUCTION SECTION

I. SYSTEM OVERVIEW

Congratulations on your purchase of M-ZAL for your TRS-80. The
M-ZAL system is a complete package which will enable you to dev-
elop sophisticated Z-80 assembler language programs. The system
consists of three programs:

1) TXEDIT - a full screen general purpose text editor
which you will use to create, modify, examine,
print, and merge disk files containing ASCII
text. This program can also be used to con-
vert such disk files to and from cassette

tape files in the Radio Shack EDTASM source
format.

2) ASMBLR - a menu-driven assembler which accepts as input
disk files created by TXEDIT and containing
assembler language source programs. ASMBLR
can be directed to generate as output any
combination of the following: object code to
disk as a "/CMD" file, object code to tape

- as a "SYSTEM" file, listing to the display,
listing to the printer, a "/RLD" disk file
containing relocation and external symbol
information, an alphabetically sorted list
of all symbols used in the program, a Cross-
reference of all symbols used in the program.

3) LINKER - an interactive program that you will use to
relocate and link together independently
assembled program modules. Through the use
of commands entered via the keyboard you will
direct the LINKER to read in the "/CMD" and
"/RLD" disk files created by the ASMBLR and
construct a composite program. The LINKER
can then be instructed to write out this com-
posite program, either to disk as a "/CMD"
file, or to tape as a "SYSTEM" file.

The accompanying diagram shows the flow of data from one component
of the system to the next. This system approach simplifies the
development of large and complex assembler language programs by
making it possible to break such programs down into smaller and

more manageable program modules. Thus the system is named M-ZAL:
the Modular Z-80 Assembler Language.

\\\‘}

ang

awd
FNGAY\0)

=

e

aa

QY

<=
T

313
Qw>

=

WSO oug
NMINNN

N\

—
ana|
QwW"o

=

i)
R
A\4d

a1y
< >

o

U |

"MIIAYIAO0 W3IALSAS
1vZ=N

S

TN
Ivas
sy

4
4//,
Y | ,
a4 @
awy | ©
- . | A 7
3\3 WY9oud
awd | < VIAWSY
<> A\
7
RN TN
Ixay 1xaL
\osy| | WS
>

N\

Wy¥uo oud
lia3ad.o

~

II. THE M-ZAL DISKETTE

The operation of each of the three M-ZAL programs TXEDIT, ASMBIR,
and LINKER is discussed in detail in the following sections of
this manual. First, however, we will describe the contents cof
the diskette provided with the M-ZAL system. Unless specially
ordered, this diskette does not contain a copy of the disk oper-
ating system (DOS). It is therefore necessary to start out by
placing a (DOS) system diskette into drive 0 and the M-ZAL disk-

ette into drive 1 of your system. A DIRectory listing will show
the following files:

TXEDIT/CMD the text editor program.
ASMBLR/CMD the assembler program.
LINKER/CMD the object module linker program.
TXBASE/RLD relocation information for the text editor pgm.
DEMO/ASM a demonstration assembler source text file.
DEMO02/ASM another demo assembler source text file.
ROMEQU/ASM ROM routine address equates (to be *INCLuded).
HEXCONV/CMD hexadecimal conversion subroutine package.
HEXCONV/RLD relocation & external symbol information for

: the hexadecimal conversion subroutine package.
DECCONV/CMD decimal conversion subroutine package.
DECCONV/RLD relocation & external symbol information for

the decimal conversion subroutine package.

EXAMPLE/CTL a text file containing LINKER control statements.

The first three files listed above comprise the entire M-ZAL
system. The rest of the files are provided as examples and
demonstrations of the various features of the system and will
be referred to throughout this manual.

III. THE MODULE CONCEPT

A central concept of the M-ZAL system is the idea of a program
module. A program module is a self-contained assembler lan-

guage program. Any program module can be represented by up to
three different disk files. For example, the program module named
ALPHA can be represented by the following files:

ALPHA/ASM the ALPHA source program
ALPHA/CMD the ALPHA object program
ALPHA/RLD relocation and external symbol information

for the ALPHA object program

In practice, the programmer will begin by using the text editor
to create the ALPHA source program as a disk file named ALPHA/ASM.
The assembler would then be used to "assemble program module ALPHA."
This would result in the creation of the ALPHA object program as
a disk file named ALPHA/CMD as well as the creation of the third
file containing relocation and external symbol information and
named ALPHA/RLD. Under DOS, the name ALPHA can be entered as a
command and the object file ALPHA/CMD will be loaded and run.

4
‘Several different program modules can be created in this fashion
and then linked together by using the M-ZAL LINKER program. For -
example, suppose the ALPHA program just discussed makes reference B
to a subroutine named BETAS5, which is part of another program
module called BETA. Each program module is assembled independ-
ertly and then the LINKER is instructed to load them both into
memory. In so doing, the LINKER resolves the reference in mod-
ule ALPHA to routine BETA5, which is in module BETA. The LINKER
is able to accomplish this by using the information provided in
each module's /RLD file. The resulting composite program cont-
ains the object code of both program modules, with the appropr-

iate cross-referenced addresses filled in by the LINKER. This
is illustrated on the following page.

If it is necessary to refer to a program module on a specific
disk drive, then the drive designator should be added to the
module name (preceded by a colon in a manner similar to the
standard DOS approach). For example, the program module named
GAMMA:1 refers to the following disk files: '

GAMMA /ASM:1
GAMMA/CMD:1
GAMMA/RLD:1

EXTRN BETAS
AB

ENTRY OTTAS

ALPHA LD)
L as - < eETA LD HL,25
: 95
ALPMRMA sempen| BETRS Y WL
. - RET
ENO ALPHA M _
ASMDBLR ASMBHLR
PROGAAM | PRO GRAM
e T i S e R S—
ALPWAKMD APHA/RLD RSN BETR[RLD
LANKER
PRoeRaM
! |
—— COMPOSITE PROGRAM:
~—1 awedA LD AS
CRALL BETAS
cm?’cv\o .
BETA LD HL 25
- .

BETAS PUSH HL

RET

TEXT EDITOR SECTION

- The TXEDIT program is a powerful full screen text editor that
allows you to create, examine, and modify disk files containing
ASCII text. The format of these files is unigue to the M-ZAL
system and is described in detail in Appendix C. To allow com-
patibility with Radio Shack's EDTASM product, TXEDIT can read
and write EDTASM format source files on tape.

The editor supports variable length lines of text with a maximum
length of 128 characters. The largest text file that can be ed-
ited is determined by the amount of memory in your system. This
does not limit the amount of text that can be assembled at one

time, however, because the assembler allows you to chain together
several source files in one assembly (this will be explained in

the ASSEMBLER SECTION). Each line is assigned a five digit line
number by the editor. There is no requirement that the line num-

bers be kept in ascending order throughout the file, although it
it considered good practice to do so.

This section of the manual describes all of the features and fac-
ilities of TXEDIT. 1In order to easily understand the instructions
it is strongly recommended that the demonstration source file be

loaded from disk and followed during your first reading of this
section.

I. INVOKING THE EDITOR

Simply type in TXEDIT in DOS READY mode and the editor will be
loaded and run. It will display its initialization frame and
ask for a filename. At this point you can type in the DOS file-
spec for a file containing text that you wish to edit. The file
will be loaded and you will be placed in normal edit mode.

Alternatively, if you wish to "start from scratch™ and create a
new file, you can type in * instead of a filespec. 1In this

case the editor will supply you with a single blank line to start
editing with.

At this time you should type in TXEDIT to invoke the editor,
and then type in the filespec DEMO/ASM and hit the ENTER key.

II. INTRODUCTION TO EDITING

Now that you have loaded the demonstration source file into memory
the format of the editor's display will be explained. The line
numbers are in the left 5 columns of the display. Each source
line starts a new line on the display and occupies only one line
on the display. At present only the first 58 characters of each

line can be observed. Obviously only 16 lines at a time can
appear on the display. For now imagine that each source line
extends past the right of the screen for a maximum of 128 char-
acters (including all blanks) per line and the rest of the lines
in the source extend below the screen. You will learn how to
"move the display" so you can view the hidden columns and lines.
This function will be called scrolling.

The graphics blocks that appear to the right of each line rep-
resent unused space on the line. Each line logically ends at
the first graphics block. For example line number 40 ends with
its last non-blank character but line number 50 ends six char-
acters (blanks) after its last non-blank character. These six
blanks are considered significant and are saved when the file is
saved. Graphics blocks do not require any space in memory and
are not saved with the source.

III. NORMAL EDIT MODE
1) Changing a Character or a String of Characters

When initially entered the editor is in normal edit mode with
the first 58 columns of the first 16 lines of text displayed.
The first character of the first line will have a non-destruc-
tive (blinking) cursor on it. '
(In order to change a character in this mode move the blinking
: cursor to the character that you wish to change and type the
_ change. The display will immediately reflect the change and
the blinking cursor will advance to the next character. (If
the blinking cursor is in the extreme right hand column of the
~ display and a character is entered then the blinking cursor
will move to the left hand column of the next line on the dis-
play.) Therefore a string of characters can be easily modified
and verified for any editing errors. Examples will be given
after you are shown how to move the blinking cursor.

2) Moving the Blinking Cursor

The following commands will auto-repeat unless stated other-
wise. This will allow you to move the cursor many columns
and lines by depressing a command key and holding it down.

The cursor cannot be moved to the line numbers on the display.
Do not be confused if it appears that the cursor can be moved

off of the display. This will be explained in the section on
scrolling.

a) =» (right arrow) move the blinking cursor one column to

the right. Ignored if at column 128 of
the line.

b) & (left arrow) - move the blinking cursor one column to
(the left. Ignored if at column 1 of the
- : line.
c) T (up arrow) - move the blinking cursor up one line.
Ignored if at the first line in the text.
d) § (down arrow) - move the blinking cursor down one line.

Ignored if at the last line of the text.

8

e) SHIFT = = move the blinking cursor one tab position
to the right. Tab positions are at every
eighth character on the line. Ignored
if beyond the last tab position (column
120).

f) SHIFT & - move the blinking cursor to the left

' margin of the present line on the display.
Ignored if the cursor is already at col-
umn 1. Does not auto-repeat.

g) ENTER - move the blinking cursor to the left
margin of the display on the next line
of text. Ignored if the cursor is al-
ready on the last line of the text.

Examples

Now that you know how to change a character in the text a few
exercises are in order. On the first line of the display the
word EDTASM is mispelled as EDTASN. To correct this error de-
press the =* key until the blinking cursor has moved under the
N and then type in a M. The mistake is corrected.

On line 70 the comment is preceded by a comma instead of the usual
semicolon. To correct this error depress the ¥ key until the
blinking cursor has moved under the comma. Type in a semicolon
and the error has been eliminated. -

Let us assume that we wish to make the comment that we corrected
more explicit by changing the word LOC to LOCATION. Use the =»
key to move the blinking cursor until it is under the position
following the C and type in ATION.

By typing over the graphics blocks in the last example the length
of the line was increased. If you want to add a word to the com-
ment after LOCATION be sure to type a blank over the first graph=-
ics block after the N. If you do not and begin the next word with
a graphics block between the two words then the last word will be

lost. Remember, the line ends at the first graphics block en-
countered. ,

~

Now that you know how to change a character and move the blinking
cursor to any position on the display you might be wondering how
to delete a character or how to insert a character on a line.

3) Deleting Characters - SHIFT D (SHIFTYD)

Move the blinking cursor to the character that you wish to
delete. Hit SHIFT D (SHIFT¥ D on a Model 3) and the char-
acter will be deleted. The remainder of the line will be

shifted one character to the left to fill the gap that was
left when the character was deleted.

This fgnction auto-repeats so that a string of characters can
be easily deleted by keeping SHIFT D (SHIFT %D on a Model 3)

depressed. This function can only be invoked when you are in
normal edit mode (blinking cursor).

Example -

On line 50 you will notice that there are six blanks at the end
of the line that do not serve any purpose. Because the blanks
take up space in memory it would make sense to delete them.
Move the cursor to the first blank after the N and depress

SHIFT D (SHIFTW¥D on a Model 3) until the blanks are replaced
with graphics blocks.

4) Inserting Characters - SHIFT I (SHIFT$B)

Move the blinking cursor to the character that you wish to
insert characters before and then hit SHIFT I (SHIFTVB on a
Model 3). The editor will go into insert mode and the cursor
will stop blinking. A blank will appear where you will be

inserting characters. As you type in characters the rest of
the line will move to the right.

To exit from insert mode hit the ENTER key. The extra blank
will be deleted and the cursor will be blinking again to in-
dicate that the editor is back in normal edit mode.

If you make a typing error while in insert mode use the € key
to backspace the (non-blinking) cursor.

The =»key functions differently.while in insert mode. When
hit, it causes the cursor to advance and blanks to be insert-
ed into the line until the next tab position is reached.

This is different from its function in normal edit mode where

it causes the blinking cursor to move just one column to the
right.

Remember, to enter insert mode you must be in normal edit mode.
You know when you are in insert mode because the cursor is not
blinking. Once you are in insert mode you cannot do anything
that you can do in normal edit mode until you hit the ENTER
key to exit from insert mode.

Example

You want to change the comment on line 40 to START OF PROGRAM.
Move the blinking cursor to the first character of the comment
(P) and hit SHIFT I (SHIFTVB on a Model 3). Type in STARTbOFb
(note that "b" represents the SPACE BAR) and then hit ENTER to
exit from insert mode. Move the blinking cursor to the blank
after the word PROGRAM and then depress SHIFT D (SHIFTVD on a
Model 3) until the remainder of the line has been deleted.

5) Scrolling

Now that you are able to manipulate text that appears on the
display you must be wondering how to manipulate all 128 col-
umns of a line and how to view all of the lines in the file.

a)

b)

10

Viewing different source lines on the screen

Remember you were told to imagine that the rest of the source
lines in the file extend below the display. If you want to
modify a line you would move the blinking cursor to that line
with the ¢ or # keys. Let us suppose you want to look at line
170 for possible modifications. Move the blinking cursor to
line 160. Line 170 is right below line 160 even though you
can't see it. How do you get there? Try hitting the ¥ key
once. Behold line 170. Because the blinking cursor could
not move off of the display the command to move the blinking
cursor down one line forced the 16 line window that the dis-
play shows to move down one line. Notice that line 10 is not
on the display any more but can be imagined to be above the
display. Another way to look at it is that if the blinking
cursor cannot go to the line then the line will come to the
blinking cursor. This function is called scrolling. The
commands that move the blinking cursor will also auto-repeat
while scrolling.

If you want to view line 10 again depress the key. Since
it auto-repeats the blinking cursor will march up the display
until it reaches the top (line 20). It will try to march up
further but since it can't it will force the display to scroll
one line up and line 10 will appear. ' -
Suppose you want to view lines 170-320. You could depress the
key until these lines scrolled into view. A quicker way to
do this is to scroll the display down by 16 lines (called a
"page") instead of one line at a time. This can be done by
hitting SHIFTV Z (some of the older Model 1 machines will
only require hitting SHIFTY). Try out this function now.
Because this function also auto-repeats you can quickly scan
the entire program by depressing SHIFT4 Z. Now scroll back
to the beginning of the program (a "page®™ at a time) by de-
pressing SHIFT 4. Notice that whenever the display is scrol-

led by an entire page the blinking cursor is placed at the
top left margin on the screen.

A command that tries to force the blinking cursor beyond the

last line of the text or before the first line of the text
will be ignored.

Left/Right Scrolling

The concept of scrolling the display up or down applies to
scrolling the display left or right as well. At any time
only 58 characters of each line are visible on the display.
To view the rest of the characters you must scroll right or
left. You can see an example of this if you scroll the dis-

play to the last page of the demonstration program by depres-
sing SHIFT 4 Z until scrolling stops.

11

Suppose you want to read the rest of the comment that is on

line 580 of the program. The rest of the comment can be view-

ed by depressing the =» key until the blinking cursor reaches
the extreme right hand column. By keeping =» depressed the
display will be forced to scroll one column at a time to the
right. Nocte that all the lines on the display are scrolled
simultaneocusly to the same column position. The display can
be scrolled back to the left by depressing € when the cursor

is in the extreme left hand column. For fast horizontal scrol-

ling SHIFT =» will move the blinking cursor one tab position

to the right and once this operation causes scrolling to occur

then the function will begin to auto-repeat.

SHIFT € will force the blinking cursor to the extreme left
hand column of the display on the present line and if it is

there already then it will cause scrolling to the extreme left

to occur so that column 1 is brought back into view.

A command that tries to force the blinking cursor to the left
of column 1 or to the right of column 128 will be ignored.

You should now understand how to manipulate any data that is
on the display as well as how to move the display to any por-
tion of the file being edited.

IV. LINE COMMANDS

Line commands apply to a specific line or block of lines within
the entire text buffer instead of to specific characters within

4 line. In order to enter a line command the following steps
should be taken:

- Move the blinking cursor to the line that the command applies

- Hit the CLEAR key. The line will be highlighted to the right
of the line number field. This will indicate that you are in
line command mode and will show which line you have selected.

- To exit from line command mode at this point (i.e.: if you
changed your mind) hit the CLEAR key again. The line will
be un-highlighted and the blinking cursor will return to its
original position on the line.

- If CLEAR is not hit again as just described then the next key
hit will determine the function to be performed.

1) Delete Line = D

Hit D and the highlighted line will be deleted from the text
buffer. For example move the blinking cursor to anywhere on
line 270. Hit CLEAR. Notice the highlighting to the right
of the line number. Hit D. Notice that the line has been
deleted and you are back in normal edit mode.

to.

12

2) Insert Line - I

Hit I and a new line (with a line number of 0) will be inserted
after the highlighted line. The new line will contain one
blank. The cursor will be in column 1 and will not be blinking.
Because the cursor is not blinking you can tell that the editor
is in insert mode for the line.

Just type in the desired contents of the new line, hitting=p
whenever you want to insert blanks to the next tab position.
If you want to insert another new line then hit ENTER. The
process will be repeated: another new line will be created

after the line that you have just typed in and the non-blinking
cursor will be in column 1 of it.

After you have typed in the last line that you wish to insert
hit CLEAR instead of ENTER. The editor will return to normal
edit mode. This is the most important function that you will

be using to enter new text so read the following example care-
fully.

Example

Lets say you want to addd two equate statements to the start of

the program (between lines 40 and 50). Move the blinking cursor
to line 40 and hit CLEAR. The line will become highlighted and -
you will be in line command mode for the line. Hit I and a new
line will be created between lines 40 and 50. Type in ZERO = EQU= 0
and then hit ENTER. Another new line will be created. Type in
ONE -EQU-*1 and then hit CLEAR. ° Because you hit CLEAR instead of

ENTER no new line will be inserted. Instead you will be returned
to normal edit mode.

The lines that you have just added will be used in later examples
so make sure that you have followed the above example.

3) Copy Line - C

Hit C and the highlighted line is marked for copying. See the
H command for how to complete this function. The line will
remain highlighted while the copy is pending.

4) Move Line - M

Hit M and the highlighted line is marked for moving. See the
H command for how to complete this function. The line will
remain highlighted while the move is pending.

5) Move/Copy Line to Here - H

After you have marked a line for move or copy you will be in
normal edit mode. You can move the blinking cursor anywhere

in the text (you can scroll the display) and do anything except
mark another line (or block of lines, see section on blocks)
for a move, copy, delete, or insert.

I S TY PR Y
—

13

To complete the move or copy, move the blinking cursor to
another line in the text and hit CLEAR to enter line command
mode. Then hit H and the line marked for a move or copy will

be moved/copied to the point following the line that you have
just selected.

While there is a pending move or copy (you have marked the line
but have not yet selected where it will go) a graphics block
will appear in the upper left hand corner of the display once
the display is scrolled. This will remind you that you have a
pending move or copy. If you decide that you really don't want
to move or copy the line that you have selected then hit CLEAR

and then ENTER. The CLEAR - ENTER sequence will cancel any
pending move or copy.

Example

Suppose you want to move the two EQU statements that have just
been inserted to the end of the program. Move the blinking cur-
sor to the first EQU statement and hit CLEAR and then M. Scroll
the display to the end of the program by depressing SHIFTWV Z.
Notice that the selected line remains highlighted and that the
upper left hand corner of the display contains a graphics block
to indicate that a move is pending. Move the blinking cursor to
line 580 and hit CLEAR and then H. The first EQU statement will
appear after line 580. Notice that it retains its original line
number (in this case 0). Move the 'blinking cursor back up to the
beginning of the program by depressing SHIFT 4. Notice that the
first EQU statement that you just moved has disappeared. If you
had done a copy instead of a move then the EQU statement would
now appear in both places (with the same line number). Now move
the second EQU statement in the same way.

To copy a line the procedure is exactly the same except that you
will select the line to copy with CLEAR and then C instead of M.

Remember, to cancel a pending move or copy use the CLEAR - ENTER
segquence.

6) Blocks of Lines - B

A block of lines can be deleted, copied, or moved just as
easily as a single line. The procedure is exactly the same

as for a single line except that a block of lines is selected
instead of just one line.

To select the beginning of a block, move the blinking cursor
to the line that starts the block and select it for a line
command by hitting CLEAR. The line will now be highlighted

as it is for all line commands. Hit B and the line is now
marked as a block terminator. The next line command (delete,
copy, or move) will apply to the entire block as opposed to
just the line that you enter the line command on. The next
line command can be entered anywhere in the text so scrolling
can take place (either up or down) to select the other end of
the block. The block is defined as all the lines between and
including the line that you marked as the block terminator and
the line that you subsequently select for delete, move, or copy.

14

If a block move or copy was selected you must now move the
blinking cursor to another line and then hit CLEAR and then H.
This will cause the block to be moved or copied to the point
following the line just selected.

As in a one line move or copy, once a block terminator is se-
lected a graphics block will appear in the upper left hand
corner of the screen to signify that the block is pending.

A pending block command can be cancelled in the same way that

a pending move or copy is cancelled. Just use the CLEAR =
ENTER sequence.

Lines or blocks of lines that are moved or copied always retain
their original line numbers.

Examples

Because the two EQU statements that you moved to the end of the
program earlier are not part of the program they should be del-
eted. Move the blinking cursor to either of the two EQU state~-
ments and hit the CLEAR key and then the B key. That line is
now identified as the block terminator. Move the blinking cur-
sor to the other EQU statement and hit CLEAR and then D. The
block of two lines has now been deleted. _
Suppose you want to copy the three comment lines that are at the
beginning of the program to the end of the program (before the
END statement). Move the blinking cursor to line 10 or line 30
and hit CLEAR and then B. Move the blinking cursor to the other
end of the block and hit CLEAR and then C. Now move the blinking
cursor to line 580 using the SHIFTNZ and ¥ keys. Hit CLEAR and

then H. The comments will now appear at the beginning and end
of the program. '

V. OTHER COMMANDS INVOKED WITH THE CLEAR KEY

There are certain commands that are initiated exactly like line
commands except that these commands do not apply to the line that
the blinking cursor is currently on. Therefore these commands
can be invoked by hitting CLEAR while the blinking cursor is on

any line. Each of the following command descriptions assume that
you have already hit the CLEAR key.

1) Scroll to Top - T

Hit T and the display will scroll to the top of the text buf-
fer. Getting to the beginning of a very large text buffer is
much faster if you hit CLEAR and then T than if you depress
SHIFT & . Try getting to the beginning of the demonstration
program right now by hitting CLEAR and then T.

15
2) Repeat Find - F

Hit F and the previously entered FIND command will be repeated.
The FIND command will be discussed in the following chapter.

3) Invoke Extended Command Processor = SPACE BAR

Hitting the SPACE BAR will invoke the extended command pro-
cessor. A command prompt line will appear at the bottom of
the display. Extended commands are entered on this line.

vI. EXTENDED COMMAND PROCESSOR

As discussed above, when the CLEAR - SPACE BAR sequence is hit
the bottom line of the screen is cleared so that you can enter
an extended command. If you change your mind and do not wish
to enter an extended command then hit ENTER while this line is
empty. You will be returned to normal edit mode. The commands

discussed below assume that you have invoked the extended com-
mand processor.

Every extended command is terminated by hitting ENTER. You will
always be returned to normal edit mode after execution of the

extended command entered. The € key will backspace to allow you
to correct any mistakes made while entering the extended command.

’

1) Renumber - Nline#,increment

To renumber the entire text buffer type in N followed immed-
jiately (no spaces allowed) by the value for the first line
number, a comma, and then the increment to be used to calcul-
ate the rest of the line numbers. Try out this command now.
‘Then use it again as N10,10 so that the line numbers in the
demonstration program will be restored to their original values.

It is good practice to always renumber the text before saving
it into a disk file. This way, when the text is input to the
assembler, each assembly statement will be in order with res-
pect to their line numbers. This makes it easier to use the
assembler's symbol table and cross-reference listings, which
are keyed to each statement's line number.

2) Search for Line Number - Sline#

To search for a line with a specific line number type in'S
followed immediately by the line number desired. The search
will begin with the line currently at the top of the display
and will continue down to the end of the text buffer. If a
line with the requested line number is found then the display
will be scrolled so as to bring that line into view at the top
of the screen. Otherwise a "NOT FOUND" message will be dis-
played briefly and no scrolling will occur.

16
3) Find Character String - Fstring

To search the text buffer for a specific string of characters
enter F followed immediately by the character string desired.
Every character that you type in after the command verb F and
before you hit ENTER is considered significant (including
blanks). The search will begin with the line currently at

the top of the display and will continue down to the end of
the text buffer. If the character string is found then the
display is scrolled so that the line which contains the found
string appears at the top of the screen. (It may be necessary
to scroll the display horizontally to bring the string into
view.) If the string is not found then the message "NOT FOUND"
will appear briefly and the display will not be scrolled.

Remember that the FIND command can be easily repeated by using
the CLEAR F sequence.

4) Change Character String = Cstring

When this command is entered the text buffer is searched for
the string specified in the previously entered FIND command.
Each occurrence of this string is changed to the character
string specified in this CHANGE command. This search-and-
change operation starts with the line presently at the top of
the display and continues down to the end of the text buffer.
When the command is completed you will be returned (as always)
to normal edit mode - the dlsplay is not scrolled.

When entering the CHANGE command remember that every character
that you type in is significant (including blanks) up until
you hit the ENTER key. Note that because the FIND and CHANGE
strings do not have to be of egual length it is possible for
lines to grow or shrink in size when they are affected by the

CHANGE command. The maximum length of a FIND or CHANGE string
is 20 characters.

Examples

You want to find the first source line in the program that uses
the DJNZ instruction. Make sure that you are at the beginning

of the text buffer by hitting CLEAR T. Then hit CLEAR and then
the SPACE BAR to enter extended command mode. Now type in FbDJINZb
(note that "b"™ represents the SPACE BAR) and hit ENTER. The rea-
son you surrounded the DJNZ with blanks is because that is the
way it must appear in the assembler program. By searching for

it surrounded by blanks you eliminate the possibility of finding
an occurrence of DJNZ as part of a larger word. To search for

the next occurrence of the same string you can simply hit CLEAR
and then F.

You want to change every occurrence of the JR instruction in the
program to JP. Get to the top of the text buffer with CLEAR T.
Enter CLEAR - SPACE BAR, type in FbJRb and then hit ENTER. The
display will be scrolled to the first occurrence of the JR instr-

17

uction. Now enter CLEAR - SPACE BAR, type in CbJPb and then hit
ENTER. All of the JR's in the program are now JP's. Because the
lengths of the two strings are the same the column alignment for
comments and instructions will not have changed on the changed
lines. If you had entered the command CJP instead of CbJPb then
the JP would be one column to the left of all the other instruct-
ions and the comments on those lines would be 2 columns to the
left of all the other comments. This would be due to the fact
that you searched for a four character string ("bJRb") and chang-
ed it to a two character string ("JP"). Caution should be exer-
cised when using these very powerful commands.

5) Print - P* or Pnumber

The extended command P* will print every line in the text buf-
fer starting with the line presently at the top of the display.
To print a specific number of lines enter P followed by the
number; for example Pl3 will print the first 13 lines on the
display. Your line printer must be readied before using this
command. As each line is sent to the printer its line number
is displayed on the bottom of the screen.

6) Load from Tape - Lfilename

Type L followed immediately by an optional filename and hit

ENTER. An EDTASM format tape source file will be locaded and

appended to the existing text buffer. If a filename is not

specified then an un-named file will be loaded. Make sure

that your cassette machine is ready and set to "play" before
+ entering this command.

7) Write to Tape - Wfilename

To write an EDTASM format source tape file from the text buf-
fer type in W followed immediately by an optional filename.

The text buffer will be written starting with the source line
at the top of the display. If you want to write the entire
text buffer make sure the display is scrolled to the top first.
Make sure that your cassette machine is ready and set to "rec-
ord™ before entering this command.

Note for Model 3 only: the speed (baud rate) at which tape
operations take place is determined by a special memory addr-
ess. Refer to the Radio Shack Model 3 manual for details.

VII. EXITING FROM THE EDITOR (CLEAR - E)

The text editor exit is used when you have finished your editing
task and wish to save the results in a disk file. The exit menu
also gives you the ability to restart the editor program, return
to DOS, or merge the current contents of the text buffer with yet
another disk file. The exit menu is invoked from normal edit mode

(blinking cursor) by hitting the CLEAR key and then hitting the
E key. Do so now.

18

Notice that the text editor exit menu provides you with five
options. Each one will now be discussed in detail.

1) Return to Edit - CLEAR

2)

3)

4)

5)

Hitting the CLEAR key will return you to normal edit mode.
The text buffer will be intact and as you left it.

Restart the Editor - R

Hitting the R key will cause a restart of the editor. The
text buffer will be cleared and the editor's initialization

frame will be displayed. The use of this frame was described
in chapter I. :

Return to DOS - D

Hitting the D key will cause the TXEDIT program to terminate
and return to DOS READY mode. If you have not previously saved
it, the contents of the text buffer will be lost.

Save Text Buffer to Disk - S

Hitting the S key will cause the editor to prompt you for the
name of the file that you wish to save the current contents -

of the text buffer into. Type in a valid DOS filespec and hit
the ENTER key. The file will be created if it does not already
exist and the text buffer will be written out to it. When this
operation is completed thé exit menu will be refreshed, once
again giving you the ability to exercise any of the five options
currently being discussed. Note that even after this option

is selected with the S key it is possible to abort and return

to normal edit mode by hitting the CLEAR key.

Add Text from Disk - A

Hitting the A key will cause the editor to prompt you for the
name of a file that you wish to add text from. Type in a valid
DOS filespec and hit the ENTER key. The contents of the file
will be read in and merged with the current contents of the
text buffer. This additional text will be inserted into the
text buffer immediately following the line that you were on
when you invoked the exit menu. This gives you the ability
to merge text from another disk file into any point desired
in the text buffer. You simply move the blinking cursor to
the line after which you wish to insert the text, hit CLEAR

E to invoke the exit menu, and then proceed as just described.

When this operation is completed the exit menu will be refresh-
ed, once again giving you the ability to exercise any of the
five options currently being discussed. Note that even after
this option is selected with the A key it is possible to abort
and return to normal edit mode by hitting the CLEAR key.

19

If the editor encounters an error while reading or writing a disk
file then the message "DOS I/O ERROR CODE" will be displayed fol-
lowed by a two digit hexadecimal number. Refer to your DOS manual
for an explanation of the error code. Under certain conditions
the editor cannot recover. In these cases hit any key to return
to DOS READY mode.

VIII. EDITING SCENARIOS

The example that we have used up to now showed you how to manip-
ulate an existing source text file. Even though you have learnt
all the commands needed to build a new source file a review of
the procedure should be helpful.

When you enter the editor with * you will be in normal edit mode
with the blinking cursor on the first (and only) line. The fol-
lowing procedure can now be used to create a new source file.

Many other approaches are possible and after a while you will
find one that is most comfortable for you.

Hit SHIFT I (SHIFTY B on a Model 3) to enter insert mode and type
in the first line using =» to tab to the necessary columns. After
typing in the first line hit ENTER to return to normal edit mode.
Now hit CLEAR and then I. You will now be in line insert mode.
Therefore you can type in a line of text (using =» to get to new
tab positions) and then get another new line by hitting ENTER.
After you enter the last line hit CLEAR to exit from line insert
mode. Now that you are back in normal edit mode you can scroll
backwards, checking for and correcting any typing errors. Then
tenumber and save the source.

You may have noticed that there is no way to copy or move a line

to the beginning of the text buffer (before the top line). 1Instead
copy or move the desired line to immediately after the top line
and then move the top line around it.

You can repeat lines by doing multiple copies. You can rapidly
create a large number of identical lines by doing multiple block
copies. This is useful when you are entering part of a program
where all of the lines are very similar.

If you follow the rule of always renumbering text before saving
it you will always be able to identify which lines were newly
added in the current editing session because inserted lines are
always given a line number of 0. Similarily, you can always
identify the original location of moved or copied lines because
they retain their original line numbers when moved/copied.

IX. ERROR MESSAGES

In the event that you request a conflicting or non-existent func-
tion the editor will display the message "INVALID REQUEST" for a
moment and then you will be returned to normal edit mode.

. 20

An example of this would be if you hit CLEAR C to mark a line for
copying, scroll around a bit, and then hit CLEAR M. Since you
cannot have both a move and a copy pending at the same time you
will get the "INVALID REQUEST" message. The move command will

be ignored since it was invalid and the copy command will remain
pending.

If your program gets very large it is possible for you to run out
of available memory. When this happens the editor will display
the message "MEMORY FULL" for a moment and then you will be re-
turned to normal edit mode. If at this point you must add more
statements to the program then it is recommended that you delete
some comments from other lines to make space available. Alter-
natively, you can split the program into two or more seperate
files and link them together at assembly time by using the as-
sembler's *INCL command. This command will be explained in the
ASSEMBLER SECTION of this manual.

X. SUMMARY OF COMMANDS AND MODES

NORMAL EDIT MODE

- Change Character - type over blinking cursor.
- Delete Character - SHIFT D (SHIFTV D on Model 3), auto-
: repeats. g
- Insert Character - SHIFT I (SHIFTJ B on Model 3), provides
non-blinking cursor, -=»inserts blanks
to next tab position. Use ENTER to exit.

MOVING THE BLINKING CURSOR (auto-repeats except where noted)

- ¥ ~ down one line.

-1 - up one line.

- > - right one column.

- & - left one column. A

- SHIFTV 2 - down one page (16 lines). Older Model 1 machines

do not require the Z key.

- SHIFT® - up one page (16 lines). -

= SHIFT 9 - right one tab position (auto-r peats only when
scrolling occurs).

- SHIFT € - left margin or if already in left margin then
scroll to column 1 (does not auto-repeat).
- ENTER - left margin of next line down.

LINE COMMANDS

To invoke hit CLEAR on desired line. Line will be highlighted.
To exit without entering any command hit CLEAR again. Other-
wise the next key hit determines the function as follows:

= DELETE line or block of lines.

- COPY line or block of lines.

MOVE line or block of lines.

- mark this line as a BLOCK terminator.

= move or copy line or block of lines to HERE.

!
mwXNo
!

21
LINE COMMANDS (continued)

-1 - enter Line Insert Mode. Cursor not blinking.
_Puts you in insert mode on a new line. Hit

ENTER to get another new line. Hit CLEAR to
exit from Line Insert Mode. =P will insert

: blanks to the next tab position in this mode.

- T - scroll display to TOP of text buffer.

- E - invoke TEXT EDITOR EXIT menu.
- F - repeat previously entered FIND command.
- ENTER - cancel pending move, copy, or block command.

- SPACE BAR invoke EXTENDED COMMAND PROCESSOR.

EXTENDED COMMANDS

Typed in at the bottom of the display. To exit with no com-
mand just hit ENTER. All commands are terminated with ENTER.

- Nline#,increment - RENUMBER entire text buffer.

- Sline# - SEARCH for line# from top of display.

- Fstring - FIND character string. Start search at
top of current display.

- Cstring - CHANGE previously specified FIND string

to this string. Applies to rest of text
buffer starting with top of current dis-

play. ,
- Pb* - PRINT text buffer starting with line at
top of current display.
- Pnumber - PRINT text buffer for number of lines
- specified starting with top of display.
- Lfilename - LOAD the file specified from tape and

append to the text buffer. If filename
omitted then load an un-named file.

- Wfilename - WRITE the text buffer to tape starting
with the line at the top of the current
display. If filename omitted then an
un-named file will be created.

XI. CUSTOMIZING THE EDITOR |

The speed at which the editor's auto-repeating functions repeat
can be altered to suit personal taste. It is also possible to
modify the editor's use of memory and therefore allow for larger
or smaller text buffers. Appendices A and B of this manual des-
cribe how these changes can be made. It is necessary, however,
to understand how to use the LINKER program in order to make
these changes. We suggest therefore that the reader complete

the entire M-ZAL manual before exercising this customization
option.

22

ASSEMBLER SECTION

I. INTRODUCTION TO ASMBLR

The M-ZAL System assembler is a very powerful tool that has many
uses. This section of the manual describes the operation of the
assembler. The reader should be familiar with how to use TXEDIT
prior to reading this section. TXEDIT is used to create assembler
language source files which then become input to the. assembler.

An understanding of assembler language programming and binary
number systems is assumed, however, key terms will be explained.

l) File Notation

The assembler uses a structured, modular concept when refere-
ncing disk files. When an assembly is performed the assembler
is given a "module name" to assemble. The module name is from
one to eight alphabetic and numeric characters where the first
character must be alphabetic. The assembler constructs disk
file names from the module name by adding predefined extensions.

For example, if the assembler is given a module name of SEARCH
it will read the source input from the disk file named

SEARCH/ASM

If instructed to output object code to disk it will create a
file named)

SEARCH/CMD

If instructed to create a relocation/extefnal symbol file, it
will create one named

SEARCH/RLD

If it is necessary to reference files on a specific disk drive
the disk drive designator should be added directly to the mod-
ule name. For example, if the assembler is given a module
name of SEARCH:1 it will use disk files named

SEARCH/ASM:1
SEARCH/CMD:1
SEARCH/RLD:1

:’/T—‘\\\,

23

2) Output of the Assembler

The basic use of the assembler is to generate object code for
use on the TRS-80. Object code is defined as the binary ins-
tructions and data that the Z-80 chip inside the TRS-80 reads
and executes. In addition to generating object code the as-
sembler also generates loading instructions which specify
where in memory to place the object code and where in memory
to start executing it. The term location counter is used to
refer to the memory address at which a specific piece of obj-
ect code will be loaded. The term transfer address is used

to refer to the memory address at which program execution will
begin.

The assembler is capable of generating object code and load-
ing instructions in two different formats. One of these is
the "SYSTEM" tape format. SYSTEM tapes can be loaded and
executed by the SYSTEM command in level 2 or disk BASIC.

For instructions on how to do so, see your Radio Shack manual.
If the assembler is instructed to create a SYSTEM tape, the
file name will be taken from the first six characters of the
program module name. These tapes can only be created at 500
baud (Model 3 users can use LINKER to create 1500 baud tapes).

The second format is the /CMD disk file. Such a file can be
loaded and executed directly from "DOS READY" mode by simply
typing in the corresponding program module name. For example,
if a program module named TEST3 is assembled and a /CMD file

is created, then typing in the command TEST3 £rom DOS READY
will load and execute the program.

It is possible to create both formats of object output with
one assembly.

The assembler can also generate a disk file containing relo-
cation and external symbol information for the program in

question. This file is given the /RLD filename extension and
is therefore referred to as the /RLD file.

The /RLD file and the /CMD file can be used together by the
LINKER program to create a new /CMD file or SYSTEM tape.

The LINKER can be used to change the loading instructions
and object code of a single /CMD file. This function is cal-
led relocation. A program that used to load and execute

at one memory address can be relocated to load and execute at
a different memory address without reassembling the source.

Another function of the LINKER 1is to merge several program
modules together. This is very useful if you have many sub-
routines that are used by one main routine. You do not have
to assemble all of the subroutines together with the main pro-

gram in order to use make use of them. All you have to do is
link them together.

24

If you are a novice assembler language programmer you may want
to use the assembler for a while without generating /RLD files
or using the LINKER. After you have become experienced in
the use of the assembler you can start using these advanced
features. Remember that you do not have to use the LINKER

in order to write, assemble, and execute assembler language
programs.

II. INVOKING THE ASSEMBLER

The assembler is invoked from "DOS READY" mode by simply typing
in the command ASMBLR . The assembler will be loaded and run.

It will display the full screen option menu and wait for your
commands.

The full screen option menu takés the place of keyword commands.

You do not have to memorize any keywords to get full use of all
of the assembler's options.

1) Using the Full Screen Option Menu

The full screen option menu always displays each assembler
option that can be selected. An X next to an option indi-
cates that it is currently selected. Conversely, if the space

next to an option is blank, then that option is currently not
selected.

A ? appears on the screen next to the option that can be
modified at the present time. The ? can be moved around
the screen, from option to option, by hitting the ENTER key.

To select an option, use the ENTER key to move the ? until
it is next to the option and then hit the X key. An X will
appear next to the option to indicate that it has been select-

ed and the ? will move on to the next option.

To deselect an option use the same procedure except hit the

SPACE BAR instead of the X key when the ? 1is next to the
option in question.

When the ? is next to the FILENAME option a blinking cursor
will appear. The program module name to be assembled should
be typed in next to this option. The =» and € keys can be
used to move the blinking cursor back and forth within the

module name field. The ENTER key is used to move the ? on
to the next option.

For example, if you have created a source file named FRED/ASM:2
using TXEDIT and you want to assemble it, you would type in
FRED:2 next to the FILENAME option. Remember that the pro-
gram module name does not include the "/ASM"™ extension.

2)

3)

- 25

Note that any combination of assembler options is valid. You
can therefore select or deselect any option without regard
for the states of the other options. When initially loaded,
a default set of options is selected. It is therefore only

necessary for you to provide a program module name in order
to start an assembly.

Starting an Assembly

Once the desired options have been selected and a program
module name is given, an assembly can begin. An assembly is
started by hitting the ¥ key. This can be done at any time,
regardless of where the ?2 is located on the menu.

Control during Assembly

Three keys are used to control the assembler while an assem-
bly is in progress. They are:

CLEAR key - the assembly can be cancelled at any time by hit-
ting the CLEAR key. The message “"CANCEL" will
appear at the bottom of the display. The ENTER
key must now be hit to return to the option menu.

SPACE BAR - the assembler can be paused during the time that
it is producing the listing on the display and/or
printer by hitting the SPACE BAR. Once paused,

the assembly can be resumed by hitting the ENTER
key.

ENTER key - the ENTER key has several uses:

- If the assembler has paused due to the SPACE BAR,
an error message, or a *PAUSE statement then it
can be resumed by hitting the ENTER key.

- If the assembly has been terminated by the CLEAR
key ("CANCEL") or by a terminal error message
then hitting the ENTER key will return control
to the full screen option menu.

- If the assembly has terminated normally a message
will appear on the listing indicating the number
of errors. Hitting the ENTER key will return
control to the full screen option menu.

- If OBJECT TO TAPE has been requested then a
"READY CASSETTE" message will appear after the
listing is produced. Make sure that your tape
machine is set up to record and then hit the
ENTER key. The assembler will then start writing
the object code to the tape.

4)

26
Returning to DOS

You can return to DOS whenever the full screen option menu is
active by simply hitting the ¥ key. Once back in DOS, the
TXEDIT or LINKER programs can be invoked, as can any other DOS
command or utility.

III. ASSEMBLER OPTIONS

All assembler options are displayed on the full screen option
menu. An X next to an option indicates that it has been sel-
ected. Each option will now be explained in detail.

1)

2)

3)

4)

Object to DISK/TAPE

Object code does not have to be generated for an assembly to
take place. Object code can be directed to disk and/or tape.
If object code is directed to disk then it will be placed in
a file whose name is constructed from the program module name
and the extension "/CMD". If object code is directed to tape
then a "SYSTEM" tape will be created. The "SYSTEM" tape file

name will be the first six characters of the program module
name.

Wait on PAUSE/ERRORS

If the Wait on Pause option is selected then the assembler
will pause while producing the listing whenever a *PAUSE
statement is encountered. The assembly can be resumed by

hitting the ENTER key. If this option is not selected then
all *PAUSE statements will be ignored.

If the Wait on Errors option is selected then the assembler
will pause while producing the listing whenever a statement
which has an error is encountered. The assembly can be re-
sumed by hitting the ENTER key. 1If this option is not sel-

ected then the assembler will not pause when errors are en-
countered. ' :

List to DISPLAY/PRINTER

A listing does not have to be generated for an assembly to

take place. A listing can be directed to the video display
and/or printer. If neither listing option is selected then
the assembler will still make a listing pass but only error
messages and the statements that caused them will be listed.

All *PAUSE statements will be ignored if no listing option
is selected.

Symbols LIST/XREF

A symbol table listing and/or xref (cross-reference) does not
have to be generated for an assembly to take place. If sel-
ected, they will be directed to the device(s) specified by

5)

Iv.

27

the selected "List to" options. If neither "List to" option

is selected then the symbol table listing/xref will be direct-
ed to the video display.

The symbol table listing contains each symbol (label) defined
in the program. "The symbols are listed in alphabetical order.
Also provided for each symbol is the line number of the state-
ment that it was defined in, its value, and some of its attr-
ibutes. If selected, the cross-reference provides the line

numbers of each statement in the program that contains a ref-
erence to the symbol. Refer to chapter IX for more details.

Generate /RLD

A /RLD file does not have to be generated for an assembly to
take place. If this option is selected the assembler will
create a disk file containing relocation and external symbol
information for the assembled program. -The disk file name

will be constructed from the program module name and the /RLD
extension.

The /RLD file and its corresponding /CMD file can be used by
the LINKER program to relocate, link, and modify the object
program without performing another assembly.

ASSEMBLER LANGUAGE SYNTAX

The M-ZAL assembler recognizes two kinds of source statements:
the assembler language statement and the assembler command state-
ment. In this chapter the assembler language statement will be

described. Assembler command statements are described in chap-

ter VII.

The format of an assembler language statement is as follows:

label opcode operand(s) comment

As you can see, each statement is divided into four fields.
Each field is seperated from its neighbors by one or more blanks.
The label field must begin in column 1 of the line. The label

field and the comment field are optional. The opcode field is
always required. The operand field is usually required, though
this depends upon the contents of the opcode field.

1) Labels

The label field must begin in column 1 and is optional. If

a label is not used then at least one blank must precede the
opcode field.

The value of the label is determined by the opcode. If the
opcode causes object code to be generated then the label will
take on the value of the location counter (memory address)
that the object code will be loaded at. This value is always
considered relocatable.

2)

3)

28

Certain pseudo-opcodes do not generate object code. The value
of labels associated with such pseudo-opcodes will be discussed
in chapter VI,

A label consists of a string of one to eight characters. The
first character must be a letter (A - Z). The rest of the
characters may be letters (A - Z), numeric characters (0 - 9),
or one of four additional characters (@, #, $, and %).

The following characters strings cannot be used for labels as

'they are reserved to represent Z-80 registers and condition

codes:

A’ B' C' Dy E' H, L, I' R’ IX, IY' SP’ AF, BC, DE, HL'
Z, M, P, NC, Nz, PE, PO

The following are examples of valid labels:
ALPHA TEST3 VALUES HIGH@VAL X029

The following are examples of invalid labels:

9TIMES SDATA IX R . $INCR TOOLONGXXX
Opcodes -

The M-ZAL assembler accepts the standard Z-80 opcodes that
are defined in Zilog's "The Z-80 CPU Technical Manual."™ A

copy of this reference has been included with this M-ZAL man-
ual.

The assembler also supports a number of pseudo-opcodes.
Pseudo-opcodes do not correspond to Z-80 instructions but
instead direct the assembler to generate specific types of
object code, change the location counter, give specific val-

ues to labels, or terminate the assembly. They are described
in detail in chapter VI.

Operands

The operands required by an assembly language statement are
determined by the opcode. Certain opcodes do not require any
operands. Others require one or two operands. If two oper-

ands are required then they should be seperated by a comma
with no intervening blanks.

Many Z-80 opcodes only allow certain operands to be specified.
For example, if an instruction references a one byte register
then only the character strings A, B, C, D, E, H, L, and pos-
sibly I or R would be permissible as operands. This is fully
defined in the enclosed Zilog manual.

ot

29

Many Z-80 opcodes require operands that specify a one or two

byte numeric value. These operands are called "value operands"
and are described in detail in the next chapter.

4) Commenting an assembler language source program is considered
an essential practice. The comment field must be seperated
from the operand field by at least one blank. A semicolon (;)
is required before a comment only if

- the statement's opcode is one which allows zero or more
operands (such as the "END" pseudo-opcode), or

- the entire statement is to be considered a comment.

In this case the statement should begin in column 1
with a semicolon.

V. VALUE OPERANDS

As mentioned above, certain operands specify a numeric value.
These operands are coded as constants or expressions. (An exp-
ression consists of one or more constants on which numeric and/
or logical operations are performed.) The range of valid values
for a value operand is determined by the instruction it is as-
sociated with. For example, in the instruction

LD HL,nn g
"nn" can be any two byte value, whereas in the instruction

LD A,n

"n" can be any one byte value. Certain instructions are even
more restrictive, for example in

IM i

"i" is only valid as 0, 1, or 2. The format of value operands
will now be discussed in detail.

1) Constants

A constant can be expressed as a symbolic label, a numeric
value, a quoted character string (also known as a "literal"),
or the location counter symbol "$".

a) Symbolic Labels

Every label in the program has set value during the assem-
bly. This value will be either relocatable or absolute,
depending on how the label was defined. The syntax of a
label has already been defined. Examples:

LABEL EQU 5 ;equate LABEL to constant 5
LD A,LABEL ;loads reg A with constant 5

b)

c)

d)

30

Location Counter - $

The § symbol may be used to represent the current value
of the location counter. This value will be considered
relocatable. Example:

JP $;infinite loop, same as:
LABEL JP LABEL .

Character Strings

A character string constant is represented by one or two
ASCII characters surrounded by quotes ('). 1Its value is
always considered absolute. Examples:

LD A,'B’ ;load reg A with 42H (66D)
LD HL,'0l' ;load reg HL with 3031H

If the quote character itself is to be part of the charac-
ter string then it should be represented by two consecut-
ive quotes. Note that this is different from Radio Shack's
EDTASM syntax. Examples: ,

LD A, sthis is an invalid operand -
LD A, ;load reg A with 278 (')
LD HL,'A''' ;load reg HL with 4127H

Numeric Constants !

Numeric constants consist of a string of numbers (0 - 9)
or hexadecimal digits (0 - 9, A - F) followed by a cons-
tant descriptor. The constant descriptor indicates the
base of the constant and can be specified as

B for binary,
O for octal,
D for decimal, or
H for hexadecimal.

If the constant descriptor is omitted then the base of the
constant is assumed to be decimal. The first character of
any numeric constant must be a number (0 - 9). Therefore

hexadecimal values which begin with the digits A - F must

be preceded by a 0. Examples: :

The following constants are all equivalent:

10 10D 1010B 120 O0AH
LD A,10 ;load reg A with OAR -
LD HL,000AE ;load reg HL with 000AH

Constants that cannot be expressed with 16 bits are inv-
alid and will generate an "INVALID OPERAND" error. 2n .
example of such an invalid constant is OFFFFFH.

31

2) Expressions

Expressions consist of one or more constants on which numeric
and/or logical operations are performed. The assembler eval-
uates expressions to calculate the operand values that they
represent. The resulting value may be considered relocatable
or absolute (explained in detail later).

Expressions are always evaluated from left to right, no par-
enthesis are allowed. Expressions are always evaluated as

16 bit values. If during evaluation a value is generated
that cannot be expressed in 16 bits then any overflow is lost
(i.e.: OFFFFH+2 evaluates to 000lH with no error).

The operators that can be used in expressions are:

+ (addition),

- (subtraction, or negation),
& (logical AND), and

< (logical SHIFT).

a) Addition (+)

The + sign can be used as a unary operator. When used
in this fashion the constant that it operates on is un-

changed. When used as a binary operator, its two operands
are added together. Examples:

LD A,5+0AH ;load reg A with OFH
LD HL,$+50H ;load reg HL with current loc-
;) ation counter + 50H

b) Subtraction (-)

The - sign can be used as a unary operator. When used
in this fashion the constant that it operates on is twos
complemented. When used as a binary operator, its two
operands are subtracted. Examples:

LD A,5-0AH ;load reg A with OFBH
LD HL,$-2 :load reg HL with the current
: location counter - 2

c) Logical AND (&)

The & sign is used only as a binary operator. When used
the assembler calculates the logical AND of its two oper-
ands. This operator should not be used on relocatable
values if you intend to perform relocation. Examples:

LD A,5&=5 :load reg A with 1
LD HL,OFFFFH&25 ;load reg FL with 0019H

32
d) Logical SHIFT (K<)

The < sign is used only as a binary operator. It is
used as follows to shift a value left or right:

value<amount

If "amount" is positive then "value" is shifted left by
"amount" number of bits. If "amount" is negative then
"value" is shifted right by -"amount" number of bits.
Examples:

LD A,5<-3 ;load reg A with 0
LD HL,5<3+1 :load reg HL with 0029H

3) Relocation Considerations

This section does not have to be read unless you intend to use
LINKER to relocate object programs. When an object module is
relocated not only are the loading instructions changed, but
some of the object code itself is also changed. The following
example should make this clear:

START LD A,0
LD HL, START | .

Let us assume that during assembly the label START has the value
7000H. The object code that will be generated for the 2nd state-
ment shown above will specify a relocatable constant value of
7000H to be loaded into reg HL. Now suppose we relocate this
program to an starting address 2000H greater than its assembled
starting address. The object code labelled START is now located
at address 9000H instead of 7000H. The object code for the

2nd statement must therefore be changed to specify a value of
9000H to be loaded into reg HL. This modification of object
code is performed by LINKER on every relocatable constant in
the program when relocation is performed.

Most object programs will also contain value operands that are
not modified in this fashion when relocation is performed. For
example, the displacement value "d" in LD A, (IX+4d) and
the constant value "n" in LD A,n will not be altered
when relocated. It is important to realize that the assembler
will allow you to use operands that are normally considered
"relocatable" for these values. We advice against such use if
you intend to relocate the program because the results can be
quite strange. For example, consider the program

ORG 0
START LD HL,START ;proper use of relocatable value
LD A,START ;dangerous use of relocatable value

As assembled, this program will load reg HL with zero and will
then load reg A with zero. If the LINKER is used to relocate

.,

,,m‘iw

33

it to location 1000H, the result will be a program which loads
reg HL with the value 1000H but still loads reg A with a value
of zero! The inconsistency has occurred because the relocatable
operand "START" was used in an instruction which does not gen-
erate a two byte address value. We caution again that M-ZAL
does not produce an error message for this situation.

In a similar vein, the assembler allows you to code relative
jump (JR) instructions to absolute locations even though JR

instructions are always self-relocating. For example, the
program -

ORG 10008
START LD HL, O
JR 1000H ;jump operand is "absolute”

will result in an infinite loop regardless of where it is relo-
cated to.

‘When an expression is evaluated the assembler determines whether

it is relocatable or absolute. If only absclute constants are
used in the expression then the expression will be considered
absolute. If an equal number of relocatable constants are add-
ed and subtracted from the expression then it is still consider-
ed absolute. But if the number of relocatable constants that

are added into the expression is one more than the number of
relocatable constants that are subtracted from the expression
then it is considered relocatable. Any other combination results
in an "INVALID USE OF RELOCTABLE LABELS" error. Examples:

START LD "HL,O sabsolute
ALPHA LD HL,START ;relocatable
LD HL,ALPHA~-START sabsolute
LD HL ,ALPHA-START+START ;relocatable
LD HL,START+START ;invalid

4) Linking Considerations

This section does not have to be read unless you intend to use
LINKER to relocate object programs. Labels that are defined as
external (see pseudo-opcode EXTRN) may not appear in expressions.
External labels may be used as operands only in statements which
will generate two byte values. Any other use of external labels
will cause an "INVALID OPERAND" error. Example:

EXTRN MULT16

LD HL,O

OR C

CALL NZ,MULT16 :valid external reference
RET

DEFW MULT16 svalid external reference

DEFW MULT16+0010H ;inwvalid
DEFB MULT16 :invalid

34

VI. PSEUDO-OPCODES

Pseudo-opcodes are used in assembly language statements but do
not correspond to Z-80 instructions. Labels are always allowed
to appear on those pseudo-opcodes that generate object code.
The use of labels on pseudo-opcodes that do not generate object
code will be discussed for each specific pseudo-opcode of this
nature.

1)

2)

3)

ORG
This statement takes the form
ORG value operand

and instructs the assembler to set the location counter to
the value operand specified. This value will appear in the
location counter field of the listing. Notice that no label
is allowed on this statement. The value operand is always
considered relocatable and may not be an external symbol.

EQU
This statement takes the form
label EQU value operand

and instructs the assembler to set the symbolic label speci-
fied to the value of the operand specified. This value will
be listed in the location counter field of the listing. If
the operand is absolute then the label will be considered
absolute. If the operand is relocatable then the label will
be considered relocatable. Notice that a label is always
required with this statement.

DEFL
This statement takes the form
label DEFL value operand

and instructs the assembler to set the symbolic label speci-
fied to the value of the operand specified. This value will
be listed in the location counter field of the listing. The
difference between this statement and the EQU statement is
that the same label may be DEFL'ed many times to different
values in the same program while an EQU'ated label may only
be set once. This statement has been included in M-ZAL to
allow compatibility with other TRS-80 assemblers although
from a software engineering viewpoint its use is discouraged.

Only the last value of a DEFL label will appear in the sym-
bol table listing. 1If a DEFL label is used as an ENTRY then
it will be known externally only by its last value.

4)

3)

6)

35
END

This statement takes the form
label END value operand

and denotes the end of the source program. Any statements
that appear after an END - statement will be ignored. Both
the label and the operand are optional on this statement.

The operand is used to specify the transfer address of the
object module just assembled. If omitted, the transfer addr-
ess is taken to be the address of the first byte of object
code that the source program generated. The transfer address
will be listed in the location counter field of the listing.
Note that the LINKER always considers a module's transfer
address to be relocatable. The LINKER can also be used to
manually modify a module's transfer address.

The use of a label on the END statement is optional. If

used, the label will take on the value of the current loc-
ation counter.)

DEFS

This statement takes the form

»

label DEFS value operand

and causes the assembler to increment the location counter

by the value of the operand specified. The operand is always
considered absolute. The value of the operand will be listed
in the location counter field of the listing. 1If a label is

used on this statement, it takes on the value of the current

location counter (prior to the incrementing operation).

This pseudo-opcode is commonly used to reserve areas of sto-
rage for variables named in the label field. No object code
is generated by this pseudo-opcode.

BYTES
This statement takes the form

label BYTES value operandl{,value operand2}

and causes the assembler to initialize each byte in a conti-
guous area of storage to the same value. Value operandl spe-
cifies how many bytes are to be initialized (0 is invalid).
Value operand2 specifies the value of each byte. Value op-

erand2 is optional and if omitted its value defaults to 0.
Examples:

BYTES 50,' ' j;generates 50 bytes of blanks
BYTES 4 ;generates four bytes of zeros

36

Both operands are always considered absolute. Labels which
are external (EXTRN) may not be used in either operand. The
listing will only show the first byte generated.

7) WORDS
This statement takes the form
label WORDS value operandl{,value operand2}
and causes the assembler to initialize a contiguous number of
words to the same two byte value. Value operandl specifies
how many 2 byte words are to be initialized (0 is invalid).
Value operand2 specifies the value of each word. Value op-
erand2 is optional and if omitted its value defaults to 0.
Both operands are always considered absolute. Labels which
are external (EXTRN) may not be used in either operand. The
listing will only show the first word generated.
8) DEFB
This statement takes the form
label DEFB value operand> .
and causes the assembler to generate one byte of object code
specified by the operand.
9) DEFW ’
This statement takes the form
label DEFW value operand
and causes the assembler tohgénerate one word (two bytes) of
object code specified by the operand. The word is assembled
in the standard z-80 lsb-msb format (least significant byte -
most significant byte). Therefore the statement
START DEFW 7000H .
will cause a 0 to be assembled at location START and a 70H
to be assembled at location START+1.
The operand of a DEFW statement may be absolute, relocatable,
or external (EXTRN).
10) DEFM

This statement takes the form
label DEFM 'character string!

and causes the assembler to generate a string object bytes
correpsonding to the ASCII codes for each character specified.

AN

37

The character string may be as long as will fit on a source
line. 1If the quote character itself (') is desired as part
of the string then it should be specified as two consecutive
quotes. A special listing format is used when this pseudo-

~opcode appears on the listing to allow for efficient use of

paper.

11) ENTRY

This statement takes the form
ENTRY labell{,label2,label3,...}

and causes the assembler to define each label specified as an
ENTRY into the program. A label which is defined as ENTRY in
one program module can be accessed in other program modules
(where it will be defined as EXTRN).

At least one label operand is required on an ENTRY statement
although you can specify as many as you wish, just seperate
them with commas. If an error is detected while parsing a
label then all the rest of the labels on the line will be
ignored. Each label defined as ENTRY must have a value as-
signed to it somewhere else in the program (i.e.: by an EQU
statement, use on a object code generating statement, etc).

The value of each ENTRY label and its attributes (absolute or
relocatable) are placed in the /RLD file and are available to
the user at "link" time (when the LINKER program is used).

Because the ENTRY statement generates no object code, its
label field must be blank.

12) EXTRN

This statement takes the form

EXTRN labell{,label2,label3,...}

and causes the assembler to define each label specified as
external (EXTRN) to the program. Such labels must not be
defined anywhere else in the program, they can only be ref-
erenced. Labels are defined as EXTRN because their value is
not known at assembly time. All references in the program to
EXTRN labels must be two byte operand references. These ref-

erences will be assembled as zero, but it will be possible to
modify them at "link"™ time.

Each EXTRN label, and all of the references to it, are placed
in the /RLD file and thus passed to the LINKER program.
The references will be automatically resolved by the LINKER
when it merges this program module with another one which
defines the same name as ENTRY. It is also possible to man-

ually set the value of an EXTRN label and resolve its refer-
ences.

38

At least one label operand is required on an EXTRN statement
although you can specify as many as you wish, just seperate
them with commas. If an error is detected while parsing a
label then all the rest of the labels on the line will be
ignored. Because the EXTRN statement generates no object
code, its label field must be blank.

VII. ASSEMBLER COMMAND STATEMENTS

Assembler command statements are used to control the actions of
the assembler during the assembly. They do not generate or af-
fect the generation of object code. All assembler command state-
ments begin with a * in column 1. The command verb follows

the * immediately with no intervening blanks. The available
command verbs are

LIST EJECT SPACE TITLE PAUSE INCL
l) *LIST OFF

If you intend to request a listing at assembly time, but do
not wish to have the entire program listed, this command can
be used. This command causes the assembler to stop producing
a listing until a *LIST ON command is encountered. While ..
*LIST OFF is in effect the only statements that will be list-
ed are those that have errors. Furthermore, any *EJECT,

*SPACE, and *PAUSE statements that are encountered will be
ignored. ‘

2) *LIST ON

This command negates the éffect of the *LIST OFF command just
discussed. *LIST OFF and *LIST ON commands cannot be nested.

The state of the listing is always determined by the last
*LIST statement encountered.

3) *EJECT

If a listing is being generated on the printer then this com-
mand will cause the printer to advance to the top of the next
page (unless it is already at the top of a page). The *EJECT
statement itself is not listed.

4) *SPACE ({value operand}

If a listing is being generated on the printer then this com-
mand causes the printer to advance by the number of lines spe-
cified in the operand. If the operand is omitted then a value
of 1 is assumed. This command will not cause the printer to

advance beyond the top of a new page. The *SPACE statement
itself is not listed.

l

(
\

5)

6)

7)

39

*TITLE 'character string’

If a listing is being generated on the printer then this com-
mand causes the printer to advance to the top of the next page
and print a title line consisting of the character string spe-
cified. Each subsequent page will also be given this title
line (until such time as it is changed by another *TITLE com-
mand). The maximum length of the title character string is

64 characters. The quote character itself may be embedded in
the title character string by specifying it as two consecutive
quotes. If a zero length character string is specified ('')
then all subsequent title lines will be blank. The *TITLE
statement itself is not listed.

*PAUSE

If this command is encountered while a listing is being gene-
rated (to display and/or printer) and the "Wait on Pause" op-
tion was selected then it will cause the assembler to pause.
The user can resume the assembly by hitting the ENTER key
or terminate it by hitting the CLEAR key. The *PAUSE state-
ment itself is listed just before the assembler pauses. All
*PAUSE statements in a program can be effectively ignored by

turning off the "Wait on Pause" option before starting an as-
sembly.

*INCL program module name

This command is a very powerful feature of M-ZAL. Even though
the largest source file that may be edited by TXEDIT is det-
ermined by the amount of memory in your system, the largest
source program that may be assembled by ASMBLR is actually
limited only by the amount of online disk storage in your sys-
tem. This is possible because of the *INCL command, which
stands for INCLude. "

When the assembler encounters a *INCL statement it opens the
source (/ASM) file specified by the statement's operand and
begins taking source statements from the file. When the end
of the file is reached, the assembler continues with the state-
ments following the *INCL statement. This process can be nest-
ed to a maximum depth of 4. It is therefore possible to chain

together several disk source files into one assembler source
program.

Note that the *INCL statement operand is specified in the form
of a module name and that the assembler automatically adds the
/ASM extension to the name specified. If necessary, a disk
drive qualifier can be added to the module name. For example,
the statement *INCL BETA:3 will cause the assembler to open
the disk file named BETA/ASM:3 .

If you attempt to nest *INCL statements more than 4 deep, you
will get an "INVALID OPCODE" error, this is shown in the dia-
gram on the following page.

40

The sample program DEMO02 provided with the M-ZAL system
contains an example of the *INCL statement. The statement
is used to include a source file named ROMEQU/ASM which is
also provided on the M-ZAL diskette. This file contains no
object code. It is a list of EQUates that define the ROM
addresses of useful TRS-80 routines. You may find it useful
to *INCLude this file in your own programs.

Examples of *INCL usage:

PARTA /RS PRRTS /At
STRART

€ \NCL PRXT B°)
1

END
COMPLEX [ASM ONE/ASM Two |ASM TOUR JAS
STRRY - >
3 \NCL OE 2% WCLTWO ‘ [No »NCL
3¢t S\ >¢ WCLTMREE~, A&?@? v
END | | |
SR [ASW THREE [ASM FWE [ASM
> >] | 2~
¥ W Fo NO > WaL

BLLOWED
3% WeLewWe 1 WERE

|

41
VIII. THE ASSEMBLER LISTING

As mentioned earlier an assembler listing can be directed to the
video display and/or printer. When a listing is sent to the
printer it is formatted into pages. Each printed page is number-
ed and given a title line (see *TITLE command). The printer
paper should be setup prior to starting an assembly so that the
first line will be printed at the top of a page. The assembler
assumes that each printed page will contain 66 lines. Therefore
you should set up your printer to print at 6 lines per inch if
you are using 11 inch forms, or 8 lines per inch if you are us-
ing 8% inch forms. (If you use roll paper you can ignore this.)

The assembler listing contains three fields to the left of each
source line. The leftmost field is the location counter field.
Whenever object code is generated this field contains the current
value of the location counter (in hexadecimal). Certain pseudo-
opcodes cause other values to be listed in this field.

The next field is the object code field and contains any object
code generated by the source line. This field is also always
listed in hexadecimal.

The next field is the line number field and contains the line
number of the current source line in decimal. Line numbers are
generated when the source file is created/edited by TXEDIT.

Following the line number field the source statement itself ap-
pears. The assembler always assumes a maximum printer width of
80 characters. If a source statement is too long to fit on the

current print line then it will be continued in column 1 of the
next print line.

If you use DOSPLUS instead of TRSDOS please note: DOSPLUS will
interfere with M-ZAL hardcopy formatting unless the DOSPLUS com-=
mand "FORMS (P=66,L=66)" is issued before invoking ASMBLR.

IX. THE SYMBOL TABLE LISTING

The symbol table listing and/or cross-reference (XREF) can be
obtained by selecting the appropriate options on the full screen
option menu. If no "List to" option is selected then the sym-
bol table listing will appear on the video display. If the
listing is going to the printer then an EJECT will be performed
and the title will be set to correspond to the field headings

of the symbol table. If no labels appear in the assembler

source then the request for a symbol table listing will be ig-
nored.

42

The following is a description of each field provided in the
symbol table listing, from left to right.

Statement of
Definition - The line number (in decimal) of the source
statement in which the label was defined.

Vvalue - The hexadecimal value of the label.

Attributes - The attributes of the label can be any
combination of the following:

R - relocatable E - ENTRY D - DEFL
A - absolute X = EXTRN

Label - The label itself.

XREF (optional) - A list of all the line numbers (in decimal)
that the label was referenced in. The format
is set up for an 80 column printer.

X. ERROR MESSAGES

At the end of an assembly the total number of error messages
produced will be displayed. The possible causes of each error
message are discussed in this chapter. Error messages always
precede the statement that caused them in the listing. It is

possible for one statement to generate more than one error mes-
sage.

1) INVALID LABEL

- The characters in the label field of an assembler language
statement are invalid or form an invalid label. The label
field will be ignored and the rest of the line will be
handled normally.

- A valid label appears in the label field but the pseudo-
opcode specified does not allow labels. The label will be
ignored and the rest of the line will be handled normally.

- No label appears in the label field but the pseudo-opcode
specified requires one.

2) NO OPCODE

The current assembler source statement is missing the opcode
field. A blank source line without a semicolon (;) to mark
it as a comment will produce this error.

3) INVALID OPCODE

The character string found in the opcode field does not form
a valid z-80 opcode, M-ZAL assembler pseudo-opcode, or M-ZAL
assembler command verb. The entire source line is ignored.

This message is also given if an attempt is made to nest *INCL
statements more than 4 deep.

43
4) INVALID OPERAND(S)

At least one operand parsed on the current line was not a
valid operand or not a valid operand for its opcode. This
error will supercede other errors on the same line and causes
the line to be ignored in most cases.

5) UNDEFINED LABEL(S)

- An EXTRN label has been used in an expression.
- A label used in a value operand is undefined. Object code
will be generated using an operand value of 0.

Also note the following:

- A label equated to an undefined value operand will remain
undefined. A label DEFLed to an undefined value operand
will retain its previous value. :)

- An undefined label will not appear in the symbol table cross
reference listing.

- An undefined label which has been specified as ENTRY will
not be placed in the /RLD file.

6) MULTIPLE DEFINED LABEL

A label that has already been defined has been defined again
(' or has been given conflicting attributes. The new value or
- attribute will be ignored. (A remote possibility is that an
. ORG, DEFS, BYTES, or WORDS statement depends upon itself;
" +this is explained in the next chapter.)

7) EXPRESSION OUT OF RANGE

A value operand is too big to fit into the field it was spe-

cified for. The overflow or high-order bits are ignored when
code is generated. If this occurs with the IM or RST opcodes
a value operand of zero will be used to generate code.

8) JR OUT OF RANGE

A relative jump (JR) to a address too far away has been reqg-
uested. The current location counter will be used as the
jump target address instead.

9) & OR < OPERATOR ON RELOCATABLE LABEL(S)

The cause of this error (which is actually a "warning") is
described in section V.3. Statement parsing and code gener-
ation continues but caution should be exercised when reloca-
ting the resulting object code.

10)

11)

12)

13)

44
INVALID USE OF RELOCATABLE LABELS

The cause of this error is described in section V.3. The
value operand will be forced to absolute. A probable error
will occur if the resulting object code is relocated. If
you are doing this on purpose, exercise caution.

NO END STATEMENT

An end of file condition was reached in the assembler source
file before an END statement was encountered. The transfer

address will be set to the location counter of the first byte
of generated object code.

OUT OF MEMORY

Certain functions use variable amounts of memory during the
assembly. The largest user of memory is the internal symbol

table. The "Generate /RLD" and "Symbol table XREF" options
also require extra memory.

This error causes immediate termination of the assembly.

If you do not require the /RLD file or XREF then try run-
ning the assembly again with these options turned off. If
the error still occurs, or if you must have these options _
on, then split the program into two or more parts and link
them together using the LINKER. This process is described
in detail in the LINKER SECTION of this manual.

DOS ERRORS

These errors cause immediate termination of the assembly.

The error message specifies the DOS error code in decimal

as well as the name of the file on which the error was en-
countered. Typical error codes are:

15 - write protect on diskette.

24 - file not found.

27 = disk space full.

28 - attempt to read past EOF. This can occur
if a file has been accidently truncated or
is missing records.

Consult your DOS manual for more details.

45
XI. PHASES OF ASSEMBLY

This chapter describes what happens internally during an assem-
bly. It is not necessary to read this chapter in order to pro-
perly use the assembler.

Each assembly consists of 3 phases. The first phase consists of
one or more passes through the source program. The second and

third phase each consist of one pass through the source program.
The third phase is optional.

1) Phase 1

During the first phase all symbols (labels) are resolved.
The symbol table is constructed. On exit from phase 1 all
the labels that can be defined have been defined.

The assembler will make as many passes as are needed to define
all the labels. For example, the following source program
will cause the assembler to make one pass during phase 1 :

ORG 70008
START LD HL,O :defines START
LABEL EQU START ;defines LABEL
END

’

However, the following program will cause the assembler to
make two passes during phase 1 :

ORG 7000H
LABEL EQU START sneeds definition of START
START LD HL,O ;defines START

END

From the above it can be seen that EQU statements can be
placed in any order in the program and it will assemble
without errors. Many assemblers make only one pass during
phase 1 and would therefore be unable to assemble the 2nd
program shown above. The M-ZAL assembler will make as many
passes as are necessary to resolve such situations. Regard-
less of this feature, the user should try to order EQU state-
ments so as to minimize the number of passes reguired. This

will insure a reasonable assembly speed and will reduce disk
drive wear. '

A very uncommon kind of error can occur because of the multiple
pass feature. This error occurs when an ORG, DEFS, BYTES, or
WORDS statement depends upon a label that depends upon the state-
ment. This recursive definition conflict will cause all the sym-
bols in the affected portion of the program to be multiply def-
ined. Unless you purposely generate this error you should never
come across it. The following is an example of a source program
that contains the recursive definition error:

46

ORG LABEL :loc counter depends on LABEL
START LD A,0

LD HL,O
LABEL LD A,B ;LABEL depends upon ORG which
: depends upon LABEL which....
LAB1 LD HL,O

END

In the above program the value of the ORG operand depends upon
the value of the location counter, but the ORG statement must
set the location counter! 1In this program all three labels
START, LABEL, and LABl1 will have MULTIPLE DEFINED LABEL errors.

2) Phase 2

Phase 2 consists of one pass through the source program.
The assembler listing, the /CMD file, and the /RLD file are
all generated during this phase. Even if none of these op-
tions have been selected, this phase always takes place so
that any errors that exist can be displayed.

3) Phase 3

Phase 3 consists of one pass through the source program and
only takes place if "Object to Tape" or "Symbol table XREF"
have been requested. If a symbol table listing or XREF was
requested then it will be produced at the end of phase 3.

47

LINKER SECTION

I. THE PURPOSE OF THE LINKER

Just as the assembler is a program which processes disk files
containing source text, the linker is a program which processes
disk files containing object code. 1In particular, the linker is
used to create modified versions of object cocde programs, and to

combine several object code programs ("modules") together to form
larger "composite" programs.

Use the linker whenever you want to relocate a program without
having to re-assemble it. To do this you must assemble the pro-
gram once and create an object code file (name/CMD) as well as
a relocation and external symbol file (name/RLD). Once this is
done you can instruct the linker to read in the two files, relo-

cate the object code to a different address area, and then write
out a new object code file. '

Suppose you have a program which makes reference to some value
that you would like to parameterize. For example, a program
designed to run on both a Model 1 and Model 3 machine might need
to make reference to the memory location where DOS stores the

highest memory address. This location is different in Model 1
and Model 3 systems.

A conventional approach to this problem is to reference the loc-
ation symbolically as TOPMEM and use an EQUate statement at the
beginning of the program to set its value. The user must then
assemble the program to create the object code for one machine
configuration, edit the source program to change the TOPMEM EQU-

ate for the alternate configuration, and then re-assemble the
program,

The M-ZAL approach to this problem would be to remove the TOPMEM
EQUate from the program altogether and instead define TOPMEM as
EXTRN (external). The program is then assembled and object code
and relocation/external symbol information is produced. Since
it is an external symbol, the linker can now be used to manually
modify the value of TOPMEM. The user can therefore create sev-

eral different copies of the object code program, each with a
different value for TOPMEM.

This approach yields the same results in much less time than it
would take to perform multiple assemblies. In addition, it makes
it possible to modify the program in the future without requiring
that the source be kept around. This can be a major consideration
when it is not convenient to maintain the source program online.

48

The linker's most powerful function, however, is the combining
of several independently assembled program modules. In this
application, linkage between the modules is accomplished by the
linker through the resolution of EXTRN and ENTRY symbol names.

This facility gives you the ability to make use of general pur-
pose subroutines without having to include the source code for
the subroutines in your main program. You can create a set of
such subroutines, assemble them once, and then re-use them over
and over again in many different applications. It is not even
necessary to keep the source code for such routines, as long as
you have a concise description of how to call them.

The M-ZAL diskette includes several routines of this nature.

These will be used in the examples that follow and you may even
find them to be of general use in your own programs. :

If you have large and complex programming applications you can
break them down into program modules which are smaller and more
manageable and then use the linker to "put the pieces together"
and create the final product. It is even possible to have a
different programmer working on each module. Since the modules
are not assembled together, there is no problem if two of them
end up using the same symbolic name for different purposes. At
the begining of such a development effort the function of each
module is clearly defined and the names of all of the global
symbols (ENTRYs and EXTRNs) are specified.

II. INVOKING THE LINKER

The linker is invoked from DOS READY mode by simply typing in the
command LINKER. The linker will initialize and display its prompt
character which is the plus sign (+). You control the linker by

typing in linker commands whenever the prompt character is pre-
sent. The linker commands are:

BUILD END EXEC INIT LOADA LOADR MAP
ORG SET TAPE TRAN XREF

Whenever the linker completes the execution of any of these com-
mands it always displays the following message:

ORG=xxxxH TRAN=xxxxH UNRESOLVED=nn

These are the three primary linker parameters which you must mon-
itor as you use the linker to build new object files. The ORG
parameter is the next address to which the linker will relocate

a module. The TRAN parameter is the current transfer address
(main entry point) for the composite object program being built.
The UNRESOLVED parameter is the current (decimal) number of un-
resolved symbols. An unresolved symbol is one which appears as

EXTRN in some module which has been loaded but does not yet appear
in any module as ENTRY.

49

III. LINKER COMMANDS

In this chapter each of the linker commands will be described in
detail. After reading this chapter you should proceed directly

to the next chapter in which a sample application of these com-
mands will be demonstrated.

1)

2)

3)

Specify Origin - ORG

The ORG command is used to set the linker's ORG value. The
ORG value represents the next address to which the linker will
relocate a program. When the linker is initialized the ORG
value is set to 7000H which is the standard starting address
for disk-based machine language programs.

To use the ORG command type in ORG followed by one or more
blanks and then the value that you wish to set the ORG to.
The value should be specified as a numeric constant using the
standard assembler language syntax. For example, the command
ORG 7024H would set the linker's ORG value to 7024H. The

command ORG 28672 would set the linker's ORG value to 7000H
(28672D = 7000H). ‘ ‘

Load and Relocate - LOADR

The LOADR command is used to instruct the linker to load in
a (object code) program module and relocate it to the current
linker ORG value. When this command is completed the linker's
ORG value is set to the next address above the module just

loaded and the linker's TRAN value is set to the transfer addr-
ess of the module just loaded.

To use this command type in LOADR followed by one or more
blanks and then the name of the program module that you wish
to load. For example, the command LOADR ALPHA would cause
the linker to load in the object code contained in file
ALPHA/CMD and relocate it to the current ORG value by using
the relocation information in file ALPHA/RLD. Any global
symbols (ENTRYs and EXTRNs) in module ALPHA will be added to
the linker's symbol table.

If desired, a disk drive designator can be added to the module
name. For example, the command LOADR ALPHA:1 would cause

the linker to refer specifically to the files named ALPHA/CMD:1l
and ALPHA/RLD:1l.

Load Absolute - LOADA

This command functions in a manner very similar to the LOADR
command just described. However, the object code is loaded
into memory at whatever address was specified when it was
assembled, no relocation takes place. The linker's ORG value
is not changed by this command. The linker's TRAN value is

4)

5)

6)

50

set to the transfer address of the module just loaded. Since
there is no relocation, the module's /RLD file need not be
available when this command is used. Of course, if it is not
present then no global symbol (ENTRY and EXTRN) information
will be associated with the module.

Display Module Map - MAP

The MAP command causes the linker to display a map of all mod-
ules currently loaded. The map is sorted by the starting add-
ress of each module. The address ranges occupied by each mod-
ule are provided on the map, as well as each symbol which is
defined in the module as either ENTRY or EXTRN. If a symbol
is unresolved then it is prefixed by an "*" in the listing.

puring the execution of this command the linker may be paused
by holding down the SPACE BAR. Once paused, it is necessary
to hit the ENTER key to proceed.

The map can be routed to the printer instead of to the display
screen by adding the operand "P" to the command, thus:
MAP P

Display Symbol Table Cross-Reference - XREF

The XREF command causes the linker to display an alphabeticélly
sorted list of all currently defined symbols. Each symbol is
followed by a list of the modules in which it is EXTRN. If

the symbol has been resolved then its address value is also
shown, as well as the name of the module that it is ENTRY to.
Otherwise, the symbol's address value appears as ???772.

If the symbol has been assigned a value by the user via a SET
command (to be described shortly, hang on) then this is ind-
icated by the words "*USER*SET*" in the ENTRY module name field.

During the execution of this command the linker may be paused
by holding down the SPACE BAR. Once paused, it is necessary
to hit the ENTER key to proceed.

The xref can be routed to the printer instead of to the display
screen by adding the operand "P" to the command, thus:
XREF P

Specify Transfer Address = TRAN

As mentioned earlier, the linker's TRAN value is the main
entry point (transfer address) that the linker will specify

when instructed to create a composite object code file (via
the BUILD or TAPE commands).

Normally this value is equal to the assembled transfer addr-
ess of the last module loaded (via the LOADA or LOADR com-
mands). The TRAN command gives you the ability to set the

7)

8)

51

linker's TRAN value manually. There are two ways to do this.
One way is to use the TRAN command with a numeric constant in
the standard assembler language syntax. For example, the com-

mand TRAN 402DH will cause the linker's TRAN value to be
set to 402DH.

The alternative approach is to specify the TRAN value as the
value of a symbol which is known to the linker. For example,
if you have loaded in a module named BETA which contains an
ENTRY symbol named BETAS then the command TRAN BETA5 will
cause the linker's TRAN value to be set to the address value
of symbol BETAS5 within module BETA. The symbol must be defin-
ed and resolved at the time this command is issued or an error
message will be given.

Create Composite /CMD File - BUILD

This command causes the linker to resolve all external ref-
erences in all modules that have been loaded. If references
exist to a symbol that has not been resolved (symbols are
resolved either manually by the SET command or by loading in
a module that specifies them as ENTRY) then they are ignored.

The linker then creates a composite /CMD file using the name
specified in this BUILD command. This composite will contain
all of the object code from all .of the modules that have been

loaded and will specify a transfer address equal to the link-
er's current TRAN value. Examples:

The command BUILD CHARLIE will create a composite object
code file named CHARLIE/CMD.

The command BUILD CHARLIE:1 will create a composite object
code file named CHARLIE/CMD:l.

Create Composite SYSTEM Tape - TAPE

This command performs the same function as the BUILD command
just discussed except that the composite object code is writ-
ten out to tape in the standard Radio Shack "SYSTEM tape" for-
mat. For example, the command TAPE TEST3 will create a
SYSTEM tape file named TEST3. Make sure that your cassette
machine is setup to "record" prior to entering this command.

Note for Model 3 only: the baud rate (speed) at which tape op-
erations take place is determined by the contents of a special

memory address. Refer to your Radio Shack Model 3 manual for
details.

9)

10)

11)

12)

52
Set Symbol's Address Value - SET

This command allows the user to manually set the address value
for a symbol. For example, the command SET BETAS5 01C9H
will cause the value of symbol BETA5 to be set to 01C9H.

The symbol specified must be known to the linker (i.e.: be
defined as ENTRY or EXTRN in some module) before this command
is entered or an error message will be given. If the symbol
specified was unresolved prior to entering this command then
this action will cause the symbol to become resolved.

On the other hand, if the symbol specified was previously
defined as an ENTRY to some module then the association be-
tween the symbol and the module will be broken (i.e.: the
symbol will no longer be considered an ENTRY to the module
and will no longer appear under the module in a MAP listing).

Any symbol which has been set by this command will be so in-
dicated in the symbol table XREF listing.

Initialize Linker - INIT

This command is used to re-initialize the linker. No operands
are required. All LOADed modules are cleared from memory ~
and the linker's ORG value is reset to 7000H. The linker's
TRAN value is reset to 0 and the symbol table is emptied.

This command makes it poésible to build several different
composite programs with one invocation of the linker. It
also comes in handy when you discover that you accidently

loaded a module into the wrong memory area and need to
"start over."

Terminate Linker - END

This command (which requires no operands) causes the linker
to terminate and return to DOS READY mode.

Execute Control File - EXEC

This command causes the linker to start executing commands
from the CTL file specified. For example, the command

EXEC COMNDS:1 will cause the linker to read and execute
commands from the file named COMNDS/CTL:1l.

The CTL file is any standard text file created by the text
editor program (TXEDIT). It may contain any valid linker
commands except another EXEC command. After the last com-

mand in the CTL file is executed, control returns to the
keyboard.

(‘,
_ B

- 53

1f an error occurs while executing commands from a CTL file
the linker will pause. At such a time you must either hit
the ENTER key to continue processing the CTL file, or hit
the CLEAR key to return control to the keyboard.

Note that the linker will ignore any command line that begins
with a semi-colon (";"). This makes it possible to add
documentation (comment lines) to CTL files.

This command is useful when you are working on a large pro-
gram which consists of several modules. Suppose you have
all of the modules working except one. You have to keep
assembling this last module until you get it working. Each
time it is re-assembled you will probably have to go thru a
lengthy linker session to construct the composite /CMD file
for testing. 1In such a situation you could use the text ed-
itor to create a /CTL file containing the required sequence
of linker commands. Once this is done you need only enter

the EXEC command specifying this /CTL file and the linker
will do the rest.

IV. SAMPLE LINKER SESSION

In this chapter we will demonstrate the usage of the linker in
combining a main program with several external (independently
assembled) subroutines. The main program is the DEMO02 program
which is included on your M-ZAL diskette in source format (DEMOO02
/ASM). You may wish to use the text editor to browse through
this source file right now.

The DEMO02 program is a marginally useful program which turns
your TRS-80 into a hexadecimal - decimal conversion calculator.
It makes use of the general purpose conversion subroutines which
are also provided on your M-ZAL diskette. These subroutines are
packaged into two seperate program modules:

DECCONV - decimal conversion routines
HEXCONV - hexadecimal conversion routines

and are described in detail in the Appendix.

We start by assembling the main program, DEMO02. Use ASMBLR and
be sure the OBJECT TO DISK and CREATE /RLD options are selected.
The main module, DEMO02, is now available. The program is not

usable, however, because it references external routines which
have not yet been linked to it.

Now invoke the linker. Note that ORG is set to 7000H which is
just fine for our purposes. Note also that there are no UNRES-
OLVED symbols at this time, as there are no symbols at all!

Now type in the command LOADR DEMOO02

The linker will load in the DEMO02 module and display the
message: ORG = 71B4H TRAN = 7000H UNRESOLVED = 04

54

Note that the ORG has been updated to the first free address
after the DEMO02 module Jjust loaded, 71B4H. The TRAN value has
been set to the transfer address of the DEMO02 program, 7000H.
Note also that there are now four unresolved symbols. These
are, of course, the external references of the DEMO02 program.
Now type in the command MAP. The linker will display:

MODULE MAP

MODULE NAME ADDRESSES ENTRIES EXTRNS

DEMOO02 7000-71B3 *ADCONV *AH4CONV
*DACONV *HA4CONV

This indicates the addresses occupied by the DEMO02 module, as
well as the external (EXTRN) symbols in the DEMOO02 module. Note
that these symbols are as yet unresolved, as indicated by the *
which prefaces them. Now type in the command XREF. The linker
will display the following:

SYMBOL TABLE XREF

SYMBOL ADDR ENTRY IN EXTRN IN °

. T — —— T — X - - GO e T -

ADCONV 22?? UNRESOLVED DEMOO02 T
AHACONV ??2?? UNRESOLVED DEMOO02
DACONV 2??? UNRESOLVED DEMOO02
HA4CONV ??7? UNRESOLVED DEMOO02

This is an alphabetical listing of all symbols known to the link-
er. At present the only symbols known to the linker are those
that were defined as EXTRN in module DEMO02. They are as yet
unresolved. Now type in the command LOADR DECCONV.

The linker will load in module DECCONV and display the following:
ORG = 7241H TRAN = 71B4H . UNRESOLVED = 02

The first item to notice is that the number of unresolved symbols
has dropped from 4 to 2. The DECCONV module contained as ENTRYs
two of the symbols that were EXTRN in DEMOO2. These symbols are

now resolved. Now type in the command MAP. The linker will
display:

MODULE MAP

DEMOO02 7000-71B3 ADCONV *AH4CONV

DACONV *HA4CONV
DECCONV 71B4-7240 ADCONV DACONV ‘

55

Notice that module DECCONV has been loaded into memory after
module DEMO02, the linker's ORG value is now set to the first
address after module DECCONV, and the linker's TRAN value is
now set to the transfer address of the DECCONV module. The
two symbols ADCONV and DACONV are now resolved as ENTRYs to
module DECCONV. To obtain the actual address values for these
symbols type in the command XREF. The linker will display:

SYMBOL TABLE XREF

SYMBOL ADDR ENTRY IN EXTRN IN
ADCONV 71F6 DECCONV DEMOO02
AH4CONV 27?2 UNRESOLVED DEMO02
DACONV 71B4 DECCONV DEMO02
HA4CONV ???? UNRESOLVED DEMO02

Now type in the command LOADR HEXCONV . The linker will load
in module HEXCONV and display the following:

ORG = 7292H TRAN = 7241H UNRESOLVED = 00
The remaining unresolved symbols have now been resolved. Note
that the ORG and TRAN values have been updated in the usual man-

ner. Now type in the command MAP. The linker will display
the following:

»

MODULE MAP
MODULE NAME ADDRESSES ENTRIES EXTRNS
DEMO02 7000-71B3 ADCONV AH4CONV
DACONV HA4CONV
DECCONV 71B4-7240 ADCONV DACONV
HEXCONV 7241-7291 AH2CONV AH4CONV

HA2CONV HA4CONV

This is now a complete map of the composite object program con-
taining all required modules. Notice that the HEXCONV module
contained two additional ENTRYs that are not referenced. To
get a complete list of all symbols now known to the linker type
in the command XREF. The linker will display:

SYMBOL TABLE XREF

SYMBOL ADDR ENTRY IN EXTRN IN
ADCONV 71F6 DECCONV DEMO02
AH2CONV 726C HEXCONV
AH4CONV 7262 HEXCONV DEMOO02
DACONV 71B4 DECCONV DEMOO02
HA2CONV 7246 HEXCONV
HA4CONV 7241 HEXCONV DEMOO02

56

Now that we have loaded all required modules we are just about
ready to instruct the linker to create (BUILD) the composite
object code file. However, since the last module loaded was
HEXCONV, the linker's TRAN value is set to its transfer address.

We want the transfer address for the composite program to be
the main entry point in the DEMO02 program so type in the
command TRAN 7000H (remember that when DEMO02 was loaded
the TRAN value was set to 7000H). An alternate approach would
have been to load the subroutines first and the main program
last, thus eliminating the need to manually set the TRAN value.

Now type in the command BUILD DEMOCOMP and the linker will
create a new file named DEMOCOMP/CMD containing all of the
object modules loaded. The complete DEMO02 program can now be
loaded and run from DOS READY mode by simply typing in the
command DEMOCOMP.

This entire example can be repeated automatically as a demonstr-
ation of the linker's EXEC command by typing in the linker com-
mand EXEC EXAMPLE . The M-ZAL diskette includes a file named

EXAMPLE/CTL which includes all of the linker control commands
just used.

V. MULTI-EXTENT OBJECT MODULES -
The linker fully supports object modules that use more than one
address range. Such modules are called "multi-extent" object mod-
ules and usually result when the assembler's DEFS statement is
used. For example, the assembler language code

7000 ‘ ORG 7000H

7000 210870 LD HL, (PARAM])
7003 C30C70 _ JP CONTINUE
7006 PARAMO0 DEFS 2

7008 PARAM1 DEFS 2

700A PARAM2 DEFS 2

700C 110C00 CONTINUE LD DE,12

700F B7 OR A

7010 ED52 SBC HL,DE

will generate object code for address ranges 7000-7005 as well as
700C-7011. No code will be generated where space is reserved by
the DEFS statements. If this code were part of a module named

MULTIX which was loaded by the linker, the "map" would look like
this:

- — o ——— — - —— — — — — - - -

MULTIX 7000-7005
: 700C-7011

- 57

As you can see, the linker keeps track of each seperate range of
addresses (called "extents") for each module. A problem can arise,
however, if you place DEFS statements at the very beginning or

end of a program module. Consider the same example with a slight
re-arrangement:

7000 ORG 7000H
7000 210B70 LD HL, (PARAM])
; JP CONTINUE

7003 110C00 CONTINUE LD DE,12

7006 B7 OR A

7007 EDS2 SBC HL,DE

7009 PARAMO DEFS 2

700B PARAM]1 DEFS 2

700D PARAM2 DEFS 2

The "map" nows looks like this:

MODULE MAP

MODULE NAME ADDRESSES ENTRIES EXTRNS

MULTIX 7000-7008

Notice that the linker is not aware of the fact that MULTIX is
using addresses 7009-700E. If you now load another module into
L the linker it will be placed directly after MULTIX and will over-
lay the addresses used by PARAMO, PARAMl, and PARAM2.

One way to avoid this kind of conflict is to manually keep track
of data areas defined with DEFS . A much better way is to not
use the DEFS statement altogether. The BYTES and WORDS
pseudo-ops were implemented in M-ZAL to serve as an alternative
to the DEFS pseudo-op. Because BYTES and WORDS generate

object code, the problem just described does not occur with their
use.

VI. ERROR MESSAGES

The'following is a list of linker error messages, with probable
causes for each:

INVALID COMMAND

This message is given for invalid command verbs, missing
operands, and invalid numeric constants.

MEMORY FULL

This message appears during the processing of a LOADA or
. LOADR command if there is not enough memory to store both
(the object code and the linker's symbol table.

58

SYMBOL IS UNDEFINED

This message will be given if the symbol specified in a
TRAN command is undefined or unresolved. It is also

given if the symbol specified in a SET command is un-
defined.

MODULE ALREADY LOADED

BAD RLD

This message will be issued if you attempt to load the

same module twice. You probably forgot an INIT com-
mand.

FILE

This error can arise during the execution of a LOADA or
LOADR command, or during external symbol resolution while
processing a BUILD or TAPE command. It indicates that
the contents of a /RLD file are not consistent with the
contents of its corresponding /CMD file. This can occur

if you assemble a module and generate both /CMD and /RLD
files, change the source code, and then re-assemble without
regenerating a new /RLD file.

DOS ERROR xxH ON cccceccecece

-

This message indicates that an i/o error has occurred on
the file specified (ccccccccec). The DOS error code is
given in hexadecimal (xx). Typical codes are:

OFE - write protect on diskette.

18H - file not found.

1BH - disk space full.

1CH - attempt to read past EOF. This can occur

if a file has been accidently truncated or
is missing records.

Consult your DOS manual for more details.

59

VII. LINKER COMMAND SUMMARY

All of the linker commands are summarized here, in alphabetical

order:

BUILD TITUTITIMITITIMIMIT Build composite command file named
MMIMMMMMMMM .
END (no operands) Return control to DOS.
EXEC MMMMMMITMTM Execute commands from CTL file named
MMMIMMMMMMm .
INIT (no operands) Initialize.
LOADA MIMMMMMMITTM LOAD Absolute (no relocation performed)
module named mmmmmmMmMmMmM.
LOADR IMMMMIMIMmmnm LOAD and Relocate module named mmmmmmmmmm.
MAP {P} Display module map. P = on printer.
ORG #HHH Set linker ORG to value ####.
SET ccccccee ##%## Set symbol cccccccc to value ####.
TAPE ssssss Build compdsite SYSTEM tape named ssssss.
TRAN $add Set linker TRAN to value ####.
TRAN ccccecece Set linker TRAN to value of symbol
cccecccec.
XREF {P} Display symbol table cross-reference.
P = on printer.
KEY
444 represents a numeric constant.
ssssss represents a tape file name (6 chars max).
ccecececce represents a symbol name (8 chars max).
MMMMIMMMMmm répresents a DOS filespec in "module™ name for-
mat. This is one to eight characters followed

by an optional colon and disk drive designator.
The LINKER will automatically add the appropriate
file suffix depending on the operation. (i.e.:
EXEC LINKFILE:2 references the file named
LINRKFILE/CTL:2 ; BUILD OMEGA creates a file
named OMEGA/CMD).

60

APPENDICES

A. M-ZAL MEMORY USAGE

The ASMBLR and LINKER programs use memory from address 6000H
up to the top of RAM as defined to DOS. The "top of RAM" is
stored in a special location by DOS. This location is usually

referred to symbolically as TOPMEM and is different for Model
I and Model III systems.

Model I TOPMEM = 4049H
Model III TOPMEM = 4411H

When you start DOS it automatically determines the highest addr-
ess in your system and stores this value at TOPMEM. For example,
if you have a 32K Model I system (highest address = BFFFH) then
when you start DOS it will store FFBF at addresses 4049 and 4042
(note lsb first, then msb).

-

You can prevent ASMBLR and LINKER from using memory that you
wish to reserve at the "top" of RAM by modifying the contents of
TOPMEM before invoking them.. For example, if you have a 48K Model
III system (highest address = FFFFH) and you wish to reserve the
top 1K for a special printer driver routine then you would store
FFFB at addresses 4411 and 4412 before invoking ASMBLR or LINKER.

As shipped, the TXEDIT program occupies addresses ABOOH - BDFFH.
The TXEDIT text buffer is stored in memory starting at 5CFOH.
The text buffer can grow until it reaches the start of the editor
itself (ABOOH). The editor thus allows a maximum text buffer in

a 32K system while reserving the top .5K of memory (from BEOO to
BFFF) for the user.

If you wish to reserve more "top of RAM" memory at the expense of

a smaller text buffer, or if you have a 48K system and wish to make
use of the additional 16K then you can do so by relocating the
TXEDIT program. This is described in the next section.

61
B. CUSTOMIZING TXEDIT

There are two reasons for customizing the TXEDIT program. One
of these is to allow it to use more or less memory for the text
buffer, this was explained in the preceding section. The second
reason is to modify the rate at which the auto-repeating control
keys repeat. The first change is accomplished by relocating the
TXEDIT program, the second by changing the value of two variables
within the program. Both customizing changes can be made at the

same time; they are made by passing the TXEDIT program through
the linker.

If you decide to customize TXEDIT then perform the following step
only once. Do not perform this step each time you re-customize.

Rename the copy of the TXEDIT program that was Shlpped on the
M-ZAL diskette by entering the following DOS command:

RENAME TXEDIT/CMD TO TXBASE/CMD

The M-ZAL diskette now contains a matching pair of files named
TXBASE/CMD and TXBASE/RLD. Whenever you wish to create a new
version of TXEDIT you will do so by instructing the linker to
load in module "TXBASE". You will then instruct the linker to
perform the desired customization and create (BUILD) a new file
named TXEDIT/CMD. For example, if, you have a 48K system and

(‘ wish to make use of all available memory for the text buffer you

- would enter the following commands to the linker:

- INIT
ORG OEDOOH
LOADR TXBASE

At this point you would notice that there are two unresolved
symbols. A MAP or XREF command would show that these symbols
are named DELAYl and DELAY2. These external symbols were
defined to allow you to change the control key auto-repeat rate.
To proceed with the example, assuming you do not wish to change
the auto-repeat rate, enter the following linker commands:

SET DELAY1l 3500H
SET DELAY2 2500H
BUILD TXEDIT

END

The above would create a new copy of the TXEDIT program which

makes use of all memory in a 48K system and thus provides the
largest text buffer possible.

Now let us assume that you are a very fast typist and wish to
increase the speed with which the editor's auto-repeating keys

(repeat. This is accomplished by lowering the value of the two

~ external variables DELAYl and DELAY2. (Conversely, you can
slow down the auto-repeat rate by increasing the value of these
variables.) We shall also assume that you have a 32K system and

62

do not wish to relocate the editor. You would create your new
version of the editor with the following linker commands:

INIT

LOADA TXBASE

SET DELAY1 2EOOH
SET DELAY2 1EOO0H
BUILD TXEDIT

END

You may want to try different values of DELAYl and DELAY?
so that you find the most comfortable "action" for your key-
board.

From these examples it should be evident that both auto-repeat
rate and relocation customization can be performed at the same
time,.

IMPORTANT NOTE: When relocating the TXEDIT program, be sure
that it always starts on a 256 byte memory address boundary (in
other words, the low order byte of the starting address (ORG)
must be zero). The editor will not function properly if this
condition is not met. For example, if you have a 32K system and
you need 640 bytes (280H) for a special driver routine, then you
must actually reserve 768 bytes (300H) by relocating TXEDIT so
that it occupies AAQOOH - BCFFH. You will have addresses BDOOH -
BFFFH available for your routine.

¢

As shipped, the TXEDIT program occupies addresses ABOOH - BDFFH.

If you have a 32K system, this gives you 512 bytes (200H) free from
BEOOH - BFFFH. :

63
C. FORMAT OF TEXT FILES

Text files are created by the TXEDIT program and are used as
input to the ASMBLR and LINKER programs. The format of these
files may be different from the format of text files created and
used by other manufacturer's software. The following information
is provided so that you can convert M-ZAL format text files to
and from text files in other formats.

A text file is comprised of one or more physical disk records,
each of which is 256 bytes long. The first two bytes of the
first record contain a value (in standard lsb-msb format) which
defines the size of the file. Subtract 5CF0H from this value
to obtain the total number of data bytes in the file. The data
bytes follow immediately and span as many physical records as
are needed to contain the text. Each line of text is preceded
by three data bytes. The first two bytes contain the binary
value (in standard lsb-msb format) of the line's line number.
The next byte specifies the number of bytes in the line itself,
which follow immediately. Note that the line is stored with
blanks compressed out wherever possible. The data character 09H
is defined to represent a horizontal tab (which means fill
blanks until the next tab position).

After the last byte of the last line of text two bytes containing
FFFFH will appear. ’

Example: The text file containing

N

00010 START LD " HL,O :BEGIN PROGRAM
00020 XOR A '
00030 RET

would be stored in a single disk sector as

byte
off- - Hexadecimal Data Ascii Data
set

00 225D O0A00 1D53 5441 5254 094C 4409 484C "....START.LD.HL
10 2C30 093B 4245 4749 4E20 5052 4F47 5241 ,0.;BEGIN PROGRA
20 4D20 1400 0709 S584F 5209 4120 1E00 0509 MXOR.A
30 5245 5420 FFFF 0000 0000 0000 0000 0000 RET
40 0000 ...

® o 0 8 6800000 50

64
D. FORMAT OF /RLD FILES

A /RLD file is created by the ASMBLR program when the GENERATE
/RLD option is selected. This file contains information that is
used by the LINKER program when it loads the corresponding
object module. The information is used to perform relocation
and external symbol resolution.

The /RLD file contains three kinds of information:

1) A list of location counter values corresponding to
each location in the object code where a relocatable
value was assembled.

2) A list of symbolic names that were defined as
ENTRY in the program, their associated values,
and whether or not they are relocatable.

3) A list of symbolic names that were defined as
EXTRN in the program. For each symbol so defined,
a list of location counter values is also provided.
These values correspond to each location in the
object code where a reference to the associated
EXTRN symbol was made.

A /RLD file is comprised of one or more physical disk records,
each of which is 256 bytes long. The first two bytes of the -
first record contain a value (in standard lsb-msb format) which
defines the number of entries in list 1. A value of zero is
valid here, and would indicate that there were no relocatable
values in the associated object code. The next two bytes con-
tain a value which defines the number of entries in list 2.

Once again, a value of zero is valid and indicates that no sym-
bols were defined as ENTRY in the program. The next two bytes
-contain a value which defines the number of entries in list 3.

A value of zero is valid and indicates that no symbols were def-
ined as EXTRN in the program. These bytes are followed immediat-

ely by the data for list 1, then the data for list 2, and lastly,
the data for list 3.

Each entry in list 1 is a two byte value in standard lsb-msb
format. Each entry in list 2 is 10 bytes long. The first 8
bytes contain the ENTRY symbol name, left justified and padded
on the right with blanks as needed. The last 2 bytes of each
list 2 entry contain the value of the associated ENTRY symbol

in standard lsb-msb format. If the ENTRY symbol is relocatable,
the high-order bit of the last byte of the symbol name is turned
on. Each entry is list 3 is of variable length. The first 8
bytes contain the EXTRN symbol name, left justified and padded
on the right with blanks as needed. The next two bytes contain
a value which indicates the number of references in the object

code to the associated EXTRN symbol. The location counter value
for each of these references then follow.

65
E. FORMAT OF /CMD FILES

A /CMD file is created by the ASMBLR program when the OBJECT
TO DISK option is selected. This file contains the generated
object code in a format which is loadable by DOS. There are
also several DOS commands and utilities (such as the DUMP com-
mand) which create /CMD files.

A /CMD file is comprised of one or more physical disk records,
each of which is 256 bytes long. It is easier to view this
file, however, as containing one or more logical records, each

of which is of variable length. Logical records span physical
records as needed.

The first byte of each logical record defines the record type.
The second byte of each logical record defines the length of
the record by specifying how many data bytes follow. The data

bytes follow immediately and are interpreted depending on the
record type.

Record type 1 (first byte = 0l1H) contains object code to be load-
ed. The first two data bytes (following the length byte) contain
the address (lsb-msb) to load. This is followed immediately by

"n" bytes of object code, where "n"= the record's length byte - 2.

The 2 is subtracted to take into account the 2 bytes of address
information.

»

Record type 2 (first byte = 02H) signifies the end of the /CMD
file and specifies its transfer address. Its length byte is
always 2 and is followed by the 2 byte transfer address (lsb-msb).

Record type 5 (first byte = 05H) is used to add documentation

to the /CMD file. The data in these records is ignored when

the file is being loaded by DOS. The amount of data contained
in such records is variable and is specified, in the usual fash-
ion, by the second byte of the record (the length byte).

No other record types are known to be defined for /CMD files,
though it is generally believed that any record type other than
1l or 2 will be treated in the same manner as record type 5.

Example: The object program:

ORG 7000H
7000 210000 START LD HL,O
7003 AF XOR A
7004 C9 RET
7000 END START

would be stored in a single disk sector as

byte
offset Hexadecimal Data
00 0107 0070 2100 0O0AF C902 0200 7000 0000

10 0000 ...

66
F. FORMAT OF SYSTEM TAPES

A "SYSTEM" tape is created by the ASMBLR program when the
ORJECT TO TAPE option is selected. A "SYSTEM" tape contains
object code in a format which is loadable under the SYSTEM
command of level 2 and disk BASIC.

All TRS-80 tape files begin with a synchronization leader which
is comprised of 128 zeros. The "SYSTEM" file is no exception.
The synchronization leader is followed immediately by a byte
containing 55H. This is followed by 6 bytes containing the
tape filename in ASCII. 1If the filenape is less than 6 bytes
long then it is left justified and padded on the right with
blanks.

The filename is followed by one or more variable length records
which specify the loading of object code. Each of these records
begins with a byte containing 3CH. The next byte specifies the
number of bytes of object code to be loaded. The next two bytes
contain the address at which to load, in standard lsb-msb format.
These are followed by the object code bytes themselves. Finally,
each record contains a checksum byte. This byte is calculated as
the arithmetic sum (with carry ignored) of each object code byte
in the record, as well as the two load address bytes.

The last object code record is followed by a byte containing 7§B.
This indicates the end of the tape file. It is followed immediat-
ely by the transfer address in standard lsb-msb format.

Example: The object program:

ORG 7000H
7000 210000 START LD HL,O
7003 AF - . XOR A
7004 C9 RET
7000 END START

would appear on a "SYSTEM" tape named TEST3 as the following
sequence of bytes (shown in hexadecimal):

<sync> 55 54 45 53 54 33 20 3C 05 00 70 21 00 00 AF CO 09 78 00 70

67
G. HEXCONV SUBROUTINE PACKAGE

The HEXCONV subroutine package has been included in the M-ZAL
system for demonstration purposes and can also be of general
use to the assembler language programmer. The package consists
of 4 hexadecimal conversion subroutines which are all contained
in module HEXCONV. The routines are:

BEA2CONV - convert contents of reg A to ASCII characters repre-
senting the hexadecimal equivalent. Place result in
two byte buffer area pointed to on entry by reg HL.
Increment HL by two and destroy AF.

HA4CONV - convert contents of reg DE to ASCII characters repre-
senting the hexadecimal equivalent. Place result in
four byte buffer area pointed to on entry by reg HL.
Increment HL by four and destroy AF.

AH2CONV - parse two ASCII characters representing hexadecimal
digits into a binary value in reg A. Input string is
pointed to upon entry by reg HL. HL is incremented
by two. Flag status "C" is returned if the input
string is invalid, otherwise flag status "NC" is
returned.

AH4CONV - parse four ASCII characters representing hexadecimal
digits into a binary word in reg DE. Input string is
pointed to upon entry by reg HL. HL is incremented
by four. Flag status "C" is returned if the input

- string is invalid, otherwise flag status "NC" is
returned. Register AF is destroyed.

Example:
EXTRN HA4CONV
START LD DE, (VALUE) ;VALUE TO DISPLAY
LD HL,3CO00H : SCREEN LOC TO DISPLAY AT
CALL HA4CONV ;DISPLAY "VALUE" ON
; SCREEN IN HEXADECIMAL.
RET

VALUE DEFW 28

This code will cause the character string "00lC", corresponding
to the hexadecimal equivalent of 28, to be displayed in the top
left hand corner of the video display.

68
HE. DECCONV SUBROUTINE PACKAGE

The DECCONV subroutine package has been included in the M-ZAL
system for demonstration purposes and can also be of general

use to the assembler language programmer. The package consists
o™ 2 decimal conversion subroutines, both of which are contained
in module DECCONV. The routines are:

DACONV - convert the contents of HL into a five digit unsigned
decimal number, represented in ASCII and placed in the
buffer area pointed to upon entry by reg IX. Increment
reg IX by five and alter no other regs.

ADCONV - parse a variable length ASCII character string represent-
ing an unsigned decimal value into a binary word in reg
DE. The input string is pointed to upon entry by reg HL.
It can be from one to five characters long and must be
terminated by a non-numeric character. Reg HL will be
incremented to point to the terminating character. Reg
AF is destroyed. Flag status "C" is returned if the in-
put string is invalid, in which case reg DE is not alter-

ed. Otherwise flag status "NC" is returned and the value
is returned in reg DE.

Example:
EXTRN DACONV ’ .
START LD HL, (VALUE) : VALUE TO DISPLAY
LD IX,3CO0H ; SCREEN LOC TO DISPLAY AT
CALL DACONV ;DISPLAY "VALUE"™ ON
: SCREEN IN DECIMAL.
RET :

VALUE DEFW 8000H

This code will cause the character string "32768", corresponding

to the decimal equivalent of 8000H, to be displayed in the top
left hand corner of the video display.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf

