TRS-80 BASIC PROGRAM UTILITY
GENERALIZED SUBROUTINE FACILITY
“GSF*

USERS MANUAL

Written For RACET computes By

T.S. JOHNSTON
and
R.D. JOHNSTON

For Use On The Radio Shac@ TRS-80®
Level II BASIC 16-48K Microcomputer System

@ COPYRIGHT 1978, RACET computes, Orange, California

IMPORTANT NOTICE

ALL RACET computes programs are distributed on an "AS IS" basis
without warranty. Neither RACET computes nor the contributor
makes any express or implied warranty of any kind with regard to
this program material, including, but not limited to the implied
warranties of merchantability and fitness for a particular pur-
pose. Neither RACET computes nor the contributor shall be liable
for incidental or consequential damages in connection with or

arising out of the furnishing, use or performance of this program
material.

@ 1978, RACET computes, Orange, California

The Government Law(Title 17 United States Code) has been amended
by a recent Act of Congress, Public Law 92-140, protecting
certain sound recordings against unauthorized duplication. It
is an infringement of this law to copy any properly registered
cassette designated with the copyright notice(e.g. p 1978 RACET
computes, Orange, California).



TRS-80 BASIC PROGRAM UTILITY
GEMERALIZED SUBROUTINE FACILITY
“GSF”
INTRODUCTION

GSF is a system for incorporating machine language programs in
a unified structure that provides easy access by TRS-80 BASIC users.
Included with GSF is a series of 'very useful utility subroutines.
These subroutines extend the power of the TRS-80 by rapidly per-
forming functions that would be slow or impractical to do directly
jn BASIC. GSF resides in upper protected memory.

GSF may be easily expanded by the user to include additional
functions. Instructions are provided documenting the conven-
tions used. RACET computes has additional products incorporating
or utilizing GSF.

The following summarizes the utility subroutines provided with
GSF. A detailed list of subroutines 1s contained in Appendix(A).

. Display Screen Control
Five subroutines are provided for scrolling the screen up,
down, left, right, and for inverse graphic video. This
can add impact to screen displays.

. Draw Horizontal and Vertical Lines
These two subroutines draw horizontal and vertical graphic
lines of any length and location on the screen. The use
of these subroutines dramatically decrease display times.

° Duplicate Memory
Two subroutines are provided to duplicate a byte in memory.
This is useful for setting arrays to zero or rapidly plac-
ing rows or colums of repeated characters on the screen.

. Move Data
’ This subroutine moves data from one location in memory to
another. This can be used to rapidly set one array of data
equal to another or to move data into protected memory.
The latter option provides a "common" area that can be
passed from one BASIC program to another.

. Compress and Uncompress Data

Two subroutines are provided which compress data in memory
by removing repeated characters with the ability to un-
compress the data to the original form. This is useful

in saving and subsequent regeneration of screen images or
other data in the minimum space possible. This, coupled
with the Read and Write Tape Data Subroutines, provides
an efficient method of data storage and retrieval.

° Read and Write Tape Data
Two subroutines are provided to read and write data to
cassette tape. This provides the user with the capability
of reading an entire array or screen image with one
command. No leaders are written between data items thus
significantly reducing read/write times. Data validity
checking is performed to ensure correct data is read,
thus eliminating many data input/output errors.

-1-



(] In-Core Sort
Two subroutines are pruvided for sorting data in memory.
The first subroutine sorts records consistinc of corres-
ponding elements of up to 15 arrays using multiple ascend-
ing or descending sort keys. The second subroutine sorts
records consisting of elements of a character string array
using multiple substrings as ascending and/or descending
sort keys. This sort system is very fast, versatile, and
easy to use.

METHOD OF OPERATION

GSF is a SYSTEM program residing in upper protected memory along
with GSF subroutines. GSF provides the interface between the BASIC
user and the machine language GSF subroutines. GSF allows BASIC tc:

. Determine the number of arguments to be passed to a
GSF subroutine.

° Receive and save arguments required,
® Pass control to the specified GSF subroutine

In addition to the above, a common work area is provided for all
GSF subroutines, thus minimizing storage requirements. Control is
passed to GSF by a series of USR calls as described in the follow-
ing sections.

LOADING GSF

GSF is loaded into memory using the TRS-80 SYSTEM command. The
following steps should be followed to load GSF from tape. Note
that all user input is shown underlined.

1. Power up the system. The power switch can be used or can
be simulated on systems without the expansion interface by
entering the following:

SYSTEM
770

2. Set the memory size when requested:

MEMORY SIZE? 29950 (For a 16K system - use 45784 for
32K systems, 62168 for 48X systems)

3. Prepare the cassette recorder with the GSF tape. See
Appendix(B) for a discussion on tape usage.

4. Execute the following commands:

SYSTEM {User enters SYSTEM)

7GSF (User enters GSF when requested)
?/ (After tape loads user enters a /)
READY §The system responds with READY)
CLEAR User then enters CLEAR)

5. GSF is now ready for use as described in the subroutine
documentation that follows.

GSF can be used with DOS systems by loading from tape as described
above, or by Toading to disk and then to memory. The procedures
for loading to disk and subsequently to memory are described in
detail in Appendix(C).



SUBROUTINE EXECUTION

Each GSF subroutine is executed by performing a series of “USR"
function calls. The USR calls pass the subroutine number to be
executed, integer data, or VARPTR information to GSF. A specific
number of USR calls are required for each GSF subroutine.

The TRS-80 USR function is limited to passing a single argument
consisting of a two byte integer(-32768 to +32767). As a result,
several GSF subroutines require that an address of a data item be
passed as an argument(which is also a two byte integer). The
VARPTR function is used for this purpose as described in the next
section. The mode of the argument required will be clearly speci-
fied in the documentation for each GSF subroutine.

The first USR function always specifies the subroutine number
to be executed. Any additional USR function calls pass the data
or addresses required for each argument. A single BASIC statement
for each USR function call could be issued. However, it fs HIGHLY
RECOMMENDED that ALL USR functions required for a given 6SF sub-
routine be placed in ONE BASIC statement as follows:

var=USR(n1) OR USR(arg#1) OR USR(arg#2) ... OR USR(arg#n)
where:

var represents an Integer variable used to store a retum
value(if any required) from the GSF subroutine.

arg#1,2, represents Integer numbers, variables, absolute add-
...n resses, or VARPTR functions for values being passed
to GSF.

The use of the above technique for calling GSF subroutines is espe-
cially important when the VARPTR function {is used to supply an add-
ress argument. Figure(l) illustrates the above recosmended pro-
cedure.

Purpose: Move the contents(404 bytes) of an array "A" to

array "B“.
Program:
10 DIM A(100),B(100)
20 FOR I=0 TO 100 :REM INITILIZE ARRAY "A"
30 A(I)=1

40  NEXT
: :REM OTHER PROGRAM STATEMENTS
?284)J=USR(14) OR USR(VARPTR(A(0))) OR USR(VARPTR(B(0))) OR USR

vomments: Lines 10-40 illustrate definitions of arrays "A" and
"8", and initilization of array "A". Line 500(a single line)
contains the call to GSF subroutine #14 which moves data from
one location to another. The three additional arguments specify
the source, destination, and quantity of data to be moved.

Refer to the documentation for specific details on the argu-
ments and return values for GSF #14.

Figure(1). Example Recommended Calling Procedure.
-3-



ARGUMENT USAGE

Given below is a discussion of the special considerations for
arguments used with GSF.

A.

Integer Arguments: A1l integers in the TRS-80 system are expresed

as two byte(16-bit) signed values in two's complement notation
(-32768 to +32767). Integers or variables declared to be integers
may be used, for example:

10 DEFINT I-N :REM DECLARES I THRU N VARIABLES
20 INPUT I,J,K :REM AS INTEGERS
30 K=USR(I) OR USR(J) OR USR(K)

The DEFINT statement MUST be used for variables used as arguments.

. Address Arguments: Address data is required by some GSF subrou-

tines. The address can be expressed as follows:

1.

Absolute Address - Addresses within the TRS-80 system are
expressed as two-byte(16 bit) unsigned integers{0 to 65535).
Addresses between 32768 and 65 must be expressed as nega-
tive numbers. The address specifications are summarized below.

Required Expressed As Required Expressed As
0 0 %2733 -32768

1 1 32769 -32767

32767 32767 65535 -1

. VARPTR Address - The VARPTR function is provided to supply an

address of a variable or element of an array, and must be used
with special care. The argument of the VARPTR function is the
variable name or array name with a subscript, ie:

VARPTR(WT) or VARPTR(A(0))

A1l USR functions for a given GSF subroutine should be placed
in one BASIC statement as described in the preceeding section.
This is especially important when VARPTR addresses are used.

Special restrictions apply to the use of character strings with
GSF and should be used only when specifically directed.

The mode for each argument is indicated for each GSF subroutine.
Care must be taken to ensure that the mode and number of arguments
are correct for the GSF subroutine being used.

GSF SYSTEM REINITILIZATION

GSF requires that a sequence of USR functions be issued in a
specific order. If a bad argument is passed to a USR function and
the BASIC program issues an error message GSF is still expecting
the GSF sequence to continue. If the user issues a RUN statement
GSF is not automatically reinitilized and will most 1ikely cause
GSF to be out of synchronization causing unpredictable results.

GSF may be reinitilized by setting the last byte of memory to
zero as follows:

POKE 32767,0 (for a 16K system)
POKE -16385,0 (for a 32K system)
POKE -1,0 (for a 48K system)

It is recommended that the POKE statement be placed at the start
of every program using GSF to ensure that GSF is initialized.

-4-



GSF SUBROUTINE SPECIFICATION AND EXAMPLES

Each of the seven classes of GSF subroutines available are des-
cribed below. The purpose, calling sequence, corments, and examples
for each class are presented.

A.  DisprLAy ScreenN CoNTROL

Purpose: The purpose of these five subroutines is to shift(scroll)
the contents of the display screen one column left or right, one
row up or down, or to invert the video display for any graphic or
blank character. These functions can be used for special effects,
such as a moving bar chart that moves from right to left.

Calling Sequence:

GSF#|Arg#| Mode Description

5 Scroll Screen Up
None| -~ No arguments required.

Retum |0
Value

6 Scroll Screen Down
None| - No arguments required.

Return {0
Value

7 Scroll Screen Left
None| -~ No arguments required.

Retum |0
Value

8 Scroll Screen Right

None| - No arguments required.

Return |0
Value

1 Reverse Graphic Video

1 ]Address [Location of the graphic data to be inverted
(Usually between 15360 and 16383).

2 |Integer |Number of bytes to be inverted.

Return [Address+l of the last byte inverted.
Value

Comments: The first four subroutines require no arguments. A blank
row or column is inserted at the opposite end of the shift. Com-
binations provide for shifting diagonally, ie to the upper right:

10 I=USR(5) OR USR(8)

The reverse video will only invert graphic or blank characters.
Each graphic location will be changed from white to black or reverse.
Blanks are treated as graphic black characters and are also inverted.
Applying the reverse video command twice to the same location con-
verts the display to its original form.

-5



Example #1: This example illustrates the four scrolling subroutines
TGSF #5-8). A message is printed in the lower left corner of the
screen, shifted clockwise several times, and then diagonally to the
upper right off the screen. Line #134 illustrates that it takes

four shifts right or left to equal one shift up or down.

100 REM :SET DISPLAY LOWER LEFT CORNER
102 CLS

104 PRINT 8640, "**aksishikdi

106 PRINT @704,"* *

108 PRINT @768,"* SHIFT IT *"
110 PRINT @832,"* CLOCKWISE*"

112 PRINT @896,"* 0t
114 PRINT @960, " ****kikikhisil
116 REM SHIFT CLOCKWISE 5 TIMES

118 FOR I=1 T0 5

120 FOR J=1 T0 9:  K=USR(5):  NEXT :REM UP 9

122 FOR J=1 TO 51: K=USR(8):  NEXT :REM  RIGHT 51
124 FOR J=1 TO 9: K=USR(6):  NEXT :REM  DOWN 9
126 FOR J=1 TO 51: K=USR(7):  NEXT :REM LEFT 51
128 NEXT

130 REM SHIFT DIAGONALLY UP & RIGHT

132 FOR I=1 TO 16

134 K=USR(8) OR USR(8) OR USR(5) OR USR(8) OR USR(8)
136 NEXT

138 6070 31

Example #3: The purpose of this example is to illustrate the use of
the scroll left subroutine(GSF #7) for generating a moving bar chart.
Line #226 scrolls the screen left one column, leaving room for the
next bar to be plotted. Line #216 draws the vertical bar using

GSF #12(See Section(B)). Standard basic statements are used to put
in the hash marks and bottom scale.

200 CLS: DEFINT I-N
202 1C=1: NV=21: NM=NV/2+1: IN=1: 1S=0

204 REM GENERATE BAR HEIGHTS 10 TIMES
206 FOR LL=1 TO 20: FOR J=1 TO 10

208 IC=IC+RND(NV)-NM :REM USING RANDOM DATA

210 IF IC < 0 THEN IC=0 TO GENERATE BAR HEIGHTS

212 IF IC > 44 THEN IC=44

214 1S=44-1C

216 K=USR(12) OR USR(IS) OR USR(127) OR USR(IC)

218 REM PUT IN HORIZONTAL HASH MARKS
220 SET(127,44): SET(126,44): SET(127,0): SET(126,0)
222 SET(126.11): SET(126,22): SET(126,33)

224 REM MOVE BAR CHART ONE COLUMN LEFT
226 K=USR(7)

228 NEXT

230 REM PUT IN 10-UNIT VERT HASH MARK
232 FOR J=0 TO 47 STEP 2: SET(126,J): NEXT

234 REM PRINT BOTTOM SCALE

236 PRINT @1018,IN;: IN=IN+1: NEXT

238 GOTO 31




B,  HoR1ZONTAL AND VERTICAL LINE SUBROUTINES

Purpose: Two subroutines are provided for drawing horizontal and
vertical lines on the screen. Input specifications are similar to
the SET command with a row number and column number. An additional
specification includes the length of the line to be drawn. The
benefits of these subroutines are the ease with which 1ines may be
specified and the speed inherent in a machine language routine.

Calling Sequence:

GSF#|Arg#| Mode Description

12 Draw Vertical Line

1 Integer|Row number at which the vertical line is to
I start. This number ranges from 0 to 47.

2 |Integer|Column number at which the vertical line is
to start. This number ranges from 0 to 127.

3 |Integer|Length of the 1ine in horizontal graphic
spaces. This number ranges from 1 to 128.

Return |0
Value

13 Draw Horizontal Line

1 |Integer|Row number at which the horizontal line is to
start. This number ranges from 0 to 47.

2 |Integer|{Column number at which the horizontal line is
to start. This number ranges from 0 to 127.

3 |Integer|Length of the line in vertical graphic spaces.
This number ranges from 1 to 48.

Return |0
Value

Comments: Care must be taken to ensure that the line does not
exceed the boundries of the screen. For example:

10 I=USR(13) OR USR(47) OR USR(127) OR USR(2)

would exceed the lower right comer of the screen by one space.
No checking is performed on the coordinates specified so that the
user can destroy valuable system or program areas causing unpre-
dictable results.



Example #3: This example demonstrates the use of the line drawing
subroutines by construction of a grid of lines with numbers printed
within each box. Line #326 & 332 are used to draw the horizontal
and vertical lines spaces six rows and 32 colums on the screen.
Line #348 prints numbers in the boxes using standard BASIC.

300 DEFINT I-N: FORIL =1T05

302 GOSuB 340 :REM GENERATE THE DATA

304 GOSUB 320 :REM GENERATE THE GRID

306 GOSUB 310 :REM DELAY FOR VIEWING PURPOSES
308 NEXT; GOTO 31

310 REM :DELAY SUBROUTINE

212 FOR I=1 TO 500: NEXT: RETURN

320 REM +DISPLAY BOXES

324 FOR I=0 TO 47 STEP 6

32k K=USR(13) OR USR(1) OR USR(0) OR USR(128)
328 NEXT

330 FOR J=0 TO 127 STEP 32

332 K=USR(12) OR USR(0) OR USR(J) OR USR(48)
334 NEXT

336 RETURN

340 CLS :REM PRINT DATA SUBROUTINE
342 FOR I=6 TO 63 STEP 16

344 FOR J=64 TO 1023 STEP 128

346 K=1+J

348 PRINT @K,K

350 NEXT

352 NEXT

354 RETURN

Example #4: This example shows the use of the line drawing sub-
routines by drawing centered 1ines and boxes on the screen. Lines
#422-428 draw double width centered lines. Lines #436-444 draw a
series of boxes within boxes.

400 DEFINT I-N; FOR IL=1TO 5

402 GOSUB 420: GOSUB 310: :REM GENERATE 8 BOXES & DELAY
404 NEXT; GOTO 31

420 FOR N1 =1 TO 10: CLS: [T=0 :REM DRAW .CENTERED LINES
422 J=USR(13) OR USR(23) OR USR(0) OR USR(128)

424 J=USR(13) OR USR(24) OR USR(0) OR USR(128)

426 J=USR(12) OR USR(0) OR USR(63) OR USR(48)

428 J=USR(12) OR USR(0) OR USR(64) OR USR(48)

430 :REM THEN DRAW 8 BOXES

432 FOR N=1 TO 8

434 1B=47-1T: LI=IB-IT+l: JR=127-JL: LJ=JR-JL+1

438  J=USR(13) OR USR(IT) OR USR(JL) OR USR(LJ)

440  J=USR(12) OR USR(IT) OR USR(JL) OR USR(LI)

442 J=USR(13) OR USR(IB) OR USR(JL) OR USR(LJ)

444 J=USR(12) OR USR(IT) OR USR(JR) OR USR(LI)

446 IT=IT+3: JL=JL+8

448 NEXTM

450 RETURN




C.  DupLicAaTE MeMORY SUBROUTINES

Purpose: Two subroutines are provided for propogating a byte through
memory. Starting at a given location in memory the byte at that
location is repeated a specified number of times. The first sub-
routine repeates the byte by incrementing the memory location by

one. The second subroutine performs the same operation but incre-
menting by 64. The later subroutine is useful for drawing repeated
characters vertically on the screen. The first subroutine is use-
ful for drawing horizontal characters on the screen or for zeroing
arrays quickly.

Calling Sequence:

GSF#|Arg#| Mode Description

4 Duplicate Memory Serially

1 |Address|Memory location at which the byte to be dup-
licated is contained. The next N-1 bytes in
increments of one will be set equal to this

byte.

2 |Integer{Number of bytes in the duplicated area(N).

Return |Address of the last byte duplicated +1.
Value

9 Duplicate Memory Incrementally by 64

1 |Address{Memory location at which the byte to be dup-
licated is contained. The next N-1 bytes in
increments of 64 will be set equal to this
byte.

2 |Integer|Number of bytes in the duplicated area(N).

Return |Address of the last byte duplicated +1.
Value

Comments: Care must be taken not to exceed the limits intended
when duplicating bytes through memory. No checking is performed tq
verify the validity of the request.

The later subroutine(GSF#9) is intended specifically for drawing
repeated vertical characters on the screen. For this purpose the
range of 15360 to 16383 may be used. Since every row is separated
by 64 bytes this subroutine will create a vertical column on the
screen. The first subroutine can also be used for drawing hori-
zontal rows across the screen.

The first subroutine is especially useful for clearing an array
to zero. However, no other value may be duplicated in this manner.
In this case the first element of the array to be cleared must be
set to zero prior to using GSF#4. The POKE command may be used
for this initilization as shown in Line #526.



Example #5: This example shows the use of GSF#4 & 9 for drawing
rows and columns of characters on the screen, and GSF#1 for invert-
ing the video display. In this case a decrementing digit is placed
on the screen, propogated horizontally by GSF#4, and vertically by
GSF#9. Note that it was possible to use only one call to GSF#4
(Line 506) to create 8 rows on the top half of the screen. It takes
several calls to GSF#9 to create the vertical columns(Line #512).
Note the use of the POKE command at Lines #504 & 510 for initili-
zation of the first byte prior to the GSF#5 or 9 commands.

500 CLS
502 FOR I=57 TO 48 STEP -1 :REM GENERATE DECREMENTING DIGIT
504 POKE 15360,1 :REM STORE FIRST DIGIT FOR ROW

506 K=USR(4) OR USR(15360) OR USR(512)
508 FOR K=15880 TO 15935 STEP 16

510 POKE K,I :REM STORE FIRST DIGIT FOR COLUMN
512 L=USR(9) OR USR(K) OR USR(8)

514  NEXT

516  GOSUB 310 :REM DELAY FOR VIEWING PURPOSES
518 NEXT

520 :REM NOW FLASH THE SCREEN

522 FOR M=1 70 5

524 CLS: FOR IQ=1 TO 100: NEXT

526 POKE 15360,191

528 J=USR(4) OR USR(15360) OR USR(1024)
530 FOR I1Q=1 TO 100: NEXT

532 NEXT

534 GOTO 31

Example #6: This example illustrates the speed at which an array
can Ee set to zero relative to the normal BASIC technique. A

two byte integer array, a single precicion, and double precision
array are set to zero first using BASIC then GSF#4. Note that all
arrays have one more element than the dimension size due to the
presence of element "0". Each Integer element is two bytes, single
precision four bytes, and double precision eight bytes long.

The lengths required for the arrays each dimensioned to '"250" are
502, 1002, and 2004 respectively. Lines #614-618 illustrate the
GSF#4 calls required. The VARPTR function is used to specify the
location of each array.

600 CLS: DEFINT I-N: DEFSNG S: DEFDBL D

602 DIM IA(25C),SA(250),DA(250)

604 PRINT "SET ARRAYS TO ZERO USING BASIC"

606 FOR I=1 TO 250

608  IA(0)=0: SA(I)=0: DA(I)=0

610 NEXT

612 PRINT "DONE - NOW SET TO ZERO USING GSF"
614 I=USR(4) OR USR(VARPTR(IA(0))) OR USR(502)
616 {=USR$4; OR USREVARPTR$SA§0;3; OR USR luua;
618 I1=USR(4) OR USR(VARPTR(DA(0))) OR ''SP(2M17
620 PRINT "DONE": FOR I = 1 TO 1000: NEXT

622 GOTO 31




D.  Move DATA SUBROUTINE

Purpose: The purpose of this subroutine is to move data from one
ocation to another. This is useful for setting one array equal to
another, moving data or arrays into protected memory(a common area)
and back to user memory, and for setting all elements of an array
to the same value.

Calling Sequence:

GSF#|Arg#| Mode Description

14 Move Data

1 |Address|Address from which data is to be moved.
2 |Address|Address to which data is to be moved.

3 |Integer|Number of bytes of data to be moved.

Return |Address+1 of the last byte of data moved
Value |(ie, Arg#l + Arg#3).

Comments: It is the users responsibility to ensure that the addres-
ses specified and the number of bytes to be moved are valid. Unpre-
dictable results will occur if array pointers, system constants, or
other vital areas are destroyed.

The user should also be cautioned on the use of the VARPTR func-
tion as elaborated in the Arguments Usage Section. The VARPTR
address returned is valid only as long as no additional variables
are created and stored in the symbol/value table.

A very important use of this subroutine is to save data in a
common area to be passed to independent BASIC programs. To use
this feature the user must set the MEMORY SIZE option upon initili-
zation of BASIC. The value set not only depends on the size of
the GSF system, but also on the amount of common area needed by
the user. In this case the common area would be specified by use
of an absolute address as explained in the Arguments Usage Section.

This subroutine can also be used to set one array equal to
another. In this case VARPTR addresses specify the element in
each array at which to start. The number of bytes to be moved must
be calculated from the number of elements in the array and the size
of each element(Integer=2 bytes, Single Precision=4 bytes, and
Double Precision=8 bytes for each element). Character strings
must NOT be moved using this technique.

A given element in an array may be propogated throughout the
array by use of this subroutine. This is a very quick way of
setting all elements of an array equal to a constant value. The
address specified in Arg#2 must be 2,4, or 8 larger than the address
in Arg#1(depending on the type of array). The number of bytes to
move will be 2,4, or 8 smaller than the number of bytes in the
array.

Special care must be taken to ensure that the move operations
do not exceed the boundries of the arrays specified. No checking
for 1limits is performed by GSF. If the limits are exceeded
important system information may be destroyed causing unpredic-
table results.

-11-



Exampie =7: This exampie iilustrates the use of the Move Data Zub-
routine, GSF #14, This includes:

e Setting an array to a constant, This is shown in Lines 706-

710. Note that the first element of the array was set to the
constant desired (1.23). This was then propogated throughout
the array. In this case, 1000 bytes were moved (251*4-4),

Setting one array equal to another. This is shown in Lines
#712-714, 1In this case 1004 bytes were moved starting at
element "0" through "250" (251*4).

Moving an array to a common area. This is shown in Lines
#716-718., The common area is normally protected by MEMORY SIZE,
e.g., MEMORY SIZE set to 25616 (16K; absolute address 25616),
42000 (32K; absolute address -23536), or 58384 (48K; ahsolute
address -7152).

Moving an array from a common area back to user memory. This
is shown in Lines #726-728. The data saved in the preceeding
step are moved to a new array "SC".

700
702
704
706
708
710

712
714

716
718
720
722
724
726
728
730

CLS: CLEAR

PRINT "CLEAR MEMORY & CREATE ARRAYS SA & SB"

DIM SA(250), SB(250)

PRINT "SET SA TO 1,23"

SA(0)+1.23

%=USR§14) OR USR(VARPTR(SA(0))) OR USR{VARPTR(SA(1))) OR USR
1004

PRINT “SET SB=SA"

{=USR§14) OR USR(VARPTR(SA(0))) OR USR(VARPTR(SB(0))) OR USR
1004

PRINT "MOVE SB TO COMMON AREA"

I=USR(14) OR USR(VARPTR(SB(0))) OR USR(25616) OR USR(1004)
PRINT "CLEAR MEMORY & CREATE ARRAY SC"

CLEAR

DIM SC(250)

PRINT "MOVE COMMON DATA TO SC"

I=USR(14) OR USR(25616) OR USR(VARPTR(SC(0))) OR USR(1002)
PRINT"DONE" :FOR I=1 TO 2000: NEXT: GOTO 31

Example #8: This example illustrates saving screen displays in a
common area. Lines #804 & 808 save two displays in common area.
Lines #814 & 818 alternately display the two screen formats. Note
that the display is generated almost instantaneously.

800 CLS: GOSUB 320: :REM GENERATE BOXES

802 REM :SAVE IN PROTECTED MEMORY
804 I=USR(14) OR USR(15360) OR USR (25616) OR USR(1024)
806 CLS: GOSUB 340 :REM GENERATE DATA

808 I=USR(14) OR USR(15360) OR USR (26640) OR USR (1024)
810 REM :ALTERNATE DISPLAYS WITH DELAY
812 FOR IL=1 TC 5: GOSUB 310

814 I=USR(14) OR USR(25616) OR USR(15360) OR USR(1024)
816 GOSUB 310 :REM DELAY

818 I=USR(14) OR USR(26640) OR USR(15360) or USR(1024)
820 NEXT: GOTO 31

-12-



E. Compress AND UNcompress DATA SUBROUTINES

Purpose: The purpose of these subroutines is to create a compressed
copy of an area in memory by eliminating repeated characters. In
particular, the screen display often contains many blanks or repeated
characters that could be compressed into a smaller amount of memory
and then saved along with other screen displays in memory, tape,

or disk. The uncompress Subroutine reverses the process.

Calling Sequence:

GSF#|Arg#| Mode Description

10 Compress Data
Address|Address of the data to be compressed.

2 |Address|Address where the compressed data is to be
placed. This area will, in general, be smaller
than the source area. However, in extreme
cases with no repeated characters this area
could be larger by one byte for every 256
characters being compressed.

3 |Integer|Length in bytes of the area to be compressed.

Returmm |[Length in bytes of the compressed data created
Value (by this subroutine.

11 Unconpress Data
1 |{Address|Address of the compressed data to be uncom-
pressed.

2 |Address|Address where the uncompressed data is to be
placed.

Return [Length in bytes of the uncompressed data creat-
Value |ed by this subroutine.

Comments: This subroutine eliminates only repeated characters that
are adjacent to each other, such as contiguous blanks horizontally
on the display screen. Furthermore, the data to be compressed must
be lTocated serially in memory. The primary anticipated use of these
subroutines is to manipulate screen displays.

The compressed data may be placed in an array or into protected
memory (common area) by the use of this subroutine. Several screen
displays could be stored consecutively and recovered almost instan-
taneously. The value returned by these functions is the length
of the compressed or uncompressed data produced. This value can
be used to calculate the location where the next data can be placed.

Normal screen displays have a storage requirement 2-3 times
smaller when compressed. The area, however, can be larger if no
repeated characters are encountered. In this case, an overhead
of one byte for every 256 characters being compressed must be
considered when allocating storage areas.

-13-



Example #9: This example is similar to Example #8 in that two screer
displays are generated and saved in a common area. The corpress ar
uncompress subroutines are used, however, to save the screen formats
in the minimum amount of space possible, Lines #904 & 912 save the
screens in protected memory. The value "I1" returned in Line

#904 is the storage length required for the first display. This is
used in Line #912 to calculate the starting location fur the second
display. Lines #918 & 924 alternate the redisplay of these formats.
Note that "I2" is used directly in Line #924 although it too could
have been calculated from the return value in Line #918,

900 CLS: GOSUB 320 :REM  GENERATE BOXES

802 REM :COMPRESS & SAVE IN COMMON
904  I1=USR(10) OR USR(15360 OR USR(25616) OR USR(1024)
906 CLS: GOSUB 340 :REM  GENERATE DATA

908 REM :COMPRESS & ADD TO COMMON
910 I2=I1 + 25616 :REM CALCULATE NEXT COMMON
912  I3=USR(10) OR USR(15360) OR USR(I2) OR USR(1024)

914 REM :NOW ALTERNATE DISPLAYS

916 FOR IL=1 TO 3: GOSUB 310
918 I=USR(11) OR USR(25616) OR USR(15360)

920 GOSUB 310

322 1=ySR(11) OR USR(I2) OR USR(15360)

924  gOSUB 310

926  cLS :REM PRINT STORAGE REQUIREMENTS
928  PRINT "UNCOMPRESSED FORMATS REQUIRED 1024 BYTES"

930  PRINT "FIRST COMPRESSED FORMAT REQUIRED ";I1," BYTES"

932 PRINT "SECOND COMPRESSED FORMAT REQUIRED ",I13," BYTES"

934 GOSUB 310: GOSUB 310: NEXT: GOTO 31

Example #10: This example illustrates saving partial screen displays
in arrays. Lines #1006 & 1008 save each half of one display and
Lines #1014 & 1016 save each half of a second display in a douhly
dimensioned array. Note that the order of the dimensions is ritical
since BASIC stores data by rows (first subscript varies fastest).
Line #1022 randomly displays each half display.

1000 DOIM SD(100,3): DEFINT I-N :REM CLEAR & DEFINE MATRIX

1002 GOSUB 340: GOSUB 320 :GENERATE BOXES & DATA
1004 REM :SAVE EACH HALF DISPLAY

1006 I1=USR(10) OR USR(15360) OR USR(VARPTR(SD(0,0))) OR USR(512)
1008 12=USR(10) OR USR(15872) OR USR(VARPTR(SD(0,1))) OR USR(51Z)
1010 CLS: GOSUB 420 :REM GENERATE DISPLAY #2

1012 REM :SAVE EACH HALF DISPLAY

1014 11=USR(10) OR USR(15360) OR USR(VARPTR(SD(0,2))) OR USR{51:
1016 12=USR(10) OR USR(15872).0R USR(VARPTR(SD(0,3))) OR USR(51Z)
1018 REM :RANDOMLY DISPLAY EACH HALF

1020 I=RND(4)-1: J=RND(2)*512+14848

1022 11=USR(11) OR USR(VARPTR(SA(0,I))) OR USR(J)

1024 GOSUR 310

1026 GOTO 31

-14-



£, ReaD AND WRITE TAPE DATA SUBROUTINES

Purpose: The purpose of these two subroutines is to read and write
blocks of cassette tape data. The data written on tape contain no
intermediate leaders, thus shortening input/output times. Data
validity checking is also performed while reading ensuring data
integrity. An ID number is also written with each tape block which
can be subsequently checked during read operations.

Data to be written may be of any length but must be located
serially in memory. Any portion of the data block may then be
read provided sufficient buffer space is made available.

Calling Sequence:

GSF#|Arg#| Mode Description

2 Read Tape Data Block

1 |Address|Location in memory where data read is to be
placed. The area specified must be large
enough to hold the maximum tape block expected.

2 |Integer|Maximum amount of data(in bytes) to be read.
Tape blocks equal to or shorter than this value
will be read successfully. Tape blocks longer
than this maximum will be truncated to this
value.

3 |Integer|Tape block ID number. This number is compared
with the ID number written on the tape. The
operation is terminated and the block skipped
if a mismatch occurs. Specifying zero for this
argument inhibits ID checking(allows any block
to be read).

Return |-1 Tape block ID does not match.

Value |-2 Data read error occurred while reading the
tape block.

>0 Number of bytes successfully read.

3 Write Tape Data Block
1 |Address|Location of data in memory to be written to
tape.

Integer|Number of bytes to be written.

Integer|Tape block ID. Usage is described in GSF#2,
argument #3.

Return |[Address+1 of the last byte written(Arg#l +
Value |Arg#2).

Comments: Data to be read or written may be located anywhere within
memory. An entire array or screen display may be read or written
with one command. This subroutine, coupled with the compress/un-
compress subroutines(#10 & 11) provides for efficient data storage
and retreival.

-15-



Example #11: This example illustrates writing two arrays to tape
and reading of the data recorded. Line #1108 creates tape block #1
from a Single Precision array "SA". Line #1118 creates tape block
#2 from array "SA". Line "1128 is used to read back both blocks.
Note that the number of bytes to be written must be calculated

from the length of the array and the type (101*4 in this case).

1100 CLS: DIM SA(100) :REM CREATE & WRITE #1
1102 FOR I=0 TO 100: NEXT

1104 PRINT "READY TAPE FOR WRITING BLOCK #1 - PRESS 'Y'"
1106 T$ = INKEY$: IF T$<>"Y" THEN 1106

1108 1=USR(3) OR USR(VARPTR(SA(0))) OR USR(404) OR USR(1)
1110 REM :CREATE & WRITE #2

1112 FOR 1=0 TO 100: SA(I)=100-I: NEXT

1114 PRINT "READY TAPE FOR WRITING BLOCK #2 - PRESS 'Y'"
1116 T$=INKEY$: IF T$<>"Y" THEN 1116

1118 I=USR(3) OR USR(VARPTR(SA(0))) OR USR(404) OR USR(2)
1120 PRINT "REWIND TAPE - SET TO PLAY"

1122 FOR J=1 T0 2

1124 PRINT "PRESS 'Y' TO READ BLOCK #;J

1126 T$=INKEY$: IF T$<>"Y" THEN 1126

1128 I1=USR(2) OR USR(VARPTR(SA(0))) OR USR(404) OR USR(J)
1130 IF I < O THEN 1138

1132 FOR I=0 TO 100: PRINT SA(I);: NEXT: PRINT

1134 NEXT

1136 GOSUB 310: GOTO 31

1138 PRINT "TAPE READ ERROR #;I: STOP

Example #12: This example illustrates saving screen displays on
ape in a compressed format. Two screen formats are compressed

and written to tape by the subroutine located at Lines #1230-1236.
The two tape blocks are read, uncompressed, and displayed on the
screen by Lines #1218-1226. If an input/output error occurs during
the operation (detected by a negative return code) then Line #1238
is executed.

1200 CLS: DEFINT I-N: SIM SA(500)

1202 PRINT "TWO SCREEN DISPLAYS ARE GENERATED, COMPRESSED, WRITTEN
TO TAPE, READ, AND ALTERNATELY DISPLAYED"

1204 PRINT "READY TAPE FOR WRITING - 'Y'"

1206 IF INKEY$<>"Y" THEN 1206 :REM GEN,, COMP,, & WRITE #1
1208 GOSUB 340: GOSUB 320: 1IB=1: GOSUB 1230

1210 REM :GEN., COMP., & WRITE #2

1212 GOSUB 420: 1IB=2: GOSUB 1230

1214 CLS: PRINT "REWIND TAPE - SET FOR PLAY - PRESS 'Y'"
1216 T$=INKEY$: IF T$<>"Y" THEN 1216

1218 FOR J=1 TO 2 :REM READ, UNCOMP, & DISPLAY
1220 I=USR(2) OR USR(VARPTR(SA(0))) OR USR(1000) OR USR(J)
1222 IF T 0 THEN 1238

1224 1=USR(11) OR USR(VARPTR(SA(0))) OR USR(15360)

1226 NEXT )

1228 FOR I=1 TO 1000: NEXT : GOTO 31

1230 REM :COMP, & WRITE ARRAY SUB.
1232 11=USR(10) OR USR(15360) OR USR(VARPTR(SA(0))) OR USR(1024)
1234 12=USR(3) OR USR(VARPTR(SA(0))) OR USR(I1) OR USR(IB)
1236 RETURN

1238 PRINT "TAPE READ ERROR #";I: STOP

-16-




3.  In-Core SORT SUBROUTINES

Purpose: Two subroutines are provided for sorting data in memory.
The first subroutine sorts records consisting of corresponding
alements of up to 15 arrays using multiple ascending or descending
sort keys. The second subroutine sorts records consisting of
elements of a character string array using multiple substrings as
ascending and/or descending sort keys.

Calling Sequence:

GSF=|Arg#| Mode Description

17 In-Core Sort - Multiple Variable Mode

i 1 |Address|Address of the string pointer for sort variable
list. This string contains the names of the
arrays to be included in the sort, and ascend-
ing or descending sort sequance requirements.

2 |Integer|Lower limit index of elements in the array to
be sorted.

3 |Integer|Upper limit index of elements in the array to
be sorted. The dimension of the array must be
at least two greater than this value.

Return
Value

Sort completed successfully.

Null string passed for Argument #1.
Missing variable(trailing comma) in Arg#l.
Array specified not found.

Array found not singly dimensioned.

Array too small.

NnHEwhh=-=Oo

18 In-Core Sort - Character Variable Mode

1 |Address|Address of the first element of the character
string to sort. This array must be singly
dimensioned.

Integer{Lower 1imit index of elements in the array to
be sorted.

3 |Integer|Upper limit index of elements in the array to
be sorted. The dimension of the array must be
at least two greater than this value.

4 !Address|Address of the first element of an Integer
array that defines the relative locations,
lengths, and ascending/descending attribute of
each sort key.

Return |0 Sort completed successfully.

Value |1 Argument #4 array not Integer.

2 Argument #4 array not singly dimensioned.

3  No substrings specified in Argument #4.

4 Substring location zero specified(the first
character of a string is specified as "1" -
zero does not exist).

~n

-17-



Comments: More detailed information on the use of the two sort sub-
routines is given below. Remember - arguments must be integer.

A. GSF#17 - In this mode of sorting several singly dimensioned
arrays of any type are connected element by element and sorted.
For example consider the data contained in the following arrays:

DIM NM$(7)  , Sx$(7) . 16(7) . WT(7)
0 |"RON" "M" 46 165
1 |"ARANA" “F" 39 103
Section to 2 CBR‘SS“ Hf o 15 | 340
be 3 e tbow  tl o1 1 1
sorted 4 [eyameys il orEr 1 95
5 ["ScoTT" "M" 39 160
6
7

The arrays to be sorted are specified by Argument#l. This is a
character string that contains the names of the arrays in the
order of importance for sorting. Array names to be checked for
ascending sort sequence are preceeded by a "+", and for descend-
ing sort sequence by a "-". Assume that the above data is to

be sorted with SX$ as the primary ascending sort key("F" records
first,then "M" records), IG descending with NM$ and WT carried
along with no checking. Argument #1 could be specified by:

VARPTR(SP$) where SP$="+5X$,-IG,\M$,WT" (Use Quotes!)

The above example indicates that elements 2-4 only are to be
sorted. These limits are specified in Arguments #2 & 3. Note
that two unused elements were provided at the end of the arrays.
These are REQUIRED for use by the sort subroutine. Elements 0,
1, and 5 not included in the sort will not be disturbed. The
complete GSF calling sequence required for the above example is:

I=USR(17) OR USR(VARPTR(SP$)) OR USR(2) OR USR(4)
The return value "I" should be zero indicating a successful sort.

B. GSF#18 - In this mode of sorting a single character string array
1s sorted. Argument #1 points to the first element of this
singly dimensioned array. Arguments #2 & 3 specify the limits
of the sort similar to GSF#17. Two extra elements must also be
available at the end of the array for use by the sort subroutine.

Argument #4 specifies the location, length, and ascending/des-
cending attributes of each sort key. This information is supplied
in an Integer array as shown below:

0 keys _ '
Sort ey 41 { p|-qg—-| 10T O Rl ToTe Y petitive
i (] et

. . sequence.
Sort Key #N 2'2;& --}gg--- fen - li?ﬁﬁ? of the sort key in

-18-



Example #13: This example illustrates the Multiple Variable mode of
sorting using GSF#17. Four arrays, NM$,5X$,IG, and WT, are {irst
initilized with random data. The useris then prompted for the

sort parameter specification string. The array is then sorted and
printed. Several sorts on the same data can be performed by
changing the sort parameter specification string. Note that tne
arrays are dimensioned to 102. although the data occupies only the
elements 0-100, leaving two extra locaticns needed by the sort
subroutine.

1300 CLS ]
1302 CLEAR(3000): DEFINT I-N :REM OCFINE ARKRA( . % “TRING <pAcE |
1304 DIM NM$(102),SX$(102),15(102%,WT{102;

1306 PRINT "GENERATING ARRAYS

1308 FOR I=0 TO 100 CREM LENDUATD APRA NG
1310  J=RND(10) CAEM AT DATA

1312 FOR K=1 T0 J

1314 NM$(1)=NMS$(I)+CHRS(RND{ <7 +F4d)

1315 NEXT

1318 IF RND(2)=1 THEN SX$(I)="M" ELSE 3X$(I)="F
1320  1G(I1)=RND(100)

1322 WT(1)=RND(100)+100

1324 NEXT: SV$="": PRINT “TNPLUT SORT PARAMFTEDS %M C¥$ 15 AND WTH
1326 INPUT SV$: TIF LEN(SVSj=" THEN

1328 I=USR(17) OR USR(VARPTR(SVS' 0OR 1iSR{D) OR U3R(100)
1330 PRINT "SORT COMPLETED, ~7- “:!

1332 GOTO 132f

Example #14: This example i1l .:7rates tne Lharacte
of sorting using GSF#18. An 27y 0F 10 coent

Each element of this array '
Each 20 byte record is separ

with a blank at the =n.u of

input the location o7 the .
response might be: 2(®)1.47
would sort field defined nv
followed by the field in 1c

1400 CLS

1402 CLEAR(3000): DEFINT I-%- ~“I¥ .3 1.

1404 PRINT "GENERATING ARRAYS"

1406 FOR I=0 TO 100 REM  GUUERATE RANDOM

1408  T$="": FOR J=1 TO 4

1410 FOR K=1 TO 4: T$=T$+ CHRS(PND/5,+64): NE«T: T§=76+

1412 NEXT: PRINT T$: S$(I1)=T$

1414 NEXT

1416 PRINT “INPUT NUMBER OF SORT KEYS ";: INPUT IE(0)

1418 FOR I=1 TO IE(0)*2 STEP 2

1420 PRINT "INPUT KEY #";(I+1)/2;" LOC & LEN";

1422 INPUT IE(I),IE(I+1)

1424 NEXT

1426 PRINT "SORT STARTING"

1428 J=USR(18) OR USR(VARPTR(S$(0))) OR USR(0) OR USR(100) OR USR
(VARPTR(IE(0)))

1430 PRINT "SORT COMPLETED, RC=";J

1432 FOR 1=0 TO 100: PRINT S$(1): NEXT

| 1434 GoTO 31

-19-



USER WRITTEN SUBROUTINES

Introduction: The GSF system has been designed to allow the addi-
tion of user written subroutines. The purpose of this section is
to -document the information required for an experienced assembly
language programmer to utilize the features of the GSF system.

An example is given illustrating the principals involved.

The user must be CAUTIONED that addition of machine language
programs can reduce the integrity of the TRS-80 system. The
TRS-80 BASIC system has many built-in checks to ensure the valid
operation of the system. Machine language programs, unless
carefully designed, can cause unpredictable results.

Method of Operation: GSF provides an interface between the user
and machine language subroutines utilizing the "USR" function as
described in earlier sections of this manual. The general sequence
of steps followed by GSF is:

1. GSF receives the first USR function call containing the
subroutine number.

2. The subroutine number is fetched and its corresponding
three byte transfer vector is located. This vector is of

the form:
DEFB n yn= # arguments
DEFW addr  ;addr= address of subroutine to
H be executed.

3. If no arguments are required(n=0) control is passed by
a jump instruction(JP) to the address specified by "addr".
If arguments are required(n>0) then control is passed
back to the BASIC user with a return value of zero(this
is why the "OR" operator can be used).

4. The user issues as many additional(n) USR function calls
as necessary. Each argument is fetched and saved sequen-
tially in an argument storage area by GSF(area GAV in the
example).

5. When the last argument is fetched GSF passes control to
the routine specified by "addr".

6. The subroutine performs the action required and passes
control directly back to the BASIC user with a RET instruc-
tion(if no return value is required), or by placing the
desired return value in the HL register and returning to
BASIC by executing the instruction "JP QA9AH".

The specific GSF subroutine extracts the needed data directly
from the argument storage area. This technique provides a stan-
dardized calling sequence and simplifies the efforts required to
add machine language subroutines to the TRS-80.

Procedure: The user can add additional subroutines to GSF by
folTowing the steps outline below:

1. Write the program section utilizing the argument storage
area for arguments or temporary data storage.

2. Add the common description block as shown in the example.

3. Add the transfer vectors required. These should be added
from the end backwards(GSF39,38, ... etc.).

-20-



4. Assemble the program using the Radio Shack Editor Assembler.

5. Reset protected memory to a lower value than specified for
GSF to allow room for the additional subroutines.

6. Load the distributed GSF system FIRST using the SYSTEM
command as documented earlier in this manual.

7. Load the new GSF subroutines either immediately after
Step 6. above or by use of a separate SYSTEM load.
Different sets of new GSF subroutines can be loaded
without reloading the initial GSF system.

It is recommended that user written GSF subroutines be assigned
numbers 39,38, ... etc. in order to leave room for additional sub-
routines to be distributed by RACET computes.

GSF occupies the highest memory locations available as shown
below:

Memory Locations Label Description

29950 - 32464 SMEM Existing GSF subroutines
32465 - 32640 GAY Argument storage area
32641 - 32646 Reserved for use by GSF
32647 - 32766 GST Transfer vector area
32767 EMEM Last byte of memory.

The above address are for a 16K system. Add 16384 or 32768 for 32K
or 48K systems. Additional user subroutines must be placed below
SMEM(29950). The area in GAV not used for arguments may be used
as a general work area. The GSF system area declaration section
given in the example is recommended for including in any user
written GSF subroutine.

Example: An example has been included in this section which
illustrates the addition of two user written GSF subroutines. These
two subroutines have been included for illustration purposes only
and are not necessarily recommended for general use. Shown first
is the complete assembly language program for adding GSF #38 and 39.
Thi$ is followed by two basic programs illustrating their purpose
and use.

EXAMPLE USER WRITTEN GSF SUBROUTINE

EXMEM  EQU 0 ;EXTRA MEMORY AVAILABLE
ORG 29950+EXMEM-150 ;START 150 BYTES BELOW SMEM

GSF38  LOCATE ELEMENT IN A SORTED INTEGER ARRAY USING
SEQUENTIAL SEARCH

ARG#1  ADDRESS ARRAY TO BE SEARCHED

ARG#2  INTEGER VALUE TO BE FOUND

ARG#3  INTEGER LENGTH OF ARRAY TO BE SEARCHED
RETURN VALUE INDEX OF THE FIRST VALUE IN THE

ARRAY WHICH IS EQUAL TO OR JUST
LARGER THAN ARG#2. IF THE VALUE
IS LARGER THAN THE LAST ELEMENT
IN THE ARRAY THE RETURN VALUE
WILL BE ONE GREATER THAN ARG#3.

WM U W W W W WY we we e W e e e

-21-



EXAMPLE USER WRITTEN GSF SUBROUTINE(continued)

GFS38

G38A

G388
G38C

G38D

GSF39

G39A
G398

LD IX,(GAV) ;FETCH ADDRESS OF ARRAY

LD BC, (GAV+2) sFETCH VALUE TO BE LOCATED
LD DE, (GAV+4) JFETCH LENGTH OF ARRAY

LD H, (IX+1) ;FETCH ARRAY ELEMENT

LD L,(IX)

OR A ;COMPARE WITH ARG#2

SBC HL,BC

JP PE,G388

JP P,G38D JARG#2 >= ARRAY ELEMENT

JR G38C

JpP M,G38D

INC IX ;ARG#2 < ARRAY ELEMENT

INC IX

DEC DE

LD A,D

OR E

JR NZ,G38A ;TRY NEXT ELEMENT

PUSH X ;CALCULATE INDEX OF ELEMENT
POP HL

LD DE, (GAV) ; (FOUND-BEGINNING) /2

OR A

SBC HL,DE

SRL H

RR L

JP 0A9AH ;RETURN INDEX TO BASIC USER
GSF39 ENCYPHER/ DECYPHER CHARACTER STRING SUBROUTINE
ARG#1  ADDRESS STRING POINTER TO BE ENC/DEC
ARG#2  ADDRESS STRING POINTER TO PASSWORD
RETURN VALUE 0

LD 1Y,(GAV) ;ENC/DEC STRING POINTER

LD C, (1Y) JLENGTH OF STRING

LD H,(1Y+2) JADDRESS OF STRING

LD L,(IY+1)

PUSH HL ;SET STRING ADDRESS

POP . 1Y

LD IX,(GAV+2) ;PASSWORD STRING POINTER

LD E,(IX) ;FIND PASSWORD LENGTH

LD H, (1X+2) sFIND PASSWORD ADDRESS

LD L,(IX+1)

LD (GAV+2) ,HL sREPLACE POINTER WITH ADDRESS
LD A,173 ;SET RANDOM SEED IN "A"

LD HL, (GAV+2) sRESET TO START OF PASSWORD
LD B,E sAND LENGTH RESET

ADD (HL) ;CREATE RANDOM BYTE SEQUENCE
RL A sFROM PASSWORD - A BETTER RANDOM
XOR B ;GENERATOR SHOULD BE USED
INC HL

DINZ G398

LD D,A ;ENCYPHER/DECYPHER BYTE

XOR (1v)

LD (1Y) ,A

LD A,D

-22-



EXAMPLE USER WRITTEN GSF SUBROUTINE(continued)

INC Iy

DEC C

JR NZ,G39A ;LOOP FOR ALL BYTES IN STRING
RET ;RETURN TO BASIC USER

GSF SYSTEM BLOCK DECLARATION SECTION

ORG 29950+EXMEM ;START OF EXISTING GSF
SME EQU ) ;SUBROUTINES
ORG 32465+EXMEM ;START OF ARGUMENT STORAGE
GAV DEFS 176 ;AREA AND WORK AREA
DEFS 6 ;RESERVED FOR GSF
GST £Qu $ ;START OF TRANSFER VECTORS
DEFS 114 ;SKIP TO #38(38*3 = 114)
DEFB 3 GSF#38 THREE ARGUMENTS
DEFW 3SF38 ENTRY ADDRESS
DEFB 2 GSF#39 - TWO ARGUMENTS
DEFW GSF39 3 ENTRY ADDRESS
EMEM DEFB 0 3LAST BYTE OF MEMORY
END 1A19H ;AFTER LOAD BRANCH TO BASIC
Example Use of GSF#38: The purpose of this subroutine is to

search an integer array which is assumed to be sorted in ascending
sequence for the first value which is equal to or larger than a
specified integer.

3800 DEFINT I-N: POKE 32767,0: CLS: DIM IE(10)

33802 J=0: PRINT @0, "INDEX -";: PRINT @64,"ARRAY -

3804 FOR I=0 TO 10

3806 J=J+RND(10): IE(I)=d

3808 PRINT @I*4+10,1; :REM INDEX

3810 PRINT @I*4+74,49; :REM ARRAY TO BE SEARCHED
3812 NEXT

3314 PRINT @192,"INPUT VALUE TO BE LOCATED";: INPUT K
3816 J=USR(38) GR USR(VARPTR(IE(0))) OR USR(K) OR USR(11)
3818 PRINT ©320,"INDEX LOCATED="3;J

3820 GOTO 3814

Example Use of GSF #39: The purpose of this subroutine is to

transform a character string into a string that is encyphered
{scrambled) by use of a password string. The encyphered string can
be decyphered(unscrambled) by the same subroutine and password.

3900
3902
3904
3906
3908
3910
3912
3914

CLEAR 500: POKE 32767,0

PRINT "INPUT PASSWORD";: INPUT P$

PRINT "INPUT STRING TO BE ENCYPHERED";: INPUT S$
J=USR(39) OR USR(VARPTR(SS$)) OR USR(VARPTR(P$))
PRINT "ENCYPHERED STRING=";S$

J=USR(39) OR USR(VARPTR(SS$)) OR USR(VARPTR(P$))
PRINT "DECYPHERED STRING=";S$

60TO 3902

-23-




APPENDIX A

GSF SUBROUTINE SUMMARY

GSF#|Page#|Arg#|Mode Description
1 5 Invert Graphic Video
1 |Address Graphic data to be inverted
2 |Integer Number of bytes to be inverted.
Return Value|0
2 15 Read Tape Data Block
1 |Address Location where data to be placed.
2 |Integer Maximum number of bytes to be read.
3 |Integer Tape Block ID number.
Return Value|-1 Tape block ID does not match.
-2 Data read error.
>0 Number of bytes read.
3 15 Write Tape Data Block
1 |Address Location of data to be written.
2 |Integer Number of bytes to be written.
3 |Integer Tape Block ID number.
Return Value|Address last byte written +1.
4 9 Duplicate Memory Seriall
1 |Address Location of start of data.
2 |Integer Number of bytes to be duplicated.
Return Value|Address last byte duplicated.
5 5 ( Scroll Screen Up
None
Return Value|0
6 5 Scroll Screen Down
None
Return Value|O0
7 5 Scroll Screen Left
None
Return Value|O
8 5 Scroll Screen Right
None
Return Valuel0
9 9 Duplicate Memory Incrementally by 64
1 [Address Location of start of data.
2 |Integer Number of bytes to be duplicated.
Return Value|Address last byte duplicated.
10 | 13 Compress Data
1 [Address Data to be compressed.
2 |Address Where compressed data is to be placed
3 |Integer Number of bytes to be compressed
Return Value|Number of bytes in compressed area.

-24-




GSF#|Page#|Arg#|Mode Description
11 13 Uncompress Data
1 |Address ata to be uncompressed.
2 |Address Where uncompressed data to be placed.
Return Value [Number of bytes in uncompressed area.
12 |7 Draw Vertical Line
1 |Integer Row number for vertical line.
2 |Integer Column number for vertical line.
3 |Integer Length of vertical line.
Return Value|0
13 {7 Draw Horizontal Line
1 |Integer Row number for horizontal line.
2 {Integer Column number for vertical line.
3 J}Integer Length of vertical line.
Return Value|O
14 | 11 Move Data
1 |Address Location of data to be moved.
2 |Address Location where data is to be moved.
3 |Integer Number of bytes of data to be moved.
Returm Value]Address last byte +1 (Arg#3+Arg#1).
15 Fetch GSF Argument
1 |Integer GSF argument # to be fetched.
Return Value|Integer argument saved by GSF.
16 Fetch Memory Word
1 |Address Address of memory location fetched.
Return Value|Integer value at memory location.
17y 17 In-Core Sort - Multiple Variable Mode
‘ 1 |Address Pointer to sort key string.
2 |Integer Start index for sort.
3 |Integer End index for sort.
Return Value{0 Sort completed successfully.
1 Null Argument #1.
2 Missing variable.
3 Array specified not found.
4 Array found not single dimension.
5 Array too small.
18 | 17 In-Core Sort - Character String Mode
1 |Address Pointer to array to be sorted.
2 }Integer Start index for sort.
3 |Integer End index for sort.
4 |Address Sort key parameter list.
Returmn Value Sort completed successfully.

Argument #4 array not integer.
Argument #4 array multi-dimension
No substrings specified.
Substring location 0 specified.

£HWN=O

-25-




APPENDIX B, -- GENERAL NOTES

TAPE USAGE

Software programs purchased from RACET computes should load at the
same volume setting as your standard setting for tapes produced by
your computer. It is recommended that you periodically clean the
head capstan and pinch rollers on your cassette recorder using
commercially available cassette cleaning and demagnetizing acces-
sories. Dirty heads can cause substantial loss of volume and
induce unwanted noise.

Machine language tapes loaded using the SYSTEM command are inher-
ently more sensitive to volume settings than BASIC programs loaded
by the CLOAD command. The user may need to try several cassette
volume levels in order to read the machine languace tapes correctly.
A "C" in the upper right portion of the video display indicates an
incorrect load. The SYSTEM loader checks for data input validity
on each block read. This practically ensures that if the tape
Toads without an indicated error the memory contents will be cor-
rect. BASIC tapes, however, perform only minimal! error checking.
This often results in an apparent successful load (no error mes-
sages) but the contents of memory will be bad. The list command
can be used after loading a BASIC tape to verify the contents of
memory.

RACET computes programs are recorded twice on the same side of
the tape. Although this somewhat more expensive than recording
both directions on a shorter tape, it was felt that this was to
the benefit of the customer. RACET computes tapes are all Toaded
in a five-screw shell, If a tape breaks for any reason, the
cassette shell may be opened, the tape spliced, and the second
recording will remain intact with no gaps resulting from splicing.

TAPE CONTENT AND EXAMPLES

General Subroutine Facilities (GSF) object code is located on the
first two recordings on the tape. This is the code you will be
using with your programs. Following the second recording of GSF
are located two BASIC programs incorporating the examples shown
in this User Manual (stored as "1" and "2"). The first program
includes Examples 1 through 5 and 13 and 14, The second program
includes Examples 6 through 12, Following the initial display,
each of the example programs provides a menu for selecting the
desired displays. The examples in the manual are shown for the 16K
version, Differences are only in absolute memory locations as
follows:

16K 3 ask
32767 -16385 -1

25616 -23536 -7152
26650 -22512 -6128

Each example in this manual is shown to branch back .to the menu
selection portion of the program(GOTO 31).

IF_YOU EXPAND YOUR MEMORY

Users increasing the memory size of their systems can order a larger
version for just the cost of handling - $5.00. Include your sales
receipt, program name, and version required with your request.

-26-



APPENDIX C, — DISK OPERATING SYSTEM PROCEDURES

The following procedures can be used to load and use either the
GENERAL SUBROUTINE FACILITIES or DISK SORT PROGRAM machine language
code while operating under DOS. A1l user input is shown underlined
with the values ‘aaaa', 'bbbb’', 'cccc', and 'ddddd' to be Inserted
as shown in the table below:

SYSTEM VERSION aaaa bbbb ccee ddddd
GSF 16K 74FE JFFF 7E80 29950
32K B2D8 BFFF BESO 45784

48K F2D8 FFFF FE8O 62168

A. LOADING AND EXECUTING SYSTEMS FROM TAPE

1. Bring in TRSDOS user enters BASIC command

2. BASIC user enters BASIC command

3. FHOW MANY FILES? as per user requirements)

4, MEMORY SIZE?ddddd see 'ddddd' in table above)

5. CMD “T" turns off clock)

6. SYSTEM executes SYSTEM command)

7. 7GSF loads system tape)

8. bk bk = BREAK key)

9, DEFUSR=&Hcccc see ‘cccc' in table above)

10. GSF or DSP object code is now ready for use. Access using

USR(arg) commands as described in the user manuals.

B. TRANSFERRING SYSTEMS FROM MEMORY TO DISK
Load appropriate system tape as describ ed in above procedure.

CMD "S" (returns to TRSDOS mode
DUMP_GSF/0BJ (START=X‘aaaa', END=X'bbbb',TRA=X'cccc’
DIR (to verify sk)

on
Tthe name "GSF/0BJ" s not mandatory. "DSP/0BJ" is
suggested for the Disk Sort Program)

C. LOADING AND EXECUTING SYSTEMS FROM DISK

W N -
¢ o o o

1. Bring in TRSDOS CMD "S" to exit BASIC)

2. LOAD GSF/0BJ no quotes)

3. BASIC user enters BASIC command)

4, HOW MANY FILES? as per user requirements)

5. MEMORY SIZE?ddddd see 'ddddd' in table above)

6. DEFUSR=&Hcccc see 'cccc' in table above)

7. CLEAR (must be entered as shown)

8. GSF or DSP machine code is now ready for use. Access using

USR(arg) commands as described in the user manuals.

Note that GENERAL SUBROUTINE FACILITIES or DISK SORT PROGRAM object
code will remain in protected memory as long as the TRS-80 remains
in DOS BASIC. If you transfer from DOS BASIC to the TRSDOS, steps
3-7 in C. above must be repeated when returning to DOS BASIC.

Use normal DOS procedures to load and save programs to disk.

-27-



