The OddJob (0J) Script Language Interpreter

for the 0S-9/68000 and CD/RTOS operating systems

TECHNOTEACHER INCORPORATED

ACKNOWLEDGEMENTS

I would like to thank Victoria T. Newcomb for her typesetting and editorial contributions, and for being understanding about
the many revisions this manual has gone through. I would also like to thank Anders Franzen for his proofreading and editorial
contributions. Finally, I would like to thank the staff and students at the Florida State University Center for Music Research,
and particularly Dr. Peter Spencer, for serving very competently as the test site for OJ.

COPYRIGHT AND REVISION HISTORY

Copyright @ 1990 Technoteacher Incorporated. All Rights Reserved. Reproduction of this document, in part or whole, by any
means, electrical, mechanical, magnetic, optical, chemical, manual, or otherwise, is prohibited without written permission from
TechnoTeacher Incorporated. This version of the OF Manual is licensed for distribution with MM-1 computers only.

This manual reflects Version 4.33 of the OddJob (0J) interpreter.

PUBLICATION EDITOR: Steven R. Newcomb
REVISION: C
PUBLICATION DATE: December, 1990

PRODUCT NUMBER: 0101

DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication. However, TechnoTeacher Inc. will
not be liable for any damages, including indirect or consequential damages from use of the Oddlob (OJ) interpreter,
TechnoTeacher-supplied software or scriptware, or reliance on the accuracy of this documentation. The information contained
herein is subject to change without notice.

REPRODUCTION NOTICE

The software described in this document is intended to be used ona single computer system. TechnoTeacher expressly prohibits
Any reproduction of the software on tape, disk or any other medium except for backup purposes. Distribution of this software,
in part or whale, to any other party or on any oiher sysiem may consttute copyright infringements and misappropriation of
trade secrets and confidential processes which are the property of TechnoTeacher and/or other parties. Unauthorized distribution
of software may cause damages far in excess of the value of the copies involved. The software associated with this manual is
licensed for distribution with MM-1 computers only.

For additional copies of this software and/or documentation, or if you have questions conceming the above notice, the

documentation and/or the software, please contact TechnoTeacher directly at the address given below._ UR——
—) . iR B 1) y 6 fit.
TRADEMARKS = . . oo - emmomom . . LAY

OddJob and OJ are trademarks of TechnoTeacher Incorporated.

0S5-9 and 0§9/68000 are trademarks of Microware Systems Corporation.
CD-RTOS is a trademark of NV Philips and Sony Corporation.

Unix is a trademark of AT&T,

MS-DOS is a trademark of Microsoft Corporation.

-

-

TechnoTeacher Incorporated .
1810 High Road
" Tallahassee, Florida 32303-4408 USA
Telephone: 904 422 3574
Fax: 904~ 2562

Table of Contents

Section 1: INTRODUCTION TO ODDJOB (0J) 1
flow of control 1
string manipulations 2
calculations, variables and functions 2
input/output 2
socket interactions 2
redirection to and from oj variables 3
debugging and optimization facilities 3
system requirements 3
Section 2: INSTALLATION s
Section 3: INVOCATION OF O] 7
Section 4: EXECUTION OF OJ SCRIPTS 9
Step 1: Tokenization of the command line 9
Step 2: Macro substitutions 9
Step 3: Variable substitution (see also Section 6) 10
Step 4: Execution of the command 11
Section §: MISCELLANEOUS SYNTACTICAL FEATURES 13
Section 6: VARIABLE SUBSTITUTION i5
subscripts and array indexes 16

use of the dollar sign in array index substitutions 17

TABLE OF CONTENTS

CALCULATIONAL EXPRESSIONS 21
special functions
charval () 22
devrdy () 22
frac{) 22
gvarnum() 23
hex2dec () 23
index () 23
int () 23
isdir () 23
isfile() 24
isreal () 24
length() 24
lvarnum() 24
max() 24
min() 24
namecmp () 24
oct2dec() 24
rand() - 24
strcmp () 24
SYSTEM VARIABLES 25
error reporting 25
e_panner 25
greturn 25
E_NONiilT, etc. 25
e_msg[Sgreturn) 26
input/output 26
stdout, stderr 26
mpmory management and databaseslike gperations 26
LVARS 26
GVARS 26
LV_NAME[n] 26
GV_NAME[n] 26
LV_CONT[n} 26
GV_CONT[n) 26
miscellaneous 26
argc 27

1ABLE OF CONTENTS

argv{0...n] 27
curscript 27
exitstat 27
systime 27
systimef 27
procid 27

pwd 27
userid 28

socket interaction 28
reply() 28
ereply|[] 28
sendbuf {] 28
Section 9: BACKSLASH-INTERPRETING COMMANDS 29
Section 10: COMMANDS 31
any _OS-9_program_invocation_name external process control 31
alphameric string manipulation 32
arraytok string manipulation 33
bits string manipulation 36
break flow of control 37
calc calculation 38
case flow of control 39
cd, chd miscellaneous 40
chx miscellaneous 41
closefile input/output 42
continue flow of control 43
debug_on/off debugging 44
default flow of control 45
difftime time measurement 46
do flow of control 47
echo_on/off debugging 48
else flokv Bf contrél 49
endif flow of control 50
exit flow of control 51
fprintf input/output 52
goto flow of control 53
if flow of control 54
ignore socket interaction 55
include flow of control 56

iii

TABLE OF CONTENTS

istop

julian

label

local

loop

markt ime

oj

openfile
password
randlist
readfile
redirect
replace
return
seekfile
send

set

set_mbf
set_prior
setrand
set_send_delay
set_waits
show_comlines_on
show_mbfs
show_tokens_on
show_labels
show_vars
socket

sort
spilldev
sprintf
stdin
strip_msb_on
substring
switch
sys_exec_off

tellfile

unset
verbose_on
vrestore
vsave

wait
writefile

flow of control

time measurement
flow of control
memory management
flow of control

time measurement
flow of control
input/output

socket interaction
random numbers
input/output

external process control
string manipulation
flow of control
input/output

socket interaction
string manipulation
socket interaction
external process control
random numbers
socket interaction
socket interaction
debugging

_socket interaction/debugging

debugging
debugging
dcbugging

socket interaction
string manipulation
user interaction
string manipulation
user interaction
socket interactions
string manipulation
flow of control
debugging
input/output

memory management
socket interaction/debugging

memory management/ data storage
memory management/ data storage

miscellaneous
input/output

iv

TABLE OF CONTENTS

Section 11: INTERACTIVE SCRIPT DEBUGGER 107
? 107
$ 107
b 107
b scriptname 107
b scriptname\line_number 108
b line_number 108
c calculational_expression 108
el ' 108
e0 108
£ 108
g 109
g scriptname 109
g scriptname\line_number 109
g line_number 109
i 109
k bbreakpoint_number 109
k * 110
1 110
1 line_number 110
1 text_file_name 110
1 text_file_name\line_number o110
n 110
n number 110
p variable_name 111
q 111
r 111
sl var_to_set = strings... i1
sg var_to_set = strings... 111
Section 12: ERRORS 113
QUICK REFERENCE 715
INDEX . o 115

TABLE OF CONTENTS

This page deliberately left blank.

vi

Introduction to Ode ob

OddJob (OJ) is an interpreter for programs written in the OJ script language; this manual
describes the OJ language and the features of the OJ interpreter. The purpose of OJ is to
make life easier for users of the 0S-9/68000 and CD-RTOS operating systems.

You are, no doubt, already familiar with the idea of a “shell script,” which is simply a list
of program invocations (tasks) for the computer to do, in the order in which they appear in
the script, together with certain directives to the shell program itself. When the shell program
interprets a “shell script,” it simply reads the shell script file line by line, and executes what
is written on each line just as if it had been typed at the shell prompt. (If you are not
familiar with the shell or with the concept of a shell script, it would be a good idea for you
to read about the shell program in your OS-9/68000 operating system manual.) If you are
familiar with the MS-DOS world, it might help you to know that a shell script is very much
like a .BAT file in DOS.

OJ is not currently configured as a shell; it does not offer an interactive shell prompt to the
user. Instead, it is a programming language which greatly expands the number and complexity
of tasks possible to have accomplished automatically under the OS-9 operating system. It
also offers special facilities which no DOS programming language can offer, which take ad-
vantage of OS-9’s real-time multitasking and true piping capabilities. OJ perhaps most closely
resembles the Unix C-Shell script language, but it includes within itself several of the features
of several other Unix utilities, such as chat and awk. OJ's handling of variables and its
string-processing facilities are especially awk-like, with its arbitrarily associative variable lists,
sprintf, fprintf, and substring commands, and its index () function. Pro-
grammers who are already familiar with both the C language and awk will find OJ particularly
easy to learn.

FLOW OF CONTROL

The OI interpreter supports very genéralized structured flow-of-control commands. These in-
clude if, else, endif, switch, case, default, break, loop, and con-
tinue, which work very much like their counterparts in the C language. It also supports
an unstructured goto command. Subroutine calls and returns can be made with the in-
clude, argumented do, and return commands.

Section 2:INTRODUCTION TO ODDJOB (0J)

STRING MANIPULATIONS

The OJ string manipulation command set includes set (which offers several string processing
options), arraytok, replace, alphameric, substring, and sort.

CALCULATIONS, VARIABLES AND FUNCTIONS

OJ supports double-precision floating-point calculations, n-dimensional arrays of variables, and
the same set of arithmetic and logical operators as is found in the C language. Special
functions available within calculational expressions include index (), namecmp (),
stremp (), length(), rand(), charval(), min(), max (), devrdy (),
oct2dec(), hex2dec (), frac(), int (), isdir (), isfile (),
isreal(), lvarnum(), and gvarnum(). There are two classes of user variables:
local (to the current script) and global. Random numbers, arrays of repeatable and non-re-
peatable random numbers, and automatic and manual random-number seeding are provided.
Convenient means are provided (vsave and vres tore) to save and restore the contents
of variables to and from named disk files.

There are :- .ial system-reserved pseudo-variables and arrays of pseudo-variables: ex-
itstat, argc, e_banner, pwd, systime, systimef, procid, userid,
sendbuf (], reply|[], ereply[], greturn, stderr, stdout, argv(],
curscript, LV_NAME[], GV_NAME[], LV_CONT[], GV_CONT[], LVARS,
and GVARS, and pseudo-constants used for identifying and interpreting error conditions:
E_..., e_msgl[].

INPUT/OUTPUT

There is a convenient (and very C-like) set of input/output commands, including fprintf,
openfile, closefile, readfile, writefile, seekfile, and tellf-
ile. To write to the console, fprintf $stdout or fprintf $stderr are
normally used.

SOCKET INTERACTIONS

With its unique “socket-interaction” command set, OJ is able to support scripts which are
intended to simulate the behavior of an interactive user of one or more simultaneously-active
processes. Such processes can be running both on the local computer and on remote com-
puters. For example, a script can be used to operate a local interactive process which would
otherwise require tedious or repetitive attention from a human operator, and it can be written
in such a way as to occasionally consult another process (e.g., an interactive Prolog environ-

Iy CAMLG 4 N A RNIINY ANJ NSAcaS PSS (A

ment) running locally or remotely. The socket interaction command set includes
set_waits,set_send_delay,ignore,send,socket,set_mbf (sct
nmmhbMRn,password,show_mbfs(ﬂmwnmmhbM&mLstrip_msb;on,md
strip_msb_off. For debugging socket interactions, verbose_on and ver-
bose_off commands are provided.

REDIRECTION TO AND FROM OJ VARIABLES

If the interactive control offered by the socket interaction commands is not needed, the re-
direct command allows processes to be launched in such a way that their standard input
and output streams are directed from and/or to OJ variables.

DEBUGGING AND OPTIMIZATION FACILITIES

There is an interactive script debugger, with commands for setting and killing breakpoints,
listing files, inspecting and setting variables, displaying status, elc.

In addition to the debugger, there is a debugging command set which includes
debug_on(_off) , show_vars » show_labels , echo_on(_off) ,
show_tokens_on(_off) , show_comlines_on(_off) , and
sys_exec_on(_off).

Elapsed time measurement commands include markt ime, difftime, and julian.

Other miscellaneous commands include chd, chx, set_priox(ity), and wait.

SYSTEM REQUIREMENTS

As supplied for use with MC68000-based systems, the OJ executable module is about 85
kilobytes in size. [Each OJ process requires about 12 kilobytes of RAM in order to be
launched; the amount of memory used after that depends entirely on how manvy variables and
labels are used, and how much data each varizb’e mus accommodats. There is no buili-in
limit on the number or size of veriables *hat ©7 can seopost. (The memory allocated o a
variable can be recovered for re-use by OJ via e ur.- =t comrmars .,

Section 2:INTRODUCTION TO ODDJOB OJ)

This page deliberately left blank.

Installation

Any last-minute notes about installation and operation of OJ are in the README file on
your OJ disk. Read it first.

Your installation disk has an OJ script on it which will assist you in installing OJ on your
0S5-9/68000 computer system. It’s easy to do; merely execute the installation script and an-
swer the questions it asks you interactively.

To execute the installation script:

(STEP1) Log into your system as the super-user (user number 0.0).
(STEP2) Insert the installation disk into your floppy disk device (e.g., /d0).

(STEP3) Change your current directory to the root directory of that Sfloppy disk device:
0S-9: chd /4o

(STEP4) Load oj:
0S-9: load -4 oj

(STEPS5) Execute the install script:
0S-9: oj install

From here on, you will be asked several questions about where you want various things to
be put on your hard disk, etc. When these questions have been answered, the install script
will handle the tedium of installing the program.

The install script will copy the OJ program itself to the directory you specified, create a
Gefault directory for OJ scripts, copy some sample scripts to that directory, edit your .login
file so as to set the OJ_PATH environment variable, etc.

Alternatively, if yov do not choose to use the z::omatic installation script, you may install
¥ yourself as follows:

Section 3:INSTALLATION

(1) Copy OJ to a directory of executables. Having.copied OJ to its new directory, make

2

A3)

4

5

sure OJ’s execute permissions are set correctly, and make sure your .login file (see
the OS-9 manual regarding the /dd/SYS/password file) sets the PATH shell environ-
ment variable in such a way that OS-9 will look in that directory for OJ when it is
invoked. (Here at Technoteacher, Inc., we always place executables not supplied with
the 0S-9/68000 operating system in a directory called /dd/USR/CMDS. In fact, we
put everything not supplied by Microware in /dd/USR, because that enables us to
update the entire operating system without first having to extract from the old version
and re-insert into the new version all the files that were not supplied by Microware.)

Copy all the scripts from the [floppy disk device/SCRIPTS directory to a directory on
your hard disk which you have set aside for such scripts. At Technoteacher, Inc.,
we use /dd/USR/SCRIPTS for this purpose.

Copy the contents of the [floppy disk devicefDOC directory to your documentation
directory. At Technoteacher, we use /dd/USR/DOC for this purpose. If disk space
is in short supply, you may wish to copy only the ojdb.doc file, which is automatically
read when the ? debugger directive is issued.

Edit your .login file in such a way that the OJ_PATH shell environment variable is
set to the full pathnames of the directories in which you wish OJ to look for exe-
cutable scripts. Presumably, one of these will be the one you used in step 2, above.
See Section 3 of this manual for more information about OJ_PATH. If the OJ_PATH
shell environment variable has not been set, OJ will look first in the current data
directory, and then in /dd/USR/SCRIPTS; it is just as if there were the following line
in your .login file:

setenv OJ_PATH .:/dd/USR/SCRIPTS

Edit your .login file in such a way that the OJ_DOC shell environment variable is
set to the full pathname of the directory where you put all the OJ documentation.
For example, you might insert the following line:

setenv OJ_DOC /dd/USR/DOC

However, if you put the documentation in /dd/USR/DOC, it is unnecessary to set the
0J_DOC environment variable at all. OJ will look there by default if the OJ_DOC
shell environment variable has not been set.

Invocation of O]

Normally, one invokes OJ as follows:

0S-9:

oJ (opts) name_of script (args_to_script) (opts)

Options governing the operation of OJ all begin with two hyphens (--); this allows OJ
scripts themselves to have options that begin with a single hyphen. However, like most 0S-9

utilities,

0S-9:

oj -?

will cause a usage statement to be displayed. OJ’s options are:

-2

--b

Show an OJ invocation line synopsis.

Specify the size (in bytes) of the buffer to be used for reading the script
itself and all scripts done or included by the script. The minimum
buffer size is 512 bytes. The purpose of the --b option is to allow you to
minimize memory usage when running large and/or highly recursive scripts,
at some sacrifice in execution speed. In the absence of a --b option, each
script will get a buffer just big enough to accommodate the entire script; this
reduces execution time by minimizing disk accesses, especially during itera-
tions of large 1oops.

/!
Operate in debug mode. See Section 11.

Force echoing of each execuiszhle lirz to the console, overriding any
echo_off. (See the discussior of the =cho_on commang.)

Prohibit verbose output, cverridi=r any ~=rhose_~. (3ee the discussicn
of socket, send, and relat=? comm--ds.

Force verbose output, overriding zny verbose_c .. (See the discussion
of socket, send, and relate? commands.) Also affects the wait com-
mand.

Section 4: INVOCATION OF 0J

--X Prohibit system command execution, overriding any sys_exec_on. (This
prevents all separate programs normally invoked by the script from actually
being invoked.) .

OJ may be instructed to look for scripts in any directories. Use the “setenv” command at
an OS-9 shell prompt (it is best to do this in your /dd/startup or your own .login file):

0S-9: setenv
OJ_PATH.:/h0/usr/scripts:/h0/usr/srn/scripts

The above setting of the OJ_PATH shell environment variable causes OJ to look first in the
current working (i.e., data) directory for scripts, then in /hO/usr/scripts, and finally in
/h0/usr/srn/scripts.

If you (ion’t do a “setenv OJ_PATH ... ,” OF will look first in the current working directory,
and then in /dd/usr/scripts. Of course, if you provide the full pathlist of the script, beginning
with a slash and a device name, that will be the only script file OJ will attempt to open.

Alternatively, you may set a local and/or a global variable within an OJ script, which will
override the effect of any environment variable you set with setenv at an OS-9 prompt:

inside a script now
set OJ_PATH =..:/h0/usr/scripts:/h0/usr/srn/scripts

Execution of OJ Scripts

The OJ interpreter executes actual command lines as they appear in a given .0j script. There
is exactly one command at the beginning of each line.

For each line, the interpreter does the following four things in order:

(1) tokenizes the command line;
(2) performs macro substitution;
(3) performs variable substitution;

(4) "executes the command.

STEP 1: TOKENIZATION OF THE COMMAND LINE

The command line is scanned for its “tokens,” the smallest units meaningful to the interpreter.
Tokens are separated by whitespace (i.e. any number of spaces and/or tabs). To include
whitespace characters in a token, surround the entire token with double quotation marks. Dou-
ble quotation marks which surround tokens are discarded. To include a double quotation
mark within a token, precede it with a backslash (ie., \ ").

example showing tokenization

token0 tokenl "This is all token2"

token0 *"This \"token\" contains double quotation
marks" ;

STEP 2: MACRO SUBSTITUTIONS

The macro substitution feature of QJ provides the only way to create multi-token arguments
with a single symbol. To set up a macro, first set a variable to the string you don’t want
to write repeatedly:

set the variable ."my_error"
sprintf my_error \
"fprintf $stderr \"this program aborted because %%s\n\""

Now, $my_error will contain:

Section 5: EXECUTION OF OJ SCRIPTS

fprintf $stderr "this program aborted because %s\n"
Thereafter, the command line:

$ (my_error) "I klew it"
will (before it is execuied) auiomatically szcome:

fprintf $stderr "this program aborted because %s\n" "I blew it*

Note the use of parentheses in “$ (my_error).” The parentheses indicate to the inter-
preter that macro substitution must be done. Note that in the example above, a single token,
$ (my_error), became three tokens as a result of macro substitution.

¢
Multi-line macros are not supported. The entire macro must take place on one and only one
line. (It will not do any good to use a \ character in your efforts to make a longer line.)
Neither recursive macros nor argumented macros are supported.

STEP 3: VARIABLE SUBSTITUTION (see also Section 6)

Tokens that begin with $ are assumed to consist entirely of a $ immediately followed by
the name of a variable to which a value has already been assigned. (Any command that
assigns a value to a variable will create that variable if it does not already exist.) In this
third step, whenever encountered, such a token is replaced by the content of the variable
whose name follows the $.

A variable name may be any length, and must begin with an alphabet character of either
upper or lower case; thereafter it may contain any combination of the following characters
only: any alphabet characters of either case, any numeric characters (0 through 9), periods
(.), underscores (_), and left and right square brackets ([and]).

The square brackets are treated as array index operators (see Section 6 for a discussion of
arrays). ,

The contents of all variables are actually strings, even if their content is numeric. If the
variable name given after a $ does not exist, OJ will abort (or, if OJ was invoked with the
--d option, give the user an OJdb: [interactive debugger] prompt); therefore, you must
always be sure to set a variable to some (any) value prior to the time OJ encounters it with
a § before it. If the variable does exist, the content of that variable (a string) will be
substituted for the token.

Because r~-tain commands must perform character substitutions (see Section © ‘heir variable

10

section 8: EXECU1tON OF Oy ookIPTS

substitutions are not done in this step 3; rather, they are done later during exccution of the
command-specific software in the interpreter. Generally this doesn’t make any difterence,
except that it does give you a way to avoid variable substitution altogether: if you are using
a backslash-interpreting command and you must begin a token with S, precede the $ with
. a backslash.

For more information about variable substitution, see Section 6.
There are two classes of variables in OJ: local (i.e. local to the current script) and global

(i.e., available to all called and calling scripts). For more information, see the discussions of
the local, do, return, and include commands.

STEP 4: EXECUTION OF THE COMMAND

Generally speaking, a particular portion of the interpreter software is associated with each
particular command in the OJ language, and this portion is called only after all three steps
outlined above are completed.

11

Section S: EXECUTION OF OJ SCRIPTS

This page deliberately left blank.

12

Miscellaneous Syntactical Features

COMMENTS

Any token beginning with a # is ignored, as are all following tokens on that file line.
Therefore, comments are preceded by a #.

IDENTIFIER

All OJ scripts must begin with a comment line; the first character of any OJ script must be
#. This is to protect against having a disk savaged by OJ inadvertently executing something
other than an OJ script.

CONTINUED LINES

A command line may be continued on the next file line, if it gets too long, by ending the
line to be continued with a token consisting of a single backslash. A single command line
can thus extend over any number of file lines. For example:

WILL WORK:

set somevar = "This will work just fine " \
"because I am breaking the line " \
"on token boundaries.®

WON'T WORK:

set somevar = "This will not work because \
I am attempting to break up a single token \
into several lines."

WHITESPACE

Tab characters and spaces that do not occur within tokens are regarded as whitespace and
are discarded. It is perfectly ok to use any amount of whitespace at the beginning of any
command line, as well as between any two tokens. This makes it easy to show program
structure, for example, by indenting the commands within an if, loop, or switch re-
gion. It is also a good praclice to indent continued lines to emphasize the fact that they are
continued, as was done in the example above.

13

Section 6: MISCELLANEQUS SYNTACTICAL FEATURES

This page deliberately left blank.

14

Variable Substitution

There are really two distinct types of variable substitution at work in OJ. The main type,
“dollar substitution,” is used for all commands, period. The other type, “automatic substitu-
tion,” works only in calculational expressions (“calc expression” or “calc exp”), which are
only found in certain parts of if, calc, loop, return, exit, and setprior
commands. What makes things confusing, perhaps, is that both dollar and automatic substi-
tution are at work in the commands that can contain calculational expressions.

Dollar substitution is made available to the programmer via the $ character. As the inter-
preter executes a script, each line of code undergoes tokenization, macro substitution, and
then dollar substitution. In dollar substitution, if any token on the line begins with the $
character, that entire token is replaced by the entire contents of the variable whose name
follows the $. At this point, the interpreter does not yet care which command is to be
executed (i.e., what the first token on the line is); therefore all commands, including the
calculational commands, are subject to dollar substitution.

The second form of variable substitution, automatic substitution, is available without the use
of the $ character. It only occurs in calculational expressions, however, and calculational
expressions are found in only the following commands: if, calc, loop, exit, re-
turn, and setprior.
Here is a complete list of the places where calculational expressions can appear:

if calc_exp |

calc var = calc_exp

loop label ; var = calc exp ; calc_ exp ; var = calc_exp

exit calc _exp

return calc exp

set_prior calc_exp

Please note that no calculational expression can be understood by .the interpreter unless it
appears in one of the above places. For more information on calculational expressions, see
Section 8.

If the command line turns out to be a calculational command, the software which is peculiar
to each such command (and which comes into play only after the dollar substitutions have
occurred— see Section 4) begins by concatenating all the tokens that appear in the expression.

15

Section 7: VARIABLE SUBSTITUTION

In the example:
calc z = 12 / 14 - (34 * z)

the expression on the right side of the assignment operator token (=) will be concatenated
into:

12/14-(34*z)

Then, any strings not recognized as real numbers (such as z, above) will be assumed to be
variable names, and the values of those variables will be substituted. Thus, the $ is not
needed in front of any variable name that occurs in a calculational expression. The value
will be substituted automatically.

If the value of z in the example above is 29, then, the expression will become:

12/14-(34*29)

Finally, the entire expression will be evaluated arithmetically, and the resulting real number
will become a string of decimal digits (with, in this case, a decimal point). After the calc
is executed, the variable z will contain this string. The only other type of character found
in the result of an evaluation of a calculational expression is a leading minus sign (-) in the
case of a negative number.

SUBSCRIPTS AND ARRAY INDEXES

Subscripts and array indexes can be arbitrary strings; they need not be integers as in many
other computer languages. For instance, it is possible o have an ordinary array:

and it is equally possible to have an array which allows a series of arbitrary strings to be
associated with a particular variable name:

z [george]
z[natalie]
z [harriet]

16

Stiauvi ‘e VARlABLE SUBS]I'IUII(JN

The elements of these arrays can only be accessed by using their exact names, but one may
even have weird multidimensional arrays containing items named, for example:

z[george[nose]] [wart [0]] [itch]

The above example is a light-hearted one, but there is plenty of serious applicability for such
variables. You can use this feature for data structures such as this:

loop O0end ; j =0 ; J < total_students ; j = § + 1
fprintf $stdout "student %33-" $3
fprintf $stdout "name: ¥s\n" student[$j] [name]
fprintf $stdout "\tgpa: %s\n" student [$j] [gpa]
fprintf $stdout "\tsex: %s\n" student [$j] [sex]
fprintf $stdout "\tclass: $s\n\n" student [$7j] [class)
0Oend

It is possible to use a variable cuniagining an arbitrary string as an array index, like this:

set indexvar = foo # the content of indexvar is
now the string "foo".
set x[$indexvar] = dahlia

We have now created a variable named X[foo] and set it to the string “dahlia”.

USE OF THE DOLLAR SIGN IN ARRAY INDEX SUBSTITUTIONS

Note that the $ is required in any substitutions made inside square brackets (i.e., when you
use a variable as an array index). In array index substitutions, the $ is required regardless
of the particular command you are using.

Below are illustrations of several methods that will work, and several that won’t work. All
are assumed to be preceded by the following lines of code:

set z = 0 # To be used later as an array index.
set y[0] = 123 # Just to create y[0] and put some
value in it.
(Note: the above two lines could have used
the calc command instead of the set
command with no other changes.)

17

Section 7: VARIABLE SUBSTITUTION

Now, in all the command lines below, we’re trying to set the variable x to the value contained
in the variable y [0].

These methods will work:

calc x

yv([0] This will work; automatic substi-
tution is done by the calc com-
mand.

This will work just as well; dol-
lar substitution occurs before
the calc command ever sees it.

This will work; dollar substitution
is done before the calc command
ever sees it.

This will work; automatic sub-
stitution is done by the calc
command.

This will work. Dollar substitu-
tion is required because auto-
matic substitution is not avail-
able in a set.

calc x

$y (0]

Sy [$2]

calc x

yl[$z]

calc x

set x = $y[$z]

33 3k Sk 3 3 o 3k 3k 3k e 3 3k W3k 3

These methods will not work;

This will set the variable "x" to
the string "y[z]"— not what

set X

vizl

This will set the variable "x* to
the string "y[$z]"— not what
we’'re trying to do.

This won’t work— z won'’t be sub-
stituted, and there is no vari-
able "y[z]". z won’'t be substi-
tuted because the $ is always
required within square brackets.
. 0J will abort.

This won'’t work; there is no vari-
able called "y[z}* and OJ will
abort.

set x

y[$z]

calc x = y[z]

set x = S$y(z]

I I I I

Since an array index can be almost any string, it is fruitless to use a mathematical expression
as an array index in the hope that it will be evaluated and the result will become the index
value.

18

Secioon 7o vaARIABLE SUBS11iUTION

For example:

set a = z[$x + 1]

will not work. However, the following will work and will have the desired effect:

calcy = $x + 1 Expression evaluated here.
(The $ is optional— both
dollar and automatic sub-
stitution are available
here.)

String resulting from expres-
sion in the calc above is

now used as an array index.

set a = $z[Sy]

HoH 3k 3k 3k o

In order to test your understanding of what’s going on here, it’s a good idea o write a series
of scripts using all of the above methods and showing the results. To make things easy on
yourself, just put a show_vars command at the end of each script.

Here is an example of a script that illustrates a few other points:

1 show_tokens_on # This will cause the interpreter
2 # preter to output a veritable
3 # torrent of stuff before

4 # executing each line.

5 echo_on # This will cause each line to be
6 # echoed to the screen after

7 # dollar substitution.

8 set z = 0 # calc z = 0 would have the same effect
9 # since 0 is a (very simple)

10 # mathematical expression.

11 set x[0] = george

12 set x[z] = harry

13

14

fprintf $stdout "\$x[z] == \"$s\"\n" $x[z]

fprintf $stdout "\$x[\$z] == ‘"%s\"\n" $x[$z]

NOTE: The backslash appears before twe of the dojiar s:g78 i lines 13 and 14) to prevent
the interpreter from attempting to perform variabie substiution on e iokens of which they
would otherwise become the the first character.

19

Section 7: VARIABLE SUBSTITUTION

token[0]:
token{0]}:
token[l]:
token[2]:
token{3]:
A 8: set
token([0]:
token[l]:
token([2]:
token([3]:
A 11: set

The output of the above script is:

"echo_on"
l‘setll

llz“

HOH

z =0
"set"
'X[O] n

"george"

x[0] = george

|

} These lines result from
) show_tokens_on.

. . This line is from echo_on.

token[0]: "set"

token[l]: "x[z]"

token[2]: "*="

token{3]: "harry"

A 12: set x[z] = harry

token[0]): "fprintf"

token([l]: "\$stdout™

token{2]: "\\\$x[z] == \"%s\"\\n"

token[3]: "\$x[z]l"

A 13: fprintf 147672 \$x([z] == \"%s\"\r harry

$x[z] == "harry" . .. This output is from
token[0]: "fprintf" the first fprint£.
token[l]: "\$stdout"

token[2]: "\\\$x[\\\$z] == \"%s\"\\n"

token[31: *"\S$xI\§zl"

A 14: fprintf 147672 \$x[\$z] == \"%s\"\r george
$x[$z] == *george" . . . This output is from

the second fprintf£.

NOTE: Quotation marks surround the control strings in the fprintf commands in order
to allow those strings to contain spaces and yet become one and only one token. Please
note that the quotation marks surrounding any token are stripped off when the lines are
tokenized, as is evident if you look above at the output generated because of the show_to-
kens_on command. When you want quotation marks to form a portion of the control
string, precede them with backslashes.

NOTE: When you look at the output generated by the show_tokens_on command,
please note that each token is displayed on your screen as if it had been processed by the
alphameric command. The single leading backslash has been converted into two back-
slashes; otherwise the interpreter might think a single character was meant by the combination
of the backslash and the character following it, like \n. For more information about back-
slash interoretation, see Section 10 and the alphameric command in Sertion 11.

20

Calculational Expressions

The expressions found in calc, if, loop, exit, return, and set_prior com-
mands are treated somewhat differently than the arguments of other commands. Variable
names do not have to stand alone as individual tokens, and they do not have to be preceded
by a $; the name will always be substituted for its value (a string) whether it is preceded
by a $ or not (except, of course, for the variable on the left side of the assignment operator
token =). For a discussion of this automatic form of variable substitution, see Section 7.
In OJ, calculational expressions may appear only in calc, if, loop, exit, return,
and set_prior commands. Expressions may be of arbitrary complexity, although the
number of levels of parenthesization is currently limited to a depth of 10.

Operands (after variable substitution) must consist entirely of real decimal numbers. The
evaluation of a calculational expression is always a real decimal number. Logical operations
result in O (false) or 1 (true). In the absence of parentheses to the contrary, operators are
applied in the order:

! reverse logical value of next operand or parenthesized expression
* multiply
divide
% mod (modulus; gives remainder after dividing the integer portion of the op-

erand on the left side of the % by the integer portion of the operand on the
right side of the %)

+ add

— subtract 4

The following logical operators always result in 1 (true) or O (false). Their operands must be
real decimal numbers (use the strcmp () function to render the comparison of two non-
numeric strings into a numeric value):

> greater than

>= greater than or equal to
< less than

<= less than or equal to
== equal to |

t= not equal to

21

Section 8: CALCULATIONAL EXPRESSIONS

The following logical operators combine multiple logical expressions:
&& (logical AND)
| (logical OR)

SPECIAL CALCULATIONAL FUNCTIONS

Calculational expressions may contain the following special functions, whose arguments (in
parentheses) may be strings or variable names. Enclose a string with single quotation marks
to guarantee that it will be considered a string rather than a variable name. In order to

specify a string which contains a single quotation mark character, precede the single quotation
mark character with a backslash.

charval (a) retums the integér ASCII value of the first character in a. If @
is a variable which is empty, charval () retums 0.

devrdy (device name) retums 1 (ie., true) if one or more characters are waiting to be
picked up from the specified SCF device. For example,
devrdy (‘/term’) can be used to test whether any keys
are waiting to be picked up from the console. See also the
stdin and spilldev commands.

local ctr # example
fprintf $stdout "Press any key to continue. \n"
spilldev /term # throw away anything

PR T

typed in lately
loop 0 ; ; !devrdy(’/term’) ;
wait for someone to type
something
fprintf $stdout "$c" 7 # ring the bell
loop 1 ; ctr = 0 ; ctr 15 ; ctr = ctr + 1
15 seconds per ring
wait 2 # longest wait to break
is 2 half-seconds
if (devrdy(’'/term’))

break
endif
1
0
spilldev /term
frac (val) retums the fractional part of val. If val is 2431, frac (val)
will be 0.31.

22

veliv.,. .~ vaucvaatlUiNAL BAVRESsSEONS

gvarnum(varname) retuns the element number of the GV_NAME [] (global variable

name) and GV_CONT] (global variable content) arrays which
corresponds to varname, if it exists, or the element number where
varname would be if it were inserted alphabetically. You cannot
tell whether varname exists by using gvarnum(); use
length () for that purpose. See also lvarnum().

set flower_dahlias = 29 # example
set flower_daffodils = 34
set flow_control = $in_progress
...other variables are set here... # now
let’s find out the number of the
first of the variables whose names
begin with "flower":
set varnum = "" # create these vars now so
creating them later won’t
change the gvarnum() value
set work = "*" # of any other vars
calc varnum = gvarnum(’flower’)
substring work = $GV NAME[$Varnum] 06
(there are 6 chars in "flower")
if !strcmp(work ’‘flower’)
if we’re here, varnum is the first
- # GV_NAME that begins with "flower",
and there is at least one such
variable.
endif

hex2dec (val) given a hexadecimal number, retums its decimal equivalent.

?I

index (pattern s [start]) retums the number of the byte where the pattern string occurs

int (val)

isdir (path)

within the searched string S; or returns -1 if pattern is not found
in 5. The value returned counts from the beginning of the string
(where 0 is the first byte), regardless of the ¢ {optional) start position
start.

retumns the integer part of val If val is 2451, int (val) will
be 24,

retums 1 if path is an extant directory, ¢ :f i. does not exist or
it is not a directory.

23

Section 8: CALCULATIONAL EXPRESSIONS

isfile(path)

isreal (string)

length (var)

lvarnum (varname)

max (varname varname)
min (varname varname)

retumns 1 if path is an extant file, but not a directory. Otherwise
retumns 0.

retums 1 if string is some real number (e.g: 1, -12.3, 3314,
etc.), or 0 if it is not (e.g.: 23-44, 1.2.a, Fred).

retumns the length of the string contained in var, or -1 if there is
no variable named “var.” This function can be used to determine
whether a variable exists.

retumns the element number of the LV_NAME [] (local variable
name) and LV_CONT[] (local variable content) arrays which
corresponds o varname, if it exists, or the element number where
it would be if it were inserted alphabetically. You cannot tell
whether varngme exists by using lvarnum():; use
length () for that purpose. See also gvarnum () for more
information and an example.

yields the larger (smaller) of the two values.

namecmp (farget pattern) compares two filename strings to see if they qualify as a match

oct2dec (val)

rand ()

strcmp (a b)

in the OS-9 world. The target string is an actual filename. Two
metacharacters are recognized in the pattern string: ? matches
any single character and * matches any string of characters.
Upper/lower case distinctions are always ignored Returns 0 if
there is a match, or —1 if not.

given an octal number, returns its decimal equivalent.

returns a 31-bit pseudo-random positive integer. (See also the
setrand and randlist commands.) To obtain a random
integer with 11 different possible values in the range 0 to 10,
inclusive, use:

rand() % 11
retumns a negative number if string @ is lexicographically less than

(i.e., prior to) string b; a positive number if b < @; or 0 if the
strings are identical.

24

System Variables

System variables are used just like all other variables (see Sections 7 and 8).

ERROR REPORTING

e_banner

greturn

E_NONINT, elc.
(see Section 13)

is a pseudo-variable containing the time and date of this particular
invocation of OJ, the invocation name of OJ itself, the invocation
name of the current script, the current line number in that script, and
the do stack of calling scripts, if any. For example:

90/05/19 15:51:06 oj {intcept_handler()}:
OJ interrupted by signal 3. line 9 of
script
"/dd/USR/SCRIPTS/massedit.oj"
It is often good to use this in an fprintf (possibly to
$stderr) just before exiting on account of some error condi-
tion.

is a local variable which contains an integer value returned by a
number of OJ commands. Its value should always be checked im-
mediately after any command which sets it, lest some succeeding
command set it to another value before it is checked. You can use
either switch or if to check greturn, as neither switch
xwrifsasqreturn.'ﬁevﬂmsofqreturnawimumm-
able by system pseudp-variable e_msg([$qreturn]. They are
also listed in Section 13. Generally speaking, if all went well,
greturn >= 0; if not, greturn is some meaningful negative
value.

are error condition constants available as global variables, containing
integer values. These should be treated as constants to compare with
the value of greturn to check for specific error conditions re-
ported by greturn. For a complete list of these, see Section 13.
Instead of doing this:

1f (qgreturn == -2)
do this:

if (greturn == E_NONINT)

25

Section 9: SYSTEM VARIABLES

e_msg[$qreturn]
(see Section 13)

because the exact value of E_NONINT may change in future ver--
sions of OJ, whereas the meaning of E_NONINT will not change.

is a pseudo-array of variables containing brief messages, one per array
element, explaining the meaning of the value of greturn used as
the index value. Each message also contains the CONSTANT name
of the particular value of gqreturn, e.g.:

E_NONINT: an integer value was
required; this wasn’t one

INPUT/OUTPUT

stdout, stderr

are output file handles for writefile and fprintf. Unless
OJ’s own standard output and/or standard error stream has been re-
directed elsewhere, both will go to the console screen. Both are
global variables.

MEMORY MANAGEMENT AND DATABASE-LIKE (iPERATION

(see also the system functions gvarnum() and

LVARS

GVARS

LV_NAME [n]

GV_NAME [n]

LV_CONT [n]

GV_CONT [n]

varnum() in Section 8)

is the number of local variables currently in existence.

is the number of global variables currently in existence.

is a way of accessing the names of all the local variables. The index
must be an integer in the range 0 to (LVARS - 1).

is a way of accessing the names of all the global variables. The
index must be an integer in the range 0 to (GVARS - 1).

is a way of accessing the contents of all the local variables. The
index must be an integer in the range 0 to (LVARS - 1).

is a way of accessing the contents of all the global variables. The
index must be an integer in the range 0 to (GVARS - 1).

26

oection 5: S1STEM vaxk1ABLES

MISCELLANEOUS

argc is a local variable containing the number of arguments (2axrgc stands
for “argument count”) passed to the script, either at OJ invocation
time or via a do command. The script name itself counts as one
argument, so the value of argc is always at least 1.

argv(0...n) is the arguments passed to the current script. argv [0] is the name
of the script (but only if it is the original or the including
script— the name of any included script exists only in the vari-
able curscript [see below]). argv’s index value has a range
of 0 to (argc-1). (argv stands for “argument vector”; in com-
puterese a “vector” is usually a list of some kind). The array ele-
ments of argv |] are all local variables.

curscript gives the name of the current script, whether it is an including
or an included script.

exitstat is the exit status value of the most recent OS-9 command, or the
value returned by a called (i.e. done) script to the calling (i.e.
doing) script. exitstat is useful when you’ve used a hyphen
before an OS-9 system call (an invocation of any regular OS-9 pro-
gram) to prevent OJ from aborting on a non-zero exit status from
that invocation. (See the any_OS-9_program_invocation_name
command at the beginning of Section 11.) For a discussion of the
exit status of a done script, see the descriptions of do and re-
turn. exitstat is a local variable.

systime is a pseudo-variable containing the date and time current to the sec-
ond, in the form yy/mm/dd hh:mm:ss. The hour number is
given in military (i.e. 24-hour) form. For example, March 8, 1989
at 12:38:02 AM. would appear as 89/03/08 00:38:02. The
same day at 8:32:00 P.M. would appear as 89/03/08
20:32:00. This is not really a variable at all, but you use it
just as if it were one,

systimef is the same as systime, but without punctuation, for use in
filenames. E.g: 890308203200

procid is a global variable containing the OJ interpreter’s process ID in ex-
actly five digits (with leading zeros, if needed).

27

Section 9: SYSTEM VARIABLES

pwd is a pseudo-variable containing the current working data directory,
expressed as a full pathname beginning with an explicit device name.

userid is a global variable containing the current user’s group/owner id num-
ber, in the form 255.254 if group is 255 and owner is 254.

SOCKET INTERACTION

reply|{] (See send command description.)
ereply(] (See send command description.)
sendbuf [] (See send command description.)

28

Backslash-Interpreting Commands

In “backslash-interpreting commands,” backslashes indicate special (often non-printable) char-
acters in strings; this usage is generally similar to that used in the C language.

In the backslash-interpreting commands, token strings may contain any of the following special
conversions to single byte values:

String Byte value meaning
\r 0dH carriage return
\n 0dH another way to say carriage return
\1 0OaH linefeed
\E OcH formfeed
\t 09H tab
\b 08H backspace
A\ 5CH (‘\\") a backslash
\" 22H (‘\"") a double quotation mark (double quotation

marks are otherwise assumed to surround
tokens and will be discarded during

tokenization)
\$ 24H (°$") 4 allows a token to begin with $ without
forcing variable substitution
\# 23H (‘#) allows a token to begin with # without
initiating a comment
\d001 O1H decimal value of 1
\001 01H octal value of 1
\x01 01H hexadecimal value of 1

NOTE: as character substitutions in hard strings are done before variable substitutions, no
variable substitution will occur if the original token began with \$. This means that \ Svar
will become $var but but will not undergo variable substitution.

Section 10: BACKSLASH-INTERPRETING COMMANDS

NOTE: Use 3 digits for decimal and octal and 2 digits for hex, even if you don’t need them.
This prevents subsequent valid characters from being treated as part of the value of the byte.

The backslash-interpreting commands include arraytok, fprintf, send, set (note
especially the =R option), set_mbf, sprintf, replace, and writefile. The
alphameric command performs backslash-deinterpretation.

30

Commands

external process control any_OS-9_program_invocation_name

format:

purpose:

notes:

(Just like any OS-9 shell command line, with a few differences. See the docu-
mentation on the Microware “shell” program in the OS-9 user manual, and the
notes below.)

The tokens, after variable substitution, if any, will be concatenated into a string
which will become a command line passed to the OS-9 “shell” program. Exe-
cution of the script will halt until the program has finished running. Example:

dir /h0 > $fn

will cause dir to be run on /hO, and the standard output to be written on
the file whose name is stored in variable fn.

(1) Concatenation of tokens is not handled the same way as in all other OJ com-
mands. The separate tokens are concatenated into a string with spaces between
them, except that redirection operators are snugged up against the tokens they
modify.

(2) Redirection operators (< , > , !, >>) must be single tokens; they should be
followed by whitespace, even though this is not normal OS-9 practice. This is
to allow variable substitution to take place in the normal way.

(3) If the exit status of the program is non-zero, OJ will abort immediately, unless
the command is immediately preceded by a dash (-). For example:

~del e will not abort the script even if e does not exist and therefore del
returns non-zero status. Afterwards, the exit status may be found in the system
variable exitstat.

(4) Invocations of OJ itself are automatically altered in such a way as to cause certain
OJ modes to propagate to the forked OJ process (see 03j command).

(5) This command sets greturn; check for E_PSNOFORK, E_PSWENTAWAY
values (see Section 13).

(6) See also the redirect command. If a redirect is in effect, the OS-9

31

Section 11: COMMANDS

“shell” program does not mediate the invocation, and redirection operators may -
not be used.

(7) For interactive control of a forked process, use socket instead. See

socket, send, etc.

(8) There must be a one-to-one correspondence between the arguments to the invoked

program and the tokens used to create those arguments. For example, the fol-
lowing example will not work, because instead of gelting two arguments, “-d”
and “-1”, 1s will get only one strange argument, “~d -1":

set argl = "-d -1"
1s $argl

On the other hand, this will work fine:

:
¥

set argl "-g-
set arg?2 "-ln
ls $argl $arg2

It is sometimes extremely inconvenient to make a one-to-one comrespondence be-
tween tokens and arguments. For that reason, a special format is provided for
strings which contain multiple arguments, separated by whitespace, that you want
to have parsed into separate arguments. The trick is this: begin such a single
string with a # character. (This requires the use of a backslash when first setting
a variable to it, so that it is not seen as a comment-begin delimiter.) For example,
this will work:

set argl = "\# -d -1"
1ls Sargl

The fact that the above method is supported by OJ makes it impossible to create
a single argument string for an 0S-9 invocation which both begins with a # and
also contains spaces. It seems unlikely that anyone will need to do this very
often, though. Note also that the pound sign in OS-9 is used to specify the stack
space of the forked process. Since it will be stripped, use two of them:

foo \#\#58 # 58 k of stack space.

32

Secion 11, CUNMNMAINDDY

string manipulation alphameric

format; alphameric var_to_set = string_1 (...string_n)

purpose: Mainly for making debug displays; replaces non-alphameric bytes, such as 0dH,
with backslash-preceded equivalents, such as \r. Uncommon byte values are
given in hex, as, for example, \x00 for a null byte.

notes: alphameric reverses what happens to hard strings in backslash-interpreting
commands (see Section 10). See also the set command in Section 11, which
has approximately the opposite effect of alphameric (especially the =R op-
tion of set). -

33

Section 11: COMMANDS

arraytok

format:

option:

purpose:

notes:

string manipulation

arraytok separator_character(s) arrayname (option)
string_1 (...string_n) _

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-continuation feature [see Section 6).)

-GOBBLE or ~-NOGOBBLE (default)

Create an array of variables each containing a token from the line.

i
i

First, string_1 . . .string_n are concatenated. Then the single long string thus
concatenated is re-divided into tokens wherever any separator character appears.
All separator characters are discarded. Each token is then stored in an element
of an array of variables whose name is arrayname[0] . . .arrayname[n].
The variable arrayname, without an index, contains the number of valid ele-
ments in the array. To cause the array to be created as local variables, precede
arraytok with a

local arrayname

If no option is given, or if the default option ~NOGOBBLE is (redundantly)
specified, each appearance of the separator character will cause a token to be
created, even if no other (i.e., non-separator) characters appear between them.
This is useful in cases where a line of data is separated into fields by field
separator characters, and it is necessary to render even empty fields into numbered
tokens.

Alternatively, if the ~-GOBBLE option is specified, wherever one separator char-
acter immediately follows another (with nothing to tokenize in between) no empty
token will be created. This is useful if, for example, it is necessary to divide a
line of text into separate tokens, and discard all spaces and tabs between them.

Here are three examples:

34

Section 11: COMMANDS

Example 1:

set path = /h0/USR/SRN/TOOLBOX/0OJ

arraytok / pathitem $path

fprintf $stdout "pathitem == %d\n" $pathitem
loop 1 ; ctr = 0 ; ctr < pathitem ; \

ctr = ctr + 1 # rest of loop command
fprintf $stdout \
"pathitem([%d] == %s\n" S$ctr
$pathitem[$ctr)
1

Output from code in example 1:

pathitem == 6

pathitem([0] == ®»

pathitem[1l] == "hO"

pathitem{2] == "USR"

pathitem[3] == "SRN"

pathitem{4] == "TOOLBOX"

pathitem[5] == "Og"
Example 2:

set a = "the quick"

set b = "fox"

arraytok " " foo $a brown " " $b \

"jumps over the lazy dog."
there are 3 spaces between the
words "jumps" and "over"
fprintf $stdout "foo == %s\n" $foo
loop 0 ; ctr = 0 ; ctr < foo ; ctr = ctr + 1
fprintf $stdout "foo[%d] == \"%s\"\n" S$ctr \
$foo[Sctr]

Output from code in example 2:

35

Section 11: COMMANDS

foo == 9

foo[0] == "the"

foo[l] == "quickbrown"

foo[2]) == "foxjumps"

foo[3] == "*

foo(4) == ""

foo[5} == "over"

foo[6] == "the"

foo(7] == "lazy"

foo{8) == "dog."
Example 3:

just like Example 2 except -GOBBLE option is

added to arraytok, 2 tab characters are added

after "jumps", arld spaces and tab characters

are identified as separator characters:

arraytok " \t" foo -GOBBLE $a brown " " $b \
*"Jumps\t\t over the lazy dog."

Output from code in example 3:

foo == 7

foo[0] == "the"

foo[l] == "quickbrown"
foo[2] == "foxjumps"
foo[(3] == "over"
foo[4] == "the"

foo[5]) == "lazy"
foo[6] == "dog."

Note that the empty fields were “gobbled up”— i.e. they disappeared.

As is obvious from the above Example 3, arraytok is a “backslash-interpre-
ting” command.

36

. uUmMBMANDS

string manipulation bits

format: bits var = decimal_integer

purpose: Store the string of thirty-two 1's and 0's representing the condition of the bits
of a 32-bit integer whose value is the decimal value given.

notes: Four tokens.

37

Section 11: COMMANDS

break

flow of control

format: break

purpose: (1) Immediately cease iterating the nearest enclosing loop, and restart the program
at the ending label of that 1oop.

(2) Proceed immediately to the statement label at the end of the nearest enclosing
switch, skipping all the rest of the cases, etc.

notes: Exactly 1 token. Not a valid command unless there is a 1oop or switch
in progress to break.

38

decton 1i; L viNIANDS

calculation calc

format: calc resultvarname = calc_expression

purpose: Make a calculation and store the result in resultvarname.

notes: See Sections 7 and 8. Variables whose names appear in the expression will
undergo substitution even without the use of the $ character. This can be pre-
vented by using single quotation marks.

39

Section 11: COMMANDS

case

format: case String_to_match_in_a_switch

purpose: See switch.

notes: Only valid within a switch region.

flow of controt

40

Section 1i: « iviiAaNDS

miscellaneous Cd, chd
format: cd directory_to_become_current_data_directory
or

chd directory_to_become_current_data_directory

purpose: Change current data directory.

notes: See the chd command (actually the chdir() function) in the OS-9 user manual.
greturn will be 0 if the command was successful. There is no difference
between cd and chd.

41

Section 11: COMMANDS

chx miscellaneous
format: chx directory_to_became_current_execution_directory
purpose: Change current execution directory. .

notes: See the chx command (actually the chxdir() function) in the OS-9 user manual.
greturn will be 0 if the command was successful.

42

DECCLIGIL 52, \,UfVﬂMANUS

input/output closefile

format: closefile file_handle

purpose: Close a file which is already open, thus writing to disk any buffered data which
hasn’t been written there yet, and releasing the OS-9 path table slot associated
with it.

notes: Don’t forget to use a $ before the file handle variable. Sets greturn to
E_NO_ERR (0) if all went well,

See also openfile, readfile, writefile, fprintf,
seekfile, and tellfile.

43

Section 11: COMMANDS

continue flow of contrs}

format; continue

purpose: Immediately start the next iteration of the nearest enclosing 1oop, without ex-
ecuting the remainder of the current iteration.

notes: Exactly 1 token. Not a valid command unless there is a 10op in progress to
continue. See loop.

44

OCCLLm Lo CasansovaaiNDd

debugging debug_on (debug_off)
format: debug_on

or

debug_off

purpose: Turn on (off) the debugger.

notes: Inserting a debug_on in a script has the same effect as setting a debugger
breakpoint on the following executable line. See Section 12.

45

Section 11: COMMANDS

default flow of controd

format: default

purpose: See switch.

notes: Only valid within a switch region.

46

Section 11: COMMANDS

time measurement difftime

format:

purpose:

notes:

difftime target_varname = marktime_value_l
marktime_value_2

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won't fit, use the backslash line-continuation feature [see Section 6].)

Write on the target_varname the number of seconds, including any fraction of
a second, between the time when marktime_value_l was set by marktime
and the time when marktime_value_2 was set by marktime.

In general, if predictability and/or accuracy are critical, try to avoid disk input/out-
put between one marktime and another. With care, accuracy levels in the
neighborhood of 0.1 second should be attainable, There are several possible uses
for 1his command, including experiments intended to show which of several OJ
programming algorithms is fastest. When performing such experiments, it is im-
portant that the system is otherwise idle, and that the code be iterated many
times. Note that marktime and difftime can not be used to measure
processing time, only elapsed real time.

For example:

#
marktime timel # start timing now

something happens here and you want to

know how long it takes.
marktime timel # make a note of the time here.
difftime elapsed = $timel $timel
fprintf $stdout "It took %.2f seconds to do it.\n"
\

Selapsed

See also raxktime and julie:.

47

Section 11: COMMANDS

do

format:

purpose:

notes:

flow of control

do OJ_script_name (arg_l...arg_n)

Execute the named script as a subroutine.

The arguments passed to the subroutine, if any, will appear as argv([(1l...n];
the subroutine’s name will appear as argv ([0].

The subroutine script will share all the global variables already in existence with
the calling script, and any global variables it creates will still be around when
the subroutine returns. It will, however, have its own independent bank of local
variables, including the system wtariables argc, argv(0...n], ex-
itstat , and gqreturn. See the local command.

The called script and the calling script will not know about each other’s statement
labels or 1oops; i.e., you may not have a goto, switch, or 1oop in one
script which refers to a label in another script.

The called script’s return value is available to the calling script as ex-
itstat (see the return command).

The degree to which you can nest Ao commands is limited by the size of the
0OS-9 file stream table, which usually can have 32 entries. All open files use up
one entry each. This means that if you write a script that calls itself recursively
via do, it can recur at most 31 times before a “path table full” error aborts OJ
altogether.

48

. caauft 1L CumiVIA VDS

debugging - echo_on (echo_off)
format: echo_on

or

echo_off

purpose: The single most useful script debugging command. Causes OJ to output each
command line to be executed (does not show unexecuted command lines) after
variable substitution, but before execution. (Echo output is made to the console
via stderr.)

notes: Exactly 1 token. The first item on each output line is a letter; A means the
invocation script, B the script called by the A script, C the script called by the
B script, etc. After this letter comes the line number, followed by the line itself.

The functionality of echo_on and echo_off are available in the interactive
debugger via the el and e0 commands (see Section 12).

49

Section 11: COMMANDS

else flow of control
format: else
purpose: (See if command)

notes: Exactly 1 token. If you don’t need an else, you don’t have to use one. Re-
quires prior use of an if,

50

Section «1: CUMMANDS

flow of control endif

format; endif

purpose: (See if command.)

notes: Exactly 1 token. Requires prior use of an if.

51

Section 11: COMMANDS

exit

format;

purpose:

noies:

flow of contrg!
exit {calc_expression}

Terminaie OJ altoget! -~ and, optionally, set the exit value of the OJ interpreter.

i or 2 ickens. If used, the optional second token must evaluate to an integer.

1f there is no second token, OJ’s exit status will be 0. See Section 8.

52

Section 1i; CONMANDS

input/output fprintf

format: fprintf file_handle control_string (string_1...string_n)

purpose: Write a formatted string on a file (or $stdout or $stderr) using the same
control string and conversion conventions as the fprintf() function in the C lan-
guage.

notes: Please refer to Kermighan and Ritchie’s The C Programming Language or any

other good book on C. To output text to the screen, use

fprintf $stdout ...

or

See also openfile, closefile, readfile, writefile,
seekfile, and tellfile. See also sprintf.

53

Section 11: COMMANDS

goto

format:

purpose:

notes:

flow of control

goto label

Resume execution elsewhere in the script.

If at all possible, this command should be avoided. It has the effect of cancelling
all switches and 10ops which may be in progress. Its only proper function
is to allow there to be only one place within a script to be jumped to prior to
an on-error exXit or return, so that error reporting code need not be dupli-
cated all over the place. See the label command.

54

section 11: COMMANDS

flow of control if

format;

purpose:

notes:

if calculational_expression

Conditionally control script execution.

Used with else and endif in the usual fashion. If the expression is eval-
uated as non-zero, it will be regarded as true.

2 or more tokens. Requires the use of endif to define its region of effect.
The use of else is optional.

For example:

if (calc expression evaluating
commands in this region
will be executed
else
commands in this region
will not be executed

endif

«

)]
@]

See also Section 8.

55

Section 11: COMMANDS

ignore

format;

purpose:

notes:

socket interaction

ignore socket_handle

Discard ail bytes reccived from the socketed device or process during the
next send. :

ignore is generally used only when the number of bytes is expected to be
very large and occupy too much memory uselessly.

ignore affects only the very next send to the specified socket_handle.
One effect of ignore is that all of the waits specified by any preceding
set_waits will be fully satisfied before the send is completed.

See also send, set_waits.

56

Section i1. CUMNANDS

flow of control include

format: include oj_script_name

purpose: Exaclly the same as do, except that an included script has the same local
variables as the including script. In other words, the scope of the including
script’s local variables is increased to encompass the included script, and so in
a way, those local variables are globalized. This is useful for passing argc
and argv (0. ..n] through to a called script, for example.

notes: Always exactly 2 tokens. No arguments can be passed. The command is called
“include” because it is as though the included script’s code is inserted whole-
sale into the including script’s code. However, as in 4o, the including
script’s exitstat can be set by using the return command in the in-
cluded script.

57

Section 11: COMMANDS

istop (istart) flow of control
format: istop
or
istart
purpose: Turns off (on) the interpreter unconditionally for any number of lines. Allows

notes:

documentation to appear within a script without the necessity of beginning each
line with a comment character (#).

£
Once an istop has been encountered, the only way to restart interpretation is

with an istart. If the interpreter is already enabled, istart has no effect.

58

Section 1i: CUMNVIANDS

time ineasurement julian

format:

purpose:

notes:

julian var_for_day_number var_for_second_number
var_for_tick_number var_for_ticks-per-second_value
= marktime_value

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-continuation feature [see Section 6].)

Display exact date and time (to the clock tick) when a marktime was exe-
cuted, in Julian format.

The day number will be a Julian day number. The following information, quoted
from ; i i icti , is relevant:

“A Julian period is a chronological period of 7980 Julian years that com-
bines the solar and lunar cycles and the Roman indiction cycle and is
reckoned from the year 4713 B. C. when the first years of these cycles
coincided. '

“A Julian year is exactly 365 days, 6 hours, adopted in the Julian cal-
endar.

“A Julian day number is the number of a day in the Julian day calendar
(as 2,436,934 for January 1, 1960).”

The second number will be the number of the second since midnight. There are
86,400 seconds in a day. ,

The tick number will be the number of ticks since the beginning of the second.
The ticks-per-second value is just what it says it is. This value is provided be-
cause different OS-9 systems may have difzrent numbers of (icks per second.
Su:marktimeamldifftime;melh:systimesmdsystimefsy&
tem variables if Julian dates are nc” what ~~; -vzat,

For example:

mark~ime timenow
julian day sec tick “ps = $timenow
fprintf $stdout \

"Cay 1s %s; sec is %s; tick is %s; %s
ticks/sec\n" \

$day $sec $tick S$tps

59

Section 11: COMMANDS

label flow of contro!

format: label

purpose: Mark a position in the program at which a got 0 command can restart execution,
or at which a 1oop or switch region ends.

notes: Labels must begin with a decimal digit (0-9), and thereafter they (like variable
names) must consist entirely of alphabet characters (both upper and lower case),
numeric characters (O through 9), periods (.), and underscores (—). No two
labels can be the same in any one script. A valid label can have only one token
on the line. A label can be any length.

60

Section 11: CumMANDS

memory management local

format; local varname_1 (...varname_n)

purpose: Force all the varnames to be local variables henceforth within this script (but
not within any done or doing scripts).

notes: There are two classes of variables in OJ. One is called “global,” and the other
is called “local.” Both kinds work the same way, and they are used in the same
ways. Indeed, you can ignore the distinction entirely, in which case all your
variables will be global, except for the system variables qreturn, ex-
itstat, argc, and argv([0...n], which are always local regardless of
anything you may do.

Global variables are created automatically whenever you set them for the first
time. They are available thereafter throughout the entire invocation of OJ, in all
called and calling scripts. Similarly, any global variables created and/or set in
any scripts called via the do command will continue to exist and retain their
new values even after the done script has returned to the doing script.

Local variables are created by the 1ocal command. Any script which uses
local variables should declare them at the beginning of the script with one or
more local commands; this practice will make the script easier to maintain.
However, it is ok to use 1ocal before any other mention of the variable, even
if the 1ocal does not appear at the beginning of the script.

Whenever a variable is mentioned by name, OJ looks to see whether it exists.
It always looks first in the bank /of local variables, and if it is not there, it looks
in the bank of global variables. If the variable does not exist and must be set
to some value, the variable is created as a global variable.

The only way to create a local variable is to use 1local. The effect of a
local is to create the named variable(s) in the bank of local variables, with
no content (i.e., with null strings) in them. Thereafter, OJ will find them there
first and not even bother to look in the bank of global variables for them.

When a called script terminates (encounters a return or comes to an end),
its local variables go away, never to be seen again. It is extremely useful to
have variables that are “local” to a script so that it can call itself recursively
without the various recursions overwriting each other’s data, and so that the mem-
ory allocatzd to its local variables can be recovered automatically at its end.
When a s:-ipt with local variables calls another script with local variables, even

61

Section 11: COMMANDS

if those local variables have the same names, there will be no interference be-
tween the two scripts. In general, it is advisable to use local variables, and wrife
your scripts as modules that can call one another via do. Since the local vari-
able bank is always consulted first, your scripts will run faster.

Here is a demonstration of the use of local variables:

demo.oj begins here
fprintf $stdout "Type a string > *
stdin astring # user types a string here
do capitalize $astring bstring
call capitalize.oj
if exitstat
exit $exitstat # an error occurred in
capitalize.oj
endif
fprintf $stdout \
"The capitalized string is: \"%$s\"\n" $bstring
fprintf $stdout \
"The original string was: \"%$s\"\n" $astring
demo.oj ends here

capitalize.oj begins here
local astring # this will not be confused with
the global astring, if there
is one (which there is).
if (argc != 3)
fyl intf -)bt.kl::ll \
"\"%s\" requires 3 args; you provided %d4." \

$argc
return 1 # a general on-error value
endif
set astring = "X" # "astring" in "demo.oj" will

not be overwritten by doing this.
set $argv([2]) =U $argv([l] # capitalize first arg
and set the global var
in the second arg.
return 0 # this is not really needed
since this is the end.
capitalize.oj ends here.

See also vsave, vrestore.

62

Section 11: COMMANDS

flow of control : 100[)
format: loop end_label ; (init_var =
initialization_calc_expression) ;
(test_calc_expression) ; (increm_var =

incrementing_calc_expression)

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-contiruation feature [see Section 6].)

purpose: Keep looping (i.e., repeatedly execute the code between the loop command line
and its ending label) until the test_expression evaluates to 0, or a break
command is encountered.

notes: Everything is optional except the three semicolons and the end_label. The semi-
colons must always be present, and they must be surrounded by whitespace (i.e.,
be separate tokens). See also break, continue, and label. A loop is
executed in the same way that “for” loops are executed in the C language: first
the initialization_calc_expression is evaluated and the result is stored in
init_var. Then the test_calc_expression is evaluated. If the test_calc_ex-
pression evaluates as 0, the program recommences at the loop’s end_label, and
the 1oop’s contents, i.e., the OJ command lines which lie between the loop
command and the line on which its end_label appears, are not executed. If the
test_calc_expression evaluates non-zero, the contents of the loop are executed.
When the end_label is encountered, the incrementing_calc_expression is
evaluated and the result is stored in increm_var. Then the test_calc_expres-
sion is re-evaluated. If the test_calc_expression evaluates 0, the loop is
terminated. In other words, the ,code within the 1oop will be executed itera-
tively only as long as the test_calc_expression evaluates non-zero. See Sec-
tion 8.

Usually, of course, init_var and increm_var will be one and the same variable.
Following is an example of a typical loop which will be iterated ten times;
on the first time through the 1oop, the variable 1oopvar will have a value
of 0, and on the last iteration loopvar will have a value of 9.

a plain vanilla loop
loop 0432this_is_the end label ; loopvar = 0 ; \
loopvar < 10 ; loopvar = loopvar + 1
fprintf $stdout "loopvar == %d.\n" $loopvar
0432:his_is_the_end _label

63

Section 11: COMMANDS

marktime

format:

purpose:

notes:

time measurement

marktime varname

Record the current date and time, accurate to one OS-9 clock tick (often 1/128
of a second).

This command is used with difftime to measure an interval of elapsed time.
This is useful for optimization of procedures, for checking system loading, etc.

See difftime and julian. The string stored in the variable is interpret-
able only by difftime and julian. There is no point in displaying it;
it is not a character string.

64

seclion 11 CUOUMMANDS

flow of control 0}

format:

purpose:

notes:

oJ oj_script_name (arg_l...arg_n)

Re-invokes OJ as a subprocess, automatically propagating operating modes as
shown in the following table:

if this mode is in effect: | then the argument automatically ap-
pended will be:
- —d (debug mode) ——d (unless backgrounded with &)
--eorecho_on —~—e (unless backgrounded with &)
echo_off . none
--vorverbose_on| -~-v (unless backgrounded with &)
verbose_off none
--X or --X
sys—exec_off
sys.exec_on none
- - (quiet mode) --q

(For information about OJ invocation parameters {such as --q], see Section 4).
. /

This command is generally not what you want unless you want to fork OJ as a
background process. See the do command, which has far less overhead and
which allows the sharing of global variables between the calling and the called
script. ‘

This is actually handled just like any other OS-9 process invocation (see
any_0S-9_program_invocation_name at the beginning of this Section), ex-
cept for the forced inheritance of the operating parameters described above. The
current OJ process’s variables and the subroutine’s variables are totally separate
and independent of each other. This command sets greturn; you might want
to check it for equality to the E_ PSNOFORK and E_PSWENTAWAY error values.

65

Section 11: COMMANDS

openfile

format:

purpose:

notes:

input/output

openfile var_for_file_handle = file_name action

Open a disk file for reading, writing, elc.

If the file could not be opened for some reason, the var_for_file_handle will
be set to ‘0’ and greturn will be nonzero. If all went well, qreturn
will be E_NO_ERR (0). All other file i/o commands require the file handle
value placed in var_for_file_handle by openfile. actions are as fol-
lows:

r open for reading. /Useful for checking to see whether a file exists.
W open for writing, 'Current contents are lost. Creates a file if nec-
essary.
a append (write) at end of file, creating a file if necessary.
r+ read from and. write to the file. Nondestructive of existing con-

tents until you overwrite them with a writefile command.

w+ read from and write to the file. If the file exists, its contents are
destroyed; if it does not exist, it is created.

a+ read anywhere in the file, but only write at the end of it.

For output to stdout or stdemr, no openfile is necessary. $stdout and
$stderr are the file handles for the standard output and standard error
streams,

See also readfile, writefile, closefile, fprintf, seekf-
ile, and tellfile.

66

Sectionn 11; COMMANL -

socket interaction password

format 1: password
format 2: password = string

purpose: Set the password string. This string is useful only in a send (see send).

notes: If the first format is used, the user is interactively asked to type in the password.
The password will not be displayed or echoed to the screen. The user will be
asked to type the password twice at pairs of prompts until the two strings match.
If the second format is used, the password is string. The token $PASSWORD
in any subsequent send will be replaced by this string. The password string
is not a true variable: it cannot be used in any command other than send.
Passwords are therefore secure except from users who can dump memory, or tap
into the stream emerging from some serial device, or who can subvert a sock-
eted process in some way.

67

Section 11: COMMANDS

randlist

format:

options:

purpose:

notes:

random numbers

randlist arrayname arraysize lowest_possible_value
number_of_possible_values (option)

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-continuation feature [see Section 6}.)

UNIQUE No two armray elements may contain the same value.

REPEATABLE The same value may appear any number of times within an array.

Create an array of variables whose name is arrayname, with a number of ele-
ments equal to arraysize, and place in each one a pseudo-random integer whose
least possible value is lowest_possible_value (which may be a negative in-
teger) and whose greatest possible value is ([lowest_possible_value + num-
ber_of_possible_values) - 1).

If a UNIQUE is in effect, and number_of_possible_values is less than
arraysize, OJ will abort. See also the rand () function in Section 8 and the
setrand command. If arrayname is a local variable, randlist will cre-
ate the entire array as local variables. Otherwise, globals will be created.

68

O O O S SRR VYR PV)

input/output - readfile

format: readfile file_handle var_for_line_from_file

purpose: Place a newline-terminated line from the file into a variable. The newline will
not be present at the end.

notes: greturn will be less than 0 if an error occurred or if there are no more data
in the file (in which case the greturn value will be E_RFEOF). Otherwise,
greturn will be a positive value equal to the number of bytes read.

Don’t forget the $ before the file handle variable. Don’t attempt to read files
which are not organized as lines of text. The readfile will continue until
a newline byte is encountered, which may never happen. In such a case, the
variable given as the third token may become quite enormous and use up all
available memory, or simply abort OJj altogether with an “insufficient memory”
€rror.

See also openfile, closefile, writefile, fprintf, seekf-
ile, and tellfile.

69

- Section 11: COMMANDS

redirect

format:

purpose:

format:

purpose:

format:

purpose:

notes:

external process control

redirect stdin varname

The standard input stream to the next OS-9 program invoked by the script will
be the contents of the variable varname. varname should exist and should
have something in it.

redirect stdout varname

The standard output stream from the next OS-9 program invoked by the script
will be to the variable named varpame. When such an invocation takes place,
the variable will first be initialized to a null string. This means that the contents
of ‘the variable will always be only the output of the OS-9 program.

redirect stderr varname

This is just like redirect stdout varname, except, obviously, it redirects
stderr instead of stdout.

Don’t use a dollar sign before stdout or stderr; here they are keywords, not file
handles. Normally, one probably would not want to use a $ with varname
either, unless the name of the variable to be used is the content of varname.

If an OS-9 program invocation is not preceded by a redirect, OJ simply
passes the whole string which comprises the invocation to the 0S-9 “shell” pro-
gram, which parses the string just as if it were typed at an OS-9 prompt, and

_ then the shell program actually performs the invocation. However, after a re-

direct somestream somevar, the subsequent OS-9 program call is not me-
diated by the shell program. Therefore, if a redirect is in effect, redirection
operators (< , > , ! , >>) may not be used. See also any_OS-9_pro-
gram_invocation_name at the beginning of Section 11.

70

Section 11; COMMANDS

string manipulation replace
format: replace code:_S_or_C char(s)_to_replace
what_to_replace_them_with output_var = string_l
(...string_n)

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-continuation feature [see Section 61.)

purpose: Replaces characters or strings within strings. First, replace concatenates
string_1 . . .string_n into a single string, and then:

If code is C: Al instances of each of the char(s)_to_replace in the concat-
enated string are replaced by the string what_to_re-
place_them_with.

If code is S: All instances of the entire string char(s)_to_replace in the con-
catenated string are replaced by the string what_to_re-
place_them_with.

Then the resulting string becomes the content of output_var.
notes: Must be at least 7 tokens. This is a “backslash-interpreting” command.

Examples:

replace S yellow green \
var = "I like the yellow ones."

$var now contains string:
"I like the green ones."

replace C " e" "X" \

var = "I like the yellow cnes.”

$var now con-cins string:
"IX1ik7ZX~-X¥. lowXonZs."

71

Section 11: COMMANDS

return flow of control

format: return (calculational_expression)

purpose: (1) Terminate the cumrent script, and retum to the calling script at the next line below
the do or include command which called the current script.

(2) Optionally set the calling script’s local variable exitstat to the value re-
sulting from evaluation of the calculational_expression.

notes: If no argument is given, the calling script’s exitstat will be set to zero. A
return executed from a script which was not called via do (i.e., was invoked
directly as an invocation argument to OJ itself) will behave like exit, and the
OJ process will have the exit stalus resulting from the evaluation of the optional
expression.

The calculational_expression should always yield an integer value.

For information on calculational expressions, see Section 8.

72

oo COMMAaADS

input/output seekfile

format: seekfile file_handle offset place

purpose: Position the file pointer to a location within (or at the end) of an open file,
offset is the number of bytes before or after place. If you wish to offset before
place, use a negative number for offset. The values of place are as follows:

0 beginning of file
1 current position

2 end of file

notes: Don’t forget the $ before the file_handle variable. qreturn will be set to
E_NO_ERR (0) if the seek is reasonable, or < 0 if it couldn’t be done for
some reason. :

See also openfile, closefile, readfile, writefile,
fprintf, and tellfile.

73

Section 11: COMMANDS

send

format:

purpose:

notes:

socket interaction

send socket_handle =
var_to_receive_name_of_matched_buffer string_l1
(..string_n)

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-continuation feature [see Section 6).)

Send a string to a socketed process or device, await its reply, store its reply,
and compare the reply to all associated match buffers.

This command is central to socket interactions. The strings are concatenated and
sent to the pseudo-socket (the device or process) specified in a preceding
socket, which retumed the socket_handle value. If the send was pre-
ceded at some point by a

socket sockhandle = /t1

and then the send is executed:

send $sockhandle matched "my string"

The concatenated string sent to the socket is available, after the send, as

$sendbuf [$sockhandlel

A device’s reply is stored in system variable Sreply [$sockhandle]. In
the case of a process-type socket, the process’s stdout output is in
$reply($sockhandle]), and its stderr output is in S$ere-
ply [$sockhandle]. If any of the match buffers set via one or more
set_mbf commands are matched, the name of the buffer matched is written
on var_to_receive_name_of_matched_buffer. 1f no match buffer is
matched, or if no match buffers were set prior to the send, or if an ignore
command is executed prior to the send, the variable named in the second token
will contain nothing (a null string). A special string in the concatenated string
to be sent, $PASSWORD, will be replaced by the string obtained by employing
the (optionally interactive) password command.

You must specify a device or process on which to perform i/o operations prior
to the first send, by using a socket.

This command sets greturn; check for equality to E. NOSOCKET,

74

Section 11: COMMANDS

E_PSJUSTDIED and E_PSWENTAWAY. send is a “backslash-interpre-
ting” command.

See also ignore, password, set_mbf, set_send_delay,
set_waits, show_mbfs, socket, strip_msb_on(_off), and
verbose_on (_off).

75

Section 11: COMMANDS

set

format:

options:

purpose:

notes:

string manipulation

set resultve- ={(cootion) string_l (...string_n)

=U 21l kowercase characiers in the entire siring will be converted to
uppercase,

=1 All uppercase characters will be converted to lowercase.

=R The content of all variables will undergo backslash interpretation

(see Section 10) as well as all hard strings.

= No option used; ,no conversions will be made.

Concatenate strings into a single variable (resultvar).

May have 4 or more tokens. set is a “backslash-interpreting” command (see
Section 10 and the alphameric command, which has the opposite effect).
To set a variable to a null string, use :

set var = "

76

Section 11: COMMANDS

socket interaction set_mbf

format 1

format 2:

purpose:

notes:

(For use if type_of_match_to_make is BEGIN, END, or EXACT:)

set_mbf socket_handle name_of_buffer_to_set
type_of_match_to_make = string_1 (..string_n)

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won’t fit, use the backslash line-continuation feature [see Section 6).)

(For use if type_of_match_to_make is B&E:)

set_mbf socket_handle name_of_buffer_to_set
B&E separator = string_l (...string_n)
separator string_o (.. string_p)

Set a match buffer to the string concatenated from the tokens following the. =
sign (except separator).

OJ will strive to match all the match buffers that are set during the following
send. The possible values of type_of _match_to_make are:

BEGIN Not very useful; the match will be made if the socket’s reply
begins with the string. All the waits required by the previous
set_waits will occur.

END The match will be made if the socket’s reply ends with the string.
As soon as the match is made, the send is over; the waits will
not occur, so the time required to run the script is minimized.

EXACT Like END but the match pattem and the socket’s reply must ex-
actly match if the :match is to be made.

B&E The strings hefore tac separator will be concatenated and placed

(“Begin in the match buffer given = the name_of Fuffer_ro_set token.

and End”) The strings after the seporator will be conczensted and placed
in a separate buffer. The .ckets reply wiil be matched if both
the beginning and t~e end f it match th= two corresponding buff-
ers.

Affects only the very next send encountered; send resets all match buffers.
A “match buffer” is really just an ordinary variable with a special connection to

77

Section 11: COMMANDS

the next send; the special connection is destroyed by the send, but the vari-
able is not destroyed.

In the case of a process-type socket, all the match buffers will be compared with
both reply [socket_handle] and ereply [socket_handle) (i.e. stdout

and stderr).

set_mbf is a “backslash-interpreting” command.

78

Seclivi 1i; CUNMNMANDS

external process control set_prior

format; set_prior calc_expression_yielding_process_priority_value

purpose: Set the processing priority of the OJ interpreter (and the default priority of all
the processes it will fork later).

notes: Beware setting priority so low it never gets executed, or so high it stops all other
processes. See the OS-9 manual regarding the setpr utility for more information.
See also Section 8 of this manual.

79

Section 11: COMMANDS

setrand

format;

purpose:

notes:

random numbers

setrand seed_string

Set the seed from which all future random numbers (generated during the current
invocation of the interpreter) will be generated, at least until the next setrand.

This command affects the randlist command and the rand () function.

There is generally no reason to use this command except during debugging.
When debugging, it is sometimes useful to set the seed so that the random num-
bers generated will always be thg same. If there has been no setrand, the
first time a rand () or a randlist is executed, the seed is set automatically
to a value based on the current date and time. If you do not use setrand,
and instead rely on the automatic seeding feature, it should not be possible to
get the same automatic seed twice within the same 500,000-day period. A com-
forting thought!

The seed_string must be exactly four bytes long. It cannot consist entirely of
0 bytes (i.e., "\x00\x00\x00\x00"), however.

80

Secuon 11: COMMANDS

socket interaction set_send_delay

format: set_send_delay socket_handle integer_value

purpose: Set the number of 256ths of a second to pause after sending each byte to the
socketed device or process.

notes: The default setting is 0. Typically you shouldn’t need to use this command at
all, but it is provided in order to accommodate certain devices that can’t accept
bytes at full speed.

Exactly 3 tokens. send does not reset this parameter. See also send.

81

Section 11: COMMANDS

set_waits

format:

purpose:

notes:

socket interaction

set_waits socket_handle integer_value

For all succeeding send commands, set the number of half-second wait intervals
to await more output from the socketed device or process, after the last byte
is received. :

Think of this as a “maximum pause with no response from the socketed
device or process.” If the output from the socketed device or process is
matched by an EXACT, END, or B&E match buffer, these waits will not take
place. If there is no match, or no match buffers have been set via one or more
set_mbf commands, or an iq,nore command is in effect, these waits will
all take place unconditionally. If no set_waits has been executed, the num-
ber of waits will be 10 (i.e. 5 seconds).

send does not reset this parameter.

See also send, socket, set._mbf, ignore, and verbose_on.

82

Section 11: COMMANDS

debugging show_comlines_on (show_comlines_off)

format: show_.comlines_on

or

show_comlines_off

purpose: For debugging. Causes OJ to output the command lines to the console (via
stderr) as they are encountered, before they undergo any processing. Also shows
whether the interpreter is currently searching for a particular label, and the current
nesting level of if.

notes: Exactly 1 token. This is probably not the command vou want. You probahly
want echo_.on and/or verbose_on, or you want to use the debugger. See
echo_on, verbose_on, and Section 12.

83

Section 11: COMMANDS

show_labels debugging

format: show_labels

purpose: For debugging. Causes QOJ to output all known statement labels, and their line
and byte numbers within the current script, to the console via stderr.

notes: Exactly 1 token. Statement labels that have not yet been encountered will not
appear in the list. This command is probably not what you are looking for,
unless you are doing tricky stuff which uses the content of variables as labels.

84

section 11: CamniANDS

socket interaction/ debugging show_mbfs

format: show..mbfs socket_handle

purpose: For debugging. Displays the currently active match buffers on the console (via
stderr).

notes: Remember that after a send all match buffers are cancelled. Therefore this
command is useful only after one or more set_mbf commands, but before
their associated send. See also send and set_mbf,

85

Section 11: COMMANDS

show_tokens_on (show_tokens_off) debugging

format:

purpose:

notes:

show_tokens_on
or
show_tokens_off

For debugging. Causes OJ to output all tokens to the console via stderr imme-
diately after tokenization and before variable substitution.

Exactly 1 token. Makes an extremely verbose display. This command is prob-
ably not what you want, unless you are wondering how a command line is being
tokenized. See echo_on.

86

Section 1. COMMANDS

debugging

format:

purpose:

notes:

show_vars

show_vars

For debugging. Causes OJ to output the names and contents of all extant vari-
ables to the console via stderr.

Exactly 1 token. It’s usually easier to use the p command in the interactive
debugger (see Section 12), but show—_vars gives you a quick and dirty way
to display the entire variable inventory on the screen.

87

Section 11: COMMANDS

socket

format 1:

format 2:

format 3:

purpose:

notes:

socket interaction

socket var_for_socket_handle device_name

socket var_for_socket_handle = pipe_size_in_bytes
process_name (process_arg_l... process_arg_n)

(NOTE: as with all commands, this one must be written all on one line in the script.
If it won't fit, use the backslash line-continuation feature [see Section 6].)

socket socket_handle

Specifies the device (format 1) of invokes the process (format 2) with which to
exchange data via the send command, or kills a process invoked by a previous
socket (format 3). Formats 1 and 2 are used to set a variable to a socket
handle value, which is required by all other socket interaction commands.

Any number of socketed processes and devices can be kept on hand simul-
taneously; each is independently addressable via its associated socket handle, via
the send command. (See send.)

You must execute this command prior to using send. Typically, for interactions
with a host computer system, you will use format 1 and specify /t1 or another
serial port device. For interactions with some local process, such as Kermit,
simply specify the variable name to receive the socket handle, the pipe size in
bytes (minimum size is 256 bytes), and kermit:

socket var_for_socket_handle = 256 kermit

In the case of a process, the process is invoked at the socket and it remains
active until killed by a socket (format 3), or uatil it dies spontaneously, or
OJ terminates. This command sets gqreturn; be on the lookout for
E_PSNOFORK and E_PSWENTAWAY values.

88

Section 11;: COMMANDS

string manipulation sort

format: sort source_array sorted_array (reverse)

purpose: Determine the lexicographical (or reverse lexicographical) order of the items in
an array. To get reverse order, use the optional final token, reverse.

notes: source_array must be the source array name, which is a variable that must
exist and must have as its value the number of elements in source_array|{].
sorted_array is the name of the receiving array. This variable will be created,
if necessary, as will all the elements of sorted_array(]. N.B.: to force the
creation of the array as local variables, precede the sort with a

local sorted_array

The value contained in source_array will be copied into Sorted_array. The
content of each element of sorted_array[] will be the index number of the
corresponding element in source_array (], not the value of the corresponding
element in source_array[). For example: (first we have to have have an array

to sort)
set sourcearray (0] = my
set sourcearray[l] = dog
set sourcearray(2] = has
set sourcearray([3] = fleas
set sourcearray = 4 # length of the array

Then we sort it:

sort sourcearray targarray

sourcearray is not affected.
targarray has now been created, and it looks like this:

$targarray is “4”:
Stargarray [0] is “1”; so

$sourcearray ($targarray(0]] is “dog”
Stargarray[1] is “3™ so

$sourcearray [$Stargarray[1]] is “fleas”
Stargarray (2] is “2”: so

$sourcearray ($targarray[2]] is “has”
Stargarray (3] is “0” so

$sourcearray [$targarray [3]] is “my”

89

Section 11: COMMANDS

To display the items in Sourcearray in alphabetical order, then:

loop Oend ; i =0 ; i < $targarray; \
i=14+1
writefile $stdout $i * = $sourcearray[$i] \
" " $targarray[$i] \
" " $sourcearray([$targarray($i]] \n

Oend

The above loop’s output is:

my 1 dog
dog 3 fleas
has 2 has
fleas 0 my

WN=O

If the sort command had been:
sort sourcearray targarray reverse # reverse

The output would have been:

0 my 0 my

1 dog 2 has

2 has 3 fleas
3 fleas 1 dog

90

Section 1i: CUMMNANIS

user interaction spilldev

format: spilldev device_name

purpose: Pick up all bytes waiting at the named SCF device, and discard them.

notes: Useful for clearing the standard input stream after displaying a dangerous prompt.

fprintf $stdout \
"Press RETURN to launch nuclear weapons. \n"
spilldev /term # no hangover RETURN key allowed to
start war.
stdin x
launch nuclear weapons here.

91

Section 11: COMMANDS

sprintf

format:

purpose:

notes:

string manipulatica

sprintf var_to_be_set control_string
(string_1...string_n)

Write a formatted string on a variable using the same control string and conver-
sion conventions as the sprintf() function in the C language.

Please refer to Kernighan and Ritchie’s The C Programming Language or any
other good book on C. sprintf is a “backslash-interpreting” command. See
also fprintf,

92

Section 11: COMMANDS

user interaction stdin

format: stdin var

purpose: Pick up a newline-terminated line from the user (or stdin).

notes: Don’t use a $ unless you want the input to be placed in a variable whose name
is the same as the content of var. stdin calls 0S-9’s readln() function.

93

Section 11: COMMANDS

strip_msb_on (strip_msb_off) socket interactions

format:

purpose:

notes:

strip_msb_on socket_handle

or

strip_-msb_off socket_handle

Cause the most significant bit (msb) of each incoming byte from a socketed
device or process to be reset (or left unchanged).

When chatting with a remote host computer, the most significant bit of each
incoming byte is often used for parity checking. It is undesirable to allow the
parity bit to come through, because when it is set, it renders the incoming byte
uninterpretable as a character. For this reason, after socketing a device, the
incoming data will have its most significant bit stripped unless a
strip-msb_off command is issued. The default situation for Socketed
processes is the reverse: the most significant bit of each incoming byte will be
left unchanged unless a strip_msb..on command is encountered.

94

- Section 11: CuniMANDS

string manipulation substring

format: substring var =
string_from_which_substring_is_to_be_copied
starting_position (length_of_substring_to_be_copied)

(NOTE: as with all commands, this one must be written all on one line in the script,
If it won’t fit, use the backslash line-continuation feature [see Section 6].)

purpose: Put a copy of a portion of a string into another variable.

notes: To copy from the very beginning of the string_from_which_substr-
ing_is_to_be_copied, starting_position should be 0. If length_of _substr-
ing_to_be_copied is omitted, all of the remainder of the source string will be
copied. BEWARE: the source string must be a single token. Therefore, if it is
a hard string (i.e., it is not given as a varname), and it has whitespace in it,
it must be surrounded with double quotation marks.

95

Section 11: COMMANDS

switch flow of control

format: switch end_label string_to_match_with_each_case

purpose: Executes all the code after the first matching case until a subsequent break
- is encountered.

notes: This works pretty much like switch in the C language, except that each case
is a string match rather than a value match. When the switch command is
encountered, all the tokens after the end_label are concatenated into a single
string; this single string will be compared with the string given in each case.

. /
Remember: just as in C, once a case has been matched, all the code in all
succeeding cases will be executed until there is a break. If no case is
matched, the code after the default, if any, will be executed. Consult a
book on the C language for details. See also break.

example of a switch:
switch 100_end-switch $string_to_match
case "hi mom"
execution resumes here if the content
of string_to_match is "hi mom"
break
case 23
case $quodlibet
execution resumes here if either "23"
or the content of variable
quodlibet matches string_to_match
break
default
execution resumes here if
no case matches string_to_match
100_end_switch

96

Section 11: COMMANDS

debugging sys_exec_off (sys_exec_on)
format: sys—exec.off

or

sys—exec_on

purpose: For debugging. Disable (or enable) invocation of programs called in a script.

notes: Useful in checking flow of control in scripts before allowing OJ actually to call
any external programs. Best used with echo_on. In the absence of a
Sys-—exec_off, extemal program invocation is enabled. sys_exec_onn
has no effect if an ~-x option was used at OJ invocation time (see Section
4). Exactly 1 token.

97

Section 11: COMMANDS

tellfile

format:

purpose:

notes:

input/outpu:

tellfile file_handle

Find the current position of the file pointer within an open file. Sets greturn
to the byte number within the file, or < 0 if there was an error.

Don’t forget the $ before the file handle variable. By saving the the file pointer
position in fpvar:

tellfile $fhandle
set fpvar = $greturn

you can get back to the same pogition by:

seekfile $fhandle $fpvar 0

See also seekfile, openfile, closefile, readfile,
writefile, and fprintf.

98

Section 11: COMMANDS

memory management unset
format; unset (option) varname_l (...varname_n) (option)
options: -LOCAL

-GLOBAL

-LOCGLOB (both; default)

purpose: (1) Recover the memory allocated to one or more variables by destroying the vari-
ables altogether.

(2) Destroy a local variable which has the same name as a global variable, so as to
regain access to the global variable.

notes: Using the ~LOCAL option will destroy only the variables that exist in ihe locai
variable bank; using the ~GLOBAL option will similarly restrict destruction to
the global variable bank. Using no option (or the —LOCGLOB option) will
destroy all matching variables in both the local and the global variable banks.

Each variable name can include wildcards. The ? wildcard can be any single
character; the * wildcard represents any combination of 0 or more characters.
To destroy all the variables, just use a *. You cannot destroy system variables.

This command sets greturn to E_VNOTFOUND if any of the variables
could not be found in the designated bank(s).

99

Section 11: COMMANDS

verbose_on (verbose_off) socket interaction/ debugging

format: verbose_on Ssocket_handie
or

verbos=_off socket_handle

purpose: If a vertose_on has been executed, a running status display will be sent to
the console via siderr during each send. The status display will tell what is
being sent, what the socketed process or device replies, how long a wait was
required, etc.

notes:

When optimizing the script, set_waits should often bé set to a number whicl és banwe

what higher thadethiefanitst toumfier extopaiti 10klloas forvokessiorish slowness aptin.svek -

eted processas @espandhasTho affecvaif 19]findisotinhakedmarish waits ‘wereoptipuired’ dsrto

observe the bisplay gefidralead by affec riflOFhensainyakelb odth_s0n-iv ppuitiect. See Section
4,

100

Section 11: COMMANDS

memory management/ data storage vrestor_e

format: vrestore filename varname_l (...varname_n)

purpose: Restore from the file all of the variables whose names are given. The file must
have been made by using the vsave command.

notes: Each variable name can include wildcards. The ? wildcard will match any single
character; the * wildcard represents any combination of O or more characters.
To restore all the variables in the file, just use a *. For an example, see
vsave.

This command sets greturn, which must be checked if you are at all inter-
ested in reliability. If greturn is less than 0, the save was not done, except
when gqreturn == E_VNOTFOUND, in which case at least one variable
was not restored because it could not be found, but the rest (if any) were restored.

101

Section 11: COMMANDS

vsave

format:

purpose:

options:

notes:

memory management/ data storage

vsave filename (option) varname_l (...varname_n)

Save in the file all of the variables whose names are given, for later recovz-y
via the vrestore command.

-NEW . The file, if it exists, will be completely overwritten.

-UPDATE Only the named variables will be updated (and created, if neces-
(default) sary) within the file. This method is far more time-consuming,
but often worthvtflhile. :

Each variable name can include wildcards. The ? wildcard can be any single
character; the * wildcard represents any combination of 0 or more characters.
To save all the variables, just use a *. System variables such as argc and
greturn are never saved. If you want to save their values, simply copy them
to other variables and save those variables.

Local variables will be saved as local variables, and they will be restored as local
variables by vrestore. Similarly, global variables will be saved and restored
as global variables.

This command sets qreturn, which must be checked if you are at all inter-
ested in reliability. If greturn is less than 0, the save was not done, except
when greturn == E_VNOTFOUND, in which case at least one variable
was not saved because it could not be found, but the rest (if any) were saved.

Example:

vsave myvars.vs -update scores[*] donecount \
exam* *x*
if (greturn < 0)
fprintf $stderr "vsave failed; %s\n" \
Se msg([$qreturn]
exit 1
‘endif

In the example, a variable storage file whose name is “myvars.vs” will be created
if it doesn’t exist, or updated if it does exist. All currently extant variables which
meet the following criteria will have their values in the file updated (if they

102

Sceuon 110 COMMANDS

already exist) or they will be entered in the file for the first time with their
current values):

(1) all variables in array scores|...]
(However, scores [whatever] [whatever_else]
will not be saved. To save it, you might use scores*.)

(2) variable donecount
(3) all variables whose names begin with exam

(4) all variables whose names contain at least one X.

103

Section 11: COMMANDS

wait

format:

purpose:

notes:

miscellaneous

wait number_of_half_seconds (-verbose)

Unconditioraily stop furiter execution of the script for the number of half seconds
given in ths ag.

Sometimes wseful in auto-login scripts on systems which ignore input for some
period of time afier displaying the “login:” prompt. The ~verbose option
causes a verbose-type display to appear on the console, showing the current wait
number and the total waits. If the - -v invocation option was used, it has the
effect of adding the -verbose option to all wait commands,

104

DL o0 LAIVRIVEA N

input/output writefile (-writefile)
format: writefile file_handle string_1 (...string_n)
or

-writefile file_handle string_l1 (... string_n)

purpose: Write some bytes on a file (or to $stdout or $stderr).

notes: greturn will be set to a negative value if an error occurred, or it will be
set to a positive value equal to the number of bytes written. All the string tokens
will be concatenated and written to the file. '

Don’t forget the $ before the file handle variable. To output text to the screen,
use writefile $stdout or writefile $stderr.

writefile uses fputc(), which means that when the output is to an SCF
device (such as /t1) rather than to a file, the translations in effect for that
device will be done. These translations may include the expansion of tab char-
acters into some number of spaces, and the addition of a linefeed character to
each carriage return character. If you do not wish these translations to take place,
use the —~-writefile rather than the writefile form of the command.
-writefile calls the low-level write() function rather than fputc(); write()
does not perform the translation. (For more information about translation of char-
acters, consult the documentation on the x mode program in your OS-9 manual.)

writefile is a “backslash-interpreting” command.

See also openfile, fprintf, closefile, readfile, seekf-
ile, and tellfile. It’s often handier to use fprintf.

WARNING: Once a device or file has been opened, use either writefile
or ~-writefile, but do not use both. Also, if you use -writefile,
the only other i/o command you may use with its file handle is closefile.
Do not attempt to use fprintf, readfile, seekfile or tellf-
ile— the results will be unpredictable.

105

Section 11: COMMANDS

This page deliberately left blank.

106

Interactive Script Debugger

The debugger is built into the OJ interpreter. It allows the programmer to control and in-
terrupt execution of scripts at arbitrary times, and, while execution is interrupted, to examine
the contents of any or all variables. To be in debug mode, use the —-d option when invoking
OJ. You will then see the first executable line of the script, followed by the prompt:

0Jdb:

The line of your script which is displayed immediately above the OJdb: prompt is always
the line which is about to be executed.

At this prompt you may type any of the following single-letter commands (with their argu-
ment(s] as appropriate), and then press the RETURN key. Each discussion of a single-letter
command begins with a {mnemonic} word to help you remember what the letter means.
Some effort has been made to make operation of the debugger similar to that of the OS-9
C language source debugger, although there are (of course) numerous differences.

? {Help} Lists information about the debugger on the screen.

$ {Shell} Allows temporary escape to an OS-9 shell prompt. Logging out of
the shell will return you to where you were, at an OJdb: prompt.
Upon returning, you may wish to use the i and/or £ commands to
see where you are.

WARNING: It is extremely dangerous to edit any script which has
been left open by the OJ interpreter you are temporarily escaping.
When you come back and restart execution, literally anything can
happen, including the destruction of valuable files. Be safe: fully
exit OJ before editing any OJ scripts; do not use this shell escape
for editing scripts.

b { Breakpoint) Displays the breakpoints currently in effect. Breakpoints are places
in the script, described as “scriptname\line_number” (note the
backslash between °- ::-iptname and the line number), where you
wish to halt executicr. a~4 get an OJdb: prompt. If the line num-
ber is 0, that means “halt at the first executable line.”

107

Section 12: INTERACTIVE SCRIPT DEBUGGER

b scriptname

{ Breakpoint }

Sets a breakpoint at the first executable line of script scriptname.
One arrives at such a point immediately after any do or include
command, at the first executable line of the included or done
script. When the breakpoint is encountered, execution halts and an
OJdb: prompt is displayed. The actual breakpoint line number will
be 0, which means “halt at the first executable line”.

b scriptname\line_number { Breakpoint}

b line_number

Sets a breakpoint at the line number given after the backslash. The
line number must have an executable command on it, or the debugger
will not “see” it, but will pass right over it without stopping. Exe-
cution will halt on that line number if and only if that line is sup-
posed to be executed:" For instance, if you put a breakpoint at a line
which is never executed because it is in an if region whose con-
dition is never satisfied, OJ will not halt there.

{Breakpoint)

Just like the above command, except that it stops at the line number
within the current script.

¢ calculational_expression {Calc)

el

el

f

{Echo-true}

{Echo-false)

{Frame}

Type anything here that could appear after the = token in a calc
(or as the tokens following an if), and it will be evaluated exactly
the same way that ‘it would be if it occurred in a command in the
script when the OJdb: prompt appeared. The evaluation, which is
always a real number, will be displayed. Do not use an = sign. - No
OJ variable will be set by using this command (for that, use the sl
or sg commands).

Turns on echo mode. This has the identical effect of an echo_on
command or an invocation of OJ with a --e argument.

Turns off echo mode. This has the identical effect of an
echo_off command or an invocation of OJ without a --e ar-
gument.

Displays the current “frame” or context. The current script name and
line number are displayed first, followed by all script names and line

108

Secuon 12: INFERAC1IVE SCRIPT DEBUGGER

numbers containing do or include commands that led to your
current location (the “do” stack).

g {Go} Executes the script until a breakpoint is encountered or OJ terminates.
See the b command for information on setting breakpoints. See also
the r debugger command.

No echoing of lines will be done unless an echo_on command

is/was encountered in the script, the ——e option was used at OJ
invocation time, or the el command was issued at an OJdb:
prompt.

g scriptname {Go)

Execute script until scriptname is invoked by means of a do or
include command.

g scriptname\line_number {Go}

Execute the script until line line_number is encountered in script
scriptname. The specified line must have a command on it which
is supposed to be executed (i.e., which is not within an unsatisfied
if region, etc.), or the debugger will not “see” it, but will pass
right over it without stopping.

g line_number {Go}

Execute script until line line_number is encountered in the current
script. The line number must have a command on it which is sup-
posed to be executed (i.e., which is not within an unsatisfied 1f
region, etc.), or the debugger will not “see” it, but will pass right
over it without stopping.

NOTE: All of the above argumented g (“go until...”) commands ac-
tually set a temporary breakpoint which goes away as soon as it is
first encountered. In other words, the breakpoint set with an
argumented g command only works once. To set a breakpoint that
is not unset when it is encountered, use the b command.

i {Info} Redisplays the line you are about to execute.

109

Section 12: INTERACTIVE SCRIPT DEBUGGER

k b breakpoint_number (Kill}

—

=

—

* {Kill})

{List}

line_number

text_file_name

Kills a breakpoint previously created by the b command. First, do
a b command with no argument; this will show all the breakpoints.
The breakpoints are identified as b0, bl, b2, etc. Decide which one
you want to kill, and enter its name (e.g., b0) as the argument of
a k command:

0Jdb: k b0

Kills all breakpoints.

Displays a numbered-line listing of the current script, starting at the
current line in that script, one screen at a time. If all the script file
has not yet been shown, the prompt will be:

OJdb ([LIST]:
In order to see the next screenful of text, press RETURN.

{List}

Like 1, above, except the listing will begin with the line number
given in the argument.

{List)

Like 1, above, except that you will be looking at any arbitrary text
file whose name you give in the argument. This of course includes
scripts other than the one you are presently executing.

text_file_name\line_number (List}

{Next}

Displays the named text file, starting at the specified line number.
Be sure to use a backslash between the two arguments,

Executes the script line already displayed above the prompt, shows
the next line to be executed, and gives another OJdb: prompt.
When you press n the first time, the OJdb: prompt becomes
OJdb [NEXT] :. This means that you don’t have to press n fol-
lowed by RETURN to repeat the n command; instead, just press
RETURN all by itself. '

110

Seciivn . sivibnACiivie SiCKIYE UDEBUGGER

n number {Next} Executes the specified number of lines in the script, echoing each of
them before execution; it’s equivalent to issuing the n command (hat
number of times.

p variable _name {Print)

Displays the contents of the variable named in the argument. You
may use wildcard characters (?, *) in the variable names to see sev-
eral variables at once. An asterisk all by itself will display all vari-

ables.
a {Quit}) Aborts execution of OJ and returns you to your original shell prompt.
r {Retum} Executes the remainder of the current script, halting automatically

when you return to the calling script.

S1 var_to_set = strings... {Set Local}

Set a local variable to some string value. See sg below.

Sg var_to_set = strings... {Set Global}

Set a global variable to some string value. The s1 and Sg com-
mands behave identically to the set command, except that you can
be specific about whether you wish to set a local or a global variable.
WARNING: These debugging commands have no impact on the script
itself except during the current debugging session; the script itself
still has to be fixed.

111

Section 12: INTERACTIVE SCRIPT DEBUGGER

This page deliberately left blank.

112

These are the names of the pseudo-variables containing the values returnable by greturn,
numeric values

together with

their actual

Errors

and the strings

e_msg[$greturn] array. WARNING: Don’t use the values; use the names instead.
The values may change, but the names won’t.

$E_NO_ERR
$E_FOPEN
$E_NONINT
$EfBADPLC
$E_BADSEEK
$E_BADTELL
$E_PSWENTAWAY

$E_PSJUSTDIED

$E_PSNOFORK
$E_INVSOCKH

SE_INVFH

0

-6

~-10

no reportable error has occurred
file could not be opened via fopen ()

an integer value was required; this
wasn’t an integer

place value for seek()
1, or 2

was not 0,

fseek () failed

ftell () failed

process already was dead

4

process just died; normal after a
regular 0S-9 invocation; if a
socketed process, another socket is
now reqgquires

prccess -ou.< not be forked at all

invalid socizet hand.e

invalid £ile handle

found in the

113

Section 13: ERRORS

$E_BADCHD -11 unsuccessful attempt to change data
directory
$E_BADCHX -12 unsuccessful attempt to change

execution directory

$E_CVCHTOOMANY -13 more %’s in control string than

arguments

$E_BADCONVSTR -14 conversion string beginning with %
is ill-formed

$E_CVCHTOOFEW -15 fewer %'s in control string than
arguments

SE_RFEOF -16 file 1is exhausted -- no more data
available

$SE_NOTVFILE -17 file exists but is not a variable
storage file

$E_CORRVFILE -18 existing variable storage file 1is
corrupt

$E_VF_NO_WRITE -19 could not write variable storage
file

v aNNS 4o

$E_VNOTFOUND -

<«

while saving, restoring, or
unsetting variables, at least one
requested variable did not exist

o)

114

Quick Reference

INVOCATION OPTIONS

-2 7
--b 7
--d 7
--e 7
--q 7
——v 7
--X 8

FUNCTIONS USED IN CALCULATIONAL EXPRESSIONS

charval (a) 22
devrdy (device name) 22
frac (val) 22
gvarnum (varname) 23
hex2dec (val) 23
index (pattern s [start]) 23
int (val) 23
isdir (path) 23
isfile (path) 24
isreal (string) 24
length (var) 24
lvarnum(varname) 24
max (varname varname) 24
min (varname varname) ‘ 24
namecmp (target pattern) 24
oct2dec (val) . 24
rand() 24
strcmp (a b) 24

115

QUICK REFERENCE

0OJ COMMANDS

CALCULATION

calc resulivarname = calc_exprzssion

DATA STORAGE

vrestore filename varname_l (..varname_n)
vsave filename (option) varname_l (..varname_n)

DEBUGGING

echo_on
echo_off
debug_on
debug_off

show_comlines_on
show_comlines_oféf
show_labels

show_mbfs socket_handle
show_tokens_on
show_tokens_off
show_vars
sys_exec_off
Sys_exec_on
verbose_on Ssocket_handle
verbose_off socket_handle

EXTERNAL PROCESS CONTROL

any_OS-9_program_invocation_name
redirect stdin varname
set_prior calc_expression_yielding_process_priority_value

FLOW OF CONTROL

break

case

continue

default

do OJ script_name (arg_I..arg_n)
else

38

100
101

48

44

82
83
84

85
86

96

99

31
69
78

37
39
43
45
47
49

. 116

QUICK KEFLKE; .

endif 50
exit (calc_expression) 51
goto label 53
if calculational expression 54
include oj script name 56
istop
istart 57
label 59
loop end label ; (init var = initialization calc exp) ; \
(test_calc_exp) ; (increm_var = incrementing_calc_exp) 62
OJ oj script_name (arg_l..arg n) 64
return (calculational_expression) 71
switch end_label string_to_match_with_each_case 95
INPUT/OUTPUT
closefile file handie 42
fprintf file_handle control_string (string l...string n) 52
openfile var_for file handle = file_name action 65
readfile file_handle var_for line from_file 68
seekfile file_handle offset place 72
tellfile file handle 97
writefile file_handle string 1 (..string n) 104

MEMORY MANAGEMENT

local varname_l (..varname_n) 60
unset (option) varname_l (..varname_n) (option)

options: -LOCAL, -~GLOBAL, -LOCGLOB (both; default) 98
vrestore filename varname_l (..varname n) 100
vsave filename (option) varname 1 (...varname_n)

options: NEW or UPDATE 101

MISCELLANEQUS

cd directory_to_become_current_data_directory
chd directory_to_become_current_data_directory 40
chx directory_to_become_current_execution_directory 41
wait number_of half seconds 103

117

QUICK REFERENCE

RANDOM NUMBERS

randlist arrayname arraysize lowest _possible_value
number_of possible_values (option)
options: UNIQUE (default) or REPEATABLE
setrand seed_string

SOCKET INTERACTION

ignore socket_handle
password
password = string
send socket_handle = \

var_to_receive_name_of matched_buffer string_1 (...string n)
set_mbf socket handle name_of buffer to_set \

type_of_match_to_make = string | (...string_n)

(use with BEGIN, END, or EXACT type_of match...)

set_mbf socket handle name_of buffer to set \

B&E token_used_as a_separator = string 1 (..string n) \

string_o (...string_p)
(use with B&E type_of match..))

set_send_delay socket_handle integer value
set_waits socket handle integer value
show_mbfs Socket_handle
socket var_for_socket_handle = device name
socket var_for_socket_handle = pipe size_in_bytes \

process_name (process_arg_1..process_arg n)
socket socket_handle
strip_msb_on socket_handle
strip_msb_off socket handle
verbose_on socket_handle
verbose_off socket handle

STRING MANIPULATION

alphameric var_to_set = string I (..string_n)
arraytok separator_character(s) arrayname (option) \
string 1 (...string_n)
options: ~GOBBLE or -NOGOBBLE (default)
bits var = decimal_integer
replace code: S or C char(s) to replace \

what_to_replace_them_with output var - string 1 (...string n)

67
79

55

66

73

76
80
81
84

87

93

99

32

33
36

118

YUICK KEFERENCE

set resultvar = (ULR) string 1 (...string_n) options: U , L , R , or
none 75
Sort source_array sorted _array (reverse) 88
sprintf var_to_be_set control string (string 1 ..String_n) 91
substring var = string from_which_substring is_to be_copied \
starting_position (length_of substring to_be_copied) 94

TIME MEASUREMENT

difftime target varname = marktime value I marktime_value 2 46

julian var _for_day number var for second number \
var_for_tick_number var_for_ticks-per-second_value \
= marktime value 58
marktime varname 63

USER INTERACTION

spiildev device 90
stdin var 92

119

QUICK REFERENCE

This page deliberately left blank.

120

! redirection operator..33, 74

I= .22

"9, 31

comment begin delimiter...13, 31, 60

not comment begin delimiter..34

$.15-19,74, 117 - 118

$ [Shell} d11

$ variable substitution...10 - 11, 15 - 17, 21,
31, 41, 45, 73 - 74, 77, 97, 102, 109

% ..118

% (modulus)...2l

% conversion..9, 17, 37

% modulus..24, 118

& .69

&& .22

.23

* (multiply)...21

* wildcard..24, 103, 105 - 107, 115

+ (add)..21

- (subtract)...21

- dash..33 - 34

- minus...16

- single hyphen..5

-~ .69

-- double hyphen..7

S |

-GOBBLE..138

-verbose...108

-writefile...109

-writefile command...109

- (dot)...10, 15, 61, 63, 84, 108

/ (divide)...21

< less than..21

< redirection operator..33, 74

.21

.80 - 81, 112

(assignment operator)..21

Index

.21

..80

.32, 35, 80

..80

> (greater than)..21

> redirection operator..33, 74
= .21

>> redlrectlon operator...33, 74
? {Help}..6, 111

? wildcard..24, 103, 105 - 106, 115
\ in breakpoint...111

\ line continuation...10

W nnu
cme

] .10

~ .10, 63
.22

A

a ..70

a+ .70

abort..9 - 11, 18, 29, 33, 50, 72 - 73, 115

accuracy..49, 68

action...70

add (+)..21

addressable...92

algorithms...49

alphabetical...10, 23 - 24, 63, 94

alphameric...2, 35, 80

alphameric command...35

AND (&&).22

answer...5 :

any OS- ?_prr'gram invecation _name...29,
33 u}, 74

append..69 - 70

argc..2, 29, 50, 59, 64 - 65, 106 .

argument...1, 7,9 - 10, 21 - 22, 29, 34, 50, 59,
65, 69, 72, 76, 111 - 115, 118

121

INDEX

argv..2, 29, 50, 59, 64 - 65
arithmetic...2, 16
array..2, 10, 16 - 19, 23 - 24 28 - 29, 36, 72,
93, 107, 117
arraytok...2, 36 - 38
arraytok command...36
ASCIIL..22
assignment...10, 16, 21
associative...1
asterisk...115
auto-login...108
awk...1

B

--b .7

b {Breakpoint}..111 - 114

background...69

backslash..2, 9, 11, 13, 19, 22, 31, 34 - 36, 38,
49, 55, 61, 66, 72, 75, 78 - 82, 92, 96, 99,
109, 111 - 112, 114

BACKSLASH-INTERPRETING
COMMANDS..31

backspace...31

banner...2, 27 - 28, 106, 117

BAT...1

batch files...1

bit ...39, 98

bits...98

bits command...39

brackets...10, 17 - 18

break...1, 13, 40, 66, 100

break command..40

breakpoint..3, 47, 111 - 114

buffer..3, 7, 45, 78, 81 - 82, 86, 89

buffer size..7

byte..7, 23, 31, 35, 58, 73, 77, 84 - 86, 88, 92,
98, 102, 109

bytes..95

C

c {Calc}..112

C-language...1 - 2, 31, 51, 55, 61, 66, 75, 96,
100, 111

C-Shell...1

calc command..41

calculation..2, 15 - 16, 18 - 19, 21 - 23, 41, 54,
57, 66, 76, 83, 112

CALCULATIONAL EXPRESSIONS..21

CALCULATIONS, VARIABLES
AND FUNCTIONS..2

calendar...61

call...1, 6, 11, 18, 27, 29, 50 - 51, 59, 64 - 65,
69, 74, 76, 97, 101, 115

cancel...56, 89

capitalize...65

carriage return character...109

case..40

case command..42

cd .43

cd, chd command...43

CD-RTOS...1

character..9 - 11, 13, 15 - 16, 19, 22 - 24, 31,
34, 36, 38, 41, 60, 63, 68, 75, 80, 98, 103,
105 - 106, 115

characters...22

charval()..2, 22

chat...1, 98

chd..3, 5, 43

chdir..43

chronological...61

chx..3, 44

chx command..44

chxdir...44

class..2, 11, 17, 64

clearing..95

clock...61, 68

close..45

closefile..2, 45, 55, 70, 73, 77, 102, 109

closefile command..45

combine...10, 22, 61, 103, 105 - 106

command-specific...11

COMMANDS..33

COMMENTS...13, 31, 34, 60

122

INDEX

compare...21, 24, 27, 78, 82, 100

concatenation...16, 33, 36, 75, 78, 80 - 82, 100,
109

conditional...2, 27, 57, 112

console...2, 7, 22, 28, 51, 87 - 91, 104

constant...2, 27 - 28

content..2, 6,9 - 11, 15 - 18, 22 - 24, 27 - 31,
34, 36, 64, 66, 70, 72, 74 - 75, 78, 80, 88,
91, 93, 97, 100, 107, 111, 113, 115, 117

continue...1, 46, 64, 66, 73

continue command..46

continued...13

CONTINUED LINES...13

control_string...55. 96

convention...55, 96

conversion...31, 55, 80, 96, 118

current..1 -2,5-6, 8, 11,21, 27 - 30, 43 - 44,
46, 68 - 70, 76 - 77, 84, 87 - 89, 102, 107,
111 - 115

curscript...29

D

--d .7, 11, 69, 111

dangerous...95, 111

dash...5, 7, 33

database-like..28

DATABASE-LIKE OPERATIONS..28

date..27, 29, 61, 68, 84

day ..29, 61 - 62

debug_on(off) command..47

debug_on/off..47

debugger..6, 11, 111 - 114

debugging..3, 6 - 7, 11, 35, 47, 51, 69, 84, 87
- 91, 101, 104, 111 - 113

DEBUGGING AND QOPTIMIZATION
FACILITIES...3

decimal...16, 21, 23 - 24, 31, 39, 63

declare...64

default...1, 5, 7, 36, 48, 83, 85, 98, 100, 103 -
104, 106

default command..48

delimiter...34

destroy...70, 81, 103, 111

device..5 - 6, 8, 22, 30, 58, 71, 78 - 79, 85 - 86,
92, 95, 98, 104, 109

devrdy()..22

difftime...3, 49, 61, 68

difftime command...49

digit...16, 30, 63

dimension...2, 17

dir ...33

directed..3

directive...6

directory..5 - 6, 8, 24, 30, 43 - 44, 118

discard..95

disk..2, 5 - 7, 13, 45, 49, 70

display..3, 7, 35, 61, 68, 71, 89 - 91, 94, 104,
108, 111 - 115

displaying...95

divide...36

divide (/)..21

dividing..21

do ..1, 10, 27,29, 59, 64 - 65, 69, 76, 112 - 113

do command...50

documentation...6, 33, 60, 109

dollar...15 - 19, 74

done...7

DOS...1

dot ...10, 15, 61, 63, 84, 108

double quotation mark..31

double quotation marks..9, 99

double-precision..2

dump...71

duplicated...56

E

--e 7,69, 112 - 113

e .7, 51,69, 112

e} {Echn-false}..ziZ v .

7 ..3,7,19-20, 51, 65, 87,90, 131, 12 - 113
=} {Echo-trzz}..112

E_BADCHD..118

E_BADCHX..118

E_BADCONVSTR...118

E_BADPLC...117

E_BADSEEK...117

123

INDEX

E_BADTELL..117

e_banner...2, 27

E_CORRVFILE...118

E_CVCHTOOFEW...118

E_CVCHTOOMANY...118

E_FOPEN...117

E_INVFH..117

E_INVSOCKH...117

e_msg..2, 27 - 28, 106, 117

E_NO_ERR..45, 70, 77, 117 -

E_NONINT...27 - 28, 117

E_NOSOCKET..79

E_NOTVFILE...118

E_PSJUSTDIED...79, 117

E_PSNOFORK..33, 69, 92, 117

E_PSWENTAWAY..33, 69, 79, 92, 117

E_RFEOF..73, 118

E_VF_NO_WRITE...118

E_VYNOTFOUND...103, 105 - 106, 118

echo..7, 19, 51, 71, 112 - 113, 115

echo_off/on...3, 7, 19 - 20, 51, 69, 87, 90, 101,
112 - 113

echo_on (echo_off) command...51

echoing..7, 69, 112 - 113

edit..5 - 6, 111

elapsed..3, 49, 68, 108

element...17, 23 - 24, 28 - 29, 36, 72, 93

else...1, 52, 57

else command...52

empty..22, 36, 38

enable...6, 60, 101

enclose...22, 40, 46

END..81, 86

end_label...66, 100

endif...1, 22 - 23, 53, 57, 65, 106

endif command...53

environment...3, 5 - 6, 8

equal...16, 21 - 22, 69, 72 - 73, 79, 109

equal to (==)..21

equivalent..23 - 24, 35, 115

ereply..2, 30, 78, 82

error..2, 27 - 28, 50, 56, 65, 69 - 70, 73, 102,
109, 117

error messages...2, 27 - 28, 33, 45, 69 - 70, 73,
71,79, 92, 103, 105 - 106, 117 - 118

ERROR REPORTING...27

ERRORS...117

escape...111

evaluaiion..2, 15 - 16, 18 - 19, 21 - 22, 30, 41,
54, 57, 66, 76, 112

EXACT..81, 86

example..3, 6,9 - 10, 13, 16 - 19, 23 - 24, 27,
29, 33 - 38, 49, 57, 59, 61, 66, 75, 93, 100,
105 - 107

executable..6 - 7, 47, 111 - 112

execution...1, 5,7 - 11, 13, 15 - 16, 19, 33, 44,
46, 50 - 51, 56 - 57, 61, 63, 66, 69, 76, 78,
83 - 84, 86, 92, 100 - 101, 104, 108, 111 -
115, 118

EXECUTION OF OJ SCRIPTS..9

EXECUTION OF THE COMMAND..11

exit..15 - 16, 21, 27, 29, 33, 54, 56, 65, 76, 106,
111

exit command...54

exitstat...2, 29, 33, 50, 59, 64 - 65, 76

expansion...109 ‘

expressions..2, 15 - 16, 18 - 19, 21 - 22, 30,
41, 57, 76

external..8, 33, 69, 74, 83, 101

external process control..33, 74, 83

extract...6

F

f {Frame}..111, 113

false...21

fhandle...102

fields...36, 38

file..1 - 3,5 - 6, 8, 13, 24, 28, 33, 45, 50, 55,
70, 73 - 74, 77, 102, 105 - 107, 109, 111,
114, 117 - 118

file handle..45, 55, 73, 77, 102, 109

file i/o..2, 28, 45, 55, 70, 73, 77, 94, 102, 109,
117

filename...24, 30, 70, 105 - 106

find...1, 23, 64, 102, 104

floating-point..2

floppy..5 -6

124

INDEX

flow...1, 40, 42, 46, 48, 50, 52 - 54, 56 - 57, 59
- 60, 63, 66, 69, 76, 100 - 101

FLOW OF CONTROL...1, 40, 42, 46, 48, 50,
52 - 54,56 - 57, 59 - 60, 63, 66, 69, 76, 100

flow-of-control...1

- fopen...117

for loops..66

fork...69, 83

forked..33 - 34, 117

formatting...1 - 2,9 - 10, 17, 19 - 20, 27 - 28,
37, 45, 49, 55, 62, 65, 67, 70, 73, 77, 92, 96,
102, 106, 109

formfeed...31

fprintf..1 - 2,9 - 10, 17, 19 - 20, 22, 27 - 28,
37, 45, 49, 55, 6., 65, 67,70, 73, 77, 96, 102,
106, 109

fprintf command...55

fputc()...109

frac()...2, 23

fraction...23, 49

frame...113

fseek...117

ftell...117

function...1 - 2, 21 - 22, 24, 28, 43 - 44, 55 -
56, 12, 84, 96 - 97; See also calculational ex-
pressions

functionality...51

G

g {Go}..113

global..2, 8, 11, 23, 27 - 30, 50, 59, 64 - 65, 69,
72, 103, 106, 112, 115

go .28, 65, 113

go until...113

-GOBBLE...36, 38

goto...1, 50, 56, 63

goto command...56

greater than (>)..21

greater than or equal to (>=)..21

GV_CONT..2, 23,29

GV_NAME..2, 23, 28

gvarnum()...2, 23 - 24, 28

3VARS..2, 28 - 29

H

halt...33, 111 - 112, 115

handle...5, 45, 55, 70, 73, 77, 92, 102, 109, 117
hex2dec()...2, 23

hexadecimal...2, 23, 31, 35

hour...29, 61

hyphen..7, 29

I

i {Info}..111, 113

ID ..30

IDENTIFIER...13

if .1, 13, 15, 21 - 23, 27, 52 - 53, 57, 65, 87,
106, 112 - 113

if command...57

ignore..3, 13, 24, 58, 64, 78 - 79, 86, 108

ignore command...58

include...1, 10, 76, 112 - 113

include command...59

included...29

including..29

increment...66

index...10, 17 - 19,23, 28 - 29

index()..1 -2

indexes...16

inheritance...69

initialization...31, 66, 74

input...2 - 3, 45, 49, 55, 70, 73 - 74, 77, 97, 102,
108 - 109

INPUT/OUTPUT...2, 28,45, 55, 70, 73, 77, 102,
109

insert...6

INSTALLATION...5

integer...16, 21 - 24, 27 - 29, 39, 54, 72, 76, 85
- 86, 117

interaction..2 - 3, 30, 58, 71, 78, 81, 85 - 86,
89, 92, 95, 97 - 98, 104

interactive...1 - 3, 5, 11, 34, 51, 71, 78, 91, 111

INTERACTIVE SCRIPT DEBUGGER...
111)

interpret...98

interpretation...1 - 2, 27, 35, 60, 68, 80

125

INDEX

;See also backslash

interpreter..1, 9 - 11, 15 - 16, 19, 30, 54, 60,
83 - 84, 87, 111

interrupt..27, 111

introduction...1 .

INTRODUCTION TO ODDJOB...1

invocation...1,7 - 8, 11, 27, 29, 33 - 34, 51, &4,
69, 74, 76, 84, 92, 101, 104, 108, 111 - 113,
117

INVOCATION OF 0J..7

invoked...7

isdir()...2, 24

isfile()...2, 24

isreal()...2, 24

istart...60

istop...60

istop (istart) command...60

iteration..9, 40, 46, 49, 66

J

Julian..3, 49, 61 - 62, 68
julian command...61

K

k (Kill}..114
Kermit..92
Kernighan...55, 96
keys..22
keywords...74
kill..3, 92, 114

L

I {List}...114

label...3, 16, 40, 50, 56, 63, 66, 87 - 88, 100
label command...63

language...1 - 2, 31, 55, 66, 96, 100, 111
languages...16

larger..24

launch nuclear weapons..95

launched...3

length..2, 10, 23 - 24, 63, 93

length()...2

less than (<)..21

less than or equal to (<=)..21

lexicographical...93

line...1, 6 - 10, 13, 15 - 20, 27, 33, 36, 49, 51,
60 - 61, 63, 66, 72 - 73, 75 - 76, 18, 81, 87
- 88, 90, 92, 97, 99, 111 - 115

line-continuation...36, 49, 61, 66, 72, 75, 78,
81, 92, 99

linefeed...31

linefeed character...109

lines...3, 87

{LIST}...114

literally...111

local..2 - 3, 8, 11, 24, 27 - 29, 36, 50, 59, 64 -
65, 72, 76, 92 - 93, 103, 106, 112, 115

local command...64

location...77, 113

-LOCGLOB...103

log ..5

logging...111

logical..2, 21 - 22

logical AND (&&)..22

logical OR (I)...22

login...5 - 6, 8, 108

loop...1, 7, 15 - 17, 21 - 22, 37, 40, 46, 50, 56,
63, 66 - 67, 94

loop command...66

low-level...109

lowercase...80

Is .34

LV_CONT..2, 4, 28

LV_NAME.2, 4, 28

lvarnum()..2, 23 - 24, 28

LVARS..2, 28 :

M

macro..9 - 10, 15
MACRO SUBSTITUTIONS..9
management...28, 64, 103, 105 - "6

126

INDEX

manipulation...2, 35 - 36, 39, 75, 80, 93, 96, 99

manual...1 -2, 5-6, 33,43 - 44, 83

marktime...3, 49, 61 - 62, 68

marktime command...68

massedit...27

match..3, 24, 71, 78 - 79, 81 - 82, 86, 89, 100,
103, 105

mathematical..18 - 19

max...24

maximum...24

measure...3, 49, 61, 68

memory...7, 28, 58, 64 - 65, 71, 73, 103, 105 -
106

memory management...64, 103

MEMORY MANAGUEMENT AND
DATABASE-LIKE OPERATIONS..28

memory management/ data storage...105 -
106

messages...28

metacharacters..24

microware...6

military...29

min..24

minimized...81

minimum...24

miscellaneous...3, 13, 29, 43 - 44, 108

MISCELLANEOUS SYNTACTICAL
FEATURES...13

mnemonic...111

mod...21

modes...7, 33, 69, 87, 104, 111 - 112

module...65

modulus...21

most significant bit...3, 79, 98

MS-DOS...1

msb...3, 79, 98

multi-line...10

multi-token..9

multidimensional...17

multiply (*)..21

multitasking...1

N

n {Next}..114 - 115

n-dimensional...2

name..8, 10 - 11, 15 - 17, 21 - 24, 27 - 30, 33,
36, 50, 64, 72, 74, 78, 92 - 93, 97, 103, 105
- 107, 113 - 114

namecmp()..2, 24

named..2, 17, 24, 50, 64, 74, 78, 106, 114 - 115

names...16 - 17, 21 - 22, 28, 41, 63, 65, 91, 105
- 107, 113, 115, 117

negative...16, 27, 72, 77, 109

-NEW...106

newline...73, 97

{NEXT}..114

-NOGOBBLE..36

non-alphameric...35

non-numeric...21

non-printable..31

non-repeatable...2

non-separator...36

non-zero...29, 33, 57, 66, 70

nondestructive...70

NOT (!)...21

not equal to (1=)..22

null..35, 64, 74, 78, 80

numeric...10; 21, 63, 117

0

oct2dec()..2, 4

octal..24, 31

OddJob...1

offset..77

0J .1-3,5-9, 11, 13, 15, 18, 21, 27 - 30, 33
- 34, 37, 49 - 51, 54, 64 - 66, 69, 72 - 74,
76, 81, 83, 87 - 88, 90 - 92, 101, 104, 111 -
113, 115

0j command...69

2J_DOC..6

3J_PATH..5- 6, 8

0jdb..6, 11, 111 - 114

open..8, 45, 50, 70, 77, 102, 111, 117

openfile...2, 45, 55, 70, 73, 77, 102, 109

127

INDEX

openfile command...70

operand..21; See also calculation

operation...1, 3, 6 - 7, 21, 28, 69, 79, 111

operator..2 - 3, 10, 16, 21 -22 33 - 34, 74;
See also calculation

optimization..3, 68, 104

option..2, 7, 11; 19, 23, 35 - 36, 38, 54, 57, 66,
72,76, 78, 93, 101, 103 - 104, 106, 108, 111,
113

OR (I)..22

original...29

0S-9..1,5,7 - 8,24,29, 33 - 34,43 - 45, 50,
61, 68 - 69, 74, 83, 97, 111, 117

0S-9 manual...109

output..2 - 3,7 - 10, 17, 19 - 20, 27 - 28, 33,
37 - 38, 45, 49, 51, 55, 62, 65, 67, 70, 73 -
75,77 - 18, 82, 86 - 91, 94, 102, 104, 106,
109

override..7 - 8

overwrite...65, 70, 106

owner..30

P

p {Print}.91, 115
parameter...69, 85 - 86
parentheses...10, 21 - 22
parity..98

parse..34, 74

password..3, 5, 71,78 - 79
password command...71
path..6, 24, 37, 45, 50
pathitem...37

pathlist...8

pathname...6, 30

pattern..23 - 24, 81
pause...85 - 86

period...10, 15, 61, 63, 84, 108
permissions...5

pipe...1, 92

point...15 - 16, 19, 68, 78, 112
pointer...77, 102
precision...2
predictabilitv, .49

print..91, 115

printable..31

priority..11, 15, 52 - 53, 56, 78 - 79, 83, 92

process..2 - 3, 30, 33 - 34, 49, 58, 69, 71, 74,
76, 78 - 19, 82 - 83, 85 - 87, 92, 98, 104,
117

procid...2, 30

program...1, 5, 8 - 10, 29, 33 - 34, 40, 49, 55,
63, 66, 74, 96, 101

programmer...1, 15, 111

prolog...3

prompt..1, 8, 11, 71, 74, 95, 108, 111 - 115

propagate..33, 69

pseudo-array..28

pseudo-constant..2

pseudo-random...24, 72

- pseudo-socket...78

pseudo-variable...2, 27, 29 - 30, 117
punctuation...30
pwd..2, 30

Q

--q ..7, 69, 104

q (Quit}...115

qreturn..2, 27 - 28, 33, 43 - 45, 50, 64, 69 - 70,
73,77,79, 92, 102 - 103, 105 - 106, 109, 117

quiet...7, 69, 104

quit...115

quodlibet...100

quotation..9, 22, 31, 41, 99

quote...61

R

r {Return}...113, 115

r file i/o..70

+ .70

rand()..2, 4, 72, 84
randlist...24, 72, 84
randlist command...72
random..2, 24, 72, 84

128

INDEX

random numbers...72, 84

re-divided...36 ’

re-evaluated...66

re-invokes...69

read..1,6-7,70,73

readfile..2, 45, 55, 70, 73, 77, 102, 109

readfile command..73

readin..97

real...16, 21, 24, 49, 112

real-time...1

record...68

recover...65, 103, 106

recursion...10, 50, 65

recursive...7

redirect..3, 28, 33 - 34, 74

redirect command...74

REDIRECTION TO AND FROM
0OJ VARIABLES 2

redisplays...113

reliability...105 - 106

remainder...21, 46, 99, 115

remote...3, 98

repeat..114

repeatable..2, 72

repeatedly..9, 66

replace..2, 10, 15, 35, 71, 75, 78

replace command...75

replies...104

reply...2, 30, 78, 81 - 82

reporting...27, 56, 117

reset...81, 85 - 86, 98

restore..2, 105 - 106

resume...56, 100

return...1, 11, 15 - 16, 21 - 24, 27, 29, 31, 33,
50, 56, 59, 64 - 65. 76, 78, 95, 111, 114 -
115, 117

return command..7¢

reverse..21, 35, 93 - 94, 98

Ritchie...55, 96

root...5

S

. sample...5

save..2, 102, 105 - 107

SCF...22, 95, 109

screen...19, 28, 55, 71, 91,:109, 111, 114

screenful..114

script...47

script name...7, 50, 59, 69, 111 - 113

scripts..1 - 3,5-9, 11, 13, 15, 19, 27, 29, 33,
36, 49 - 51, 56 - 57, 59 - 61,63 -"66, 72, 74
- 76, 78, 81, 88, 92, 99, 101, 104, 108, 111
- 115

second...15, 29, 49, 54, 61 - 62, 65, 68, 71, 78,
85 - 86, 108

seed..2, 84

seek..77, 117

seekfile...2, 45, 55, 70, 73,77, 102, 109

seekfile command...77

semicolons...66

send..2-3,7-8,30,34, 58, 71, 78 - 79, 81, 85
- 86, 89, 92, 14

send command...78

separator...36, 38, 81 - 82

serial..71, 92

set .2-3,5-6,8-9,11,13, 17 - 20, 23, 27,
34 - 35, 37, 49, 54, 59, 64 - 65, 70 - 71, 76
- 78, 80 - 81, 83 - 86, 92 - 93, 98, 102, 104,
109, 112 - 113, 115

set command...80

set Global...115

set Local...115

set_mbf..3, 78 - 79, 81 - 82, 86, 89

set_mbf command...81

set_prior..3, 16, 21, 83

set_prior command...83

set_send_delay..3, 79, 85

set_sen<_delay commsnd..85

set_wai*s,.”. 58, 79, 31, 86, 104

set_waiis command..86

setenv..3, 7

setranc.. 24, 72, 84

setrané cemmand...84

sex .07

5g .00 1LE

sg {Set Global}..115

shell...1, 6, 8, 33 - 34, 74, 111, 115

show..3, 8, 49, 51, 108, 114

129

INDEX

show comlmes on
(show_comlines _off) command...87

show_comlines_on/off..3, 87

show_labelsy.3, 88 :

show_labels -cdmmand...88

show_ mbfs.‘3 79,.89

show mbfémcommand .89

show_tokens_on (show_ tokens off)

command,.99

show_tokens_on/off..3, 19 - 20, 90

show_vars..3, 19,91

show_vars command...91

sign...16 - 17, 19, 34, 74, 81, 112

signal...27

significant...98

simulate..2

simultaneously..2, 92

single hyphen..5, 7

single quotation mark..22

single quotation marks..41

single-letter...111

sl ..112, 115

sl {Set Local}...115

slash...8

smaller...24

snugged...33

socket..2 - 3, 7 - 8, 30, 34, 58, 71, 78 - 79, 81
- 82, 85 - 86, 89, 92, 98, 104, 117

socket command..92

socket handle..58, 78, 81 - 82, 85 - 86, 89, 92,
98, 104

SOCKET INTERACTION..30,58,71,78, 81,
85 - 86, 89, 92, 104

SOCKET INTERACTIONS..2, 98

socket-interaction...2

software..11, 16

sort..2, 93 - 94

sort command...93

space...6, 34

spaces...9, 33 - 34, 36 - 38, 109

SPECIAL CALCULATIONAL
FUNCTIONS...22

speed...7, 85

spilldev..22, 95

spilldev command...95

sprintf,..1, 9, 55, 96

sprintf:icommand...96

square...10, 17 - 18

stack..27, 34, 113

standard input stream...95

startup...8

status..3, 29, 33, 54, 76, 104

stderr..2, 9 - 10, 27 - 28, 51, 55, 65, 70, 74, 78
82, 87 - 91, 104, 106, 109

stdin..22, 65, 74, 97

stdin command...97

stdout...2, 17, 19 - 20, 37, 49, 55, 62, 65, 67 70,
.74, 78, 82, 94, 109

step..5-6,9 - 11

‘stop...83, 108, 112 - 113

storage...105 - 107, 118

store..33, 36, 39, 41, 66, 68, 78

stremp()...2, 21, 23, 25

stream..2 - 3, 9 - 10, 17, 19 - 20, 27 - 28, 37,
49 - 51, 55, 62, 65, 67, 70 - 71, 74, 78, 82,
87 - 91, 94, 104, 106, 109

string..1 - 2,9 - 11, 16 - 24, 27 - 28, 31, 33 -
37, 39, 45, 49, 55, 62, 64 - 65, 67 - 68, 70 -
71,73 - 75,77 - 78, 80 - 82, 93, 96, 99 -
100, 102, 106, 109, 115, 117 - 118

string manipulation...35 - 36, 39, 75, 80, 93,
96, 99

STRING MANIPULATIONS..2

strip_msb_off/on...3, 79, 98

strip_msb_on (strip_msb_off) command.
.98

stripped...34, 98

structure...17

structured...1

subprocess...69

subroutine...1, 6, 11, 18, 27, 29, 50 - 51, 59, 64

- 65, 69, 74, 76, 97, 101, 115

subscripts...16

SUBSCRIPTS AND ARRAY INDEXES
..16

substitution..9 - 11, 15 - 19, 21, 31, 33, 41, 51,
90

substring...1 - 2, 23, 99

substring command...99

subtract...21

130

INDEX

subvert...71

super-user...5

support..l1 -2, 10,34 o

switch...1, 27, 40, 42, 48, 50, 56, 63, 100.-

switch command...100

symbol..9

synopsis...8

syntactical...13

sys_exec_off (sys_exec_on) command:
. 401 - " S

sys_exec_off/on..3, 8, 69, 101

system..1, 5 - 6, 8, 27 - 29, 33, 49 - 50, 61;.64,

68, 78, 92, 103, 106, 108

SYSTEM REQUIREMENTS..3

SYSTEM VARIABLES. 27

system-reserved..2

systime...2, 29 - 30, 61

systimef...2, 30, 61

T

t1 .78, 92

tab ..9, 31, 36, 38

tab characters...109

tag ..108

targarray..93 - M4

target..24, 49

TechnoTeacher, Inc...i, 6

tedious...3

tedium...5

tell .23 - 24, 104

tellfile...2, 45, 55, 70, 73, 77, 102, 109

telifile command...102

terminate...54, 65 - 66, 76, 92, 113

text..36, 55, 73, 109, 114

the C Programming Language..55, 96

tick...61 - 62, 68 -

time..3, 11, 27, 29, 49, 61, 64, 66, 68, 81, 84,
101, 107 - 108, 113 - 114See also marktime,
difftime, julian

time measurement..49, 61, 68

time-consuming...106

timenow...62

timing...3, 49, 68, 108

token..3, 9 - 11,13, 15 - 16, 19 - 21 31, 33 -
34, 36, 39 - 40, 46, 51 - 54, 57, 59, 63, 66,
71,73, 75, 78, 80 - 82, 85, 87 - 88, 90 - 91,
93, 997- 101, 109, 112

tokenization...9, 15, 31,36, 90

TOKENIZATION OF THE COMMAND
LINE..9

translation of charactérs...109

trick...34, 88

true...1, 21 - 22, 57, 71

type...15 - 16, 65, 71, 111 - 112

type_of match_to_make..81

typed..1, 74

types...15, 65

U

unconditional...60, 86, 108

underscores...10, 63

unexecuted...51

uninterpretable...98

unique...2, 72

Unix...1

unpredictable...109

unsatisfied...113

unset...103, 113

unset command...103

unstructured...1

unsuccessful...118

until...33, 66, 70 - 71, 73, 84, 92, 100, 113

update...6, 106 - 107

uppercase...80

usage...7, 31 ‘

USE OF THE DOLLAR SIGN IN
ARRAY INDEX SUBSTITUTIONS .
17

used..2-3,6-7, 15, 18 - 19, 24,27 - 29, 31,
34, 49, 54, 58, 64, 68, 71, 74, 92, 98, 101,
108, 113

user...1 - 2, §, 11, 30, 33, 43 - 44, 65, 71, 95,97

user interaction...95, 97

userid...2, 30

users...1, 71

utility...1, 7, 83

131

INDEX .

v

--v ..7;69, 104,108

vatidii36, 40, 42 46, 48, 63

vatue. .10 - 11; 16, 18,21 - 24, 27 - 29, 31, 33,
35,-39:°50, 54, 61, 64 - 66, 69 - 70, 72 - 73,
76 - 18..81, 84, 92:- 93, 100, 106 - 107, 109,
1517 ‘

vasfablei.d =3, 5-6,8 - 11, 15 - 19,21 - 24,
27 - 31,33 - 34,136, 39, 41, 45, 50 - 51, 59,
61, 63 - 66,6869, 71 - 78, 80 - 81, 88, 90
- 93,96~ 97,99 - 100, 102 - 103, 105 - 107,
109, ¥11 - 112, 115, 117 - 118

variable banks..50, 64 - 65, 103

VARIABLE SUBSTITUTION...10, 15"

varnum..23

verbése..7 - 8, 69; 90, 104, 108-

verbose_on (verbose_off) command...104

verbose_on/off..3, 7 - 8,69, 79, 86 87, 104

version...6, 28

vrestore..2, 65, 105 - 106

vrestore command... 105

vsave...2, 65, 105 - 106

vsave command...106

w

w ..70

w+ ..70

wait..3, 8, 22

wait command...108

waits...58, 81, 86, 104, 108

war...95

warning...111, 17

Webster..61

Webster’s Third New International

Dictionary...61 ‘

whitespace..9, 13, 33 - 34, 66, 9

wildcards...103, 105 - 106, 115

write...1 - 3, 9, 19, 33, 36, 45, 49 - 50, 55, 61,
65 - 66, 70, 72, 75, 18, 81, 92, 96, 99, 109,
118

write()...10°

z&

writefile..2, 28; 45, 55, 70, 73, 77, 94,. 102, 109
writefile ‘command...109 .

X

-X-...8, 69, 101
X -mode...109

Y
year.. 8t

zero..29 - 30, 33, 57,.66, 79, 76-

132

	OddJob Script Langage Interpreter
	Table of Contents
	Section 1. Introduction to OddJob
	Flow of Control
	String Manipulations
	Calulations, variables and Functions
	Input/Output
	Socket Interactions
	Redirection to and from variables
	Debugging and Optimization Facilities
	System Requirements

	Section 2. Installation
	Section 3. Involation of OddJob
	Section 4. Execution of OJ Scripts
	Step 1: Tokenization of the Command Line
	Step 2: Macro Substitutions
	Step 3: Variable Substitution
	Step 4: Execution of the Command

	Section 5. Miscellaneous Syntactical Features
	Section 6. Variable Substitution
	Subscripts and Array Indexes
	Use of the Dollar Sign in Array index Substitutions

	Section 7. Calculational Expressions
	Special Calculational Functions
	charval()
	devrdy()
	frac()
	gvarnum()
	hex2dec()
	index()
	int()
	isdir()
	isfile()
	isreal()
	length()
	lvarnum()
	max()
	min()
	namecmp()
	oct2dec()
	rand()
	strcmp()

	Section 8. System Variables
	Error Reporting
	e_banner
	qreturn
	E_NONINT, etc.
	e_msg[$qreturn]

	Input/Output
	stdout,stderr

	Memory Management and Database-Like Operations
	LVARS
	GVARS
	LV_NAME[n]
	GV_NAME[n]
	LV_CONT[n]
	GV_CONT[n]

	Miscellaneous
	argc
	argv[0...n]
	curscript
	exitstat
	systime
	systimef
	procid
	pwd
	userid

	Socket Interaction
	reply[]
	ereply[]
	sendbuf[]

	Section 9. Backslash-Interpreting Commands
	Section 10. Commands
	External Process Control
	A-B
	alphameric - string manipulation
	arraytok - string manipulation
	bits - string manipulation
	break - flow of control

	C-D
	calc - calculation
	case - flow of control
	cd, chd - miscellaneous
	chx - miscellaneous
	closefile - input/output
	continue - flow of control
	debug_on - debugging
	default - flow of control
	difftime - time measurement
	do - flow of control

	E-F
	echo_on - debugging
	else - flow of control
	endif- flow of control
	exit - flow of control
	fprintf - input/output

	G-I
	goto - flow of control
	if - flow of control
	ignore - socket interaction
	include - flow of control
	istop(istart) - flow of control

	J-L
	Julian - time measurement
	label - flow of control
	local - memory management
	loop - flow of control

	M-O
	marktime - time measurement
	oj - flow of control
	openfile - input/output

	P-R
	password - socket interaction
	randlist - random numbers
	readfile - input/output
	redirect - external process control
	replace - string manipulation
	return - flow of control

	S
	seekfile - input/output
	send - socket interaction
	set - string manipulation
	set_mbf - socket interaction
	set_prior - external process control
	setrand - random numbers
	set_send_delay - socket interaction
	set_waits - socket interaction
	show_comlines_on (show_comlines_off) - debugging
	show_labels - debugging
	show_mbfs - socket interaction/debugging
	show_tokens_on (show_tockens_off) - debugging
	show_vars - debugging
	socket - socket interaction
	sort - string manipulation
	spilldev - user interaction
	sprintf - string manipulation
	stdin - user interaction
	strip_msb_on (strip_msb_off) - socket interaction
	substring - string manipulation
	switch - slow of control
	sys_exec_off (sys_exec_on) - debugging

	T-U
	tellfile - input/output
	unset - memory management

	V-W
	verbose_on (verbose_off) - socket interaction/debugging
	vrestore - memory management/data storage
	vsave - memory management/data storage
	wait - miscellaneous
	writefile (-writefile) - input/output

	Section 11. Interactive Script Debugger
	?
	$
	b
	b scriptname
	b scriptname\line_number
	b line_number
	c calclulational_expression
	el
	e0
	f
	g
	g scriptname
	g scriptname\line_number
	g line_number
	 i
	 k b breakpoint_number
	k
	l
	l line_number
	l text_file_name
	I text_file_name\line_number
	n
	n number
	p variable_name
	q
	r
	sl var_to_set = strings...
	sg var_to_set = strings...

	Section 12. Errors
	Quick Reference
	Index

