

MACROS-80c

Assembler Reference Manual

Manual and Software
Written by
Andrew Phelps
The Micro Works

MACRO 80c
Assembler Reference Manual

Disk Based Macro Assembler for
Radio Shack's Color Computer

from
The Micro Works, Inc.

Written by
Andrew E. Phelps

COPYRIGHT NOTICE:

This manual and the software that it describes
copyright (c) 1982 by The Micro Works, Inc.
‘Reproduction of this manual, or any part of it,
for any purpose whatever, is prohibited.

The software described may be duplicated for
backup purposes only, and duplication for any
other purpose is prohibited. The software may
not be sold, lent, or given away.

THE MICRO WORKS, INC.

Mailing Address:
P O Box 1110
Del Mar, CA 92014

UPS shipping address:
1942 S. El1 Camino Real
Encinitas, CA 92024

MACRO~-80c

The Micro Works Disk Based Macro Assembler for the Color Computer

TABLE OF CONTENTS

Section 0 - Product Support W o ou . . 4
Introduction, Warranty, : g :
License, Registration,

Update Serv1ce, Features

Section 1 - The Basics v v o0 o O 0l L0y oL 6
~Running MACRO-80c, Options, ‘
Execution, Printers, e
Listing to File, Page Headers,
Pseudo Ops, Sample Program

Section 2 - The Fun Part e+ . . 416
Include Files, Conditionals,
Local Labels, Set Labels, Macros,
Data Generation, Extra Instruct10ns,-
- Peek & Poke, Using Checksums,
Local Stack, Sample Programs

“Section 3 - Details & Dull Stuff USSR 233
Expre551ons, Symbols,: B : a '
Instruction -Set, Addre551ng,

Direct ‘Page, Error Messages,
Branches, ASCII & Screen Code

Section 4 - 6809 Programmlng ; T P 5
Beginners' Guide, Rom Entry Points,
- LEA, Timing Loops, I/O, ertlng
Source in Basic, Embedding ‘in Basic,
6800 Cross, PIC, Programmers' Model,
Memory Map of the Color Computer

Index e s e s e e e 4 4 4 e 4 44 4w e 4 e e . . .BY

INTRODUCTION

This manual describes MACRO~-80c, a macro assembler for the Color
Computer. This assembler is an easy-to-use, yet powerful tool for the

assembly language programmer. JIts purpose is to read and assemble a
file or files which have been written using a text editor. This is
the "source program” in 6809 assembly language. It produces a file
which is the "object program" in machine language. It also produces a

"source listing" to a printer or to the screen which shows both the
assembly and machine language and is used in debugging your program.

Assembly language is the language in which you can directly control
the operation of your Color Computer. You can write programs that
run thousands of times faster, take up less memory, and still do more
than the same program written in Basic. The only catch is that it is
harder to learn, but with a few good books and a lot of experimen-
tation any programmer can discover this wonderful world in which
almost anything can be done.

For those already experienced in using assemblers (if you're still
reading this far) KEEP READING! You'll be surprised. This assembler
has a lot of interesting features which you will eventually want to
take advantage of. Some may sound far-fetched at first, but you will
find that they are there because they are useful.

LIMITED WARRANTY

Do not write on the disk! 1If any files are added to the .disk, there
is a possibility that the directory will be miswritten and ‘that the

disk will no longer be useable. Therefore, writing to the disk will
void your warranty! : ,

If the disk is folded, spindled, or mutilated when it arrives, save
all packing material and contact the carrier immediately. If the
disk simply cannot be read, return it to us within ninety (90) days
for a working copy. See the title page for our addresses. '

The programs on the disk are sold as is without any warranty. We
believe the software to operate as described, but can make no
representation that it will. We appreciate hearing about bugs, and
will make every effort to correct them in future versions. See the
section below about the update service.

SOFTWARE LICENSE AGREEMENT

Guess what - you didn't buy the assembler! You bought a disk and a
manual, but the assembler program you just bought a license to use.
This means that you CAN'T GIVE IT AWAY to your friends, or sell it,
or lend it, or transmit it to your favorite bulletin board, or ,
ANYTHING except just use it. It is copyrighted, you know. 'This is
the deal: We're not copy-protecting the disk, so your life is easier
because you can back it up to as many of your own disks as you like,
and if people don't rob us blind, we'll continue to sell other useful
programs on copyable disks. x o : ‘ .

REGISTRATION

We have included an Owner's Registration form, which you will want to
fill out and send in. This does three things for you. (1) You will
be informed of new products from The Micro Works, and any information
about this assembler which may be sent out. (2) You will be eligible
for the update service described below. (3) You will be identified
as a bona fide assembler owner should you wish to contact The Micro
Works for any reason. '

Do not send in a photocopy of the registration form. You must send
in the original form. '

UPDATE. SERVICE

There will probably be revisions to this assembler from time to time.
If you send in your Owner's Registration form, you will be informed
of these. Then, for a small update fee, you may send in your old
disk for a copy of the new version of the program.

SECTION 1 - THE BASICS

RUNNING THE ASSEMBLER

The first thing to do is to write-protect the disk! Do not add any
files to the assembler disk, as any updates to the directory could
be miswritten and render the disk useless. Now do a BACKUP to another
disk, and store away the original in a safe place.

To run the assembler, you must first have something to assemble. This
is called the "source program". It is a disk file which has been
written using a text editor; refer to your text editor manual for
instruction on doing this. For trying out the assembler, you may want

to use one of the several example programs included on your disk;
these are the ones with names ending 'in "/TXT",/“ : k R

To run the assembler, type RUN"AS (note that the ending quote ig not
needed). This is a short Basic program which will automatically load
file AS%/BIN from drive 0 into the graphics pages. AS will ask for
an input file name. If the file name ends in "/TXT", you do not need
to type in the "/TXT" as that will be assumed. L \

You will next be asked for a binary file name. This is what the
assembler should name the output file or "object file". It is often
the same name as the input file, only with "/BIN" instead of "/TXT".
If you leave off the "/BIN", it will be assumed. “If you'do not wish
to create a binary file and are-only assembling for the listing or to
check for errors, then just hit ENTER. i AR BIEEEE EAN :

The assembler will next ask for options. If all you want to do is to
produce a binary file, simply hit ENTER. The options LDS will get you
a listing and symbol table; the "D" stands for "delay" and will slow
down the screen output. To get a listing to the printer, see the
section on "LISTING TO A PRINTER". For other options, see the section
on "ASSEMBLER OPTIONS".

After entering the options, the assembler will run. Pressing BREAK
will abort the assembly; the spacebar will stop the listing and allow
you to single step. Remember “that the keyboard is not being scanned
during disk I/0 so you may have to hold down a key for a second or so.
"S" and "F" will slow down or speed up a listing, and pressing them
repeatedly will slow it down or speed it up even more.

If a file already exists by the same name as the binary file which
is to be created, the message appears, "OLD BINARY WILL BE DELETED".
If you then realize that you do not wish the old file deleted, press
BREAK and hold it until the assembler stops, since the old file will
not be removed before the assembler starts pass 2. '

The interaction with AS can easily be modified, as this portion of
the assembler is in Basic. For example, you could make a version of
AS which always gives the binary file the same name as the input file,
or a version which always selects certain options.

-6 -

The example below shows what will appear on the screen when you
assemble the sample program DISPLAY.

RUN"AS

WORLD'S BEST ASSEMBLER

(C) 1982 THE MICRO WORKS

INPUT FILE? DISPLAY

BINARY FILE? DISPLAY

OPTIONS?
khkkhkhkhhhkhkhkhkhkhkhrhkhhkkhkhkkhhkhkhhik
** 6809 MACRO ASSEMBLER **
*k BY ANDREW PHELPS **
(C) 1982 THE MICRO WORKS
LA S 2 2 2 R 2 2R X X2 IR PR PR PP PGS

PAGE 0001 DISPLAY

NO ERRORS FOUND

ASSEMBLY DONE

OK

ASSEMBLER OPTIONS

When the assembler asks for options, any of the following may be
entered (in any order). Any other character in the option string
will generate a message and be ignored by the assembler.

L
S

X

Listing. If this is not specified, only error lines are listed.
Symbol table. This gives a sorted table of symbols and their
values. Local labels are not included in the symbol listing.
Cross reference. This overrides option S. Each symbol is
listed with all line numbers where it is referenced.

List macro expansions. This is useful for debugging macros;
normally only calls to macros are listed.

Long branch warning. After debugging a program, use this option
to generate an error wherever a short branch could be used in
place of a long one. , ,

Zero byte error. See the section on embedding machine language
in Basic programs.

Error halt. This puts the assembler into single step mode

whenever an error is encountered.

Delay output. This slows down the listing to the screen. It may
be sped up again by pressing "F" several times once the listing
starts. :

EXECUTING MACHINE LANGUAGE PROGRAMS .

After you have run the assembler, you now have a machine language
file on disk. There are several ways of running it.

The usual way of running a machine language file is with LOADM and
EXEC. The statement LOADM"filename" will load the file into memory,
and EXEC will run it. If you put a parameter after the word EXEC,
you can start execution at any memory location; otherwise the
"transfer address" of the file (usually the beginning of the file) is
where execution starts.

While debugging a program, you may wish to load both it and a machine
language monitor (such as DCBUG from The Micro Works). For example,
if you are loading a program at $0EO0 such as DISPLAY, you would use
an offset value in loading DCBUG which was at least the length of
DISPLAY. Since DISPLAY has a length of $009E, you could type:

LOADM"DISPLAY
LOADM"DCBUG" ,&H0100
EXEC

You would now find yourself in DCBUG, where you could examine and
change memory before jumping to DISPLAY with the J command.

The assembler will start the machine language file at location S$OEO0O
unless told otherwise with an ORG statement. This will put the file
at the start of the graphics pages, which is a good place for them.
If the usual four graphics pages are allocated, this glves machine
language 6K of space (up to $2600) before it runs into a Basic
program. Even if it does run into Basic, however, this is no problem
unless you are loading and calling the program from within a Basic
program. “If you type NEW after runnlng the machine language, thls
will reset Ba51c s p01nters.

Warnlng: If you allocate more space for disk buffers (eg, FILES 3)
then the graphics pages start at $OF00 or beyond, and a program
loading at $O0EO0O could cause problems. : : :
Another note: If a program uses the keyboard input buffer (the area
from $02DC through $03D5) it should clear it out again to avoid
getting a syntax error when returning to Basic. This is ‘why: If you
type EXEC in immediate mode, the EXEC token is run before returning to
check if it is the end of line. After all, the statement EXEC:PRINT A
is perfectly valid. A good example of clearing the buffer (actually
only a few bytes need to be cleared) is given in the example program
DISPLAY. Of course, if you never intend to return to BASIC, then this
is not a problem.

Another way of executing a machine language file is to embed it in a
Basic program. See the section EMBEDDING MACHINE LANGUAGE IN BASIC.

Machine language may be placed above the stack. This is where Radio
Shack thinks it ought to be. To do this, use the CLEAR statement to
reserve some space, and then load it there and execute it with EXEC

- 8 -

or USRn. Thehproblem is that this is in a different location depend-
ing on how much memory is in your computer, so a program which loads
at the top of memory in a 16K machine may restrict a 32K machine to
only have 16K available.

Whatever method of loading and running your machine language program
is used, it is a good idea to write in Position Independent Code (PIC)
so that the file may be "offset loaded" and run somewhere else. PIC
is code which uses no absolute references into itself so that it does
not matter where it is in memory as it runs. See the section in this
manual on PIC for tips on how it is written.

LISTING TO A PRINTER

If you wish to have the output of the assembler printed, type the
command RUN"ASP instead of RUN"AS. This version of the Basic driver
program sends the output to the printer; use options (such as L and S)
to tell the assembler what sort of output to generate. If no options
are given, only the error messages will be printed. ,

The program ASP may be customized for your printer. There is a line .
in the program which looks something like this:

RS = CHR$(46)+CHR$(66)+CHR$(8)+CHR$(80)+"8C“+CHR$(O)»

The first number is the unit number plus 48. (The 48 is the ASCII
code for zero, so CHR$(48) can be written "0"). The 46 therefore is
unit -2, which is the printer. The second number is the total number
of lines per page. The 8 is the number of blank lines to leave at the
bottom of the page, for skipping bottom and top margins. The 80 means
an 80-column printer; change this for printers of different widths.
The "8C" is the option string; the following options are available:

8 Eighty-column format (ie, data and source on same line).
Use this for any printer at least 64 columns wide.

R Suppress carriage return on last column (such as for a 40

- column printer which automatically does a carriage return

~after the 40th column).

T Truncate listing after last column; otherwise the line will
continue on the next line.

N No paging. The "Number of lines per page" has no effect,
and there are no page headers.

F Use form feed characters ($0C) to get to the top of form.
Use this if it works on your printer.

L Send line feeds. Use this if your printer does not do
automatic line feeds.

C Tab to the comment field. This is normally done with 80

column printers.

LISTING TO A FILE

The listing produced by the assembler may be sent to a file as well as
to the screen or to a printer. As indicated in the section LISTING
TO A PRINTER, the listing unit as well as other characteristics of the
listing are specified by string R$ in the programs AS and ASP. If the
first byte of R$ (which is "O" for the screen and CHR$(46) for
printer) is set to "1", the listing will be sent to unit 1. Add the
statement OPEN"O", #1,"LISTING/TXT" to ASP SO that unlt 1 w1ll be open
when the assembler is called. '

As with Ba51c programs, the number of files that may be open simulta-
neously is set by the FILES statement. You will get an error message
if too many files are opened. If you are listing to a file and
writing a binary file while the input file is open, you may need to
type FILES -3 before runnlng the assembler.

PAGE HEADERS

Unless option "N" is given in the printer setup string (meaning "no
pages“), the listing will be divided into pages of the length and
width given by the printer setup strlng. Each page starts with a page
number, followed by a page header string. This strlng is given by the
Basic driver program in the line Whlch says AS$ = ... and may be
modified for your own page headers. ’

An example of .a more elaborate version of this statement might be:

AS = CHRS$(14)+" YOUR NAME HERE "+CHR$(15)+"“"+CHR$(13)
The 14 and 15 are codes for expanded print and normal print on some
printers; refer to your printer manual. The 13 at the end is a
~carriage return; this leaves a blank line after the header line.
The up arrow is the signal to print the program name at that p051t10n.
The program name is specified by the NAM pseudo-op, and inserted in
place of the up arrow at the top of each page.'

The number of llnes of source code prlnted on each page is determlned
by ‘the total number of ‘lines per page given, minus the number of
blank lines at the bottom, minus the number of lines taken up by

the header. Note that if the printer setup string tells the
assembler to use a form feed to go to the top of the next _page, a
smaller number should be given for "total number of llnes per page"
since lines skipped by form feeds can 't be counted., ’

To print fewer lines on a certain page, use the PAGE pseudo—op.
This will cause the rest of the page to be skipped and a new header
printed, unless the listing are already just at the top of a new
page. ' " N

If there is any output during Pass 1 (such as from a MSG pseudo-op),
the listing will go to the top of the next page when starting Pass 2.
That is why the listing of sample program EX-SQR given later in this
manual has a page number 2.

- 10 -

SUMMARY OF PSEUDO-OPS

Your main method of communication with the assembler is by pseudo-ops.
These are statements which are placed in the source program along with
the statements to be converted to machine language, and they direct
the assembler to do such things as generate data, define symbols, set
options, or control the listing. _

Many of these pseudo-ops are standard ones which are familiar to any
6809 programmer, while others are unique to this assembler. The
following is a list of all pseudo-ops recognized by this assembler.

NAM - Stores the name of the program, so that it may be printed

in the page headers of the listing. The name may be 0 to 8 characters
long and is terminated by a space or end of line. This statement
usually appears at the start of every program but it is not required.

END - Signals the end of a source file. If multiple source files are
being assembled, there may be multiple END statements. If there is an
operand, the value of that expression is saved as the “transfer
address" where execution will begin if the object file is run.

INCL - Include source file. The operand field contains the name of
a source file which is to be included at this point. Assembly
will continue with the next instruction only after the end of the
included file is reached. SEE : S

SETDP - This instruction tells the assembler what value is in the DP°
register, so that direct addressing may be used. It usually follows
an instruction such as TFR A,DP. If no SETDP instruction has been
encountered, the value zero is assumed.

ORG - This instruction tells the assembler where to generate code. It
may appear any number of times, and there are no restrictions about ‘
where and in what order code may be generated. If-code is generated
without an ORG ‘statement, it starts at location $OEO0O0. ' ’ ‘

REORG - This instruction resets the assembler's code generation point-~
er to the value it had just before the last ORG statement. It is used
to continue assembly after some specification which required an ORG.

RMB - reserve memory bytes. The operand of this instruction is a
number. of bytes which are skipped over by the assembler. No code is
generated, and the area is not altered when the resulting object file
is loaded.

EQU - The operand of this statement is assigned as the value of the
symbol name in the label field. 1In EQU instructions (as well as in
ORG, RMB, or SET) no forward reference is allowed in the operand
field, as it is necessary to create a correct symbol table during
pass 1. '

SET - This is syntactically the same as EQU, but allows the symbol
- value to be redefined. SETs and EQUs may not be mixed with the same
symbol. ‘

- 11 -

ASK - This statement allows a label to be set with a value which is

typed at the keyboard during pass 1. The operand field contains

a string enclosed in quotes- this string is typed to the screen

and an expression is typed in by the operator. Example statement:
'RAMLOC ASK "WHERE IS THE RAM?"

MSG - This statement types the values of symbols to the screen
during pass 1. The operand field contains a mix of expressions
and quoted strings, separated by commas. Examples:

MSG "THIS PROGRAM IS ",*-START," BYTES LONG"

MSG "NOW ASSEMBLING SECTION 3"
Numeric output is in hexadecimal.

FAIL - This generates an error message. It is generally used within
conditional assembly in a macro skeleton, to indicate incorrect macro
parameters. The operand field is listed and is used to specify the
nature of the error; for example: FAIL “OPERAND TOO BIG"

NOZER - This statement has no operand. 1Its purpose is to set an
optlon which causes an error to be generated whenever a zero byte
is generated. It is used in programs which are to be embedded in
lines of BASIC programs, where null bytes are not allowed.

FCC - Form constant character. This generates ASCII data. =~ There are
two forms of this statement: a delimited string, and ‘a numbered :
string. In the numbered string form, there is an expression, a comma,
and text. . Example: FCC 13,TESTING 1 2 3

In the delimited string form, any character (other than 1-9) is used
to start and end the string. Example: “FCC "TESTING l 23"

The delimited string may be followed by expre551ons, in whlch case .
the statement becomes an FCB statement. No further strings are
allowed in the statement. Example: FCC "TESTING 1 2 3",$0D,O

FCCS - Form constant character in screen code. Like FCC only uses
the Color Computer's screen code as shown in the table in this manual.

FCB - Form constant byte. Expressions are separated by commas, " and
each.expre351on given generates a byte of -object code. A byte or
series of bytes may be repeated, as in FCB 100[0 1,27 .

FDB - Form double byte. Expre551ons are:separated by commas, and each
expre551on given generates two bytes of object code. - S

BSZ - Block store zeroes. The operand is a single expre551on which
specifies how many zero bytes to generate. This statement is syntac-—
tlcally identical to RMB, but presets the reserved area to zeroes.

CWORD - Generate checkword. A runnlng 16-bit total of the bytes
generated is kept by the assembler, and this total can be inserted
into the object code with the CWORD instruction. See the section
"USING CHECKSUMS" for a description of how it is used.

CLRC - Clear checkword. If the checkword area (see CWORD above) is
not to start with the beginning of the program, the checkword total

- 12 -

may be cleared with CLRC.

LONGVR - Allow use of symbols longer than six characters. (Only the
first six letters are used by the assembler, however.)

MACR, ENDM - See section on macros.

IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE,
IFC, IFNC, ELSE, ENDC - See section on conditional assembly.

SPC - The operand of this statement is an expression which gives the
number of blank lines to leave in the listing. This is used to make
a source listing more readable. :

PAGE - This causes the listing to be continued at the top of the next
page. There is no effect if the listing already is at the top of a

page.
NLST - This suppresses the listing of a section of the progfam.

LIST - This resumes listing after a NLST. When the number of NLST's
encountered exceeds the number of LIST's encountered, listing is ;
suspended; therefore a LIST instruction will restore the list/no list
state to what it was before the last NLST instruction.

APSH - Push to stack. A stack is provided for assembly-time use by
persons writing macros. This stack enables implementation by macros
of structured constructs such as WHILEyloops and IF-THEN-ELSE. ‘

APOP - Pop one value from stack. The symbol in the label field is‘i
assigned the value. As with SET, the symbol is considered a temporary
register and the value may be reassigned.

PEEK and POKE - ‘See the section on PEEK and POKE.

SAMPLE PROGRAM "DISPLAY"

On the. next page is a program which is included as an example. The
source of this program is on the assembler disk as file DISPLAY/TXT.

When this program is assembled, loaded (with LOADM), and executed
(with EXEC), it will ask for an address in RAM to be displayed. The
512-byte block of memory containing the address is then diplayed

to the screen. The screen normally displays addresses in the range
0400 thru 05FF, so any of these addresses will have no effect. The
up and down arrows will page through Ram, ENTER will allow entry of

a new address, and BREAK will return to Basic. The function of this
program is similar to the "P" command of the cassette version of CBUG.

The actual operation of this program may or may not be of interest to
You. In any case, the source listing of it should, as it is an
example of a number of the points mentioned thus far in this manual.
It is also useful if you wish to learn how to set the display page

of the video display, as you would in game programs. '

- 13 -

PAGE 0001 THE MICRO WORKS

0001 OEOQO NAM DISPLAY
* THIS PROGRAM CAUSES ANY PAGE
* IN RAM TO BE DISPLAYED ON
* THE TEXT SCREEN. IT CAN BE
* USED FOR CHEATING AT
*

ADVENTURE GAMES.

0002 AlCl1 - POLCAT EQU S$AlC1

0003 A282 OUTCHR EQU $A282

0004 A390 GETLIN EQU $A390

0005 A928 CLRSCR EQU $A928

0006 OEOQ BDA928 START JSR CLRSCR CLEAR SCREEN
0007 OEO3 8D17 BSR OUTMSG PRINT PROMPT
0008 OEO5 8D2C BSR GETHEX ADDRESS IN X
0009 OEO7 8D72 DISPLA BSR SETSAM SET DISPLAY
0010 OE09 BDAIC1 AQ@ JSR POLCAT - GET KEYSTROKE
0011 OEOC 27FB BEQ A@ LOOP TIL KEY
0012 OEOE B815E CMPA #'7 UP ARROW

0013 OEl0 275D BEQ UPAROW GO MOVE UP

0014 OE1l2 810A CMPA #S0A DOWN ARROW

0015 OEl4 275F BEQ DNAROW GO MOVE DOWN
0016 OEl16 8103 _— CMPA #S03 BREAK R,
0017 OE18 2776 ... BEQ BAKBAS END OF PROGRAM
0018 OElA 20E4 BRA START GO RE-PROMPT
0019 OE1C 308CO0A OUTMSG LEAX <MSG,PCR

0020 OE1lF A680 D@ LDA ,X+ GET ONE LETTER
0021 OE21 260139 BEQ ?RTS IF NULL, DONE
0022 OE24 BDA282 JSR OUTCHR PRINT LETTER
0023 OE27 20F6 BRA D@ LOOP FOR MESSAGE
0024 OE29 4144445245 MSG FCC "ADDRESS? ",0

0025 OE33 BDA390 GETHEX JSR GETLIN INPUT ONE LINE
0026 OE36 2556 BCS BACKB2 IF BREAK, EXIT
0027 "OE38 3001 LEAX 1,X POINT AT BUFFER
0028 OE3A 6FE2 CLR ,-S INITIALIZE ADDR
0029 OE3C 6FE2 CLR ,-S. TO ZERO

0030 OE3E A680 GETDIG LDA ,X+ GET ONE LETTER
0031 OE40 272B BEQ ENDHEX LEAVE IF END
0032 0OE42 8030 SUBA #'0 AT LEAST ZERO
0033 0OE44 251cC BLO REJ REJECT IF NOT
0034 OE46 8109 CMPA #9 NUMERIC?

0035 0E48 230A . _ BLS OK IF 0-9, FAT
0036 0OE4A 8111 CMPA #'A-'0 HEX LETTER?
0037 OE4C 2514 BLO REJ IF NOT LETTER, NG
0038 OE4E 8007 SUBA #'A-'0-1 ADJUST

0039 OE50 810F CMPA #SOF TOO BIG?

0040 OE52 220E BHI REJ GO RE-PROMPT
0041 OE54 8D12 OK BSR SH SHIFT SUBTOTAL
0042 OE56 8D10 , BSR SH . FOUR BITS OVER
0043 0OE58 8DOE RSR SH . TO MAKE RNOOM FOR

- 14 -

- PAGE

0044
0045
0046
0047

0048
0049
0050

0051
0052
0053

0054

0055
0056
0057
0058

0059
0060
0061
0062
0063
0064

0065
0066
0067
0068

0069
0070
0071
0072
0073
0074
0075
- 0076

0077

0002

OE5A
OESC
OESE
OE60

OE62
OE64
OEo66

OE68
OE6A
OE6C

OE6D

OE6F
OE73
OE75
OE79

OE7B
OE7D
OE80
0E82
0E84
OE86

OE87
0E89
OE8A

OE8C .

OES8E
0E90
0OrE92
OE95
OE97
0OE99
OE9B
OE9D

OE9E

NO ERRORS

THE MICRO WORKS

8D0C
AB61
A761
20DC

3262
8DB6
20CB

6863
6962
39

3590

3089FE00Q
2092
30890200
208C

3410
CEFFC6
8606
1r89
68E4
59

A7C5
4a

2AF6
3586

3262
9EA6
8C03D4
22D5
6F80
6F80
6F80
39

FOUND

BSR SH
ADDA 1,S
STA 1,8
BRA 'GETDIG
REJ LEAS 2,8
BSR ‘OUTMSG
"BRA GETHEX
SH ASL
ROL
RTS

3,8
2,8

ENDHEX PULS X, PC

*

* MOVE UP OR DOWN ONE
*
UPAROW LEAX -$200,X
BRA DISPLA
DNAROW LEAX $200,X
BRA DISPLA
*
* SET DISPLAY ADDRESS
*
SETSAM PSHS X
- LDU #SFFC6
LDA #6
ce TFR A, B
ASL 0,8
ROL B

THE NEW DIGIT
ADD NEW DIGIT
AND PUT IT BACK
GET NEXT DIGIT

REMOVE 'OLD ‘DATA
RE-PROMPT
AND TRY AGAIN

SHIFT LOWER BYTE
AND UPPER BYTE

PULL RESULT

PAGE

LAST PAGE
GO SHOW IT
NEXT PAGE
GO SHOW IT

SAVE X

ADDRESS OF SAM

NUMBER OF BITS TO SEND
COPY BIT NUMBER &
SHIFT NEXT BIT

MOVE IT INTO ADDRESS

*(IN THE NEXT STORE, DATA DOESN'T MATTER)

“STA ‘B, U
DEC A
BPL C@
PULS D,PC

RETURN TO BASIC.

* % ¥ * ¥

IN IMMEDIATE MODE.
*

BACKB2 LEAS 2,5
BAKBAS LDX S$A6

CMPX #303D4

BHI 7?RTS
CLR , X+
CLR ,X+
CLR , X+
RTS

END START

- 15 =

POKE THAT ADDRESS
COUNT DOWN BITS

LOOP FOR ALL BITS
RESTORE AND RETURN

THIS SECTION PRI'VENTS SYNTAX
ERRORS IF THE EXEC WAS DONE

POP RETURN ADDR
BASIC EXECUTION POINTER
IN KEYBOARD BUFFER
LEAVE -IF NOT THERE
CLEAR A BYTE

AND ANOTHER

TO FLAG END OF LINE
BACK TO BASIC

SECTION 2 - THE FUN PART

This section describes the interesting and unusual things which can
be done with this assembler. You do not need to use any of the
statements described here, and you can program perfectly well without
them, but you will find them useful and will want to study and
experiment with all of the topics in this section.

The features given in this section are in no particular order. Some
are easy to learn about and very handy, such as local labels, while
some are harder (like macros) and some are only used for certain
special purposes (like checksums).

INCLUDE FILES

A text file on disk may be included as part of the current assembly by
using the INCL pseudo-op. Some uses of this feature are: '
Include a package of standard macros or subroutines:
Include a file of equates which are standard to several programs;
Include a series of component files into one master file;
Include files from another drive.

Example statements:
INCL FILEl
INCL 1:O0THERFIL/XYZ

If no drive is specified, the drive is assumed to be the last drive
upon which an input file is opened (the main file or another 1nc1ude
file). 1If no extension is specified, /TXT is assumed.

If the f11e name is 1ncorrect or if-such a file cannot be found on the
disk, assembly will be aborted during pass 1.

Includes may be nested. The depth of nesting is only limited by the
number of files currently allowed by Basic's FILES statement, 1If
nesting is required, a FILES command should be typed in before running
the assembler. 1If there are not enough files allocated, assembly will
abort with an error message.

CONDITIONAL ASSEMBLY

Conditional assembly is a way of deciding whether or not certain :
statements should be assembled. It is an IF statement which is done
at the time of assembly. It is useful in macros where different code
is generated depending on what parameters are given, but it is also
useful in programs which have no macros at all.

Programmers are commonly faced with the problem of having to maintain
two or more versions of a program. Common examples include:
(1) A stripped-down version versus a full-blown version; (2) Versions

which run on different kinds of computers; (3) Versions supporting
different kinds of 1/0. 1If different sources are kept, it becomes
difficult to be sure that changes made to one version are made
identically to all versions. The best solution to this problem is
conditional assembly.

EXAMPLE

* VERSIONS FOR COLOR COMPUTER AND ANOTHER COMPUTER

COLOR EQU -1 set not true for this assembly
IFEQ COLOR

OUTPUT JMP S$A30A output routine for Color Computer
ELSE

OUTPUT JMP S$D286 output routine for other system
ENDC

Thus lots of small changes may be made just by changing one line
at the beginning of the program; and all differences are thoroughly
documented. '

The above discussion is not intended to imply that this is the only
use for conditional assembly; it is a powerful tool which a programmer
will find helpful in many situations.

The statements IFEQ, IFGE, IFGT, IFLE, IFLT, and IFNE are-used..to
define the& start of a conditional segment. The mnemonic is followed
by a single expression which is evaluated in -16=bit arithmetic.

If the condition specified in the mnemonic (=0, »=0, >0, <=0, <0,

or <>0 respectively) is true, then assembly proceedsiotherwise

né object code is generated(and no symbols defined) Gatil the end

of thé conditional -block The-condition may be reversed with. the
ELSE pseudo-op, which causes assembly either to restart or to be
suspended. The conditicnal block is terminated with a ENDC statement.

N

IFs may be nest to a vi , imited depth. A sequence of
IFxx-ENDC. or IFxxXx-ELSE-ENDC will:be ignored if it is within a block
that is not being assembled; it will be processed normally if it

is within a block that is being assembled. :

Sample program BLKWHT gives another example ofyconditional assembly.
Something to think about:
IFNE *1 . SFF

RMB 256-*1,SFF
ENDC

- 17 -

LOCAL LABELS

There are two kinds of local labels. There are general purpose
local labels., and there are macro locals. Thé macro locals are
discussed in the section on macros, and the general purpose local
labels are discussed here.

Programs commonly get filled with many symbol names which have meaning
only in the immediate vicinity of their definition. Examples include
the labels used tc »Dranch over one or two statements or to form a
small loop for setting or moving data. Over half of the symbols in a
program may fall into this category.

Rather than trying to think of large numbers of unique names (which
soon becomes difficult) or to clutter a symbol table with names

like PUTIT, PUTIT2, PUTIT3, etc., the use of local labels allows

the programmer to use short tags for this kind of symbol while leaving
descriptive names free for more meaningful uses.

In this assembler, a local label is any single letter followed by, an
at=sign ("@"). Tt is-defined-only within a block bounded by blank
lines, It is not listed in the symbol table. Fach of the 26 local
labels may be reused any number of times. Example: SR

MOVE LDX #START
LDY #WHERE
A@ LDA ,X+
,, STA ,Y+
CMPX #END
BLO AQ

TST NULLIT
BEQ A@
: CLR ,Y+
AQ@ RTS T

The use of blank lines to delimit the scope of a symbol is not S
intended to cause the programmer to think of blank lines as a form
of pSeudo-op. Blank lines‘shouIawbémgprinkiedwﬁi§gggwa»pnograﬁﬂin

any case; a readable program will Have a~blankK line about every
dozen lines. The logical division of a program into sections (such
as the two sections in the subroutine above) which is defined by
the blank lines corresponds exactly with the intended scope of the
local labels. It is NOT intended (in spite of the example abeve)
that local labels be reused in close proximity; if enough space
ié*IéTE‘Béfwé@ﬁ'iﬁﬁﬁ?ﬁations“uf’IﬁﬁﬁT‘TabefsrwtHé‘éffEEEfaggblank
lines on the Iabels need not concernthe programmer.

SET LABELS

The SET pseudo-op is like EQU, only the value assigned to the symbol

can _be temporary. If the symbol appears later in—another SET

statement, then instead of saying "DEFINED TWICE" the &ssembler will

just change the value. A label cannot be defified Both WithSET and
[

- 18 -

with some other method (such as EQU or as a.statement label) since)
the Tatter definition is supposed to have effect throughout the entire
program. Therefore, a symbol used with SET must be defined only with
SETs and is called a "SET symbol" or "SET variable".

SET symbols may be thought of as variables, since, as with variables
§ T - & BE BNy ¥ snianey . R,

in a programming language, they are aqq1gg§g“zgigg§ which have éffect
until they are reassigned. They may be used as countérs—fas—in;
COUNT SET COUNT-1) or for keeping track of such numbers as where the
last byte of allocated RAM was. They are often used “in macros, to
save a value from one invocation of the macro to. the next. _They could
be used in place of local labels, or even in place of normal Tabels,
inTorder to save space in the symbol table and to speed up assembly.
Sée the section on REORG FOr an example of using SET, and sée sample
program EX-SQR for another example.

MACROS

Macros are sections of source program which are to be assembled

more than once. (That's not a very rigorous definition, but it

will do for now.) Suppose, for example, that you want to shift the

D register left, and are tired of writing ASL B / ROL A all over the
program. Not only is it more work, and more to remember, but it's
not very readable in the listing. It would be nice if you could

just invent a new instruction, ASLD, which would generate those

other two instructions. Well, you can! At the start of your program,
you write:

ASLD MACR
ASL B
ROL A
ENDM

Now, whenever you write ASLD the assembler will go back and assemble
those two statements.

The pseudo-op MACR signals the start of a macro definition. The name
of the macro is "ASLD" as given in the label field. ‘The next two
lines are the "macro skeleton" and indicate what code should be
generated when the macro is "invoked". The “"ENDM" indicates the end
of the definition.

Important: - A macro is fundamentally different from a subroutine. In
a subroutine, the code is generated only once and this is executed
any number of times when the code is run. With a macro, the code is
generated each time the macro is invoked. It is most useful where
small sections of code are to be repeated many times.

Note: Although the macro name appears in the label field, it is not
a label. It will not appear in the symbol table. It may not be used
in an expression in an operand field. It is an instruction mnemonic,
and may not be the same as an existing instruction or pseudo-op.

It may, however, be the same as an existing macro; in this case the
old macro definition is deleted.

- 19 -

The macro skeleton is not assembled until the macro is invoked. A
syntax error will not be detected until this time. If an error is
detected, the line will be listed; normally the skeleton is only
listed when it is first defined. The option "M", however, will cause
all of the macro expansions to be listed.

MACRO PARAMETERS

The usefulness of macros is greatly increased by the ability to
pass parameters to the macro skeleton. Parameters are any text
strings which are inserted in the text to be assembled. Example:

~ NAM EXAMPLE?
ASL16 MACR

ASL \0+1

ROL \O

ENDM

ASL16 VALUE

The symbol "\0" in the macro skeleton is replaced with the parameter
when the macro is assembled. The text "VALUE" is the parameter which
is given to the macro. The code which is assembled would read as:
ASL VALUE+1 '
ROL. VALUE

Suppose we wanted a‘hacro which.could either do an ASR or an LSR
on a 16 bit value. We could have two parameters, like this:

NAM EXAMPLE3
SHIF16 MACR

\1SR \O

ROR \0+1

ENDM

SHIF16 VALUE,A

SHIF16 OTHER,L

This® would generate this code:
' _ ASR VALUE '
ROR VALUE+1
LSR OTHER
ROR OTHER+1

The first parameter in a call is assigned the name \0, the second is
\1, etc. After \9 comes \A, then \B, and so on through \Z. There
can therefore be up to 36 parameters in a macro, which is far more
than you will ever need. If a name is used in a macro but there were
not that many parameters in the call, then that name is replaced by

a null string (ie, no characters) in expanding the macro.

Parameters in a macro call are separated by commas, and the last
parameter is followed by a space or end-of-line. If a parameter must
contain a space or comma, then it must be surrounded by parentheses.
A parameter may contain an end parenthesis as long as the parenthesis

- 20 -

is not followed by a blank or comma.

MACNAM XYZ,ABC, PDQ COMMENT
MACNAM (X,Y,Z),ABC, PDQ
MACNAM XYZ, (A B,)C),PDQ
MACNAM ((XYZ)),ABC,PDQ
MACNAM XYZ,ABC, (P,),Q)

In the first example,
COMMENT is ignored.

X,Y,Z and the parentheses were added because of the commas.

Examples:

First parameter = X,Y,7Z

Second parameter = A B,)C
First parameter = (XYZ)
Fourth parameter = Q)

the space after PDQ ends the parameters and
In the second example, the first parameter is

The next

example has a second parameter of A B,)C and the end parenthesis is

not considered the end of the parameter

a comma or space (while the next end parenthesis is

example, the parameter is (XYZ) and the
because the first set would be dropped.
generate the parameter P,),Q because of
parenthesis. It will actually generate
XYZ ABC P, Q)

LOCAL LABELS IN MACROS

Two kinds of local labels may be used within macros.

is not followed by

). In the next

other parentheses were added
The last example will not

‘the comma after the end

four parameters:

because it

The ordinary

local labels (such as A@) may be used as usual,

and macro locals may

also be used (in a form such as \.AB).

Examples of usé of normal"

local labels with macros:
NAM LOCALS
MACR

DEC B

BNE AQ@
ENDM

LDA #50
LDB #100
LOOP

DEC A

BNE AQ

Loop
A@

A@

In this example, the first BNE will branch to the first A@ and the
second BNE will branch to the second A@, even though the two loops
will end up being nested. The scope of a local label defined within
a macro skeleton will always be limited to that macro, even with no
blank lines. The scope of a local label defined outside a macro may
extend past a macro call but will not extend to within it.

MACRO LOCALS - ANOTHER KIND OF LOCAL LABELS

Macro locals are local labels which are for use only with macros. The
scope of such a symbol is the macro skeleton within which it is
defined. Unlike the other form of local labels, it is unaffected by
blank lines. These symbols are generally used for labels which are

to be defined within macros, since use of a4 normal symbol would result

in a multiple-symbol-definition error when the macro was invoked a
- second time.

- 21

Macro local labels consist of a backslash, a period, and from one to
four letters or numbers. If more than two letters or numbers are
used, only the first two are used by the assembler. As with other
symbols, a period, dollar sign, or underline {(which is a back arrow)
may also be used. The following is an example of use:

- NAM MACLOCS
DELAY MACR :
* THIS DELAYS IN EITHER mSEC OR uSEC
\.cl1 EQU (\0-3)/8
\.c2 EQU (\0-3)*125

LDX #\.C\l either Cl or C2
\.LOOP LEAX -1,X

- BNE \ .LOOP

ENDM
DELAY 50,2 50 MILLISECONDS
DELAY 400,1 400 MICROSECONDS

DATA GENERATIONi Enhancements to FCB, etc.

Data is inserted in a program by means of the pseudo ops FCB, FDB,
FCC, BSZ, and FCCS. FCB stores bytes, FDB stores 16 bit words,

FCC stores ASCII code, BSZ stores zeroes, and FCCS stores screen code.
Extra features have been added to FCB and FDB which are not normally
found in 6809 assemblers, so that repetitive groups of data may be
generated by one statement.

FCB -~ Form Constant Byte

This statement accepts an expression or list of expressions. Each
expression must evaluate to an 8-bit value, or an error message 1is
generated. The values may be either signed or unsigned. A 16-bit
value (such as in the FDB statement) may be included by preceding

an expression with ">". Examples:
010203 FCB 1,802,100-97
FF FCB ~1
- FF ; FCB 255
010002 . FCB 1,>2

A byte or groﬁp of bytes may bé repeated. Examples:
010101 FCB 3[1]
01020102 FCB 2[1,2]

Repeats may be nested. The following line generates a linked list of
empty entries, which could then be filled, sorted, relinked, etc.
There are 20 entries in the list, and the last one has a zero link.
(Remember that the assembler will only prlnt out the first five bytes
of the code generated.)

OEOSFFFFFF FCB 19[>*+5,3[SFF]1], >0,3{SFF]

FDB - Form Double Byte

The FDB statement is just like the FCB statement, only 16-bit (two
byte) values are stored for each expression. Since all arithmetic in
the assembler is done as 16-bit values, any expression can appear

in an FDB. Just as ">" can be used to put a 16-bit value into an
FCB statement, "<" can be used to put an 8-bit value into an FDB.
The repeat-factor feature of FDB is identical to that of FCB. The
linked list example above could have been written as:

OEOSFFFFFF FDB 19[*+5,3[<$FF1]1,0, 3[<S$FF]

Exactly the same code is produced as with the FCB. If both the "<"
and ">" were used, then it would be immaterial whether the mnemonlc
used was FCB or FDB.

FCC - :Form Constant Character

This statement is used to insert ASCII code into the program. The
usual form of the statement is: ~

4849 ... FCC "HI"

The 48 and 49 are the ASCII codes for H and I, which are generated
by the assembler. The quotes delimit the string to be stored. Any
symbol (except numbers) may be used as the dellmlters.‘ Examples:

4E455246 FCC /NERF/
2020202020 FCC v -~ ..

If a comma appears after the end delimiter, the statement turns into
an FCB statement. This is useful for adding carriage returns, nulls,
etc., to a:string. Example-

48490D00 FCcC "HI",SOD,O

The statement: FCC "“HI",O0,"NERF" is not allowed, since "NERF" is not
allowed in an FCB statement. :

There 'is another form of the FCC statement, in which a count is given
instead of delimiters. Examples: ' :

4849 FCC 2,HI
202020 - FCC 3,
4141 FCC 2, AAAAAAAAAAAAA

In the last example, only two A's are used and the rest treated as a
comment .

FCCS ~ Form Constant Characters in Screen code

This statement is the same as FCC, except that the characters are
stored using screen code. (See the chart of ASCII and Screen Code

in this manual.) This code is used when text strings are to be moved
directly into the memory used by the screen. Examples:

- 23 -

41427172 FCCS "AR12"
7131 FCCS "1",'1l (Think about it!)

BSZ - Block Store Zeroes

This statement takes a single expression, and generates that many
zeroes. The syntax is the same as RMB, but RMB does not generate
any data in the bytes it reserves, while BSZ does. The function
of BSZ can also be performed by FCR. Example:

0000000000 BSZ 100
RMB 100 ,
0000000000 FCB 100[0]
EXTRA INSTRUCTIONS

Certain instructions have been added to this assembler which do not
always appear in 6809 assemblers. These are:

CLRD - Clear D reglster. This generates CLR A- CLR B

TSTD This generates STD -2,S which tests D for minus and zero

NEGD = This generates: coMm A, COM B, SUBD #- 1

RESET. - This generates $3E whlch ‘causes ‘a processor reset and-a
jump to the restart address in ROM.

RHF - This generates $14 which puts the 5809 into a test mode
wherein the address lines are continuously 1ncremented.
It is effectively a processor halt. - O '

BRA # - The 1mmed1ate mode is accepted on branch and conditional
branch. BRA #3 will skip three bytes; BRN #$4F w111 skip
over a CLRA instruction. ,

TFR # - Transfer and exchange will accept the immediate mode.
This allows symbols to be used in place of 'register
. pairs.

PULS #- Push and pull S or U will accept,the-immediate mode. -
Symbols may therefore be used in place of register lists.

6800 opcodes - All 6800 source statements are accepted. For example,
ABA ("add B to A") generates PSHS B / ADDA ,S+. See the section on
6800 cross assembly. Even if you're not into 6800 source code, the
6800 statements are sometimes easier to use (such as INX instead of
LEAX 1,X) so it is worth looking these over.

SEF, SEIF, CLF, CLIF - these instructions set and clear the interrupt

bits in the condition codes, and complement the 6800 instructions
SEI and CLI (which don't effect the F bit).

- 24 -

CONDITIONAIL RETURN

A conditional branch may be followed by the special symbol ?RTS.
This causes the assembler to chose as the target of the branch the
most recent RTS instruction, provided it is within 128 bytes. If
there is no RTS within range, an RTS is inserted at the branch
instruction and it becomes a three-byte instruction. Examples:

1000 39 RTS
1010 27EE BEQ ?RTS
2000 260139 BEQ ?RTS

THE "LIST" AND "NLST" PSEUDO-OPS

Sections of a program may be selectively removed from the listing.

For example, such a section might be a large data table, or an include
file, or a section of debugged code which is no longer of concern.

The section is preceeded by the pseudo-op "NLST" and followed by
"LIST". (Any line containing an error is listed anyway.)

Each "NLST" decrements a counter, and each "LIST" increments it again.
Listing is performed whenever the counter is positive. This system
allows flexibility of use. A "LIST" placed in front of the entire
program will cause listing even of "NLST" areas, but still:-will not
list areas which are "NLST" inside a "NLST". A "NLST" in front of the
entire program will suppress. listing, except for areas preceeded by
"LIST" and followed by "NLST". choe

THE "“END" PSEUDO-OP

The END statement is ordinarily considered to be just the end of a
program, but there are a couple of other considerations.

A transfer address can be specified by putting an expression in the
operand field. The value of this expression is saved in the object
file and used as the address at which execution starts when EXEC is
typed. This address is called the "transfer address", since execution
is transfered to that address in order to run the program. If there
are several END statements (such as with INCLUDE files) then the last
transfer address encountered is used. When no transfer address
exists, then the address of the start of the program is used.

An END statement is used to terminate input from a source file. If
there is no END statement in a file, input continues until the actual
end of the file is reached. It is a good idea to put END statements
at the end of INCLUDE files to avoid getting extra blank lines in the
listing. The assembly process will not terminate until the last input
file has been read, regardless of END statements.

- 25 -

THE "REORG" PSEUDO OP

This statement resets the assembler's code generation pointer to
the value it had just before ‘the :last ORG statement. It is used
to continue assembly after some specification (such as of RAM)
which required an ORG. - In the following example, variables can be
specified - throughout a program by using SET variable RAMLOC to
remember where the last ones have been allocated:
ORG RAMIOC
VAR1 RMB 1
VAR?2 RMB 10
VAR3 RMB 2
RAMLOC SET *
REORG

, ORG RAMLOC
VAR4 RMB 2
RAMLOC SET *

REORG

In this example, the ORG is used to specify a stack frame.

; ~ ORG
- LOCAL1 RMB
LOCAL2 RMB
LOCALS EQU.
RETADR RMB
PARAM1 RMB
PARAM2 RMB
REORG
LEAS -LOCALS, S
LDD PARAMI1, S
STD. LOCALL, S

=N NN O

THE “PEEK" AND "POKE" PSEUDO-0OPS

The operatlon of PEEK and POKE is 51m11ar to Basic's PEEK and POKE,
but it is important to understand that the peeking and poking is done
during assembly, not during the running of the program.

The PEEK statement reads the contents of the computer's memory durlng
pass 1. The operand. field is an expression which is: used as an
address. -The content of that byte of memory is assigned as a
permanent value to the. symbol: in the label field.

The POKE instruction alters the contents of the computer's memory
during assembly time, during pass 1. The operand field contains two
expressions separated by a comma. The first expression is an address
into which the value of the second expression is placed.

- 26 -

The uses of PEEK and POKE are left to the imagination. Care should be
exercised in the use of POKE, since its use could crash the assembler.
Or cause subtle errors in its operation. PEEK and POKE are not found
in many assemblers, and for good reason. Still, if you are a
hardened hacker and know what you're doing, it may be useful.

CHECKSUMS

It is often a good ‘idea to incorporate a self-test routine ‘into a-
program, particularly when that program is going to be - burned into
a ROM (read only memory). If a few bits get changed in the program,
it is better to have the program detect this and hang rather than
continue with uncertain results. ‘

The simplest way to do this is to use 16-bit adds to sum the entire
program. The only problem is how to let the program know what the
correct result should be. To facilitate this, this assembler supports
a pseudo-op "CWORD" which generates a lgj—TE“EBﬁEfEﬁt“Sﬂbﬁ:@hgt:ﬁh@
whole sum will be zero. T B ' :

Since CWORD generates two bytes which are not code, it should not be
placed where it would be executed. Normally it is placed at the end
of a program as in the example below. If an odd number of bytes
precedes the CWORD, an extra S$FF is generated before the checkword
so that the 16-~bit adds will come out even.

If the entire program is not‘to be checksummed, ‘the pseudo-op "CLRC" -
should be placed before the start of,themsummgd,anea@wglhis*g;gars
out the assembler's checksum_ and odd-even counter. :

The assembler checksums all bytes generated, regardless of whether or
not they are contiguous. In order to use this feature as described,
the checksum should be generated only on contiguous areas of non-sel f-
modifying code.

BEGIN . . .
- 'LEAX BEGIN, PCR
. LDY #(LAST-BEGIN)/2
- CLRD “ :
A@ ADDD , X++
LEAY -1,Y
BNE AQ
SUBD #0 (or TSTD)
B@ BNE B@ hang here

CWORD
LAST
END BEGIN

LOCAL STACK

There is a stack which is reserved for the use of those writing
macros. For example, a "FOR loop" macro could push values which
a "NEXT" macro would pull off of the stack. To push some values, say

APSH VALl,VAL2,VAL3

where VALl etc. are expressions which are evaluated (no forward
references!) and pushed to the stack. Although several values can
be pushed by one statement, they have to be pulled off agaln one at
a time. Remember to pull them off in reverse order.

VAL3 APOP
VAL?2 APOP
VALl - APOP

The APOP statement sets a symbol to a temporary value as does SET.
These symbols may not appear elsewhere in a label field except in
another APOP or a SET. :

In macros such as FOR, IF, WHILE, etc., it is a good idea to push a
tag value last, so that the NEXT, -ENDIF, or REPEAT can first pop that
value and generate an error if the macros have not been nested
correctly in the user's program

The depth of the stack is 25 values. An error is generated if the
stack overflows, and when the overflowed values are popped. The size
of the stack could be changed by adding a line to AS/BAS such as

POKE &HEO3+A,60: REM 60 BYTES ON STACK a
Add thlS at a p01nt after where AS%/BIN loads, and before it is run.

PROGRAMMING THE ASSEMBLER ITSELF

When we speak of assembler programming, we usually mean using an

assembler to translate assembly language into machine language. With

a powerful assembler, however, a lot of computation can be done at
the time the assembler is running. This computational capability is
intended to make it easier to write assembly language programs, but
in this section we demonstrate.the extent to which one can program
the assembler. The assembler is an interpreter, and pseudo-ops are
programming statements which are run by the interpreter.

Macros are the subroutines of this language, and conditional assembly
gives us our IF statements. This assembler supports the ASK statement
for input and the MSG statement for output. APOP and APSH give us a
stack to play with. There is also a RPTM statement which gives us
loops.

The example program, Towers, solves an ancient and well-known puzzle

involving moving disks between three pegs. Programs which solve this
puzzle are common homework assignments in programming classes and are

- 28 -

N e

nothing new, but this particular program solves the puzzle while still
in the assembler and never generates a byte of object code.

Another example program finds a square root by repeatedly trying
'division of trial answers. Of course, square roots can be more easily
found in Basic, but one might envision a situation in which a source
program would need to include numbers which might be most easily
calculated within the assembler itself. :

These two examples are extreme in that one would not generally wish
to write stand-alone programs that do not generate code. The useful-
ness of the programmability of this assembler is in the flexibility
it gives to writing complex assembly language programs. Whatever
needs to be calculated in order to assemble the program can probably
be calculated by instructions embedded right in the source code.

PAGE 0002 THE MICRO WORKS
0001 OEO0O NAM EX-SQR

THIS PROGRAM IS AN EXAMPLE OF
PROGRAMMING WITH MACROS.

IT IS NOT THE SORT OF THING
WHICH IS COMMONLY DONE WITH
MACROS, BUT IS AN INTERESTING
EXAMPLE, - ‘

% o ¥ % *

*

IT FINDS THE INTEGER SQUARE
* ROOT OF A NUMBER ITERATIVELY.

0002 0EOO SQ MACR
0003 OEO0O IFGT CNT
0004 OEO0O QUOT SET NUM/TRY
0005 OEO0O0 TRY SET (TRY+QUOT)/2
0006 OEQO CNT SET CNT-1
0007 OEO0O : SQ-
0008 OEO0O SQ
0009 OEQO ' ENDC
0010 OEOO ENDM
0011 00A9 NUM ASK "SQUARE ROOT OF WHAT?"
0012 0010 CNT SET 16
0013 0054 TRY SET NUM/2
0014 0EOQO B :1e]
0015 OEOO MSG "ANSWER IS ",TRY
* THIS STORES THE ANSWER IN
* MEMORY. DO NOT TRY TO EXEC
* THE OBJECT OF THIS PROGRAM,
* AS THIS IS ALL THAT IS THERE.
0016 0E00 000D FDB TRY
0017 OEO0?2 END

- 20 <

0001

0002
0003
0004
0005
0006
0007
0008

0009
0010
0011

OEQO

OEOO
OE09
DEOO
DEOO
0EO0O
OE0O
OEOO

0004
OEOO
OEO0O

NO ERRORS

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

FOUND

POLE1l
POLE1l
SPARE
POLE1
POLE2
POLE2
POLE1l
POLE1
SPARE
SPARE
POLE?2
SPARE
POLE1
POLE1
SPARE

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

* F

* % F F * *

NAM TOWERS

THIS IS AN UNUSUAL EXAMPLE OF -PROGRAMMING
WITH MACROS.

THE SOLUTION OF THE "TOWERS" PROBLEM IS
PRINTED OUT DURING ASSEMBLY, AND NO OBJECT
CODE IS GENERATED.

THE PUZZLE IS THIS:‘ THERE ARE THREE POLES,
AND WE WISH TO MOVE A STACK OF DISKS FROM
POLE 1 TO POLE 2. FEVERY DISK IS SMALLER

THAN THE DISK BELOW IT, AND NO DISK MAY BE

PUT ON TOP OF A SMALLER ONE. ONLY ONE DISK
AT A TIME MAY BE MOVED.

MOVE MACR

IFNE \3

MOVE \0,\2,\1,\3-1

'MSG "MOVE FROM \O0 TO \1"
MOVE \2,\1,\0,\3-1

ENDC

ENDM

HMANY ASK "MOVE HOW MANY? "

SPARE
POLE?2
POLE?2
SPARE
POLE1
SPARE
SPARE

POLE2 .

POLE?2
POLE1
POLE1L
POLE?2
SPARE
POLE2
POLE2

MOVE POLE1l, POLE2, SPARE, HMANY
END

(THE ANSWER IS
ACTUALLY PRINTED
-0ouT FIRST,
DURING PASS 1.)

- 30 -

PAGE 0001 THE MICRO WORKS

0001 OEO0O

0002 008A

0003 0001
0004 0002
0005 0003

0006 0002

0007 OEO0O
0008 OEO0O
0009 OEO0O
0010 OEO0O
0011 OEO0O
0012 OEO02
0013 0OEO02
0014 OEO02
0015 OEO02
0016 OED2
0017 OEO02
0018 OEO02
0019 OEO02
0020 O0E02

0021 OEO02

0022 DEO5
0023 OEOQ7
0024 OEOA

0025 OEOC
0026 OEOE
0027 OEOF
0028 0OE1l1l

0029 OE13
0030 0OE1l4

NO ERRORS

86CF

BE0400
A780
8C0600
25F9

9E8A
3D

3001
26FB

39

FOUND

~e -4

~ewn ~e

ZERO

BLACK
WHITE
RED

COLOR

~ w8

8~

A@

~e

@

~e

NAM BLKWHT

THIS IS AN EXAMPLE OF BOTH THE ASK STATEMENT
AND CONDITIONAL ASSEMBLY.

IT SETS THE SCREEN TO EITHER BLACK, WHITE,
OR RED, DEPENDING ON WHICH COLOR IS TYPED
WHEN IT IS BEING ASSEMBLED.

LOCATION $2A IS ALWAYS ZERO, SO WE'LL USE IT
INSTEAD OF SAYING LDX #0:

EQU $8A

THESE NUMBERS ARE ARBITRARY:
EQU 1 e

EQU 2

EQU 3

~THIS ‘IS THE OPERATOR INPUT:

ASK "WHAT COLOR? "

THIS IS THE CONDITIONAL ASSEMBLY. ’THE

- MINUS SIGN CHECKS FOR EQUALITY:

IFEQ COLOR-BLACK

“LDA #$80
ELSE
" IFEQ COLOR-WHITE

LDA #$CF

ELSE

IFEQ 1 COLOR-RED
LDA #$BF

ELSE

MSG ‘ . "THAT WASN'T RIGHT"
FATL ' "COLOR NO GOOD"

ENDC

ENDC
ENDC

THE A REGISTER NOW CONTAINS THE
 COLOR CODE. THIS SETS THE SCREEN:
LDX #$400

STA ,X+
CMPX #8600
BLO AB

THIS PAUSES WHILE WE ADMIRE THE SCREEN:
LDX ZERO"

MUL o (TIME DELAY ONLY)

INX

BNE B@

END OF PROGRAM
RTS
END

PAGE 0001 THE MICRO WORKS

0001 OEOO

0002 OEOO
0003 OEO0O
0004 OEOO
0005 OEO0O0
0006 OEO0O
0007 OEO0O
0008 OEO0O
0009 OEO0O
0010 OEOO
0011 OEOO
0012 OEOO
0013 OEOO
0014 OEOO
0015 OEOQO
0016 OEOO

0017 OEOO
0018 OEl6
0019 OE28

0020 OE3A
0021 OE4E
0022 OE69

0023 OE81

0024 0ES82
0025 OE84
0026 OES86
0027 0OES8A

0028 OES8C

NO ERRORS

39

A680
27FB
AD9FA002
20F6

FOUND

.

NAM TEXTOUT

~THIS IS AN EXAMPLE OF THE USE OF MACROS.

* . THE MACRO "TEXT" IS USED WHENEVER
* .TEXT IS TO BE PRINTED ON THE SCRFEN.
* IT GENERATES THE APPROPRIATE CALL TO
* THE SUBROUTINE "PRINT".
* THERE ARE EASIER WAYS TO DO THIS
* PARTICULAR JOB, BUT THIS SHOWS A USE
* OF MACROS WHICH IS TYPICAL IN MANY WAYS.
TEXT MACR
PSHS X :
LEAX \.TX,PCR MAKE THIS P.I.C.
LBSR PRINT
PULS X
; BRA \.OV SKIP OVER TEXT
\.TX FCcCc "\o"
IFC \1,!
FCB $0D GO TO NEW LINE
ELSE V
FCB $20 OTHERWISE A SPACE
ENDC :
FCB O END STRING WITH A NULL
\.ov ,
ENDM
* NOW, FOR THE MAIN PROGRAM. IT DOESN'T DO
* MUCH, BUT ILLUSTRATES THE USE OF THE MACRO.
THIS PRINTS THE WORD, FOLLOWED BY A SPACE:
TEXT TESTING
TEXT ONE
TEXT TWO . :
* THIS PRINTS THE WORD, FOLLOWED BY A RETURN-
TEXT THREE, !
* THE PARENTHESES ARE NEEDED, BECAUSE OF
* THE COMMA AND SPACE. THEY ARE NOT PRINTED.
TEXT (TESTING, ONE)
TEXT (TWO,THREE)
RTS
* THIS IS THE SUBROUTINE WHICH
* WE JUST CALLED SIX TIMES:
PRINT LDA ,X+
BEQ ?RTS
JSR [$A002] OUTPUT CHARACTER
BRA PRINT
END

SECTION 3 - DETAILS AND DULL STUFF

- — — —— — - — ————— ————————————— — ——————_——

In this section we give details about certain parts of the assembler
and about certain aspects of 6809 assembly language. Such subjects
as expression evaluation or permissable symbol names are normally
learned by example and experiment, but a summary of the rules will
probably point out features of which you would not otherwise be aware.
Topics such as branch conditions or error messages are included
because it is handy to have them summarized somewhere.

EXPRESSIONS AND CONSTANTS

A general expression processor is used to evaluate any portion of an
operand field where an arithmetic value is needed. . Thus. anywhere. a
symbol may be used as an operand or part of an operand, one may use

an expression of arbitrary complexity. The following unusual examples
illustrate some capabilities of the expression processor:

LDX #3-(XYZ*$22+'&IR3)
LDA [1-(2-(3-(4-(5-6)))),X]
FDB 1,$2,%11,@4,5H,1108,70, '8-'0

Note that spaces are not allowed in an expression, as they are used as
field terminators. Commas are not allowed in expressions; they
separate expressions (as in the FDB instruction in the above example)
or can signal indexed mode (as in the LDA instruction).

Parentheses may be used at will to specify the grouping of the
operations. (Brackets may not be used as these are used for indirect
addressing.) In the absence of parentheses, the order is (1) unary
minus, (2) all operations except plus and minus, in order of left to
right, and (3) plus and minus last. This is a standard order of
evaluation such as one might expect. :

All operations are performed in 16 bit arithmetic and no overflow or
carry conditions are recognized, so operations may be treated as
either signed or unsigned.

In addition to +, -, *, and /, the logical operations AND (!.),

OR (!+), and EXCLUSIVE OR (IX) are included, with the same precedence
as * and /. Exponentiation is also included, specified by an up
arrow (), such that 374 is the same as 3*3#*3*3, Also included are
shift left, shift right, rotate left, and rotate right (!¢, !>, L,
and IR respectively), which shift the left operand the number of bits
- specified in the right operand. Examples:

51«2 is 20
512 is 1
51R2 is 16385
Note that 2°N is the same as 1!<N.

Constants may be specified in base 2, 8, 10, or 16. Default is base

- 33 -

10. A constant may be preceded by a %, @, &, or $ to indicate bases
2, 8, 10, or 16 repectively. Alternatively a suffix 6f B;Q (not 0),
or H may be used for bases 2, 8, or 167 there—is—no sUffiX for—base
1077 A constant may not start with a Tetter or it will bBe interpreted
as a symbol; therefore FFH must be wriften*aﬁ”ﬂFFH”f@“ﬁéﬁpi?“with this
rule-™"Better yet, write SFF; the prefi¥ form 1s more widely used as
it™is more readable. ;

ASCII constants are preceded by a single quote. There is no end quote
réquiredT—thoughfit“Tg'aITBW@dT““TW@“@haracters*may”EE*inc%uded»-~
between quotes as long as the S&cond one is—=H Iétfér~or~number.

The symbol "*" may be used to represent the value of the assembler's
program counter. For example, the statement FDB LABEL=* will Store
the relative address of LABEL. T

SUMMARY OF OPERATIONS

: ‘ : Example - Result in hex
addition 1+1 0002
subtraction 2-1 0001
multiplication 2%2 0004
division 7/2 0003
exponentiation 275 0020
logical AND $12341.SFF 0034
logical OR $12341!.SFF 12FF
exclusive OR '$1234IXSFF 12CB
shift left $101<2 , 0040
shift right $101!>2 0004
rotate left $101!L15 0008
rotate right $101!R15 0020

'SUMMARY OF FACTORS

SYMBOL - symbol

1234 decimal number

&1234 ‘ decimal number

12344 hex ‘number '

$1234 hex number

12340 octal number

@1234 octal number

1010B binary number

21010 binary number

‘A character

'A' character

'AB' two characters (second must be letter or number)
(EXP) any valid expression inside parentheses
* current value of program counter
~FACTOR unary minus with any of the above
+FACTOR unary plus with any of the above

- 34 -

SYMBOLS

A symbol is a letter or string of letters, numbers, and symbols,
which is used to represent a numeric value such as an address in
memory. -The first character of a symbol name must be a letter. The
rest of the characters may be letters, numbers, or the symbols
ddITEf“sign—-periOd, or underline. (The underline character dlsnlays
a§"“‘baek~arrow*6“’the Color Computer, and is obtained by pre551ng
Shlft up arrow.) ,

oymbol names are limited to- six characters. More than six characters
ma‘“be—used“but*the“remarnI“Q‘tharactersrwriirbev1gnoredsw—lf Yyou
wish—te—havé such names, use the pseudo-op “LONGVR"™ to“SuUppress the
error message normally generated by names longer than six characters;
A symbol normally ha5vonervalue;throughout the entire program. Its
value is set either by using the symbol as a label (putting the name:
to the left of an instruction) or by using the EQU statement. If you
wish to give a symbol a series of different values, use the SET
pseudo-op; this is like EQU only the value can be changed by another
S5ET. See the section:. called‘“SFT LABELS"

There are also two klnds of "local labels These are dlscussed in
the sections called:"LOCAL LABELQ" and "MA”RO LOCALS". :

Some types of statements require that the symbols which they reference
are previously defined. An- example is the RMB statement. “The
statement RMB XYZ reserves some memory Lk tes, #hd it must be known
during the first pass how many to reserve. Therefore XYZ must have
been defined in a line previous to the 'RMB statement. The statement -
XYZ RMB -$100-XYZ will not work, since XYZ is not considered defined
until after the line in: which+it appears. These constralnts are the
same as those of most two- pass assemblers. £ = -

There: are QBMEEEEEXEQ~§¥QDQJ names, buthwtwlswnet t—a—good-.idea
the wames X, B, D, X, Y; S, U, PC, and PCR as symbols. A st.
such as LDD A, X will "assume that the A is a req;stgngggtwa,symbol.
The statement ILDD X will assume that X is a symbol other assemblers
would treat X as a register but correct sy_tax is to requrze,apcemma
b%f:iirﬁbiaﬁwln lndexed addres51g9

6809 INSTRUCTION SET

ABX P ~ Add B to X (Unsigned)

ADCA or ADCB :mem ' : Add memory and carry to accumulator

ADDA or ADDB ‘mem:-: : .~ Add memory to accumulator

ADDD mem Add memory(2) to D register (A:B)

ANDA or ANDB mem:: ' Logical And memory to accumulator

ANDC #value Same as ANDCC

ANDCC #value Logical And Immediate with condition codes
ASLA or ASLB Arithmetic shift left accumulator

ASL mem Arithmetic shift left memory

ASRA or ASRB Arithmetic shift right accumulator

ASR mem o : Arithmetic shift right memory

- 35 -

BCC 1label

BCS 1label

BEQ 1label

BGE 1label

BGT 1label

BHI 1label

BHS 1label

BITA or BITB mem
BLE label

BLO label

BL.S 1label

BLT - label

BMI . label

BNE 1label

BPL label

BRA label

BRN :label

BSR 1label

BVC . label

BVS 1label

CLRA or CLRB

CLR . mem

CMPA or CMPB mem
CMPD mem

CMPS, CMPU, CMPX, CMPY mem
COMA or COMB

‘COM . mem

CWAI = #value

DAA

DECA or DECB.

DEC. ;mem o

EORA or EORB mem
EXG reqg, reg
INCA or INCB

INC mem

JMP mem

JSR mem

LDA or LDB mem

LDAA or LDAB mem

LDD mem

LDX, LDY, LDU, LDS mem
LEAX, LEAY mem

LEAU, LEAS mem

LSLA or LSLB

LSL mem
LSRA or LSRB
LSR mem
MUL

NEGA or NEGB
NEG mem

NOP

ORA or ORB mem
ORAA or ORBB mem
ORCC #value

PSH reg,req,...

“Branch

‘Branch

‘Branch

.Branch

if
if
if
if
if

Branch
Branch
Branch
Branch
Branch
Branch

carry clear

carry set

equal set '
greater or equal (signed)
greater than (signed)

if higher (unsigned)

-if higher or same (unsigned)
Bit test with memory (And but save reg.)
Branch if less than or equal (signed)
if lower (unsigned)

if lower or same (unsigned)

if less than (signed)

if minus (N set)

if not equal

if plus (N not set)

always :

never

to subroutine

if overflow clear

Branch if overflow set

Clear accumulator to zero

Clear memory byte to zero

Compare memory to accumulator
Compare D register (A:B) to memory(2)
Compare index register to memory(2)
One's complement (bit flip) accumulator E
One's complement memory !
And with CC reg and wait for interrupt :
Decimal Add Adjust accumulator A

Decrement accumulator (note carry not set)
Decrement memory (note carry not set)
Exclusive Or - - '

Exchange two reglsters

Increment accumulator (note carry not set)
Increment memory (note carry not set)

Jump to address - - .

Push PC and jump to address

Load accumulator: :

as LDA and LDB

D register (A:B) with memory(2)

index register with memory(2)

Load with effective address (sets 2 bit)

Load with effective address (Z not set)
Logical shift left (same as ASL)

Logical shift left (same as ASL)

Logical shift right (zero fill)

Logical shift right (zero fill)

Multiply A x B, result in D

Negate (2's complement)

Negate memory byte

No. operation

Inclusive Or

Same as ORA and ORB

Or to condition codes register

Same as PSHS

Branch
Branch
Branch
Branch

Branch
Branch
Branch

Same
Load
Lodd

- 36 -

PSHS reg,reg, ...
PSHU reg,reg,...
PUL reg,req,.
PULS reg,reqg,
PULU reg,req,
ROLA or ROLB

ROL, mem ,
RORA or RORB
ROR mem

RTT

RTS

SBCA or SBCB mem
STA or STB mem
STAA or. STAB . mem
STD .mem

STX, STY, STU, STS mem

SUBA or SUBB mem
SUBD mem

SWI, SWI2, SWI3
SYNC

TFR reg,reg

TSTA or TSTB

TST mem

ADDRESSING MODES

Push registers to system stack

Push registers, using U as stack pointer '
Same as PULS

Pull registers from system stack

Pull registers, using U as stack pointer
Rotate ‘left through carry

Rotate left through carry

Rotate right through carry

Rotate right through carry

Return from interrupt

Return from subroutine (pull PC)
Subtract, and subtract carry

Store accumulator

Same as STA and STB

Store D register (A:B) to memory(2)
Store index register to memory(2)
Subtract memory from accumulator
Subtract memory(2) from-D register (A:B)
Software interrupt

Halt until interrupt (masked or not)
Transfer reg to reg

Test for zero and negative

«-Test for -zero and negative

In the llst of instructions above, the ‘word "mem" in the left column
indicates that a memory address should be specified with the
instruction. . These memory addresses should be in the one of the

following forms:

texpression

expression

[expression]

expression,index

,index

, index+

1mmed1ate addre551ng mode - the wvalue

.given is used as an operand. :This mode
is required for instructions such as:

‘ANDCC,.: ORCC; :and: CWAI.: It is not allowed

for memory-modlfylng 1ns£“‘6ttoﬁ§’§ﬁ6ﬁ*§s

stores, shifts, etc. :
228, BRRES

extended or direct mode is used by the

assembler -~ the value given 1is used as

an absolute address. : ~
e

indirect - the value given is used as the

~address of the address oFf the operand.

indexed - where "index" is one of the

‘registers X, Y, U, or PC.
indexed - same as 0, index.
B e B -
auto increment - the i gister X, Y,

U, or 53is incremented after use.

- 37 -

; index++ auto increment - the index register is
incremented twice after use.

;—index : auto decrement - the index register X, Y,
U, or S is decremented before use.
. ——index auto decrement - the index register is

decremented twice before use.

acc,index accumulator offset - "acc®" is A, B, or D
~and is used as a signed offset to X, Y,
-U, _or 8. '

expression, PCR - PC_relative - the address specified by

~the value of the expression is referenced
by means of the PC indexed mode.

[expression, index]
[,index]
[,index++]
[,--index]

Lacc, index] ; oo
[expression,PCR] indirect indexed modes

SHORT VERSUS LONG ADDRESSING

There are many cases where an instruction can be assembled in either
a long or a short form. Examples: : L B IR

LDA XYZ ' ~if XYZ < §$100, then direct addressing may be used
STA PDQ,X this may take 2, 3, or 4 bytes, depending on PDQ
LDX [ABC,Y] this may take 3 or 4 bytes

The assembler must be able to decide on the length of the instruction
during the first pass, so that all subsequent symbols may be defined
correctly. If all symbols used in such ‘an instruction have already
been defined, then the shortes ible addressing mode may be

used. Tt is therefore a good idea to define variables at the top of
the Program instead of at the bottom. WHere there is an undefined
symbol in an expression, the longest form of the instruction will be
used by default, since that will work reqafaTEEE“SE”FEZngfﬁézﬁef the
undefined variables.

If the programmer knows which mode should be used, e _symbols. "<" and
">" may be used—to specify itt+——Exampless

LDA <XYZ use direct addressing
STA <PDQ,X use 8 bit offset (not 5 bit unless PDQ defined)
LDX >[ABC,Y] use 16 bit offset

The use—of- direc ddressing is dependent not on the expression being

1658 than $100 (as we sometimes imply) but in the high byte being
equal to the umed—valus df—th@~ﬁP“féqigfé?f““fﬁiggIE“%SHEESiied by
the SETDP pseudo-op as described in the next section.

it

- 38 -

USE OF THE DIRECT PAGE REGISTER

The 6809 processor contains an 8-bit register called the "Direct Page
Register". The only use of this register is to hold the upper byte of
addresses for the direct addressing mode. It normally contains zero.

An instruction such as LDA $1234 will take three bytes of memory and
take five microseconds to execute. &an instruction such as LDA $12
(using the direct addressing mode) will take two bytes of memory and
take four microseconds to execute. It is therefore a good idea to use
the direct addressing mode for the bulk of a program's‘;5f1§§I§§T““

The Basic interpreter in the Color Computer keeps the DP (Direct Page
reJister) set to Zero; thérefore the 256 bytes OFf RAM in the range
$0000 through $O0FF may be accessed in direct mode. When calling a_
subroutime in the ROM it is necessary that DP be zero; the—subreutine
may—crash if it is not. While running another machine language
program, however, the DP*ﬁa?_be~set~to—the—ﬁpﬁer byte of the address
of thepage where the program's variables are stored.

In order to use direct addressing, it is necessary both to tell the
assembler to create direct-addressing instructions, and to.insert the.
instructions which set the DP. The former is done with the "SETDP"
pseudo-op; it sets the range-of addresses which will be assumed to
work with direct addressing. The latter is done with TFR A,DP or

TFR B,DP or PULS DP. Example: > :

RAM EQU $1200
LDA #RAM/256
TFR A,DP
SETDP RAM/256
- LDA #51234 direct
LDA #8512 - not direct
CLR A
TFR A, DP
SETDP 0 :
LDA #S51234 not direct
LDA #S512 direct

ERROR MESSAGES

There are three kinds of error messages which the assembler can gen-
erate. These are fatal errors, program errors, and optional errors.

Fatal errors are printed to the screen regardless of the listing unit.
They are followed by an immediate termination of the assembly run.
They can be caused by any of the following:

-— A file name which is syntactically incorrect

~- An input file which cannot be found

-- A "phasing error”, which indicates that some other error has
caused a mismatch between pass 1 and pass 2 symbol values

-- A memory overflow

- 39 -

—= Incorrect format of the parameter string passed from Rasic
~= A macro definition which never terminates

A memory ‘overflow error may be caused by too many symbols, macro
nesting so deep as to cause a stack overflow, or a macro which calls
1tself 1nf1n1tely.

Program errors’ (such as syntax errors) are printed to the listing unit
regardless of whether or not a listing is being generated. If option
"E" is in effect the llstlng will go into- single-step mode. The
errors are as follows:

BAD MNEMONIC - Mnemonic mlsspelled macro name undefined, or label
is in mnemonic field. : '

SYNTAX ERROR - The format of the operand field is not correct.

BAD LABEL. - A character was found in the label field that is not
allowed in a label.

DEFINED TWICE - A symbol has appeared twice in the label field,
other than in a SET instruction.

UNDEFINED - A reference is made to a symbol which is not given-

a value anywhere in the program.

BYTE OVERFLOW - A number was expected in the range ~-128 thru +255.

NOT IMMEDIATE - This instruction (such as ORCC) requires that the
operand be in immediate mode.

BRANCH TOO FAR - The target of the branch is more than 128 bytes
away. It should be changed to a long branch.

FORWARD REF - This instruction (such as ORG or RMB) does not allow
a forward reference in its operand, in order that the symbol
table may be completely built during pass 1.

TERMINATOR - The instruction is syntactically wrong. It was right
up to a point, but then there were additional characters which
must be ignored in order to assemble the statement.

TRUNCATED - A symbol name of more than six characters has been
truncated to six characters. A

USER STACK OVF - The local stack has overflowed (see that section).

As each error line is listed, the line number of the last error is
given. At the end of the listing, the line number of the last error
is given. This enables one to quickly find all error lines without
searching through the entire listing.

The optlonal errors are treated like the program errors above, but
are only generated if requested. They are:

ZERO BYTE - A byte of object code is equal to zerc. This message is
enabled by the "2Z" option or by the NOZER pseudo-op. It is
useful for assembling programs to be embedded within Ba51c
program lines.

COULD BE SHORT - A long branch was used where a short branch would
work. This is enabled by option "W". It is useful for making
a debugged program shorter for its final version.

" USER - The "FAIL" pseudo-op has been assembled. The operand field
of the instruction is also listed. This instruction is used
in conjunction with conditional assembly within macros to flag
conditions caused by illegal parameters.

- 40 -

BRANCH CONDITIONS

There are 16 different branch instructions on the 6809. Each of these
may be either a short or long branch. A short branch has a range of
plus or minus 127 bytes; a long branch may branch anywhere in memory.
A long branch is specified by prefixing an "L" to the mnemonic, such
as LBEQ instead of BEQ. These are the 16 branches: -

20 BRA This will always branch. The instruction LBRA is similar to
JMP except that relative addressing is used.

21 BRN Branch Never. About the only use for this instruction is to
skip over its own operand, and thus be a one-byte skip.

22 BHI Branch if Higher. =0 and Z=0. For unsigned comparison.

23 BLS Branch if Lower or Same. C=1 or Z=1. For unsigned
comparison. : i .

24 BCC Branch if Carry Clear. C=0, Indicates no overflow from an
unsigned add. Same as BHS. =

24 BHS Branch if Higher or Same. C=0. ‘For unsigned comparison.
: Same as BCC.

25 BCS Branch if Carry Set. C=1. Indicates overflow from an
unsigned add. Same as BLO. ,

25 BLO Branch if lower. C=l1. For unsigned comparison. Same as
BCS.

26 BNE Branch if not equal. Z=0. For signed or unsigned compar-
ison, or nonzero result from ADD, AND, BIT, load, and store.

27 BEQ Branch if:equal. Z=l. For signed comparison, or indicating

a zero result from ADD, AND, BIT, 'load, and store.
28 BVC Branch if overflow clear. V=0. For no overflow on signed
operations. : ,
29 BVS Branch if overflow set. V=l. For overflow on signed
operations. : ' :
2A BPL Branch if plus. N=0. Indicates positive result from ADD,
SUB, AND, BIT, load, store, etc. :
2B BMI Branch if minus. N=1. Indicates negative result from ADD,
> SUB, AND, '‘BIT, load, store;, etc. ‘ s /
2C BGE Branch if Greater or Equal. N xor V = 0. For signed
: comparison.
2D BLT Branch if Less Than. N xor V = 1. For signed comparison.
(BGE & BLT are the same as BPL & BMI after a load or store.)
2E BGT Branch if Greater Than. 2 or (N xor V) = 0. For signed
comparison, or loads and stores of signed numbers.
2F BLE Branch if Less Than or Equal. Z or (N xor V) = 1. For
signed comparison, or loads and stores of signed numbers.

- 41 -

ASCII CODE AND SCREEN CODE

Listed below is the ASCII code - the American Standard Code for
Information Interchange. This is the code used by assembly language
to represent text strings, and is the code which the assembler expects
its source code to be in. Also listed below is the Color Computer
screen code, which is used when storing directly to the screen. The
FCC pseudo-op generates ASCIT code, and FCCS generates screen code.

ASCII SCREEN CHAR ASCII SCREEN CHAR ASCII SCREEN CHAR
20 60 space 40 40 @ 60 - *
21 61 ! 41 41 A 61 01 a
22 62 " 42 42 B 62 02 b
23 63 # 43 43 o4 63 03 c
24 64 S 44 44 D 64 04 d
25 65 3 45 45 E 65 05 e
26 66 & 46 46 F 66 06 f
27 67 ' 47 47 G 67 07 g
28 68 (48 48 H 68 08 h
29 69) 49 49 I 69 09 i
2A 6A * 4a 4A J 6A 0OA 3
2B 68 + 4B 4B K 6B OB k
2C 6C , - 4C 4C L 6C oc 1
2D 6D - 4D 4D M 6D 0D m
2E 6E . 4E 4E N 6E OE n
2F 6F / 4F 4F 0 GF OF o
30 70 0 50 50 P 70 10 p
31 71 1 51 51 0 71 11 q
32 72 2 52 52 R 72 12 r
33 73 3 53 53 S 73 13 s
34 74 4 54 54 T 74 14 t
35 75 5 55 55 4] 75 15 u
36 76 6 56 56 v 76 16 v
37 77 7 57 57 10/ 77 17w
38 78 8 58 58 X 78 18 X
39 79 9 59 59 Y 79 19 y
3A 7A : 5A 5A V/ 7A 1A z
3B 7B ; 5R 58 I 78 - {
3C 7C < 5C 5C \ 7C - |
3D 7D = 5D - 5D] 7D - }
3E 7E > 5E 5E . : 7E - ey
3F 7F ? 5F 5F or « 7F - rub

Note that on the screen of the Color Computer, the character "*"
appears as an up-arrow, the character " " appears as a back-arrow,

and the lowercase letters appear as uppercase letters, only

inverted. Also note that carriage return (ENTER key) is $0D in ASCII.

SECTION 4 - PROGRAMMING IN 6809 ASSEMBLY LANGUAGE

- v . VS (. A Gma W " ——— o ——— . i o —— i i o — . > o i ——— Y ——— —

This section contains information on a number of topics related to
programming in 6809 assembly language and to the Color Computer in
particular. The first section is for beginners; if you already know
6809 then you will want to skip that section but you will" definitely:
want to read the rest of this chapter to make the most of your

Color Computer.

BEGINNERS GUIDE TO 6809 ASSEMBLY LANGUAGE PROGRAMMING

Assembly language can't be taught in a few paragraphs or even by
one whole book. The basic concepts, like what a register is or what
bytes are for, can't be covered here. This section assumes a

basic familiarity with microprocessors but gives: you a- lesson in
translating theory into practice on the 6809.

Here is the first sample program. This could be entered using a
text editor, assembled using the assembler, loaded using LOADM, and
run by typing EXEC. It adds two plus two. -

LDA #2
ADDA #2
STA "‘ANSWER
RTS

ANSWER RMB 1
END

This uses the A register, whlch is a one-byte general—purpose
register. See page 56 for a diagram of the registers.

The LDA #2 puts a two into the A register. The ADDA #2 adds two to
this, leaving four in the A register. The STA ANSWER will store the
contents of the A register into the memory byte which we ‘will name
ANSWER. The RTS will stop the program; it returns control to Basic
after we EXEC the program. The word ANSWER in the next line is a
label; it starts in the first column and tells the assembler that
this is the address which we were referring to when we used the symbol
ANSWER above. The RMB 1 means "Reserve one Memory Byte" for storing
the answer. ' The END tells the assembler that this is the end of the
source file.

The number signs ("#") in the first two lines of the program mean that
the two is‘an actual number to use; if we just said LDA 2 then the ’
instruction would mean "Load A from memory location 2". Using the
number sign means that the 1nstructlon is in "immediate mode".

Using the A reglster as we have only allows us to work with numbers
up to 255, since this is all that can fit in one byte. The

A register is actually half of the D register, and we can use the
whole D register if we want to go up to 65535. (Refer again to the
"Programmer's Model" on page 56.) Here is the new version of our
program using two-byte numbers:

- 43 -

LDD #1234

ADDD #1357

STD ANSWER

RTS
ANSWER RMB 2

END

Note that now we have to reserve two bytes for ANSWER by saying RMB 2.

Of course, after adding the two numbers we just stuck the answer in
memory somewhere and left it there; it doesn't print the result on

the screen. We are not going to go into the techniques of printing
numbers to the screen, but we will print letters. This program prints
the word "HI":

LDA #'H
JSR $A282
LDA #'I
JSR $A282
RTS

END

The expression 'H means "the number which is the code for H". This
assembler (and the whole Color Computer) uses the ASCII code, in
which A is 65, B is 66, and so on. The JSR means "jump to subroutine"
and the $A282 is the address of a subroutine in the Color Computer's
permanent memory which displays characters to the screen.

Actually, there is a more direct way of writing to the screen. The
screen is just a section of memory, so we can store characters into
it and they will appear. The screen goes from $0400 through S$O5FF.
This program puts the word "HI" onto the screen about in the middle.

LDA #'H
STA $510
LDA #'I
STA $511
; RTS
. END

The screen doesn't quite use standard ASCII code, since it can't
display lowercase but can display inverted characters and graphics
symbols. Therefore, when storing directly to the screen, refer to
the chart given in this manual for ASCII and Screen Code.

The following program uses indexed addressing to cover the entire
screen with guestion marks. Of course, as soon as the program returns
to Basic the screen will scroll, so the bottom two lines will no
longer contain question marks, but we will know that they all were
there.

- 44 -

LDX #0
LOOP LDA #'?

STA $400,X
LEAX 1,X
CMPX #5200
BLO LOOP
RTS

END

The statement LEAX 1,X simply adds one to X. The assembler allows you
to say INX (for INcrement X) which is a little easier to remember.
There is no instruction ADDX. The $400 -is the address of-the screen
(where "$" means a base 16 number) and the $200 is the length of the
screen. The lines CMPX and BLO are read: "Compare X with hex 200 and
branch if it is lower to LOOP." This means that the STA instruction
will be executed $200 times (which is 512 times in base 10) This is
once for each character on the screen.

At this point you probably know enough 6809 code to start reading the
other example programs given throughout this manual. The best way
to learn is to try to make modifications to working programs.. For
an intensive course in 6809, get a disassembler and try to figure out
disassembly listings of programs such as the Basic interpreter. ROM.

BASIC ROM ROUTINE ADDRESSES

These are some calls to the Basic ROM in the Color Computer for I/O.
Except for Poll Keyboard, these routines expect the Direct Page Regis-
ter to contain zero. These routines expect certain variables to exist
in Basic's variable area from 0000 through 03FF, so beware of where
your programs overwrite.

JSR [$SA000] Poll keyboard. Returns A=0 if no key has been pressed
since last time it was called; otherwise A . will contain
the ASCII code for the key. Shift-zero is checked for
and lowercase is adjusted accordingly. Does not use the

A L Direct -Page Register. Condition codes will be zero if
> , A=0, so the call may be followed by a BEQ statement. '

JSR [$A002] Output character from A register. Location $006F should
contain a.unit number {(0O=screen, etc.) If the unit is
-1 or greater than zero, the. unit must have previously
been opened or a Basic error will occur.

JSR [$A00A]1 Read joysticks. The four resulting values can be found
in $015A through $015D. Each value will be in the range
$00 through S$3F. 4

JSR $Al171 Input character from unit specified in $006F.

JSR $Al76 Same -as above, only does not do an ANDA #S7F, so can be
used with binary I/0.

JSR $A393 Read line. This gets characters by calling $A171 (so be

- 45 -

sure to set the unit number) and puts them into a buffer
at $02DD until a carriage return is read. Backspace,
shift-backspace, and clear are checked if the unit is
zero (keyboard). 1If Break is pressed, return will be
with carry set. '

JSR $A928 Clear text screen, and reset cursor to upper-left corner.

JSR $A951 Generate sound. The B register represents the duration,
and the contents of location $008C represents the pitch,‘

THE "LOAD EFFECTIVE ADDRESS" INSTRUCTIONS

The 6809 instructions LEAX, LEAY, LEAU, and LEAS are some of the most
confusing instructions to the beginning 6809%er. They are powerful
instructions, and yet are also used for mundane operations such as
incrementing the X register. B :

The simplest and commonest use of LEA is to add a value to an index
register. For example, LEAX 2,X will add two to the X register, and
LEAY -5000,Y will subtract 5000 from the Y register.

The statement LEAS 2,S will pop two bytes from the stack. This could
be used to remove an unwanted return address or to clean off some
data which was pushed.

The statement LEAY 0,X will add zero to what is in X and put_the
result in-¥; this is the same as TFR X,¥. W& Gould also say LEAY 5,X
and set Y equal to five more than X.

The statement LEAX LABEL,PCR is the same as LDX #LAREL except _that
the LEAX form is the same regardless of where the assembler is told
to_assemble the program. This is called Position Indepent Code, and
enables a program to run even if it is offset-loaded into a different
part of memory. See the section on P.I.C. in this manual.

In general, LEA is used with some type of indexed addressing but loads
the address instead of what is at The address+— For any indexed mode
instruction such as LCi: 5,S we could instead says ¢

LEAX 5,8 GET ADDRESS OF OPERAND
Lpa 0,X DO THE ACTUAL OPERATION

This would be of some benefit if we were to then do many operations on
that same byte.

TIMING LOOPS ON THE COLOR COMPUTER

It is often necessary to write programs in which a certain routine
must execute at a certain time or after a certain delay. Any

program dealing with serial I/0, sound output, interactive graphics,
or mechanical delays must involve timing or synchronizing loops.

- 46 -

The processor speed on the Color Computer is 0.895 MHz. Therefore

a two cycle instruction such as NOP takes 1.790 microseconds.

millisecond timing loop is:

LOOP

LDX #111

NOP

NOP

LEAX -1,X
BNE LOOP

(Same as DEX)

where the NOPs are there simply to bring the total up to exactly

1000 uSec.

It is possible to synchronize to the 60 Hz vertical refresh rate.
The following program allows a section of code to be done sixty
times each second: : ' ‘

A oOne

LDA #5$34 Interrupts Off
STA SFFO03 To PIA control register
LDA $FFO02 Clear Flag
LOOP LDA SFFO3 Check control register
BPL LOOP Wait til refresh has occurred
LDA $FFO02 Clear Flag :

* Do whatever you want in here
BRA LOOP Go sync again

The following routine synchronizes to the 63 uSec interrupt.
Due to the high speed of this signal, the SYNC instruction is used.

Inhibit IRQ and FIRQ

ORCC #8$50
LDA #8835 Interrupts enabled to processor.
STA SFFO1 To PIA control register
LDA SFFOO Clear Flag
LOOP SYNC Wait for inhibited IRQ
LDA SFFOO Clear Flag

* Do whatever you want in here
BRA LOOP Go ‘sync..again

For a very short delay, try the MUL instruction. It takes 11 cycleé
(about 10 uSec) in only one byte. Just remember that it does affect
the D register and the C and Z bits. ‘ : '

INPUT / OUTPUT ON THE COLOR COMPUTER

This section contains several examples of input and output on the
serial I/O port, the sound generator, and the joystick buttons.
For further information about I/0, refer to Radio Shack's Color
Computer Technical Reference Manual.

* "READ SERIAL INPUT LINE
LDA S$FF22 PIA 2, B SIDE
« ANDA #1 GET ONLY THE SERIAL INPUT LINE
BEQ LABEL BRANCH IF LINE IS ZERO, "SPACE", +12V

- 47 -

* WRITE TO SERIAL OUTPUT LINE

LDA $FF20 OLD OUTPUT VALUE

ORA #2 SET SERIAL OUTPUT TO 1, "MARK", =12V, IDLE
STA $FF20 SET SERIAL OUTPUT WITHOUT CHANGING DAC

LDA SFF20 OLD OUTPUT VALUE

ANDA #$FF-2 SET SERIAL OUTPUT TO 0O, "SPACE", +12V

STA SFF20 SET SERIAL OUTPUT WITHOUT CHANGING DAC

* ‘THIS PROGRAM PLAYS A TONE ON THE SPEAKER, BRY
* GENERATING A "SAWTOOTH" WAVE WHICH RUNS THROUGH EACH
* POSSIBLE VALUE ON THE DAC.

LDA $FF23 CONTROL REGISTER B
ORA #8 ENABLE SOUND OUTPUT '
. STA S$FF23 PUT BACK TO CONTROL REGISTER ,
. LDA #2 o LEAVE SERIAL OUTPUT HIGH SO PRINTER QUIET
LOOP STA S$FF20 OUTPUT TO DAC
ADDA #4 NEXT VALUE
TFR X, X DELAY, TO LOWER THE PITCH
BRA LOOP OUTPUT THE NEXT VALUE

* THIS PROGRAM READS THE JOYSTICK BUTTONS. IT BRANCHES
* TO BUTT1 IF THE RIGHT BUTTON IS DOWN, AND TO BUTT2 IF
* THE LEFT BUTTON IS DOWN. :

LDA #SFF ALL LINES HIGH

STA S$FFO02 TO KEYBOARD OUTPUT; DISABLE KEYS
LDA S$FFO0O0 GET JUST THE JOYSTICK BUTTONS
BITA #1 4 - RIGHT BUTTON

BEQ BUTT1 IF RIGHT BUTTON DOWN

BITA #2 LEFT BUTTON

BEQ BUTT2 IF LEFT BUTTON DOWN

WRITING SOURCE IN BASIC

It is sometimes useful to write a Basic program for generating parts
of the source file for an assembly language file. For example, the
Basic program below generates a series of FCB instructions which
contain a sine table such as might be used in a music program. - The
file which the program creates can be edited in the normal fashion,
and could be appended (using an editor) to a file containing the rest’
of the assembly source. ‘

1000 REM GENERATE SINE TABLE

1010 OPEN"O", #1, "SINETAB/TXT"

1030 FOR I=0 TO 255 »
1040 X=127*(1+4SIN (I/256 * 2%*3,1416))
1050 PRINT #1," FCB ";INT(X)

1060 NEXT 1

1070 CLOSE

1080 END

- 48 -

EMBEDDING MACHINE LANGUAGE IN BASIC PROGRAMS

It is often useful to create lines in a Basic program which contain
machine language. This may be done as long as the machine language

contains no zero bytes (and is P.I.C.). To facilitate this type of
programming, the assembler has an optional error message which warns
whenever a zero byte has been generated. This error message is

enabled by placing the psuedo~op "NOZER" in the source program.

As an example, suppose we are writing a Basic program and we want to
reverse scroll the screen; that is, to copy everything to the line
below. You could just write:

9000 FOR I=&HSFF TO &H420 STEP -1: POXE I,PEEK(I-32): NEXT I
The only problem is that this takes about five seconds. We'd rather
do it in about the same length of time as scrolling up, which is a
matter of milliseconds. Therefore, we will write the scrolling
program in assembly language and copy it right into a Basic statement.

Step 1l: Write the Basic program using this statement:

100 DEF USR1=PEEK(47)*256+PEEK (4

8)+34:REM XXXXXXXXXXXXXXXXXXXXXX

). 0.9.9.8:0.0.0.0.9.0.9.0.0.0.0.080.0.0.0.0.0.6.0.0.0.0.6.0.0.4
The exact spacing is important; otherwise you'll have to recalculate
that number 34. The number of X's should simply be enough that the
program will fit; feel free to add more. Using this method, the size
of your program is limited by the input buffer to about 200 bytes.

Step 2: Write the assembly program. The reverse-scroll example is
given as sample program EX-SCROLL. Make sure that it's position inde-
pendent code (see the section on this). Use the ORG 0 statement to
make it easier to figure out the offset when you go to load it.

Step 3: Load the Basic program and find the address of the first "X".
Do this with a machine language monitor such as DCBUG. An "X" is 58
in ASCII; look for a group of them. Hint: Locations 0019 -and -N0O1A
point to the start of the Basic program.

Step 4: Load the machine language program into the Basic statement.
Use the address you found above as the offset in the LOADM command.
Example: LOADM"EXSCROLL",&H3222

When you next list your Basic program, it will be considerably uglier,
but that's OK. Don't try to use an ASCII save (SAVE PRGM,A) and don't
try to EDIT the line which contains the machine language (even to
remove the excess X's). Feel free to edit, insert, and delete any
other lines in the program, and to save or do anything else with it.

Step 5: Use it. We defined the line to be USRl, so a statement such
as A=USR1(A) will execute it. The A's are dummies unless the embedded
program uses these parameters. If you want to use parameters, see the
chapter of Radio Shack's Extended Basic manual called Machine Language
Routines.

- 40 -

PAGE

0001

0002
0003

0004
0005
0006
0007
0008

0009
0010
0011
0012

0013

0001

OEOO

OEOO
0000

0000
0003
0005
0008
000B

000D
0010
0012
0013

0015

NO ‘ERRORS

THE MICRO WORKS

B8EOSEOQ
EC83
ED8820
8C0402
24F6

CC6020
A780
5A
26FB

39

FOUND

NAM EX-SCROL

MUST BE P.I.C.

NO ZEROES ALLOWED

GET TWO BYTES
MOVE THEM DOWN

* THIS PROGRAM IS DESIGNED TO
* BE EMBEDDED IN A BASIC
* PROGRAM. IT REVERSE-SCROLLS
* THE TEXT SCREEN.
ORG 0
NOZER
~ LDX #$600-$20 LAST LINE
"LOOP LDD ,--X
STD $20,X
CMPX #$402 START + 2
BHS LOOP

LOOP TILL DONE

* JUST FOR FUN LET'S CLEAR THE

*

TOP LINE, TOO:

LDD #$6020

CLLOOP STA ,X+

*

*

DEC B
BNE CLLOOP

NOW WE LEAVE.

A=SPACE, B=$20
STORE & INCREMENT
COUNT DOWN SPACES

LOOP TILL DONE

WE DON'T NEED

TO RESTORE ANY REGISTERS

 RTS

- 50 -

ASSEMBLING 6800 PROGRAMS

The 6809 processor in the Color Computer is, according to the
designers at Motorola, upward compatible on a source code level with
its predecessor, the 6800.-. This means that any 6800 program may be
assembled with this assembler and run.

In actuality, the converting of 6800 programs to run on a 6809 is an
art. This section will give you enough information to make most
programs run, but cannot make the process foolproof.

Many 6800 statements do not need to be converted. The statement

CBA (Compare B to.A), for example, which generates a single instruc-
tion on a 6800, will generate a. "PSHS B; CMPA ,S+" in this assembler,
which accomplishes the same thing. The only thing to watch out for
is a 6800 program which does not keep a stack; if the S register is:
used as an index register then the converted CBA will alter a byte
of data. Such a program, however, 1is not worth converting.

Some of the 6800 statements are even worth using in new 6809 programs.
These are CLC, CLI, CLV, DEX, INX, SEC, SEI, and SEV.: They are much
clearer than their 6809 counterparts. They are accepted by any 6809
assembler which conforms. to Motorola's standards and there is no
reason not to use them.

The following problems w1ll creep in when cross- assembllng- ’

The condltlon codes are not set 1dent1cally. The CPX 1nstructlon on
the 6800 (which assembles as a CMPX) does not affect the carry bit.
If carry is set as a flag before a CPX the 6809 version-will not work.

The TST (test) on the 6809 does not clear carry the way it did on the
6800. This is generally not a problem, but the sequence TST VARl /
BHI LABEL will not work. o ;

Right shifts on the 6809 do not affect the overflow bit, so the
sequence LSR A / BVS LABEL will not work. Such a test would, however,
be rare.

Use of the H-flag for other than its intended purpose ("DAA") may
not yield identical results. And, of course, any assumption by
a 6800 program that E and F bits are alwayslone‘will~not be*true.

The stack is the other big problem. Any program . which deals with
an interrupt stack frame (such as a monitor like ABUG) will not
cross assemble since the order and size of the frame is different.
Any program that contains an LDS .or STS is suspect.

The 6800 instruction TXS was actually a "transfer X to S and
decrement"; TSX likewise incremented. Although this could have
easily been incorporated in the cross-assembled code, it is more
accurate to leave out the decrement/increment. = The reason is this:
The 6800 stack pointer pointed at the next free byte; the 6809 stack
pointer points at the first used byte. The instruction TSX will point
the X register at the last byte pushed if it increments on the 6800

- 51 =

but does not increment when cross-assembled to the 6809,

The consequence of the considerations in the paragraph above is simply
this: A 6800 program which contains only TSX and TXS instructions

is safe to cross assemble. Any LDS or STS instruction may need work.
An LDS #$xxxx (such as is commonly found) may have its value increased
by one, such as from $3FFF to $4000. An STS SAVSTK followed later

by LDS SAVSTK is all right, but if LDX SAVSTK appears it is guaranteed
not to work. ‘ ,

The last problem is in software timing loops. These have to be looked
at anyway since they depend on processor speed (0.895 MHz on the Color
Computer). Many 6809 instructions take more cycles than the 6800
equivalents. Load A extended takes five instead of four cycles.
Compare B to A (which crosses to the PSH/CMP shown above) will take
twelve instead of two cycles. Conditional branches, however, only
take three cycles, so the loop

LDX #COUNT
LoOP DEX
BNE LOOP

will still take eight cycles as it did on the 6800, even though both
of its instructions take a different number of cycles each. Most other
timing loops will require careful counting.

In summary, to cross assemble a 6800 program, look for these items:

1. CPX - is carry tested afterwards?

2. TST - is carry tested afterwards?

3. right shifts - is overflow tested?

4. any unusual operations on the condition codes
5. all LDS and STS instructions

6. any software timing loops

If all of these points are checked, most 6800 programs should give
little trouble in cross assembly. ,

6800 CROSS MNEMONICS

The following mnemonics are supported by the assembler so that code
written for the 6800 processor can be assembled.

Some of these instructions (such as INX or CLI) are clearer and
easier to use than their 6809 equivalents and may be used instead.

6800 inst Generated code equivalent
ABA PSHS B; ADDA , S+

CcBa . : PSHS B; CMPA , S+

CLC ANDCC #SFE

CLI ANDCC #SEF

CLV ANDCC #SFD

DES LEAS -1,8

DEX ' LEAX -1,X

INS LEAS 1,S

INX LEAX 1,X
SBA PSHS B; SUBA ,S+
SEC ORCC #$01

SEI ORCC #$10

SEV ORCC #$02

TAR TFR A,B; TST A
TAP TFR A, CC

TBA TFR B,A; TST B
TPA TFR CC,A

TSX TFR S, X

TXS TFR X, S

WAI _ CWAI #SFF

Also included are some 6800-like mnemonics which relate to Fast-
Interrupts, which the 6800 does not have. They may be clearer
to use than their 6809 equivalents and are included for this .reason.

CLF ANDCC #$DF Clear Fast Interrupt inhibit bit
CLIF ANDCC #SAF Clear both interrupt inhibit bits
. SEF ORCC #3540 Set Fast Interrupt inhibit bit

SEIF ORCC #$50 Set both interrupt inhibit bits

POSITION INDEPENDENT CODE

The 6809 programmer should understand position independent code, as it
is a powerful tool which is readily available on this processor.
Although it is possible to write P.I.C. on other CPU's such as the
6800, it is seldom easy. On the 6809, however, there is almost no
excuse not to. ;

Position independent code (or P.I.C.; relocatable code; or run-
anywhere code) is code which can be moved to anywhere in the memory
space AFTER ASSEMBLY and correctly run. For example, a P.I.C program
which runs at $1000 could be block moved up to $2000 and it would
‘run just as well. If it contained any statement such as

JMP LABEL (where LABEL is within the program) then it would not be
P.I.C., since it would jump to the wrong address if the code were
moved. Writing P.I.C., then, is basically avoiding certain statements
and addressing modes which do not work when the object code is moved.

The most obvious rule is this: Replace JMP w1th LBRA (long branch),;y
and_replace JSR with LBSR (Iong branch fo subroutine). In itself,

< ATy Sy .
however, this is not enoughi a program which is—enly-partially
P.I.C. is not P.TI.C. at all and is—merelyslower than the version
which contains JMPs. Therefore, the discussion below is included
in order to allow you to write code which is entirely P.I.C.

All symbols should be classified as to whether they are in the program
or absolute; that is, whether or not they will move when the program
does. A label is in the program; so is a variable which is declared
as part of the program (which makes it non-ROMable, but that's another
story). A variable in page zero_iE_gQgg;g;e*__3~£gggigg~ig~;he

BASIC ROM is absolute. A symbol defined by an equate statement is
—_— T

—~ 53 -

absolute, unless there is a pro el i side of e

equate. A variable in a stack frame is absolute (which is yet another

StoTryJ™
\

Any reference to a symbol in the program must be relative: any refer-

ence to an absolute symbol must be absolute. A jump to6 & label in
the program must use BRA or LBRA, while a jump to & “routine im ROM

cannon use LBRA and must _use JMP.

A reference to a variable or constant which is part of the program

must use the PCR addre551ng mode. LDA XYZ,PCR has the same effect

as LDA XYZ éxcept that" at relative addre551ng is used. On the o6ther
han the PCR mode may not be used when referenc1ng variables whlch

are a“flned”by absolute symbols. “Remember the adage,‘"Everythlng
not mandatory is prohlblted."

The statement "LDX #TABLE" assembles to an absolute address which must
not be used if TABLE is within the program. The statement to be used
instead is "LEAX TABLE,PCR". A thorough understanding of the LEA
statement in its many forms is necessary for a good 6809 programmer.

The statement "CMPX #TABLE" is harder to replace. It is often used
to check to see if we have finished stepping through a table. It

is best avoided by various means which depend on the program in
question, but if a quick fix is needed this sort of thing will work:

LEAX ENDTAB, PCR
PSHS X
LEAX TABLE, PCR
LOOP ADDA , X+ (or whatever)
CMPX 0,5
BLO I.OOP
PULS X (clean up stack)
TABLE FCB 1,2,3,4,5
ENDTAB EQU *

In the example above, by the way, the PULS X could have been replaced
by a LEAS 2,S. However, it is clearer and less conducive to errors to
match a pull with a push. '

One source of problems is the FDB statement. Any time a label in the
program appears 1in an FDB statement, an absolute constant may be
generated. A typical example is the jump table, wherein this sort of
thing goes on:

LDX #TABLE
ASL B
DX B,X
JMP 0,X
TABLE FDB PLACEl, PLACE2, PLACE3, ...

The LDX becomes an LEAX, of course, but what about the FDB? One
solution is to add onto X (just before the jump) some relocation

- 54 -

constant which can be obtained by the strange—looklng statement
LEAX 0,PCR. Another solution is this:

LEAX TABLE, PCR
ASL B
ABX _
LDD 0,X
JMP D,X
TABLE FDB PLACEl-*,PLACE2-*,PLACE3-%,...

Who says you can't have a "JMP" in P.I.C.?

PROGRAMMER’S MODEL OF THE 6809

D LDA ASLA
D Accumulator-- ADDA CLRA
STD CMPD - A B ’ Accumulator—=- SUBA INCA
SUBD ADDD . ANDA DECA
LDD QRA STA
STX
Index Registers--ILDX
CMPX
Y LDA @,X
PSHS A,B —— S - stack Pointer
Direct Page Register--
DP TFR A,DP PULS DP
BEQ
E F HIIh V C Condition Codes—-ANDCC
-ORCC
—— Carry
; ———— Overflow
: Zero
Negative
IRQ Inhibit
Half-Carry
FIRQ Inhibit
Efitire State on Stack

Above are examples of typical instructions which access each
register. Not shown is the Program Counter, the use of which
is inherent in programming.

o 5 G

MEMORY MAP OF THE C

OLOR COMPUTER DISK SYSTEM

Address & notes:

FILE CONTROL BLOCKS

ZERO PAGE 0000
BASIC TEMPS N100

If the disk drive is not

TEXT SCREEN 0400 present, the start of the

: ' graphics screens is moved

SECTOR BUFFERS 0600 back to $0600.

DRIVE TABLES 0800
| DISK BASIC TEMPS | 0928
RANDOM FILE AREA 0989

0ABA (Typically) (Pointer at 0948)

UNUSED

GRAPHICS PAGES AND
GENERAL USE

Some RAM is left unused to bring the next
address up to an even page boundary.

OE00 (Typically) (Pointer at OOBC) use of
The start of this area is moved by use of
the "FILES" statement.

BASIC PROGRAM

2600 (Typically) (Pointer at 0019)
The start of this area is moved by use of
the "FILES" and "PCLEAR" statements.

BASIC VARIABLES .

(As needed) (Pointer at 001B)

BASIC ARRAYS

(As needed) (Pointer at 001D)

FREE MEMORY

— e e e e e e o e o -

‘(Pointer at OO01F)

The stack grows into free memory as needed.

STRING POOL

(Pointer at 0021) Moved by "CLEAR" statement.

(Pointer at 0027) Created by "CLEAR" statement.

MACHINE TLANGUAGE
LAST RAM ADDRESS =

EXTENDED BASIC:
BASIC:

DISK BASIC:
I1/0:

SYSTEM CONTROL:

3FFF IN A 16K SYSTEM,
7FFF IN A 32K SYSTEM.

8000-9FFF
AOOO-BFFF
CO00-D7FF
FFOO-FF5F
FFCO-FFDF

- 57 -

A@ (local labels) 18
Addressing modes 37
APSH, APOP pseudo-ops 13,28
AS/BAS AS%/BIN 6
ASCII code 23,34,42

-- ASCII table o 42
ASK pseudo-op 12
ASLD example 19
ASP/BIN 9
Assembling 6800 programs 51
Basic, embedding in 49
Basic ROM addresses 45
Basic, writing source 48

Beginners Guide to 6809 43
Binary file (object code) 6

Binary numbers . 34
Blank line (as local

label delimiters) 18
Branch conditions 41
Branch immediate (BRA #) 24
Break key 6
BSZ pseudo-op 12
Checksums 27
Clear screen routine 46
Clock speed 47
CLEAR statement , 8
CLF, CLIF ‘ N 24

CLRC (clear checksum) 12,27
CLRD (clear D register) 24

Conditional assembly 16
Conditional return (?RTS) 25
Constants .33
Cross reference ' 7
CWORD 12,27
DCBUG monitor 8
Delay output 7
Dirett addressing 38
Direct Page Register 39
DISPLAY sample program 13,14 .
ELSE ' 17
Embeddlng Machine Language
in Basic Programs 49
END 11,25
ENDC (end conditional) 17
ENDM (end macro) : 19
EQU 11
Error halt 7
Error messages 39

Example programs: See
"Sample Programs"

Executing Machine :
Language programs 8

I NDEX

- 58 -

Expressions and Constants 33
EX-SCROLL sample program 50
EX-SQR sample program 32
Extra instructions 24
FAIL error 12,40
Fatal errors : 39
FCC, FCCS 12,23
FCB 12,22
FDB 12,23
FILES statement 8,10
Forward references ©35,40
Generate Sound routlne 46
.Graphics pages - 8
Halt on errors 7
Hexadecimal numbers 34
IFEQ, IFGT, ‘etc. 17
Immediate addressing mode 37
~— with BRA, TFR, etc 24
INCL (include files) 16
. —— with END statement 25
Input from keyboard 45
Input / Output 47
Instruction set summary 35
Invoking macros 19
Joystick input 45
---joystick buttons = 48
Keyboard input buffer 8
Keyboard scan routine 45
LEA examples 46
Line feeds to printer 9
LIST pseudo-op 13,25
‘Listing toa file w107
Listing to printer _ 9
Load Effective ‘Address = 46~
LOADM 8
Local labels 18
-~ in macros 21
Local Stack 28
Long branches 41
--Long Branch Warning 7
_LONGVR pseudo-op 35
Machine Language
Monitors (DCRUG)
Macros (MACR pseudo-op) 19
Macro .list control - T
Macro local labels 21
Macro parameters 20
Memory map 57
Memory overflow 40
Model of registers 56
MSG pseudo-aop 12
NAM 11

NEGD (Negate D register) 24

NLST pseudo-op 13,25
NOZER pseudo~op 12
Object Program 4,6
Octal numbers 34
01d Binary Deleted 6
Operations in expressions 34
Optional errors 40
Options 6,7
ORG (program origin) 11
Output to screen 44,45
Owner's Registration 5
PAGE pseudo-op 10,13
Page headers 10
Parameters of macros 20
Parentheses 33

PC Relative addressing 38,54
PEEK and POKE pseudo-ops 26

" Phasing error 39
Poll Keyboard routine 45
Position Independent

Code (P.I.C.) 53
Printer 9
Program errors 40
Programmer's Model

of the 6809 56
Programming (beginning) 43
Programming the Assembler 28
Pseudo-ops 11
PULS immediate 24
RAM addresses 57
Read line routine 45
Register Model of 6809 56
Registration Form info 5
REORG 26

- RESET instruction 24
Reverse scroll example 49
RHF instruction 24
RMB 11
ROM Routine Addresses 45
?RTS (Conditional return) 25
Running the Assembler 6
Sample Programs:

BLKWHT 31

DISPLAY 14

EX-SCROLL 50

EX-SOR 29

TEXTOUT 32

 TOWERS 30
Screen Code 23,42
SEF, SEIF 24
Serial I/0O lines 47

- 50 -

SET 18
SETDP 11,39
Shifting (in expressions) 33
Short vs. Long Addressing 38

Sine table generation 48
Single step listing) 6
6800 opcodes 51,52
Skeleton of macros 19
Slow down & speed up 6
Software License 4
Sound generation routine 46

~— sawtooth example 48
Source Listing 4,7

-- to printer - 9
Source Program 4,6
Spacebar control - 6
SPC pseudo-op 13
Square root program ’ 32
Stack frame example 26
Stack, local 28
Suppressing listing 13,25
Symbols 35
Symbol table : 7
TEXTOUT sample program 31
TFR immediate 24
Timing loops 46
Towers (example program) 29
Transfer address ' 25
TSTD (test D register) 24
Update Service 5
Use of the D. P. Register 39
User error message 40
USRn statement 9,49
Warning on LBRA's 7
Warranty 4
Writing Source in Basic 48
X-reference 7
Zero byte error 7,40
6800 opcodes 51,52

