TABLE OF CONTENTS

page

INTRODUCTION’.......l.'....l..ll...I...I....Il.. 1

OPERATION

DISK 'EEEEEEREEE RN NN NI NI B A SR B I B B R B A B B B 2a
TAPE ...-..l.-.........'.'....l...‘l.....‘........ 3a

LIMITATIONS "EEEREEEEE N E NN NN N B A B S I B B R B R N R IR R B 4

GRAPHICS COMMANDS
'INIT' COLOR 2 8 8 0 8 00 O P F S BT OSSN R e 5
SCREEN' CLR' PLOT' UNPLOT ® 5 8 8 08 0P S eSS OO NSO EDN PSS 6
PAINT' POSITION ® 0 0 0 8 " O PO B NS S eSS 7
TExT, WRITE ® S 5 6 00 0 00 B0 OSSNSO E S SN NEEEESESEE s 8
SREAD, DASH, POLYGON .ccccescccscccscssasssccssses 9
CIRCLE' PIE' STORE L LI B B B B B B B BB DK BN B B BN BN B BY BE BN NN 10
RETRIEVE r DRAW S0 e S PO SEEIOESISIRBSISESTIDIREOIEOETRTES . . ® o o0 000 1 1
BLANK I NOBLANK r DUMP ® 8 89860 ¢ 00T SeSESISITPERERSBERERNSES 1 3

WINDOW ® 8 & 0 8 00 00T OSSOSO NS SE eSS 14

THREE - D COMMANDS ® & & 58 008 8000000 S N eSS I-. L A 15
DISPLAY ® 8 0 9 " 0 S F PO PP eSS YT eSO 16
ROTATEX, ROTATEY, ROTATEZ, STRETCH-¢essecossevees 17

SOUND COWANDS ® 9 8 & S 0 O SO0 S0 SRR SE OSSR e 18
SOUND' DUTY LB B L BN B B B B BN BN O R BN B B DR BN B I I B IR B B R N N B BN) 18
EFFECT r I-{-ARMONY r STA'RIC L B I R I I B B B B I B B B I I I B .1 9
SIRENUP, SIRENDOWN, STEREO eccsececcsscsosssssses 20

SPRITE HANDLING COMMANDS .ceceececcccccccssccsscnsscas 21
SMALL, LARGE, ZOOM, NOZOOM s.ceecccocccccccsceses 22
CREATE' DEFPAT' UNPAT LR N A I R I R N I I I A A 23
ASSIGN' SCOLOR; MOVE e s s c e e ssL s LN BIRERIRIROEEES 24
MREL' PLACE' ERASE S0 0P O P CPBII PRI IEIERIROIEOIEOEOEOIOEONSIPEOPRREBTES 25
VELOC, CLRVELOC, PAUSE etceeesceseccsssosnsasccsee 26
NOPAUSE, LEFT, NORMAL ...cccecvsescsvsncncasscones 27
EXIT, SPRSAVE' SPRLOAD LA R O N N R 28

MISCELLANEOUS FUNCTIONS .ccccooocsasscsscscssssosssssss 29
&POINT, &JOYSTK ® 0 0 & 0 05 SO OSSPSR eSS 29
&PDL, &STRIG; &PTRIG S8 e s s eI PLIILIELEPITEEERIOIEOIEOERILOIEIEESETS 30
&SPRX, &SPRY, &SPRC, &SPRP .tvcecevcccsccoccnssssss 31
&UNCREATE, &COINCE, &FIFTH seseccccceccsnnssacease 32
&XVELOC' &YVELOC ® 0 60 00 E OO PLIEOLIOLEELEIPIOIEOEOIELEEOEOEBOEBRTTES 33

APPENDIXA ‘..l.-.............’......'...-UIICOC.IIUOICI‘ 34

page 1

INTRODUCTION

CHROMA BASIC is a new program for use with a CHROMAtrs
(T.M.) COLOR ADD-ON. Included in the CHROMA BASIC program
are many, easy-to-use, graphics commands that can either be
written into any Basic program or used independently. The
advantage of this is that graphics programs can be run and
the screen can be modified without rerunning the same
program.

CHROMA BASIC is a driver program for the CHROMAtrs
(T.M,) COLOR ADD-ON. CHROMA BASIC 1loads the required
information for the commands into the GQHROMAtrs (T.M.) COLOR
ADD-ON and interprets the graphics functions. These
functions make graphics programing much faster. Machine
language or peeks and pokes are no longer necessary when
using the CHROMAtrs (T.M.) COLOR ADD-ON.

CHROMA BASIC is compatable with most disk operation
systems and allows use of editor functions and all the usual
DOS capabilities with only a few restrictions. CHROMA'
BASIC's versatility and wide range of graphics commands will
be pleasing to anyone who owns a CHROMAtrs (T.M.) COLOR
ADD-ON,

page 2a

OPERATION

DISK:

Now that you have received your Chroma Basic disk BACK IT
UP at least twice. On the disk you received you will find the
following programs:

* CXXDISK/CMD - Chroma Basic.
* COLXX/CMD - The Color Driver.

DEMO/BAS - A demo program written in Basic using the
color driver. The color driver must be
loaded to use this program. (Instructions to
do this are in the CHROMAtrs users manual,)

MLOGO/BAS - A minilogo language containing a subset of
‘ LOGO commands. This is an updated version
written in Chroma Basic. Chroma Basic must
be loaded to use this program, ,
MLOGO/DMO - A demo program written in MLOGO. It can be
loaded through the recall function of MLOGO.
- MLOGO must be loaded to use this program.
UFO/BAS - A game program written in Chroma Basic.
Chroma Basic must be loaded to use this
program.,
HOUSE/BAS - A program written in Chroma Basic to
demonstrate the use of the DRAW command.
Chroma Basic must be loaded to use this
program.

* COLOR/ASM The commented source code of COLXX/CMD.

Now take a system DOS disk with normal disk Basic on it
and copy Chroma Basic (CXXDISK/CMD) onto it. The Chroma Basic
disk is so filled that normal disk Basic is NOT on it. You
will wuse the disk you just created to enter Chroma Basic, it
will be referred to from now on as the Chroma Basic disk.
(One drive TRSDOS customers you will not be able to make a
copy of CXXDISK/CMD, just go on to the TRSDOS procedure that
follows.)

Chroma Basic 1is compatible with the following disk
operating systems:

For the Model I: NEWDOS/80 2.0, TRSDOS 2.3, LDOS.
For the Model III: NEWDOS/80 2.0, TRSDOS 1.3, DOSPLUS 3.4,
LDOS.

* ~ XX should be substituted with 32 or 48, 32 for use with a
32K system and 48 for use with a 48K system.

page 2b

It is possible that Chroma Basic is compatible some disk
operating systems not listed. Chroma Basic can be entered
using the general procedure below. Following that are specific
procedures for entering Chroma Basic through various disk
operating systems.

1) Boot the Chroma Basic disk. _ _

2) Enter normal disk Basic with one of the following memory
sizes:

For a Model I with 32K use 36100.
For a Model III with 48K use 52100.
Note: This memory size may be varied by a few hundred
to allow Chroma Basic to work with a particular
DOS.
*3) Execute the file CXXDISK/CMD.

4) The Chroma Basic logo will appear on the screen
connected to the CHROMAtrs. When the READY prompt
appears on the TRS-80 screen Chroma Basic will be
entered.

TRSDOS:

1) Boot the Chroma Basic disk. l
(If you have one drive boot a TRSDOS system disk with
normal disk Basic on it.)

2) Type 'BASIC' and press ENTER.

3) When 'HOW MANY FILES?' appears press ENTER,

When 'MEMORY SIZE?' appears respond one of .the following
ways: -

If you have 32K type 36100 and press ENTER.

If you have 48K type 52100 and press ENTER. '

If you have a 48K Model IV type 50000 and press ENTER.

*4) Type 'CMD"I","CXXDISK"' and press ENTER.
(If you have one drive swap the Chroma Basic disk in the
- - drive before entering the command above.)

5) The Chroma Basic logo will appear on the screen
connected to the CHROMAtrs. When the READY prompt
appears on the TRS-80 screen Chroma Basic will be
entered. Now turn to page four of this manual.

(If you have one drive now swap the system disk back
into your drive.)

* - XX should be substituted with 32 or 48, 32 for use with a
32K system and 48 for use with a 48K system

page 2c

NEWDOS/80 2.0

1. Boot the Chroma Basic disk.
*2, Type 'BASIC ##i##,CMD"CXXDISK"' and press ENTER.
- .should be substituted with a memory size from
the chart below.
If you have 32K substitute 37200
If you have 48K substitute 52800
3. The Chroma Basic logo will appear on the screen
connected to the CHROMAtrs. When the READY prompt
appears on the TRS-80 screen Chroma Basic will be
entered. Now turn to page four of this manual.

Note: NEWDOS is not completely compatible with Chroma Basic.
The following limitations are invoked while wusing Chroma
Basic:

1) Do not enter mini-dos using 'DFG'.

2) Renumber does not work.

3) Renew does not work.

LDOS - the following procedure works on a 48K system but is
not completely compatible with LDOS 5.1.3, the TEXT
command of Chroma Basic will not work if the
extensions are used. Although the color can be set
by the COLOR command and a text magnification factor
may be poked into E522H.

1. Boot the Chroma Basic disk.

2. Type 'LOAD_,C48DISK/CMD' and press ENTER.

3. Type 'LBASEC (M=50000)' and press ENTER.

4. Type 'l10 DEFUSR=&HDS53F' and press ENTER.

Type '20 X=USR(0)' and press ENTER.
Type '30 CMD"R"' and press ENTER. (Model I only!)
Type 'RUN' and press ENTER.

5. The Chroma Basic logo will appear on the screen
connected to the CHROMAtrs. When the READY prompt
appears on the TRS-80 screen Chroma Basic will be
entered. Now turn to page four of this manual.

Note: The above Basic program may be saved on disk and then
run each time Chroma Basic is loaded.

* — XX should be substituted with 32 or 48, 32 for use with a
32K system and 48 for use with a 48K system.

page 3a

OPERATION

—— ——————— -

TAPE:

On the tape you received you will find the following
programs:

SIDE A - Chroma Basic - Chroma Basic. (ONLY ONE COPY!)
SIDE B - UFO - A game program written in Chroma
Basic. Chroma Basic must be loaded
® to use this program. (Not included
on 16K cassette.)

The following steps will allow you to enter Chroma Basic.,

1) Turn on the computer.

(If you have a Model III When 'Cass?' appears type 'L!

to set the baud rate to 500.)
When 'MEMORY SIZE?' type in one of the following
numbers:
21698 - For a 16K Model 1I.
21394 - For a 16K Model III.
36100 - For a 32K TRS-80. (Model I or III)
52100 - For a 48K TRS-80. (Model I or III)

Afterwards press ENTER. A

2) Place the tape in the tape recorder, rewind it, and
press play. -

3) Type 'SYSTEM' and press ENTER.

4) When '*?' appears type one of the following:

'Cl6CS1l' - For a 16K Model I.

'Cl6CsS3' - For a 16K Model III.

'C32CAS' - For a 32K TRS-80. (Model I or III)
'C48CAS' - For a 48K TRS-80. (Model I or III)

Afterwards press ENTER.

(Note: Two stars should appear in the upper right hand
corner of the screen. The right most one
should flash on and off. If it does not flash
make sure you have typed in the right 'C' name
from the chart above.)

5) After about three minutes '*?' should appear again.
When it does type '/' and press ENTER. The Chroma Basic
logo should appear on-the screen connected to the
CHROMAtrs. When the READY prompt appears on the TRS-80
screen Chroma Basic will be entered. Now turn to - page
four of this manual.

Notes

payge 3b

If '*?' never appears a scoond finme try sdjusting the
volume of the tape recorder, wike sare the cables are
in properly, and TRY THE PRECEDING PROCEDURE A SECOND
TIME., Only if all else fails 111 us.

page 4

By now Chroma Basic will have been ioaded, The READY
prompt should have appeared and everyday Basie programs can be
run as usual (if you didn't know any better you might not
realize Chroma Basic had been loaded.) However, 68 commands
have now been added to Basic that facilitate easy control of
the CHROMAtrs color add-on. The following pages contain an
overview of Chroma Basic's commands.

LIMITATIONS:

Although normal Basic will operate there are some
limitations that must be kept in mind while using
Chroma Basic.

1) Never exit to DOS and then reexecute Chroma Basic
unless the Exit command is used.

2) Never do a CMD "s",

3) Never enter the edit mode by the ', single-character
command.

4) Never use the 'A' command in the edit mode. If you
need to do this, quit with the 'Q' command and reenter
with 'E'. All other edit functions can be used with
Chroma Basic.

5) Chroma Basic loads .into high memory. This should be
considered with use with DOS.

6) Certain enhancements to the Model I1I1 do not work.

7) The 16K cassette Model I version of Chroma Basic does
not include any commarfids dealing with sprite velocities
because of a lack of interrupts.

8) The 16K cassette and 32K diskette versions do not
include 3D commands because of a lack of memory.

9) NEWDOS/80 2.0 is not completely compatible with Chroma
Basic - see page 2c.

10) LDOS 5.1.3 is not completely compatible with Chroma
Basic - see page 2c.

page 5

GRAPHICS COMMANDS

—— —————— —— ————— — -

INIT

INIT will reinitialize the CHROMAtrs(T.M.) COLOR
ADD-ON. It clears the screen and backdrop color to
transparent, sets the last plotted location to (0,0), clears
the automatic velocity table, sets LARGE, NOZOOM,
reinitializes the graphics mode, etc. (i.e. 1t returns to
the power-up condition.

INIT n

n is a number (0 or 1) that determines the graphics
mode. When n is O the CHROMAtrs (T.M.) COLOR ADD-ON is in
multi-color mode - a 64x48 Dblock matrix. When n = 1 the
CHROMAtrs is initialized for Graphics II mode - a 256x192
pixel matrix.

INIT 1
Presets the CHROMAtrs(T.M.) COLOR ~DD-ON in Graphics II
mode.

Color changes the current foreground and background
colors.

COLOR f (,b)

f is the foreground color (0-15) and b is the optional
background color (0-15). If ‘(,b) is not specified, the old
background color is used. Colors used in this command must
always be entered as decimal numbers (Items in () are
optional).

COLOR 5,6 _

Sets the foreground color to 1light Dblue and the
background color to dark red. The color will appear as an
8-bit code that will ocasionally bleed into the points next’
to those plotted. This 1is a limitation of the video
processor chip and cannot be overcome.

page 6

SCREEN

————— -

SCREEN is wused to change the color of the backdrop
plane.

SCREEN c
c is the desired color of the backdrop plane (0-15).

SCREEN 8
This will set the screen to medium red.

CLR

CLR will clear the screen to the current background
color.

CLR
If the background color had been set to 8 previously,
then the screen would be cleared to medium red.

PLOT and UNPLOT

PLOT and UNPLOT are used to draw and erase lines and
points. '

(UN) PLOT x,y - Set (or reset) the given point. PLOT will
change the color of the "sliver", while UNPLOT only resets
the bit.

(UN) PLOT x,y TO a,b - Draw (or erase) a line from X,y to
a,b. . '

(UN) PLOT TO x,y - Draw (or erase) a line from the last
plotted point to x,y.

The above formats may be chained. For example:

pLOT 0,0,10,10 will plot two points, (0,0) and (10,10). .
pLOT 0,0 TO 225,0 TO 255,191 TO 0,191 TO 0,0 will draw a box
around the screen. :

page 7

PAINT will fill ANY closed figure, no matter how
irregular, with a color. 1In graphics mode II the painting
will stop at any SET point, no matter what color that point
is. ‘

PAINT x,Yy.C

X,Y is the starting coordinate of the paint.

c is the color to paint to. This 1is only used in the
multi-color mode. In the graphics II mode c is a dummy
variable. The painting will stop at the first 1it pixel in
graphics mode II.

PAINT 100,100,8

In the graphics II mode, this statement will paint
around the point (100,100) until it reaches a pixel that is
set. In other words, if (100,100) was the center of a
circle the paint statement would color the circle. In the
multi-color mode this command would paint on the screen
until a medium red (8) color 1is encountered. The paint
command, in multi-color mode send an 4x4 pixel block to the
screen. This occasionally causes the painted color to bleed
over some of the 1lines of the figure. Graphics mode II
only.(See COLOR).

POSITION

POSITION is used to position the invisible text cursor.
This location will be used to define the upper-left corner
of the next character to be displayed.

POSITION X,y

X is the x-coordinate
Y is the y-coordinate

POSITION 10,10 o _
10,10 is the coordinate for the upper-left hand corner
of the next character to be displayed.

page 8

TEXT

TEXT is used to place letters, numbers, and symbols on
the pattern plane. The starting posistion is determined by
POSITION. :

TEXT x$ (,c (,x size (,y size)))

x$ is the string to be printed. It may be a literal,
string expression, or variable.

c is the optional FOREGROUND color, If it is not
specified, the current color will be used.

x size

and

y size
are the optional scaling factor for each dot plotted.
These default to 1. If they arc specified, then c must
also be specified.

TEXT "THIS IS A TkEsT",9,2,2

The messlage THIS IS A TEST will be sent to the screen
in the <color of light red, and magnified by 2. Care must
be taken when displaying text. 1f any pixels are sent past
the screen an overflow message will occur and the pgogram
will "bomb out". '

WRITE will save the entire pattern plane onto a disk
file. The sprite patterns and locations will not be saved.
The backdrop color will, however, be saved. The screen is
saved in a compressed format.

WRITE "FILENAME" :

FILENAME is a string containing the name of the file in
standard DOS format. :

page 9

SREAD will 1load the entirc pattern plane from disk.
The backdrop color will be restored.

SREAD.-"FILENAME"

FILENAME is a string containing the name of the file in
standard DOS format.

DASH

———

DASH will cause all lines drawn from then on (PLOT, 3-D
rotation, circles, polygons, etc.) to be dashed by a certain
ratio.

DASH x,y

X is the number of ON pixels
y is the number of OFF pixels
If either x or y is zero then the dashing is cancelled,

DASH 3,2
For every three pixels drawn the next two will be
skipped.

POLYGON

POLYGON will draw a polygon with the number of sides
specified, at the place specified, and at the angle
specified. The polygon will be drawn in the current color.

POLYGON c,x,Y,xr,yr,s(,a(,n))

c is O for drawing, 1 for erasing,

X and y are the coordinates for the center points,

xr and yr are the x and y radii,

s is the number of sides (2 is less than or equal to s
which is less than or equal to 89Y),

a is the optional starting angle (in DEGREES),

n is the optional number of lines to be drawn (1 is less
than or equal to n which is less than or equal to s),.
When n is specified only n sides of the polygon will be
drawn.(Note when n is specified a must also be specified.

POLYGON 0,100,100,30,30,8
This statement draws an octagon (8-sided polygon)
around the point (100,100) at a distance of 30 pixels.

page 10

CIRCLE

-—— —— — -

CIRCLE will draw a circle or oval. The parameters for
circle are almost the same as polygon with the exception of
s,a, and n which are ommitted for obvious reasons.

CIRCLE c,z,Y.xr,yr(,b,e)

see POLYGON for parameters except (,b,e).

b is the beginning angle (in degrees) of the arc,
e is the ending angle (in degrees) for the arc.

CIRCLE 0,60,70,40,40

When this circle statement is executed a circle will be
drawn with the point (60,70) as the center and a radius of
40 pixels.

PIE

This command combines line drawing with arc drawing.
It will draw the arc, and then connect the ends of the arc
to the center point of the arc with two lines, thus forming
a "pie slice."

PIE s,X,Y,Xr,yr,b,e
See CIRCLE above.

PIE 0,60,70,40,40,0,180
This will create a semicircle (half the circle created
in the circle example).

STORE is wused to save a block of pixels in an integer
array. This command can only be used in graphics II mode.
‘Care must be taken when dimensioning the array or errors
‘will occur.

STORE X1,Y1 TO X2,Y2,A%(0)

X1,Yl" are the coordinates of one corner of the block

X2,Y2 are the coordinates of the opposite corner

A%(0) is an integer array subcriated zero. It must be
dimensioned to the absolute value of
(X2-X1+1)*(Y2-Y1+1l)/16,

page 11

STORE 10,10 to 30,30,A%(0) i

This command will take the pixels inside the rectangle
defined by the points (10,10),(10,30),(30,10),(30,30) and
store them in the array A%. A% must have been previously
dimensioned to 55 in the program.

RETRIEVE

—— — — — — - —

RETRIEVE 1is used to restore a block of pixels that was
stored by the STORE command (see above). If the width and
height of the block of pixels is different, the results will
not be those expected. GR II only.

RETRIEVE xl1, yl TO x2,y2,a% (0)
See STORE above.

RETRIEVE 100,100 TO 120,120,A%(0)

The rectangle defined by (100,100) , (100,120) ,
(120,100) , (20,120) will be filled by the pixel block that
was previously stored in array A%(0).

DRAW

The DRAW command will draw, scale, and rotate any
figure on the screen that is being created with the draw
command.

DRAW x$

where x$ contains:

Mx,y - move to X,y location .

Ux, Dx, Rx, Lx, Ex, Fx, Gx, Hx - draw in the corresponding
direction X units according to this direction chart:

H
L

|

G

Uu '-c

page 12

Ax - rotate every movement from now on x degrees glockwise.
Tx - rotate every movement x degrees clockwise until
cancelled (T0) or until the end of the DRAW string
(temporary rotation). The actual direction that will
be drawn in is the direction (U,R, etc.) plus the
offset of the A parameter PLUS the offset of the T
parameter,
N - don't update next line. The line will be drawn, but
the next position to draw at will remain the same.
B - don't draw. The next movement will not draw, but only
move the ‘graphics cursor.
Zx = change drawing mode: O=set points, l=reset points,
Ccx,Y - set foreground/background color: x=foreground,
y=background.
} - separator for multiple commands.

The N and B commands are not to have a semicolon
separating them from the respective commands that they are
being used with. (See the sample program below.)

To help with the draw command a small sample program is
included here. Type this program in and run it to see how the
draw command works. (It is included on disk, named HOUSE/BAS.)

SAMPLE PROGRAM
10 CLEAR 500
20 INIT 1
30 COLOR 10
40 REM DRAW THE SUN
50 CIRCLE 0,30,20,10,10
60 PAINT 30,20,10
70 A% = "3;NU20;NE20;NR203NF20;ND20;NG20;NL203NH20"
80 DRAW "M30,20;C10,0"+A$
90 DRAW "M30,20;A22"+AS%
100 REM DRAW THE HOUSE
110 DRAW “MlOO,140;C12,0;AO;U60;E4U;F40;NL54;D60;L22;U20;L10;
D20;NR11;L22"
120 CIRCLE 0,129,132,2,2
130 PAINT 129,132,12
140 REM DRAW THE WINDOWS
150 A$ = ";UB83;R14;D8;L14;BR7;U8;1BD4;R7;1,14"
160 DRAW "M104,130"+A%
170 DRAW "M136,130"+A$
180 DRAW "M136,110"+A%$
190 DRAW "M104,110"+A$
200 PAINT 124,90,12
210 REM PAINT THE HOUSE
220 COLOR 5
230 PAINT 101,139,5
240: REM DRAW AND PAINT THE CHIMNLY
250 DRAW "M148,89;C6,0;U20;L12;D9"
260 PAINT 146,85,6
270 END

page 13

This command blanks the ontire display with the
exception of the background color without erasing the
CHROMAtrs' (T.M.) COLOR ADD-ON memory.

BLANK
Clears the screen and leaves Lhe memory intact.

———— ———

This command will restore the CHROMAtrs' screen to its
previous contents

NOBLANK

If the . screen was filled with stars before the BLANK
command it will again be filled with stars after the NOBLANK
command.

DUMP

DUMP will take the entire Graphics §II or multi-color
plane and dump it to “any Epson MX-70, MX-80, or MX-100
equipped with GRaftrax-80 or Graftrax-Plus. The resulting
picture is approximately 16 ocm by 14 cm, with each pixel
being represented by a 3 x 2 block of dots, with their
density depending upon the color of the pixel. Sprites are
not printed.

DUMP
Do not dump without a line printer and Graftrax-80 of

Graftrax Plus because the routine is not error protected,
To abort the dump press the BREAK koy.

page 14

WINDOW

WINDOW is used to 1limit all pixel plotting to a certain
window. Depending upon the opiton selected, all pixels
plotted will be within (or outside of) a specified box. All
pixels inside (or outside) of this box will be completely.
ignored. (unless they are plgtted past the screen).

WINDOW x1,yl TO x2,y2,m

x1, yl is the coordinate of the upper-left corner of the box
x2,y2 is the coordinate of the lower-right corner. O is the
option m: 0 - draw only inside, 1 - draw only outside.

WINDOW 10,10 TO 150,150,0

The: execution of this statement will only allow
graphics to be drawn within the square window defined by the:
points (10,10),(10,150),(150,10),(150,150).

page 15

THREE-D COMMANDS

————— - - ——— — — —

These CHROMA BASIC commands will manipulate and/or
display three dimensional objects. A very rigid set of
rules must be followed to use these commands. A few changes
have been made in the accepted manner of representing three
dimensional figures for ease and speed of programming and
running the CHROMA BASIC driver.

The three dimensional figure is stored in two arrays.
The first array must be a single precision array dimensioned
(n-1,2), where n 1is the number of*vertices in the figure.
(0 counts as a subscript, hence there will be enough room to
store the coordinates of every vertex).

. The second array must be an integer array and must also
be subscripted (m-1,1), where m is the number of lines in
the figure. The subscript of 1 is to allow for two numbers

(the two vertices that are connected). Every pair of
numbers read into the array will determine -which set of
vertices are connected by lines, The vertex number is

determined by the first subscript of the single precision
array.

Take for ixample this square represented in three
dimensions:
(0'-10,-10) a (0,-10'10)

. +
: 0 1 :
b : =

: 3 2 :

tom————— - e e o o e +
Note that the numbers 1in parentheses are the three
dimensional coordinates. The first coordinate in this
representation 1is always 0 since a sguare has no depth.
WARNING! . The coordinate system has been shifted for
efficiency in programming. Remember that the first

coordinate is depth, the second is height, and the third is
width. In other words the coordinates look like (2Z,y,x).

The numbers 0-3 are the vertéx numbers (note that they
start at zero). a-d are the lines connecting the vertices.
To set this up the following must be taken care of:

page 16

First, the single precision array must be arranged. For
this . example the array is A(x,x). The A array is
dimensioned A(3,2) for 4 vertices with 3 coordinates -each.
Next the second array must be initialized. In this example
the integer array will be B%(x,x) and this must be
dimensioned B%(3,1) for 4 lines connecting two points for
each line.

Now the arrays are set up as follows:

VERTEX X H Y : Z ! CONNECTION: 1st : 2nd
NUMBER : DEPTH :HEIGHT : WIDTH ! ., NUMBER ¢VERTEX :VERTEX
i +—+ 35+ 3+t + -+ 3+ 3+ 4+ -+ 3+ 4+t 1+ 3+ +—+—+-+ 53 3 13+ 13

X H A(X,U):A(X,l) IA(X,Z) ! Y SB%(Y'O)iB%(Y,].)
______________________________ | e e

0 t 0 : =10 ¢ =10 ! 0 t 0 : 1

1 : 0 t =10 1@ 10 ! 1 H 1 : 2

2 : 0 H 10 10 ! 2 : 2 : 3

3 3 0 : 10 : -10 ! 3 : 3 : 0

Here 1is a small program to set up these arrays and
display the square.

10 INIT 1: SCREEN 5: COLOR 6

20 DIMA(3,2),B%(3,1)

30 FOR X = 0 TO 3:FOR Y = 0 TO 2:

- .READA(X,Y) :NEXTY,X

40 FOR X = 0 TO 3:FOR Y = 0 TO 1:
READB%(X,Y) :NEXTY,X

50 DATA 0'-'10'-10,0p—10; 10;0; 10; 10;0; 10"'10

60 DATA O0,1,1,2,2,3,3,0

70 DISPLAY A(0,0),1,B%(0,0),128,96

80 END :

Note: see appendix a for another sample 3-D programnm,

DISPLAY

The small program above illustrates the DISPLAY
command. This command places the three dimensional figure on
the screen at the position specified in the command. The
command format is:

DISPLAY arraya(0,0),scale#arrayi(o,o),x,y where

arraya is the single precision array holding the vertex
coordinates (it must be subscripted (0,0)).

scale is the scaling factor for displaying the figure
(O - infinity). The scale must, however, be
small enough so that the figure can be drawn
within the boundary of the screen. If not an
error message will occur.

arrayi 1is the integer array of vertex connections.

X,y the center point for the figure.

page 17

ROTATEX array(0,0),degrees
ROTATEY array(0,0),degrees
ROTATEZ array(0,0),degrees

The three rotate commands all perform close to the same
functions. First they all rotate the three dimensional
figure around a specified axis, and second they all have the
same parameters. In all three rotate commands the parameters

aret

array(0,0) which is the single precision array

degrees the amount of degrees rotation given as an
integer.
ROTATEX will rotate the three-d figure around the

x-axis. REMEMBER that the X-axis in CHROMA
BASIC is depth.

ROTATEY will rotate the three-d figure around the
Y-axis. The Y-axis is height in CHROMA BASIC.

ROTATEZ This will rotate the three-d figure around the
- Z=axis which in CHROMA BASIC is width.
4

REMEMBER in CHROMA BASIC the (x,y,z) coordinate system
is adjusted to be (z,y,x).

STRETCH

—— ————

The stretch command stretches a figure by the factor

put in the command. The array can be magnified by any
amount along the x,y,z axes.

STRETCH array(0,0),x,y,z

array is the single precision array.

X:Y,2Z are the magnification factors. They must have a
decimal point with at least one digit following
them or else the stretch will not work properly.

page 18

SOUND COMMANDS

For all of the folowing, v is the volume (0-31), d is
the duration (0-65535, with 32768-65535 being expressed as
the negative numbers -32768 to -1), and p and q are pitches
(0-255, with 0 used as 256. Note that 1 is the highest and O
(256) is the lowest).

The interrupts are disabled for the sound commands.
This means that time is taken away from the central
processor to run the sound commands, and therefore all
sprite movement is halted for the duration of the reSpect}ve
sounds. Most sound commands may be aborted by pressing
(BREAK).

Sound is used to create a pure tone.
SOUND p, d, Vv

This small program will quickly play each pitch and
print the pitch number on the terminal screen.

10 FOR X = 0 TO 255
20 PRINT Xj" "¢

30 SOUND X,100,20
40 NEXT

50 END

DUTY

— ———

DUTY is used to produce sounds of varying tone quality.
This is accomplished by changing the duty cycle of the
waveform produced.

DUTY p,q.,d,v
(see the first paragraph of sound commands,)

The actual tone produced will have a frequency of (P+Q)/2. d
is the duration for the first half of the wave, and Q is the
duration for the second half.

DUTY 100,121,1000,20
This will produce a sound unlike anything the SOUND

page 19

EFFECT

EFFECT is used to output two tones at once.

EFFECT p,q,d,v
(see the first paragraph of sound commands)

The duration of this sound must be much higher than the
other durations above. This is because the duration here
does not specify the number of wave periods that reach the
speaker, but instead specifies the actual number of machine
language cycles used to produce the sound.

This will output the tones 10 and 200 to the TV/monitor
for the greatest amount of time and volume as possible.

HARMONY

HARMONY is almost the same as EFFECT, except that the
pitch is lower and has a different tone cuality.

HARMONY p,q,d,v
See EFFECT.

HARMONY 10,200,-1,31

This will give the same duration of the sound as the
EFFECT command with a 1lower tone. Execute this 1little
program to compare the two sounds.

20 FOR X =1 TO 100: NEXT X
30 HARMONY 10,200,-1,31
40 END '

STATIC

Static is used to generate static. This is the only
sound command that does not turn off the interrupts.

STATIC p,d,V

STATIC 100,2000,31
Just plain static.

page 2C

SIRENUP AND SIRENDOWN

SIRENUP and SIRENDOWN will produce an up or . down
siren.

SIRENUP v (,d (,start (,end)))
SIRENDOWN v (,d (,start (,end)))

d is the duration of EACH tone produced.
It defaults to 1.

SIRENUP will normally produce tones starting at 255 and
ending at 1.

SIRENDOWN will produce tones starting at 1 and ending 255.

When (,start) is specified the (255) SIRENUP or (1)
SIRENDOWN is changed to the value specified. If start is
specified, (,d) must be specified. When end is specified
the (1) SIRENUP OR (255) SIRENDOWN is changed to the value
specified. If end is specified, then, (start) and (,d) must
also be specified.

SIRENUP and
SIRENDOWN

Use this small program for a demonstration of these two
commands.

10 SIRENUP 31,7
20 SIRENDOWN 31,7
30 END

STEREO

STEREO will output two tones simultaneously - one to
the TV/MONITOR speaker, and the other to the amplifier -
connected to the cassette port.

STEREO p,q,d,Vv

p is the pitch for the amplifier
q is the pitch for the TV/MONITOR

STEREO 10,200,10000,31

If you have some amplifier connected to the cassette
port this command will send a tone similar to SOUND
10,10000,31 to the amplifier and a tone similar to SOUND
200,10000,31 to the TV/MONITOR.

page 21

SPRITE HANDLING COMMANDS

- —

For all of the following commands, p 1is a sprite
pattern number (0-63), s is a sprite number (0-31), and c is
a color (0-15).

A sprite pattern, as referred to above, is a constant
Bx8 or 16x16 pixel mapping of a bit pattern. A sprite
consists of binary ones and zeros that, for an 8x8 sprite,
look like:

BINARY = HEXEDECIMAL
00001000 = 08
00001100 = oc
00001110 = OE
11111111 = FF
11111111 = FF
00001110 = OE
00001100 = oc
00001000 = 08

The ones above represent the "on" pixels for the sprite
to be created. A group of 8 Dbinary digits are taken
together as two hexedecimal digits té form one of the eight
lines of the sprite. The hexedecimal digits for the above
sprite are (OBOCOEFFFFOEOCOBJ and the sprite created by
these digits is a right arrow.

A 16x16 sprite consists of four 8x8 sprite patterns
(represented as I - IV below) set up like:

To make a 16x16 sprite the four patterns should be read
in from I to IV in numerical succession. To make a 16x16
sprite that has on the first row a right-arrow (sprite I)
p01nt1ng to a left-arrow (sprlte III) and the second arrow a
right arrow (sprite II) pointing to a left arrow (sprite IV)
this pattern should be read in:
(780COEFFFFOEOC0O8080COEFFOEOCOS8 :
8OCOEOFFFFEOCBOBOCOEOFFFFEOCOB).

page 22

Set up the 8 x 8 sprite modée. The sprite sizes (SMALL
and LARGE) are universal and effect all sprites
immediately.

SMALL :
Sets sprites to small (8x8).

Set up the 16 x 16 sprite mode.

LARGE
Sets sprites to large (16x16).

Z00M

“——— —

Cause all of the sprites to be magnified by a factor of
four (8x8 sprites become 16x16, 16x16 sprites become 32
x32). The sprite magnification modes (Z00M and NOZOOM)
effect all sprites immediately.

Z00M
Enlarges all the sprites.

NOZOOM

Return all sprites to their original size (8x8 or
l6x16).

NOZOOM
Shrinks all the sprites.

page 23

CREATE

-———— - —

CREATE is used to define a sprite pattern.

CREATE ,pl x$' L)
x$ is a string of either 16 or 64 hex character

(depending on whether you are in the 8x8 or

16 x 16 sprite mode) that defines the sprite.
Each hex character defines one four-pixel wide
area of the sprite.

In CREATE and all of the following commands that have
", .." after them, the command may be replicated. For
examples

CREATE 0, "FFFFFFFFFFFFFFFF",1, "0000000000000000" will
define two patterns. 0 and 1.

DEFPAT

DEPPAT is used to define a sprite pattern from an
integer array.

DEFPAT p,a%(0) ...

a%(0) i% a zero-subscripted integer array consisting of
integer numbers from evaluated hexedecimal pixel codes. The
array must be dimensisoned at least (7) for 8x8 sprites and
at least (31) for 16x16 sprites. For example:

DEFPAT 5,G%(0)
This will assign the pattern in G%(0), if it is set up
correctly, to the sprite pattern number 5.

—— — ——

UNPAT will copy a sprite pattcern into an integer array.
It is the exact opposite of DEFPAT.

UNPAT p, a%(0) ...
See DEFPAT.

UNPAT 5,A%(0)
If the array is dimensioned properly (either 7 or
31), sprite 5 will be stored in array A%(0).

page 24

ASSIGN

————— -

ASSIGN is used to assign a sprite pattern to a sprite,.
ASSIGN p TO s (,C)...

If the sprite color, (c), is specified, then the sprite will
become that color. 1If it is not specified, then the sprite
will retain its old color. The sprite will always maintain
its old position.

In order to replicate the ASSIGN command with no (,c)
specified, an extra comma must be included to differentiate
the (,c) parameter from the next pattern number. For
examplet

ASSIGN 6 TO 2,5,8 TO 23,,10 To O

This will take the sprite pattern 6 and assign it to
sprite number 2 and the color will be color number 5. The
second section will assign the pattern number 8 to sprite
number 23, no color is specified for this sprite. The last
sprite definition also sets no color for the sprite.
Pattern number 10 will be assigned to sprite number 0.

SCOLOR

SCOLOR is used to change the color of a sprite.
SCOLOR 8,C ...

s is the sprite number
c is the color the sprite will become.

SCOLOR 8,6
This will give sprite number 8 a color of dark red.

MOVE

—— ——

MOVE is used to move a sprite.
MOVE 8 TO X;Y +..

X,y are the coordinates of the upper-left hand point of
the sprite.

MOVE 5 TO 100,100
This would place the spritc with its upper left-hand
corner at the point (100,100).

page 25

MREL

MREL is used to relatively move a sprite,
MREL s, x offset, y offset...

x offset and y offset are the numbers that will be added to
the x and y coordinates of the sprite., They are in the
range (-255 to 255).

MREL 5,20,20
Calculating from the previous example, the upper
left-hand corner of sprite 5 will be at 120,120.

PLACE will copy a sprite from its current x,y location
into the pattern. The sprite will be copied dot by dot,
taking into account LARGE or SMALL and ZOOM or NOZOOM. The
copy will be the same color as the original sprite. The
sprite is not changed in any way. GR II only.

PLACE s
s is the sprite number.

PLACE 5 ‘
Places sprite 5 on the multi-color plane.

Erase will clear all of the sprite patterns to zero,
and move all sprites off the screen.

ERASE
Clears all sprites from the screen.

page 26

VELOC 1is used to set the velocity of a sprite. The
sprite will be moved automatically at this velocity by the
real time clock interrupts. Any number of sprites can have
velocities. The sprites will all be moved simultaneously
except under the following circumstances (when all sprite
movement will halt):

1) During the execution of most CHROMA BASIC sound
commands (with the exception of STATIC).

2) When the interrupts are turned off (Model I CMD"T").

3) Whenever a disk drive's motor is on (this is to
speed up disk access).

4) Whenever a PAUSE command is in effect.

5) When at Basic READY.

6) During the execution of many CHROMA BASIC commands.

VELOC Sy X; Y ese

x and y are the x and y velocities MULTIPLIED BY 256. Thus,
to make a sprite move one pixel every interrupt (40 times
per second), you would specify a velocity of 256, To make
itB move one half pixel every interrrupt, you would specify
128.

VELOC 5,256,0
Sprite 5 will now move at a horizontal velocity of 256
(40 pixels per second.)

CLRVELOC

CLRVELOC will set the velocity .of all sprites to 0,0.

CLRVELOC

PAUSE

. PAUSE will temporarily suspend movement of all sprites
until a NOPAUSE command is executed. The interrupts, and
sound commands, etc. are not affected.

page 27

NOPAUSE

NOPAUSE will cause a resumption of sprite movement.

NOPAUSE
The sprites will begin halt movement again.

LEFT

LEFT will set the bit in the sprite attribute table that
causes a sprite to be displayed 32 pixels to the left of its
actual posistion. This can be used to slide a sprite in
from the left side of the screen. To compensate for this
move, the sprite's x coordinate is incremented by 32. Thus,
the sprite appears not to move, This movement is also
transparent to the program because the MOVE and &SPRX
commands compensate for this (the &SPRX command may return a
negative number -32 to -1). However, the sprite can no
longer slide off the right side of the screen (it wraps
around at physical position 224).

LEFT n
n is the number of the sprite (0-31)

LEFT 5

This will cause sprite 5 to disappear at x-coordinate
224 and reappear at x-coordinate 0 once it has reached that
position.

NORMAL will reverse the effect of LEFT (see above). It
resets the bit, and decrements the x coordinate by 32, again
with no visible effect in the program.

NORMAL n
n is the sprite number (0-31)
NORMAL 5

Normal 5 will reset sprite 5 so that it wraps around at
x-coordinate 255.

page 28

EXIT

CHROMA BASIC's sprite handling commands are
automatically processed. This comand will restore the
normal . interrupt vector table and allow the processor to
accept 'interrupts and process them faster. (i.e. the

keyboard wil return to normal speed.) The computer may also
crash if a high-memory routine is executed.

EXIT

This command wil ask for verfication. The sprites will
stop moving, and your TRS-80 will return to the Disk
Operating System.

SPRSAVE

SPRSAVE is used to save all sprite patterns,
attributes, and size information onto a disk file.

SPRSAVE x$
x$ is the fileane in standard DOS format,

SPRSAVE "SPRITE"
Saves all the sprites on the screen in the file
SPRITE.

SPRLOAD

———— —— —

SPRLOAD is used to restore the sprites saved on a disk
file with the SPRSAVE command. The size and zoom switches
are restored.

SPRLOAD 'x$, p

X$ is the filename in standard DOS format.

P is the 1loading option:. if p = 0, then the sprite's
y-coordinate will be set to 192 (off the screen). If p is 1
the sprites will be 1loaded on the screen where they were
when they were saved.

page 29

MISCELLANEOUS FUNCTIONS

- — — S S — S — ———— -

The following function must be used on the RIGHT side of an
equation,

For example:

A=&POINT (0,0)
PRINT &SPRX (0)

&POINT

POINT will return the on/off status of a graphics
pixel. The value returned will be -1 if the pixel is off, or
the color (0-15) if the pixgl is on.

&POINT (x,y)
X,y are the coordinates of the pixel to be tested.

Z = &POINT(100,100)
If point (100,100) is on then, &POINT will return the
color (0-15) and if not it will return a ~1. :

&JOYSTK

—————— - -

JOYSTK will return the status of a joystick. The fire
button will NOT be returned. If the specified joystick is
inactive, then the keyboard will be scanned for the arrow
keys. The returned values will be the same.,

&JOYSTK (n)
n is number of the joystick (0-1).

The following numbers will be returned depending on the
position of the joystick:

9
!
-1
!

5

(8]
I
B o= % = D

X = &JOYSTK(O)
This will return a number (0,1,2,4,5,6,8,9,10)
-depending on the position of joystick 0.

page 30

&PDL

PDL will return a number (0-255) that corresponds to
the position of a paddle knob.

&PDL(n)
n is the number of the paddle (0-3).

Y = &PDL(1) . .
This polls paddle (1) and returns the position into Y.

&STRIG

— — . a ——

STRIG will return the status of a joystick's fire
button. The value will be -1 if the button is depressed, and
0 if it is not pressed. If the joystick trigger is
inactive, then the space bar will be tested instead.

&STRIG(n)
n is the number of the joystick(0-1).
Z = &STRIG(O0)

If joystick (0)'s fire button is depressed then z = =1
if not, z will be O,

PTRIG will return the status of a paddle's fire button,
The value returned is the same as &STRIG above,

&PTRIG(n)
n is the paddle number,
W = &PTRIG(1)

If paddle one's fire button is depressed then W will
equal negative 1.

page 31

&SPRX and &SFPQY

——— - —— - —

SPRX and SPRY will return a sprite's current x and Yy
coordinates, respectively. .

&SPRX (s)
&SPRY (s)

s is the number of the sprite (0-31).

X1
Yl

'&SPRX(5)
&SPRY(5)

nn

These two commands will, when executed together, return
the current coordinates of sprite 5. If the sprite was at
(100,100) then X1 and Y1 would both equal 100.

SPRC will return the current color of a sprite (0-15).
&SPRC (s)
s is the number of the sprite (0-31).

C = &SPRC(5) ,
If sprite 5 was black then C would equal 1.

SPRP will return the current pattern assigned to a
sprite (0-63).

&SPRP (s)
s is the number of the sprite (0-31).
P = &SPRP(5)

If sprite 5's pattern number was 0, then p would equal
0.

page 32

S&UNCREATE

UNCREATE will take a sprite pattern and convert it into
a hex string that is either 16 or 64 characters 1long
(depending on whether you are in the -8 x 8 or 16 x 16 sprite
mode). UNCREATE is the exact opposite of CREATE.

&UNCREATE (n)
n is the sprite pattern number (0-63).

X$ = &UNCREATE(S5)
X$ will equal the hexadecimal string for pattern number

S.

&COINCE

——— —————

COINCE will return a 0 if there are not two sprites
coinciding (pixel by pixel) on the screen, and -1 if there
are two or more.)

&COINCE (0)
0 is a dummy argument

C = &COINCE(OQ)
If there were two sprites coinciding c would equal -1.

&FIFTH

- —— —

FIFTH checks to see if there are 5 or more sprites on a
single horizontal TV scan line. If there are less than 5
sprites on the same line, then a -1 is returned. Otherwise,
the number of the lowest priority sprite on that 1line is
returned. :

&FIFTH (0)
0 is a dummy argument
F = &FIFTH(O)

F will equal -1 unless 5 sprites are on a line, then it
will equal the lowest priority sprite's number.

page 33

&XVELOC and &YVELOC

—— G S ——— - —

XVELOC and XVELOC will return the current x and Yy
velocity of a sprite,

&XVELOC (n)
&YVELOC (n)

n is the number of the sprite (0-31).

&XVELOC(5)
&YVELOC(5)

X
Y
The execution of these two commands will return both

the x-velocity and the y-velocity of sprite 5 in x and y
respectively.

We here at South Shore Computer Concepts feel that this
software modification to the Basic interpreter (with its new
commands) will enhance programing of the CHROMAtrs
immensely. Enjoy using the enhanced commands of CHROMA
BASIC. If you have any problems please call us. ‘

Page 34
APPENDIX A

Here are a few sample programs to help initiate the
excitement of CHROMA BASIC programming.

This first program is for a three dimensional figure,
It designs a three dimensional figure and then uses the
rotate commmands to give different views of this figure.

10 INIT 1l: SCREEN 9: COLOR 1

20 DIMA(7,2),B%(13,1)

30 FOR X = 0 TO 7: FORY = 0 TO 2

40 READ A(X,Y)

50 NEXT Y: NEXT X

60 FOR X = 0 TO 13: FORY = 0 TO 1

70 READ B%(X,Y)

80 NEXT Y: NEXT X

90 FOR X = 1 TO 3: ROTATEXA(0,0),25: GOSUB 500: NEXT X
100 FOR X = 1 TO 3: ROTATEYA(0,0),25: GOSUB 500: NEXT X
110 FOR X = 1 TO 3: ROTATEZA(0,0),25: GOSUB 500: NEXT X
120 END i

130 DATA -10,-10,-10,-10,-10,10,10

140 DATA -10,-10,10,-10,10,-10,10

150 DATA -10,10,10,-10,10,10,10,-10

160 DATA 10,10

170 DATA O0,1,4,3,3,2,2,0,0,4,4,5,5,2

180 paTra 5,6,6,7,7,4,6,3,1,7,0,3,2,1

500 CLR: DISPLAYA¢0,0),7,B%(0,0),128,96: RETURN

This program will create a pie and display the parts of
the pie according to the amounts you enter. The main
purpose of this program is to encourage modifications to
familiarize you to CHROMA BASIC.

10 INIT 1: COLOR 15: DIM A(50)
20 CLS: PRINT"PIE CHART": PRINT
30 PRINT"ENTER THE NUMBER OF ITEMS IN EACH GROUP, -1

TERMINATES. "

40 PRINT: X=1

50 INPUTA(X): IF A(X) = -1 THEN X= X-1: GOTO 80
60 S = S + A(X)

70 X = X + 1: GOTO 50

80 G = 360/S

90 P =0

100 FOR Y =1 TO X

120 IF Y = X THEN L = 360 ELSE L = A(Y) * G + P
130 PIE 0,128,96,95,95,P,L: P = L

140 NEXT Y

We hope that these programs help ease the transition

into CHROMA BASIC programming. If you have any guestions
please do not hesitate to call.

