The Software Toolworks
Walt “Bilofsky; Prop.

14478 GLORIETTA DRIVE TELEPHONE
SHERMAN OAKS, CALIFORNIA 91423 ! 213) 986-4885
c/80°
Version 2.0
February 1982
Walt Bilofsky

Table of Contents

1. INTRODUCTIONG.: e veeososecesccscsssccsssss)
2. FOR THE NEW C PROGRAMMER..:.sveeveeevscvoeesed
3. FOR THE EXPERIENCED C USER::ceeevesscossssssd
4, THE C/80 DISTRIBUTION DISK.:veeosossoscsocsod
S. AN EXAMPLE. . c.veeeceosvsossssscsoscnsnsosoessesd
6. RUNNNING THE COMPILER.::cesssoocasecsess eeeeab
7. C/80 LANGUAGE SUMMARY .::ceosscescosnscsccccsssd
7.1, VariableS.ceeeeeceassosocsnsnassseeessll
7.2. DAtd TYPCSeeeesesaosesssssonsnsosonsesll
7.3. POINterLS.eeeeeeerocsososssooasosessssssll
7.4, SErUCEULES.e.ceseeesvososssssossosssnsasll
7.5. Storage ClasSSeS.eeeerssseaseenscnsosessl?
7.6. CONSEANES.eeeeeeeoeesvosssesssnossansssll
7.7. Operators and ExpressionsS.....cceeee..13
7.8, StatemMeNtS.ceeeesscosssasssssnssosonsssld
7.9. ConclusSiON...eevesseensssossssssaeesensld
8. IMPLEMENTATION AND MACHINE DEPENDENCIES....15
9, RUNTIME AND I/0 LIBRARY .:eveseseossseanssossl8
9.1. Files and DevicCeS.ceerseeesseceasessesslB
9,2, ComMMANdS .. coseescsossessnsssssnsensseslB
9.3. I/O RedireCtiON.icevaveescsosossoveosssald
9.4. Interrupting a Program...sesecesesees.20
9.5. I/0 Library Routines...eeeeveeeeeoses.20
9.6. Formatted OUELPUE .. ceeerseosoeescoanssedl
9.7. Random Access File I/0..ccceerocsnnessl3
9.8. Program Chaining..ceeseeesseeceenescessold

10. USING C/80 WITH MACRO~80.:ceoececrcccsesssdd
11. MULTIPLE ASSEMBLIES....ccteeesssoccssossseld
12. RUNTIME TRACE AND EXECUTION PROFILE.......26
13, THE AS ASSEMBLER..veesescecocaccvococosesell
14. UPPER CASE SOURCE FILES..:veeecocsosesosss2B
15. TRICKS AND INTERNALS..eeescosososssssnsess29
16. COMPILER ERROR MESSAGES....ceeeeeeeesesss.30

INDEX".0.0..Q'...I.""'."..'..l.l".‘...".34

Copyright (c) 1981, 1982 Walter Bilofsky. Sale of this
software conveys a license for its use on a single
computer owned or operated by the purchaser. Copying this
software or documentation by any means whatsoever for any
other purpose is expressly prohibited.

1. INTRODUCTION c/80 2.0 -2 -

1. INTRODUCTION

C/80 is a compiler for the C programming language, running
under the CP/M and HDOS operating systems. It requires a minimum of
48K of memory. The compiler produces an assembly language text file
which is turned into an executable object program by an absolute
assembler which is included (except on HDOS, where ASM 1is used).
Optionally, C/80 can produce output for Microsoft's Macro-80
relocatable assembler.

The reference manual for C/80 is The C Programming Language
by Brian Kernighan and Dennis Ritchie. Section 2 tells where you
can obtain this book.

Purchasers of inexpensive C compilers have come to expect
that they will lack many important language features, or will have
non-standard variations which make C programs less portable. c/80
Version 2.0 is one of the better compilers in this respect. It
supports all of the language features described in The C Programming
Language, with the following exceptions:

o float, double, and long data types
o typedef

0 Arguments to #define macros

o Bit fields

o #line

o0 Declarations within nested blocks

C/80 Version 2.0 does support structures, statics, 4initialization,
casts, compile time evaluation of constant expressions -- in short,
all other C language features. A few language features have
restrictions on their use; see Section 8 for a complete list of the
exceptions and implementation dependencies.

This C implementation also provides the following features:

Runtime command arguments including I/0 redirection.
Conventional C I/0 library

Random access file I/0

Dynamic storage allocation

Runtime execution profile facility

Selectable Macro-80 compatibility

In-line assembly language

Incudes absolute assembler (CP/M only)

000000O0O

The objective of Ron Cain's small-C implementation was to
make a subset of the C language available to the computer hobbyist
at minimal cost. We have continued in that spirit by keeping the
price of C/80 as 1low as possible. However, we have dedicated a
considerable amount of work and compiler expertise to developing
c/80, which now presents both the beginner and the serious
programmer with a genuinely useful +tool for program development.
Many products from The Software Toolworks are written in C/80,
including TEXT, LISP/80, UVMAC, ED-A-SKETCH, and C/80 itself.

1. INTRODUCTION c/80 2.0 - 3 -

Acknowledgements:

Ron Cain's contribution in providing a simple, public domain
compiler for a minimal C subset' is well known and widely
appreciated. Jim Gillogly wrote and maintained printf. The initial
version of seek and HDOS exec were contributed by Al Bolduc. CP/M
exec was written by Robert Wesson.

Note: This document describes C/80 implementations for
both CP/M and HDOS. Where program names, devices, etc.,
differ for the two systems, the CP/M names will be used,
with the HDOS equivalent in brackets, [like this].

2. FOR THE NEW C PROGRAMMER

A summary and brief description of the C/80 language appears
below (Section 7). For a detailed introduction to C, the beginner
should obtain The C Programming Language, by Brian Kernighan and
Dennis Ritchie (Prentice~Hall, 1978). This book defines the C
language, and contains many useful programs as examples. It is sold
in many computer stores and college and technical bookstores, or you
may purchase it by mail from either of the following:

Lifeboat Associates

1651 Third Avenue

New York, NY 10028

(212) 860-0300; phone orders $50 minimum,
Price: $14.00 + $3.93 shipping (UPS Blue in US)
MC, VISA, AE accepted. C.0.D: add $5.00.

Prentice-Hall
200 014 Tappan Road
01ld Tappan, NJ 07675
(201) 767-5067

Note: In reading The C Programming Language, it is
important to keep in mind at least the major features of C
which are not supported by C/80. Section 8 below lists
the differences between C/80 and the language described in
the book.

3. THE EXPERIENCED C USER c/80 2.0 - 4 -

3. FOR THE EXPERIENCED C USER

Users who know C will find C/80 quite familiar and easy to
use. It supports data types char and int, and full C pointers,
arrays and structures. All C control statements are supported, all
Ooperators, and most preprocessor functions. The preprocessor allows
in-line assembly language code.

C/80 programs use the conventional command line
(main(argc,argv)). The runtime 1library provides many of the
capabilities of the standard C I/0 library file handling routines,
and implements I/O redirection in the command line.

"There are a few differences between C/80 and full C, notably
the absence of long and float. The one difference which may cause
hard to detect problems in converting full C programs is that
functions may not be called with a different number of arguments
than specified in the function definition.

C/80 program source files are normally prepared using the

full upper and lower case ASCII character set. Users with wupper
case only terminals should refer to Section 14.

4. THE C/80 DISTRIBUTION DISK

The C/80 Distribution Disk contains the following files. A
few of the files are not included on the Osborne 1 due to lack of
disk space.

C.COM or C.ABS The C/80 compiler.

CLIBRARY.ASM The C/80 I/0 library. This file is automatically
included in all C/80 program assemblies. It must
reside on A: [SY0: on HDOS] at assembly time.

CLIBRARY.REL A relocatable version of the library, for use with
Microsoft's Link-80

SEEK.C Routines for random access file I/0 (not for CP/M
1.4 and earlier).

EXEC.ASM [HDOS: EXEC.C]. Routine to chain to another .COM
[.ABS] program. (Not included on Osborne.)

CPROF.ASM The runtime execution profile library. This file is
automatically included in assemblies of c/80
programs compiled with the -p switch (see Section
12). It must reside on A: [SY0: on HDOS] when such
programs are assembled. (Not included on Osborne;
generate from CPROF.C.)

4. THE DISTRIBUTION DISK c/80 2.0 -5 =

CPROF.C

CTRACE.ASM

PRINTF.C

PRINTF.H

HELLO.C

TAB.C

CMP.C

TREE.C

UCASE.C

AS.COM

PATCHES .DOC

Source file for CPROF.ASM., Provided to allow
alteration of runtime profile to print in other
formats, accumulate different data, etc. Osborne
users must generate CPROF.ASM by compiling this
file.

An alternate runtime execution profile library.
Instead of printing a runtime profile, CTRACE traces
each routine call and return. See Section 12.

The C80 formatted output routines (see Section 9).
May be incorporated into a program using #include
printf.c", which should appear before any use of
printf.

A header file for defining printf in source files
where the entire printf.c source file must not be
included.

A sample C/80 program; the first program in The C
Programming Language.

A sample C/80 program which copies a file, replacing
blanks by tabs wherever this might result in a
savings of space. (Not included on Osborne.)

A sample C/80 program which compares two files.
A sample C/80 program showing the use of structures.

A sample upper case C/80 source file. UCASE
translates C/80 source files prepared in lower case
into upper case format. {(Not included on Osborne.)

(CP/M only.) An absolute 8080 assembler which
assembles C/80 output files. This assembler is
essentially equivalent to the ASM assembler under
HDOS. Section 13 gives a brief description of how
to use AS. ‘

The default values and patch locations for the sizes
of various compiler tables. See Section 6.

5. AN EXAMPLE c/80 2.0 -6 -

5. AN EXAMPLE

This section describes how to assemble and run a C/80
program. The example shown 1is for the CP/M operating system.
[Under HDOS, the procedure is identical, except that HDOS uses the
">" prompt instead of "A>", and the Heath assembler ASM is used,
with the command "asm hello=hello".]

First a source file, called HELLO.C, must be prepared. This
can be done using any text editor. The program on the source file
should look like this:

. #include "printf.c"
main()
Trintf(“ﬂello, worldi\n"):;

Files PRINTF.C and CLIBRARY.ASM should be copied to A:
[SYO: on HDOS]. Then HELLO can be compiled and run by the following
steps. Characters which the computer types are underlined in this
example; the other characters are typed by the user.

A> c hello

C/80 Compiler 2.0 (2/3/82)

A> as hello

8080 AS 2.2 (7/7/81)

A> hello
Hello, world!
A>

6. RUNNNING THE COMPILER

The simplest way to compile a C/80 program is to give the
command

c filename
This takes the source file FILENAME.C and produces an assembly file
FILENAME.ASM. Of course, any file name can be used instead of
filename.

In order to create an assembly file with a different name or
on a different device, the command looks like

6. RUNNING THE COMPILER c/80 2.0 -7 -

¢ d:outfile.mac=b:infile
[c dkl:outfile.mac=syl:infile on HDOS]

If no extension is specified, the defaults are .ASM for the output
file and .C for the input.

The C command may include "switches" to select compiler
options. The switches consist of a -, a letter (upper and lower
case are synonymous), and sometimes a numeric value (represented
below by N).

Example: To compile file FOO.C, producing file B:FOO.ASM, including
the source text as comments in the assembly file, and allocating
space for 400 symbols (300 global and 100 local), use the command

c -t -s400 b:foo=foo
The default values for the switchable parameters are listed

on file PATCHES.DOC on the C/80 distribution disk, and may be
patched by the user to select different defaults. The switches are:

-t Include the source program text as comments in the
assembly language file.

-m Generate Macro-80 assembler output. See Section 10.

-p Generate a runtime profile for the program being

compiled. See Section 12.

-sN Allocate N entries in the symbol table. 3/4 of the
symbol table entries are used for globals and the
remainder for local variables. Memory occupied by the
symbol table is about 16 bytes per entry.

-cN Allocates N bytes for the string constant table. This
table stores all string constants in the program.

-dN Allocates N bytes for the #define table. The define
table stores all #define macro names and strings.

-wN Allocates N slots for the switch/case table. This table

determines the maximum number of cases in a switch
statement or in nested switch statements.

-rN Allocates N bytes for the structure table. This table
stores the information from structure declarations.

-1N Begin generating internal labels at number N (default
0). This provides a method of compiling several C
source files into separate assembly files which may then
be assembled together. See Section 1ll.

-g Do not reserve storage for globals. This is equivalent
to preceding each global declaration with the extern
keyword. This may be useful in multiple file
compilations; see Section 1ll.

6. RUNNING THE COMPILER c/80 2.0 -8 -

-f Normally, the compiler tries not to duplicate strings
which can be overlapped. 1In particular, two identical
string constants will point to the same location. This
may cause problems in .a program which alters the
contents of a string constant or an initialized
character pointer. (Initialized character arrays are
not affected.) The ~f switch turns off the string

overlap feature, and insures that each string is stored
Separately.

=z C generally initializes all static and global storage to
zZeros. Since this can create a very large intermediate
assembly language file, C/80 only zeros arrays shorter
than 256 bytes. The -z switch causes all statics and
globals to be initialized to zero, regardless of size.

After compiling the source program, use AS [ASM on HDOS] to
assemble the assembly language file into an executable program.
Note that all C programs will include the C runtime library file,
CLIBRARY.ASM, which must reside on A: [SYO0: on HDOS] .

If more than the minimum necessary memory is available, the
C/80 compiler may be patched to change the default values to larger,
more convenient ones. The locations in C.COM [C.ABS on HDOS] which
contain the default values are shown in file PATCHES.DOC on the C/80
distribution disk. The program may be patched on CP/M by using DDT
and the SAVE command, and on HDOS by using the PATCH program.

7. C/80 LANGUAGE SUMMARY

This section contains a language summary in tabular form,
followed by a concise explanation of the major C language features.
Its aim is to convey the basics of C/80 to a programmer with some
feel for computer languages. It is not intended to replace The C
Programming Language as an exhaustive reference.

(1) Data Types:
Types: char, int
long (in C/80, same as int)
Declarations:
char c, *pc, ac[], ac2[n], **x[m][n]
int i, *pi, ai[], aci([n]:
extern char/int ...
static char/int ...
auto char/int ...
register char/int ...
initialization:
char/int v = constant;
char/int a[l = {c,c,...};
Structure Declarations: See "Structures" below.

7. C/80 LANGUAGE SUMMARY

(2)

(3)

Primaries:
constant:

c/80 2.0

decimal number

octal number beginning with 0

hex number beginning with 0x or 0X
character constant 'c'

string "abc"

variable

address [expression]
function(argl,...,argn) (n >= 0)
structure.element
ptr_to_structure->element

Expressions:
Unary operato

*

&
++

.
~

(type

sizeo

Binary operators:
*

/
%

v
v
-V A A
>iunaA

werr Il VA
4]

..

rs:

)
£

minus

contents of

address of

increment (pre- or postfix)
decrement (pre- or postfix)

logical not

bitwise not

type is any type (e.g., char*);
forces type of following expression
nr. bytes in type or expression

arithmetic operators

modulo

arithmetic operators

right, left shift

less than, less than or equal
greater than, greater than or equal
equal, not equal (0 or 1 valued)
bitwise and, or, xor

logical and, or

if-then-else expression
assignment operator

arithmetic assignment operators

comma (expression sequencing)

7. C/80 LANGUAGE SUMMARY c/80 2.0 - 10 -

(4) Statements
expression;
if (expression) statement;
if (expression) statement; else statement;
for (expression; expression; expression) statement
while (expression) statement;
do statement while (expression);
switch (expression)
case: statement; ...
default: statement ; }
break:
continue;
return;
return expression;
goto label;
. label: statement;
statement; ...; statement; {
: (null statement)

(5) Function Definitions (functions are fully recursive)
fname (argl,...,argn)
int/char argi,*argj, ... ;
statements;

(6) Preprocessor Functions
/* comments */

#define name string Replace name by string
throughout text
#undef name Erase definition-
#include "filename" Inserts filename at that
or #include <filename> point.
#ifdef name Generate following code
if name is #defined or
#ifndef name not #defined, or if
#if expression expression nonzero, respectively.
$else Reverse conditional generation
#endif End conditional generation
#asm Begin assembly language
$endasm End assembly language
#UPPER Convert upper to lower case

7.1. Variables.

Variable names consist of letters, numbers, and the
character " _". The first character must be a letter. Upper and
lower case letters are allowed and are different (except globals
when Macro-80 is wused); usually lower case letters are used.
Variable names may be any length, but any letters after the first
seven are ignored (six for globals with Macro-80).

Each variable has a type, a scope, and a storage class.

The scope of a variable determines the portion of the source
program within which the variable is known. The three possible
scopes are local, global, and external. Local variables are those
declared at the beginning of a function body; they are known only
inside that function and the same names can be used 1in other

7. C/80 LANGUAGE SUMMARY c/80 2.0 - 11 -

functions. Global variables are those declared outside a function
body; they are known in all functions from the declaration to the
end of the file. 1In addition, the extern declaration may be used to
reference variables in the C/80 1library or on other files in a
multiple file compilation. -

7.2. Data Types

C/80 contains two basic data types: int, which is a 16 bit
signed integer (range -32768 to 32767), and char, which is an 8 bit
signed integer (range -128 to 127). Chars are often used to store
characters of text. Unsigned ints are are also supported.

Integers and characters are the basic components of the more
complex data types: arrays, pointers, and structures. The following
declaration declares an int, a doubly dimensioned int array, an
array of pointers to ints, and a function returning pointers to
ints.

int i, array(30][10], *ptr(5], *£();

An array 1is similar to a BASIC or FORTRAN array; it simply
consists of consecutive pieces of memory each large enough to
contain a char, int, or pointer.

C does not contain a separate string data type; strings are

stored as arrays of chars. By convention, a byte containing 0 is
used to terminate a string.

7.3. Pointers

The concept of pointers is essential to the C language. A
pointer is simply an address. Thus, in C/80, pointers are unsigned
16 bit numbers, similar to unsigned ints. They are used to step
efficiently through arrays, where other languages might use
subscripts and an index variable, and to pass (addresses of) large
data structures as function arguments. An indication of how to use
pointers is given in Section 7.7. -

7.4. Structures

Structures are a useful way to organize data. An example of
a structure declaration is:

struct tree {
char value([5];
struct tree *left,*right; }
forest[50] ,*ptree;

This declares three kinds of things: a structure type called tree,
structure elements called value, left and right, and wvariables: an
array of structures, called forest, and a pointer to objects of type
struct tree, called ptree. Each object of type structure is like an
array. But whereas an array contains a number of pieces of data all

7. C/80 LANGUAGE SUMMARY c/80 2.0 - 12 -

of the same type, a structure contains pieces of data called
elements, which may be declared to be of different types. In the
declaration above, objects of type struct tree are declared to
contain a 5-long character array, and two pointers to things of type
struct tree. '

In a structure declaration you can omit the variables, the
structure name, or (once the structure type has been declared) the {

A'kstructure element can be referred to by the operators -»>
or .:

forest[i].value
ptree->left

Such constructs can be treated just the same as variables. Use . to
refer to fields of variables which are structures, and -> to refer
to fields of things which point to structures.

Structures and their use are a complex topic and can only be
touched on here. The C Programming Language contains much
discussion and many examples which will be helpful.

7.5. Storage Classes

Storage classes determine how a variable 1is stored in
memory. The storage classes in C/80 are:

static
auto
register
extern

Statics are simply memory locations. Auto variables are stored on
the pushdown stack. Statics declared within a function are
preserved between calls of that function, whereas autos are not.
When a function is called recursively, a new auto is created local
to that call of the function; statics are not. Globals are always
static. Local variables default to auto but may be declared static.
(C/80 actually uses static storage for local 16 bit variables and
saves the values so that this is transparent to the user but more
efficient than using the stack. The explicit auto declaration may
be used to override this and force the variables to be located on
the stack.)

Register variables are stored efficiently, but are otherwise
the same as autos. Externs are statics which are declared in
another source module.

7. C/80 LANGUAGE SUMMARY c/80 2.0 - 13 -

7.6. Constants.

A decimal constant consists of a string of decimal digits.
A constant beginning with '0' (e.g., - 0177) 1is interpreted as an
octal number. A constant beginning with '0x' or '0X' is a hex
constant.

C/80 computes constant expressions at compile time. That
means that wherever an integer constant is required (such as the
dimension in an array declaration), you can use an expression
containing only constants.

C/80 also contains string and character constants.
Characters are any printing character, or

\t for tab

\n for newline (end of line)
\r for carriage return

\b for backspace

\f for form feed

\\ for \

\' for '

\" for 11}

\123 for the octal value 123
(or any other value)

A single character constant is written ‘'c'. A string
constant is written "ccc...". A string constant is stored as a 0-
terminated array of chars. Useful things to do with string
constants include assigning them to char pointers, and passing them
as arquments to functions.

7.7. Operators and Expressions.

The operators in C are shown in the table at the beginning
of Section 7. They appear in the approximate order in which they
are performed during expression evaluation; e.g., / 1is performed
before + is performed before &.

Certain operators are peculiar to C. The unary operator ¥
takes a pointer and yields the contents of the 1location it points
to. The operator & takes an object, which must have an address, and
yields a pointer to that address. Thus, for any expression A which
has an address, the value of *zA is the same as A.

The operators ++ and -- can appear either before or after a
variable. They cause the wvariable to be incremented (++) or
decremented (--) by l. The value of the expression is the wvariable
either before (V++) or after (++V) the operation. For example, if p
is a pointer to <char, then *p++ increments p, but applies the ¥
operation to the value of p++, which is the value of p before being
incremented. This 1leads to the following sort of code, which is
common in C:

P = "Any old string\n";
while (*p) putchar (*p++):;

7. C/80 LANGUAGE SUMMARY Cc/80 2.0 - 14 -

which outputs the string by calling putchar() with each character in
it, until the 0 byte terminating the string is encountered.

Note that when a pointer is incremented or decremented, its
value changes not by 1 but by 1 object. Thus incrementing a pointer
to an int moves it to point to the next following int; its actual
value increases by 2. A pointer to a structure is incremented by
the size of the structure, in bytes.

Truth values in C are either zero (false) or nonzero (true).
Truth-valued operators (==, >, &&, etc.) return 1 for true. A
useful expression in C is

expr ? tvalue : fvalue
whose value is tvalue if expr is nonzero, and fvalue if expr is
zero.

7.8. Statements.

The table at the beginning of Section 7 lists the statements
in C. Anywhere that C allows a single statement, it will also
accept a compound statement of the form

{ statement; statement; ...; }

The iterative statements in C all have simple equivalent
definitions:

for (el; e2; e3) statement;
means el; L: if (e2) { statement; e3; goto L; }
while (e) statement;
means L: if (e) { statement; goto L; }
do statement; while (e);
means L: statement; if (e) goto L;
switch (e) { case cl: sl; ... case cn: sn; default: s; }
means if (e == cl) sl;

if (e == cn) sn;
s;

The switch statement is not exactly equivalent to what is
shown, however. The expression e is actually evaluated only once.
The case values cl,...,cn must be constants. And the default case
may be eliminated, in which case no case is executed if the value e
is different from the values cl,...,cn.

The statement break jumps out of the smallest for, while, or
switch <containing it. The statement continue begins the next

7. C/80 LANGUAGE SUMMARY Cc/80 2.0 - 15 -

iteration of the smallest for or while containing it.

7.9. Conclusion.

This short a summary can not begin to present all the
details of the C language. 1In order to learn more, you can look at
the sample C programs provided on the C/80 distribution disk and
read The C Programming Language.

8. IMPLEMENTATION AND MACHINE DEPENDENCIES

The reference manual for C/80 is The C Programming Language
(see Section 2). 1In using that book, it must be kept in mind that
some features of C and the runtime library are not present in C/80,
or differ from the description in the book. Those omissions and
differences are 1listed here. First the unimplemented features and
major restrictions are listed, followed by a detailed listing of all
differences. Section numbers refer to the C Reference Manual in
Appendix A of The C Programming Language.

Unimplemented Features

Float, double, entry and typedef keywords (2.3)
Long and float constants (2.4) and arithmetic

Typedef (8.1, 8.8)
Bit fields (8.5)
$#line (12.4)

Major Restricted Features

Function calls (7.1) must have the same number of
arguments as the called function definition.

Blocks (9.2): declarations are allowed only at start
of a function.

#define (12.1): arguments are not allowed.

Complete Difference List

2 Lexical conventions

Blanks in the middle of multiple character operators (e.g.,
=%*) are not allowed.

2.2 Names
The first seven characters of a name are significant., If

Macro-80 is used, global symbols are restricted to 6 characters, and
upper and lower case are the same in globals.

8. IMPLEMENTATION c/80 2.0 - 16 -

2.3 Keywords

Float, double, entry and typedef keywords are not
recognized. '

2.4 Constants

Long and floating constants are not implemented.
2.6 Hardware characteristics

Char is 8 bits. 1Int, short and long are 16 bits.
7.1 Primary expressions.

Function calls must have the same number of arquments as the
called function definition.

7.13 Conditional operator.

In a?b:c the type of the result is that of b if b is a
pointer, and the type of c otherwise. (See also Sect. 15 below.)

8.1 Storage class specifiers

Register variables must be at most 16 bits long. They are
stored in static memory for fast access, and are saved on function
entry and exit. C/80 allows any number of register wvariables, and
the & operator may be applied to them, but such code may not be
portable.

Auto variables are stored on the stack. Local wvariables
default to register if they are 16 bits 1long, but the auto
declaration can override this. Other local variables, and all
arguments, default to auto, but the register declaration can be used
to override this (except for variables longer than 16 bits). All
this is transparent to the user.

The scope of an extern declaration is the remainder of the
source file, even if the declaration is within a function
definition.

Typedef is not recognized.
8.5 Structure and union declarations

Bit fields are not implemented.
8.6 Initialization

Only static and global variables may be initialized. Only
objects smaller than 256 bytes are defaulted to 0; the -z compiler
switch removes this restriction. (See also Sect. 15 below.)

Type declarations can not be nested. About the only

restriction this imposes is that sizeof a type name may not be used
in a dimension in a declaration.

8. IMPLEMENTATION c/80 2.0 - 17 -

8.8 Typedef
Typedef is not implemented.
9.2 Compound statement, or block

Declarations are allowed only at the beginning of a function
body.

12 Compiler control lines

In-line assembly language is supported by the #asm and
#endasm directives.

12.1 Token replacement

#Define 1is not applied recursively, and arguments to macros
are not allowed.

12.4 Line control
#line is not implemented.
15 Constant expressions

?: and & are not allowed in constant expressions, except
that & may be the first character in an initializer.

17 Anachronisms

All forms 1listed are recognized, except that initializers
which lack an = and start with (name... will not compile.

Printf and fprintf:

These functions (and sprintf) cope with a variable number of
arguments through use of a #define kludge which redefines printf.
This requires that either #include "printf.c" or #include "printf.h"
be placed before the first use of printf. Otherwise, the C/80 1.6
printf and format must be used: see Section 9.6. :

I/0 and Runtime Library:

Many of the basic library functions and treatments of files
described in the manual are supported, although the format is not
always identical. Getchar, putchar, getc, putc, fopen, £fclose,
seek, ftell and exec are provided. EOF has the value -1; NULL is
0. The older Version 6 convention of fin and fout is followed
instead of stdin, stdout and stderr. I/0 redirection is provided.
The I/O and runtime library is described more fully in the next
section,

9. RUNTIME AND I/O LIBRARY c/80 2.0 - 18 -

9. RUNTIME AND I/O LIBRARY

C/80 is supplied with a runtime library, which provides
convenient access to files and other devices in a manner generally
consistent with accepted C conventions.

9.1. Files and Devices:

NOTE: The following information applies only to use of
C/80 on the CP/M operating system, and should be ignored
by users of HDOS.

Under Cp/M, the C/80 1library recognizes the
logical device driver names CON:, RDR:, PUN: and LST: as
legal file names.

In doing I/0 to CON:, C/80 normally uses line at a
time mode. This is true whether CON: has been accessed
explicitly by opening file "CON:", or as the default
device for getchar and putchar. If you need to wuse
character at a time console 1/0, declare

extern char Cmode:

and set Cmode to zero. (It is initially set to 1l; other
values produce undefined results.)

When reading from CON:, in addition to the control
characters which are interpreted by CP/M (see the
description of functions 1 and 10 in the CP/M 2.2
Interface Guide), C/80 interprets ctrl-B as an interrupt.
Moreover, when doing I/0 to any of the four logical
devices, C/80 maps CR into '\n' on input and '\n' into CR-
LF on output. Calling fopen to open the device in binary
mode has no effect on this (although it does for file
I1/0); the only way to avoid these mappings is not to go
through the C/80 library.

[Under HDOS, any legal file or device name may be used
whenever a file name is called for. Examples of 1legal names are
FOO, SY1:FILE.DAT, or LP:.]

Upper and lower case letters are legal and synonymous in

file names. On CP/M, the user is responsible for insuring that
characters which confuse the CCP, such as '.' and ':', are not used.

9.2. Commands:

C/80 programs begin exécution by calling the routine main,
which the user must provide. Main should start off with the
declaration

main(argc,argv)
char *argv(];

9. RUNTIME AND I/O LIBRARY c/80 2.0 - 19 -

When main is called, argc will be the number of elements in
argv, and argv will be an array of pointers to the strings which
appear on the command 1line (except for argv[0], which may not
contain anything useful.) Argv[argc] is always =-1l. For example, if
a C/80 program named progl is run with the command

progl a b foodle

then argc is 4, and argv contains pointers to the strings "PROGLl"
(or nonsense), "A", "B" and "FOODLE" (e.g., argv[3] is "FOODLE").
An argument containing spaces and/or tabs may be enclosed in either
single or double quotes.

Due to limitations in both the HDOS and CP/M systems, lower

case letters in the argument line are passed to main as the upper
case equivalent.

9.3. I/0 Redirection:

Many C programs do input and output a character at a time,
taking input from the standard input using the routine getchar, and
writing to the standard output using the routines putchar, or
printf. The standard input and standard output are both initially
the terminal. However, f£iles or other devices can also be used as
the standard input and/or output.

This is implemented by two global extern ints, fin and fout.
These variables define the standard input and output, respectively.
They are usually set to 0 before main is called, and I/O is done to
and from the terminal. However, a program may open a file for
reading or writing, and set fin or fout to the file's channel
number. This will cause subsequent I/O to be done to the file
rather than to the terminal. A device may be used instead of a
file.

Normally, an output file must be closed explicitly by a
program before exiting. However, the I/0 library always closes fout
when a program is terminated (including abnormal termination by
ctrl-C under HDOS and ctrl-B under CP/M).

Fin and fout may also be redefined in the command line when
the program is run. For example, the command

progl a b <b:infile >1lst:

will run progl with arguments "A" and "B". Getchar() will read
characters from file "B:INFILE", and putchar() will write characters
to the printer. The > and < arguments are not included in argc or
argv, and may appear anywhere in the argument list, [The equivalent
HDOS command would be

progl a b <syl:infile >lp:]
Since the C/80 compiler is itself a C/80 program, I/O

redirection may be used to redirect to a £file the error messages
usually output to the terminal.

9. RUNTIME AND I/O LIBRARY c/80 2.0 - 20 -

9.4. Interrupting a Program:

C/80 programs may be interrupted by ctrl-B or ctrl-C [ctrl-C
only on HDOS], which causes the program to terminate immediately and
exit. The standard output is closed (except by ctrl-C on CP/M), but
all other open output files are lost.

NOTE (applies to CP/M users only): Under CP/M, a ctrl-C
may not always be noticed when it is typed. The C/80
library will check for a ctrl-C whenever a disk read or
write is performed, but if a program does not access disk
it must take special steps in order to be interruptable.

The HDOS operating system provides a way for the
user to trap and handle interrupts caused by ctrl-A, ctrl-
B and ctrl-C. C/80 provides a similar, but weaker,
capability under CP/M. When the C/80 console input
routine detects a ctrl-B, a call 1is executed to the
location contained in CtlB. That location initially
contains exit (), and thus ctrl-B usually aborts a running
program, just as ctrl-C does.

Instead of exiting, your program may choose to
handle ctrl-B interrupts itself. To do so, declare CtlB
to be an extern int, and set it to a subroutine to be
executed when ctrl-B is typed. 1If that subroutine returns
when done, program execution will continue.

Since CP/M does not usually detect a typed
character, even ctrl-C, until the program attempts to read
from the keyboard, C/80 programs will often not respond
immediately to a ctrl-B or ctrl-C. The C/80 library does
check for these characters whenever a disk read or write
is performed. You can make your program check more often
by calling CtlCk() whenever a check is desired.

One side effect of CtlCk() is to read any typed
character that may be waiting at the console. If the
character is not a ctrl-B or ctrl-C, it will be echoed and
will be placed in the input line buffer for the next call
to getchar (). So calling CtlCk() provides a 1limited
typeahead capability. However, editing characters like
ctrl-U and DEL do not operate on characters read in this
manner. Also note that once the buffer has been filled
(about 130 characters), any further typed characters will
be echoed but discarded without warning, until the buffer
has been completely emptied.

9.5. I/0 Library Routines:

The following standard I/0 library routines are included in
C/80 and may be called from any C/80 program:

getchar() - returns a character from the standard input
(usually the terminal). =1 is returned for end of file
(ctrl-D under HDOS; ctrl-Z under CPM).

9. RUNTIME AND I/O LIBRARY C/80 2.0 - 21 -

putchar(c) - writes the character c¢ on the standard output
(usually the terminal), and returns c.

fopen(fname,mode) - opens the named file and returns the
channel number of the file. Fname is a string constant,
or pointer to or array of characters containing the file
name. The name may be any legal file or device, like
SY1:FOO.TXT, or TT: (under HDOS; CP/M equivalents are
B:FOO,TXT and CON:). Mode may be "r", "w" or "u" for
read, write or update mode. (Update mode is treated the
'same as write mode but the file is not deleted before
opening. [On HDOS, it is opened in update mode.] Mode may
also be "rb", "wb" or "ub" if the file is to be treated as
a binary file (see getc). If the file can not be opened,
fopen returns 0. A file or device which is written on
must be closed explicitly, or the entire file will be lost
(except for file fout).

At most 6 files may be open at any one time. I/0
buffers are allocated for three files. If more than three
files are opened, fopen will call alloc to allocate a
buffer of 256 bytes for each additional file. 1If there is
not enough memory available, the open may fail.

[HDOS: The fopen channel number is not necessarily
the same as system's channel.]

getc (chan) - returns the next character from the file or device
open for reading on channel chan. Returns -1 to signify
end of file, 1If the file was opened in binary mode, getc
will read every byte in the file. Files opened in normal
mode are treated as ASCII files. Under CP/M, ctrl-z is
interpreted as end of file, and newlines, which are a CR-
LF pair in the file, are read in as the single character
'\n'. [Under HDOS, the only special treatment is that 0
bytes are ignored.]

putc (c,chan) - writes the character ¢ on the file or device
opened for writing or update on channel chan. 1In ASCII
files, the conversions listed under getc are performed in
reverse.

fclose(chan) - closes the file or device opened on channel
chan. 1If a file opened for writing is not closed before
the program terminates, the last block of the file may be
lost. Once a channel has been closed, another file may be
opened without exceeding the open file limit (see fopen).

read (chan,addr,n) - reads up to n bytes from channel chan into
memory starting at address (pointer) addr. N must be a
multiple of 256. Getc reads one character at a time; read
provides an alternative method for reading many characters
at once. Read returns the number of bytes read, which may
be less than n if the end of file was encountered. Read
returns 0 if an error occurred. Read does not perform any
character conversion regardless of whether the file was
opened in binary mode. Read and getc should not both be

9. RUNTIME AND I/O LIBRARY c/80 2.0 - 22 -

used on the same channel.

write (chan,addr,n) - writes n bytes from address addr to the
file open on channel chan. N must be a multiple of 256.
Write provides an alternative to putc for outputting many
characters at a time. Write returns 0 if an error
occurred, and the number of bytes written otherwise.
Write and putc should not both be used on the same
channel.

exit() - terminates the program and returns to command level.
Does not close any open files except the standard output.
Returning from main has the same effect as exit().

alloc(n) - allocates a block of n bytes of memory, returning
: the address of the first byte, or -1 if that much memory
is not available. There is no way to release memory once
it is allocated. The alloc area grows upward from the end
of the user program, and the stack grows downward from
high memory. Although alloc will always leave about 500
bytes for stack expansion, it is still possible for the
stack to grow into alloc memory (or static storage or
program memory, for that matter), with undefined results.

Note that fopen may call alloc to allocate I/O buffers.

9.6. Formatted OQutput

Formatted output is provided by printf, fprintf and sprintf,
which are on file printf.c and may be included in a compilation by
placing the command #include "printf.c" before the first reference
to printf. If printf is included in any other way (e.g., by XTEXT
PRINTF.ASM or by linking printf.rel using Link-80), the header file
printf.h must be included instead.

These routines provide functions similar to the routines
described in The C Programming Lanquage.

printf(stg,vl,...,vn) - prints the values vl through vn (n >=
0) on the standard output (usually the terminal), using
stg as the format specification. The characters in stg
are printed on the standard output, except for conversions
of the form %C or %nC, where n is an optional field width
and C is a conversion letter. Each conversion takes the
next value from the argument list and prints it according
to the conversion letter. The conversion letters allowed
are:

$d (decimal number output, signed)
%0 (octal, unsigned)

%c (single character)

$s (string)

$x (hexadecimal)

fprintf (chan,stg) - 1like printf, but output goes to the file
opened on channel chan rather than to the standard output.

9. RUNTIME AND I/O LIBRARY c/80 2.0 - 23 -

sprintf (addr,stg) - like printf, but output goes into the
character array beginning at memory location addr.

For example, the program fragment

printf("i = %4, s = %s\n",27,"Hi there!");
would print out the line

i = 27, s = Hi there!

Older versions of C/80 used two routines, printf and format,
to perform formatted I/0. If programs using this form of output are
to be compiled under this version of C/80, the #$include "printf.c"

must be placed after all references to printf, and printf.h must not
be used.

9.7. Random Access File 1/0:

The file SEEK.C on your C/80 distribution disk contains
routines affording random access file I/0 capability. This file can
be included in your C/80 program by the statement

#include "seek.c"

(Note: CP/M 1.4 and earlier CP/M releases do not support random file
I/0, and these routines will not work on those versions of CP/M.)

SEEK.C contains the following library routines:

seek (chan,offset,type) - moves to a specified position in the
file which is open on channel chan. The next getc or putc
call will read or write starting at the new location. The
value offset, which may be positive or negative, specifies
the number of bytes that the read/write pointer is to be
placed from:

type = 0: the beginning of the file.
type = 1l: the current read/write location.
type = 2: the end of the file.

For example, seek(chan,0,2) will position the read/write
pointer at the end of the file. If type = 3, 4 or 5, the
pointer is moved offset records (256 bytes) instead. Seek
returns a value of -1 if an error occurs, 0 for success,

ftell (chan) =~ returns the current read/write pointer for the
file open on channel chan. This pointer is the number of
bytes before the current position in the file. If the
current position is greater than 65535, the value returned
will be the offset mod 256; i.e., the byte position in the
current record.

9. RUNTIME AND I/O LIBRARY c/80 2.0 - 24 -

ftellr(chan) - returns the current read/write pointer for the
file open on channel chan, divided by 256.

Using seek, it is possible to alter or append to an existing
file by opening it in update mode. It may be possible to both read
and write to a file, as long as a seek intervenes, but this has not
been tested thoroughly. It is safer to close the file and reopen it
in the other mode.

9.8. Prqgfam Chaining

The file EXEC.ASM [HDOS: EXEC.C] contains a routine which
allows execution of another program from within a C/80 program.

exec (prog,args) - chain to another program. Prog is a string
containing the name of a program. Args 1is a string
containing any arguments, separated by blanks, just as on
the command 1line. Exec will execute the named program
with the arguments given, just as if it had been invoked
from the command 1line. Unless an error occurs, control
never returns from exec. All open files must be
explicitly closed before calling exec, or strange things
may happen.

10. USING C/80 WITH MACRO-80

C/80 can optionally generate assembly code for input to the
Microsoft Macro-80 relocatable assembler. This allows you to
develop a C/80 program in several modules, generating .REL files
which can be linked using the Link-80 linking loader. You can
create .REL modules for C/80 library routines such as PRINTF and
SEEK, to speed up their inclusion in your programs. A library
manager such as LIB-80 (CP/M versions) can be used to create a
library of your commonly used subroutines which can be accessed
using Link-80.

To generate a .MAC file, invoke C/80 using the -m switch:
c -m [other args ...]

You can also patch the Macro-80 compatibility flag so that this mode
is the default; the -m switch will then generate .ASM files. The
patch location is given in file PATCHES.DOC on your C/80
distribution disk.

Macro-80 files generated by C/80 must be assembled by M80 to
create a .REL file. REL files are then linked by L80 to create a
.COM file [HDOS: .ABS file]. IMPORTANT: When linking C/80 .REL
files, the file CLIBRARY.REL must be linked in and it must be the
last file linked.

0. C/80 WITH MACRO-80 c/80 2.0 - 25 -

Using Macro-80 imposes a few additional restrictions on
source programs. In global variables and function names, only the
first six characters are significant (as opposed to 7 in .ASM
files). Also, upper and lower case -are considered identical by
Macro-80. Global arrays and variables must appear in only one
source module, and must be declared extern by any other module that
references them, being careful to distinguish between arrays and
pointers. Functions are implicitly extern and need not be declared.

l1l. MULTIPLE ASSEMBLIES

To reduce space and time taken by compilations, it is often
useful to compile a large program in several pieces. This may be
done by splitting the program into several C source files, using the
extern declaration to reference globals which are declared in
another source file. For example, if the declaration int i[5];
appears at the top (global) 1level in one source file, the
declaration extern int i[5]; in a second source file will allow
programs in the second file to refer to the array i defined in the
first file., Simply saying int i[5] in both files will cause i to be
doubly defined at assembly or 1load time. Exception: functions
defined in one source file may be called from another source file in
the same assembly or load without any special declaration.

There are two ways to generate a single object module from
multiple compilations. One way is to use Macro-80 and Link-80 from
Microsoft, as described in the previous section. The other is to
use the AS assembler provided with C/80 [HDOS: use Heath's ASM] to
assemble one module from several .ASM files.

An example will illustrate how to do this. Suppose there
are three C source files: MAIN.C, SUBl.C, and SUB2.C. First you
must insert into MAIN.C statements which will cause the assembly
language files for SUBl1 and SUB2 to be included in the assembly.
The following statements should be put into MAIN.C somewhere at top
level (i.e., not inside a subroutine):

#asm
XTEXT SUBl.ASM
XTEXT SUB2.ASM
#endasm

The XTEXT command will cause these 1lines to be included in the
assembly language f£ile MAIN.ASM.

Next, compile MAIN.C to create an output file called
MAIN,ASM, This file contains compiler-generated labels, which
usually look like .a, .b, and so on.

Then compile SUBl.C to produce an output file named
SUBL.ASM. If nothing is done to prevent it, the compiler will use
the same labels .a, .b, etc., in SUBl.ASM, and there will be a
conflict when the two files are assembled together. To prevent

11. MULTIPLE ASSEMBLIES c/80 2.0 - 26 -

this, SUBl.C should be compiled with a command 1like "C -L1000",
which will start the labels 1000 down in the sequence. (The largest
permissible value for the -L switch is 32767). The -L switch also
suppresses the generation of instructions in SUB1.ASM to include the
C I/0 library, since MAIN.ASM already has those instructions.

Similarly, compile SUB2.C, say by "C -L2000", to produce
SUB2.ASM. 1If disk space is a problem, these compilations may all be
performed on different disks, and the .ASM files copied to another
disk for assembly. The library file CLIBRARY.ASM must reside on A:
[SYO: on HDOS] during assembly.

To assemble the program, run AS [ASM on HDOS] and give the

command MAIN=MAIN. All the files will be assembled to produce
MAIN.COM [MAIN.ABS on HDOS] which can then be run.

12. RUNTIME TRACE AND EXECUTION PROFILE

Most programs which take very 1long to run spend most of
their execution time executing a relatively small amount of code.
C/80 contains a runtime execution profile feature to help identify
where a program is spending its time, so the critical routines can
be made more efficient.

To use this feature, compile the program with the -p switch,
as in

C -p progname

If you are using AS or ASM, make sure the file CPROF.ASM,
from the C/80 distribution disk, is on A: [SY0: on HDOS] when the
program is assembled. (CPROF.ASM is not on the Osborne distribution
disk, due to space restrictions. You will have to generate it from
CPROF.C by the command

¢ -L32600 cprof)

If you are using Macro-80, compile and assemble CPROF.C to
produce CPROF.REL, and link it in when you load.

Now run the program. When the program finishes running and
exits normally, a 1listing will be produced on the standard output
device showing, for each subroutine, the number of times it was
called and the total time (in units of two ticks of the computer
clock) spent inside the subroutine.

Similarly, a runtime trace of the program execution can be
produced by copying file CTRACE.ASM from the distribution disk onto
A: [SY0: on HDOS] as file CPROF.ASM, and compiling as above.

Note (applies to CP/M users only): C/80 can only provide
execution times if your system has a 16-bit clock at some
address in memory. The Heath/Zenith systems have a clock

12. TRACE AND PROFILE c/80 2.0 - 27 -

at memory location 0B hex. To use the profile feature on
systems with no <clock, or with a clock at another
location, you must regenerate file CPROF.ASM as follows:

Edit file CPROF.C. Locate the 1line which begins with
#define TICCNT. If your system has a clock, replace the
expression following TICCNT with the address of the clock
word in memory. If there is no <clock, comment out the
entire line. Then recompile CPROF by the command

c -L32600 cprof

13. THE AS ASSEMBLER (CP/M Versions Only)

CP/M versions of C/80 come with AS.COM, an absolute 8080
assembler. AS is essentially the same as the ASM assembler under
Heath HDOS. This section gives a brief description of AS, to help
you write assembly language code to be included in C/80 programs.

To assemble a program, type a command of the form
as comfile,listfile=infile

where comfile is the name of the absolute file to be produced,
listfile is the £file on which to write an assembly listing, and
infile 1is the assembler source file. If no extensions are
specified, they default to .COM, .LST and .ASM respectively.
Listfile can be a C/80 device, such as LST:; if that device does not
respond to tabs, it is more useful to list to CON: and use ctrl-P to
obtain a hard copy. The command

as filename
is short for
as filename=filename

AS takes Intel 8080 mnemonics, upper case only. Identifiers
are up to 7 characters from the set A-Z, a-z, 0-9, .+ _ and S.
Upper and 1lower <case letters are distinguished in identifiers. A
label may be followed by one or more colons, which are ignored.

Constants can be one or two characters enclosed in single
quotes, or a string of digits, possibly with a suffix O or Q for
octal, H for hex, or B for binary. Default is decimal.

The symbols * and § represent the address of the current
instruction.

Arithmetic expressions in an address field are evaluated
strictly left to right. The operators are +, -, *, /, & (bitwise
and), and < (left shift). Parentheses are not allowed.

13. THE AS ASSEMBLER c/80 2.0 - 28 -

The following pseudo-ops are identical to the ones in the
CP/M ASM assembler: ORG, EQU, DB, DW, DS.

The pseudo-op "XTEXT filename" is the AS equivalent of the
C/80 "include" preprocessor directive. It includes the named file
at that point in the assembly. If no disk is specified, it assumes
the disk on which the current source file resides.

The pseudo-ops "LON ccc" and "LOF ccc" control listing.
"ccc" is a string of characters: L turns listing on (LON) or off
(LOF), C controls listing of lines from XTEXT files (default off),
and G lists all bytes generated by an instruction (default: 1list
just the first five).

1l4. UPPER CASE SOURCE FILES

Since the C/80 language depends heavily on the full ASCII
character set and on lower case keywords, a facility is provided to
allow C/80 source files to be prepared on upper case only terminals.
Upper case source files should contain the preprocessor command

#UPPER

as the first 1line in the file. This causes the compiler to
interpret the remainder of the file in upper case mode. In this
mode, the compiler translates each upper case letter to the
corresponding lower case letter. Upper <case letters, and the

special characters not available in the upper case ASCII subset, are
typed as follows:

The characters: ' are interpreted as:

\ |

A > e Z a L z
AA LI] Az Al‘. Z

In upper case mode, when the character " appears before a
non-alphabetic character, it is ignored. Note that * may be
displayed on some terminals and printers as an up arrow, and on
others as a caret or "hat".

The #UPPER command affects only the file in which it appear,
and does not have any effect on an #include file. If an #include
file 1is prepared in upper case mode, it must contain its own $UPPER
command. (Thus, PRINTF.C, which is not in upper case mode, may be
included in a file which is in upper case mode.)

The file UCASE.C, which is included in the C/80
distribution, is an example of an uppper case mode source file.

15. TRICKS AND INTERNALS c/80 2.0 - 29 -

15. TRICKS AND INTERNALS

Global arrays occupy space in the .COM [or .ABS] file. To
reduce the size of these files, it is best to allocate large arrays
at run time. This can be done by making them local to a function,
or by using alloc().

Internal assembly language routines invoked by C function
calls have access to all registers and need not restore their
values. '

If you want to fetch the value of a variable using in-line
assembly language code, put a statement consisting only of the
variable just before the #asm directive. C/80 will leave the
variable value in HL.

The C function call linkage is to push the arguments, as 16-
bit quantities, on the stack, and call the subroutine. It 1is the
responsibility of the calling program to pop the arguments off the
stack on return. Note that standard C pushes 1its argquments in
reverse order; this means a C/80 routine may not usefully be called
with a different number of arguments than it expects.

The compiler generates code using a primary register (HL), a
secondary register (DE), and the stack. Most operations are
performed by calling 1library subroutines, with the first operand
being HL and the second operand either DE or the top of the stack
(which is usually popped).

In order to produce code which 1is both space and time
efficient, variables should be declared static whenever possible,
and int in preference to char. Declaring a function argument to be
register will save space if the argument is used five or more times
in the body of the function.

When compiling using several source modules, it is handy to
define global variables using an included header file. But these
variables must be defined only in one module, and declared extern in
all the others. This can be accomplished through the following
programming trick:

In the header file, declare all the variables as follows:

$ifndef EXTERN
$define EXTERN extern
$endif

EXTERN int i, j, ...

Then, in the one file in which the variables are to be defined,
place

#define EXTERN
$include "header-file"

At runtime, the library allccates three I/0 buffers directly
below the operating system area, and then builds the stack downward

15. TRICKS AND INTERNALS c/80 2.0 - 30 -

starting below the buffers.

Note (applies to HDOS users only): Under HDOS, device
drivers may load below the overlay area when the device is
opened and closed. 1If a device driver spills over the 768
byte buffer area and into the stack, problems may occur.
Since HDOS provides no satisfactory method for determining
potential driver memory requirements, the runtime library
can not anticipate this problem automatically.

The problem will rarely arise, since most systems
have at most a single LP: or AT: device (in addition to
TT: and S8Y:, which are always 1loaded), and no single
driver is large enough at present to cause trouble. If
multiple device drivers are to be loaded it may be
necessary to leave additional room for the drivers. To do
this, increase the number 10 in the LXI B,l10 instruction
in CLIBRARY.ASM (around line 40), adding the number of
bytes necessary (1000 per extra device driver should be
generous).

16. COMPILER ERROR MESSAGES

When a C/80 program contains a detectable error, the
compiler will produce an error message, giving the source file name
and line number, and a description of what the compiler thinks the
error is. The source line is listed, with an arrow pointing to the
location of the error in the line. (The line is shown the way it
looks after all #defines have been expanded.)

These messages aren't always as helpful as one would like,
however. For instance, the compiler may be looking for a different
statement type than the one you thought you wrote. So the message
may not describe the error. Sometimes, the compiler detects the
error far away from the place where it actually occurred. For
example, leaving off a '}' deep inside a function will cause the
next to last '}' in the function definition to terminate it, at
which point the compiler will probably spew out dozens of error
messages as it tries to parse executable statements as declarations.
To find such an error, you may have to inspect many lines of code.

In addition, once an error has been detected, the compiler
is not always able to recover and continue parsing the remainder of
the program. So a single error will sometimes result in a large
number of error messages. Often, this is the result of C/80 trying
to parse statements as declarations or declarations as statements.
When you can't understand what some of these messages are
complaining about, you should fix the first error detected, and any
others you can easily locate, and then recompile ¢to f£find any
remaining ones.

Limitations on error detection and analysis are almost
unavoidable in compilers, especially when trying to cram a powerful

16. ERROR MESSAGES Cc/80 2.0 - 31 -

language into the limited space of a microcomputer. This section
can help by describing C/80's error messages and what might cause
them to occur.

bad label: Labels must follow the rﬁles for identifier names.

bad type: C/80 expected to see a type: short, long, char, int,
unsigned, struct or union.

can't subscript: You can only subscript a pointer or an array.
(Did you declare it?)

can't initialize union: Like it says.

can't find file: Did you specify the file and extension correctly?
Did you leave off the device? Also, when available memory
is almost exhausted, the compiler may be unable to
allocate the buffer space to open an #include file.

can't compute size: Maybe the arrays in the expression have been
declared incorrectly.

construct not permitted: C/80 does not allow nested type
declarations. For example, sizeof an abstract type can
not be used as a dimension in a declaration.

dimension missing: The only time an array dimension can be omitted
(or 0) is when declaring a function argument, or when the
dimension is determined by the size of an initializer.
Furthermore, only the last dimension of an array can ever
be omitted.

extra ; (ignored): This looks like a function declaration, except
function declarations are f(...) { ...} and you put a ;
after the). So the compiler took it out.

ifdefs nested too deep: Maximum nesting of §ifdef, $ifndef and #if
is 5.

illegal struct reference: Either a . preceded by something that
isn't a structure, or a ., or -> followed by something that
isn't a structure element. Remember that . 1is used
following things that are structures, and =-> following
things that point to structures.

illegal function call: The identifier or expression is not of type
function.

illegal expression - need 1lvalue: Some operations (& and
assignment, for example) require an lvalue, which is an
object with a memory address. This isn't one. (Things
that aren't lvalues include constants and expressions.)

illegal symbol name: The compiler wanted an identifier here.

improper argument: This argument is too large; probably a structure

16. ERROR MESSAGES c/80 2.0 - 32 -

or union. Try using a pointer to it instead.

internal compiler error: The compiler encountered an error in code
generation. This may indicate a compiler bug; please
report it to The Software Toolworks. You may be able to
proceed by simplifying or rearranging the expression.

invalid expression: The compiler is looking for an expression, but
this does not look like one.

line too long: Line longer than 100 characters. This error can be
caused when #define expansions make a line longer.

macro table full: Recompile using the -d switch to increase the
size of the #define table; see Section 6.

misplaced case: case not inside a switch statement.

? missing: (where ? is some punctuation character): C/80 expected
to f£ind that character and didn't. It inserted it and
continued, so if you really did leave that character out
at that spot, the compilation proceeded correctly.

must be a constant: The compiler looked for a constant or constant
expression, but didn't f£ind it. Remember that ?: is not
legal in a C/80 constant expression.

nested too deep: #include files can be nested no more than three
deep (a main file and two included ones).

no active whiles: A break or continue statement was not inside any
for, while or switch statement.

not a label: This construct needs an identifier which is a 1label.
You have used something which is either not an identifier
or something besides a label (like a char or int).

not a declared variable: The compiler wants an lvalue here. (See
"illegal expression - need lvalue" above.) Usually this
error means you have forgotten to declare an identifier;
all identifiers in C must be declared before use.

not a function: This identifier or expression is followed by a '(',
so it 1looks like a function call. But it's not of type
function.

not an address: In an initializer, you applied & to something that
does not have an address.

not a pointer: You applied * to something that is not a pointer.
(Maybe you applied it implicitly, 1like in a subscript
operation.)

operands and/or operator incompatible: This usually means you have
performed an illegal arithmetic operation on a pointer.
The only legal ones are pointer plus integer, and pointer
minus either an integer, or another pointer that points to

16. ERROR MESSAGES c/80 2.0 - 33 -

something of the same size. If the expression 1looks
legal, try rearranging the order of the operands. If you
know what you are doing but C won't let vyou (like
computing pointer & mask), use the (int) cast to fake the
compiler out.

output file error: Usually means the disk is full. You won't see

this for long, because the compiler will start dumping the
assembly language output to the terminal.

previously defined: This identifier has been defined before.

string space exhausted: Recompile using the -c flag to increase the
size of the 'string table (see Section 6).

struct table overflow: Recompile using the -r flag to increase the
size of the structure table (see Section 6).

symbol table overflow: Recompile using the =-s flag to increase the
number of symbol table slots allocated (see Section 6).

syntax error: The compiler was trying to find a declaration (at the
top level) but couldn't.

too complex: In an initializer, this expression was too
complicated, or was not a constant.

too complicated: A type declaration had more than 7 levels of
indirection (*, [] or ()).

too large for register: Register declarations may only be applied
to chars, ints and pointers.

too many active whiles: Well, congratulations. There's only one
table in this compiler that isn't expandable, and you have
overflowed it by nesting 20 whiles, fors and/or switches.
Simplify your program.

toco many cases: Recoampile using the -w switch to expand the switch
case table.

too many structs: At most 239 different struct types may be
declared.

type mismatch: You tried to initialize an identifier with a value
of the wrong type.

undefined struct name: This struct type has not been declared.

usage error: Indicates a violation of some C usage rule, 1like
passing a struct as a function argument.

warning: - =? op assumed: You are using the old style assignment
operator (like =&), and failed to leave a space between
the operator and the following operand. The compiler
assumes you mean =&, but wants you to make sure.

INDEX

INDEX

acknowledgements....ceeeeeees3
8llOC.ieeeeseeencnsnnannansea22
anachronismsS...eeeeeceeeeeesal?
- B o = [o N -
ArGV.seeecoceesacnasassasseslB
AS assembler.....ccecee...5,27
FasSm. ...ttt iii il l?
assembler...c.veeeneecenses.27
assembly linkageS...u.eeeee..29
assembly language...........17
AUtO..cceeeerventsnsanaaal2, 16

binary file....ivieeennena. 21
blankS.ieeeeeeeeeeecaoceeassasl5
DloCKkS . iiieieeneseeoennnnseal?
break....eieveeeeieeaceeass.l4d
buffers, I/0iuiceceeceeeesa22l,29

Cmanual...ciieneianeroeeeeael
CASE.ctoevesacancssosnnsensnsssasld
chaining....veeeeeeeeeneees24
channels......ciiviveeeneesa2l
character I/0...icvveeecees..20
character constants.........1l3
compiler switches............7
compiler, how to run.........6
compound statement..........1l7
conditionalS.eieeveceseeeeasalb
console I/0i.iverioneesceaseaalB
constant expression......13,17
constantsS....cieeeenceesasl3,lb
continue..........c.... ... 14
cprof.c.. i it iiicie el B
CtlCK.. ittt veenneneeaeeasa20
CErl-B.iuieeternensnennnneneas0
ctrl-C....cieeuennn ceeeseaa20

data typeS..eiecieecenes...8,11
declarations......vveeees. 11,17
decrement operators.........1l3
#define. ..o eiiiiinnennnasl?
device namesS.....ceceveee...18
distribution disk.eeeeeeeeoo.d
L Lo S Y

c/80 2.0

- 34 -

efficiency.cvieeeeeeenneeeaa29
end of line mappings.....18,21
#endasm.....co00ieeneennnna.l?
BOFiiitiinnnnnncecenneeaal?
ErrOr MEeSSAJeS.ceeassecseoeaeasll
BXBC . eoeeseesossnannansnsssd
exit..... ... it 20,22
expression, constant........l7
exXpressionsS.....veev000...9,13
extern........0000....11,12,16

false.iiiiieiieeeeeennnenanald
felose. i iiiieeiiennennnnnaana2l
file mode.veeiieenennnnnnena2l
file names..v.ieeeienenneea..18
file, binary.eeeeeeieeeeeesa.21
files, limit on open........21
10 + T
fopen.... i iiiiiiiiiiie .. 21
o 3 R Y
formatted output............22
fout. i iiiiiienneeennnenenasll
fprintf........ 0000000 17,22
ftell.. ...t iiiiiiinennnaaa23
ftellr. .t nennnneaa23

getc‘ ® 8 9 5 6 0 5 0 2 0 8 0 0 s 0 s e e e e e L] 021
getchar............00....19,20
global' ® & & 0 8 0 0 0 0 8 0 8 0 s 00 s 0 e lll

HDOS. ® 8 & % 2 5 % 0 0 ¢ o s 8 0 0 0 ® & 6 & o 0 @ 3
hexadecimal constants.......1l3
hints. ® & 5 6 6 & 2 0 06 06 0 0 ¢ 8 8 0 s 0 . & & & 29

identifiersiieeeeeeeenceces 15
identifiers, restrictions on24
increment operators.........l3
initialization............8,17
in-line assembly language...l7
internals..ieeeceeesonsnnses?9
interrupting program........20
B P I
I/O0, random file..veeeeeosaall
I/O, CONSOle..eueeieeenenanaaslB
I/0 redirection...eesessessald
I/0 buffers...ceeeeeeess..21,29

Kernighan and Ritchie........3

INDEX

language restrictions.......15
lexical conventions.........15
library, runtime..........4,18
limit on open files.........21
#line..cceveceescsncccsossasl?
Link=80.cceesscosoocrcenesesld
10Caleeesosonncssseasossonesall
logical device nameS........1l8

machine requirements.........2
Macro=80...ccceresseeneesest 24
MAiN.eeeeererssoossnnsnesssaslB
manual, Ceveecevocrooncsonnaeed
memory, allocating..........22
multiple source files.24,25,29

names, restrictions on......24
names. ® ® 6 9 % 8 0 8 9 % N S SO G llO , 15
NULLO ® ® 0 9 ® @ ¢ & * O & 9 " 0 e o0 * ® @ v o 0 17

octal constantS..eeeeeeseesald
OPEratOrSeeeesesvevoecossed,; 13
output, formatted...........22

patches..................5,7,8
POINterS.eeeecsceesvsnossssall
preprocessor commands.......1l0
printf....cccveeeneneess 17,22
PEintf.C.cvniiereeccernncenesd
printf.h...civieeeeecnananessd
profile, runtime..........7,26
program chaining............24
PUEC.creeosasosenncosossssesdl
putchar.....ceeeevveeeass19,21

random file I/0..eececeesnssl3
FEAA. e eeovooeosscsossasssnsns2l
register.....cceoeeeseeees12,16
relocatable code...coeessss.2d
restrictions on language....l5
restrictions on nameS.......24
runtime library..eeeceeecec..18
runtime profile....ceeee..7,26

scope of variables..........11
seek'.Ql"io..'.00!'...'.!'.23
=1-1-1 3N - D T R R L.
Sprintf.'!.v.".."'.'.'017'23

c/80 2.0 - 35 -

standard input...cceceecccs.19
standard output.e.eesseeeeessald

"statement tYPeS.cesececcsossl0

statement, compound.........1l7
StatementS..cecosesccsesosessld
StALIiC. e verececrososncansneeall
=1 ¢ [=3 = <R O P |
StAiN...cveevevrcveroncesosald
StAOUL. . v v eeeeonasoceassssesld
storage classes.......11,12,16
string constantsS.........0..13
SELriNgSeeeceeerseossosasaassasll
SErUCLULreSeeeeecesocsososnsasll
SWItCh..veveeeeeornsasaseeesald
switches, compiler....ceeeee.?

ELBCCeeeesoesosoassssossaesselb
EriCKS e e evoseocscossnnsenssedd
truth valueS..eeeeseeesssssald
typedef..cciiienrnennaaneeel?

unimplemented features......1l5
UpPpPer CaSe SOULCe..ecsssesss28
#UPPER.'C"..Q".Q.".II.Q"28

variableS..eecececesosessessll
variables, scope of.........1l1

While...e.oeieeeeooooosnssssssld
write.'l.'.."'..000.00'000.22

zeros, initialization to.....8

