2%

!

i

X

\.

ACCEL3 COMPILER FOR TRS-80 BASIC

(C) COPYRIGHT SOUTHERN SOFTWARE 1997

ACCEL3, including all programs and files provided, and all documentation, including this
manual, is copyrighted by the author and all rights are reserved. Caopying of
machine-readable material is permitted for backup purposes by the original purchaser only.
Copying of programs for other users is an infringement of the copyright, and is illegal.,

ACCELS is Southern Software’s latest compiler for TRS-80 BASIC. ACCEL3 produces mare
compact code than ACCEL and ACCELZ, it compiles faster, its treatment of FOR-NEXT
allows for badly-structured loops, it optimises more language constructs, and it supports
SAVE, LOAD, RUN, CSAVE and CLOAD of compiled programs. It will compile the full DISK
BASIC language, and will tolerate many nan-Tandy language extensions (though not all),

ACCEL3 occupies less than 5432 bytes. This relatively low size is achieved by a technique
of selective compilation. For instance 1/0 statements such as LPRINT or INPUT are not
transiated at all but remain in the compiled program in their source form, and are executed
by the resident BASIC interpreter. Statements involving INTEGERs and flow-of-control
statements (GOTO, GOSUB, RETURN) are, by contrast, translated to directly-executed 130
machine-instructions. Other, more complex statements are translated into calls to ROM
rovtines. ACCELZ selects more statements for translation than ACCEL, natably those
invalving STRINGs and SINGLE and DOUBLE data-types. ACCELZ alsa translates
references to array elements (even when the array has dynamic bounds), and it translates
more functions than ACCEL and ACCELZ, :

i

{

ym

ACCELSZ SUPPLIED ON TAFE

If you have purchased ACCELZ3 on diskette, skip the next four sections.

The tape supplied is self-relocating. This gives you the freedom to load the compiler
anywhere in memory you please. It alsa provides the freedom to make mistakes, so please
check all address arithmetic carefully. You need only perform the installation operation
oncey and then you can take your awn back-up copies an tape or disk, far subsequent direct
loa.ding.

Far both Model I and Model III you must load the tape supplied under Level? (not DISK
BASIC) using the SYSTEM command, and at the low cassette data rate. (On Model III spedfy
L at bring-up). It will load itself at locations 18944 and up, and then, under your control,
will relacate itself to any chosen location above this. The compiler will not run correctly
unless it is loaded in PROTECTED memory. Depending on how much RAM yau have, and on
what other machine-language programs you want resident, decide where you want to locate
it. The table overleaf gives addresses that are suitable if you want to load the compiler as
high in memary as passible, For the main text, we will assume as an example that ACCEL2 is
loaded an a 32K machines In this case your answer to the initial MEMORY SIZE? question
will be calculated as follaws-

49132 (Upper limit of memory on a 32K machine)
-5632 (Size of ACCEL3 compiler)

43520 = "SA", starting address of the compiler.

1) Gn Video Genie (PMC-£0) you dan’t get the MEMORY SIZE? prompt. However, on power up
the machine gives you the opportunity to enter a number after the first READT?. This is
exactly the same number referred to as "SA" in these examples,

2) If you are going to use TSAVE to make either a tape backup copy of ACCEL3, or to save
the compiled program, then allow a further 512 bytes of protected memory, i.e. set SA=43008
instead.

i

rm-'-"s

TABLE OF USEFUL MEMORY ADDRESSES

The first table gives values of addresses you can use in order to locate ACCEL3 as high in
your machine as possible, {assuming you have no other machine-code pragrams abave it).

16K K744 48K
32767 49151 45335 Top-of-menory address
7136 43520 59904 Start of ACCEL3, ard MEM SIZE .
26624 43008 59392 MM STZE, (leavirg 512 bytes for TSAVE)
7136~32767 43520-49151 990445535 BACKUP rarge to save ACCEL3
713628471 43520-45055 S9904-61429 Rur—tive routires

This second table gives address ranges you can use when compiling programs to sell on a
smaller machine, ACCELZ has a run—-time component of only 1524 bytes, and this table shows
you how to ensure that only the minimum amount of ACCEL2 resides in the end-user’s
smaller memary,

18K 32K Target machire size

31232-368B43 | 47616-53247 | ACCEL3 address range; on sour sschine
31232-3767 | 4761649151 | Run-time routires, in erd-user’s machire

LOADING THE TAPE SUPFLIED

1) MEMORY SIZE? 43520 (enter) {or wour value of "SA"),
RADID SHACK LEVEL II EBASIC

READY
2) SYSTEM {erter)
3) x? ACCEL3 {enter)

1) Tape 10adses.

%) x?/ (erter)

6) TARGET ADDR? (enter) (or arey chosen protected address),
READY

Notes,

1) The tape loading praocess at step 4 is a standard core-image tape load, and is subject to
the usual variability on volume, head alignment, etc, A pair of asterisks will blink on the
display. If no asterisks appear, ar if a C is displayed, then there has been a loading error,
Retry from step 2 with a different volume setting. (Southern Software tapes are recorded at
a lower volume than is generally common, since this gives a wider tolerance to fluctuations),
Two copies are supplied on the tape, in case one gets damaged. Damage is almost invariably
due to either a tape kink (a tiny fald in the tape) or to recorded noise, caused by
RESETTING the computer in the middle of a tape load. (Always stop the cassette player
before hitting RESET on a bad load),

o scaterm

2) Step 6 lets you relocate the compiler anywhere in protected memary. If you just hit enter,
then it relocates to SA, the answer to the MEMORY SIZE question. If you have other
machine code programs you want to hold concurrently in memory, then you may wish to
respond with a value different from SA.

3) On Video Genie, for (enter) read NEW LINE key.
4) Some other products, e.g, the EXATRON stringy floppy, actually modify the PROTECTED
MEMORY value. While not causing an error this can be very confusing, since it could cause

ACCEL3 to relocate to a different address than you expect, If in doubt use an explidt
target address at step &. :

SAVING A BACK-UP

You can now save your own, fixed—-location back-up copy of ACCELZ. This can be on tape,
disk, or wafer. It will be shorter than the ariginal file, but more important, it will load
under either Level 2 or DISK BASIC, and it will load directly at its final location, without
corrupting location 18944 and up. The loading process can also automatically activate the
compilaer.

A) Backup on tape,

Ta prepare a core image tape, on Lavel 2 or DISK BASIC, you will need either the Southern
Software utility TSAVE, or TRS TBUG. TSAVE is recommended, because it allows you to
wark in decimal, not HEX, and to check the saved tape, In this example the memory range
you need to save is 43520 to 49151

Using TSAVE, respond as follaws:

FILENAME? BACKLP (enter) {or wour own file nare)

RANGE? 42520,49151 (enter

RANGE? (enter) '

START? 43520 (enter) (start address, to activate compiler)
R (enter)

Tape records.s.
Reposition, ard twe C, to check tape.

This tape can be reloaded by}

SYSTEM (enter) ’

x? BACKIP (erter) (or sour own filenaee)

TSPE IDBdSOQO

1? / {enter) (FCCELD is now activated, see lster)
READY

Note. On Model III, under DISK BASIC, the SYSTEM command does not function correctly. In
effect you cannot load SYSTEM tapes while in DISK BASIC.

S —

B) Backup on Disk,

L Go into TRSDOS (or NEWDOS, etc,) from Level 2 by hitting RESET, (This will not destroy the
a stored image of the compiler),

= Type DUMP ACCEL3/CIM (START=43520,END=49151,TRA=43520) i.e, SA to SA + length of
ACCELS, (For Model III, these addresses must be converted to hex).

This file can be reloaded under TRSDOS by typing LOAD ACCEL3/CIM. When you enter
Disk BASIC after loading ACCEL2/CIM set MEMORY SIZE to 43520, or to your value of SA.
See also later section on LOADING THE COMFILER FROM DISK.

C) Backup on Wafer (EXATRON Stringy Floppy commands assumed).

The address to save is 43520, with length 5632, and with autostart 43520, Because 43320 is
not representable as an INTEGER, you will have to type it in modulo 45534, i.e. ag -22016.

So type (@SAVEN,-22014,5632,-22016

This can be reloaded (under Level 2 or DISK BASIC) by @LOADn

N

i

ACCELS SUPPLIED ON DISKETTE

ACCELZ is supplied on disk in relocatable format. You must use the disk appropriate to your
system, i.e. Model I {including Video Genie), or Madel III. If you have received the wrong
one, return it immediately for a replacement. The final relocated program is the same on all
machines, it is only the disk format that differs. Once installed, you can CONVERT the
saved file from Model I to Model III, but you cannot CONVERT the product disk. If you have
been supplied with a double-sided disk, then the Model I format is an the front (the labellad
side), while the Model III format is on the back.

1)Put the ACCELS disk in drive 0,
2)Press the RESET button (i.e, BOOT the system),
3)The COPYRIGHT notice will appear. Press "ENTER" to install ACCEL3,

$Answer the address relocation question. To load ACCEL3 at the highest suitable addrezs
on your system, simply hit ENTER. You need anly bother with an explidt address if you
have other machine-language routines YOu want to have loaded at the same time as ACCELZ,

« or if you are preparing programs compiled under ACCEL2 to run on a system with a smaller
{ memary size than yours,

(S)Note down the address at which the cmmputer says ACCEL3 is loaded. Use this as
‘ MEMORY SIZE under BASIC.

6)Remave the ACCEL3 disk and place in drive 0 your awn system disk. Use a TRSDOS disk
for preference. The installation process will work on TRSDOS and same, but not necessarily
all ather 0QOS’s,

7)Press ENTER. (Do nat REBOQT")

8)The system will now appear ta REBOOT, i.e. the operating system will load. If you have an
AUTO cmmand in effect, this will be displayed on the screen, but it will NOT have hbeen
executed,

A DUMP command will be executed and the relocated core-image file, named ACCEL3/CIM,

will be DUMPed on your system disk. The size will be slightly smaller than 5432, which is a
published upper limit,

10)The DUMP command has an incompatible format on many operating systems, e.g.
DOSFLUS. If DUMP fails at this point, or your operating system is incompatible with
TRSDOS and DUMP fails to appear, simply type the DUMP command by hand, using the
correct address farmats. Altermatively, do the DUMP on to a TRSDOS disk, and then COPY
or CONVERT the file to your DOSFLUS ar NEWDOSS0 disk, etc,

L

\

TS

LOADING THE COMPILER FROM DISK

To use ACCELZ on future reboots, you can type LOAD ACCELZ2/CIM under TRSDOS {or
E NEWDQOS, etc.) and then enter DISK BASIC in the normal way, spedfying MEMORY SIZE to
L = protect ACCEL2. Once in DISK BASIC you will have to activate the compiler, by branching to
L its first location, as described later., Although the dumped file, ACCEL3/CIM, specified a
TRAnsfer address, it‘s no good executing this branch under DOS (by using the file as a
command). When you enter BASIC the compiler would get deactivated. Unfortunately, loading
the compiler under DOS has the danger that the invocation of BASIC itself may cerrupt high
memary, destroying what you’ve just loaded. TRSDOS on Model I corrupts the top &4 bytes,
while TRSDOS on Model III is even worse, The DO command, if used, endangers the top 500
bytes, but also there is a chance that if the timer interrupt fires while BASIC is setting up
its stack, then even lower bytes may be carrupted. And of course other DOS’s may have
their awn quirks.

r 1) If on TRSDOS, on Model I, always leave the top 64 bytes unused, LOAD the compiler
under DOS, enter BASIC, and then activate it by branching to its first location.

2) If on TRSDOS, on Model ITI, da not risk loading under DOS, Instead enter BASIC (setting
; the correct protected memory address) and then load the compiler by CMD "I*,"ACCEL3/CIM"
{ which loads and branches to the compiler’s first location, thus activating it automatically,

\

ACTIVATING THE COMPILER

You’'ve got to this point in the scenario after first installing ACCEL3 from a Southern

Software tape or disk, and you may have made your own backup copy on tape, disk, or wafer,

If you are starting from scratch after a reboot, then, given a backup on tape, Model III disk,

or wafer, you should get into BASIC first, with memory correctly protected, (either Level 2

f BASIC or DISK BASIC). Naw load your backup and the compiler will be automatically
activated because!

1) From tape, / (enter) after tape load branches to the START address,
2) From disk CMD "I","ACCEL3/CIM" branches to the TRAnsfer address,
3) From wafer @LOADn branches to the autostart address,

Alternatively you may be running directly from the product tape, i.e. you loaded the tape
under Level 2, and you now want to tompile the sample program. Or, you may have loaded
ACCEL3/CIM from disk under DOS on Madel I, and you have now entered DISK BASIC. In
g both these cases you must first "activate” the compiler by branching to its first location,

Type
SYSTEM (enter)
X? /43320 {or gour value of SA)
READY

i

CREATING A SAMPLE FROGRAM

Despite the triviality of the following example, it does iliustrate most of the mechanics of
compiling a program, and of saving the compiled program.

10 ‘SAPLE

20 DEFINT I-J

30 FOR I=1 TO 1000:NEXT
40 AS = A$ + "xv

S0 PRINT J; As;
0J=J+1

70 IF K5 THEN 30

B0 STOP

List the program, check it, run it, and change it, if necessary, Once you have compiled it you
will no longer be able to EDIT it. Sg SAVE it on tape, or disk.

{ COMFILING THE SAMPLE PROGRAM

‘ Once ACCELS is activated you can execute its builtin commands which are BASIC keywords,
preceded by a slash (/). (Under NEWDOSS0 or DOSPLUS, precede the slash by a blank), To
compile, type!

/FIX (enter) (i.e, FIX progras in nachire—code)

ACCEL3 (C) COPYRIGHT SOUTHERN SOFTWARE 1982

116 98 141 (These three values are the charirg proaram size)
READY

-\

IIIIIITE

Use of the word FIX is intended to remind you that your BASIC program has now been
irreversibly converted to machine~tode. You cant EDIT it in any way, but you can LIST it.
Shown in comparison with the original, it will laok like this!

Before Compilation Compiled by ACCEL3
10 'SAMPLE 10 ¢

20 CEFINT I-J 20 DEFINTI-J:

30 FOR I=1 TD 1000$NEXT

40 AS = A$ + "¢

S0 PRINT J; As;

0 J=J+1

70 TF K5 THEN 30

80 STOP B0 STOP

Notes.

1) Lines in the program that have been converted ta machine-code do not appear in the
listing. (The actual machine—code itself follows the dangling !, but is unprintable).

2) I and J were defined as INTEGERS in line 20, and as a result the machine-code compiled
by ACCELSZ will be much faster than if they had been float variables (SINGLE or DOURBLE).

3) ACCELS compiles line 40, the STRING assignment, although ACCEL would not,
4) DEFINT, and STOP were not compiled, but the run-time snvironment is smart enough to

ensure that the BASIC interpreter is passed control for these statements, and that its
understanding of any variables they refer to is the same as that of the compiled code.

RUNNING THE COMPILED PROGRAM

N {eriter)
0x1xx2xx3oxx 4 xxxx {progran runs)
EREAK IN BO

READY

A second RUN will rerun the pragram. GOTO 10 or GOTO 20 will reenter the program
without resetting T to 0 or A% to null, GOTO 30, or a reference to any of the lines that have
disappeared will result in an UNDEFINED LINE NUMBER message. RUN it again, but hit
BREAK to interrupt the program before completion. Naote that this throws you into READTY,
without the BREAK IN N message. Type ?I]T}A$ to interrogate the current values of the
variables. CONT will not work after BREAK. In a larger program the BREAK key may
arbitrarily "take" in a compiled line, or in an interpreted line: In the latter case, CONT will
work. In either case the variable values are correct. Type J=2, and then GOTD 10 to restart
execution, with a modified value of J, Turn trace on by typing TRON, and rerun the program.
Only the uncompiled lines are traced. Turn trace off again with TROFF.

Once you have compiled a program, you can no longer use the commands EDIT, AUTO,
DELETE, NAME (renumber), or MERGE. This is because the machine-code in the compiled
lines may cantain bytes that are treated as control codes by the interpreter. So use of these
commands may cause an infinite loop, aor a machine rebaot. To get the machine back to its
normal, editable state, you must use NEW or CLOAD, or in DISK BASIC, LOAD or RUN
“program-name”, All of these destroy the compiled program,

=l

i
!
L

{

AN

IS

SAVING THE COMPILED PROGRAM

A) On tape!

DType CSAVE “A" (ar any ather file name).

2)Rewind the tape, and check it with CLOAD?

2)Type CLOAD, and RUN to reload, now, or at a later date.
Notes.

1)To CSAVE or CLOAD a compiled program, ACCEL2 must be active. Otherwise the results
will be unpredictable.

2)You can CSAVE or CLOAD an uncompiled program, with ACCEL2 active, without any
restrictions.

3)Yau must have exactly the same environment in effect when you reload a compiled
program, as when you saved it. ACCEL2 must be in the same place, you must be running
under the same operating system (TRSDOS, NEWDOS, Level2, eto), and you must have
specfied the same number of disk I/0 buffers.

B)XCn disk!

1’Type SAVE "PROG" (or any other FILESPEC).
2¥Type LOAD “FROG" to reload.

3)Type RUN "PROG" to load and run.

Notes,

)You must have ACCELZ active ta SAVE or LOAD a mmpiled program.

2)¥ou must have exactly the same environment in effect when ycu reload a program, as when
you saved it, ACCEL2 must be in the same place, you must be running under the same

operating system (TRSDOS, NEWDOS, etc.), and you must have spedfied the same number of
disk 170 buffers,

3)File error handling is done by the operating system, which may produce Messages, ..
FILE NOT FOUND.

8)The source file of a program, and the SAVEd compiled program are twa very different
things. It‘s easy to inadvertently SAVE a compiled program using the same name as the
source, If you do this, your source is lost for ever. As a disdpline, use "PROG/BAS" far the
source file, and "PROG/ACC" for the compiled file,

MEMORY MAP,

1)ROM AND SYSTEM CODE, This includes the 17K ROM supplied with LOW
P gour machine, the display and keuboard memory-napped 1/0, ROM
. = system control blocks, and the Disk Dperating System, if used. AND
The upper address lies between 17000 (under Level?) and 28000 SYSTENM
(under TRSDOS, depending on number of 1/0 buffers), CODE

2)BASIC PROGRAM. The program is compiled inplace by ACCEL3,
Depending on the nusber of comments and blanks, you may find
that wyour program either expands during compilation, or BASIC
contracts. An expansion is the nors. PROGRAM

J)SCALARS, This is a table of non-array variables, including
the names of the variables, their tupes, and their values
(except STRING values). For an uncompiled progras, the SCALARS
are destroved by RUN or CLEAR, and then rebuilt incresentally,
3s used. But compilation builds this table persanently, and SCALARS
cospiles references to it, This ares effectively becomes 3 part
of the program, and it is saved on tape or disk, when the

L progras is saved.
ARRAYS
M DARRAYS, This is a table of array variables, and it is built
s incrementally both by the interpreter and the run-tise routines
in ACCEL3. But ACCEL3 remesbers the address of each array, T
after the first reference to it.

FREE
S)FREE SPACE. This is what’s left betueen the top of the SPACE
arrays, and the bottom of the stack., When they meet, OUT OF
MEMORY results. Note that comspiled code may fail to dizaonose 4
QUT OF MEMORY correctly,

STACK

| 4)STACK. This is used for expression temporary results, for

§ calls within the rum-time routines, for FOR-MEXT and for

' GOSUB-RETURN. The compiled code generally uses less stack than
the interpreter, althouch neither uses 3 great amount.

STRING
7)STRING SPACE. This is where string values aoe It’s the same SPACE
size (the value set by CLEAR N) in either 3 compiled or an

f interpreted programs However its use is not identical, and
“ ACCEL3 will generally reduce the frequency at which qarbage
collection is necessary when strings of equal length are used. PROTECTED
RUN-TINE
B)RUN-TIME ROUTINES. These must be in protected memory, and ROUTINES

they must be in the same place when you atiempt 1o load and
rern 3 cospiled program, since the program contsins direct
references to this code, If you sell or give away compiled ACCEL3
programs to a third party, you must include these routines,

COMPTLE-TINE
9)COMPILE-TIE ROUTINES. These routines convert the BASIC ROUTINES
statements into machine-code. They are not necessary at
run-time, and indeed must not be sold or given to any third
partys It you compile 3 program on 3 48K machine to run on 3
1& or 3 machine, then you should arrange that these routines
lie just sbove 32768 and 49152 respectively, This will maxinise

L the space available to the running prograa. HIGH

T <outheshyIIIIII,

e e

N

gy

MORE ON COMPILER ACTIVATION

The TRS-80 Level2 code in ROM provides a table of transfer addresses through which flow
passes at certain key points in execution. ACCEL3 uses 3 of these to get control in the
following situations!

1) At the begirning of execution of each program statement,
2) At the begirning of execution of each direct commard,
3) After execution of RN, MEW, CLEAR, LOAD, and END.

When you branch to the starting address of ACCEL2 it enables these traps by putting its
own addressas in the transfer slots, Because ACCEL?2 then gets control on each command or
statement, it is able to support new commands of its own, which it chooses to distinguish
with a / prefix, Many other products use a similar technique. ACCELZ attempts to coexist
with these products by preserving the original transfer address, during activation, and
branching ta it, when it has finished its own wark. Other products you may want to use in
conpnction with ACCEL2 may nat be so kind, but may simply overwrite the ariginal transfer
address with their own, thus “disabling” any other product playing the same trick. If you
encounter this problem, salve it by activating ACCELS last, -

Inadvertent reactivation is ignored by the compiler. Hawever, once a switch has been
enabled, it would be a disaster if the ompiler were destroyed in memory while the switch
was still active, So ACCEL2 supports a command, /RESTORE, which will reset the transfer
values to their original values, i.e. will deactivate itself, Use this hefore you overwrite
ACCELS3 with another program. Qtherwise you can leave it active indefinitely. You can
switch back into TRSDOS, and then re-enter BASIC without destroying ACCEL3. Haowever
you will have to reactivate it, even if you use BASIC # ta preserve a compiled or uncompiled
program. You can also load the core-image of ACCEL3 from within BASIC, if you are running
under NEWDOS or Model III TRSDOS, provided it loads into protected memary,

At run-time ACCEL3 determines whethter or not the resident program is compiled by looking
for a first line consisting only of a single colon (i) So no source program may start in this
way. When ACCEL3I gets control at the beginning of a BASIC statement, the decision to
execute in-line code, rather than to leave a statement to the intarpreter is based on
detection of a colon, follawed by line-end, Once ACCEL2 has made the switch to in-line
code, this code runs uninterpreted through one or more statements or lines, until the next
uncompiled statement is encountered. INTEGER operations, GOTQ, GOSUB, and RETURN are
therefore uninterruptable, except by rebocat. However, non—integer assign, NEXT, array
referencng, SET, RESET, POINT, and PRINT, all contain a "fast" test for the BREAK key.
This throws execution back ta READY, and the program is not CONTinuable. This trap is not
affected by BREAK disable, and if you want to suppress it, then you shauld POXE byte SA+7

with a RETURN instruction (X'C%, dedmal Z01), where SA is the Starting Address of
ACCEL3.

CHAINING PROGRAMS FROM DIEK

ACCELZ2 allaws you to chain programs together, i.e. ta proceed through a sequence of
routines, each invoking the next from disk, and being averlaid by it, It dges not support the
NEWDOS20 option which preserves variable values aross RUN), The chained programs may
be either compiled or interpreted, ar a mixture, You will need to debug these segments in an
arbitrary order, compiling each one after it is checked out, and you will not want to change
the chaining program, when the program it chains to is compiled.

The best way to achieve this is as follows. Adopt the convention that source programs are
named e.g. PROG1/BAS, while the compiled version of the same program is PROG1/ACC,
Since you want your final set-up to run compiled, use RUN "FPROG1/ACC" etr. anywhere a
chaining statement appears in a program. While debugging, simply stare a double topy of
each source program, one as BAS and one as ACC, So initially the whole system runs
uncompiled. Now, when PROGI! is debugged, save its compiled version aver the top of
PROG1/ACC. Your total system will run as a mixture of compiled and uncompiled routines,
while you gradually check out and compile the various sections.

SELLING COMPILED PROGRAMS

One of the major attractions of a BASIC compiler is that it enables you to write BASIC
programs for sale which, with care and tuning, can be comparable in performance with
machine-code programs. Secondly, and no less important, a compiled program is very
difficult to steal. It can be copied, of course, since any file can be copied byte for byte, but
it cannot be modified, except by the owner of the original source BASIC, And of course you
dont have to release this when you sell a compiled program,

Although tape is an unpopular medium, it has a number of very significant advantages.
Cassettes are very cheap, and therefore expendable or replaceablae, They are small and light
to post, and will survive viplent handling, unlike diskettes which need a 1ot of protection,
Finally the TRS-80 built in SYSTEM command is part of ROM, and therefore consistent on
all machines, and it is powerful enough to load any number of core-image segments directly
into RAM, without restriction.

So if you can ship on tape, do so. To produce a self-contained tape you have to save the
three address ranges

3) Control storage, (includirg program size, memory size, ete).
b) The proaram itself, ircludirg its dictionary of scalar {ron-array) varizhles,
) The ACCELS rum—time routires which interface the runirg program to interpretive EASIC,

i

N

g

To save these ranges you will need Southern Software’s TSAVE utility (TBUG is not
satisfactory). Relocate TSAVE in a separate area of protected memory, or better, prepare an
absolute-address copy which will load on top of the compile-time routines, after
compilation is complete. Invoke TSAVE and give the following responses-

FILENAME? MYPROG

RANGE? 14512,16843 {save control storage)

RANGE? 16348%,16635% (save the compiled program)

KANGE? 43T290,45055 (save the rumrtime routires, i.e. SA to SA+1S34)
RANGE? (enter)

START? 46481 {(dumery start address)

R {record)

Notes.

D)Locations 16512 to 16843 contain control infarmation such as program start and end
addresses, dictionary size, MEMORY SIZE, etc. So when the tape is reloaded MEMORY SIZE
is automatically set to what it was when the tape was saved, Also, ACCELZ is automatically
activated.

2)163481 to 16635t means save the range defined by the values contained in these locations.
This includes the program itself, and its dictionary of scalar variahles, but not the array
variables.

3)To run the compiled program you must have the ACCEL2 run-time routines available, and
in the same place as when the program was compiled. These routines mnstitute the first
1336 bytes of ACCELZ, S0 the values in this third range depend on where you originally
decided to load the compiler.

M)If you want the final pragram to run on a smaller machine than yours, then you should
arrange that the 1536 bytes of run-time routines fall just within that smaller memory, See
the earlier table.

S)XOn Video Genie, use the ESCAFE key for upward arrow.
Whether on tape or disk, do NOT save the whole of ACCELZ, or you will be regarded as

infringing the copyright. Also, you must give an acknowledgement in your program
documentation that it was compiled by Southern Software’s ACCEL, ACCEL2, or ACCELS,

i seuthecmj

ey

N

T

On disk the situation is not so simple, The DUMP routine provided under TRSDOS (or
NEWDQOS) will only save a single contiguous core image, and it cannot save any range belaw
HEX'7000’s These two restrictions make it more difficult to sell a compiled program as a
single file on disk, What you must do instead is to SAVE the compiled program as described
earlier, as a single file, "PROG/ACC" say, and also to DUMP on the sale diskette the
core-image of the run-time component of ACCELZ, as a separate file, LOADER/CIM, say.
(Again, do not save the whole compiler). This core image is the first 1534 bytes of wherever
you have located ACCELZ,

As an example suppose you want to sell a program "PROG/ACC" to run on a 14K machine
(although you have a 32K machine). The full sequence is as follows!

1) The required location for ACCEL3 is 32768-1536 = 31232, Under Level2 set this as
MEMORY SIZE, load the original self-relocating version of ACCEL3, and locate it at 21222,

2) Return to TRSDOS and DUMP this version of ACCELS as a core-image file for your awn
use.

3) Enter DISK BASIC setting the NUMBER OF FILES to whatever will be required by
PROG/ACC, and the MEMORY SIZE to 21232 again.

4) LOAD the source for PROG/BAS, compile it, and then SAVE the compiled program as
PROG/ACC as described earlier, but anto a new master disk.

3) Return to TRSDOS and DUMP the run-time component of ACCELZ (just the first 153%

bytes) on this new master disk, as a file called LOADER/CIM, say. I.e. DUMP LOADER/CIM
(START=21232,END=32757), Use Hex addresses an Model 111,

6) This master disk will now contain two files PROG/ACC and LOADER/CIM, not the full

core-image of ACCEL3. TRS BACKUP is now a convenient way of making copies of this disk
for sale,

Your aperating instructions must now include the following directions to the end-user.

(Alternatively, you can automate the procedure with the use of Southern Software’s
Command-List processor, EXEC). : ‘

1) From TRSDOS load the run-time routines by LOAD LOADER/CIM.

2) Enter DISK BASIC setting NUMBER OF FILES to N (the number you used earlier) and
MEMORY SIZE to 31232,

3) Activate the loader by SYSTEM (enter) and #7 /21232 (or DEFUSR under Model II1),
4) Run the compiled program by RUN "PROG/ACC".

Cautions:

You may want to provide different instructions for Maodel IIT users, e.g. to load and activate
LOADER/CIM from within BASIC using CMD"I", Alsg, depending an which operating system

your end user will have, you may need to leave e.g, b4 bytes free at the top of memory, to
avoid overwriting,

i

A

Y

EXECUTICN PERFORMANCE

The aim of using a compiler is to improve execution speed. But the compiler cannot do better
than the machine on which the program runs. The 180 CPU chip is remarkably cheap, reliable,
and fast, but it lacks Mmany common operations (such as multiply and divide). These have to
be executed via calls to ROM routines which provide the required function (e.g. multiply by
succassive additions), and this is of course relatively slow, The complex table at the end of
this section is a guide to what features can be improved by compilation, and by how much. It
remains one of the programmer’s tasks lunfortunately), to match the requirements of the
problem to the capabilities of the underlying computing system. The extra effort needed tp
optimise performance could be thought of as a form of machine-code programming. It can
produce results comparable in performance with real assembler language coding, but it is
incomparably easier, because debugging is in BASIC, using FRINT statements, TRACE, etc,

The result of compilation is a program which is a mixture of BASIC statements and directly
executing 280 machine-code instructions, The 280 can execute branches and subroutine calls,
and can perform logic and arithmetic (excluding multiply and divide) on INTEGERSs, but not
on SINGLE or DOUBLE precdision floating-point numbers, Nor can it directly manipulate the
internal form of BASIC strings, although it can move strips of bytes from one variable to
another quite effidently, (The difficulty with strings is that their lengths vary

dynamically). Sa ACCEL3 translates Mmany statements to sequences of calls to routines in
ROM, or to its own run-time component,

In addition to the actual execution of the program operations, there is the "resolution” of
the variable names and line-numbers, Here a compiler comes inta its own. The BASIC
interpreter resolves each name by a seguential search through its dictionary (table of
variables), every time the variable is referenced during execution. In contrast the compiler
allocates storage for the variable once during compilation, and then replaces each compiled
reference by a direct machine address, rather than a dictionary search. Similarly each
reference to a line number in GOTO or GOSUB translates to a simple branch address,
whereas the BASIC interpreter has to search the program sequentially fram the top to find
the target line,

Cne effect of BASIC's two forms of sequential search is that the running time of a program
depends on haw large it is. The more variables you have in your program, then the longer the
average time taken to find each one, and the more lines in your program, the longer it takes
to execute each GOTO or GOSUB. The speed of the compiled code, on the other hand, is
independent of program size and number of variables. This means that it is quite impassible
ever to make a firm statement about relative performance, since you cannot say how long a
statement such as A = B + C will take under the interpreter, It depends on context, Similar
arguments apply to program size before and after compilation. Programs may contain
REMarks and blanks, BASIC names can be any length., After campilation all these
uncartainties disappear - the REMarks and blanks are removed (from translated code) and
the variable and line references are all two-byte addresses.

So the table that follows is in one SBNse very pessimistic. The timings were all taken on the
smallest program in which they could be measured, i.e. a simple FOR-loop. There were no
Blanks ar remarks in the source, and the names were all two bytes long. The performance
improvement measured far GOTO, for example, is 216 to 1. In a large program this would be
even greater. But the catch is that this figure may be irrelevant., Because the directly
executing operations are so fast, they scarcely contribute to the execution total at all, and
performance becomes dominated by those operations that are not compiled, e.g. READ, by
the out-of-line subroutines, e.g. Multiply, or by 1/0,

&

U,

L
&

{
¥

A

SPEED/SPACE Performance Table

Speed Inprovement(Ratio) Operztion Space Deqradation(Pytes)
INT NG DEL §TR mr SNG DEL SR
178 28 20 7.3 Assigrment (LET) -4 0 (] 0
3.5 3.6 3.6 3.5 Array Refererce (1-dim) 13 13 13 13
3.0 3.0 3.0 34 fArray Keference (2-dim) 12 12 12 12
K] 1.8 1.6 AD, R 4 7 7
23 2.0 1.6 b Conpare (=) 3 10 10 3
74 1.8 1.4 3 Add, Concaterate (+) 1 b b 2
1.5 1.5 11 Kultiply (x) b b 1)
1,08 1,17 1.02 Divide (/) b b b
77 70 84 2.3 Constant Kefererce]) 4 4
7.1 1.% FOR—MEXT) 3
111 4.8 4.8 POKE -1 S 5
10 405 306 SET, ESET '1 5 5
47 4,6 3.0 8.1 IF THEN B1LSE 3 9 4 3
3 4.3 3.5 ON eypression GOTD -2]]
S0 6.8 Sl 0N expression GOSUB (] 3 3
1.2 .01 1,03 1.2 PRINT simple~varisble -1 -1 -1 -1
81 5.0 3.7 ot 5 11 11
Flow of Conitrol
rals G070 -7
74 EOSUB/RETURN -18
Functions
inf irf inf inf VARPTR -3 -3 -3 -3
4 1.9 1.7 POINT 3 ? ?
k-:] 2.3 2.0 e 5 8 B
149 2.3 2.8 PEEK 0 3 3
Strirg Functions
3 ASC]
2B LEN 0
4.8 LEFT$ 1
4.7 KIGHT$ 1
b4 KID$ 2
s CHRs D
3% V1 0
16 HWas (]
74 LV 0
pos} 1SS 0
5.4 o]
16 Hos 0

g

Disclaimers~-

1) Absclutely na commitment is implied by these figures. They are subject to all sarts of
variability. E.g. the time to reference a constant depends on the actual value of the
constant.

2) Speed ratins for STRING operations depend on the lengths of the strings, whether the
string is a program constant (a literal), whether the receiving string is the same length as
the saurce string, etc. In measurement 4-byte strings were used.

3) Use of "inf" linfinity) in the table means that the ratio could not be measured
meaningfully. In a compiled program, the reference to VARPTR(X) is faster than the
reference to X,

4) Negative numbers in the space tahle mean that the compiled code ccrupied less space than
the original, These numbers are based on the assumption that one statement per line is
used. GOTOS000 occupies 10 bytes in BASIC (S for the line averhead, | for the GOTO
keyword, and 4 far the line number). In compiled code this becomes a single 3-byte
instruction.

3) When a program is @mpiled there is a one-time overhead of about 20 bytes. So small
programs will appear pessimistic, ompared with the table, Also scalar variablas become
“part" of the program when it is compiled, so use of ?MEM immediately after compilation
will give apparently pessimistic results,

&) ACCELS is very different from ACCEL and ACCEL2 in its treatment of both lines and
expressions. Because of the difficulty of taking meaningful measurements, the large ratios
should not be read literally, except to note that they are "large”, Significant differences
between ACCEL2 and ACCEL2 are that FOR-NEXT and 1-dim array referencas are slower,
while IF THEN ELSE, OUT, INP, SINGLE and DOUBLE assignment and the string conversion
functions (CVS etc.) are faster.

PROGRAMMING EXAMPLES

These examples illustrate spedfic advantages that can be achieved by compilation, The
first program allows you to produce musical notes from a BASIC program via the tape output
port. In its uncompiled form the program runs so slowly that the waveform generated sounds
like a series of blips, much like a Geiger—counter, Campiled, a top note of two octaves ahove
middle C (1024 cycles) is easily achieved.

The second example is much mare worthwhile, Every business application involves some
degree of validation of the keyed input. This validation has to meet two conflicting
requirements. First, it must diagnose any detectable errars immediately, and request the
operator to rekey, Second, although this validation code may be quite cmmplex, it must not
be so slow that it causes the lpss of any operator keystrokes, Apart from introdudng
errars, this has the effect of causing the operator to stumble, and lose cmnfidence, So in
i this second example we are not looking faor start-to-end speed-ups as the result of
; compilation. Rather, we are looking for better human factors.

. These sample programs are included on the tape or disk you received from Southern
Software. On tape they will be standard CLOAD files on the reverse (unlabelled) side of the
tape. On disk the initial boot-up menu will give an action code to install them on your
system disk. If other samples are included, then their running instructions will appear as

comments at head of the program.

o

,...

.
L

[

Lo

L

.

(A) SINGLE-NOTE MUSIC MAKER

The tape output is port number 255, You can drive this from a BASIC program by the
statement OUT 255,X where X is a value sent to the port. If the least significant bit of X
is 0 then the tape signal latch goes low. If it is 1 then it goes high. So by driving it
alternately high and low you can generate a square wave. The frequency of this wave will
control the pitch you hear, if you put the signal through an audio amplifier. The length of
the note is decided by how long you make the loop. The valume cannot be altered.

1)The tape output signal is on the larger grey jack.

2)A sguare-wave makes a nasty "electronic® sound. You can improve the sweetness by
putting it through a dircuit with a peor response to high frequency, e.g. 2000 ¢/s maximum,

3)The delay values which control the pitch do not give a uniform table, This is because the
inner loop has a non-linear overhead which itself depends on the frequency.

4)0n the Model III the timer is not disabled by CMD"T", The timer interrupts produce a
crackle, which can be eliminated by calling a USR routine to disable interrupts. This routine
is twa bytes long, X'F2’ (disable) and X'C9’ (return).

19 ’SD&E)DTEHJSICMKER,@I}ETNEWTPUTP[RT

20 DEFINT A-Z

30 DIH P(100),L(100)

0 "PITCH OF NOTES, FOR 3 OCTAVES, 128 TO 1024 C/S APPROX,
NC C£ED DEE F FE B GF A M B C
0 ’284,268,250,236,223,208,196,183,172,161,152,1’:4,134
70 '134,126,118,111,104, 97, 90, &S, 78y 73, 68, 63, 9
80 ', %, 58, 7,43, 3, % B, A, 29, 26, 24, 2
90 READ N 'MUMBER OF NOTES TD PLAY

100 DATA 23

110 "TAKE A PAIR OF SPARKLING EYES

120 "PIICH OF NOTE, FOR THIS TUNE

130 DATA 134,104,85,73,63,59,59,&3,73,85,85,73,104,118,?7,97,104,118,134,13‘!
140 LENGTH OF NOTE PLAYED, IN GUAVERS. NEGATIVE MEANS REST
130 DATA 2,1.2.1,2,1,4,1,1,2,1,2,1,4,1.1,2.1,1,1,1,4,-2
160 FOR I=1 TD NIREAD P(I)$MEXT ‘PITCHES

170 FOR I=1 TD NIREAD L(I):NEXT ‘LENCTHS

180 FOR CC=1 TO 2 ‘PLAY 2 FHRASES

190 FOR C=1 TO N ‘PLAY N NOTES

200 LL=0:LK=L(C) 'LENGTH OF NOTE, IN BUAVERS

210 R=1ITF LH0 THEN R=0iLM=—{M 'REST?

220 T=03K=P(C)IL=K:k=0

230 DUT 25,4 ‘OUTPUT SIGNAL, DDD=HIGH, EVENLDW

290 I=I+101IF I<L THEN 240 'DELAY, TO PRODUCE PITCH

Z30 L=L+H=R- 'SHITCH WAVEFDRM SICMAL

Z80 TF 110000 THEN 230 ‘PLAY OME DUAVER, (CHANGE THIS CONSTANT TO ALTER SFEED OF HMUSIC)
Z70 U=U+ITF LLAK THEN 220 ANOTHRR GUAVER NITHIN THIS NOTE?

280 NEXT C /NEXT NOTE

290 MEXT CC 'MEXT PHRASE

300 £

(B) INPUT VALIDATION

This program collects a Work Order spedfication for the hypothetical ACME freight
company, The first input field is a customer acrount number, validated for length, for
numerics only, and against a Modulus-11 check. When this program runs under interpretive
BASIC, a very fast typist can exit from this field and lose the first character of the next
field by keying the second character before the validation completes successfully.

The second field is a two-character US State code, checked against a table of the S0
possible values, This is a very commen form of validation. Other examples are commodity
type codes, insurance classifications, tax codings, etc, In this case, although an early cde
like CAlifarnia causes no problems, a search for e.g. WYoming causes a visible delay, and 2
or 3 keystrokes can easily be last from the next field, In effect the operator must stop and
wait for validation to complete before keying the next field, Compilation solves this
important human problem, though of course it makes littie differenca to the aoverall
throughput,

10 ’DATA VALIDATIDN EXAMPLE - FRETGHT ROUTING

; 20 CLEAR 1000
(30 DEFSTR A-H,5-7:DEFINT I-
40 DIM SC(SD) “STATE CODE

.- S0 GOSUE 330 “INITIALTSE
60 CLSIPRINT 210,"ACME FREIGHT COMPANY - WORK OROER™
70 FRINT B138,"ENTER CUSTOMER MUMBER: "iCHR$(30)
90 INFUT CUSTND
180 IF LEN(CUSTMD)C'S THEN FRINT 2970,"CUSTOMER NUHEER MOT S DIGITS";CHRS(20);:GOTD 70
110 00SUM=0
126FIRI=1 70 S
130 CN=IDS(CUSTMD,I,Y)
140 IF C¥C"0" OR CID"9" THEN FRINT £970,"NON-MRERTL DATA IN CUSTOMER MRMEER™;CHR$(30)} 6070 70
150 MODSUM=HOOSURHASCICN) 48 /CONPUTE MODULLS-11 CHEDK
160 T
170 IF 11XINT(HODSUM/11)CMODSL THEN FRINT 8970, "CUSTOMER MUMBER FATLED HODULUS CHEDI"CHR$(20) 5 460TD 70
130 PRINT B970,CHR$(30); “CLEAR EFROR MESSAGE, IF ANY
190 PRINT 8246, "ENTER DESTDMATIDN (STATE)! ORS(20),
210 DFUT STATE
220 FIR I=1 T0 50
230 IF STATE=SC(I) THEN GOTO 240 ‘FOUND IT
280 NXT
Z50 FRONT 2970,"INVALID STATE COCE™ jCHR$(30) 5 16GOTD 190
260 PRINT 8970,CHR$(30); ‘CLEAR ERROR YEESAGE, IF ANY
70 PRINT 8394, "ENTER GOCDS CLASSIFICATIDN "3
280 DPUT GO0DS
: 290 PRINT 2522,"END OF TEST CASE. HIT ENTER 0 RERLN, "3
300 INPUT X:GOTD 40
, 230 *INITIALTSATION
! 340 FOR =1 7D 50
: 350 RERD SC{I) ‘RESD IN STATE COOES
360 T
370 RETURN
380 DATA AL;AR,AS,CA,m,CN,WQDC,FL,GA,m'mglomym'MQKY’LﬁgﬁomfHA'H!HTQmOmvmlw9w'm9N7
mom,}\c'moOH'GK,CR,PA,RI.SC,SD,TN,TX'UT,W,UQ,M.W,H.NY

C

T

=

L

Y.

L

PERFORMANCE HINTS

Nothing the compiler can do will speed up 1/0 devices - disk, tape, printer, or keyboard, But
for processing limited by computation the follawing are good rules!

1) Always use INTEGER data types whenever possible, since these are the only data
elements the CPU can manipulate directly. You can qualify variable names with % to make
them INTEGERS, but better is to get into the habit of coding e.gs DEFINT I-P at the head of
each program,

2) Because FOR-NEXT processing has to be "defensive", in terms of handling badly-behaved
loaps, it transpires that a programmed loop (e.g. I=I+1:IF I<100 THEN GOTO n) is very much

faster, So it may be worth using such a technigue on aritical inner loops.

3) Avoid continually processing DATA with READ statements., Rather, READ the data values
once into an array and process from that, This avoids the very considerable overhead of
converting the DATA constants from character to numeric on every use,

4) There is a well-known execution "hiccup" caused by string space “garbage collection®,
(recovery of free space)s ACCEL2 does not affect the actual garbage collection process, but
it does attempt to minimise its frequency of occurrence, by avoiding string space allacation
if possible, In particular, if string sizes match in assignment, then a spectacular
improvement may result.

3) Keystroke polling, The key overrun example earlier showed how it was passible for
ACCEL3 to substantially improve the keying characteristics of a program, by reducing the
processing time between INPUT statements. However there is one situation where the
compiled program may appear to behave worse. Suppose you have a real-time simulatian,
such as a game like Space Invaders, where your program continually updates the screen and
periodically polls the keyhboard, using the INKEY$ function. If INKEY$ is null, you loop
round and perform the next update, If this update is both long and fully compiled, then it is
possible that the player may depress and release a key in between the INKEY$ polls. In
this case the keystroke is lost, Interpretive BASIC reduces the chance of this by polling the
keyboard at the beginning of every statement (whether or not it asks for input). The cost of
this poll is high - in a graphics test case, putting the poll into compiled code actually
slowed down the program by a fartor of 3. So it is omitted from compiled code, but included
in uncompiled statements. (In any case, it‘s not a perfect solution, Interpreted BASIC may
also lose keystrokes)s If you have a compiled program that you believe suffers from this
problem, then precede some of the compiled statements in the update loop with a colon (§), to
force the poll to take place more often.

‘ !A‘m\

L
|

{

N

i

NOEXPP OFTION

ACCELS supports a ompile-time option which minimises the level of optimisation. Code the
single line~-

REM NOEXFR

in front of the section where optimisation is to be minimised. You can turn optimisation
back on with!

REM EXFR
There are a number of reasons for using REM NDEXFR in front of part of a program!

1)If that section contains extended non-Tandy language, then this may be a way of having it
execute successfully,

2)The section may make use of ON ERROR GOTO. This may fail in an optimised section
because either the error may not be correctly diagnosed, or, if it is, the error line number
may nat be up-to-date, so RESUME will not work,

3)To minimise code expansion. Since ode expansion is nat great with ACCELZ, this use is
less important than it was with ACCEL2, Eowever, array references in particular give quite

a lot of compiled oode, and in a non-perfarmance-critical section you may prefer to have
these interpreted.

4)If the compiled program fails., This might be due to integer overflow, for example,
Preceding the program with REM NOEXFR may either make it easier to trace by running with
trace on (TRON), or may eliminate it, in which case it can be identified by limiting
optimisation to a section at a time.

REM NOEXFR inhibits compilation of all statements except GOTO, GOSUB, RETURN, FOR,
NEXT, ON expr, and IF THEN ELSE lalthough the statements after THEN and ELSE are
uncompiled). Alsa SAVE, CSAVE, and RESTORE are always compiled. All of the above have
to be compiled for the program to retain its integrity, However this does mean that if you
have an uncompilable non-Tandy language extension, you cant ever use it in an ON, IF, or
FOR expression. Also, if such expressions fail through INTEGER overflow, you waont
eliminate the problem with REM NOEXFER.

It is also inevitable that some non-Tandy language extensions will always fail. For instance
GOSUB X, where X is a variable containing a dynamically varying line number, would not be
understood by ACCEL2, and could not wark. The extensions that function orrectly rely on
the fact that ACCEL3 will pass a string of unrecognised bytes to the interpreter. Since
ACCELS maintains the run-time variable dictionary exactly as the interpreter expects, such
statements or expressions will work, if that‘s all they depend on. But ACCELZ does nat

maintain either the LINE structure of the program, nor the run-time stack, in a compatible
form.

If ACCELZ finds an unrecognised function reference within an expression it will pass just
that reference to the interpreter. However it assumes that the data type resulting from
that reference is SINGLE, This may be wrong, and in this case make sure the reference is
protected with REM NOEXPFR,

Sadtierty/jj)

//

i

L

I

COMMON PITFALLS

1) Many programs have logps that are simply there to delay the process, e.g. to make a
"ball" maving on the screen go more slowly. Either lengthen these loops when the program is
tompiled, or use a SINGLE variable FOR-LOOP containing a very slow operation, like
DOUBLE divide, which will swamp the compile speed-up.

2) 100 GOTD 100 is a common way of terminating a program to avoid the READY message

corrupting the screen. This loop cannot be interrupted by the BREAK key, and will need
RESET. Instead use e.g. 100 :GOTO 100

3) If you choose different MEMORY SIZE settings from the example given in the text, or if
you position the compiler elsewhere in memory, then be sure the address arithmetic is
correct, This is very error-prone. Work it out on paper first, and type it in from the written
CopY.

4) When you have compiled a pProgram, do not use the editing commands, since they will

produce completely unpredictable results. Always reset the machine state with NEW, LOAD,
or CLOAD.

S) It is common practice to use DATA statements as a source of variable data. I.e. after
running the program once you EDIT new values into the DATA statements for the next run.

This isn’t possible once the program is compiled. Instead you have to modify the source and
recompile,

' COMPILE-TIME MESSAGES

These are messages you may get when compiling a program with ACCEL3,

DM OUT OF MEMORY. Compiler could not complete,

FC DJ.EBN.. FI.NZTIDN. Disallm StatEﬂEﬂtg £.Qs DELETE.,

W. UNDEFINED LINE, Bad lire rumber refererced in GOTD, GOSUB, RUN, ete.
SN SYNTAX ERROR., Compiler cant parse the lire,

TH TYPE HISMATCH. STRING/rawmeric data mismstch,

W0 MISSING OFERAND, Check the suntax,

ST STRING FORMULA TDD COMPLEX. ACTEL3 restrictione EBresk the statement downs

The result of any error found at compile-time will be to leave the praogram in an

indeterminate state, Dont even attempt to LIST it. Note down the error line number, and
reload the original, ,

During compilation 3 numbers are displayed. These are put out chiefly as an aid to see haow
compilation is progressing., The first is the size (in bytes) of the original BASIC program.
The next 2 are the sizes of the program after the two compiler passes over the program.

PASS 1 builds the variable dictionary, and modifies some of the source statements, e.g.
DATA statements are moved to the back, It removes REMarks and redundant blanks, so the
program size will usually go down,

PASS 2 actually compiles the code, and is the one that expands the text.

i

southernyI

.

N

g

RESTRICTIONS

Experience of users of ACCEL and ACCEL? has shown that some programs working under
BASIC may fail in execution, or even in compilation. These failures were almost always due
to the program infringing one or more of the restrictions below, rather than as a result of a
compiler bug. So if you encounter a problem, believe that it is as a result of a restriction,
and identify the problem by tracing the program, inserting diagnostic PRINT statements, or
by breaking the program down into segments.,

1) No redefinition of meaning of names,

The names in your program must mean the same whether the pProgram is read globally as the
compiler sees it, or executed dynamically, as the interpreter sees it, The ambiguity applies
only to names that take the DEFined data type by default, Names like I% ar S$(3) are always
consistent., An example of a disallowed name is I=1DEFINT I!I={, The interpreter will treat
the first I as SINGLE, and the second as INTEGER. The compiler will treat both as
INTEGER, i.e, it sees DEFINT as applying to the whole program.

You are unlikely ever to do this sort of thing deliberately, but it can come abaut, e.g. if
CLEAR is used other than at the top of the program. CLEAR resets variables types to
default (SINGLE), and may therefore cause a variable tg change from INTEGER to SINGLE
without your meaning it to. A common error is-

10 DEFINT I-N
20 CLEAR 1000

2) Current line-number is not maintained.

Lines which start with statements that have been compiled to machine-code do not update
the current line-number. Therefore BASIC diagnostic messages may be misleading, TRON
will give an incomplete trace.

3} Error behaviour is not necessarily consistent,

Out-of-range arguments to string functions (e.g. MID$ offset and length) are rounded
modulo 236, Values out-of-range in ON statements are treated as zero, not errors.
Out-of-memary may not be diagnosed at run-time, and may cause a wild branch, or a rebact.
Your program may contain errors which BASIC does not diagnose, but which the compiler will
reject, for instance bad syntax in an ELSE clause which is never executed. Some error
diagnosis will be impredse, e.g. RETURN WITHOUT GOSUR is diagnosed as NEXT WITHQUT
FOR. Both are symptoms of an empty stack), IF (A=B) 100 is treated by the interpreter as
IF (A=B) THEN GOTO 100. ACCELS cannot handle this, although it will accept IF expr THEN
100, IF expr GOTO 100, or IF expr FRINT 4, etc,

INTEGER OVERFLOW is not necessarily diagnosed., It is rarely caused by addition or
subtraction, but may come about through multiplication, which IS diagnosed, but possibly
with the wrong line-number. E.ge A = PEEK{) + 256 * PEEX(I+1) is typically used to
calculate a STRING address, and will overflow if the address is in the upper half of memory,
l.es PEEK(I+1) is greater than 127, Correct the problem by faordng one of the arguments to
be SINGLE, e.g. 254.0 # FEER(I+1),

In general, programmed error handling G.e. the use of ON ERROR) is suspect. This is firstly
because the error you are trying to trap may nat be caught by the compiled code at all. But
secondly, even if the error is trapped, the current line number may be out-of-date, i.e. it is

=y

/l

the last uncompiled line. So RESUME may cause a loop. Actually, this problem is not as
severe as it sounds, because in practice ON ERROR GOTO is almost always used in
conjunction with 170 statements to detect FILE NOT FOUND, DISK FULL, INPUT BEYOND
END OF FILE, etc. Since 170 is nat compiled, the error trap will work.

= 4) A first program line of a single colon is disallowed.
s 5) Compiled programs may not be EDITED,

When the machine holds a ompiled praogram you may naot use the commands EDIT, AUTO,
[DELETE, MERGE, and NAME, and obviously these must not appear in a program you try to
(compile. (This gives an ILLEGAL FUNCTION diagnostic). In addition GOSUB should not be
used as keyboard (i.e, direct) command.

6) Operational differences,

[You cant arbitrarily GOTO or RUN any line of the compiled program, only those lines that
haven‘t been optimised. (To farce a line N to retain its BASIC line number, simply put RUN
N or RESUME N somewhere harmless in the program), BREAK may "take" in an interpreted
line, in which case CONTinue may work, Or BREAK may be detected by the ACCEL3 library,

in which case control goes to READY, Or BREAK may not take at all, e.g. in a tight GOTO
| loap. Then you have to reboot,

r 7) Saving and Loading compiled programs,

Compiled programs contain address references tg both variables and to code, These will only

work if the program is reloaded (from tape or disk) at exactly the same address, (The

run-time library must be at the same address as well)s In effect always use the same

environment as when the program was saved. SAVE and CSAVE can only be used in direct

: mode and may not appear in a ompiled pragram, SAVE and CSAVE of a compiled program are
r only supported for a literal file name, e.g, SAVE "PROG". SAVE expr will nat work. QOwing to
‘,‘ an incompatibility between NEWDOS80 and TRSDOS, a compiled program has to be spedally
refaormatted before SAVE or CSAVE, giving a significant delay on a large program. Also

, SAVE and CSAVE cause all variables to be cleared, and after LOAD and CLOAD you cannat
; LIST the program or execute GOTO to a line, until some other operatian has been performed.

8) Complexity of STRING expressions.

{ ACCELS is more restrictive than the interpreter on how complex STRING expressions can
be. This is diagnosed at compile-time, and if it ocrurs break the statement down into
{ separate statements,

9) Keybcard Poll,

Compiled code does not poll the keyboard, This may cause cause different operatar
characteristics, for instance a delay in accepting a keystroke, or failure to pause a scrolled
display. You can farce the poll by inserting a colon at the front of a line,

ACCEL3 is distributed on an "as is” basis, without warranty, Na liability or responsibility
is accepted for loss of business caused, or alleged to be caused by its use.

L

o

neyIIII

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf

