APL80

by Phelps Gates

EYBOARD

_\Tmhbo& 0 M ¥ w. ...L

-
N e
o B
&1{}
el
— b
o >
SR

TABLE OF CONTENTS

Keyboard FURGHIONS ... uvverveee e eaeiaeenr e iirenrnannas 4
(Y T+ 111 T~ P U 4
Character Stviveierreerrt v tiatrraiatrairriraenrinn.s 4
LaSSONS (DHSK] .. 'vrenvuesiueeeniaarrnenarerueaansrsossoranss,)
System COMMANDS +v.vrretrrrar s riraerrenrsrsinsernnnm vere D
Function Definition ... vt ie i et rrarreananns vonn 1
FUNGHON TADBIB &\ vv ettt ie et eie e tire e venreaannann.s 12
FUNCHON SUMMEALY .« .00ttt iiiiirrteaerreaesrnesanreaenas ... 16
BEANCIING « .« e v rrnrerrareesrnnrensatesnnsarserenennnns e 21

APLBO is a large subset of the APL language, adapted for the TRS-
80. Thesa instructions assume that you know APL orhave agcesstoa
manual which describes it: only the differences and limitations of
APLS0 are described here.

TRS-80" KEYBOARD FUNCTIONS USING APL 80.

Loading Tape Version

Load APLSO by typing SYSTEM. When computer replies *?, type

APL80 and start the tape. When loading is complete, type a slash to
entar APLBO.

Loading Disk Version

To load APLS80 from disk, just type APL.

Character Set

APLB0 redefines certain keys, to get characters not normally avail-
able. You can type all four arrows by pressing the [SHIFT] key to-
gether with the appropriate arrow. Also, you can type an underscore

by pressing the [CLEAR] key (APL80 uses this for a negation sign: see
befow),

The following characters are the same in APL and APLSO:
RN RREEEE S S WA
For some characters, APL80 uses substitutes:

APL: + ® [1 + A o - _AY
APLBD: % @ () $ & " - _p 3

For the rest of the APL character set, APLB0 uses shifted letters:

APL %X D §VVY ARO T IM2PERN IO L TR
APLBO: x z knvayoiagmiperwsh I btegtf

Since an unmodified TRS-80 doesn't distinguish lowar-case letters
in the video display, APL80 automatically prints a graphics dot at the
left of a shifted letter to distinguish it from an ordinary Unshifted letter.

4

The minus signs are alittte tricky: APL uses a raised bar for negative
numbers and an ordinary minus sign for negation. APL80 moves both
of these down one notch: it uses an ordinary minus sign for negative
numbers and a lowered minus sign ([CLEAR] key) for negation:
APL~3-6 becomes APL80 -3_6

Note that round parens are used for indexing (as in BASIC). Also,
simple arrows are used for Grade Up/Down: since these are monadic
and Take/Drop are dyadic, no ambiguity arises.

The f operator (Disk version only) establishes a format, It must
come first in a statement, foliowed by a vector with an even number of
elements, specifying the field size and number of decimals for
following numerical output. Note the ditierence in notation:

APL: 63 & OUTPUT
APLBO: 1623
QUTPUT
The format continues in effect until (1) a new f statement (2) an error
or system command (3) any character output

The d operator (Disk version only) chooses the dimension along
which a matrix manipulation is performed (square brackets in APL).

APL: +{1JMATRIX

APL80D: +/1dMATRIX (“plus-reduction on the first dimension”)
This applies to reduction, compression, expansion, scan, reversal,
and rotation,

Getting Started (Disk version only)

The disk contains five workspaces which explain some of the ways
you can use APL. They are:

LESSON1/APL LESSONZ/APL
LESSON3/APL LESSON4/APL
LESSQONS/APL

To run the first lesson, just type }JLOAD LESSON1/APL

System Commands

The following commands correspond to APL, with minor
differences:
JOFF JCLEAR)FNS)}VARS)SI)ERASE }RESET
In the variable list, any active local or dummy variables are marked
with an asterisk.

Tape Operatlons (tape version only)

JSAVE saves the active workspace to tape
JLOAD loads a workspace from tape
YCHECK verifies a saved workspace (like CLOAD?)
Workspace names are not used. During tape operations, each byte
is displayed in the upper right of the screen as it is written or read.

Disk Operations and Disk Version Commands

JSAVE filespec {its previous contenis are |ost)

JLOAD filespec

YCOPRY filespec (merges the workspace named by the filespec into
the current workspace—duplicate objects replace the corresponding
itemns in the current WS; individual objects cannot be copied)
JDOS returns to DOS READY. You can now execute DOS
commands (such as DIR or KILL). To return to APL80 with the work-
space intact, type RETURN,

YAUTO expression (puts a latent expression into the workspace: if
the workspace is now saved and loaded, this expression will autemat-
ically execute, unless you override this feature by holding down the
space bar during loading.)

JEXEC executes the latent expression (if any) in the current WS,
YTROMN turns on trace: function name and line number are printed
just before each statement is executed.

YTROFF turns off trace.

IPS ("print single”) makes APLB80 print numbers with 6-digit
precision. Only output is affected: calculations and variables
continue to have 15-digit precision. This will considerably speed up
output, especially if format is used.
JPD {"print double”} restores 15-digit precision in output.
YKILL filespec will delete a file from the disk. Any file (not just APL-
created ones) can be killed.
}JRAM enables the Peek, Poke, and Call functions {see below under
"RAM Interaction”}.

The READ, WRITE, RESTORE, UPDATE, and QUERY commands
are described below, under "“File Handling”.

Function Definition

The syntax of functions in APL80 is identical with APL, but the
mechanics of function definition ditfer: the commands)DEF and
JEDIT are used to create and to edit (or display) functions.

To create a function, use the }DEF command, followed by the
header of the function {Line Q). Examples:

JDEF RES «LEFTARG NAME RIGHTARG; LOCt; LOC2

JOEF NILADIC

JOEF VALUE ¢ MON X

The function name must not be in use already, or a DEFN ERROR
results.

To change {or display) a function which already exists, use }JEDIT,
followed by the function name (not the complete header):

JEDIT NAME

JEDIT NILADIC

YEDIT MON

The YDEF and })EDIT commands put you into definition mode, and
APLBO will prompt you for the first unused line of the function (Line 1
for a new function). Type the statement and press [ENTER], and it will
ask for the next line.

To leave definition mode, press [BREAK].

To display the function, type)? {and [ENTER]).

To type the function on a printer, type JH (Disk version only).

In the Disk varsion, you can avoid scrolling in long functions by
typing)P followed by a line number; APL80 will display 14 lines,
starting with that number. Example: }P21 prints lines 21-34,

To replace aline, type) foliowed by the line number which you want
to replace {(and [ENTER]). For exampte, typing)2 will replace line 2,

To replace aline, type } followed by the line number which you want
to replace (and [ENTER]). For example, typing)2 will replace line 2.
APL80 immediately deletes the line and prompts you for a
replacement. You can replace the header by typing)}0. The new
header must bave the same function name as the old one,

To delete a line, type) and the line number (as above). Then, when
APL80 asks you for a replacement, leave definition mode (with
[BREAK]) or ask for a display with)7,

Whenever you insert or delete a line, APLBO immediately
renumbers the lines in sequence, If you ever get confused aboutthe
numbers, just type)? for a display of the function with the currentline
numbers.

As in APL, errors are normally not detected until a function is
executed. Exception: syntax errors involving—{such as 3-3) orsingle-
number domain errors (1E99) will be detected during function
definition (and cause an exit from definition mode}.

In the Disk version, you can edit a function line by typing)E
followed by the number of the line which you want to adit. APLS0 will
display the line at the bottom of the screen, with an edit pointer above

it (in edit mode, the graphics dots appear below the letters, rather than
at the left).

To move the edit pointer, press left or right arrows. To insert taxt at
the pointer press |. To delete text at the pointer press D {hold down to
repeat). To replacetext at the pointer, press R. To cancel changes and
start fresh, press A, To complete the edit session and actually change
the function line, press [ENTER].

Pressing | or R puts you into insert/replace submode. To exit from
insert or replace submode and return to edit mode, press shifted @.

If a line exceads 64 characters, a length error results. Since lihesin
function displays replace double quotes with single quotes, you'li
need to replace the extra quote before completing the edit of lines
which have quotes within quotes. The header cannot be edited.

Limitations

Transcendental functions (including ™) are accurate only to §-
digits.

Matrix inverse, lamination, and the diagonal case of dyadic trans-
position are not implemented. Encode and decode are limited to
vector arguments. The arguments of | must be integers. Hyperbolic
functions are not implemented.

Multiple specifications {X €Y €9) must be split into two statements
(this also applies to implied multiple specifications, such as %X 9).
0';(& quad can't be typed in response to ancther quad {quote-quad is

).

No more than 32 functions ¢an be defined in a workspace, and a

function can’t have more than 255 lines.

Addltional Limitations In Tape Version

Arithmetic in the tape version is limited to 6-digit accuracy.

Scan, transposition, format, inner product, and cholce of
dimension are not available in the tape version. Catenation applies
only to vectors. Arguments of j (residue) may not be negative. The
right argument of Take/Drop may not be scalar, Arrays are limitad to 5
dimensions (versus 63 in the disk version}. The real-time ¢clock is not
implemanted.

The # and 3 Operators

8

The operator # converts numeric arguments to characters and vice
versa (like CHR$ and ASC in BASIC). Try, for example, #28 31150 or
#ABC',

In addition to the Level il control characters {except 14 and 15)
APLBO recongizes:

3 begin 16-zone print mode
5§ (Disk only) begin printing hard copy
6 {Disk only) randomize workspace {like RANDOM in BASIC)
7 begin 8-zone print mode
9 (Disk only) stop printing hard copy
11 (Disk only) restart random link {2100 will give 77)
15 begin 4-zone print mode
16 (Disk only} stop real-time clock
17 (Disk only} start clock
i8 (Disk only) reset clock to zero
#255 cancel zone printing
#-1 to #1023 are equivalent to PRINT @ 1 to PRINT @ 1023
Once begin, zone printing continues in effect for ail numeric output
until cancelled by #255.
If you call for hard copy {with #5) with no printer connected,
nothing will happen.
In the disk version, the monadic s operator has these uses:
s0 the time since sign-on {in 25 ms increments)
81 the "read pointer”: the number of the record which will be read
by the next READ command (see File Handling)
$2 the "update pointer": next record to be updated
s3 number of records in the most recently accessed file
s4 Line Counter; the number of the line currently executing. To
continue execution of a function after pressing [BREAK], type s4,
s5 number of free bytes in the workspace

HHEHFH R

Miscellaneous

Function and variable names may contain "." and “~"': THIS-IS-A-
MAME AND.SO.IS.THIS. Watch out: M minus N is “M_N"."M-N"is &
reference to a variable named "M-N".

All comparison operators may be used with character arguments
(> < $kz=); also Grade Up/Down. But not reduction.

70 yields a random number between 0 and 1.

(ENTER] always terminates a quoted string. To include carriage
returns in a string, use line-feed (unshifted down arrow).

Pressing [BREAK] will terminate function execution, even if the
function is awaiting input from a quad or gquota-quad,

You can temporarily freeze printed output by holding the space bar
down.

The operands of comparison operators must be of the same type
('A’=2 gives a domain error).

The input routine predigests your keyboard input before passing it
to the interpreter. This means that statements in function listings and
error messages may difter slightly from what you typed {usually just
in spacing, but try, for example, .00001%0.

The semicolon used to index multi-dimensional ararays does not
function as a strong detimiter. This means that parens must be used
around compound expressions used as indices: MAT((1+2);2).

Indices need not be integers: APL80 uses the floor, without
comment,

The residue function with negative left argument follows the APLSY
convention rather than earlier versions of APL.

When syntax errors occur, APLBO sometimes detects them at a
different point than APL and behaves differentty. Example: if FUNC
does not return a value, the statement FUNC+FUNC will result in an
error before the function is executed. APLBO also differs from APL in
its treatment of duplicate function/label/local variable names.

RAM Interaction Functions

The Disk version includes Peek, Poke, and Call functions. Toavoid
unfortunate accidents, these functions must first bo enabled with the
JRAM command.

Monadic u is Peek; the right argument is a RAM location (0 to
65535). The function returns the contents of that location.

Dyadic u is Poke: the left argument is put into the location given by
the right argument {example: 85u16000 puts an A onto the screen). It
returns a value: the contents of the location aiter the Poke (the same
as the left argument, unless you're Poking ROM?).

Dyadic # is Call: the right argument is put in the A register and the
address given by the left argument is CALLed. If returns the value of
the A register after the CALL. 51#65 prints "A”, for example. #4340 is
equivalent 10 INKEY$.

File Handling (Disk Version only)

10

You can move the contents of variables to and from files, using the
YWRITE, JREAD, JRESTORE, JUPDATE, and }JQUERY commands,
You can include these commands in a fungtion by spacing before
typing the command (this prevents the initial right paren from being
interpreted as a function definition command).

JWRITE VARIABLE filespec

The contents of VARIABLE are added to the end of the file. 1fthe
file does not exist, it is created, and the contents of VARIABLE
become the first record in the file,

JREAD VARIABLE filespec

One record {as written by one WRITE command) is read from the
file into the variable. Which record gets read is determined by the
current value of the “read pointer” {S1). When APLSO0 first |oads, the
read pointer is set to 1, and each READ command advances it by 1.

JRESTORE

Resets the read pointer to 1: the next READ command will read
the first record in its file.

YQUERY filespec

tells you how many records are in afile, and how big eachoneis.

A record containing numeric data requires 4+2d+8e bytes, where d is
the number of dimensions in the stored variable and e is the total
number of elements in it. Character data requires 4+2d+e bytes.

Since sach WRITE or READ command requires considerable
overhead, it is more economical to write large arrays to disk, rather
than many small variables, Files are limited to 127 records, with a total
length of less than 65535 bytes.

If the "read pointer” is beyond the last record in a file, an empty
vector will be read {you can use this as a test for end of file). Notice
that RESTORE doesn't affect writing: the YWRITE command always
adds records at the end of the file.

You can change the value of the read pointer (to access records at
random) by using s as a dyadic operator with 1 as the second
argument. For example: 3 s 1 followed by READ will read the third
record. Dyadic s returns the previous value of the pointer — if you
don't want it printed, just assign it to a variable: DUMMY 3s1

JWPDATE VARIABLE filespec

writes the contents of VARIABLE to the file, not at the end of the
fite, but as a replacement for the record pointed to by the “update
pointer” (s2). The update pointer isadvanced by one. The new record
must be the same size as the old one. You canchange the value ofthe
update pointer with dyadic s, with 2 as right argument {for example:
452 prepares to update the fourth record). RESTORE also resets the
update pointer; it's exactly equivalent to 1s1 2. if the update pointeris
beyond the end of the file (or if the file dossn't exist), UPDATE is
equivalent to WRITE.

The following example shows how file handling works:

A€l

B«123

C&'HELLO'

JWRITE A FILE/DAT (file created: first object is 3)
JWRITE B FILE/DAT

JWRITE C FILE/DAT

}RESTORE

JREAD X FILE/DAT (X contains 3)

381 prepare to read third record

YREAD X FILE/DAT (X now contains 'HELLQ’)

}JREAD X FILE/DAT (X contains empty vector—
endfile)

UP«4 56

252 prepare to update second record

JUPDATE UP FILE/DAT

231 now read updated record

JREAD Y FILE/DAT {Y contains 4 5 8)

Monadic

— 0~ >
'c-)...

* Sl e W~

* <) —

SUUDODUDO DO =0

Symbol
APL APLBO Dyadic Name
I .J M Absolute Value
+ + D Add
A & D AND
 — - Assign
— — Branch
y y Catenate
|' . H Ceiling
Chrs { ASC
0 .0 Circutar

Combinatorial
Comment
Compress
Deal

Decode
Divide

Drop

Encode

Equal

Expand

Exponential

12

!

»
-
4

APLBO

Monadic
Dyadic

—
f—
—

'@ Xx —m o @INA

NV -«

——
—t o i
-

'zAll'

XrmTo

TR

SU0OUUODUDUU guo2gg====22

Factorial

Floor

Grade Down
Grade Up
Greater Than
Greater or Equal
tndex Generator
Indaxing

Index of

Inner Product
Label

Less Than

Less Than or Equal
Log to a Base
Maximum
Membership
Minimum
Muitiple

NAND

Natural Log
Negative

13

!

APL

:

Monadic
Oyadic

2Z =<

:'<,gg'

D0,

" XoDD-T~ -

oom

BgO —» 'xdee—d~|. OEO. <KX

COOZ0

vk i Holok 4 4 Job dolol 4 44

NOR

Not

Nol egual

OR

Quter Product
Quad

Quote Quad

Random
Ravel
Reciprocal

Reduction
Reshape
Residus
Reversal
Rotation
Shape
Sign
System
Subtract

Take

Transposition

Transposition

Format

Using APL (Note: Some of these functions are not implemented in
the tape version).

The simplest way to use APLBO is just to type an expression {and
[ENTER]). APLBO will evaluate it and print the result, For example, try;

2+2

2%3
3 . X 4 (use shifted X key—a dot will appear)

7.5 {press [CLEAR] key for underscore)

2*10

APLB0 will also operate on groups of several numbers (called
*VECTORS'). For example, try:

234+101112

5%123

2*012345

Use a space to separate the members of a vector. Note what
happens if you type: 23 + 1 2 34. The vectors must be the same fength
(or one must be a single number).

One slightly tricky thing about APL80 is the way it handles minus-
signs. To subtract numbers, use the underscore sign (press [CLEAR]
key): 5.3, for example. Use an ordinary minus sign to indicate
negative numbers:

-5 +10 20 30

10_-30

3+-10

This takes a little getting used to.

Variables: like BASIC, APLB0 can store data in variables: Variable
names may abe any length {up to the length of the input line). To
assign a value to a variable, use the left-arrow (shifted ¢ key): Try, for
example:

Vare-12345

Var*2

Var_Var

A value error results if you use a variable name which has not been
assigned a value.

15

Commands

APLS0 recognizes several system commands, all preceded by a
right parenthesis. If you want to consult the disk directory, kill a file,
etc., type JDOS

To return 1o APLBO from DOS, type RETURN,

JERASE (with a name} will erase a variable or function,

JCLEAR erases everything..you start fresh with an empty
workspace.

JSAVE and)LOAD save and load workspaces to and from the disk
They must be followed by a valid TRSDOS filespec.

)81 (*State Indicator') lists any functions which have been stopped
{by an error or [BREAK]) with the number of the line which was about
to execute. JRESET clears the SI: Numerous interrupted functions
use up memory and slow down execution (eventually a depth error
will ocour),

Operators

We've already met + / _ (Watch out for those mtinus signs!} and X
{Shifted X). Also * (exponentiation}, Additian, subtraction, etc., are
called ‘Dyadic’ operations: they involve two numbers, one before and
one after the operator. APL80 also has 'Monadic' operators, which
use only one argument, after the operator: for example, |5 equals 120
{factorial 5}. % can also be monadic (%5 equals .2, the reciprocal of 5).
So can + and . (identity and negative) and .X (sign). Monadic * is the
exponential function (E to the Nth). Remember to press [SHIFT]
when you type an operator: Otherwise APL80 thinks you are typing a
variable.

Order

in APL, there is no hierarchy of operations—it doesn’t do
multiplication before addition, for example. Expressions are
evaluated from the right: For example, 2 _X3 + 10 equals 26,,.two times
(three plus 10). This takes a little getting used to, but it beats worrying
about whether ‘and’ is performed before 'or', efc...in APL, you just
evaluate from the right: 2.X3+10_8 is 2.X(3+(10.9}}.

If you want to, you can force any order by using parens.,.(2.X3)+1¢
is 16.

Index-Gen

16

The monadic operator .} (index Generator} produces a vector of

numbers. i3 is 1 2 3, for example:
.10 is a vector of 0 numbers, called an ‘empty’ vector,

Display

To display, for example, the function ‘SQR’, type
YEDIT SQR

APLBO willimmediately display line 0 (called the header). Toseethe
rest of the function, now type

¥?

You can get hard copy by typing

YH {unshifted H)

(Don’t do this unless you have a printer ready...) After the display
APLB0 types the next line number. It's asking you to add a line to the
function. If you don’t want to, press [BREAK] to leave function mode.

Some functions are like program...you just type their name and they
execute. (These are called 'Niladic’). Other functions are like
operators, and require arguments: A ‘Monadic’ function has one
argument, a ‘Dyadic’ function has two.

The variable names in the header of a function are called 'Dummy
variables...they just tel! APLBO (and youl) what the function type is,
and how many arguments it needs. You can use any names you want
{they shouldn't dupiicate function names}.

Reshape

The reshape operator {.P} constructs an array whose dimensions
are given by the first argument, and whose elements are taken from
the second argument.

The result will have as many dimensions (up to 84) as there are
numbers in the first argument. If the second argument isn’t long
enough, APL80 goes back to the beginning and starts over.

Reverse

Reverse {.R) is an easy one—note that the reversal occurs on the
last dimension (the columns).

Product

The notation A”..X8 (‘outer product of A and B’} means an array
generated by muHiplying every element of A by every element oif B.
Any of the operators of lesson 1 may be used: A”.+B will add each
element, A" =tests 1o see if they are gqual, etc.

The notation A+ XB ("inner product’ of two vector means ‘multiply
each element of A by the corresponding element of B, and sum the
resulting vector’. Here too, any of the operators of lesson 1 may be
used—4471 different combinations are possible.

17

Quads

The symbol .Q ("QUAD’) corresponds to BASIC INPUT ..try trying:

20.P.Q

You don't have to type a number in response...you can type an
expression (2+2), a variable name (it must exist!), or even a function
which returns a value..or a character string, in single quotes, .M
{'Quote-quad’) is similar, except that (1) no prompt is displayed, and
{2) what you type is treated as a character string.

Semicolon

You can use ’;' to print several things on the same line...this is in
addition to the use of *;’ for multi-dimensional indexing.

One quirk in the tape version. You can't use "' in lines which uge
indexing—APLS0 isn't quite smart enoughto tell that you're not using
it as an index separator.

Tape-Drop

A 1P B ('A take B’) selects A elements from the vector B. If B isn't
long enough, it's padded out with zeroes (blanks for a character
string). The elements are taken from the start if A is positive, from the
end if A is negative.

A 4 B {'A drop B’} is the opposite—it drops A elements from the
beginning or end.

Take and drop also work with multidimensional arrays. The left
argument must be a vector, with one number for each dimension of
the array, telling how many to take (or drop) from that dimension.
Take/drop do not work with scalars, in the tape version.

Encode

18

Encode: {.T) switches from one number system to another. The left
argument is a vector containing as many digits as we want in the
answer, the right argument is the number which we want to convert: 2
22222T21 yields 010101 (21 bage 2).

i the left argument is too short, any overflow will be lost. {(You can
put 0 as the first element in the left vector, in which case any overflow
is put into the first element of the resul.

The numbers of the left argument need not be the same—to convert
100 inches to yards/feet/inches try 0 3 12, T100.

Decode

Decode {.B) works like this:

Think of the right argument as a vector of digits in a number system
whose hase is given by the leftargument...the resultis the value of the
number with those digits:

16.B7 15 15 15 gives 32767

For a mixed number system, use a vector on the teft, with the same
number of elements as the vector on the right (the first may be a
dummy}. How many seconds are there in 2 weeks, 3 days, 4 hours, 7
minutes and 12 seconds? 1724 68060.B2347 12

Catenate

A comma adds one vector onto the end of another-—this is cailed
‘Catenation”. Try: 123,456

Index

Just as in BASIC, you can use parentheses to extract elements from
as array.

it an array has more than one dimension, use a semicolon to
separate the dimensions: Mat(2;3). A notation like Mat {:4) mueans 'all
the items in the fourth column’.

You can use indexing on the left of an assignment arrow, to chango
individual elements of any array.

Rotate

Dyadic .R rotates the right argument left as many places as
specified by the left argument: Try:

3.4..10

-3.R.110

Multi-dimensional arrays are rotated along their last dimension
{columns).

Grade

+ (grade up) and J (grade down) are monadic functions whichtell
the order in which you would need to select the elements of a vectorin
order to sort them into ascending or descending order. They are
usually used in conjunction with indexing.

19

Shape

Shape {.P} is a monadic function. It yields a result which tells how
big an array is—a vector of one number for each dimension: {Don't
confuse this with the dyadic .P—Reshape).

#1234, for example, yields 4.

To find the number of dimensions in an atray, justuse .Ptwice: .P.P
mat. A slightly tricky detail—APL distinguishes between a single
number, called a ‘Scalar’, which has no dimensions (.P3 yields an
empty vector), and a vector of 1 element, which has one dimension—
you can construct a vectar of ane element with reshape.

Ravel

The comma ¢an be used as a monadic function to convert an array
of any number of dimensions into a vector.

If the argument is a scalar (0 dimensions), it is converted into a
vector of 1 element.

Index-of

We met monadic .l {Index Generator) already.

. can also be used as a dyadic function, to tell where the second
argument occurs in the first argument (this is called 'Index of') 9346
1 4 yields 3, because 4 occurs in the third position in the first
argument. [f the second element doesn’t occur in the first, it yields a
value one greater than the length of the first argument.

If the second argument accurs more than once, only the first
occurrence is found.

Membership

29

For each element in the left argument, .E checks to see if it is found
in the right argument. If it is, it yields 1, if not, 0.

The result has the same number of elements (and dimensions as the
left argument).

Try:1E123

Branching Functions

One of the aspects of APL which can be confusing at firstis the way
it handles branching: the right arrow (=), equivalent to GOTO in
BASIG. A non-conditional branch is no problemi—it works just like
BASIC. For example:

JDEF INFINITELOOQP

1: ‘PRESS BREAK TQ STOP’
2: =¥
Qr you can use labels:
}JDEF SQUAREROOT:X
1: GETMORE:'ENTER NUMBER’
2: X&q
3: 'THE SQUARE RCOT OF ;X;'IS";X* 5
4: 2 GETMORE

Note the use of X as alocal variable in this function: this allows us to
call the tunction without affecting any value which we may have
stored in a variable called X. The shifted g (for "quad”) prints a prompt
and waits for input (APLL]).

Conditional branching is a little trickier, since APL doesn’t have
operators which correspond directly to IF or THLN in BASIC (or
FOR..NEXT). Of course, you don't have 1o use branching as much in
APL as in BASIC. Since APL can operate direclly on arrays, a smghe
APL line can often do the work of a whole program in BASIC. 1-or
example:

(ig)“."i8
does exactly the same thing as the following BASIC program:

10 FOR X=1TO 8

20 FORY=1TO 8

30 PRINT XY

40 NEXT Y

50 PRINT

60 NEXT X

But sometimes you do have to branch conditionally. Gonsider the
following function, which gonoerides Pascil's triangle of binomial
coefficients:

JDEF TRIANGLE

1: Ke-1

2: ANOTHER:K#K+1

3 1L (KK

4: —» ANOTHER

This will print Pascal’s triangle, all right, but il worr'l stops. i just
keeps printing lines until the numbers get too big and you gul o
DOMAIN ERROR,. Is there any way to print only the firstten row: ' Wo
need to lost K and loop back only if K is less than 10, and 1 do this, we
have {0 know the: nuides for branching in APL. There are threo cases:

1. Theline nmber {or tabel} exists in the current function. Control
simply passos to il fine: this is the simplest case, and all the
examples so Lw have been like this:

21

22

2, Theline number doesn't existinthe function (-»0 or 3999 or=» -1
or just=¥, The function terminates: this is equivalent to RETURN in
BASIC.

3. The expression to the right of the arrow is an empty vector {i0).
No branch occurs; contral just passes to the next line.

In the TRIANGLE function, for exampie, we could change line 4 to:
4: ANOTHER x K € 10

Now if K is less than 10, the logical expression K €10 will have the
value 1 {true), and the expression in line 4 will have the value
ANOTHER x 1, whichequals ANOTHER. On the other hand, if i is not
less than 10, the expression K &£ 10 has the value 0 (false), and the
function branches to ANOTHER x 0, which equals 0, and so the
function terminates, by rule 2.

We could also write line 4 as:

4: ANOTHER x i K £ 10

If K is less than 10, this branches to ANOTHER x i 1, and since i 1
equals 1, this is equivalent to -» ANOTHER. IfKis not less than 10, we
get

ANOQTHER x i 0
and since multiplying an empty vector by anything still gives an empty
vector, this is equivalent to =i 0. N¢ branch occurs (rule 3}, but since
there aren't any more lines in the function, execution terminates
anyway.

This works fine mathematically, but it doesn't make your programs
any easier to read, and it's a nuisance to have to figure all this out
every time you write a function. One solution would be to define a
tunction to figure it out for us. For example:

\DEF BRANCH «LABEL IF CONDITION

1:BRANCH« LABEL x i CONDITION
Now we can write line 4 of the TRIANGLE function as
4; ANOTHER IF K <10
which makes a little more sense. The function IF computes the proper
destination for the branch, depending on the value of K. Note that we
don’t have to call it IF; you could call the function PROVIDED. THAT
or Sl or whatever. It's a dyadic function, requiring both a left operand
(the label) and a right operand (the condition}, and it returns a value
{the appropriate destination).
You can also do it backward, and define a function called UNLESS:
JDEF BRANCH%LABEL UNLESS CONDITION
1:BRANCH«LABEL x i n CONDITION
and rewrite the TRIANGLE function as:
4: ANOTHER UNLESS K >9

Instead of using multiplication, you can define the IF function using
the compression operator.

1:BRANCH«-CONDITION/LABEL

MODIFYING DISK VERSION

To modify APL 80 for lower case, different printers, or
RAM interactive functions, load the workspace called
CUSTOM/APL and invoke the function to make the change.

To save changes in APL 80

1.) Goto DOS
2.) Type DEBUG and press ENTER
3) You will automatically go into DEBUG
4.) Make your changes in memory
5.) Type G402D and press ENTER to return to DOS
6.) Type DEBUG (OFF}) and press ENTER
7.) Type TAPEDISK
8.) From Tapedisk, type:
F APL/CMD:0 (6000 9AFA 71A3)
and press ENTER
9.) Type E and press ENTER
10.)You now have a new version of APL80 with the name
APL instead of APLBO

JSAVE INST/APL

APL 80

APL, the elegant computer language, comes
with all these features:

Self-teaching lessons 15 digit accuracy

Over 60 functions 11 control characters

Random and sequential file handling

Easy to learn, easy 1o use and very powerful.
The casseétte version has no iessons, 6 digit ac-
curacy, fewer functions and no file handling.

6 SOUTH ST, MILFORD, N.H. 03055 (603) 673-5144

