B8

¥

Talnnae"s

.n,
o |
W e 1 _

|

)

un
)

e

.......

—-:_ i

N Tt
-y L _ -—muquu
__.._\ _ -.: .

7)
oy

=i .
_ “ J_Lﬂ-w-

A

6

No.

[] w__.l,_rl - ..H‘._l:

L34

T e ey g e e yay

=

3

¥y

iy
&

Volume 7.

3t3
:u

UTILITY FOR TRS-80 MODEL
4 AND LS-DOS 6.3.1

A'MUST HAVE' FOR ALL
LS-DOS 6.3.1 OWNERS.

DR. PATCH MODIFIES LS-DOS 6.3.1 TO DO
THINGS THAT WERE NEVER BEFORE POSSIBLE.

COMPLETELY SELF-CONTAINED - MENU-DRIVEN
FOR MAXIMUM USER CONVENIENCE.

FAST & SAFE - EACH MODIFICATION IS EASILY
REVERSED TO NORMAL DOS OPERATION.

DISABLE PASSWORD CHECK IN FORMAT/CMD
FORMAT DOUBLE-SIDED AS DEFAULT
FORMAT 80 TRACKS AS DEFAULT

DISABLE VERIFY AFTER FORMAT

CHANGE 'DIR' TO 'D'

CHANGE 'CAT' TO 'C'

DIR/CAT WITH (I) PARAMETER AS DEFAULT
DIR/CAT WITH (S,I) PARAMETERS AS DEFAULT
CHANGE 'REMOVE' TO 'DEL!

CHANGE 'RENAME' TO 'REN'

CHANGE 'MEMORY' TO 'MEM'

CHANGE 'DEVICE' TO 'DEV

DISABLE THE BOOT 'DATE' PROMPT

DISABLE THE BOOT 'TIME' PROMPT

DISABLE FILE PASSWORD PROTECTION
ENABLE EXTENDED ERROR MESSAGES

DISABLE PASSWORD CHECK IN BACKUP/CMD
BACKUP WITH (I) PARAMETER AS DEFAULT
BACKUP WITH VERIFY DISABLED

DISABLE BACKUP 'LIMIT' PROTECTION
DISABLE PASSWORD CHECK IN PURGE
PURGE WITH (I) PARAMETER AS DEFAULT
PURGE WITH (S,I) PARAMETERS AS DEFAULT
PURGE WITH (Q=N) PARAMETER AS DEFAULT
IMPLEMENT THE DOS 'KILL' COMMAND
CHANGE DOS PROMPT TO CUSTOM PROMPT
TURN 'AUTO BREAK DISABLE' OFF

TURN 'SYSGEN' MESSAGE OFF

BOOT WITH NON-BLINKING CURSOR

BOOT WITH CUSTOM CURSOR

BOOT WITH CLOCK ON

BOOT WITH FAST KEY-REPEAT

DR. PATCH IS THE ONLY PROGRAM OF ITS TYPE EVER WRITTEN
FOR THE TRS-80 MODEL 4 AND LS-DOS 6.3.1.

DISTRIBUTED EXCLUSIVELY BY TRSTIMES MAGAZINE ON A STANDARD
LS-DOS 6.3.1 DATA DISKETTE, ALONG WITH WRITTEN DOCUMENTATION.

NO SHIPPING & HANDLING TO U.S & CANADA. ELSEWHERE PLEASE ADD $4. OU
(U.S CURRENCY ONLY, PLEASE)

TRSTimes magazine

- dept. DP

0721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

DON'T LET YOUR LS-DOS 6.3.1 BE WITHOUT IT!

LITTLE ORPHAN EIGHTY .cccorreriierenecereneceenccsreeceenes 4
Editorial

BEAT THE GAME
Daniel Myers

Daniel Myers

THE TEXAS CITIZENSHIP TESTccovvueeerceverecenencee 9
Thomas Pesek & Bruce Wehrle

PROGRAMMING TIDBITS....cueeereerierreeccrenccranccsensecees 19
Chris Fara

C PROGRAMMING TUTORIAL part 4ccccceeeereeneeee 19
J.F.R. “Frank” Slinkman

A TRIP ON THE STAR PRINCESS.....ccccevvnrerrccrrrnees 29
Roy T. Beck

QUIKDISK - a “QUICK?” review...c.cceervnneesscnneecssnnes 31
Allen Jacobs

The question we've
been asked often the
:last couple of months
2 18!

e

: “Will TRSTimes
: continue in 1995?”

: The answer is
i “Yes”, we will do one
.more year of informa-
i tion and fun for our
: favorite machines. This
will then mark our 8th
year of publication - or just as long as 80 Micro
lasted - who would have thunk it!!

Another question asked often is: “How is
TRSTimes doing?” The honest answer is that we
would have closed our doors long ago had it been a
business. However, TRSTimes is not a business - it
never was. Goodness knows that my family and I
would have starved to death had we depended on it
for a living. No, TRSTimes was always intended as
a fun thing to do after I had earned my wages for the
day - and I will certainly continue as long as it re-
mains fun.

And fun it is when good people, such as Roy
Beck, Chris Fara, Danny Myers, Kelly Bates, and
Frank Slinkman, continue to favor the pages of
TRSTimes with their knowledge. We also hope that
you, the readers - old and new alike, will send in
your questions, answers, frustrations, articles, pro-
grams, etc. so we can share them with the rest of the
TRS-80 population.

Now for the bad news: The postal rates are
scheduled to go up in January, so we are forced to
follow suit — all in U.S. currency, the new rates for
the 1995 TRSTimes subscriptions will be:

U.S. $21.00

Canada $22.00

Europe, Central/S. America $26.00 surface
$34.00 air mail

Asia, Australia, New Zealand $28.00 surface
$36.00 airmail

I trust you will stay with us for another year.

As of this writing, Los Angeles is getting ready
for yet another of our infamous, high-publicity tri-
als. The defense and prosecution are both seeking a

Page 4

jury of just the right ethnic and racial mix that will
give their side an advantage. Prospective jurors
must fill out questionnaires of close to a hundred
pages so the attorneys can pick the ones they feel
can be swayed. Justice has become a game, and we,
the taxpayers, are paying an enormous price for ex-
ercises in political correctness. The jury-selection
process will be lengthy and will cost us hundreds of
thousands of dollars, or even more.

To dispense with this baloney, I propose we take
the jury-selection away from the lawyers and put it
where fairness and impartiality cannot be ques-
tioned.

That's right, gather the 200 prospective jurors in
one room, let them pick their individual juror num-
ber (1-200) and then let’s do the selection:

Set up a Model I and run the following Basic pro-
gram:

10 RANDOM

20 DIM J(200)

30 FOR X=1 TO 200:J(X)=X:NEXT

40 FOR X=1TO 12

50 Y=RND(200)

60 IF J(Y) THEN PRINT J(Y):J(Y)=0 ELSE 50
70 NEXT

In one short second we have selected a jury that
is ready for ANY trial.

The cost? Well, T guess I could be persuaded to
sell the turnkey system for somewhere around
$50,000. A great savings for Los Angeles County,
wouldn’t you say!!!

TRSTimes will be closed for the second half of
November to about the 10th of December. It's not
that I am going on vacation - rather the unpleasant,
but much needed earthquake repairs will finally be
made. We've waited 10 months for this — and now I
just want to get it over with. T don’t know where
we'll stay yet, but wherever it is, I'll be sure to bring
a couple of computers with me.

Before closing for this issue, I want to take the
opportunity to wish everyone the very best for the
holidays and the new year. Keep thinking TRS-80.

Welcome to TRSTimes 7.6

TRSTimes magazine 7.6 - Nov/Dec 1994

by Daniel Myers

SUSPENDED

"Suspended” is an excellent game and possibly
tne most advanced game to date for the adventurer.
The story is quite simple: You are the failsafe device
to protect the surface world of Contra should any
emergency develop that would cause the planet con-
trol devices to fail (these are underground in a com-
plex where you live suspended in a cryogenic tube,
awaiting a disaster). Of course, a disaster develops
as soon as you boot up the disk.

You are awakened to find that there has been an
earthquake that has damaged the cables in the Pri-
mary and Secondary Channels.

You have six different robots at your command.
These robots all enjoy different skills and abilities.
Each one represents a different sense.

Iris: The sense of sight

Waldo: The sense of touch and dexterity

Sensa: Perceives things magnetic and electronic

Poet: Perceives things electronic and can diag
nose electrical flows

Whiz: Commands the computer and can do
errands

Auda: The sense of hearing

The trick to winning "Suspended" is assigning
the right task to the right robot. Also, the right robot
has to be at the right place at the right time. This is
called critical path planning, and is the secret of
"Suspended."

TRSTimes magazine 7.6 - Nov/Dec 1994

In the standard game, there are a few real-time
events to be aware of’:

1) At the 15th cycle, there is another earthquake
which causes an acid spill that kills, in short order,
any robot that thereafter passes through the Cav-
ernous Room (until the acid is shut off);

2) At the 75th cycle, there is another quake
which wrecks the hydroponics and transit equip-
ment on the surface above. These have to be fixed
quickly or the game ends swiftly due to the starving
populous above;

3) At the 100th cycle, humans enter the complex
with the intent of turning you off because, by this
time, you are clearly screwing up the assignment.
These humans can be the death of you or they can
help you by...well, I won't tell you yet.

The following commands get you through the
game in less than 70 moves. As a result, they give
little aid in the event that you finish the game in
more than that time. The game changes consider-
ably after the 75th move. There are many problems
that surface after that time, and these clues do noth-
ing to help you.

Let's get started!

#1 POET, GO TO WEATHER CONTROL

#2 SENSA, GO TO SUB SUPPLY ROOM

#3 WHIZ, GO TO SECONDARY CHANNEL

#4 SENSA, TAKE RAMP

#5 SENSA, GO WEST

#6 SENSA, TAKE CONTAINER AND GRASPER
#7 SENSA, GO TO HALLWAY JUNCTION

#8 WALDO, GO TO HALLWAY JUNCTION

#9 AUDA, GO TO GAMMA REPAIR

The above moves set the game up. Poet is needed
to turn the weather control off: this minimizes
deaths at the surface (your primary goal). Sensa gets
the ramp that is needed to allow the robots to go
from one level to another. Auda is sent to the
Gamma Repair area because she will be needed later
and, without the humans coming for a while, there
is nothing that can be done with her anyway. Waldo
is sent to the Hallway Junction to meet Sensa and
take the container and grasper on his way to fixing
Iris who is reported to be out of order.

Page 5

Now, enter your second set of commands:

#10 POET, TURN SECOND DIAL TO 100

#11 POET, GO TO HALLWAY END

#12 IRIS, GO TO MAIN SUPPLY ROOM

#13 SENSA, PUT RAMP AT DROPOFF

#14 AUDA, LISTEN

#15 WALDO, TAKE CONTAINER AND GRASPER
#16 WALDO, GO TO MAIN SUPPLY

#17 WALDO, INSTALL GRASPER

#18 WALDO, TAKE RED IC AND YELLOW IC
#19 SENSA, GO NORTH

#20 SENSA, TAKE RAMP

Once Poet got to the Weather Control, he had to
reset the faulty control to 100. This is only a tempo-
rary fix because if you let the game go on too long,
all hell will break loose with various disasters and
accidents occuring which you will not be able to con-
trol. Poet is then sent to the Hallway End where he
will be used to get the TV camera needed later. Iris
is sent to the Main Supply Room where she can be
* xed when Waldo arrives. She will also help Waldo
1epair the machine there. Sensa, upon arriving, puts
the ramp in place so that Auda can get to Gamma
1 >pair and so that she and Poet can get to the other
level. Waldo is handed the grasper and container
vhich he installs. This is done now to save moves
later.

#21 SENSA, GO TO SMALL SUPPLY

#22 WALDO, OPEN PANEL

#23 WALDO, REPLACE ROUGH DEVICE WITH
ROUGH OBJECT

- #24 WALDO, CLOSE PANEL

#25 POET, GET IN CAR

#26 POET, GET OUT OF CAR

#27 POET, GO TO BIOLOGY LAB

#28 WALDO, TAKE BURNED AND FRIED CHIP

#29 POET, TAKE CAMERA

#30 SENSA, PUT RAMP AT HOLDER

This stage sets the robots to their major gather-
ing tasks. Waldo has fixed Iris, and is now set on
fixing the machine and salvaging its parts. Poet has
cxrived at the Hallway End, gotten in the car, exited
the car, and is now getting the camera. Sensa has
arrived at the Small Supply Room to take the cable
cutter.

#31 SENSA, GET ON RAMP

#32 SENSA, TAKE CUTTER

#33 SENSA, GET OFF RAMP

#34 SENSA, TAKE RAMP

#35 SENSA, GO TO SLOPING CORRIDOR
#36 POET, GO TO VEHICLE DEBARKATION
#37 WALDO, PUT RED IC IN RED SOCKET
#38 WALDO, PUT YELLOW IC IN YELLOW

tage 6

SOCKET
#39 POET, GET IN CAR
#40 POET,GET OUT OF CAR

Sensa has completed her task of getting the
metal tool that she will need shortly. Poet has gotten
the camera and is now coming back, and Waldo is in
the midst of fixing and salvaging the machine with
Iris in the Main Supply Room.

You're more than half-way to your goal! Now,
enter:

#41 POET, GO TO PRIMARY CHANNEL

#42 SENSA, PUT RAMP AT DROPOFF

#43 WALDO, GO TO GAMMA REPAIR

#44 WALDO, PUSH BUTTON

#45 IRIS, TAKE FUSE

#46 WALDO, TAKE CABLE

#47 WALDO, GO TO THE SECONDARY
CHANNEL

#48 IRIS, GO TO MIDDLE SUPPLY

#49 IRIS, TAKE CABLE

#50 IRIS, GO TO MAIN SUPPLY

Poet has been sent to use the camera in the Pri-
mary Channel (this is a Kamikaze mission because
he has to pass through the Cavernous Room to get
there). Sensa has gotten to the Sloping Corridor and
reinstalled the ramp so that she and Poet can get to
the lower level. Waldo and Iris have gotten the ma-
chine fixed and salvaged one of the two needed ca-
bles to set the FCS in balance. Waldo is now set on
his mission where Whiz will be waiting to install the
cable needed in the Secondary Channel.

#51 SENSA, EXAMINE OBJECT

#52 SENSA, TURN FLOWSWITCH

#53 BOTH SENSA AND AUDA, MOVE FRED
#54 SENSA, CUT CABLE WITH CUTTER
#55 POET, PLUG TV1 IN

#56 POET, AIM TV1 AT SIGN

(This is the important "Reset Code." Write it
down! It's different for every game.)

#57 SENSA, TAKE CABLE

#58 SENSA, GO TO PRIMARY CHANNEL
#59 IRIS, PUT CABLE IN MACHINE

#60 IRIS, PUT FUSE IN MACHINE

Sensa and Auda salvaged the remaining needed
cable to fix the cable in the Primary Channel. Sensa
is now on her way. Poet valiantly died trying to work
the camera in the Primary Channel after having
had corrosive acid spilled on him. Iris has fixed the
reset machine which is now only awaiting the instal-
lation of the cables in the FCS to reset the systems

TRSTimes magazine 7.6 - Nov/Dec 1994

to set the surface world above right.

#61 WHIZ, GO TO WALDO

#62 WHIZ, TAKE FOURTEEN-INCH CABLE

#63 WHIZ, REPLACE THE NINE-INCH CABLE
WITH THE FOURTEEN-INCH CABLE

#64 WHIZ, DRAG WALDO TO THE EAST END

#65 AUDA, GO TO SLEEP CHAMBER

#66 SENSA, REPLACE FOUR-INCH CABLE
WITH TWELVE-INCH CABLE

#67 IRIS, PRESS ----- CIRCLE

#68 IRIS, PRESS ----- CIRCLE

At this point, the game is over. Only 8,000 are
dead and you have succeeded in your mission. It
should be noted that this does not answer all the
questions and puzzles that are presented in the
game, it just tells you how to win the game in the
shortest order. Enjoy!

WITNESS

This walkthrough will help you to finish
"Witness." This game is a much simpler one than
"Deadline," so I hope you won't be disappointed
when you see how easy it is to solve this mystery.

Okay, you start South of the house, where you
just picked up a matchbook. By the way, none of the
stuff that came with the game is really necessary to
solving the case. Go North twice to the front door
and ring the bell. Phong will let you in. Then just try
to go East, and Phong will lead you to the Living
Room, where Monica and Mr. Linder are.

Now, wait (get used to doing that, because
there's a lot of waiting in this one), and Linder will
eventually take you to his office. Sit down in the
wooden chair, and Linder will hand you a note.
Read it, as it will help waste some time. Now, just do
anything (but stay seated!) to make time pass. Show
the matchbook to Linder for an interesting reaction,
if you like. In any case, you just have to keep wait-
ing.

Eventually, Monica will come in briefly to an-
nounce she's going to the movies. This is not what
you're waiting for, however! So, keep on waiting,
and finally, the murder will occur. Linder will be
chot while you sit there, and you can't stop it from
happening. Read the description carefully at the mo-
ment the shot is fired. There's something odd about
it. In fact, the whole thing is a setup.

The first thing to do is stand up, then push the
button. Instead of ringing to summon the butler, it

TRSTimes magazine 7.6 - Nov/Dec 1994

causes a strange click to be heard from the clock. At
this point, Phong will enter the room. Tell him you
want the keys, and he'll hand them over to you.
Now, examine the clock. Keyhole seems a little
strange, doesn't it? The doorbell rings while you're
doing this, so as Phong goes to answer the door, ex-
amine the keyhole.

I'll bet you're getting some ideas already! How-
ever, you'll need to have the powder analyzed, and
Duffy hasn't arrived yet, so wait around until he
does. Then get the powder analyzed (you can ignore
Stiles, he's only a red herring). While that's being
done, examine the window (you can't open the clock
yet, it's the one key you don't have). The green wire
seems suspicious, so get it for future reference.

Now, go West into the Hallway, then North
twice, and open the Butler's door. Go West into the
room, and read the mystery book (by the way, you
can drop the telegram and note, they aren't impor-
tant). A gun receipt is used as a bookmark. The pur-
chaser's name is obviously phoney, but hang on to
the receipt anyway.

Okay, from the Butler's Room, go East twice to
Monica's room, then unlock and open the back door.
Go East into the Backyard, then South twice to the
office path. Aha, a muddy gun! No fingerprints, alas,
but you might want to take it along with you, just in
case. Now, go West into the Side Yard.

Hmm, more footprints here, but they aren't
quite the same as the ones on the office path. In fact,
it looks like someone was standing here for awhile.
Wonder who it might have been? (No, *not*
Sergeant Duffy!). Anyway, go West again to the
driveway, then North and East into the Garage.

Unlock and open both the garage door and the
workshop door, then go East into the Workshop.
The place looks like an electrician's paradise, and
there isn't much you can do here; but, there are
spools of wire hanging around. Could it be...? Exam-
ine spool, and you have established a link of sorts
between this place and the study. The green wire is
obviously from this room. Now, all you need is the
person who put it there.

You now stand there waiting for Monica. Just
keep waiting; she'll arrive (saying "Wait for Monica"
is easiest). It will take a while, so if you want to hunt
down Phong and ask him about the gun receipt, you
have time. When she does get there, she'll fiddle
briefly with the junction box (very suspicious! before
noticing you). Now, wait until she leaves, then fol-
low her. You *must* use directions here, just saying
"Follow Monica" won't work.

Page 7

Follow her all the way to her room, and wait for
her to come back out of the bathroom. When she re-
turns, ask her about Mr. Linder. Her response will
establish the motive. Now, wait some more, and she
will eventually leave the room. Follow her again,
this time to the office.

As soon as you get in there, handcuff her. Some-
where along the way, Sgt. Duffy will have left with
the body, so you can't arrest her until he comes back.
In the meantime, you have to find some very impor-
tant evidence. So, first search Monica for the key.
When you get it, unlock the clock and open it. She's
already removed the gun, but you can search her for
that, also.

Now, just wait until Duffy returns, and arrest
her for the murder. And that should be about it. By
the way, if you try leaving her and waiting in the
office (so you can find the gun in the clock), you'll
find that, however hard you try, you won't be able to
handcuff her (which is necessary so she can be
searched). So, you'll just have to wait and follow her.
As I said in the beginning, it's a pretty simple game.

MODEL 4/4P/4D
OWNERS!

Forget
SYSRES & MEMDISK.

Now there’s
QuikDisk

QuikDisk converts the top 64K of your 128K
Model 4 to a large disk /O buffer.
Sophisticated data management techniques
ensure frequently accessed disk data is almost
always instantly available.

QuikDisk provides dramatic disk /O speed
increases on both floppy and hard drive
systems.

“SmartDrive” is so good, they built it into the
latest MS-DOS so no one would be without it.
Don’t you be without this essential type of
utility even one day longer.

QuikDisk is only $31.95 +$3 S&H (add $2
outside North America. VA residents please
add $1.44 (4 1/2%)). 128K required. Not
intended for systems with XLR8er or other
large memory expansion boards.

Order QuikDisk from:

J.F.R. Slinkman
1511 Old Compton Road
Richmond, VA 23233.

Page 8

TRSTimes magazine 7.6 - Nov/Dec 1994

THE TEXAS CITIZENSHIP TEST

By Thomas Pesek and Bruce Wehrle

Not since the

days of Santa
Anna has the
great state of
Texas seen an

invasion to rival
the one which has
occured in the
1980 and 90’s.
Millions of half-
frozen Yankees,
quiche-eating
Californians,
Mexicans, Viet-
namese and
Central American refugees invaded Texas looking
for the Promised Land. Many of these people have
had a hard time understanding exactly what it
means to be a TEXAN. They find it hard to
understand the fierce loyality and pride that a
TEXAN feels for his state. Well, as one of these
fiercely loyal TEXANS, I decided to help out these
wayward souls. The best things in life are reserved
for the chosen few. Only a few were lucky enough to
be born in Texas- to be NATIVE TEXANS. But don't
dispair; we have chosen to allow the rest of you poor
unfortunate wretches to become the next best thing
— A NATURALIZED TEXAN. No longer will you
have to lament 'Ah, to be a Texan'. Here is your
chance. By passing the following test you can
become a NATURALIZED TEXAN. A score of 70%
or higher will allow you to hold your head up with
pride and say 'I'm a TEXAN'. --- Good Luck!

10'***#

20'** TEXAS CITIZENSHIP TEST **
30 '** VERSION 2.0 **
40 ** By: Thomas Pesek **
50 "** and: Bruce Wehrle **
60 '** Reference: The Texas Almanac **

70'**

80 ¢

90 I=1:CORRECT=0:Y$=CHR$(14)Nn$=CHRS$(15):
R$=CHR$(16):S$=CHR$(17

100 CLS:PRINT n$

110 PRINT@(7,13),CHR3(151),STRING$(50,131),CHR$(171)
120 PRINT@(8,13),CHR$(149),STRING$(50,32),CHR$(170)
130 PRINT@(9,13),CHR$(149),STRING$(14,32);

"TEXAS CITIZENSHIP TEST";STRING$(14,32),CHR$(170)
140 PRINT@(10,13),CHR$(149),STRING$(50,32);CHR$(170)
150 PRINT@(11,13),CHR$(149),STRING$(20,32),
"VERSION 2.0",STRING$(19,32),CHR$(170)

160 PRINT@(12,13),CHR$(149);STRING$(4,32),

"Prepared by: Thomas Pesek (A Native Texan)";STRING$(4,32),

TRSTimes magazine 7.6 - Nov/Dec 1994

CHR$(170)

170 PRINT@(13,13),CHR$(149);STRING$(2,32);

"Assisted by: Bruce Wehrle (A Naturalized Texan) ";,CHR$(170)
180 PRINT@(14,13),CHR$(149),STRING$(50,32);CHR$(170)
190 PRINT@(15,13),CHR$(149);STRING$(9,32);

"Reference: The Texas Almanac";STRING$(9,32),CHR$(170)
200 PRINT@(16,13),CHR$(149),STRING$(50,32),CHR$(170)
210 PRINT@(17,13),CHR$(141);STRING$(50,140),CHR$(142)
220 ¢

230

240 ¢

250 PRINT(@(23,24),"Press any key to continue ";Y$;

260 A$=INKEYS: IF A$="" THEN 260

270 CLS:PRINT N§;

290 PRINT@(4,24),"Texas is called:"

300 PRINT@(6,29),"(a) The Cowboy State"

310 PRINT@(8,29),"(b) The Lone Star State"

320 PRINT@(10,29),"(c) The Armadillo State"

330 PRINT@(12,29),"(d) None of the above ";

340 PRINT Y§$;

350 A$=INKEY$: IF A$="" THEN 350 ELSE PRINT N§;

360 PRINT@(8,29),R$;"(b) The Lone Star State ";S$

370 PRINT(@(18,9),"Texas is often called the Lone Star State
because its flag has a single star."

380 PRINT"This flag was originally the flag of the Republic of
Texas and was approved","on Jan. 25, 1839 by Mirabeau B.
Lamar.";

390 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE

GOSUB 4350

400 GOSUB 4200

410 PRINT(@(4,24),"Texas has been under ___ flags."

420 PRINT®@(6,33),"(a) 2™

430 PRINT@(8,33),"(b) 4"

440 PRINT@(10,38),"(c) 6"

450 PRINT@(12,33),"(d) 1 ";Y$;

460 A$=INKEY$: IF A$="" THEN 460 ELSE PRINT N§;
470 PRINT@(10,33),R$;"(c) 6 ";S$

480 PRINT®@(18,9),"Six different flags have flown over
Texas during 8 changes of sovereignty."

490 PRINT"The accepted sequence is as follows:
Spanish- 1519-1685; French- 1685-1690;","Spanish-
1690-1821; Mexican- 1821-1836; Republic of Texas- 1836-
1845;","U.S.- 1845-1861; Confederate States- 1861-1865;
U.S.- 1865-Present"

500 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

510 GOSUB 4200

520 PRINT@(4,24),"The State Flower of Texas is the"
530 PRINT@(6,29),"(a) Bluebonnet"

540 PRINT@(8,29),"(b) Yellow Rose"

550 PRINT@(10,29),"(c) Daisy"

560 PRINT@(12,29),"(d) Tumbleweed ";Y$;

570 A$=INKEY$: IF A$="" THEN 570 ELSE PRINT N§$;
580 PRINT@(6,29),R$;"(a) Bluebonnet ";S$

590 PRINT@(18,9),"The state flower of Texas is the
Bluebonnet, also called buffalo clover,"

600 PRINT"wolf flower, and 'el conejo' (the rabbit). The

Page 9

Bluebonnet was adopted as","the state flower by the 27th
legislature in 1901 at the request of the","Society of
Colonial Dames of Texas."

610 IF A$="a" OR A$="A" THEN GOSUB 4300 ELSE
GOSUB 4350

620 GOSUB 4200

630 PRINT@(4,19),"The State Motto of Texas is"

640 PRINT@(6,24),"(a) If you don't have an oil well, get
one!"

650 PRINT@(8,24),"(b) Lone Star longnecks forever"
660 PRINT@(10,24),"(c) Friendship"

670 PRINT@(12,24),"(d) The Oil State"

680 PRINT@(14,24),"(e) Yankee go home ";CHR$(14);
690 A$=INKEY$: IF A$="" THEN 690 ELSE PRINT N$;
700 PRINT@(10,24),R$;" (¢) Friendship ";S$

710 PRINT@(18,0),"The state motto of Texas is
'Friendship.' The word, Texas, or Tejas,"

720 PRINT"was the Spanish pronunciation of the Caddo
Indian word meaning 'friends™,"or 'allies.' It was
adopted by the 41st legislature in 1930."

730 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

740 GOSUB 4200

750 PRINT@(4,19),"The State Bird is the"

760 PRINT@(6,24),"(a) Obscene gesture seen on
freeways"

770 PRINT@(8,24),"(b) Roadrunner"

780 PRINT@(10,24),"(c) Vulture"

790 PRINT@(12,24),"(d) Whooping Crane"

800 PRINT@(14,24),"(e) Mockingbird ";Y$;

810 A$=INKEYS$: IF A$="" THEN 810 ELSE PRINT N§;
820 PRINT@(14,24),R$;" (e) Mockingbird ";S$

830 PRINT@(18,0), "The state bird of Texas is the
Mockingbird. It was adopted by the"

840 PRINT"40th legislature in 1927 at the request of the
Texas Federation of Women's","Clubs."

850 IF A$="e" OR A$="E" THEN GOSUB 4300 ELSE
GOSUB 4350

860 GOSUB 4200

870 PRINT@(4,24),"Texas Independence Day is:"

880 PRINT@(6,29),"(a) January 1"

890 PRINT@(8,29),"(b) March 2"

900 PRINT@(10,29),"(c) July 4"

910 PRINT@(12,29),"(d) June 10 ";Y$;

920 A$=INKEY$: IF A$="" THEN 920 ELSE PRINT N8§;
950 PRINT@(8,29),R$;" (b) March 2 ";S$

940 PRINT@(18,0),"On March 2, 1836 Texas' Declaration
of Independence from Mexico was adopted"

950 PRINT"at Washington-on-the-Brazos. The
convention was chaired by Richard Ellis,","but the
Declaration was written almost entirely by George C.
Childress.","It was signed by 58 delegates."

960 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

970 GOSUB 4200

980 PRINT@(4,14),"The distance from one end of Texas
to the other is:"

990 PRINT@(6,29),"(a) about 800 miles"

1000 PRINT@(8,29),"(b) about 200 miles"

1010 PRINT®@(10,29),"(c) about 2000 miles"

1020 PRINT@(12,29),"(d) about 1 light-year ";Y$;

1030 A$=INKEYS: IF A$="" THEN 1030 ELSE PRINT
NS;

Page 10

1040 PRINT@(6,29),R$;" (a) about 800 miles ";S$

1050 PRINT@(18,0),"The distance from Orange on Texas'
eastern border to El Paso on it's west"

1060 PRINT"is 855 miles. A car traveling this distance
at 55 mph would require","15.5 hours of non-stop driving
to transit Texas. Texarkana, Texas is"

1070 PRINT"closer to Chicago, 111.(779mi) than to El
Paso, Texas (821mi)!","In 1980, there were 70,605 miles
of paved roads in Texas."

1080 IF A$="a" OR A$="A" THEN GOSUB 4300 ELSE
GOSUB 4350

1090 GOSUB 4200

1100 PRINT@(4,4),"When Texas was annexed, the U.S.
government agreed to allow it to"

1110 PRINT@(5,4),"split up at some later date, if
desired, into:"

1120 PRINT@(7,29),"(a) up to 10 States"

1130 PRINT@(9,29),"(b) a State and a Republic"

1140 PRINT@(11,29),"(c) up to 5 States"

1150 PRINT@(13,29),"(d) 47 large cattle ranches ";

Y$;

1160 A$=INKEY$: IF A$="" THEN 1160 ELSE PRINT
N$;

1170 PRINT@(11,29),R$;"(c) up to 5 States ";S$

1180 PRINT@(18,0), "When Texas was annexed by the
United States on Dec. 29, 1845, it had a huge"

1190 PRINT"land area and few people. The U.S. agreed
to allow Texas to split up into","up to 5 States at some
later time when it's population increased,","if it chose
to."

1200 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

1210 GOSUB 4200

1220 PRINT@(4,24),"The current Governor of Texas is:"
1230 PRINT@(8,29),"(a) Howdy Doody"

1240 PRINT@(8,29),"(b) Howard Hughes"

1250 PRINT@(10,29),"(c) Ann Richards"

1260 PRINT@(12,29),"(d) Lyndon Johnson"

1270 PRINT@(14,29),"(e) Dead, but not yet buried ";
Y$

1280 A$=INKEY$: IF A$="" THEN 1280 ELSE PRINT
N§;

1290 PRINT@(10,29),R$;"(c) Ann Richards ";S$

1300 PRINT@(18,0),"What can we say, if you picked ()
give yourself half credit. She's not dead,"

1310 PRINT"it just seems that way at times."

1320 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

1330 GOSUB 4200

1340 PRINT@(4,24),"The State Capitol is located in:"
1350 PRINT@(6,29),"(a) College Station"

1360 PRINT@(8,29),"(b) Austin"

1370 PRINT@(10,29),"(c) Luckenbach"

1380 PRINT@(12,29),"(d) Houston"

1390 PRINT@(14,29),"(e) Montrose ";Y$;

1400 A$=INKEY$: IF A$="" THEN 1400 ELSE PRINT
N§;

1410 PRINT@(8,29),R$;"(b) Austin ";S$

1420 PRINT@(18,0),"A site on the Colorado river was
selected in 1839 by the Capital Commission as"

1430 PRINT"the future capital of Texas. It's selection
was confirmed by Congress in 1840.","The city was
named in honor of Stephen F. Austin and the

TRSTimes magazine 7.6 - Nov/Dec 1994

3

government moved","to Austin from Houston in 1840."
1440 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

1450 GOSUB 4200

1460 PRINT@(4,14),"The first elected President of the
Republic of Texas was:"

1470 PRINT@(6,29),"(a) Davy Crockett"

1480 PRINT@(8,29),"(b) Sam Houston"

1490 PRINT@(10,29),"(c) Santa Anna"

1500 PRINT@(12,29),"(d) Ima Hogg"

1510 PRINT@(14,29),"(e) Jim Bowie ";Y$;

1520 A3=INKEY$: IF A$="" THEN 1520 ELSE PRINT
N$;

1530 PRINT@(8,29),R$;"(b) Sam Houston ";S$

1540 PRINT@(19,1),"David G. Burnet was named
provisional president on Mar. 2, 1836, when Texas"
1550 PRINT"declared itself independent. After the
victory at San Jacinto, Sam Houston","was elected
president in the first national election in September
1836","defeating Stephen F. Austin and Henry Smith."
1560 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

1570 GOSUB 4200

1580 PRINT@(4,19),"The infamous Chicken Ranch was:"
1590 PRINT@(6,24),"(a) A fast food restaurant in Austin"
1600 PRINT@(8,24),"(b) A cock fight in Houston"

1610 PRINT@(10,24),"(c) A whorehouse in La Grange"
1620 PRINT@(12,24),"(d) A party house in Marvin
Zindler's back yard"

1630 PRINT@(14,24),"(e) A bogus poultry farm run by
Billy Sol Estes ";Y$;

1640 A$=INKEY$: IF A$="" THEN 1640 ELSE PRINT
N§;

1650 PRINT@(10,24),R$;"(c) A whorehouse in La Grange
;5%

1660 PRINT@(18,0),"The ‘Chicken Ranch' was the "Best
Little Whorehouse in Texas.' It operated just"

1670 PRINT"outside La Grange, Texas for over 100 years
until it was closed by Gov.","Preston Smith after a TV
expose by Marvin Zindler. The episode inspired","the
popular Broadway Play and Movie “The Best Little
Whorehouse in Texas'."

1680 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

1690 GOSUB 4200

1700 PRINT@(4,14),"At the Battle of San Jacinto, what
was Santa Anna doing"

1710 PRINT@(5,14),"when the Texans attacked?"

1720 PRINT@(7,24),"(a) Eating tacos & drinking Carta
Blanca"

1730 PRINT@(9,24),"(b) Engaged with a prostitute"
1740 PRINT@(11,24),"(c) Shooting pool at Rosa's
Cantina"

1750 PRINT@(13,24),"(d) plotting his attack on the
Texans ";Y$;

1760 A$=INKEYS$: IF A$="" THEN 1760 ELSE PRINT
N$;

1770 PRINT@(3,24),R$;"(b) Engaged with a prostitute
",S%

1780 PRINT@(18,0),"On the afternoon of April 21, 1836,
the Texans attacked Santa Anna's army"

1790 PRINT"during siesta time. Santa Anna was in his
tent with a prostitute. The Mexicans","were routed, with
630 killed, 280 wounded, and 730 captured. The Texans

TRSTimes magazine 7.6 - Nov/Dec 1994

had","9 killed and 30 wounded. Santa Anna fled but was
caught the next day,"

1800 PRINT"and forced to surrender to the Texans."
1810 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

1820 GOSUB 4200

1830 PRINT@(4,14),"If Texas were an independent
nation, it would be the"
1840 PRINT@(5,14),"world's
nation. (1992 data)

1850 PRINT@(7,29),"(a) first"

1860 PRINT®@(9,29),"(b) sixth"

1870 PRINT@(11,29),"(c) twelfth"

1880 PRINT@(13,29),"(d) fortieth ";Y$;

1890 A$=INKEY$: IF A$="" THEN 1890 ELSE PRINT
N§;

1900 PRINT®@(9,29),R$;"(b) sixth ";S$

1910 PRINT®@(18,0),"Texas produced 925,296,000 barrels
of crude oil in 1992. If Texas were "

1920 PRINT"an independent nation this would rank it
6th in world production behind","Russia (4,471,250,000
bbls); Saudia Arabia (2,309,435,000 bbls);","U.S. w/o
Texas (2,231,419,000 bbls); Iran (1,022,000,000 bbls);
and"

1930 PRINT"Mexico (1,002,430,000)."

1940 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

1950 GOSUB 4200

1960 PRINT@(4,9),"What was the name of Bob Wills'
famous Texas country band?"

1970 PRINT@(6,24),"(a) The Lone Stars"

1980 PRINT®@(8,24),"(b) Bob Wills & his Wild West Boys"
1990 PRINT@(10,24),"(c) Montezuma's Revenge"

2000 PRINT@(12,24),"(d) The Armadillos"

2010 PRINT@(14,24),"(e) Bob Wills & The Texas
Playboys ";Y$;

2020 A$=INKEY$: IF A$="" THEN 2020 ELSE PRINT
N$;

2030 PRINT@(14,24),R$;"(e) Bob Wills & The Texas
Playboys ";S$

2040 PRINT@(18,0),"Bob Wills and his Texas Playboys
were one of the most famous country "

2050 PRINT"bands of the post-war era. Their music
inspired modern Texas musicians like","Willie Nelson,
Jerry Jeff Walker, and Asleep at the Wheel. Bob Wills'
albums ","are still sold today."

2060 IF A$="e" OR A$="E" THEN GOSUB 4300 ELSE
GOSUB 4350

2070 GOSUB 4200

2080 PRINT@(4,32),"True or False:"

2090 PRINT@(6,14),"Houston was founded by the Allen
brothers in a scheme"

2100 PRINT@(7,14),"to sell swamp land to Yankees. ";
Y$;

2110 A$=INKEYS$: IF A$=""THEN 2110 ELSE PRINT
NS§;

2120 PRINT@(9,38),RS$;"TRUE! ";S$

2130 PRINT@(18,0),"The Allen brothers came to Texas to
make their fortunes. They came to"

2140 PRINT"the area along Buffalo Bayou and founded
Houston. Although the land was swampy","and mosquito
infested, they placed ads in Eastern newspapers selling
land in","Houston and touting its healthful climate. One
of the brothers died of Malaria"

_ largest oil producing

Page 11

2150 PRINT"and the other brother profited little from
the scheme, but Houston was founded."

2160 IF A$="t" OR A$="T" THEN GOSUB 4300 ELSE
GOSUB 4350

2170 GOSUB 4200

2180 PRINT@(4,9),"The Battleship Texas is located in a
park at the site of a"

2190 PRINT@(5,9),"famous battle of the Texas
Revolution. This battlefield is:"

2200 PRINT@(7,29),"(a) The Alamo"

2210 PRINT@(9,29),"(b) Goliad"

2220 PRINT@(11,29),"(c) San Jacinto" .

2230 PRINT@(13,29),"(d) Rosie's Cantina ";Y$;

2240 A$=INKEY$: IF A$="" THEN 2240 ELSE PRINT
N$;

2250 PRINT@(11,29),R$;"(c) San Jacinto ";S$

2260 PRINT@(18,0),"The battleship Texas was bought by
the school children of Texas when the"

2270 PRINT"Navy mothballed her. She was moved to
her present location along the Houston ","Ship Channel
in 1948, after serving in WW I and WW II. She is moored
in the"

2280 PRINT"San Jacinto Battleground State Park, site
of the victory of the Texans over ","Santa Anna on April
21, 1836."

2290 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

2300 GOSUB 4200

2310 PRINT@(3,14),"Which of these cities was NOT the
Capitol of Texas"

2320 PRINT@(4,14),"during the Texas Revolution?"
2830 PRINT@(6,24),"(a) Velasco"

2340 PRINT@(8,24),"(b) Galveston Island"

2350 PRINT@(10,24),"(c) Washington on the Brazos"
2360 PRINT@(12,24),"(d) Harrisburg"

2370 PRINT@(14,24),"(e) San Antonio ";Y$;

2380 A$=INKEY$: IF A$="" THEN 2380 ELSE PRINT
N§;

2390 PRINT@(14,24),R$;"(e) San Antonio ";S$

2400 PRINT@(18,0)," After the Declaration of
Independence was signed at Washington on the Brazos,"
2410 PRINT"the government of Texas was set up in
Harrisburg. As Santa Anna approached,","they fled to
Galveston Island. The Treaty ending the war was signed
at Velasco."

2420 PRINT"After the war, the Capital was moved to
Columbia and then later to Houston,","and finally to
Austin. San Antonio has never been the Capital of
Texas."

2430 IF A$="e" OR A$="E" THEN GOSUB 4300 ELSE
GOSUB 4350

2440 GOSUB 4200

2450 PRINT@(4,14),"The famous East Texas oil field
where the discovery of oil"

2460 PRINT@(5,14),"led to the Texas Oil Boom is called:"
2470 PRINT@(7,29),"(a) The Mother Lode"

2480 PRINT@(9,29),"(b) Spindletop"

2490 PRINT@(11,29),"(c) The Big Thicket"

2500 PRINT@(13,29),"(d) Southfork Ranch ";Y$;

2510 A$=INKEYS: IF A$=""THEN 2510 ELSE PRINT
N$;

2520 PRINT@(9,29),R$;"(b) Spindletop ";S$

2530 PRINT@(18,0),"Jan 10, 1901 is the most famous
date in Texas oil history. The great Spindletop”

Page 12

2540 PRINT"gusher erupted at a well near Beaumont
drilled by Capt. A. F. Lucas. This well","was the first salt
dome oil discovery. By 1902 the field was producing "
2550 PRINT"17,421,000 barrels per year or 94% of the
state's production. The resulting","oil glut drove crude oil
prices down to 3 cents a barrel, an all time low."

2560 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

2570 GOSUB 4200

2580 PRINT@(4,19),"The speed limit in Texas is:"

2590 PRINT@(6,24),"(a) 55 MPH"

2600 PRINT@(8,24),"(b) As fast as your car will go"
2610 PRINT@(10,24),"(c) 105 for pickups only"

2620 PRINT@(12,24),"(d) Who cares?"

2630 PRINT®@(14,24),"(e) 55 MPH in the country, 85
MPH in Houston ";Y$;

2640 A$=INKEY$: IF A$="" THEN 2640 ELSE PRINT
N§;

2650 PRINT@(6,29),R$;"(2) 55 MPH ";S$

2660 PRINT@(18,0),"In 1974, the Federal Government
forced Texas to lower the state speed limit to "

2670 PRINT"55 MPH. This has never been a popular law
in Texas and as you know if you drive","in Texas, has
never been widely obeyed. You might give yourself half
credit for","any of the other answers."

2680 “

2690 IF A$="a" OR A$="A" THEN GOSUB 4300 ELSE
GOSUB 4350

2700 GOSUB 4200

2710 PRINT@(4,19),"A longneck is a:"

2720 PRINT@(6,24),"(a) Civil War Texas Soldier"

2730 PRINT@(8,24),"(b) freak in a circus sideshow"
2740 PRINT@(10,24),"(c) Type of whooping crane that
winter in Texas"

2750 PRINT@(12,24),"(d) returnable beer bottle ";Y$;
2760 A$=INKEY$: IF A$="" THEN 2760 ELSE PRINT
N§;

2770 PRINT@(12,24),R$;"(d) returnable beer bottle ";S$
2780 PRINT@(18,0),"If you missed this question, we
have a field trip for you. Go to any Country &"

2790 PRINT"Western bar or ice house and yell out
loudly: *What the hell are longnecks and","what kind of
wimps drink them? Some fine young cowboy will give
you a free","view of a longneck as he shows you some of
its many uses."

2800 PRINT"Note: The authors of this test are not
responsible for injuries!"

2810 IF A$="d" OR A$="D" THEN GOSUB 4300 ELSE
GOSUB 4350

2820 GOSUB 4200

2830 PRINT@(4,32),"True or False:"

2840 PRINT@(6,9),"The borders of Texas once extended
to near the Canadian border."

2850 PRINT@(7,9),"When it was annexed by the U.S,,
the Republic of Texas sold"

2860 PRINT@(8,9),"part of its land to the U.S. for 10
Million dollars. This"

2870 PRINT@(9,9),"land later became parts of New
Mexico, Colorado, Oklahoma,"

2880 PRINT@(10,9),"Wyoming, & Kansas. ";Y$;

2890 A$=INKEY$: IF A$="" THEN 2890 ELSE PRINT
N§;

2900 PRINT@(12,38),R$;"TRUE! ";S$

2910 PRINT@(18,0),"In the Compromise of 1850, Texas

TRSTimes magazine 7.6 - Nov/Dec 1994

accepted 10 million dollars from the U.S."

2920 PRINT"in return for relinquishing its claim to all
lands north and west of its","current borders. Texas used
the money to pay off its war debts and to","establish the
permanent school fund.”

2930 IF A$="t" OR A$="T" THEN GOSUB 4300 ELSE
GOSUB 4350

2940 GOSUB 4200

2950 PRINT@(4,19),"A Wetback is:"

2960 PRINT@(6,24),"(a) A pledge in an Aggie fraternity"
2970 PRINT@(8,24),"(b) A type of seagull on Padre
Island" .

2980 PRINT@(10,24),"(c) An illegal alien"

2990 PRINT@(12,24),"(d) a stolen car with a fresh paint
job ";Y$;

3000 A$=INKEYS: IF A$="" THEN 3000 ELSE PRINT
N§;

3010 PRINT@(10,24),R$;"(c) An illegal alien ";S$

3020 PRINT@(18,0),"Thousands of illegal aliens enter
Texas each year by swimming or wading"

3030 PRINT"across the Rio Grande, hence the term
‘wetback'. The influx of cheap labor","has been both a
blessing and a curse to Texas. The problems created by
these","aliens are among the most difficult facing Texas
the remainder of this century."

3040 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

3050 GOSUB 4200

3060 PRINT@(4,9),"In the early days, the only law in
West Texas near Pecos was:"

3070 PRINT@(6,19),"(a) Judge Roy Bean & an occasional
Texas Ranger"

3080 PRINT@(8,19),"(b) a fast gun & a fast woman"
3090 PRINT@(10,19),"(c) Tortilla justice & Montezuma's
Revenge"

8100 PRINT@(12,19),"(d) The Giant Armadillo ";Y$;
8110 A$=INKEYS$: IF A$="" THEN 3110 ELSE PRINT
N$;

8120 PRINT@(6,19),R$;"(a) Judge Roy Bean & an
occasional Texas Ranger ";S$

3130 PRINT@(18,0),"Judge Roy Bean's saloon and court
house are located in Langley, Texas"

3140 PRINT"near Pecos. In early Texas, this lawless
area was protected by only a few","Texas Rangers. The
area was overrun by bandits and outlaws. To tame
the","lawlessness the Rangers often dispensed justice
with their 45's or they took"

3150 PRINT"their prisoners before Judge Bean and his
swift *hang em high' justice."

3160 IF A$="a" OR A$="A" THEN GOSUB 4300 ELSE
GOSUB 4350

3170 GOSUB 4200

3180 PRINT@(3,29),"Pronunciation Test:"

3190 PRINT@(5,9),"If a Texan tells you he needs to go to
town to buy some ‘BOB WAHR',"

3200 PRINT@(6,9),"he is going to buy:"

3210 PRINT@(8,24),"(a) a hooker for the evening"

3220 PRINT@(10,24),"(b) a pickup truck"

3230 PRINT@(12,24),"(c) barbed wire for cattle fencing"
3240 PRINT@(14,24),"(d) a mean bull ";Y$;

3250 A$=INKEYS$: IF A$="" THEN 3250 ELSE PRINT
N$;

3260 PRINT@(12,24),R$;"(c) barbed wire for cattle
fencing ";S$

TRSTimes magazine 7.6 - Nov/Dec 1994

3270 PRINT@(18,0),"Barbed wire, invented in 1873, was
first used in Texas about 1879."

8280 PRINT"It spread throughout the range by 1883.
Strife arose as open land was","fenced and fence cutting
became wide-spread. In 1884, the legislature
made","fence cutting a felony- a law which has remained
on the books to modern times."

3290 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

3300 GOSUB 4200

3310 PRINT@(4,32),"True or False:"

3320 PRINT®@(6,9),"Citizens of Austin once seized state
documents and held them "

3330 PRINT@(7,9),"in an attempt to prevent the capital
from being moved to Houston. ";Y$;

3340 AS=INKEYS$: IF A$="" THEN 3340 ELSE PRINT
N§;

8350 PRINT@(11,38),R$;"TRUE! ";S$

8360 PRINT@(18,0),"When the Mexicans invaded Texas
in 1842, President Houston ordered"

3370 PRINT"the government moved to Houston. Citizens
of Austin, fearing that Houston","would be partial to the
city which bore his name, seized state papers
to","prevent the move. Houston finally agreed to move
the government to Washington"

3380 PRINT"on the Brazos until the crisis had passed."
3390 IF A$="t" OR A$="T" THEN GOSUB 4300 ELSE
GOSUB 4350

3400 GOSUB 4200

3410 PRINT@(4,32),"True or False:"

3420 PRINT@(6,19),"For 6 days in 1865, a jackass named
Betty was"

3430 PRINT@(7,19),"the governor of Texas. ";Y$;

3440 A$=INKEY$: IF A$="" THEN 3440 ELSE PRINT
NS;

3450 PRINT@(11,38),R$;" FALSE! ";S$

3460 PRINT@(18,0)," Although many people have accused
various governors of being jackasses,"

3470 PRINT"there are no historical records to
substantiate these claims. However, in 1873,",
"democrat Richard Coke defeated republican governor Ed
Davis ending","Reconstruction in Texas. Davis refused to
vacate the Capitol and a brief armed"

3480 PRINT"clash occured between followers of Davis
and Coke in the Capitol building."

3490 IF A$="f" OR A$="F" THEN GOSUB 4300 ELSE
GOSUB 4350

3500 GOSUB 4200

3510 PRINT@(4,19),"The Yellow Rose of Texas was:"
3520 PRINT@(6,24),"(a) a famous Texas mixed drink"
3530 PRINT@(8,24),"(b) the State Flower from 1857-
1872"

3540 PRINT@(10,24),"(c) a famous prostitute in early
Texas"

3550 PRINT@(12,24),"(d) an exotic type of fajitas ";Y$;
3560 A$=INKEYS$: IF A$="" THEN 3560 ELSE PRINT
N§;

3570 PRINT@(10,24),R$;"(c) a famous prostitute in early
Texas ";S$

3580 PRINT@(18,0),"The song "The Yellow Rose of Texas'
was written about a beautiful and"

3590 PRINT"famous prostitute in early San Antonio.
Legend has it that she was with","Santa Anna at San
Jacinto when the Texans attacked. The battle

Page 13

ultimately","changed the course of Texas history."

3600 IF A$="c" OR A$="C" THEN GOSUB 4300 ELSE
GOSUB 4350

3610 GOSUB 4200

3620 PRINT@(4,32),"True or False:"

3630 PRINT@(6,24),"Chili is the State Dish of Texas. ";
Y$;

3640 AS=INKEYS$: IF A$="" THEN 3640 ELSE PRINT
N$;

3650 PRINT@(8,38),R$;"TRUE! ";S$

3660 PRINT@(18,0),"Chili was proclaimed the state dish
of Texas by the Texas Legislature"

3670 PRINT"in 1977. As of this writing there was as yet
no official recipe for the ","state dish, and although Lone
Star has tried to proclaim itself the National","beer of
Texas, many people feel that Shiner should have that
right as it is"

3680 PRINT"the only independent locally owned brewery
in Texas."

3690 IF A$="t" OR A$="T" THEN GOSUB 4300 ELSE
GOSUB 4350

3700 GOSUB 4200

3710 PRINT@(4,24),"The State song of Texas is:"

3720 PRINT@(6,29),"(a) The Yellow Rose of Texas"
3730 PRINT@(8,29),"(b) Texas, our Texas"

3740 PRINT@(10,29),"(c) The Eyes Of Texas"

3750 PRINT@(12,29),"(d) Deep in the Heart of Texas"
3760 PRINT@(14,29),"(e) San Antonio Rose ";Y$;

8770 A$=INKEY$: IF A$="" THEN 3770 ELSE PRINT
NS;

3780 PRINT@(8,29),R$;"(b) Texas, our Texas";S$

3790 PRINT@(18,0)," Although all of these other songs
are more widely known, "Texas, our Texas™

3800 PRINT"is the official state song, selected by the
41st legislature in 1929.","The Eyes of Texas is the
official song of the University of Texas and
is","frequently sung at public gatherings and has a
measure of recognition as an"

3810 PRINT"unofficial state song. I have chosen to use it
for the music in this test."

3820 IF A$="b" OR A$="B" THEN GOSUB 4300 ELSE
GOSUB 4350

3830 PRINT@(23,24),"PRESS ANY KEY TO
CONTINUE";:PRINT@(23,67),"Correct:"; CORRECT;
TAB(80)

3840 A$=INKEY$: IF A$="" THEN 3840

3850 CLS

3860 SCORE=INT(CORRECT/30*100)

3870 IF SCORE<70 THEN GOTO 4040

3880 '** YOU PASS THE TEST **

3890 PRINT@(4,31),"CONGRULATIONS !!!"

8900 PRINT@(86,9),"You have answered"; CORRECT;
"questions correctly, for a score of";SCORE;"%"

3910 IF SCORE<80 THEN PRINT@(8,11),"You have
passed the Texas Citizenship Test and are now a":
GOTO 3950

3920 IF SCORE<90 THEN PRINT@(8,8),"You have done
well on the Texas Citizenship Test and are now a™:
GOTO 3950

3930 IF SCORE<10C THEN PRINT@(8,1),"You have
made an excellent score on the Texas Citizenship Test
and are now a":GOTO 3950

3940 PRINT@(7,2),"You have made a perfect score on the
Texas Citizenship Test and are

Page 14

worthy":PRINT@(8,33),"of the title":

PRINT@(10,10)," NATURALIZED CITIZEN EMERITUS
OF THE GREAT STATE OF TEXAS ":GOTO 3960
3950 PRINT@(10,15),"NATURALIZED CITIZEN OF
THE GREAT STATE OF TEXAS"

8960 PRINT@(12,11),"and are entitled to all the rights
and priviliges thereof."

3970 PRINT@(15,54),"The Authors---"

3980 PRINT@(17,54),"THOMAS PESEK"

3990 PRINT@(19,54),"BRUCE WEHRLE"

4000

4010 PRINT@(23,20)," ===> Press any key to continue
<_._..~ "

4020 A$ INKEY$:IF A$="" THEN GOTO 4020

4030 GOTO 4180

4040 "** YOU FAIL THE TEST **

4050 PRINT@(4,35),"SORRY !!I"

4060 PRINT®@(6,8),"You have answered";CORRECT;
"questions correctly, for a score of';SCORE;"%"

4070 PRINT@(8,8),"You have failed the Texas
Citizenship Test and are not entitled"

4080 PRINT@(10,8),"to be called a citizen of the Great
State of Texas. Go forth to"

4090 PRINT@(12,8),"your nearest library and study, so
that you can pass next time."

4100 PRINT@(14,8),"Lest we become angered and
unleash a pestilence on your house."

4110 PRINT@(18,8),"--or worse yet, give your address to
Aggies and Rednecks!"

4120 PRINT@(18,54)"The Authors---"

4130 PRINT@(20,54),"THOMAS PESEK"

4140 PRINT@(21,54),"BRUCE WEHRLE"

4150

4160 PRINT@(23,20)," ===> Press any key to continue
L “

4170 A$=INKEY$:IF A$="" THEN GOTO 4170

4180 CLS

4190 END

4200 "** QUESTION SET UP **

4210 PRINT@(23,0), CHR$(30);:

PRINT@(23,24),"Press any key to continue";:
PRINT@(23,67),"Correct:"; CORRECT;

4220 A$=INKEY$: IF A$=""THEN 4220

4230 N=N+1:IF N>6 THEN N=1

4240 CLS

4250 PRINT@(1,29)," QUESTION NUMBER *;I;" *;
4260 PRINT@(23,23),"PRESS LETTER OF CORRECT
ANSWER",

4270 I=I+1

4280 RETURN

4290

4300 '"** CORRECT ANSWER **

4310 PRINT@(16,22)," CONGRATULATIONS, YOU'RE
CORRECT!";

4320 CORRECT=CORRECT+1

4330 RETURN

4340

4350 '*** WRONG ANSWER **

4360 "'

4370 PRINT@(16,28)," SORRY, WRONG ANSWER! ";
4380 RETURN

TRSTimes magazine 7.6 - Nov/Dec 1994

Of bits, digits and fingers

FINGER Terminating member of the hand.

DIGIT (from Latin digitus=finger)
Numeral 0 to 9.

BIT (from Blnary digiT)

Unit of computer memory able to
store one or the other of two alterna
tives (... Webster).

If any reader of my last essay ("A short Boole
session", TRSTimes 7.5) tried to verify in Model 4
BASIC my claim that "0 IMP 1 returns 1, but 1 IMP
0 returns 0", he or she would be entirely justified to
question my truth in advertising, because...

PRINT 0 IMP 1
PRINT 1IMP O

...displays -1
...displays -2

I also claimed that "0 EQV 1" returns 0, even
though in TRSTimes 7.3, page 5, the editor made it
clear that the XNOR function (same as EQV in
Model 4) does not produce a result of 0 or 1. Indeed,
it doesn't...

PRINT 0 EQV 1 ...displays -2

Yet, confusing as they are, all those conflicting
claims and computations are correct! The confusion
is caused by the difference between binary bits and
decimal digits. On the bit level it is always true that

TRSTimes magazine 7.6 - Nov/Dec 1994

"0 EQV 1 returns 0". If a bit in one number is 0, and
in the second number the matching bit is 1, then in
the result the corresponding bit will be 0. But the
result displayed by BASIC (or by a calculator) de-
pends on the values of the original numbers involved
in the operation. And so, dear Editor, XNOR or EQV
will sometimes produce Oor 1...

PRINT 0 EQV -1
PRINT 0 EQV -2

...displays 0
...displays 1

This can get even "curioser and curioser”...

PRINT 85 EQV -86
PRINT 84 EQV -86

...displays O
...displays 1

These and similar shenanigans have to do with
the clever way negative integers are encoded in the
binary form in most computers, including TRS-80.
To understand that, we should first recall how posi-
tive integers are encoded.

In the decimal system the positions of digits rep-
resent powers of 10 increasing from right to left.
The value of the decimal number is the sum of those
powers, each multiplied by the corresponding digit.
Thus...

decimal 101 = 1*100 + 0*10 + 1*1

Similarly, in the binary system, the positions of
bits represent powers of 2 increasing from right to
left...

binary 101 = 1*4 + 0*2 + 1*1 = decimal 5

So far so good, but our poor computer knows
only "ones" and "zeros". It does not have a "plus" or
"minus" sign. To overcome this minor handicap, we
have agreed (we, the computerists) that in "signed"
binary integers the leftmost bit will function as a
sign, sort of. If that bit is 1 then the number is nega-
tive. If it is 0 then the number is positive. Thus a
decimal value +5 must be properly written 0101.

Unfortunately the sign business is not quite as
simple as that. To represent in binary the decimal
value -5 we cannot merely change the leftmost bit
from O to 1. The signed binary integer 1101 would
represent the decimal value -3, not -5. This is be-

Page 15

cause the leftmost "sign" bit is not just an arbitrary
symbol like our "minus" sign. In a mathematical
sense it is a "borrowed" negative quantity equal to
the power of two indicated by its position. The val-
ues of all other bits are the same as in a positive
number. In 1101 the sign bit represents the 3rd
power of two or 8, so its value is -8. Since the total
value of the other bits is +5, the "net worth" of 1101
is -3.

This binary "sign" trick has one peculiar conse-
quence: unlike digits in decimal numbers, bit pat-
terns are only meaningful in the context of a system
in which all values are represented by the same
fixed number of bits. For example our 1101 repre-
sents -3 only in a system that uses 4 bits. In a 16-bit
integer system (like that used in our TRS-80's) the
same value -3 looks like this...

11111111 11111101

Each time we move the sign bit one position to
the left, its negative value doubles. But at the same
time the previous sign bit is not the sign anymore, so
its value changes from negative to positive, in effect
adding double its absolute value to the total. These
two "doubles" cancel each other and the "net worth"
after each such "extension of the sign" remains the
same, no matter how many extra "ones" we add to
the left of a negative sign bit.

So, to encode a negative number in a system
with a given number of bits, we should first compute
the negative value of the leftmost sign bit, and then
figure out the bits of a positive value which added to
the negative value of the sign yields the desired neg-
ative "net worth". A complicated mouthful. Fortu-
nately it's easier to do than it sounds. Let's say we
have a 4-bit system and want to find the bit pattern
of a negative value -5. The leftmost sign bit is of
course 1. Its value is -8 so the total of the other 3
bits must be -5-(-8) or +3. So now we are looking for
a pattern of 3 bits that represent +3. There are sev-
eral ways to do it, but the easiest is a repeated divi-
sion by 2. If there is a remainder then we know that
we have "1" in the rightmost bit. Otherwise we have
"0". Why? Because a binary number divided by 2
leaves a remainder 1 only if the rightmost bit is "1"
(the values of all other bits are multiples of 2). After
each division by 2 all bits "shift" to the right because
now each bit must represent half of its previous
value. So each division tells us whether the next bit
is "1" or "0". To extract the 3 bits in our example we
would repeat the division 3 times...

bit pattern ??1
bit pattern ?11
bit pattern 011

3/2=1remainder 1
1/2=0remainder 1
0/2=0remainder 0

Page 16

Putting this together with the sign bit gives
1011. Obviously this procedure works for any num-
ber of bits.

With this background in mind we can write a
simple BASIC routine to produce bit patterns of
"signed" integers in any bit system up to 32 bits, i.e.
up to the so-called "long integers" popular with the
C-language crowd. The routine takes a desired
number of bits (z) and a value to convert (z#) and
returns a string (z$) of 0's and 1's. If the requested
values are out of range then "Overflow" is returned
instead. Mod-I and Mod-III users replace the expo-
nentiation caret * by bracket [(up arrow) in line
130.

100 'BITSTR subroutine

110 c# =z#: z$ ="": s$ ="0"

120 if z<1 or z>32 then z$="(bits!)": goto 300

130 i# = -(2 ~ (z-1)): j# = abs(i#) - 1

140 if c#<i# or c#>j# then z$="(value!)": goto 300
150 if c#<0 then c#=c#-i#: s$="1"

160 if z = 1 then 240

200 for x = 1 to (z-1)

210 k# = c#/2: c# = fix(k#)

220 if k#>c# then z$="1"+z$ else z$="0"+z$
230 next

240 z$ =s$ + z$: RETURN

300 z3$ = "Overflow " + z$: RETURN

The 100-series of lines are preliminaries. In line
130 we calculate the lowest and the highest possible
values that can be represented by the specified num-
ber of bits. It follows from our preceding discussion
that we get the lowest negative value when the
"sign" bit is 1 and all the other bits are 0's. The high-
est positive value is the opposite: the "sign" bit is 0
and all the other bits are 1's. For example in a 4-bit
system the lowest value is 1000 or decimal -8, the
highest is 0111 or decimal +7. As a general rule, the
highest integer in any system is one less than the
absolute value of the lowest negative integer.

If the number to convert is negative then in line
150 we compute a positive value which together
with the negative value of the "sign" adds up to the
number we have just entered. In that case we set
the "sign" bit as "1".

The 200-series of lines is a loop that keeps ex-
tracting the bits by repeatedly dividing the positive
component of our number by 2. Finally in line 240
we put the "sign" together with the rest of the result
and return. One special case is when the user speci-
fied a 1-bit system. In such a crippled but perfectly

TRSTimes magazine 7.6 - Nov/Dec 1994

valid system there is only a "sign" bit "0" or "1", so
the loop was skipped in line 160.

To test the routine run the following program.
The loop in the 20-series of lines displays the string
of bits. To improve its legibility, in line 22 we insert
a blank space every 8 bits.

11 clear 1000 ""this line for Mod-I or III only
12 print "How many bits (1-32)? ",

13 line input k$: if k§ ="" then END -

14 z = fix(val(k$))

15 print "Enter decimal number: ";

16 line input k$: if k$="" then 12

17 z# = fix(val(k$)): gosub 100

20 for x=1 to len(z$)

21 print mid$(z$,x,1);

22 if (x/8)=fix(x/8) then print " ";
23 next: print

24 goto 15

If you play with this program, especially with a
larger number of bits, say 16 or more, you might no-
tice an interesting thing. In two numbers that differ
only by their sign, several bits (but never all) are
often just the opposites (or "complements") of each
other. For example...

+1234 displays 00000100 11010010
-1234 displays 11111011 00101110

These patterns hint at the so-called "two's com-
plement" method used internally by the computer to
change positive integers into negative, and the other
way around. The method is a two-step process.
First all bits in a number are flipped or "inverted":
0's become 1's and 1's become 0's (this first step is
called "one's complement”). In the second step 1 is
added to that flipped value. Let's try it...

+1234 00000100 11010010
flip 11111011 00101101
add 1 00000000 00000001

result -1234 11111011 00101110

Adding in binary is pretty simple: 1+1 = 2, in
binary 10, so write 0, and carry 1. In this example
the carry is added to a 0 in the second bit of the
"flipped" number, so write 1, and that's the end of it.
In some numbers the carry may have to go back far-
ther than that, but it always stops as soon as a 0 is
found in the "flipped" number. The remaining bits
in the left part of the final result will remain as
"one's complements" of the original bits.

As noted, the method works the same way in re-
verse. If you take the bit pattern for -1234 and go

TRSTimes magazine 7.6 - Nov/Dec 1994

through the same steps (flip bits, then add 1), you'll
get the bit pattern for the positive value +1234.

The rationale behind this mechanical "flip, add
1" method is very simple, though to my knowlege
never explained in the computer literature. Con-
sider: a negative number is a positive number sub-
tracted from 0. For example...

©-1234=0- 1234

This equation remains valid if we simultane-
ously add and subtract 1 on the right-hand side...

-1234=0-1234+1-1

After some re-arranging of the right-hand side
we get...

1234 = (-1-1234) + 1

Using our BASIC program you can see that for
any number of bits the value of -1 is always repre-
sented by a series of 1's, without any 0's. This is so
because, if we can "extend the sign" by adding extra
1's in front of the negative sign bit, we can also
"shrink the sign" by deleting any extra "leading” 1's.
This reduces 111... to a one-bit system in which only
a single "1" remains. Since this lonely "1" is now the
sign bit whose value is -1, the value of 111... always
boils down to -1, no matter how many 1's were in the
original.

The advantage of binary subtracting from a
bunch of 1's is that there is never a need to "borrow":
1 minus 1is 0, 1 minus 0 is 1, and that's it...

-1 11111111 11111111
subtract 1234 00000100 11010010
result 11111011 00101101

In effect the subtraction from -1 always simply
"flips" all bits, which is the first step in the "two's
complement" method. To complete the rest of the
equation we now add 1, the second step of the
method. Similarly, a positive number can be under-
stood as a negative number subtracted from 0, and
that's why the method works both ways.

The reverse job of finding the value of a negative
signed bit pattern is more straightforward: find the
negative value of the leftmost "sign" bit, and add to
it the total of positive values of all other bits. As a
shortcut we can "shrink the sign", i.e. delete any ex-
tra leading 1's. For example...

11111111 10011011 or 10011011

Page 17

will yield the same negative value. Bit if this proce-
dure still seems too tedious, try this BASIC pro-
gram...

11 clear 1000 ""this line for Mod-I or 111 only
15 print "Enter binary number: ";

16 line input z$: if z$ = "" then END

17 gosub 500

20 if z$="Overflow!" then print z$ else print z#
22 goto 15

500 'BITVAL subroutine

510 n#=1.2#=0:#=2" 31
600 for x = len(z$) to 2 step -1
610 k$ = mid$(z$,x,1)

620 if k$=" " then 650

630 z# = 7# - n# * k$="1")

640 n# = 2 * n#: if n#>j# then x=0
650 next

660 if x < 0 then z$ = "Overflow!"
670 s# = n# * (left$(z$,1) ="1")
680 z# = s# + z#: RETURN

The subroutine is more or less the reverse of the
BITSTR routine. If you enter more than 32 bits then
it returns "Overflow" (but spaces typed for legibility
between groups of bits are ignored in line 620). To
simplify the routine, we assume that any bit which
is not "1" means "0", so you get the same value from
"1101" as from "11x1", ete.

Now, going back to the question why, for exam-
ple...

PRINT 0 IMP 1
PRINT 1 IMP O

...displays -1
...displays -2

Recall the "truth table" of IMP discussed last
time...

@ ® (@IMP®)
0 0 1
0 1 1
1 0 0
1 1 1

Read the rows of the table: "when the first bit is
0 and the second 0, the result is 1", "first 0, second 1,
result 1", etc. So let's see what the truth table does
to "0 IMP 1" in BASIC...

(a) = decimal 0 00000000 00000000
(b) = decimal 1 00000000 00000001
(@) IMP (b) 11111111 11111111

By now we easily recognize that the result repre-
sents -1. As for "1 IMP 0"...

Page 18

(a) = decimal 1 00000000 00000001
(b) = decimal 0 00000000 00000000
(@ IMP () 11111111 11111110

The result is almost the same as before, except
that the rightmost bit is now 0 in accordance with
the third row of the truth table (first bit 1, second bit
0, result 0). Since the value of that missing right-
most bit was +1, the result is one less than before,
ie. -2. Strange but true. Similar analysis would
show why "0 EQV 1" displays -2, or why "85 EQV
-86" displays 0, ete, regardless of the number of bits
used by the system.

If I got carried away today, it's because I always
find binary systems more fun than decimal. I sus-
pect that God must be of the same opinion. He cre-
ated male and female, not 10 genders; right and
wrong, not 10 excuses; true or false, not 10 maybes;
left and right hand, not 10 hands. But man, greedy
as usual, demanded more of everything. As a pun-
ishment God gave him 10 fingers and ever since,
having forfeited the binary bliss, we keep making
life more confusing than it was meant to be.

8 N 1-24 hours
Los Angeles

213 664-5056

[po0
npod

where the TRS-80 crowd meets

TRSTimes magazine 7.6 - Nov/Dec 1994

£}

C
PROGRAMMING
TUTORIAL

Part 4
by J.F.R. "Frank" Slinkman

Before I get into the guts of this issue's install-
ment, an important word of advice:

As you go through this series, EVERY time a
standard library function is referred to or used in a
program, you need to look at the documentation for
that function, and use the docs as a supplement to
the article text. You'll never fully understanding
what's going on if you don't do this.

O.K. Let's examine C's powerful, built-in data
organization tools.

When it comes to storing data in RAM, BASIC
offers only one way (the array) to organize multiple
data items into a single logical unit. The limitation
of arrays is they can contain only one type of data.

However, if you're sneaky, you can logically
combine different data types in RAM by opening a
random access disk file, and having two subroutines
-- one (subroutine A) to field its buffer with the ac-
tual data elements, and one (subroutine B) to field
the entire buffer as a single element.

To store data, you would call subroutine A, and
fill the buffer with data just as you would for a disk
file write. Then call subroutine B, and copy the en-
tire buffer to an element of an array of strings.

The data can later be extracted from the array
by calling subroutine B, LSETting an array element
into the buffer, calling subroutine A, and accessing
the data as if you'd just done a disk file read.

This method treats RAM like a disk file. The
array is the "file," the array elements are "records,"
subroutine B's FIELD command defines the records,
and subroutine A's FIELD command defines the
fields within the records.

If you can visualize storing data in RAM this
way, you're 99% of the way toward understanding
how C manages data elements called "structs." In-
terestingly, and in keeping with the above analogy,
structs are sometimes also referred to as "records.”

Fortunately, handling structs in C is much eas-
ier than the above-described BASIC method.

TRSTimes magazine 7.6 - Nov/Dec 1994

In addition to arrays and structs, C offers one
additional method of data organization, the "union.”

A "union" provides a means of looking at the
same data in more than one way.

In C, these three methods of data organization --
arrays, unions and structs -- are extremely flexible
and versatile.

You can create arrays of structs, for example, or
structs of arrays. You can have unions of arrays and
structs; structs which contain arrays and unions,
and even other structs, just to mention a few of the
possibilities.

A "union" of two data elements is declared as fol-
lows:

union type_name
{ type member_name;
type member_name;
} union_name;

The variables included in the union are called
the union's "members."

"Type_name" is optional, and would normally be
used only if more than one of the same type of union
is to be declared.

If "type_name" is used, it becomes a "typedef" --
a sort of template which makes it easy, elsewhere in
the program, to declare other variables to be unions
of the same type. In other words, it defines "union
type_name" to be a data type just as "char," "int,"
and "double" are data types.

Also, "union_name" is optional. If you just want
to define the union as a data type for later use, you
would define the union similarly to:

typedef union type_name
{ type member_name;
type member_name;

|5

Henceforth, anytime you declare a variable to be
of type union type_name, the compiler would know
the type and size of the data, and how to handle it.

The following program illustrates the use of a
data union:

r* prog07.c */

<stdio.h>
<math.h>

#include
#include

Page 19

#option ARGS OFF

#option REDIRECT OFF

#option FIXBUFS ON

#option MAXFILES O

union { char string[8];

double value;

} test;

main()

{

register int i

printf("\x1le\x1fval = %13.80\n\n",
test.value = 1.0/3.0);

test.string[7] -= 8;
puts(" n\t val * 2*n");
puts("===\t

")

for (i=-8,1<=8;)
{ printf("% d\t%11.8f\n", i++,
test.value);
++test.string[7];

After the "option" directives, the union "test" is
both defined and declared. It contains an 8-element
char array named "string" which occupies the same
RAM space as the double variable "value."

The size of this union is 8 bytes, since both
"string" and "value" are 8 bytes long. If one were
longer than the other, the union would take on the
size of the larger member.

It's important to realize that both "string" and
"value" refer to the same RAM space. Unions do not
hold two different values, but merely allow you to
look at the same data in more than one way, through
the use of two different variable names. This is
demonstrated in the main() function.

The first statement in main() uses a new class of
variable, namely a "register" variable. Previously,
we have used only "auto" and "global" variables.

"Auto" variables are stored on the stack.
"Register" variables are stored in CPU registers, and

thus can be accessed more quickly than auto vari-

ables, but not as quickly as "global" variables (or
"static" variables, which will be discussed later).

The next statement assigns the value one-third
to the double member of the union. Note how the
variable receiving the assignment is specified:

test.value = 1.0/ 3.0;

Page 20

First is the name of the union, followed by a
"dot" (period) followed by the name of the member.

Note also how it's legal to combine statements in
C. This line is really a combination of two lines:

test.value = 1.0/ 3.0;
printf("...", test.value);

and executes the same (although more efficiently),
as if the two parts were written on two separate
lines.

This ability to combine statements is both an as-
set and a liability. The more statements you com-
bine, the more efficient your program becomes, and
the harder it becomes to make sense of your pro-
gram listing.

I recommend you initially write all statements
on separate lines. Then after you've got the program
debugged and working properly, go back and com-
bine as many statements as is reasonable as part of
the final optimization before final compilation.

The next line, "test.string[7] -= 8" subtracts 8
from the value held in the 8th byte of both "string"
and "value.”

This is one of the nifty operators in C that saves
a lot of key strokes compared to coding in, say, BA-
SIC. For example, the line

burp -=8§;
is identical to the BASIC line

BURP =BURP - 8;

Some other examples of this type of operator are:

C BASIC
burp +=8; BURP = BURP + 8
burp *=8; BURP =BURP * 8
burp /=8; BURP =BURP /8
burp %= §; BURP = BURP MOD 8
burp &=8; BURP = BURP AND 8
burp [=8; BURP = BURP OR 8
ete.

Of course, you COULD have written "burp = burp -
8;" but why?

What we are doing is altering the exponent of
the double precision value stored in the "value"
member of the union. This has the effect of dividing
"value" by 2 to the 8th power.

TRSTimes magazine 7.6 - Nov/Dec 1994

The next two lines print a header to explain the
data which will be displayed.

The "for" loop displays values of the variables "i"
and "test.value," and then increments the exponent
of test.value, the same as multiplying test.value by
two.

Type in, compile and run prog07.c, and you will
see the effects of manipulating the exponent of the
double-precision "value" member of the union "test."

Actually, this could have been done another
way, without the use of a union.

The 8th byte of the double can also be accessed
by declaring "string" to be a pointer to char, and
then loading it with the RAM address of "value."

Then any one of the eight bytes of the double
precision "value" can be addressed as one of the ele-
ments of a char array, as follows:

double value=1.0/3.0;
char *string;

string = (char *)&value;
string[7] -= 8;

Casting the address of "value" to a pointer-to-
char is identical to the effect of including both in a
union, but the use of a union is just as efficient, and
helps keep program listings simpler and clearer.

In other words, all a union does is assign the
same address to two variables, and tell the compiler
to treat the object at those addresses the desired
ways.

A good example of a union is found in the MC-
provided header file, ZBOREGS/H. If you'll LIST
that file to your printer, you'll see that it's a union of
two structs, one of which contains seven short ints,
and the other which contains 14 chars.

This union provides the programmer an easy
way to load and/or read the various Z80 registers
when making use of the non-standard callQ func-
tion.

When loading the 16-bit register pairs, the 14-
byte space is addressed via the struct which treats it
as seven 16-bit short ints. When loading single 8-bit
registers, the space is addressed via the struct which
treats it as fourteen 8-bit chars.

Notice, too, how #defines are used to further
simplify the task of accessing this space.

TRSTimes magazine 7.6 - Nov/Dec 1994

You may also notice that structs are defined
very similarly to unions, namely:

struct type_name

{ type member_name;
type member_name;
type member_name;

} struct_name;

Again, "type_name" is optional, and serves as a
typedef to make it easy to declare other variables as
being of type "type_name" elsewhere in the program.

"Struct_name" is also optional, if you just want
to define the structure via a typedef, as discussed
above for unions.

You can use any data type as a struct member,
except a struct of the same type. Think about that
for a minute, and then think about the number of
reflections created by two mirrors facing each other.

However, structs can (and often do) contain
POINTERS to structs of the same type (the structs
used in the programs unhuf.c and dohuf.c in
TRSTimes Vol 7 No 2 being good examples of this).

Also, a struct can have as many members as you
care to give it. In some cases, it's even useful to have
a struct with only one member.

Frankly, you probably won't have too many occa-
sions when you need to use unions, but structs are
so powerful and so useful that you'll soon come to
wonder how you ever got along programming in a
language like BASIC, which doesn't have them.

The following program demonstrates the use of
structs, and gets us deeper into the concept of indi-
rection.

* prog08.c */

#include <stdio.h>
typedef struct entry
{ int position;
char *message;
%

main(arge, argv)

int argc; char **argv;

{
register int i
struct entry *msg;

Page 21

msg = calloc(arge, sizeof(struct entry));

if ('msg)

{ perror("calloc()");
exit(EOF);

}

for (i=0;1<argc;)

{ msg[i]. message = argvli};

msg[i].position = ++i;

}

gsort(msg, arge, sizeof(struct entry), compare);
for (i=0;1<argc;)

{ printf("%2d ", msg[i].position);
puts(msg[i++].message);
}

free(msg);

int compare(a, b)
struct entry *a, *b;

{
}

return stremp(a->message, b->message);

Notice we didn't use any of the "#option" lines
discussed in previous programs.

We didn't use "INLIB" because we are using
none of the special functions in IN/REL.

We didn't use "ARGS OFF" because, for the first
time, we have a program which has command line
arguments (well, sort of).

We didn't use "REDIRECT OFF" because we do
want the ability to use standard 1/0 redirection.

And we didn't use "FIXBUFS ON" because we
will be using dynamic memory reallocation, and we
didn't use "MAXFILES" because it's only desirable to
use that if "FIXBUFS" is "ON."

The first thing we do after including STDIO/H is
define a structure type. Notice we did not allocate
any RAM to hold structures of this type -- we only
told the compiler how to build and use this type of
structure in the future.

Structures of "type entry," have two members: a
short signed int named "position;" and a pointer to
char named "message."

Since both short ints and pointers have 2 bytes
on our hardware (on some larger machines, pointers

Page 22

are 4 bytes), the size of a structure of type entry is
four bytes.

Now look at the start of the main() function. We
see, for the first time, a main() function with argu-
ments. Unless we've used the non-standard option
"ARGS OFF," main() always takes exactly two argu-
ments. In the past, we've never had occasion to use
them; so we simply ignored them.

The "arge" and "argv" names for these argu-
ments have become a de facto standard. "Argc"
(argument counter) is an int containing the number
of strings on the command line, and "argv"
(argument vector) is a pointer to an array of pointers
to char which point to these strings.

Since, in C, strings are arrays of chars, "argv" is
a pointer to an array of "argc" number of pointers,
each of which in turn point to ASCII data from the
command line.

Here we have defined "argv" as "char **argv;".
Just as one asterisk indicates a pointer, a double as-
terisk indicates a pointer to a pointer. Often, you
will see "argv" defined as "char *argv[]."

We're now deeper into the concept of indirection
than we've ever been before, and it's very important
that you understand why "char **argv" means ex-
actly the same thing as "char *argv[]."

Prog08.c can have as arguments will fit on the
80-character command line. For the sake of exam-
ple, let's say we invoke prog08 with the following
syntax:

prog08 how now brown cow

This syntax produces five arguments for main(),
namely the string "prog08," the string, "how," and
the strings "now," "brown," and "cow."

The system creates a char array to hold each
string on the command line, counting the number of
strings as it goes along. Pointers to these strings are
held in an array of pointers-to-char.

Thus, in this case, the int "arge" will equal five.

The following may help your understanding:

char string0[7] = { "prog08" };
char stringl[4] = { "how" };
char string2[4] = { "now" };
char string3[6] = { "brown" };
char string4[4] = { "cow" };

TRSTimes magazine 7.6 - Nov/Dec 1994

char®* burp[5];

burp[0] = string(;
burp[1] = string1;
burp[2] = string2;
burp|[3] = string3;
burp[4] = string4;

The above code creates the "burp" array of point-
ers to char identical to "argv" with the example syn-
tax. :

The first 5 declarations cause "string0" to con-
tain the address of the string "prog08," and "string1"
to contain the address of the string, "how,", etec.

The sixth declaration sets up the variable "burp"
as an array of five pointers to char.

Notice how "char* burp[5]" is used to declare
"burp." "Char *burp[5]" would also work, but this
form makes it clearer to someone reading the listing
that "burp" is an array of pointers and not an array
of chars.

Remember, the compiler ignores white space
characters; so it sees both forms as "char*burp[5]."
Thus this is a convention strictly for the benefit of
humans, not of computers or compilers.

Also note that "burp" is an address, not a value.
Specifically, it is the RAM address of the first of its
five array elements. Thus "burp" is actually a
POINTER to its first element.

The address of the string "prog08" is loaded into
the first element of the "burp" array and the address
of the string "how" is loaded into the second, etc.

Because all of "string0" through "string4" are
pointers to char, and the variable "burp" is a pointer
to the first of five pointers to char, then "burp” is a
pointer-to-pointer-to-char. Thus "char *burp{]" can
also be be written as "char **burp."

For the visually oriented reader, the following
little diagram may help:

burp ->string0 -> "prog08"
string1 -> "how"
string2 -> "now"
string3 -> "brown"
string4 -> "cow"

If you're struggling with this, don't despair.
People even brighter than you (assuming that's pos-
sible) have had trouble with it. But once you "see"
it, it'll seem so clear and obvious you'll laugh at
yourself for not seeing it sooner.

TRSTimes magazine 7.6 - Nov/Dec 1994

And please don't read any further until you fully
understand why "burp" and "argv" are pointers to
pointers, and how "arge" and "argv" are used to ac-
cess the various parts of the command line.

Now, inside main(), we declare the register int
variable "i," and a pointer to struct of type entry,
"msg." This doesn't reserve any RAM to hold the
structure itself. It merely reserves two bytes of
RAM to hold a POINTER to a struct of type entry.

The next statement uses the standard calloc()
function to allocate enough RAM to hold "arge" num-
ber of structs of type entry.

In our example, "argc" will be equal to 5; so cal-
loc() will attempt to reserve a zeroed block of 20 (5
structs times 4 bytes per struct) bytes of RAM.

If calloc() succeeds, it returns a pointer to the
first byte of the RAM it allocated. If it fails (i.e.,
there wasn't enough free RAM available), calloc() re-
turns a NULL pointer.

The next statement tests for calloc() failure by
testing the value of "msg." If non-zero, everything is
O.K. But if "msg" is zero, then calloc() failed; so we
display an error message via the perror() function,
and exit the program via the exit() function with a
non-zero argument.

Normally, for efficiency, these two statements
would be combined as:

if ({(msg = calloc(arge, sizeof(struct entry))))
etc.

but this way works, too.

Assuming calloc() succeeds, we now use "argc"
and "argv" to initialize the array of structs. Each
"message" member is assigned a pointer to a string
from the command line, and each "position" member
is assigned a number equal to the order of appear-
ance of the string.

For example, the first string on the command
line must be "prog08"; so the first structure will have
its "message" member loaded with a pointer to that
string, and have its "position" member loaded with
the value one. (Why one and not zero? Because it's
"++1," not "i++.")

After the array elements have been loaded, we
use the standard gsort() function to sort the struct
array elements in alphabetical order.

The next "for" loop displays the command line
Page 23

strings in their new (sorted) order, showing both
their original position and their contents.

We have no further need of the struct array; so
the last statement in main() releases the RAM allo-
cated by calloc(), making it available for other uses.

This statement isn't actually necessary in this
case, since the next thing which will happen is a re-
turn to LS-DOS Ready; but it demonstrates how the
free() function is used to release allocated memory.
Also, it's a good idea to adopt the habit of releasing
all allocated memory when you're through with it.

Now we get to the compare() function. This is a
requirement for the use of the gsort() and bsearch(
functions. You need to look at the documentation for
gsort() before you read any further.

The two arguments passed to compare() are
pointers to elements of the array being sorted. In
this case, therefore, both "a" and "b" are pointers to
struct of type entry.

We want the array sorted in alphabetical order;
so we don't need to look at the "position" members --
only the "message" members.

But look at how the "message" members of both
"a" and "b" are accessed: "a->message," for example,
not "a.message."

This is because "a" and "b" are POINTERS to
struct of type entry, not the structs themselves.

If you'll refer back to main(), you'll see we were
dealing with the structs themselves when we were
accessing the "message" members via
"msg[i].message."

The rule is: Use the "dot" operator when work-
ing with actual structs (or unions). Use the "points
to" ("->") operator with working with pointers-to-
struct (or pointers-to-union).

Getting back to the compare() function, we pass
the "message" members (which are pointers to char)
of both structs to the standard stremp(function,
and return the result back to the gsort() function.

If you'll look at the docs for stremp(), you'll see it
returns a negative number if the first string is al-
phabetically less than the second string; a zero if the
strings are identical; and a positive number if the
first string is alphabetically greater than the second.

Note the return code for stremp() exactly fills the

requirements gsort() has of the compare() routine; so
no additional processing is required.

Page 24

This makes sorting strings easy, but what do
you do when sorting in numerical order?

Also easy. If "a" and "b" were pointers to ints, for
example, you'd simply write:

int compare(a, b)

int *a, *b;
{

return *a - *b;
}

Obviously, this returns a positive value if "a" >
"b", a zero if "a" equals "b", and a negative value if
"a" < "b."

For floats and doubles, it's easiest to just return
fsgn(*a - *b) or dsgn(*a - *b), respectively, e.g.:

int compare(a, b)
double *a, *b;
{

}

For longs (signed or unsigned) or unsigned ints,
because the result of "*a - *b" could be outside the
range of a signed short, the comparison is a little
more involved. For example:

return dsgn(*a - *b);

int compare(a, b)

long *a, *b;
{
long temp;
if (!(temp="*a-*b))
return O;
else if (temp > Q)
return 1;
else
return -1;

0O.K. We have now covered all the ways C can
store data, all the language's statements, and many
of its operators.

Now let's look at a capability of the language
which is extremely difficult if not impossible to ac-
complish in BASIC: recursion.

A recursive function is simply one which calls
itself. The following program uses recursion to cal-
culate the factorials 1! through 12!.

A factorial is the product of all integers from one

through the number. For example, "three factorial,"
which is expressed as "3!,"is 1 *2* 3 =6.

TRSTimes magazine 7.6 - Nov/Dec 1994

r* prog09.c */

#include <stdio.h>
#option ARGS OFF
#option REDIRECT OFF
#option FIXBUFS ON
#option MAXFILES O
long factorial();

char *format();

K K K R TR K

main()
{

register int 1;
puts("\x1c\x1f\t\t\t\tTable of factorials\n");

for (i=1;1<18;i++)
printf("\t\t\t%8d! =%s\n", i,
format(factorial(i)));

KRR R KKK

long factorial(n)

int n;
{
long retcode;
if (n)
retcode =n * factorial(n - 1);
else
retcode = 1L;
return retcode;
}

KRRk _k_%

char *format(arg)

long arg;

{
static char f_buf[16];
char *dest;

memset(f_buf, 0x20, sizeof f_buf);
dest =f_buf + 15;

while(arg)
{ if (arg >= 1000L)
sprintf(dest -= 4,"%041d",arg
% 1000L);
else

sprintf(dest -= 3, "%31d", arg
)
arg /= 1000L;
}

TRSTimes magazine 7.6 - Nov/Dec 1994

while (dest = memchr(f_buf, 0, 15))
*dest =",";

return f_buf + 1;

By now, you should be familiar with everything
in the program down to the "for" loop in main().

The printf() statement in that loop is actually
three statements in one.

First, "i" is passed to the factorial() funetion.

Second, the return value from factorial() is
passed to the format() function.

Finally, the return value from format() is passed
to the printf() standard function.

This is one more example of the advantage of be-
ing able to combine statements for efficiency. In this
case, combining statements has even made it unnec-
essary to use intermediate variables for the tempo-
rary storage of the various returned values.

Now let's look at the factorial() function. It takes
an int argument ("'n") and returns a long.

First, we declare "retcode" as a class auto long
int. Remember, class auto variables are created on
the stack.

Second, we check the value of "n". If "n" is
greater than zero, factorial() passes "n-1" to ITSELF!

Let's follow the logic assuming the value 4 has
been passed to the function by main().

There will be a total of five successive calls to
factorial(): the initial call with "n" = 4, then recur-
sive calls with "n" equal to 3, 2, 1, and finally 0.

The following chart shows the value of each vari-
able at each level of recursion:

level n n - 1 retcode

5 0

1

4 1 0
1

3 2 1
2

2 3 2
6

1 4 3
24

Page 25

At level #5, because "n" is zero, the function doesn't
calculate "n-1," but returns the value 1.

Upon return to level #4, this return value will be
multiplied by the value of "n" in effect at that level
of recursion, namely one. The productof 1*1=11is
assigned to "retcode" and returned to level #3.

Upon return to level #3, the return value of 1 is mul-
tiplied times the value of "n" at level #3, namely two.
The product of 2 * 1 = 2 is assigned to "retcode,"” and
then returned to level #2.

Upon return to level #2, the return value of 2 is mul-
tiplied times the level #2 value of "n" (3) and the
product, 6, is returned to level #1.

Upon return to level #1, the return value of 6 is mul-
tiplied by the level #1 value of "n" (4), and the prod-
uct, 24, is returned -- this time to main().

Obviously, as written, this function simply could not
be written as a BASIC subroutine. The variables "n"
and "retcode" would keep being overwritten with the
new values, and the concept just wouldn't work.

So how can C do this when BASIC can't? The an-
swer lies in the fact that both function arguments
and auto class variables are stored on the stack.

Therefore, the only way a function can access such
variables is via their locations relative to the CPU's
stack pointer (SP) register.

When the factorial() function is called, the calling
program first PUSHes the 2-byte int argument onto
the stack, then makes the call, which PUSHes a 2-
byte return address onto the stack.

The very first action factorial() takes is to reserve
the next 4 bytes of stack space for the long (4-byte)
variable "retcode.” It does this by PUSHing the AF
register twice.

Thus, in the initial call, factorial() would see the SP
register pointing to the following:

SP+6 "n" (the argument)
SP+4 return address to main()
SP+0 ‘"retcode" (the auto variable)

The ONLY things factorial() knows about the
stack is that the long int "retcode" exists at SP+0,
the return address is at SP+4, and the short int "n"
exists at SP+6. It doesn't know or care about any-
thing else having to do with the stack.

Page 26

Now factorial() calls itself with an argument
equal to "n-1." It does so by PUSHing this argument
and then making the call. Again, the first thing the
function does is reserve 4 stack bytes for "retcode."

Thus, at this level, factorial() would see the SP
register pointing to the following:

SP+14 previous "n"

SP+12 return address to main()
SP+8 previous "retcode"

SP+6 new "n"

SP+4 return address to factorial()
SP+0 new "retcode”

But, as far as factorial() is concerned, the ONLY
"retcode” exists at SP+0, and the ONLY "n" exists at
SP+6. To repeat, the function doesn't know or care
what else may or may not be on the stack.

Each time factorial() calls itself, eight more bytes
of stack space are used to create new "n" and
"retcode" variables and hold the return address to
the calling routine.

Return from a function handles the stack in the op-
posite manner.

The last thing factorial() does before returning is to
POP the 4-byte "retcode" variable into the DE and
BC registers, which is how functions return long
ints.

This causes SP to point to the previous SP+4.

The return is accomplished by POPping the return
address into the PC register, leaving SP pointing to
the previous SP+6, the "new 'n"."

Immediately upon return, the calling routine POPs
the 2-byte "n" argument into the AF register to
clear the stack, leaving SP pointing to the previous
SP+8, the "previous 'retcode'.”

Now, the previous SP+8 is the current SP+0; so this
level of recursion sees its original "retcode" at SP+0
and its original "n" at SP+6, and doesn't know or
care that SP ever pointed to anything else.

In this way, the variables "retcode" and "n" remain
unique for each level of recursion.

Pretty tricky, eh? And very useful for solving cer-
tain types of problems.

For example, if you wanted to write a program to
play checkers, recursion would be a good way to an-
alyze all the possibilities of future moves.

TRSTimes magazine 7.6 - Nov/Dec 1994

The program could look at each possible move in
turn, and recursively test each one of the oppo-
nent's possible responses.

It could then recursively test each possible counter-
response, and so on, until all possibilities are ex-
hausted.

It could, for example, consider a win to be a positive
response, and a loss or deadlock to be negative, and
rate each move on the basis of the fewest number of
moves to the end of the game.

Thus the move which generates the smallest posi-
tive value (i.e., the fewest number of moves which
result in a win) would be the best, and the move
which generates the smallest negative value (i.e.,
the fewest moves to a loss or deadlock) the worst.

Admittedly, such a program would not be fast, but I
sure wouldn't want to have to play against it, since
it would always play every situation perfectly.

The down side to using recursion is that it can be a
bit slow, especially when the recursion goes very
deep, i.e., to a great many levels.

Recursion requires the use of many PUSHes and
POPs, which are rather time-consuming operations,
not to mention the time consumed by many CALL
and RETurn instructions.

This high processing "overhead" is why program-
mers have developed techniques which do the same
thing as recursion through such means as keeping
the variables in arrays which are indexed by what
would be the recursion level.

Needless to say, this approach requires the pro-
grammer to either know the maximum possible
depth of recursion, or to set an arbitrary limit on
how deep recursion is permitted to go.

However, in many situations, such has the Huff-
man compression and decompression tree naviga-
tion process described in the article "Graphics Im-
age Compression,” TRSTimes Vol. 7, No. 2., recur-
sion is the best and just about the only practical
way to go.

Finally, let's look at the format() function. This is
the first function we've written which returns a
pointer to char. It also takes a long argument,
named "arg."

C has no equivalent of BASIC's PRINT USING com-
mand; so we have to create our own formatting rou-

TRSTimes magazine 7.6 - Nov/Dec 1994

tines. What his routine does is insert a comma be-
tween groups of 3 digits; so that the value one mil-
lion, for example, will be displayed as "1,000,000"
instead of "1000000."

Here we introduce a new class of variable -- the
"static" variable. If you'll remember, global vari-
ables are stored in permanently allocated RAM;
auto variables are stored on the stack; and register
variables are stored in CPU registers.

Static variables are stored just like global variables
-- in permanently allocated RAM -- except they can
only be accessed directly by the function in which
they are declared.

In this case, even though "f_buf" takes 16 bytes of
permanently allocated RAM, no function other than
format() knows this storage area even exits.

The main reason to use statics is when you want
the data to be non-volatile (i.e., you want it to sur-
vive the exit of the function in which it is declared.)
Either you need it to be there, unchanged, the next
time the function is called, or you need to make it
available in some way to another function.

There is also another reason to use statics:
speed. Statics and globals are accessed faster by the
program than by either register or auto variables.

Here we declare "f_buf" to be static because we
want its data to be available to the main() function.
No, main() cannot directly know "f buf" even exists,
but it can learn of it indirectly, by receiving a
pointer to its data, which the format() function pro-
vides to main() as its return code.

We also declare "dest" to be an auto pointer to
char.

The first line of executable code uses the stan-
dard memset() function to fill "f_buf" with spaces.

Next we point "dest" to the last element of the
"f_buf" char array.

In the first "while" loop, the "if" statement tests
the value of "arg."

If "arg" exceeds 999, then "dest" is reduced by 4,
and the value sent to sprintf() is calculated by mod-
ulo division, limiting the argument to a maximum
value of 999 ("%" is the modulo operator and "arg %
1000L" is the same as "ARG MOD 1000" in BASIC).

The "%041d" control string specifies that the
string written is to be four characters long and be

Page 27

left-padded with zeroes. For example, the value one
would be written "0001" and the value 999 would be
written "0999."

If "arg" is less than 1000, then "dest" is reduced
by 3, and sprintf() is used to write a three character
string with leading spaces, not leading zeros.

Then "arg" is divided by 1000, and the process
continues until "arg" becomes zero.

This works because, unlike Model 4 BASIC, the
results of integer division are not rounded. For ex-
ample, 999 divided by 1000 will produce a quotient
of zero, not one.

After this loop is exited, "f_buf" will contain the
ASCII digits properly grouped in threes, separated
by null characters.

This is because the leading "0" of each 4-byte
string will have been overwritten by the terminating
null character of the string written to its left.

This is why the second "while" loop uses the
standard memchr() function to locate all null chars
(except the last), and replace each with a comma.

Finally, the return value (a pointer to the ASCII
string which has been constructed) is specified, and
returned to main(), which sends format('s return
value to the standard printf() function to display the
formatted string.

Well, that wraps it up for this issue. Next time,
we'll REALLY get into structs and recursion, and
use these tools to solve some real problems and do
some real, worthwhile work.

Anybody have a Mac-Inker for sale?
Also interested in 80-US magazines
& early issues of 80-Micro.

Buying Model I/III/4/2000 programs & machines.
Buying Model 100 machines.
Copa International, Ltd.
Newark, IL 60541

FOR EITHER
HI-RES BOARD! H i D E E
free Shipping
] Finally! Hi-RESOLUTION Menu’s for DIRECT

Users! Nouws you can use Either Hi or LOW
Res. MENU’S with your DIRECT by Chris.

With HR,CHR,or SHR files you can Create, ar
with the Samples supplied. This is a SELF-

_ INSTALL file in less than 5 minutes! fAlso

included, Hestminster Chimes instead of the

usual BEEP. $29.95 no personal checks,please.

The MODEL-4 Now LOOKS like a MAC! [With DOC5.)

to:ﬂnd{x Miller

602 W. 15th
Siocux Falls,
SD 57104

Lt licl>]=]

YES, OF COURSE !
WE VERY MUCH DO TRS-80 !/

MICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and ‘laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual. pfEINV//

XCLAN23 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
each other. Auto-boot, screen blanking, more.

xT.CAD Mod-4 Computer Drafting $95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

xT.CAD BILL of Materials for xT.CAD §45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user's accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/LS-DOS 6.3 $24.95
MOD-IlIl by CHRIS for LDOS 5.3 $24.95
MOD-Ill by CHRIS for TRSDOS 1.3 $24.95 .
Beautifully designed owner's manuals completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95 .
Surprise, surprise! We've got rid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor I Fresh look at assembly language $9.95
Z80 Tutor Il Programming tools, methods $9.95
Z80 Tutor I/l File handling, BCD math, etc. $9.95
Z80 Tutor X All Z80 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle Tucson AZ 85716 602/326-3502

Page 28

TRSTimes magazine 7.6 - Nov/Dec 1994

A Trip on the Star Princess
by Roy T. Beck

Recently, my wife and I splurged and took a one
week cruise on the Star Princess, one of the P&O
Line luxury type ships which take you on an eating
binge, with a little gambling and sightseeing
included. Our trip began and ended in Vancouver,
BC, with stops at Juneau, Skagway, and Ketchikan
and a visit to Glacier Bay, all under the general
heading of an "inside passage" cruise.

The ship is only 5 years old, so the design is
specific to cruising service, and is not a "conversion"
of a ship designed for some other purposes. Other
niceties include nine (9) electric elevators arranged
in three banks of three each, one near the bow, one
amidships and one near the stern. The official deck
nambers ran from 1 to 14, with 13 being non-
existent (the old hotel phobia of no 13th floor).
Passengers were restricted to decks 2 to 14, which
really gave us a lot of room to wander. The ship can
cruise at 22.5 knots and displaces 63,500 tons.

Features included a large formal dining room in
the stern which seated all 1500 passengers in two
sittings. There was also a buffet type dining room on
the 12th deck, at which you could optionally dine.
Beside the usual breakfast, lunch and dinner, there
was an afternoon "tea", and a midnight brunch.
Wow!

There were four actual bars, plus alcoholic
d¢rinks at the dining areas. The top deck had two
swimming pools and three hot tubs. Amidships,
tt ere was a fairly large atrium with shops to while
away your wallet and purse. Everyone was issued a
ccmbination credit and ID card, with which you
charged all extra expenses, such as drinks, goods
bought in the shops, and photos taken by the ship's
photographer. There was also a small library with
novels available, a card room, a good sized motion
picture theatre, and a live stage theater. Other odds
and ends include a youth center, a teen center,
exercise room, a pizza parlor, two casinos, and a
wine bar. The crew totalled about 630 people.

QOur quarters were a twin-bedded stateroom,
with a gross floor plan of about 10' x 20, including
the closet and bathroom spaces. Cable TV with some
satellite signals plus films and some live TV
g2nerated on board provided in-room entertainment.
Ships announcements were optionally available on
cnie channel. This was of interest in announcements
¢t activities available to the passengers. The
[incipal activity was the 5 meals a day, all

TRSTimes magazine 7.6 - Nov/Dec 1994

included, no extra charge except for alcoholic drinks.
Some people actually ate at all five sittings! You
should see their waist lines.... I gained only 4
pounds, and Barbara actually lost 1/2 pound! But
then, we ate with moderation.

Because this trip was the last of the season, with
winter fast approaching, the weather was a little
dicey (for a cruise ship) at times. We did avoid the
Pacific one day, because of predicted rough weather.
This had an interesting side effect. Gambling had to
be forbidden for that day, because we were in
Alaskan waters instead of international waters, and
Alaska does not permit gambling. (It's OK in
Canadian waters).

One night we felt some spiral pitching and
rolling due to rollers hitting us at an angle. I believe
the propellers occasionally came out of water, based
on my senses of touch and hearing. The ship being
so high out of water, it was somewhat subject to
wind loading, even though it was also equipped with
stabilizer fins underwater amidships. Each fin was
2.55 meters fore and aft and extended 5.1 meters
outward.

The ship was diesel electric powered, with four
engines driving generators for a total of 52,000 HP,
and two 16,000 HP motors driving the twin screws.
For maneuvering, the ship has two bow thrusters
which provide about 1200 HP each to move the bow
left or right, and one stern thruster with about 1400
HP. The captain did all the maneuvering in port,
and handled the ship quite expertly, in my humble
opinion. Only in Ketchikan did he call for tugs, and
apparently that is necessary there on account of the
confined space. The other ships did the same. He
didn't use the tugs, however, they just stood by,
which was the case with the other ships. (Or it may
all be a case of makework union rules....)

Being an engineer by vocation, I was quick to
avail myself of an opportunity to visit the bridge
while in port. That place looked like a refinery
control room! There were two massive consoles
running across the ship from side to side, with a
small interruption in the middle of the forward one,
where the steering wheel was located. Actually, the
steering wheel was disappointing in its delicate size,
being not much larger than a dinner plate in
diameter. Of course the ship has "power steering", so
no great physical force was required. At either end
of the bridge, there is an extension which extends
out over the side of the ship; this is used when
docking, and since it extends about 10 feet beyond
the side of the ship, the captain and his two officers
had a clear view from bow to stern of the dock or

Page 29

whatever else is alongside. This extension is
outdoors, so the duplicated compass, throttles,
telegraphs, steering controls etc were all exposed to
the elements, but were covered by hinged hoods
when not actually in use.

Other features were huge display and control
panels for operating and displaying the conditions of
the ships air conditioning system, its water tight
door system, its fire alarm system, and such other
niceties as the trim system. There were two bow and
two stern tanks, divided either side of the keel,
which allowed trimming of the trip bow and stern
and port and starboard, by shifting ballast water
from tank to tank as required. Since diesel o0il was
burned at a considerable rate, the ship's trip had to
be periodically adjusted for comfort.

Another interesting feature was that the ship's
water distillation plant could provide up to 700 tons
(max) per day of fresh water, but only while at sea.
This indicates the distillers operated from waste
heat boilers operating from engine exhaust heat. In
port, the crew connected a hose to a special hydrant
each day to maintain water supplies. The ship
consumes about 600 tons per day (about 160,000
gallons) of fresh water, which is largely used for
bathing, kitchens, and the ship's laundry.

Unfortunately (for communications), the captain
and all his officers were Italian, and all orders and
responses were therefore in italian. My italian is
totally non-existent. The captain is fluent in
English, and enjoyed giving commentary several
tines a day over the PA system to the passengers,
telling us when and where, and pointing out some of
the scenic attractions.

Other features were satellite position
determining equipment, multiple radars, depth
finders, communications type radio equipment, and
an automatic logging system. Even so, a junior
officer was always at the captain's side, logging with
pencil and paper all commands and the time of their
being given. The oldest word processing system still
has a place in this world. Another curiousity; since
we were almost always in coastal waters, we always
had a local pilot on board, either US or Canadian.
Somehow, I suspect the captain knew his way
around well enough not to need a pilot, but rules are
rules.

On our last night out, heading back to
Vancouver, Barbara and I finished supper and went
back to our cabin. I looked out the window (a real
window, mind you, not just a porthole), and
immediately realized the ship was doing a hard left

Page 30

turn. As I continued to watch, the ship came to a
halt, but continued to turn on its own vertical
access.

Realizing something unusual was taking place,
I suggested we head for the 14th deck above the
bridge. When we got up there, the captain and his
coterie of officers were staring off toward Vancouver
Island, a searchlight was operating off of each bridge
extension, and some smaller boats in the vicinity
were also using searchlights. Even though some of
us on the 14th deck (the bridge was the 12th), were
only 10 feet above the captain we could not be sure
of his commands. About that time, the captain came
on the PA system and announced we had stopped
and were searching for a man overboard. He didn't
(then) make it clear if the man was from our ship or
some other. The Canadian Coast Guard was also
involved.

A little later, another announcement made it
clear the man was a crewman of our ship, later
identified as a Russian national who was a waiter in
the dining room. No official reason was ever given
for the man being overboard, but the rumor mill had
several explanations. One was and attempt at
suicide, But I discredit this entirely. My own belief
is the man was trying to become a wetback escaping
into Canada to set up a new life. The captain said he
was suffering hypothermia when found, and we
know he was found on the shore of Vancouver
Island. He had to swim about a half mile, minimum
to get that far from the ship. I am sure he had a
lifejacket on, or he could not have survived to swim
that far. Anyway, he was hoisted on board from our
own life boat, and taken to sick bay. I was most
impressed that he was so quickly found, at about 8
or 9 PM, on a dark night. I think the automatic
logging system allowed the captain to return to the
approximate location of the leap overboard, and that
someone had to have seen him leap and reported the
fact immediately. I am sure the leaper incurred the
captain's wrath, at the least, as we spent about an
hour recovering him, and resuming our trip towards
Vancouver. It was interesting to watch the captain
do a 180 degree turn while standing still in the
water. Those bow and stern thrusters sure are neat.

Altogether, the trip itself was interesting and
pleasant, and I learned a little about cruise ships.
The ship is now in winter service, either along the
California-Mexico coast or perhaps by now over in
the Caribbean. Versatile.

And now back to attempting to understand and

control that TRS-80 beast at the other end of this
desk!

TRSTimes magazine 7.6 - Nov/Dec 1994

There 1s an old saying
that goes: "A chain is only
as strong as its weakest
link." If there is any truth to
that, then the weakest link
in most personal computers
1s the floppy drive. That 1s
especially true in the case
of the majority of TRS-80's,
because their permanent
storage is either partially or
totally based on floppies. The floppy drive in our systems 1is
also the most likely part to fail. It is the slowest component
and certainly the noisiest. Altogether, it's the most irritating
part of any computer, "that we can't do without".

Of course, I would not complain this way about floppy
drives unless I had, at least, a partial solution for these
"floppy drive blues". I do. Or, more precisely, J.F.R. "Frank"
Slinkman does. His solution is a program called
"QuikDisk". It doesn't eliminate your floppy drive. It just
makes it easier to live with. In the bargain, it may just make
it last longer by reducing the amount of accessing it does.
Even if it only makes your nerves last longer, it's worth it.

How does it work? Essentially QuikDisk is a floppy disk
caching program that works on the TRS-80 in much the
same way that SMARTDRIVE does on an MS-DOS PC. It
uses the upper 64K on a 128K machine to store all the
sectors on a disk that have been read by the floppy drive, to
the capacity of the two high banks of RAM, which Frank
works out to be 248 sectors. While I didn't work that figure
out for myself, I'm sure that he did. So, we can take it as a
given.

Once a sector. has been read into RAM, it iS
subsequently read from RAM rather than from the floppy
disk again if it is re-accessed. We all know that a data
transfer from one RAM location to another i1s always faster

and certainly less noisy than a transfer involving a floppy
disk.

The same process is invoked to handle writes to the
floppy. That way if you load an entire document into
Allwrite for example to change a single occurrence of the
word "East" to the word "West", and then decide to change

TRSTimes magazine 7.6 - Nov/Dec 1994

it back to the word "East". The entire file would be read into
RAM. The first change would be made. Then, only the one
granule containing the changed sector would eventually be
written out to the disk. If the entire file was then accessed
again immediately thereafter, the disk drive wouldn't even
turn on, yet the file would be almost instantaneously be
reloaded. Then, when the second single change was saved,
only that single granule containing the changed sector

| would eventually be written out to the floppy.

Too theoretical you say? Remind yourself of that
thought after you have just bitten through the end of your
pencil when you have to change the word "plint" to "print"
in a long basic program only to discover, after saving it, that
the title of your work which is entitled: "The BIG Program"
was saved as "The BUG Program". With QuikDisk, the
second load and save to correct this additional error would
have been nearly instantaneous. Additionally, your floppy
disk drives would not have moved. They would thus be
happier because of the reduced wear. This means they would
last longer.

"Disk based" database programs wherein records, keys,
and other frequently accessed files that change very little or
not at all, gain the most from "cached" access. They are
effectively turned into "RAM based" database programs.
This is true even if your database is larger than RAM
memory; because, only a few records within the entire
database are actually accessed or altered at any session.
Those that are accessed are processed one at a time.

On the road, such high speed/reduced frequency disk
access can literally free you from your hard drive..., even if
you DON'T have one. How can 64K of RAM hold an entire
180K, 360K, or 720K disk worth of sectors? It can't.
However, it does not have to do that in order to be effective.
Unless you are backing up an entire disk, the entire disk is
virtually never read nor written to at one time.

When you recall that the largest RAM based
TRS-80 program can never be larger than about 48K 1n
addition to DOS, its size can only be increased by means
of overlays. Since the overlays must be smaller than this,
a number of the most frequently used overlays can
repeatedly be called from the QuikDisk cache, without
those performance robbing floppy disk reads normally
required to get at the overlays. The reason that overlays
or the portion of some giant overlay read into memory
must be SMALLER than memory is that you always
need SOMETHING in memory to load and manage the

overlays.

When disk activity finally does exceed the capacity
of the cache what happens? Nothing, except that the
floppy disk has to be read or written to as it normally

Page 31

would be. Everything gets updated: the RAM cache and
the disk itself.

How does 1t work in practice? It appears to work
flawlessly. All you have to do is to type:

QD (ON)

The QuikDisk logo appears and displays its
status, at any change in its status. After a period of
normal disk activity, your floppy drives start to work
faster, 1:.ore efficiently, and less often upon multiple reads
of a file. Multiple floppy drives are automatically cached.
Caching is totally automatic, depending upon drive/file use.
It feels somewhat like using a hard disk. I can't imagine why
such a wutility has not been a part of LS-DOS.
SMARTDRIVE is a part of MS-DOS.

What are the "negatives"? There are always some.
However, in this case more accurately, they are limitations
of the system and hardware or just practical constraints.

In order to assure that a floppy drive is "current" you
must either access its directory, open or close a file, log the
drive off of QuikDisk, or quit QuikDisk. This is important to
prevent losing a portion of the disk within RAM. Disk
directories are not cached. However reads and writes to a
disk directory, as well as cache overflows cause QuikDisk to
update the drive. The simplest and most dependable way to
assure that a disk is current is to issue the command:

QD :d

where ":d" is the drive to update before removing the
disk. QuikDisk then assumes that the disk in the drive is
new.

QuikDisk is not recommended for hard drives, extended
RAM disks, Memdisks, or other programs that must use the
upper two RAM banks, large memory expansion boards, and
XLR8er Boards. This 1s not truly a limitation because most
of these items already have similar drivers and would not
benefit from being cached anyway. QuikDisk is mostly "at
home" on a "stock" 128K Model 4.

In order to copy or backup a floppy drive, QuikDisk.

should be disabled. Frank suggests putting commands of this
nature into "DO" files that automatically disable QuikDisk
during the command and re-establish it on exit. The
command to disable QuikDisk is:

QD (OFF)

The QuikDisk logo appears and announces that it has
been disabled while it is removed from memory. It is not
always possible to remove QuikDisk if subsequent low
memory drivers have been installed after it. The resident

Page 32

RAM driver uses some low memory so that care as to what
other drivers or filters are present is important. It should also
be loaded last if it will necessary to remove it later in a
session.

If QuikDisk is left "ON" during a backup, erroneous
results can occur on the backed up disk because a portion of
the disk may not be written to the target disk.

QuikDisk can not be installed from the SYSGEN
command for the same reason that no high bank memory
driver can be installed from that command. What that
reason is, however, frankly eludes me at the moment. I just
remember that it's true.

Obviously, if QuikDisk is occupying the upper banks,
another program that requires them will not be able to utilize
them. This is not a serious problem because giving up the
Area 2 and Area 3 commands in Allwrite allows caching
MORE than two smaller text files through QuikDisk as long
as the total size of the files is less than the limit of the cache.
In the case of Memdisk, Frank states that QuikDisk is 50%
faster and it is obviously easier to use. So why even bother
with Memdisk anymore?

Interestingly, by the time I got down to writing "version
one" of this review, Frank Slinkman had already come up
with Version 2 of QuikDisk, which I used for the review.
The documentation 1s better in Version 2 in that it is more
complete. The Version 2 documentation does not
specifically state in what other ways it is different from
Version 1. Not to worry, it works so well that I am happy
with it whatever version it is. When you have a new utility
that is genuinely unique and helpful tQ your system and that
flawlessly performs a task that no other utility you have
accomplishes, you tend to worry less about what version it is
as long as it does the job. QuikDisk DOES THE JOB!

Because of the cache's inherent characteristic of delayed
writes, I was initially concerned that QuikDisk would fail to
write something to a disk. NOT A PROBLEM! This phobia
1S as irrational as was my initial fear of using a slide rule.
With or without QuikDisk, it is alw;ays important to wait
until the drive light is out before changing a disk. Also, I
realized that I have lost data more often due to other
hardware and disk media failures than I have ever lost due
to untimely removal of a floppy from a drive. Just
developing the good habit of cleanly exiting any program
allows me to use this valuable utility with assurance. If you
are usually reasonably careful and systematic in your floppy
disk handling, you like speed, and you hate disk drive
accessing as much as I do, you are going to enjoy this utility.

- -|--|-d--|--|-|--.---.--.--.--.-----.-__....____I_..I

)

s -
#

TRSTimes magazine 7.6 - Nov/Dec 1994

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf

