TRSTimes

Volume 7. No. 2 - Mar/Apr 1994 - $4.00

EARTHQUAKE SEASON

by Sylvia Cary Wolstrup

The joke goes: Who says we don't have four sea-
sons here in Los Angeles? We most certainly do:
Earthquake, Riot, Flood, and Fire.

Last issue of TRSTimes, Jim King wrote about the
LA fire "season" in his personal account of the devas-
tating Topanga/Malibu fire. In this issue I'm going to
write about the earthquake season, also from a per-
sonal perspective. Readers might be interested in
knowing what the January 17, 1994 Northridge
Quake was like here at our house — since "our
house" also happens to be the home of TRSTimes
magazine.

I'm Lance's wife (Mrs. TRSTimes). We live in a
townhouse on Topanga Canyon Blvd. in Woodland
Hills, California (part of Los Angeles), only a few
miles from the quake's epicenter. The townhouse has
4 levels — garage level, living room level, TRSTimes
office and kitchen level, and the bedrooms level.

At 4:31 a.m. on January 17th, a Monday morning,
[T happened. The rude awakening. The shaking
started. I snapped awake. Instinctively, I leapt out of
bed. By the time I reached the end of the bed, all was
chaos. What I remember was the unbelievable dark-
ness. The electricity went out immediately. Black-
ness. I heard Lance shouting at me to stay where I
was, but it was too late. I'd rounded the end of the
bed and I was suddenly stopped in my tracks by ob-
stacles. A flying VCR (I later figured out) slammed
into my shin. I fell over a TV set (also learned later),
got up, tripped, fell again, got up again. The quake
(we were all told days later) lifted us all up any-
where from two to nine feet and then dropped us
back down again. Maybe it was the floor coming up
and hitting me that brought me to me knees. I don't

know. All T know 1s that within an instant the room _

was full of stuff. My computer desk fell over, along
with it my computer, monitor, printer, stacks of pa-
pers. The bookcases toppled over, drawers opened,

everything on every surface jumped into the center |

of the room. A file drawer came sailing out my four-
drawer filing cabinet and landed next to where
Lance's head would have been had he not sat up so
quickly.

Slipping and falling over books and magazines, |
made it to the dressing-room area. It was almost im-
possible to walk. I hung onto the wall. I expected the
shaking to die down and go away, the way it had the
last time we had a "temblor," but it didn't. Suddenly

it got worse. Its increasing intensity felt like a kind
of betrayal. This wasn't a nice earthquake. This one
was violent, sneaky, vicious and mean. Our town-
house was moving so violently I didn't see how it
would hold together. I felt like a little kid being
shaken by the shoulders by a huge, angry monster,
back and forth, back and forth. Total helplessness.
We were dice in a gambler's cup in Vegas.

Aside from the darkness, the other thing I remem-
ber is the sound — the roar of it, the smashing glass,
the tinkling of things falling into sinks and tubs, the
slamming and banging. My mind flashed to my
daughters, both in their 20s. One lives (safely) in
Paris, the other lives in West Los Angeles. I won-
dered what was happening to her at this moment,
not knowing where the epicenter was, not knowing
if it was even worse for her. I had to put her out of
my mind. I was powerless to do anything about it.

Our more immediate concerns were Lance's two
sons down the hall — Steven, 13 and Alan, 20.
When the shaking stopped, Lance and I tried to
make our way to their room. We called out, and they
answered. They were okay.

"The cat!" I said. "Where's the cat!" I was worried,
picturing her buried under books and bookcases. 1
had no shoes. There was glasseverywhere from
falling picture frames, perfume bottles, mirrors,
make up bottles. I knew I had a small flashlight in
my purse, but my purse was under a pile of books, a
typewriter, and splintered parts of a telephone table.

In the boys' room everything had fallen over — tall
bookcase, computers, TV, stereo equipment. Lance
had to pick up the bookcase so,Steven and Alan
could get out. All this in the dark. The four of us
then crawled over yet another bookcase and pile of
books in the upstairs hallway in order to get down-
stairs.

In the kitchen I felt my way to a drawer where
candles and matches are kept. I it a match, some-
thing you are not supposed to do in case of gas leaks.
Fortunately, no explosion occurred. It was thor-
oughly disorienting to see everything piled in the
middle of every room. In the TRSTimes office, book-
cases were tipped over (one of them fell on Lance's
laser printer), computers, printers, books and maga-
zines were on the floor.

continued on page 31

TRSTimes magazine
Volume 7. No. 2 - Mar/Apr 1994

EARTHQUAKE SEASONvvrvccnnennneeeeeeeeseescssssnes 2
Sylvia Cary Wolstrup

Reader mail

PROGRAMMING TIDBITS.....cceeverenceervescssosessseessssees D
Chris Fara

SOFTWARE GLITCHES........cueeeererreeeereereccsccsssrssnneee 9
Henry A. Blumenthal

Mystery Funhouse & Pirate Adventure
Daniel Myers

GRAPHICS IMAGE COMPRESSIONccevevreerveeenee. 15
J.F.R. “Frank” Slinkman

HINTS AND TIPS .. ooieeeieiiireeneenreeecrsesessssssnsoseesseereesensess 28
Bates, Lewart, Shanafelt

TRANSFERRING FILES TO NEWDOS/80 V.2......... 25
Lance Wolstrup

SOME MEMORY MEANDERINGS........cccccerreererrrnnnes 29
Roy T. Beck

LITTLE ORPHAN EIGHTY .ouertierreiernecerenscessecsssssesee 32
Editorial

TRS-80 THERAPY

Thank you for the good (TRS)times in computer
reading. Your articles are relaxing to read,
compared to articles in PC magazines. When I read
a PC article, I often feel anxious that my computer is
inadequate to do the job it has been doing for years.
Actually, I have more than one computer: 2 - 128K
Model 4P’s, 1 desktop 128K Model 4, 2 - 32K Model
100’s, and 1 Model 200, as well as a, Compac 286e.
My gaggle of computers have served me well -
games, word-processing, data bases and spread-
sheets. To get over my anxiety, I play more games.

William E. Adams

Bradford, MA

I am with you. My computers also do a variety of
tasks - many of which are games. Yes, my son and 1
often sit side-by-side playing games - Steven on the
PC, playing Dark Side of Xeen, while I struggle with
a text adventure on the Model I11. Good clean family

fun.
Ed.

I was greatly relieved to know that you and
your family had come to no harm in both the fire and
earthquake. Somehow, the fire did not seem to
register over here in the same way, but the ‘quake’
news drew my attention to your nearness to it all.

I was given a Rand McNally Road Atlas of the
United States a couple of years ago and it has been
most useful in knowing where so many of the TRS-
80 related places are and in particular it shows
Topanga Canyon Blvd., so I am able to relate places
to people which is of some interest to me.

I have not had too much time to read all of the
last issue (Vol. 7. No.1), but I must comment on a
couple of items. I thought it a great idea to get Jim
King to tell his experiences in the fire - a bit of heavy
relief and something it is hard to imagine.

Roy’s article on Smart Printers struck a happy
note. My first printer was an MX80FT and is still
working from my Model 4 and also fitted with
“Finger-Print” called in Europe “Dots-Perfect”. I
managed to buy the last one in stock here in
England and although its NLQ leaves much to be
desired, it is better than the standard issue typeface!

Page 4

I doubt if I shall ever part with it; it is at this
moment in need of a mechanical repair to one of the
plastic retainers on the tractor feed, but I have no
doubt it will get repaired in due course.]

Its particular use is with “Lablmaker” which I
bought when I had my “Video Genie” and which
converted to Model 3 mode when I bought my Model
4. The program was designed for the MX80 and it
still works very well and is useful when I need
LARGE type. It also is used with your TRSLABL4
and PFS file, which keeps the addresses and prints
out the address label for TRSTimes subscribers here
(Advert)).

I am at this moment expecting delivery of an
ST157N SCSI hard drive to fit into a 4P T have just
acquired, using Roy Soltoff's Host adapter and his
Driver software, as well as his instructions which he
published last year in TMQ. It has taken all this
time to find a suitable drive as they are no longer
manufactured. I have sent off an order - I tried to
Fax it to him, but was told his Fax line had been
disconnected - so I had to post it which is slower.

I hope to haye it ready for our next week end
meeting in the middle of March, but that will depend
on how long it takes for the parts to arrive. I will
keep you posted as to my success or not!

Thanks again for keeping this magazine going,
and I hope you will soon get yourselves straight after
the ‘quake’.

Tom Ridge

Surrey, England

The “quake of 94" will be written about
elsewhere in this issue, but let me just tell you that
we at TRSTimes are approximately 5 miles from
Northridge, and even closer to Reseda, which has
now been pin-pointed as the epicenter. /t was scary,
everything falling down - TVs, video recorders,
computers and everything else that literally was not
nailed down came flying across the room. I don't
believe I have ever felt that helpless before. We were
lucky, though - not much damage, just a real mess.

One last word on the earthquake - now that it
has officially been upgraded from 6.6 to 6.8 — do we
get a new manualll!

Good luck with the hard drive project. We did

| this a few months ago (we, meaning Roy Beck at a

VTUG meeting), but had no success as the drive
turned out to be faulty. He tells me that he will try it
again shorily. '

Ed.

TRSTimes magazine 7.2 - Mar/Apr 1994

PROGRAMM /NG T/DBITS

Copyright /98¢ by Chris Fora (Microdex Corp)

CAPTURING Z80 ROUTINES
INTO BASIC

Some time ago Lance (our amazing publisher)
suggested to Chris (Fara) that he (Chris) should
supply his little assembly language inventions in
form of strings for users to incorporate in BASIC
programs. Presumably this would be easier in
practical applications than Chris' favorite method of
"self-loading memory modules" (for example as
supplied on Microdex "Goodies" disk). Now, for some
weird reason Chris seems to be in love with the
memory module technique. Yet he could also see
Lance's point. So he mulled the dilemma over and in
a fine American spirit of "live and let live" came up
with a sort of compromise: let the memory modules
be, but make it easy to translate them into strings.

To begin with, let's recap the idea of
"embedding" machine routines in BASIC strings.
Machine routines are simply bytes with values 0
through 255 "stringed" together one after another
somewhere in memory. If the routine is shorter
than 256 bytes (machine routines for BASIC
typically are) then the bytes can be represented by
ASCII characters of a BASIC string. Strings may
move around in memory during the execution of a
BASIC program, so the other condition is that such
machine routines must not contain any LD, JP or
CALL instructions to fixed (absolute) memory
addresses within themselves. Then, to execute such
a routine, we use the VARPTR command to find the
current address of the string and call the routine at
this address via USR or CALL commands. The
string data can be saved in files, and loaded into any

TRSTimes magazine 7.2 - Mar/Apr 1994

BASIC program. There is no need to protect
memory before entry into BASIC, because the
routines "float" safely in the BASIC's string space.

So our job today is to "capture" a machine
subroutine from some place in memory where it was
pre-loaded as a "self-loading memory module", save
it in a file, and then load it back into a BASIC string.
Obviously the scheme can be used to capture from
memory not only "memory modules" but any
machine routine, or for that matter any chunk of
memory shorter than 256 bytes.

The following "capture and save" procedure
needs 3 pieces of information to be supplied in
variables.....

Z1% start address of memory to capture
ZJ% end address of memory to capture
ZF$ name of file to save the string

The procedure is pretty self-explanatory. Just
keep PEEKing and printing to the file the individual
memory bytes until all done. One reason why we
save the routine as numbers and not as a string is
that the routine may contain "null" bytes or other
strange codes that would make future input more
complicated. Another advantage is that such
numerical data may be also easily input into an
integer array which overcomes the 255-byte string
restriction (more about it later).

1000 open "O", 1, ZF$

1010 for X%=Z71% to ZJ%

1020 print #1, peek (X%);

1030 next: close

1040 print ZF$ " saved": RETURN

The result is a file with a list of numbers similar
to a DATA statement in a BASIC program. A
general-purpose program to capture any area of
memory could then look like this.....

100 input "Enter start address: "; X!

110 input "Enter end address: "; Y!

120 if Y! <= X! then END

130 line input "Enter filespec: "; ZF$

140 if ZF$ < "A" then END

150 ZI% = X! + (X!>32767)*65536

160 ZJ% = X! + (X!>32767)*65536

170 gosub 1000: END

1000 here add the "capture" procedure

Page 5

CAPTURING MEMORY MODULES

The problem with capturing "self-loading
memory modules” is that we normally have no idea
where a particular module was loaded and how long
it is. But we do know three facts about "well-
behaved" memory modules (be it user routines or
DOS filters, drivers, etc).....

1. All such modules have a standard "header"

2. All sit tightly "packed" in high memory

3. Memory is "protected" up to the last-loaded
module

The standard header format might be written in
assembly language like this.....

HEAD: JR EXEC

LAST: DEFW 0 ; HEAD+2
NICK: DEFB HOOK-NAME ; HEAD+4
NAME: DEFM 'UNIQUE' ;: HEAD+5
HOOK: DEFW 0

DOSS: DEFW 0

EXEC: .. actual routine begins here

The first 2-byte instruction is always JR (Jump
Relative) over the header data to the actual routine.
The first byte has the value 24 (the machine code for
JR) and the second byte is the "length of the jump"
which is the count of bytes generated by all the
remaining header instructions.

The next instruction (at 2-byte "offset" from the
beginning of the header) reserves a dummy 2-byte
"word". When the module is loaded into memory, its
"loader" puts here the address of the last byte of the
actual routine. You can surely see the light now:
this will be our variable ZJ% needed by the
"capture" procedure.

The one-byte value at 4-byte offset is the length
of the module's name which follows at 5-byte offset
(names can be any length, but should not be longer
than 8 bytes).

The remaining pieces of the header are used in
some DOS modules and have no relevance for our
capturing scheme.

Now, since modules are packed one after the
other, next module (if any) will have its header
located at the address ZJ%+1. And since the last-
loaded module has its header located one byte above
the end of protected memory, we can initially find
that end of memory and then repeatedly calculate
all starting and ending addresses of all modules.

Page 6

The program to capture all or selected resident
modules could be called MEMOGET/BAS and could
look like this.....

"Mod-II1
'"Mod-4-

100 L%=peek(17425): H%=peek(17426)
100 L%=peek(1038): H%=peek(1039)
110 ZJ% = L% + 256*H% - 65536

200 Z1% =7ZJ% + 1
210 if peek (ZI%) <> 24 then END

220 L% = peek(Z1%+2): H% = peek(Z1%+3)
230 ZJd% = L% + 256*H% - 65536

300 ZF% = peek(Z1%+4)

310 ZF$ = string$(ZF%,"=")

320 L% = asc(mki$ (ZI%+5))

330 H% = int((Z1%+5)/256) AND &HFF
340 poke varptr(ZF$)+1, L%

350 poke varptr(ZF$)+2, H%

400 Z1% = Z1% + peek(Z1%+1) + 2

500 ZF$ = ZF$ + "/DAT"

510 print "Enter filespec <" ZF$ "> ";
520 line input K$

530 if K$ > " then ZF$ = K$

540 if ZF$ >="A" then gosub 1000
550 goto 200

1000 here add the "capture" procedure

Lines 100-110 calculate the end of protected
memory (use appropriate version of line 100 for
Mod-III or Mod-4).

Line 200 calculates Z1%, the beginning address
of the header. Line 210 peeks at that address and if
the value stored there is not 24 (the expected JR
instruction) then the program ends: evidently there
are no more modules (at any rate no standard, well-
behaved modules). Otherwise assume it's a valid
module and calculate its end address ZJ% from the
data in the header.

The 300-group of program lines gets the name of
the module from the header. First we peek to find
the length of that name and create a dummy string
of that length. Then we poke into its VARPTR the
address of the module's name. This will be the
"default" name for our file. Just to make things
more amusing, we can try two different ways of
getting the values for the pokes: the low byte is the
ASCII code of the address converted to string form
with MKI$, and the high byte is obtained by
dividing the address by 256 and then "masking" the
result with hex'FF to chop it down to single-byte size
needed by the poke.

TRSTimes 7.2 - Mar/Apr 1994

So far the variable Z1% contains the starting
address of the header. But since we will be storing
the routine in a string, we don't need the header
anymore. So in line 400 we increase the starting
address ZI% by the length of the header. This way
only the actual routine will be copied, saving
valuable string memory. :

The 500-group of program lines constructs a
"default filespec" from the module's name and an
extension /DAT (or whatever extension you wish to
use), presents that filespec on the screen and asks
for input. Hit ENTER to accept the default, or type
and enter another filespec. The variables Z1%, ZJ%
and ZF$ are then passed to the "capture and save"
procedure discussed earlier today.

Sometimes we don't want to capture all modules
that happen to sit in memory, only some. To skip a
module, instead of a valid filespec enter some
character "lower" than "A" in the ASCII order (for
example press SPACE bar or type a "period" and
ENTER). '

In any event the program then loops back to line
200 to look for a next module. At this point ZJ% is
the address of the last byte in the previous module,
so ZJ%+1 is the address of the next header, if any,
and so on.

LOADING AND CALLING
STRING ROUTINES

Simply input the saved numbers, convert them
to ASCII characters and concatenate into a string. If
the string should turn out longer than 255 bytes
then a message says so and the program terminates
(for handling longer routines use the integer array
option discussed later). The filespec ZF$ is supplied
by the program calling this procedure.....

2000 open "I", 1, ZF$: Z$ =""

2010 input #1, K%: Z$ = Z$ + chr$K%)
2020 if eof(1) then close: RETURN
2030 if len(K$)<255 then 2010

2040 print ZF$ " too long!": close: END

Upon return from this subroutine variable Z$
contains the machine routine for use by the BASIC
program. A generic initialization of a program that
needs to load one or more string routines could look
like this.....

100 ZF$="ROUTINE1/DAT": gosub 2000: Z1$ = Z$

101 ZF$="ROUTINEZ2/DAT": gosub 2000: Z2$ = Z$
..... and so on

TRSTimes magazine 7.2 - Mar/Apr 1994

Right before each and every call to a machine
routine in a string we must find its current address,
because strings may move around in memory during
program execution.....

L% = peek (varptr (Z1$) + 1)
H% = peek (varptr (Z1$) + 2) ,
Z% = L% + 256*H% + (H%>127)*65536

Immediately after that in Mod-IIT or Mod-4.....

def usr = Z%
X = usr(0)

or more conveniently in Mod-4 only.....

call Z%

INTEGER ARRAY OPTION

Like strings, integer arrays also float in memory
as continuous blocks of bytes, so occasional machine
routines longer than 255 bytes can be loaded into
such arrays which can be any reasonable size. Since
arrays must be dimensioned in advance, we must
know the size of the routine before inputting our
data from the disk. Computers are very good at
"brute force" work, so the simplest solution is to scan
the data file twice: first to count the bytes, then to
load the routine into the array. Even the longest
machine routines for BASIC are still very short and
the small one-time delay caused by a double scan
near the beginning of a program is hardly
noticeable.....

3000 open "I", 1, ZF$: Z%=0

3010 input #1, K%: Z%=72%+1

3020 if eof(1) then close else goto 3010

3030 Z%=fix((Z%-1)/2)

3040 dim Z% (Z%)

3050 open "I", 1, ZF$

3060 for X%=0 to Z%: input #1, L%

3070 if eof(1) then H%=0 else input #1, H%

3080 Z%(X%) = L% + 256*H% + (H%>127)*65536
3090 next: close: RETURN

The bytes must be packed into 2-byte integer
values, so the number of elements of the array is
half the number of bytes in the routine. We figure
that in line 3030. If the routine has an odd number
of bytes then to prevent a wrong value in the last
element, we should stick a "zero" into its high byte
(line 3070).

Upon return from this procedure the array Z%()
contains the machine code. The address to call is

Page 7

simply the address of the first element of th
array..... ‘

def usr = varptr (Z%(0))
X = usr(0)

or in Mod-4.....

7% = varptr (Z%(0))
call Z%

Another approach to the dimensioning of the
array could be to modify our "capture" procedure so
that the first number in the file would be the size of
the routine. In that case the input procedures would
have to be also modified to skip that firs: - umber.

A more radical alternative would be to store the
data in binary form in a random-access file with
record length 1, because then the number of items for
the array could be directly found with the LOF
command, without adding extra information to the
file.

But the procedures outlined today are probably
the simplest and most flexible. One side benefit of
storing the data in plain numerical ASCII files is that
they can be easily modified or "patched" with any
text editor.

So now if you have some "memory modules" that
you'd prefer to use in strings or arrays, load them as
usual from DOS, enter BASIC and run the
MEMOGET program. Again, remember that the
string and array methods work only with routines
that don't have any LD, JP or CALL to absolute
addresses within themselves. If they do then strange
things will happen, so watch out. Self-loading
memory modules don't have this problem and are
always safe, because the loader automatically adjusts
all fixed addresses to the location in memory where
the module will reside.

Actually there is a way to "eat the cake and keep
it, t00". The metho to directly call memory modules
from a BASIC program without knowiny their
addresses, is described along with an extensive
discussion of the whole business of modules in
Volume II of "Z80 Tutor" published by Microdex (see
ad elsewhere in this issue). But since today's essay
was instigated specifically for the purpose of
exploring other options, we shall say no more.

Page 8

FAPYTASTIC
DOT WWRIT IR
FOYTS

BATED &Y KBLLY BA%

$3.0C PER DISK
CONTACT
MICKEY MEPHAM
9602 JOHN TYLER MEM HWY
CHARLES CITY. VA 23030

TRSTIMES ON DISK #12

IS NOW AVAILABLE, FEATURING THE
PROGRAMS FROM THE JUL/AUG,
SEP/OCT, NOV/DEC 1993 ISSUES

U.S. & CANADA: $5.00 (U.s.)
OTHER COUNTRIES: $7.00 (U.S.)

TRSTIMES ON DISK

5721 TOPANGA CANYON BLVD., SUITE &
WOODLAND HILLS, CA 91367

TRSTIMES ON DISK

#1 THROUGH #11
ARE STILL AVAILABLE
AT THE ABOVE PRICES

SOFTWARE GLITCHES

(over the years)
by Henry A. Blumenthal

Here’s a lesson in reality: Computer software
has been written, and still
is being written, by
humans. New and old —
especially old — software
for the Model ITI and 4 has
led users to wonder at
times whether it is their
brains that have glitches,
or whether there is
something wrong with
their machines or the peripherals they have plugged
n.

In some cases, the software developers just
didn’t look ahead to see how their products might be
used. In other cases, the calendar caught up with
them. In still other cases, simple errors in the
machine language have had to be corrected, if
indeed they ever were.

The most well known example of software that
has gone astray is Model 4 TRSDOS through version
6.2 and Model I/III LDOS through version 5.1, and
some of the older application programs written to
operate under them. In the directories they create,
they still carry the old dating structure, which won’t
accept years past 1987. Any year past 1987 will have
8 or 16 subtracted — whatever it takes to keep the
date from rising past 1987. So be wary of old
formatting utilities, especially what was included as
part of the old initialization software for the Radio
Shack hard drives. If you use them, you'll have to
follow formatting with a DATECONV command
before moving files to any floppies or hard drives
formatted the old way, or the dates will be wrong
and the times will be missing. The old DOSes didn’t
even post times -— just dates. Patches and
replacements for DOS have been available for years
from MISOSYS and CN80.

Here are some other examples:

When TYPITALL, an easy-to-use and versatile
word processor, is loaded, it stops the computer clock
until it is exited. This means that the time stamping
remains the same in the directory for each document
filed during that session. The clock will start again
immediately after exiting TYPITALL, but the time
will be wrong. However, TYPITALL allows DOS

TRSTimes magazine 7.2 - Mar/Apr 1994

commands to be issued from within, so the clock can
be updated before each filing, if the exact time is
important.

Another word processor, LeScript, which doesn’t
usually stop the clock, will do so when the Timclock
system has been installed. (I recently acquired
Timclock along with some old hard drives; it fits
between the computer and the drive.) However,
LeScript doesn’t stop CN80's own I/0O clock, which
does not require a DOS patch. On the other hand,
TYPITALL works just fine when Timclock is
resident!

If printer spooling is active while Typitall is
loaded, the data will not be passed to the printer
until Typitall is exited. What is printer spooling? It's
a great feature that shunts printer data to a memory
partition or temporary disk file that feeds data to the
printer as fast as the printer can accept it. This lets
the user work while the printer is running.

LeScript has trouble with spooling, too. It has its
own keyboard map and printer drivers, so when you
want to utilize the spooling feature, LeScript has to
be loaded with a parameter that accesses the DOS
printer module rather than its own so that the data
can be routed to a temporary holding area. If it is so
loaded, the DOS “hot” keys will bleed into what is
supposed to be LeScript's own keyboard mapping.
For instance, clearing text from the position of the
cursor to the end usually can be done with clear-
colon or control-colon. But if DOS’s own printer
module has been accessed, control-colon becomes a
command to print the screen contents as well.

If spooling is active while VisiCalc is loaded, the
printer will run, and there will be no keyboard
problems, but if too much memory is reseved for
spooling, it will bleed into the loaded VisiCale file
and corrupt what's on the screen. That's because
VisiCale does not always respect other software,
such as background utilities, that may also be
resident in memory.

If spooling is active when the database programs
pfs:File and pfs:Report for the Model 4 are loaded,
they will be corrupted.

pfs:File and pfs:Report for the Model 4 exit to

Page 9

LS-DOS with a cursor shape that once was used by
TRSDOS. T don’t like the shape, so I programmed
my A key — using the KSM (keystroke multiply)
feature of DOS — to restore it to my favorite block
shape when pressed along with the clear key.

Here's something that’s not a software error; it's
just a quirk: If you have a Model 4 and have opted
for a large cursor (using the DOS command
SYSTEM (BLINK,LARGE), then have a program
with reverse-video that doesn’t use its own cursor,
your cursor will become a reverse-video “e”.

MISOSYS wrote its own KSM called KSM plus,
with additional features. If the DEVICE command of
DOS is envoked, it's supposed to show whether KSM
is active. But it doesn’t recognize KSMPLUS when
it's installed, even though KSMPLUS may be
working just fine.

My version of software for CN80's I/0 clock
misstated the time between 8 p.m. and midnight
until I was sent a replacement disk.

Has anyone had trouble trying to move LDOS
5.8.1 system files to a double-sided diskette and then
sysgen a configuration? I haven’t been able to do it;
it locks up. And this is a recent release. The most
current version of the Model 4 operating system —
LS-DOS 6.3.1 — has no such problems.

The TRS-80 is a good machine with a lot of life
left in it, especially with the right software and
peripherals. Sometimes it's hard, in troubleshooting,
to decide when a glitch is due to user error,
hardware, or software — or, if it turns out to be
software, which software, since application
programs and DOS interact. All in all, the computer
itself should be considered the culprit only when all
other possibilities have been exhausted, especially if
you have been using up-to-date software.

Have you had any experience with a bug you
don’t think was of your making? I certainly haven’t
reported on them all! Send your suspicions on to
TRSTimes; let’s see what we can find out!

If it's any consolation, computers in the MS-DOS
world suffer the same problems from time to time.
Don’t think the problems are exclusive with the
TRS-80. T use an IBM AT at work: For text editing,
blocks of type can be placed in up to 10 different
temporary storage areas for calling out later. Nice
touch, eh? But woe unto the user who uses
temporary storage area 2: It will corrupt every KSM
key combination established by the user. That beats
anything I've seen with my trusty Model 4!

Page 10

RECREATIONAL &

EDUCATIONAL COMPUTING
REC is the only publication devoted to the
playful interaction of com-
puters and 'mathemagic' -
from digital delights to
strange attractors, from spe-
cial number classes to com-
puter graphics and fractals.
Edited and published by
computer columnist and
math professor Dr. Michael W. Ecker, REC
features programs, challenges, puzzles,
program teasers, art, editorial, humor, and
much, much more, all laser printed. REC
supports many computer brands as it has
done since inception Jan. 1986. Back issues
are available.

To subscribe for one year of 8 issues, send
$27 US or $36 outside North America to:
REC, Attn: Dr. M. Ecker
909 Violet Terrace
Clarks Summit, PA 18411, USA
or send $10 ($13 non-US) for 3 sample is-
sues, creditable.

TRSTimes 7.2 - Mar/Apr 1994

BEAT THE GAME

by Daniel Myers

The Scott Adams Adventures

MYSTERY FUNHOUSE

Time for a little
spy stuffl A Fun
House may seem a
strange place for
espionage shenani-
gans, but secret
agents have a habit
of popping up in the
darndest places! if
you just had some
money, you could get
inside. The first
thing to do is drop
the watch, because you won't be needing it. Now go
East to the parking lot. Ignore the five dollar bill (it's
a bill for $5!), and look at the tree.

Get the branch, then look in the grate. Aha,
that's where the real money is! Chew the gum
(tastes HORRIBLE!) then stick it on the branch. Use
the branch to get the coin, then drop both the branch
and the gum. Return to the Fun House entrance.

Wear the shoes, then give the dollar for a ticket.
Go Fun. You are standing in the Magical Mirror
Room, and just up ahead is (gasp!) a maze.
Fortunately, it's not a bad one, if you're careful (if
you aren't careful, well....).

Go North three times, then West twice. This
brings you to a small room. Go West from here to the
room with the knobs. Pull the green knob, and you
will find yourself in another room. Get the
trampoline that's here, then go South to the shooting
gallery and pick up the strange spectacles. You have
a few minutes, so, if you want to, you can amuse
yourself by shooting a few clay pigeons. When you're
finished, go back North, then Up, to the knob room.

Now, as you proceed through the adventure, you
will from time to time get messages about your shoe
heel being loose. Ignore them, and don't touch the
heel for now. There will be time for that later. At the
moment, you have other things to do. So, head along
West to the tank room, and from there, Up to the
ledge over the pit. Drop the trampoline here, then go
East to the barrel room.

TRSTimes magazine 7.2 - Mar/Apr 1994

Once in the barrel room, get the match and the
comb, then crawl (that's how you get out of the
barrel). Drop the match by the trampoline, then
head South to the rickety stairs and down to the
landing. Go down the slide into the tank. Get the
rusty key, then give the comb to the mermaid. Go up
the secret stairs she reveals, and you will be back on
the landing.

Go East into the Windy Hall, and East again into
(sigh) the maze. Now, carefully make your way
South, East, South, East, and you will be in the
Mirror Room again. Wear the spectacles, and look in
the mirror. Sonuvagun! There's a hidden door! Open
the door and go inside. Here you find a valve handle.
Drop the spectacles and get the handle, then go East
back to the mirror room.

Once again, go through the maze to the room
with the knobs. Drop the key, then continue on West
and then up until you come to the ledge. Get the
trampoline, then go down the ladder to the pit. Drop
the trampoline, then put handle and turn handle.
You have now turned off the calliope in the merry-
go-round room (which is where you're going next).
Now go trampoline, and jump. Wheeee! You're back
up on the ledge.

Get the match, and return to the knob room.
Drop the match, get the key, and pull the blue knob.
Now you're in the room with the Fortune-telling
machine. However, it won't be telling your fortune
today, because it's broken. However, in an odd sort
of way, it's going to be very helpful to you. But right
now, go on along East to the merry-go-round room.

Once in the merry-go-round room, push the blue
button to stop the ride. Go merry, then go horse.
Climb the pole in the horse's back, which brings you
to the top of the ride. Look up, and you will see a
rope. Jump! Now look, and you will see you are on a
catwalk. Go East, and unlock the door. Drop the key,
and look at the shelves. Grab the flashlight and the
wrench, then head back West, and climb all the way
back down again, then return to the knob room. As
you pass the fortune-telling machine, pick up the
"out of order” sign.

Pull the green knob, then go South to the
shooting gallery. Drop the sign there, then return to
the knob room. Get the match, then pull the yellow
knob. This takes you to a small room with strange

Page 11

music. Go North into the maze (again!), then go
East, South, East, South, East, and you're in the
Mirror Room. From there, go South out of the Fun
House.

Now it's back to the parking lot. Open the grate.
You will only be able to open one bolt, but you can
slide the grate to make room for yourself to go down.
Drop the wrench and get the gum. Turn on the
flashlight, then go down the manhole, and East to
the room with the second grate.

Close the door, and drop the ticket. Now, the big
moment has arrived! Remove the heel from your
shoe. A couple of things will fall out. One is a note
expaining what this is all about, the other is a fuse.
Drop the heel and the note, and get the fuse.

Chew the (yuck!) gum again, then stick it to the
fuse, then stick it to the grate. Light the fuse, and
POP! the grate blows open. Get the ticket, then go
through the hole. Now up through the shooting
gallery (good thing you put that sign there!) and
South to the hidden lab. There they are...the secret
plans! Grab them and...congrats! You have
successfully completed your assignment! After all
this, you could use some peace and quiet. How about
a trip to some faraway place, like a nice sandy island
beach...

PIRATE ADVENTURE

Yo-ho-ho and a
bottle of Coke (or
whatever!). It's
time for Pirate
Adventure! So,
don't just stand
there, grab the
crackers, sneakers
and rum, then "Go
Stairs." Hmmmm,
wonder if there's
anything interest-
ing to read in that
bookcase? Let's
~-| find out. "Get
Book." Aha! A
| secret passage is
" revealed! "Go
Passage,” then
East. Get the torch
and duffel bag, then examine the bag. Some
matches will fall out. Drop the bag (you won't need
it), and get the matches. Now head back West twice.
Read the book, which tells you that the magic word

T

Page 12

is "Yoho." Next, "Go Window," and say the word.
Amazing! You're now on a sandy island beach.

Drop the book and sneakers, then go East.
There's a shack here, so let's Maybe the pirate's
thirsty, so give him the rum. Ah, he takes it and
runs offt Now it's your turn to run off, since you
don't need the parrot right now, and you can't open
the chest yet either. So, go West, then East, which
brings you to the cave-ridden hill.

"Go Path," and you're at the top of the hill.
There isn't much here except a crack, but it looks
like you just might make it through, so "Go Crack."
This brings you into a cave, which is a bit dark, so
you had better light the torch. That's better! Now
you can see that there is a shed here, as well as some
lumber and sails. Go into the shed, pick up the
hammer and the water wings, then head North, and
go back through the crack. "Unlight Torch" (because
it won't last forever), then go back down the hill and
continue West until you return to the beach.

Okay, drop the wings, torch, matches, and sack,
and get the book and sneakers. Say the magic word,
and you will find yourself back on the window ledge
again. Go inside, and make your way to the secret
passage. Head East, and find the pirate sleeping off
the rum. Don't disturb him; just pick up the empty
rum bottle and tiptoe out again. Now go downstairs
to where the rug is. The rug is nailed down, so "Get
Nails," then "Get Rug."

Underneath is a ring of keys. Drop the rug, get
the keys, and head on back upstairs to the window
ledge. Say the magic word once again.

On the beach, drop the book, hammer, sneakers,
and nails, then get the water wings and "Go
Lagoon." The tide should be coming in now. If it
isn't, you'll have to wait for it. Go North, and you
will be in the ocean. Get the fish, and also some
water (that's what you need the bottle for; how else
could you keep them alive?). Then it's back South
twice to the beach.

Drop the wings, get the torch and matches, and
move along East twice to the bottom of the hill. Light
the torch and go down. Hmmmm. Hungry-looking
crocodiles! Good thing you have the fish with you!
Feed the crocs, drop the bottle, and unlock the door.
"Go Hall" and East. Surprise! There are lumber and
sails here (you didn't really think you could drag
this stuff out through the crack, did you?). But first,
go into the shed and get the shovel. Now pick up the
lumber and sails, and go West into the hall. From
there, go to the pit, go up, then West, and you're out
of the cave. Time to unlight your torch and make
yet another trip back West to the beach.

TRSTimes magazine 7.2 - Mar/Apr 1994

Once there, drop the lumber, sails, torch, and
matches, and return to the shack. Now you can
open the chest with your keys. Look inside two
times, because there are two items inside: a map
and plans for building a pirate ship. Get both of
those and the parrot and, once again (sigh!), go back
to the beach. Wait for the tides to change, then go
into the lagoon again. This time, the tide should be
out, and you can dig up the anchor. Get that, and go
back South to the beach. Drop the anchor. The
magic moment is almost here. "Build Ship," and
there, by golly, is a pirate ship! However, before you
go sailing off on the bounding main, you do need
someone to run the ship. (By the way, you can drop
the plans now.)

Grab the sneakers and book, and (in case you
hadn't guessed by now), say "Yoho." Now go wake
up the pirate, and return to the beach. Drop the
book and sneakers again, then "Go Ship," and "Set
Sail." Finally! Treasure Island! Go to the beach and
dig. The pirate will grab some of the rum and take
off. Now go South through the graveyard (being
careful not to awaken the pirate), then East into a
field. "Pace 30," then dig, and you will uncover a
wooden box. Get that, then drop the shovel and "Go
Monastery." Oh boy! Deadly black mamba snakes!
Good thing you still have the parrot with you. Drop
the parrot. He will chase off the snakes, and you can
pick up the "dubleons" (well, that's how they spell
them in this game!).

Okay, head West twice, wake the pirate, then go
North to the beach. "Go Ship" and "Set Sail." You're
back on the pirate's island now. "Go Beach" and get
the hammer. Now you can open the box and get the
stamps (stamps? that's a pirate treasure??). Drop
the hammer and box, and get the book and sneakers.
Say "Yoho," then go inside and down the stairs. Drop
the two treasures and say "Score."” WHEW! You
won the game!

It's time to sit back and relax with a mug of
grog...or maybe even two!!

TRSTimes magazine 7.2 - Mar/Apr 1994

YES, OF COURSE !
WE VERY MUCH DO TRS-80 /

MICRODEX CORPORATION

SOFTWARE

CLAN-4 Mod-4 Genealogy archive & charting $69.95
Quick and easy editing of family data. Print elegant
graphic ancestor and descendant charts on dot-matrix
and laser printers. True Mod-4 mode, fast 100%
machine language. Includes 36-page manual. NEW!

XCLAN23 converts Mod-3 Clan files for Clan-4 $29.95

DIRECT from CHRIS Mod-4 menu system $29.95
Replaces DOS-Ready prompt. Design your own menus
with an easy full-screen editor. Assign any command to
any single keystroke. Up to 36 menus can instantly call
each other. Auto-boot, screen blanking, more.

XxT.CAD Mod-4 Computer Drafting $95.00

The famous general purpose precision scaled drafting
program! Surprisingly simple, yet it features CAD
functions expected from expensive packages. Supports
Radio Shack or MicroLabs hi-res board. Output to pen
plotters. Includes a new driver for laser printers!

XT.CAD BILL of Materials for xT.CAD $45.00
Prints alphabetized listing of parts from xT.CAD
drawings. Optional quantity, cost and total calculations.

CASH Bookkeeping system for Mod-4 $45.00

Easy to use, ideal for small business, professional or
personal use. Journal entries are automatically
distributed to user's accounts in a self-balancing ledger.

FREE User Support Included With All Programs !

MICRODEX BOOKSHELF

MOD-4 by CHRIS for TRS/LS-DOS 6.3 $24.95
MOD-IIl by CHRIS for LDOS 5.3 $24.95

MOD-Ill by CHRIS for TRSDOS 1.3 $24.95 .
Beautifully designed owner's manuals completely
replace obsolete Tandy and LDOS documentation.
Better organized, with more examples, written in plain
English, these books are a must for every TRS-80 user.

JCL by CHRIS Job Control Language $7.95 .
Surprise, surprise! We've got rid of the jargon and JCL
turns out to be simple, easy, useful and fun. Complete
tutorial with examples and command reference section.

Z80 Tutor I Fresh look at assembly language $9.95
Z80 Tutor Il Programming tools, methods $£9.95
Z80 Tutor lll File handling, BCD math, etc. $£9.95
Z80 Tutor X All Z80 instructions, flags $12.95
Common-sense assembly tutorial & reference for novice
and ‘expert alike. Over 80 routines. No kidding!

Add S & H. Call or write MICRODEX for details
1212 N. Sawtelle Tucson AZ 85716 602/326-3502

Page 13

UTILITY FOR TRS-80 MODEL
4 AND LS-DOS 6.3.1

A 'MUST HAVE' FOR ALL
LS-DOS 6.3.1 OWNERS.

DR. PATCH MODIFIES LS-DOS 6.3.1 TO DO
THINGS THAT WERE NEVER BEFORE POSSIBLE.

COMPLETELY SELF-CONTAINED - MENU-DRIVEN
FOR MAXIMUM USER CONVENIENCE.

‘§§ FAST & SAFE - EACH MODIFICATION IS EASILY
% REVERSED TO NORMAL DOS OPERATION.

g2
R

DISABLE PASSWORD CHECK IN FORMAT/CMD DISABLE PASSWORD CHECK IN BACKUP/CMD

FORMAT DOUBLE-SIDED AS DEFAULT BACKUP WITH (I) PARAMETER AS DEFAULT
FORMAT 80 TRACKS AS DEFAULT BACKUP WITH VERIFY DISABLED

DISABLE VERIFY AFTER FORMAT DISABLE BACKUP 'LIMIT' PROTECTION
CHANGE 'DIR' TO 'D' DISABLE PASSWORD CHECK IN PURGE
CHANGE 'CAT' TO 'C' PURGE WITH (I) PARAMETER AS DEFAULT
DIR/CAT WITH (I) PARAMETER AS DEFAULT PURGE WITH (S,I) PARAMETERS AS DEFAULT
DIR/CAT WITH (S,I) PARAMETERS AS DEFAULT PURGE WITH (Q=N) PARAMETER AS DEFAULT
CHANGE 'REMOVE' TO 'DEL! IMPLEMENT THE DOS 'KILL' COMMAND
CHANGE 'RENAME' TO 'REN' CHANGE DOS PROMPT TO CUSTOM PROMPT
CHANGE 'MEMORY' TO 'MEM' TURN 'AUTO BREAK DISABLE' OFF

CHANGE 'DEVICE' TO 'DEV' TURN 'SYSGEN' MESSAGE OFF

DISABLE THE BOOT 'DATE' PROMPT BOOT WITH NON-BLINKING CURSOR
DISABLE THE BOO™ ‘TIME' PROMPT BOOT WITH CUSTOM CURSOLL

DISABLE FILE PASSWORD PROTECTION BOOT WITH CLOCK ON

ENABLE EXTENDED ERROR MESSAGES BOOT WITH FAST KEY-REPEAT

DR. PATCH IS THE ONLY PROGRAM OF ITS TYPE EVER WRITTEN
FOR THE TRS-80 MODEL 4 AND LS-DOS 6.3.1.

DISTRIBUTED EXCLUSIVELY BY TRSTIMES MAGAZINE ON A STANDARD
LS-DOS 6.3.1 DATA DISKETTE, ALONG WITH WRITTEN DOCUMENTATION.

NO SHIPPING & HANDLING TO U.S & CANADA. ELSEWHERE PLEASE ADD $4.00
(U.S CURRENCY ONLY, PLEASE)

TRSTimes magazine - dept. DP
5721 Topanga Canyon Blvd. #4
Woodland Hills, CA 91367

DON'T LET YOUR LS-DOS 6.3.1 BE WITHOUT IT!

Graphics Image Compression

by JF.R. "Frank" Slinkman

While we all want to make the best possible use
of disk space, the size of graphics image files isn't the
most major of concerns for TRS-80 users. But it is for
others. For example, the "raw" size of one SVGA full-
color image is 1024 x 768 x 3 bytes, or a whopping
2,304K! Even a simple 8" x 10" fax image, in raw
form, is 1,728 pixels wide by (at least) 1,013 pixels
high (double that if the image is in "fine" resolution
-- quadruple that if "superfine"). At eight horizontal
pixels per byte, that's almost 214K of image data
(over 427K for "fine" resolution, nearly a meg if
"superfine").

Many compression techniques have been utilized
or invented to get the size of these files down to
manageable proportions. But all data compression
must rely on one or both of two characteristics of the
data: Redundancy and repetition. The Lempel-Ziv-
Welch (LZW) method in wide use, notably in archive
programs and GIF, relies on repetition. It records
sequences of characters (or pixels) it has seen, and
references these sequences by a code. If it sees a
sequence repeated, it replaces the sequence with the
much shorter code.

The Run Length Encoded (RLE) technique,
which is used in the /CHR format known to TRS-80
users, is also based on repetition.

The /CHR method is very similar to the
MacPaint method, which is well covered in the
article, "A Tale of Two File Formats," TRSTimes 2.3
(May/June 1989). This technique works well with
simple images, but results in reverse compression
(i.e., a "compressed" file larger than the original)
when used with complex images.

The "bit packing” technique is used in fax image
compression. Fax data is very similar to TRS-80
graphics data in that it is stored 8 horizontal pixels
per byte. However, unlike our format, 1 = black and
0 = white. Bit-packing achieves compression by only
recording bytes which contain black (set) pixels.
Each 216-byte line of 1,728 pixels is "mapped" by 27

TRSTimes magazine 7.2 - Mar/Apr 1994

preceding bytes, one bit per byte. For example, if the
first byte on the 216-byte line is non-zero, then the
first of the 216 bits in the 27-byte map is set to one.
Otherwise, this bit will be reset to zero. Then the 27
bytes are mapped to the first 27 bits in 4 preceding
bytes, and those 4 bytes are mapped by a nibble in a
single preceding byte. Of all the major "non-lossy"
compression techniques, bit packing is the only one
which takes advantage of vertical repetition in the
image. It does this by XORing lines with each other,
which means that if there is no change from one line
to the next (which happens often with images of text,
which is what most faxes are), the lower line will be
full of zeroes. Under this scheme, this compresses
extremely well -- one line of 1,728 zero pixels
representing either the white space between lines or
no change from the line above compresses to a single
byte!

The main players in the "lossy" area are BTC
and JPEG. These methods rely on the inability of
the eye to detect subtle changes in color and/or
brightness from one pixel to the next; and "lose"
those differences by smoothing the image before
compression, which increases both redundancy and
repetition.

With JPEG, the amount of smoothing is
variable, but the more smoothing that is done to
improve compressability, the greater the image
degradation. I refer those interested in JPEG to the
PICS forum libraries on CompuServe. A BROwse
LIB:ALL KEY:JPEG,SOURCE command will bring
up the relevant files.

BTC is designed for use with 256-level greyscale
images, and standard BTC always provides exactly
4:1 compression. I have suggested some
improvements to the original spec, which usually
result in about 10% better compression (ie., a
compressed file about 22.5% of the size of the
original, as opposed to 25%). I refer those interested
in BTC to the DDJFORUM on CompuServe. A BRO
LIB:ALL KEY:BTC command will bring up the
relevant files.

Interestingly, the "newest" and "best"
compression methods, namely TIFF 6.0 and JPEG,
rely on the old standby, the Huffman compression
algorithm, to accomplish the real work when it
comes to compression. There are reasons for this,
even though LZW and arithmetic compression often

Page 15

outperform Huffman. Unisys holds a patent on the
LZW algorithm, which has scared off many potential
users (including Aldus, apparently, and therefore
TIFY 6.0). There are some questions whether patent
law applies here (ie., whether Welch's
comparatively minor contribution makes LZW
sufficiently different from the original, public
domain, Lempel-Ziv algorithm to warrant a patent,
and whether or not patent law even applies to pure
software implementations), but nobody seems to
want to spend the money to test these issues in
court. Likewise, there are some interesting
mathematical compression techniques out there,
which are also largely unused because of similar
patent concerns.

Interestingly, our TRS-80 "/HR" images could be
considered mathematically compressed. For
example, we could look at an /HR file not as 19,200
bytes of data, but as a 153,600-bit binary number,
with an implied radix point to the left of the first bit.
This way, an image with only the one upper left
pixel set could be compressed to a single bit simply
by calling it the number 0.5 decimal, or 0.1 binary.
Likewise, an image with every other horizontal pixel
set would be either the binary fraction 0.10101010...
or 0.01010101... (each out to 153,600 places), which
can be expressed in much shorter form as the
fractions 2/3rds and 1/3rd, respectively.
Realistically, however, arithmetic compression
would be of little use for our simple, monochrome
images, but it has great use with multi-megabyte
"full color" images, where it takes 24 bits to describe
a single pixel. I refer those interested in arithmetic
compression to the article "Arithmetic Coding and
Statistical Modeling," Mark R. Nelson, Dr. Dobb's
Journal, Feb. 1991))

The patent concerns I've mentioned above leave
the public domain Huffman algorithm as the best
legally safe method available for graphics
compression. But, other than the use of ARC4 to
"squeeze" /HR files, Huffman compression has
never, to my knowledge, been used to compress TRS-
80 /HR graphics files.

Not until now, anyway. Enter "dohuf.c" and
"unhuf.c," programs which use Huffman
compression to compress 640 x 240 /HR files to
"/HUF" output files, and decode the /HUF files to
images on the monitor screen.These programs are
presented for those who wish to store their graphics
images in minimum space, and as a way to
demonstrate many C programming language
features and concepts to TRSTimes readers.

Dohuf.c is not fast. It takes almost as long to
compress an image as it would to archive it using

Page 16

ARC4. However, unhuf.c will display files created
by dohuf.c very quickly. Also, because of ovarhead,
dohuf.c does not always compress very simple
images as compactly as Mel Patrick's /CH!. format.
With moderately complex images, /HUF fili= will be
smaller than /CHR files, but larger than IF files
created by HR2GIF/CMD in my Gii4MOD4
package. However, with extremely complex images,
especially converted GIF images with colored
backgrounds, /HUF files will be somewhat smaller
than HR2GIF-created files and substantially
smaller than /CHR files.

Before we get to the actual programs, we need to
understand how the Huffman algorithm achieves
compression. This is best explained by example.
Suppose we wish to compress a file which contains
only the ASCII codes for the phrase, "HOW NOW
BROWN COW." First, the file is passed to get a
count of how many times each ASCII code is used
(see Fig. 1). Once this data is obtained, the file is
rewound, and a Huffman data structure "tree" is
constructed.

The tree consists of an array of "elements," each
of which is a "data structure" containing more than
one variable (the structure's "members"). Pointers in
each element can point to other elements, enabling
each to be linked to up to three other elements. Each
element contains members to hold the ASCII
character, the count of how many times the
character appears, a pointer to a "parent" structure
of the same type, and pointers to both left and right
"children," also structures of the same type. Each
"leaf" of the tree will have a parent, but no children.
Each "branch" will have both a parent and children,
and the root of the tree will have children, but no
parent. The tree can be transversed from a leaf to

the root byf|
looking at the
parent in each

step, wuntil an
element is
reached which

has no parent. It
can be trans-
versed from root
to leaf by using
recorded data to
tell you whether
to go right or left
at each branch
until you find an
element which
has no children.

T

YT Y

TRSTimes 7.2 - Mar/Apr 1994

Now look at Fig. 2 while the tree building
process is described. The actual tree configuration
will be different than the one depicted, but drawing
it accurately would be too cluttered and confusing.
The illustration, however, accurately illustrates the
CONCEPT.

At the outset, each of the eight leaves of the tree
have only their characters and counts. The array of
structures is scanned to find the two "orphans" (i.e.,
elements without a parent) with the lowest counts.
In this example, the first pair selected will be the
"B-C" combination, with a count of one each. This
information is used to construct a new branch
element with a count of 2 (the sum of the counts of
the two children). Both the B and C elements will
have a pointer to this new branch put in their
"parent" members (so they're no longer orphans),
and the new branch element will have a pointer to
the B element in it's "right child" member, and a
pointer to the C element in it's "left child" member.

Now the array is scanned again to find the next
two orphans with the lowest counts, which are the
"H-R" combination. Again, the H and R elements are
given a parent with a count of 2, and the new
element will have the H and R leaves as the right
and left children.

The next scan selects the "B-C" branch and the
"N" leaf, each with a count of 2, creating a new
element with a count of 4.

The next scan selects the "space” leaf and "H-R"
branch, with counts of 3 and 2, respectively, creating
a new element with a count of 5.

TRSTimes magazine 7.2 - Mar/Apr 1994

Next, the "B-C-N" branch and "O" leaf are
selected, each with a count of 4, creating a new
element with a count of 8.

Next the "space-H-R" branch and "W" leaf are
selected, with counts of 5 and 4, respectively,
creating a new element with a count of 9.

Finally, the two remaining orphans, with counts of 8
and 9, are selected and used to create the last new element
(the root) with a count of 17.

In this example, let's say a zero is the code to go
right, and a one is the code to go left. The code,
then, for "space" is 100 (binary). In other words,
starting at the root, the "1" tells us to pick up the
pointer to the left child. The first "0" tells us to look
at that element's right child, and the second "0" tells
us to look at the right child's right child. Because
this child has no children, we know we're at a leaf;
so we pick up the character from the character field
of this element, and output it. Refer to Fig. 3 for the
Huffman codes to navigate the tree. Note each code
is unique. Note also that the higher the count for a
character, the fewer bits are in it's code. This is how
compression is obtained. In this example, the 17-
character phrase "HOW NOW BROWN COW"
would be encoded in 47 bits (6 bytes).

After the tree is constructed, the input file is
read a second time, and the Huffman compression
codes determined by stepping from the input value's
leaf to the root, and then retracing those steps back
to the leaf, writing bits to the output code stream as
we go.

In addition to using the Huffman algorithm, one
more trick is used in the dohuf.c and unhuf.c
programs to attempt to increase the compressability
of /HR images. Instead of looking at the data as each
byte containing 8 horizontal pixels, the screen is
instead divided into 4 pixel by 2 pixel "squares."
Remember, TRS-80 pixels are twice as high as they
are wide; so a 4 x 2 pixel group represents a physical
square on the screen. So,
instead of looking at a
screen of 240 lines of 80
bytes each, dohuf.c looks at
it as 120 lines of 160
squares. This is an attempt
to take advantage of
vertical repetition in the
image. It usually does, but
not always, since the
success of this tactic
depends on the nature of
the image.

1t is beyond the scope of this article to be a full
tutorial on C, but you need to look at the listings to
fully understand the nature of the Huffman tree and
its elements. Close to the beginning, you'll see a
section of code which begins with the line:

TREE { char code;

This is where the structure of the Huffman tree
elements are defined by listing the types and names
of its members. "char code;" means a one-byte
variable named "code" is included.

"int count;" means a 16-bit integer variable
named "count" is included.

"TREE *parent," "TREE *rite," and "TREE *left"
mean that three pointers-to-structure of type tree
are also included (the "*" designates a variable as a
pointer).

Since each pointer is a 16-bit address, the size of
the structure is nine bytes. At the end of the
structure definition, after the closing brace, the
"huftree[511];" tells the compiler to reserve space for
an array of 511 of these 9-byte structures. Also, the
variable name "huftree" will henceforth refer to the
address of the first byte of this array. In other
words, "huftree" becomes a pointer, rather than a
normal variable.

Now skip down the listing until you get to the
start of the buildtree() function (starting with the
line "void buildtree()").

The first line of code declares for variable (ptrl,
ptr2, temp and limit) as pointers-to-structure of type
tree. The next line, "limit = huftree + 256;" means
"point ‘'limit' to the 256th element of the huftree
array." 'This is a feature of C which frees the
programmer from having to calculate physical
addresses. It is the equivalent of the assembly code:

LD HL,HUFTREE
LD DE,256*9
ADD HI,DE

LD (LIMIT),HL

or the BASIC code:

LIMIT = VARPTR(HUFTREE(256))

The next line:

"while (temp->parent | | !temp->count) ++temp;"
means, in English:" if the 'parent' member of the
structure pointed to by 'temp' is other than zero or
the 'count' member of the structure pointed to by
'temp' is equal to zero, then increment 'temp' (i.e.,
point 'temp' to the next array element) and start
over." To put it simply, it says, "step through the
array until you find the first orphan with a count
greater than zero." This line is a good example of the
power of the C language.

Page 18

In BASIC, just to duplicate the structures, you'd
have to set up five separate arrays, or build a
difficult-to-access "option base 1" array which could
only be accessed via MID$, ASC, CHR$, MKI$ and
CVI instructions. For example, to replace this short
line of C code, you'd have to write something like: -

50 IF (CVIMID$(HUFTREE(TEMP),3,2)) <> 0)
OR (CVIMID$(HUFTREE(TEMP), 1,2)) = 0)
THEN TEMP = TEMP + 1 : GOTO 50

This power is one of the reasons I'll never go
back to BASIC. Another reason is the much faster
running time of compiled C programs. Anyway, once
such an array element is found, it's address is copied
to "ptrl," and the process repeated to find the next
such element. If a second qualifying element is not
found, then the tree is complete, and the endless
loop created by the "while (TRUE)" statement is
exited via the "break" statement. If a second element
is found, it's address is copied to both "temp" and
Hptrz'"

The next few lines swap "ptr1" and "ptr2" if the
higher of the two counts is in the structure pointed
to by "ptr2," because the following array-scanning
code expects that ptrl->count will always be >=
ptr2->count.

Now, if you'll skip up the listing to the
"get_counts()" function, you'll see, at the end,
another way to address members of elements of an
array of structures. The "->" ("points to") designator
only works with pointers-to-structure.

When we need to address a member of a
structure in an array, we use the array_name
[element_number].member_name method. In: this
"for" loop, dohuf.c assigns the codes and couris to
the first 256 elements of the array by addressing the
element's members as “huftree[i]l.code” and
huftree[i].count” respectively.

As I mentioned earlier, this article cannot be a C
tutorial. The listings are provided for those who are,
or who which to become, proficient in C. You'll note
that in the "Required" box, you need both the Pro-
MC compiler and my High Resolution graphics
library for Pro-MC. Unfortunately, Misosys, Inc., is
just about gone. Except for the LDOS and LS-DOS
operating systems, they no longer sell or support
their previous product line. Thus, if you want to "get
into" C on your Model IIT or 4, you'll have to find a
used copy of Pro-MC. I strongly recommend this
package over the limited version of C promoted by
another publication if you want to learn real C, and
not a non-standard and very limited version of the
language.

TRSTimes 7.2 - Mar/Apr 1994

If you already have Pro-MC, but don't have the
Slinkman Hi-Res graphics library, you can order it
direct from me. It was originally available on TMQ
DiskNotes 6.3, but this has also been discontinued
by Misosys, Inc. Even if you have DiskNotes 6.3, you
may still want the new version, which includes
several improvements, including a MUCH faster
paint() function, and new getimage() and putimage()
functions, which load and save /HR files.

Also, if anyone reading this has a version of my
GIF4MOD4 package earlier than Version 2.0, you
may wish to upgrade to take advantage of a couple
of bug fixes (including one which lets it work
properly under LS-DOS 6.3.1), and a much faster
HR2GIF/CMD program. The Hi-Res library and
GIF4AMOD4 update are $12.50 each, which includes
S&H (please add $2.00 for addresses outside North
America). If you wish to order both the library and
upgrade, the total is $22.50 ($24.50 outside N.A.). If
you are an original purchaser of GIF4AMOD4, there
is no need to return the original disk. However, if
you bought your copy second-hand, you MUST
return the ORIGINAL disk so I can use the program
serial number to update my records.

My address is 1511 Old Compton Road,
Richmond, VA 23233-4055. If you want faster
delivery via CompuServe E-Mail, please specify
when ordering. Also, if you would like to see a series
of C language tutorial articles here in TRSTimes,
please let Lance Wolstrup know. I'd be happy to
write them if there's enough interest out there.

DOHUF.C

/* dohuf.c
*
* Author: J.F.R. "Frank" Slinkman
* Date: 20-Nov-93
* Compiler: Pro-MC
* Libraries: Slinkman Pro-MC Hi-Res graphics library
* Source: "C Programming Column,” Dr. Dobb's Journal, Feb. 1991.
* Note: listings accompanying article contain bugs!

*

* This program reorganizes the 640 x 240 TRS-80 hi-res screen into 19,200
* 4 pixel by 2 pixel "squares.” Then, using the Huffman algorithm, it

* compresses that data, and writes the compressed data to the output.

*/

#include <stdio.h>
#option INLIB

#option REDIRECT OFF
#option FIXBUFS ON
#option MAXFILES 1
#define XREG 128
#define YREG 129
#define GFXDAT 130
#define TREE struct tree

void loadHRfile(), get_counts(), buildtree(), dataout(), compress();
void outbit();

FILE *p;

TRSTimes magazine 7.2 - Mar/Apr 1994

char f_namel[15], f_name2[15], cant. open[15] { Can't open %s\n" };

TREE { char code; 1* code value
int count; I* code count */
TREE *parent; I* pointer to parent */
TREE *rite; I* pointer to right child */
TREE *left; * pointer to left child */
} huftree[511];

—*—*—*-—*—*—*I

main(arge, argv)
int arge; char **argv;

I* check command line parameters */

if (arge !1=3)

{ puts("usage: dohuf infile[/hr]{:d] outfile[/huf][:d])");
exit(EOF);

}

* build filenames from command line args */

addext(strepy(f_namel, argv[1]), “hr");
addext(strepy(f_name2, argv(2]), "huf");

* null out huffman tree */
zero(huftree, sizeof huftree);
I* load /HR file into graphics board RAM */
loadHRfile(f_namel);
* open /HUF file */
if (!(fp = fopen({_name2, "w")))
{ printf(cant_open, f_name2);

exit(EOF);
}

get_counts(};
buildtree();
dataout();

fclose(fp);

void loadHRfile(filename)
char *filename;

{

if (!(fp = fopen(filename, "r")))

{ printf(cant_open, filename);
exit(EOF);

}

gfx_mode(l);

gfx_clsQ;

if (getimage(fp) == EOF')

{ gfx_mode(0);
printf(*Can't read %s\n", filename);
exit(EOF);

}
gfx_mode(0);
felose(fp);

void get_counts()
int i, *counts, sqr_ctr = 19200;

I* allocate zeroed memory block for array of 256 ints */
counts = calloe(256, sizeof(int));

* get the 19,200 pixel squares, and count how many of each */

while (sqr_ctr--)
++*(counts + get_square());

* write the 256 counts to the output file */

Page 19

fwrite(counts, sizeof(int), 256, fp);

I* assign code values and copy the counts
* to the first 256 huffman tree members */

for (i=0;1i<256;i++)
{ huftree[i].code =1;
huftree[i].count = countsli];

}

I* release allocated memory */

free(counts);

Pr=Femhmtemieomienk

int get_square()

static int datl, dat2, x =0,y =0;
int retcode;

I* if on left side, read vertical pair of bytes from graphics board
* RAM, then put high nibble of upper byte in high nibble of retcode,
* and high nibble of lower byte in low nibble of retcode */

if((x&1))
{ outport(XREG, x>>1);

outport(YREG, y);

datl = inport(GFXDAT);

outport(YREG,y +1);

dat2 = inport(GFXDAT);

retcode = (datl & 0xf0) | (dat2>>4);
}

* If on right side, graphics board data is still in dat1 and dat2; so no

* graphics board read needed. Put low nibble of upper byte into high
nibble

* of retcode and low nibble of lower byte into low nibble of retcode. */

else
retcode = ((datl <<4) | (dat2 & 0x0f)) & Ox{f;

* If at end of line, set up for next line. If
* at end of image, set up for next screen read. */

if (++x == 160)
{ x=0
if ((y+=2)==240)
y=0;
}

return retcode;

}

,*-*—*—*—*—*-—-*’

void buildtree()
{

static TREE *ptrl, *ptr2, *temp, *limit; /* statics for speed */
limit = huftree + 256;
while (TRUE)
{ temp = huftree;
while (temp->parent | | 'temp->count)

++temp;
ptrl = temp++;

while ((temp->parent | | !temp->count) && temp <limit)
++temp;
if ((ptr2 = temp) == limit)
break;

I* always keep lower count in ptr2 */
if (ptrl->count < ptr2->count)

{ ptr2=ptrl;
ptrl = temp;

Page 20

}

while (++temp < limit)
if ('temp->parent && temp->count)
{ if (temp->count < ptr2->count)

I* if ptrl >= ptr2 > temp, then if ptrl == ptr2 keep ptrl */

{ if (ptrl->count > ptr2->count)
ptrl = ptr2;
ptr2 =temp;

else if (temp->count < ptrl->count)
P* if ptrl > temp >= ptr2, replace ptrl wiemp */

ptrl = temp;

ptrl->parent = ptr2->parent = limit;
limit->count = ptrl->count + ptr2->count;
limit->rite = ptrl;

limit->left = ptr2;

++limit;

Pt temkzimk]
void dataout()

{ ,
int sqr_ctr =19200;°

while (sqr_ctr--)
compress(huftree + get_square(), NULL);
outbit(EOF');

ook mk—tk]

void compress(this, prior)
TREE *this, *prior;

{

I* recursive calls step from leaf to root of tree */

if (this->parent)
compress(this->parent, this);

* recursive returns send TRUE (1) if left or
* FALSE (0) if right, in order of root to leaf */

if (prior)
outbit(prior == this->left);
}

Prmkmkokokmkk]

void outbit(bit)
int bit;

static int byte =0, ctr = 0;

if (bit == EOF) I* code to flush 8-bit buffer */
{ if (letr)
return; * do nothing if buffer empty */
else
{ byte <<=8-ctr; * else move bits to extreme left */
ctr=8; f* and force write to file */
}
if (ctr==8)

{ if (putc(byte, fp) !=byte)
{ perror(“pute0®);
exit(EOF);
L
ctr =byte =0,

}
byte = (byte << 1) | bit;
++ctr;

TRSTimes 7.2 - Mar/Apr 1994

UNHUF.C

f* unhuf.c

*

* Author: J.F.R. "Frank" Slinkman

* Date: 20-Nov-93

* Compiler: Pro-MC

* Libraries: Slinkman Pro-MC Hi-Res graphics library

* Source: *C Programming Column®, Dr. Dobbs Journal, Feb 1991.
* Note: listings accompanying ar’ude contains bugs!

*

* This program reads the Huffman-mmpressed files created by the
compamon

* program, "dohuf.c,” decompresses the data, displays it on the hi-res
* graphics screen, then writes the uncompressed image data from screen
to
* an /HR file.
*!

#include <stdio.h>
#option INLIB

#option REDIRECT OFF
#option FIXBUFS ON
#option MAXFILES 1
#define XREG 128
#define YREG 129
#define GFXDAT 130
#define TREE struct tree

void get_counts(), buildtree(), decompress(), put_square(), writeHRfile(});

FILE *fp;
char f_namel[15], {_name2[15], cant_open[15] —-{ Can't open %s\n" };

TREE { charcode; I* code value
int count; I* code count */
TREE *parent; /* pointer to parent */
TREE *rite; I* pointer to right child */
TREE *left; * pointer to left child */

} huftree[511], *root;

main(arge, argv)
int arge; char **argv;

™ check command line parameters */

if (arge !1=3)

{ puts("usage: unhuf infile[/huf][:d] outfile[/hr][:d]");
exit(EOF);

}

I* build filenames from command line args */

addext(strepy(f_namel, argv([1]), "huf");
addext(strepy(f_name2, argv[2]), "hr");

* null out huffman tree */
zero(huftree, sizeof huftree);
f* open /HUF file */

if (!(fp =fopen(f_namel,"r")))

{ printf(cant_open, {_namel);
exit(EOF);

}

get_counts();
buildtree();
decompress();

felose(fp);
writeHRfile(f_name2);
}

mkokokokokak)
void get_counts()
{

int i, *counts;

counts = calloc(256, sizeof(int));

TRSTimes magazine 7.2 - Mar/Apr 1994

I* read counts array from input file */

if (fread(counts, sizeof(int), 256, fp) != 256)
{ perror(“fread(");

exit(EOF);
}

I* assign code values and copy the counts

* to the first 256 huffman tree members */
for (i=0;i < 256;i++)
{ huftree[i}.code =i;
huftree[i].count = counts[i];
}

free(counts);

void buildtree()

static TREE *ptrl, *ptr2, *temp, *limit;

limit = huftree + 256;

while (TRUE)
{

temp = huftree;

while (temp->parent | | {temp->count)
++temp;
ptrl = temp++;

while ((temp->parent | | !temp->count) && temp < limit)

++temp;
if ((ptr2 =temp) == limit)
{ root=ptrl;

break;
}

I* always keep lower count in ptr2 */

if (ptrl->count < ptr2->count)
{ ptr2=ptrl;
ptrl = temp;

while (++temp <limit)
if (!temp->parent && temp->count)
{ if (temp->count < ptr2->count)

* if ptrl >=ptr2 > temp, then if ptrl ==

{ if (ptrl->count > ptr2->count)
ptrl = ptr2;
ptr2 =temp;
}

else if (temp->count < ptrl->count)
* if ptrl > temp >= ptr2, replace ptrl witemp */

ptrl =temp;
}

ptrl->parent = ptr2->parent = limit;
limit->count = ptrl->count + ptr2->count;
limit->rite = ptrl;

limit->left = ptr2;

++limit;

mhomkokokokokf

void decompress()

{

TREE *ptr;
int bytectr = 19200;

gfx_clsQ;
gfx_mode(1);

ptr2 keep ptr1 */

f* statics for speed */

Page 21

while (bytectr--)
{ ptr =root;

* starting at "root,” step through tree, using direction bits from /HUF
* file, until end leaf (i.e., an element with no children) is reached,
* and send it's code for screen display */

while (ptr->rite)
if (inbitQ)
ptr = ptr->left;
else
ptr = ptr->rite;

put_square(ptr->code);

gfx_mode(0);

int inbitQ

static int byte, mask = 0;
int retval;

if (!mask)
{ if ((byte = getc(fp)) == EOF)
{ perror(“getc0");
exit(EOF);

}

mask = 0x80;
}
retval = byte & mask;
mask >>= 1;

return retval;

}

void put_square(code)
int code;

staticint x =0,y =0, datl, dat2;
f({x&1))

* if on left side, mask out low nibble of "code” to init upper data byte,
* and shift low nibble of "code” to high nibble to init lower data byte */

{ datl = code & 0xf0;
dat2 = code << 4;
}

else

* if on right side, OR high nibble of "code” with lower nibble of upper
* byte, and OR low nibble of "code” with lower nibble of lower byte */

{ datl |=code >>4;
dat2 | = code & 0xOf;

I* write combined left and right squares to gfx board RAM */

outport(XREG, x >>1);

outport(YREG, y);

outport(GFXDAT, datl);

outport(YREG, y +1);

outport(GFXDAT, dat2);
}

f* Bump "x" for next call. If at end of line, set up for next line */

if (++x == 160)

{ x=0;
y+=2;
}
Prmkmkokmkkk]

void writeHRfile(filename)
char *filename;

{
if (!(fp = fopen(filename, "w")))
{ printf(cant_open, filename);

Page 22

exit(EOF);
}
if (putimage(fp) == EOF)
{ perror(“putimage()”);
exit(EOF);

}
felose(fp);

TRSTimes 7.2 - Mar/Apr 1994

HINTS

LOTSA DRIVES

FOR MODEL 4
by Kelly Bates

I have 4 slimline drives in my Model 4, accessed
from the top down as 0, 1, 3, and 4. I skipped 2 on
purpose. As configured, there is 360K x 4 on-line or
1.4 meg. If you have the 128K upgrade then
Memdisk can format the upper banks for an addi-
tional 60K (as drive 2). And then, if you could discon-
nect 2 drives without without opening the case and
hook up 2 external drives of 720K each, then your
on-line storage would be about 2 meg, Read on if in-
terested.

1. Modify the tower to accept 4 slimline drives. If
you have the plastic tower, there are 8 supports for
the installed 2 drives. Shave off about 2/3 of the top
of each support. This will let your new drives drop
down a bit to allow access for the drive door handles,
and you also won’t have to resize the case opening
for drive access on the case upper half. Drill some
new screw holes to mount the drives in the sides of
the tower.

2. Mount a power supply for the additional
drives in the bottom of the chassis just behind the
keyboard, or a bit further back if you have a speaker
mounted behind the keyboard. This new power sup-
ply should feed the 2 lower drives, so be sure your
power feed is long enough to get to the drives.
Hook’em up.

3. The drive controller card just behind the
drives or just ahead of the CPU feeds all 4 drives.
The top connection normally goes to the original two
internals configured as :1 and :1 so, connect it to the
two upper drives. The lower or external connection
of the drive controller feeds two external drives
and/or the additional two drives you have just in-
stalled. Looking at the bottom of the chassis you see
the two openings for the printer and external drives.
I enlarged each of these as I frequently change print-
ers and drives. Do it, makes removal of the edge card
connectors a lot easier.

4. Just forwards of the printer and drive holes on
the chassis are some air flow vents. Make one of
them big enough to feed an edge card connector
through. Then connect the two lower drives through

TRSTimes magazine 7.2 - Mar/Apr 1994

& TIPS

your larger air vent to the external drive card edge
connection and configure the drives as :0 and :1, just
like the first two. Tuck the excess ribbon cable into
your new air flow vent. You will note that the leg
and the foot is slightly in the way. Drill a new hole
for it and remount it. Now your printer cable can be
easily connected towards the front of the case if it is
set up like mine.

Now, if you have an additional set of drives to
hook up as externals, disconnect the lower drives
and plug’em in. Your mod is complete. Put it all to-
gether.

I had originally thought of adding a muffin fan
for cooling, but I don’t think it is necessary. I had
also thought of powering the two additional drives
with the original power supply, but I am not so sure
that it is advisable. Suit yourself!

I have purposely left out the tidbit instructions,
such as the length of cables, how big to make the
new openings, where to drill the holes and what size
drill to use. Use your own judgement and common
sense.

As an aside, I recently learned that Radio Shack.
sells a tool to put connectors on flat ribbon (276-
1596) for about 14 dollars. Good investment.

When using 720K (3 1/2) externals, your DOS
will think that they are just LARGE 5 1/4 floppies.
Don’t tell it differently! If you do a BACKUP after
formatting the 720K and reconstruct, you should ac-
tually be able to use the 720K as a boot disk, and
four of those on-line will net about 3 meg to play
with.My first attempt at this netted a good Mod 4
TRSDOS 6.0 and a good TRSDOS 1.3 (double-sided,
40 track). The NEWDOS, LDOS and CPM would not
boot. What you may have to do is waste some space
on the boot disk and just format it as a 40 track disk.
The problem is probably related to relocating the
/SYS files, and DOS can’t find the stuff where it
thought it ought to be. But once you have the boot
disk, the other drives can be formatted as 720K —
that part worked well on my machine. The mechan-
ics are easy, set up the 720K’s as externals first.
Make your boot disk and then put the 720K floppy in
as drive :0 and see if it will boot.

This project was for my own use, but I thought
that the TRSTimes readers would like to know what

Page 23

other readers are doing, trying to stretch the use of
a Model 4. So, building fonts primarily and tinkering
with the machine keeps me pretty busy.

A question. Does anybody know where I can get
a PAL chip to upgrade memory on my 2nd Model 4?
I have some PAL chips, but the number is a bit dif-
ferent and I don’t know if I can use any of them:

PAL16R6ACN, PAL16L8CN and PAL10L8CN.

Would any of those workin place of the
PAL16L8ACN that is supposed to be used? I can get
the D4164C-15 memory chips locally, so they are not
a problem. Radio Shack wants about $30 for the PAL
chips and that is a bit steep-. So — HELP! Will also
swap parts and expertise. Contact me at:

1125 SE 23rd Street

Oklahoma City, OK 73129

(405) 670-3753

VARIABLE TIME
DELAY ROUTINE

by Cass R. Lewart

To provide variable time delays during program
execution, you can use the subroutine listed below.
It consists of only eight bytes of code and provides a
very large range of possible delays.

The routine can be used by Model I, ITI and 4, as
well as any other Z80 machine. The length of the
desired delay is passed to the subroutine in register
pair HL. The value of HL can be in the range 0-
65535.

DLAY LD B,L ;get delay from HL
DLAY1 DJNZ DLAY1 :main delay loop
DEC HL
LD AL :check if HL=0
OR H
JR NZ,DLAY ;continue if not
RET :return to caller
FASTTERM II ZAPS

by Gary W. Shanafelt

If you use Mel Patrick's FastTerm II terminal
program, you know the major settings can be
changed and saved to disk in a configuration file
which is loaded every time you load the program. A

Page 24

number of default settings can't be customized this
way, though, so if you don't like them you have to
change them manually every time you run Fast-
Term. What follows are patches to modify two of
them in the program itself.

First, the default FastTerm setting is for pull-
down windows. You hit <F1> and a window on the
left of the screen appears, showing you the current
status of Echo and Print mode. You press the arrow
keys to move to different windows. I rarely do any-
thing with the echo settings; it seems to me it would
be a lot more convenient for the dialer to be the first
window you get when you hit <F1>, not the echo
screen.

The following patch makes the dialer the initial
default:

PATCH FTII/CMD (D48,63=04;F48,63=01)

You can make any of the windows the default by
inputting a different number than 04, for the dialer
is simply the fourth window going across the screen
from the left.

If you don't like the pull-down windows at all,
FastTerm allows you to invoke a big custom win-
dow/menu when you hit the <F1> key. But to toggle
to this mode from the arrow-activated pull-down
window mode, you have to hit <SHIFT><F3> every
time you start the program -- which can get tiresome
after a while.

The following patch makes the custom win-
dow/menu the default when you run FastTerm:

PATCH FTII/CMD (D5D,F0=01;F5D,F0=00)

These patches are for version 4.65 of the pro-
gram, the latest one on Mel's BBS. You should not
try them on earlier versions because the bytes to be
changed are in different memory locations. If you
don't have version 4.65, you can download it from
him by calling his BBS at (604) 574-2072.

How did I figure this out? There is probably an
easy way, but the way I used was to run FastTerm
with the default window setting, exit the program,
and dump the memory; then to run the program
again, change the setting to what I wanted, and
make a second dump. Finally, I ran the two dumps
through a byte-by-byte comparison program and in-
vestigated the discrepancies: obviously one of the
different bytes in the second dump was the toggle
between the two modes that I wanted to change. I
zapped in changes with LSFED-II on the original
program until 1 got a version that showed the
change I wanted when I ran it. Having figured out
the first patch, I then repeated the procedure to de-
termine the second.

.. 1

TRSTimes magazine 7.2 - Mar/Apr 1994

TRANSFERRING FILES
TO NEWDOS/80 v.2

by Lance Wolstrup

In our last issue, I wrote a short article about
using NEWDOS/80 double-density disks with the
Model I emulator. I presented patches to the
MAKFILE/CMD and MAKFIL4/CMD programs that
would allow them to read and write 18 sectors per
track, instead of the normal 10. I then proceeded to
say that you could now use NEWDOS/80 as the
transfer vehicle, and to “simply copy all files from
whatever DOS they were on over to NEWDOS”.

Well, it seems that copying files to and from
NEWDOS/80 v.2 is becoming an ancient and
forgotten art. Phonecalls and letters have reminded
me that many readers, both new and old to the TRS-
80 world, need help in this mystical matter. So, let
me clean off the earthquake dust from the laborious
NEWDOS/80 manual and see if I can shed some
light on this mess.

First we will discuss transferring files to
NEWDOS/80 v.2 on a Model I. This article assumes
that your Model I is capable of reading and writing
double-density, single-sided, 40-track disks and that
you have at least two drives — if you have more than
two, bully for you, but two drives is the minimum
configuration. It is further assumed that, like me,
you have the Radio Shack double-density
modification, and the mandatory diskzaps from
Apparat have been correctly installed.

MODEL 1

1. Be sure to make several copies of your original
NEWDOS/80 v.2 system diskette before we begin.
Then put the master away in a safe place.

TRSTimes magazine 7.2 - Mar/Apr 1994

2. Insert one of the backups in drive :0. Boot your
Model I, answer the date and time prompts, and you
should now have NEWDOS/80 READY on the
screen.

3. Type:

PDRIVE,0 [[enTer]

This command will display the PDRIVE table. It
should look something like this:

0* TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL~=2,DDSL=17,DDGA=2
1* TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
2* TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
3* TI=A,TD=A,TC=35,5PT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
4* TI=CM,TD=E,TC=40,SPT=18,TSR=3,GPL=6,DDSL=17,DDGA=2
5* TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
6* TI=CK,TD=E,TC=39,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
T* TI=A,TD=C,TC=80,SPT=20,TSR=2,GPL~2,DDSL=17, DDGA=2
8* TI=C,TD=E,TC=40,SPT=18,TSR=3,GPL=2,DDSL~17,DDGA=2
9* TI=C,TD=G,TC=80,SPT=36,TSR=3,GPL=8,DDSL=17,DDGA=2

This table is the heart and soul of NEWDOS/80
v.2; it is the key to recognizing alien disk formats. If
you find this somewhat confusing — don’t feel bad,
many good people have jumped off tall buildings
because of this dreaded command.

4. We now must change all the TI specs to reflect
the Radio Shack double-density mod. Type:

PDRIVE,0,0,TI=D
PDRIVE,0,1,TI=D
PDRIVE,0,2,TI=D
PDRIVE,0,3,TI=D
PDRIVE,0,4,TI=D
PDRIVE,0,5,TI=A
PDRIVE,0,6,TI=DK
PDRIVE,0,7,TI=A
PDRIVE,0,8,TI=D
PDRIVE,0,9,TI=D

Notice that you will get a message telling you
that the following error has occurred:

*** T]= SPEC BETWEEN DRIVES INCOMPATIBLE
Don’t worry about this. The message will

disappear when you have changed TI specs on all
drives as shown above.

Page 25

5. Assuming that the above error message has
disappeared, type:

PDRIVE,0,A [[ENTer]

6. Set up drive :1 to allow the creation of a
double-density, single-sided, 40 track bootable
system diskette. ‘

Insert a blank diskette in drive :1 and type:

COPY 0,1,,USD,FMT,DPDN=6 [ENTe]
Answer to the System/Source disk prompt.

Press to the destination mount prompt.

The diskette in drive :1 is formatted in double-
density and the system and user files are copied
from drive :0 to :1. Then track O of the disk in drive
:1 is formatted to single-density to allow Model I
booting.

7. Remove both disks from their drives and
insert the newly-made double-density boot disk in
drive :0 and press the RESET button. If everything
went according to plan you should now boot up in
double density.

At this point I suggest that you make a few
backups of your new boot disk. Insert the disk in
drive :1 and type:

COPY,0,1,,USD,FMT,DPDN=6 [ENTeR]

and answer the prompts as explained above.

8. Now PURGE all user files from the boot
diskette to make as much room as possible. Type:

PURGE,0,USR [ENTer|
and press to each of the KILL prompts.

9. Now, Model I NEWDOS/80 v.2 cannot read
alien double-density formats — the problem is the
same as in the Model I emulator — the directory of
the alien disk is not where NEWDOS can find it. The
exception to this is TRSDOS 1.3 for Model III.
NEWDOS/80 has a special PDRIVE setting to
recognize a TRSDOS 1.3. disk. More on that in a
second.

If you are disappointed that we cannot transfer
double-density Model I LDOS, DOSPLUS, or
MULTIDOS disks to the emulator via NEWDOS/80,
don’t fret. Simply boot with the particular DOS,
format some single-density data diskettes and copy
the files from the double-density disk to the single-
density ones. You can now transfer the single-
density disks with MAKFILE/CMD as described in
previous articles.

OK, back to NEWDOS/80 and TRSDOS 1.3. The

Page 26

PDRIVE setting to configure for TRSDOS 1.3 should
be in slot 4. It should be:

T1=DM,TD=E,TC=40,SPT=18,TSR=3,GPL=6,DDSL=17,DDGA=2

10. If slot 4 of the PDRIVE table reads as just
described, type:

PDRIVE,0,1=4,A [ENTeR]

If slot 4 of the PDRIVE table reads differently,
you must then bite the bullet and type the entire

configuration;
PDRIVE,0,1,TI=DM,TD=E,TC=40,SPT=18,TSR=3,

GPL=6,DDSL=17,DDGA=2 [[ENTER

11. Insert the TRSDOS 1.3 disk in drive :1 and
type:

COPY,1,0,,NFMT,CBF,CFWO,USR [[eNTer]

Answer to the System/Destination prompt.

Press to the Source mount prompt.

Each user ﬁlé will now be displayed and you will
be asked to press if you wish to copy it. Step

through the list of files, pressing if you want to
copy it. When you reach the end of the file list, all
marked files will be copied to the NEWDOS/80 disk
in drive :0

12. Set drive :1 to handle a true double-density
data disk (all 40 tracks are double-density) so we can
copy the user files from the system diskette to it.
Type:

PDRIVE,0,1=8,A [[NTer]

This assumes that slot 8 of the PDRIVE table

reads:
TI=D,TD=E,TC=40,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2

If slot 8 of the PDRIVE table does not read the
above, you will simply have to change it.

13. Format drive :1 and then copy the user files
from the double-density system diskette in drive :0
to the double-density data disk in drive :1. Type:

COPY,0,1,,FMT,CBF,USR [[xTee]
Press to the System/Source prompt.

Press IENTER to the Destination mount prompt.

The disk in drive :1 will have all 40 tracks
formatted double-density, and the user files from
drive :0 will be copied over. When done, the data
disk is ready to be used with the DD2FILE/CMD or
DD42FILE/CMD programs, as explained in the
article on page 31 of our last issue.

TRSTimes magazine 7.2 - Mar/Apr 1994

MODEL III

We will now move on to the Model III portion of
this article. This machine is much more capable of
handling our task, as it has the advantage of being
a natural ‘double-density’ machine — that is, the
Model III drives are all double-density drives. This
means that we can go directly to our task without
having to change the TI specs as we had to for the
Model 1.

1. Make a copy of your NEWDOS/80 v.2 boot
disk. Put the master away, then boot with the newly
made disk.

2. Type:

PDRIVE,0 [[ENter]

The PDRIVE table will now be displayed, and it
should look something like this:

0* TI=A,TD=E,TC=40,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
1* TI=A,TD=E,TC=40,SPT=18,TSR=3,GPL=2,DDSL~17,DDGA=2
2* TI=A,TD=E,TC=40,5PT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
3* TI=A,TD=E,TC=40,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
4* TI=AM,TD=E,TC=40,SPT=18,TSR=3,GPL~6,DDSL=17,DDGA=2
5% TI=A,TD=A,TC=35,SPT=10,TSR=3,GPL=2,DDSL=17,DDGA=2
6* TI=AK,TD=E,TC=39,5SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
7* TI=A,TD=C,TC=80,SPT=20,TSR=2,GPL=2,DDSL~=17,DDGA=2
8* TI=D,TD=C,TC=80,SPT=20,TSR=3,GPL=2,DDSL=17,DDGA=2
9* TI=A,TD=G,TC=80,SPT=36,TSR=2,GPL=8,DDSL~=17,DDGA=2

3. Make as much room as possible on the new
boot diskette by getting rid of all user files. Type:

PURGE,0,USR [[enter]
and press each one of the KILL

prompts.

4. Model III NEWDOS/80 v.2 cannot read alien
double-density formats — except for TRSDOS 1.3,
which has a special PDRIVE setting. It is usually in
slot 4 of the table (f slot 4 in your PDRIVE table is
different than the one listed above, change it to
match). Then insert a TRSDOS 1.3 disk in drive :1
and type:

PDRIVE,0,1=4,A [[iNTer]
followed by:

COPY,1,0,,NFMT,CBF,CFWO,USR [eNeq]
answer to the System/Destination prompt.
press IENTER to the Source mount prompt.

Each user file on the TRSDOS 1.3 diskette will
now be displayed in turn, and you will be asked to

press if you wish to copy it. Step through the

files, pressing to copy, or if not. When you
reach the end of the file list, all marked files will be

TRSTimes magazine 7.2 - Mar/Apr 1994

copied to the NEWDOS/80 v.2 diskette in drive :0.

Note that programs on Model III LDOS,
DOSPLUS, or MULTIDOS can be transferred to the
emulator. Simply boot with the particular DOS,
format some single-density data diskettes and copy
the files from the double-density disk to the single-
density ones. You can now transfer the single-
density disks with MAKFILE/CMD as described in
previous articles.

5. Remove the TRSDOS 1.3 disk from drive :1,
and in its place, insert a blank disk. Reset the
PDRIVE table to reflect that slot 1 is a standard
NEWDOS/80 v.2 double-density diskette. Type:

PDRIVE,0,1=0,A [[ENTer]

Now, copy the files from the system disk in drive
:0 to a formatted data diskette in drive :1. Type:

COPY,0,1,,FMT,CBF,USR [vier]
Answer to the System/Source prompt.

Press m to the Destination mount prompt.

The diskette in drive :1 will be formatted, after
which the user files from drive :0 will be copied to
drive :1.

You can now transfer this disk to the emulator
with the DD2FILE/CMD or DD24FILE/CMD
programs, as explained in the article on page 31 of
our last issue.

TRSTimes covered the PDRIVE mess in two
previous articles: ‘COPYAID’ in the May/Jun 1988
issue (1.3), and ‘PDRIVE WITHOUT TEARS’ in the
Mar/Apr 1991 issue (4.2). Both article contained
programs that would tame the PDRIVE command
and we will make them available on a NEWDOS/ 80
v.2 double-density data diskette for $5.00 in North
America and $7.00 anywhere else.

& 3 s
s : [t
3 & 2

ANNOUNCING "SYSTEM 1.5.", THE MOST COMPREHENSIVE 1.3. UPGRADE EVER OFFERED!

MORE SPEED!! MORE POWER!! NEW LOW PRICE!!

While maintaining 100% compatibility to TRSDOS 1.3, this upgrade advances DOS into the 90's!
SYSTEM 1.5. supports 16k-32k bank data storage and 4MGHZ clock speed (4/4P/4D).
DOUBLE SIDED DRIVES ARE NOW 100% UTILIZED! (all models).

config=y/n creates config boot up filedate=y.n date boot up prompt on/off
time=y/n time boot up prompt on/off cursor='xx' define boot up cursor character
blink=y/n set cursor boot up default caps=yn set key caps boot up default
line="xx' set *pr lines boot up wp=d.y/n write protect any or all drives
alive=y/n graphic monitor on/off trace=y/n turn sp monitor on/off

tron=y/n add an improved tron memory=y/n basic free memory display monitor
type=b/hlyn high/bank type ahead on/off fast 4 mghz speed (model 4)

slow 2 mghz speed (model 3) basic2 enter rom basic (non-disk)

cpy (parm,parm) copy/list/cat ldos type disks sysres=h/b/'xx' move/sys overlay(s) to hi/bank mem
sysres=y/n disable/enable sysres macro define any key to macro
spool=h/b.size spool is high or bank memory spool=d.size="xx' link mem spooling to disk file
spool=n temporarily disable spooler spool=y reactivate disabled spooler
spool=reset reset (nil) spool buffer spool=open opens, reactivates disk: ==ooling
spool=close closes spool disk file filter *pr.adlf=y/n add line feed before printing0d:.
filter *pr.iglf ignores 'extra’ line feeds filter *pr.hard=y/n send Och to printer (fastest tof)
filter *pr.filter adds 256 byte printer filter filter *pr.orig translate printer byte to chng
filter *pr.find translate printer byte to chng filter *pr.reset reset printer filter table

filter *pr.lines define number of lines per page filter *pr.width define printer line width

filter *pr.tmarg adds top margin to printouts filter *pr.bmarg adds bottom margin to printout

filter *pr.page
filter *pr.tof
filter *ki.echo

number pages, set page number
moves paper to top of form
echo keys to the printer

attrib :d password change master password

filter *pr.route
filter *pr.newpg
filter *pr.macro
device

sets printer routing on/off
set deb line count to 1
turn macro keys on/off
displays current config

All parms above are installed using the new LIBRARY command SYSTEM (parm,parm). Other new LIB options include DBSIDE
(enables double sided drive by treating the "other side" as a new independent drive, drives 0-7 supported) and SWAP (swap drive code
table #s). Dump (CONFIG) all current high and/or bank memory data/routines and other current config to a disk data file. If your type
ahead is active, you can (optional) store text in the type buffer, which is saved. During a boot, the config file is loaded back into high/bank
memory and interrupts are recognized. After executing any active auto command, any stored type ahead data will be output. FANT 4 S-
TIC! Convert your QWERTY keyboard to a DVORAK! Route printer output to the screen or your RS-232. Macro any key,even F1, Fi o
F3. Load *01-*15 overlay(s) into high/bank memory for a memory only DOS! Enter data faster with the 256 byte type ahead option. Run
4AMGHZ error free as clock, disk I/O routines are properly corrected! Spool printing to high/bank memory. Link spooling to disk (spooling
updates DCB upon entering storage). Install up to 4 different debugging monitors. Print MS-DOS text files, ignoring those unwanted line
feeds. Copy, Lprint, List or CATalog DOSPLUS, LS-DOS, LDOS or TRSDOS 6.x.x. files and disks. Add top/bottom margins and/or page
numbers to your hard copy. Rename/Redate disks. Use special printer codes eg: LPRINT CHR$(3); toggles printer output to the ROUTE
device. Special keyboard codes add even more versatility. This upgrade improves date file stamping MM/DD/YY instead of just MM/YY.
Adds optional verify on/off formatting, enables users to examine *01-*1%, DIR, and BOOT sectors using DEBUG, and corrects all known
TRSDOS 1.3. DOS errors. Upgrade includes LIBDVR, a /CMD driv:+ :hat enables LIBRARY commands, such as DIR, COPY, DEBUG,
FREE, PURGE, or even small /CMD programs to be used within s :::*ining Basic program, without variable or data loss.

SYSTEM 1.5. is now distributed exclusively by TRSTimes magazine.
ORDER YOUR COPY TODAY!

TRSTimes - SYSTEM 1.5.
5721 Topanga Canyon Blvd., Suite 4
Woodland Hills, CA. 91367

Some Memory Meanderings
by Roy T. Beck

Recently I had occasion to peruse the memory
configurations of the ubiquitous IBM clone, and in
the process, I also began to reflect on the memory
capabilities of our favorite TRS machines, the
Models 4 and 4P. Sure, both of these are said to be
capable of 128K, and many of them actually have the
extra 64K installed.

But how does the Z-80 CPU make use of the extra
memory? After all, the memory map of the Z-80 is
limited to 64K, or so they tell us. How can it access
more than 64K? In fact, some of the aftermarket
packages offer up to 1 MEG of memory for a Mod 4
with a Z-80 CPU. What gives here? Perhaps it is
germane to ask what is the property of a Z-80 which
allows it to access a specific memory cell anywhere
in its memory map.

The key to selecting a memory cell is setting an
address on the address lines, each of which operate
in a binary manner, representing either a one or a
zero, depending on the voltage on the line. Since the
address lines operate in a binary fashion, the
number of possible combinations of logic ones and
zeroes is two raised to the power n, n being the
number of lines present. The Z-80 has 16 lines, and
two to the 16th power is 65,536. Since we like to use
the term K (1024) to more easily represent large
numbers, 65,536/1024 = 64, hence we say the Z-80
has a 64K memory map. Note the 16 address lines
required to achieve control of a 64K memory map.
Since there are only 16 address lines, the Z-80
simply cannot address more than 64K memory cells
with its address lines.

The TRS-80 solution to the problem of addressing
more than 64K in a Z-80 machine is bank switching.
In a none-too-good analogy, you could imagine a
deck of cards, each of which represents a 64K
memory map. The deck of cards thus can represent
multiple 64K memory fields. With some electronic
trickery, the Z-80 chip can determine which memory
map (card) it wishes to connect to. By interchanging
memory fields, it can address an unlimited number
of such memory maps, each of which is 64K in size.
But the inevitable gotchas are numerous.

First and foremost, the CPU can only address one of
the memory maps at a time, no matter how many of
them there are in the machine. Secondly, the
instructions which direct the Z-80 are themselves
stored somewhere in the presently active memory
map. If, between instructions, you change the

TRSTimes magazine 7.2 - Mar/Apr 1994

memory map in use, where will the next instruction
come from, and will it be the correct one? How do
you insure this will work correctly?

The method implemented in the Mods 4 and 4P is
bank switching of HALVES of the total memory
map, each half being 32K in size. Think of the 128K
TRS as having four 32K memory blocks, or banks,
any two of which can appear in the memory map of
the Z-80 at a given instant. The actual selection of a
32K memory bank is done by means of logical
latches, which appear as "ports" in the Z-80's other
"memory map". I say OTHER memory map, because
it would be perfectly possible to add another block of
memory, accessed via the ports. But this is not
viable, because there are only 256 ports in the other
memory map, and besides, these ports provide access
to the outside world for things such as printers,
modems, alternate character sets, floppy and hard
disk drives, etc, etc. When you get into the
application of ports to real designs, 256 ports are not
very many, and there really is a need for more of
them as ports; use of them as additional memory
would provide very little memory, and would further
diminish the number of ports available for
communication with hardware.

Going back for the moment to the problem of storing
and providing instructions to the Z-80 while
swapping (bank-switching) its fields of memory, the
solution adopted for the Models 4 & 4P is to leave
one 32K bank always present and always addressed
as 0000h to 7TFFFh, with the other three 32K banks
addressed selectively at 8000h to FFFFh, but only
one at any given time.

It is desirable that one 32K bank remain always
present in the lower half of the memory map,
because this is where the DOS kernel resides. By
keeping this bank always present, the DOS is happy
and can swap the other three banks in and out of the
upper half of the memory bank freely as desired.

How is this extra memory capability used? Actually,
there are not all that many programs which use the
extra banks of memory, but some do exist and the
use of the extra memory is quite elegant.

One you may know of is MEMDISK. This is built
into your DOS, and utilizes the extra memory banks
as a small disk drive. I say small, because we are
accustomed to flopppies of 360K and larger, and the
two 32K banks net out, after allowing for overhead,

Page 29

to 63 K, which is smallish. But the virtue of
MEMDISK is its speed of access, and with some
imagination you can load your essential SYSTEM
files there, and really crank up the effective speed of
your machine.

Another application is AllWrite. It will
automatically make use of the extra 64K, if present
and unused in your machine, to accommodate larger
documents than a 64K machine can handle. T am
told LeScript also has this capability, but not having
used LeScript, I cannot confirm this.

Still another application program is LB (formerly
named Little Brother) by MISOSYS, a data base
program. I use LB to hold and operate the
TRSCLUBS data base which I use for all my mailing
functions, among other things.

I previously touched upon the principal limitation of
the extra memory in our Mod 4's, and that is the
small amount of extra memory available. Even 128K
seems laughable in this day of 16 Meg clones.

There is an answer to this. Many of you have addon
memory boards named "XLR8er", formerly sold
independently and later through MISOSYS. These
boards added 256K of memory, which combined with
your original 128K yielded 384K in your Model 4 or
4P. This was a significant boost over the original
machine capacity. Several people developed
software drivers to control the necessary bank
switching within the original software concepts by
LSI and MISOSYS.

Yet another answer was created by Peter Ray of
Anitek, who also publishes LeScript. He offers
several versions of memory expansion kits, the
largest of which makes the 4 or 4P a One Meg
machine. Quite an accomplishment! This latter case
may have been overkill, as I don't know for sure
what was available in the way of driver software,
nor what programs could make proper use of this
much memory.

Since both of these methods switch memory in 32K
blocks, the bank switching driver necessarily
becomes a large effort.

Don't think this is an outlandish solution; One of the
forms of increased memory in the IBM bank
switches up to 16 MEGS in only 16K banks! It can
be done, and within the kludgy framework of the
clones, it works well. That system gives you what is
called "Expanded” or LIM 3.2/4.0 memory in the
clone world.

In conclusion, bank switching is an interesting

Page 30

concept, works well when designed well, both in
hardware and software, and greatly increases the
effective memory space available in a given machine
with a given CPU.

Next time, I hope to explain some of the IBM/clone
techniques used to increase the effective memory
size in a machine which is presently totally
inadequate with "only" 640K of working RAM
available in its original design.

HOW TO REPAIR
ELECTRONIC EQUIPMENT
Humor from the TRSTimes vaults

1 Approach the ailing instument in a confident man-
ner. This will give the instrument the mistaken idea
that you know someth!~ 7. It will also impress any-
one who happens to be looking, and if the instru-
ment should suddenly start working you will be
credited with its repair. Should this fail, proceed to
step 2. ,

2 Wave the service manual at the instrument. This
will make the instrument assume that you are at
least familiar with the source of knowledge. Should
this fail, proceed to step 3.

3 In a forceful manner, recite Ohm's Law to the in-
strument. (Caution: BEFORE TAKING THIS STEP,
REFER TO AHANDBOOK TO BE SURE OF YOUR
KNOWLEDGE OF OHM'S LAW.) This will prove to
the instrument that you do know something. This is
a drastic step and should only be taken if the first
two steps fail. If this step fails, proceed to step 4.

4 Jar the instrument slightly. This may take any-
thing from a three to six foot drop, preferably on a
concrete floor. However, you must be careful with
this step because, while jarring in the approved
method of repair, you must not mar the floor. Again.
this is a very drastic step. If it should fail, proceed
to step 5.

5 Brandish a large screwdriver in a menacing man-
ner. This will frighten the instrument and demon-
strates the deadly "SHORT CIRCUIT" technique. If
this step fails, proceed to step 6.

6 Add a tube...even if the instrument is solid state.
This will prove to the instrument that you are famil-
iar with the design of the instrument. Also, this will
increase your advantage and confuse the instru-
ment. If this step fails, proceed to the most drastic
and dangerous step of all, step 7. It is very seldom
used and is the last resort if all else fails.

very seldom used and is the last resort if all else
fallS

TRSTimes magazine 7.2 - Mar/Apr 1994

continued from page 2

We found some of Lance's CDs ten feet from the cab-
inets they'd been stored in, as if they'd been shot out
of a canon. Soccer and baseball trophies were
smashed, picture glass broken, frames bent.

In the kitchen, the refrigerator and china cabinets
had flung open and dumped their contents on the
floor. Yet, strangely, a few cabinets spilled nothing.
The refrigerator had moved a foot outsfrom the wall.
There was maple syrup all over the floor. The glass
legs of the glass-topped dining-room table had
smashed, tipping the table over. There were cracks
in the walls (ugly, but not structurally damaged it
turns out). Tiles in the entrance hall had popped up.
We had no lights, no water, no gas.

Then came the first big aftershock. At the time we
didn't know whether it was going to be an after-
shock, or if what we'd already experienced was
merely a foreshock. We grabbed onto whatever was
near and rode it out.

After a second aftershock, there was a deadly si-
lence. Even though there are 49 other townhouses in
our complex, there wasn't a sound. No voices. No
commotion. Eerie. Then a knock at the door. Lance
opened the door. It was our neighbor's son. His par-
ents were trapped in their bedroom and he needed
help rescuing them. Lance and Alan went to help.
Just seeing another person made me feel better. We
weren't alone. The earthquake hadn't just happened
at our house!

It was still completely dark, but people started
coming out of their houses. I finally found a flash-
light. When Lance came back from the neighbor's, 1
made him accompany me back upstairs to help me
look for the cat. I couldn't rest until I knew where
she was. We found her under the bed, clearly unwill-
ing to budge.

We joined our neighbors at the pool. Nothing could
fall on our heads out there. I had a small purse-size
TV. Others had radios. People gathered around to
get news of what had just happened to us all. [was
relieved to hear that the epicenter was closer to us
than to my daughter. I hoped that meant she hadn't
been as shaken up. (Two days later I reached her
and she was fine). My other daughter, hearing about
the quake on CNN in Paris, had been frantic. She'd
stayed up all night with the phone in her lap, hitting
the redial button, unable to get through.

It was the longest dawn on record. From 4:31
until it finally got light around 7 seemed an eternity.

ful that night. Without any city lights to dull them,
they sparkled elegantly.

When it got light, somebody asked me, "Sylvia,
what happened to your leg?" I looked down and saw
blood all over the front of my nightgown. I pulled it
up saw a large gash on my lower left leg. It must
have been that flying VCR. I hadn't even realized I'd

been cut.

Later that day, after we managed to dig our cars
out of the garage, Lance drove me to the hospital to
have my leg treated and bandaged up. On the way
to the hospital there was another aftershock. Steer-
ing the car was suddenly tricky, like driving on flat
tires. I saw huge street lights sway gracefully. We
passed one of the big malls and saw that parts of it
were badly damaged. Store windows by the dozens
were broken.

While at the hospital, another aftershock. The
huge building swayed. The patients in the Emer-
gency waiting room all looked at each other, many
giggling nervously when the movement passed. It
was strangely comforting to know that all the doc-
tors and nurses were going through the same experi-
ence we "patients" were going through. The earth-
quake was a great equalizer. I overheard one doctor
say, "As soon as there's a lull I've got to take a break
and go home. My family's freaking out."

That night, along with our neighbors, we slept by
the pool in deck chairs. We still had no electricity,
gas or water. Lance and the boys played cards by
candlelight. I was glued to my little portable TV. I
had the cat next to me in her carrier. I didn't want
to leave her alone in the house.

For days, you couldn't buy food, water, gas or bat-
teries. We realized we'd been badly prepared. We ate
junk food and leftovers. Steven had no school for a
week. I'm a psychotherapist, and I had to cancel pa-
tients (or they cancelled me). A curfew was imposed
for after dark.

After a few days, we began to get phonecalls from
out-of-state relatives and friends who were finally
able to get through. We got calls from TRSTimes
subscribers from everywhere. They were relieved to
hear we hadn't been swallowed up by the sunny Cal-
ifornia earth.

We were lucky. Our house was "green tagged"
(meaning it's structurally okay). But everybody
knows somebody who got "yellow tagged" (limited
entry) or, worse, "red tagged" (condemned). The
apartment complexes both to the north and the

On the other hand, the stars over L.A. were beauti- | south of have been "yellow tagged." People are now

TRSTimes magazine 7.2 - Mar/Apr 1994

Page 31

moving out in droves. As you go around town these
days, you find yourself automatically looking to see
if a building has been "green tagged" before going
inside. Lots of buiidings are to be demolished. Lots
of businesses have gone out of business. Luckily, the
TRSTimes equipment, despite dents and spills, is
still functioning, so we're still publishing.

But it's not just what you can see from the street.
Inside each home and each apartment, inside each
room, there's been an earthquake, messes that it's
going to take months to clean up, anxieties that it's
going to take even longer to recover from.

Since January 17th we've had more than 5000 af-

tershocks. Many have been large enough to kick-
start my heart again. For over a week, neither the
cat nor I would sleep in the bedroom — because
that's where earthquakes happen! I slept on the
couch, and the cat found a "safe house" for herself
under the kitchen sick behind the dishwasher.

Now-we're venturing upstairs again, but every
once in a while I see the cat stalking around the bed,
crouched down low as though waiting for that earth-
quake under the bed to start up again.

The epicenter of the Northridge quake, we hear,
has been relocated to Reseda. That's even closer to
our house. Plus it's been officially upgraded from 6.6
to 6.8. Of course those of us in the area of the epicen-
ter are not at all surprised at the upgrade. We knew
it was a big, bad earthquake. Maybe it wasn't the
Big One, but it will do!

1

| WITINE ORPHAN GGGV

For obvious reasons, we do not
have much space left for this col-
umn, so let’s get right down to busi-
ness with some good news and
some bad news. Let's do the good
news first —

Chris Fara tells us “you’d think
that with the ‘Pentium’ on the hori-
zon, the Z80 would be dead by now.
Not so! I nearly fell off the chair
when a college in Texas ordered 22
sets of all four volumes of my ‘Z80
Tutor’ for a programming class! The books are listed
in the yearly ISBN ‘Books In Print’ bible. They ap-
parently found it there, first asked for preview
copies and then went full hog.”

And now for the bad news — I am told that as of
March 1, 1994, Roy Soltoff will have closed down
Misosys permanently. Good luck in your new en-
deavors, Roy — we will miss you.

As you can imagine, getting this issue of TRSTimes
to you was not an easy task, and I wish to acknowl-
edge all who helped making it possible. To Chris
Fara, Henry Blumenthal, Danny Myers, Frank
Slinkman, Kelly Bates, Cass Lewart, Gary
Shanafelt, Roy Beck, and my sweet wife, Sylvia — a
big, big thank you from the bottom of my heart.

Lance W.

’

5 meg $175

10 meg $225

HARD DRIVES FOR SALE

Genuine Radio Shack Drive Boxes with controller, Power Supply,
and Cables. Formatted for TRS 6.3, Installation JCL Included.
Hardware write protect optional. }
Documentation and new copy of MISOSYS RSHARDS5/6 Included.

90 day warranty.

Shipping cost add to all prices

Roy T. Beck
2153 Cedarhurst Dr.
Los Angeles, CA 90027
(213) 664-5059

15 meg $275 35 meg $445

TRSTimes magazine 7.2 - Mar/Apr 1994

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf

