. $4.00

LITTLE ORPHAN EIGHTY

TRSTimes has received
a few letters accusing us
of making the last couple
of issues too serious. It
has also been said that we
have been neglecting the
Model |.

To be sure, both ac-
cusations are true. The
reason for the neglect is
simple. Though the inter-
est seems to there, we are
not receiving submissions
in these two categories.
As is to be expected, most
submissions we receive are for the Model 4.

Now, | dearly love to write programs and | will do what
time permits, but unfortunately, | just can'’t sit in front of
my computer 24 hours a day, filling each and every
request that comes in. | have a family to clothe, shelter
and feed, so | have to go to work on a regular basis (|
should have been born rich, instead of so darn good
looking), and, after paying attention to the wife and kids,
the only time | have left is spent working on TRSTimes.
The bottom line is, that if you want games, Model | articles,
or anything else, get the ball rolling by submitting your
own articles. TRSTimes can certainly use them.

Let me just clarify what | mean by "your own’ articles. It
can be about anything pertaining to the TRS-80 world, new
or old, but it has to be original, not a slight rewording of
someone else’s work. However, we will accept programs
translated from other computers - as long as they have
been completely rewritten to suit the TRS-80.

Now that | have gotten this off my chest, let me
apologize for two goofs in the May/Jun issue.

First, in the hurried process of getting the 'TRSTimes
Auction’ together, | completely forgot that TRSTimes on
Disk was due. Disk #7 is now ready and it contains all the
programs and tidbits from the first three issues of 1991.

The other boo-boo | made was on the 'TRSTimes
Auction’ pages themselves. The footer on these pages
read 'TRSTimes magazine 4.3 - Apr/May 1991’. It should,
of course, have read 'May/Jun’. What worries me is that
no one has told me about this goof yet - anyone reading
the magazine?

We have also received numerous requests for Model
11/12/16 articles and programs. As | have mentioned in
previous issues, | acquired a Model 16 for a very
reasonable price. My plan was to play with it for a while
and then, when | felt | had some knowledge of it, write
some programs and articles. This has not worked out
quite the way | wanted. First, my keyboard went bad. This

caused my newly purchased copy of LS-DOS 6.3.1 to
hang up occasionally, making it difficult to keep my inter-
est. After acquiring another keyboard, and installing a
second drive, my drive :0 ceased to function, making it
impossible to do anything with the machine. Also, my
printer port was not working correctly. Maybe the price
was not quite as reasonable as | first thought!

However, Roy Beck has promised to fix it up for me, so
eventually | will get back to do something or other for this
series of TRS-80’s, both in LS-DOS 6.3.1 mode and
TRSDOS mode.

NEWS RELEASE FROM MISOSYS

MISOSYS announces the release of LB Data Manager
Version 2.1. This flatfile data base manager now sports ten
field types, each of which can be edit or display protected,
or established as a required entry. Data entry has been
enhanced to allow duplicating fields from the previously-
entered record, as well as forward and reverse field
navigation. Flexible editing now incorporates global
search and replace with wild-card character match and
source string substitution. Up to ten index files may be
created.

Flexible report generation provides for directing
reports to the printer, display screen, or a disk file.
Definable printer (de)initialization strings are supported.
Numeric field averages and record counts have been
added to existing (sub)totals in footer support. And a
capability for generating external mail/merge files has
been added.

Included maintenance utilities provide for database
restructuring, as well as duplicating existing structures,
moving and copying records between database files, and
mass purging of records. A new 200-page User Manual
has been produced.

LB Data Manager Version 2 is priced at $99 + $5 S&H
(U.S.). Upgrades from version 1 are $40 + S&H with
return of the Ver. 1.0 TOC page. Contact MISOSYS at
800-MISOSYS (800-647-6797) for detalils.

MISOSYS

P.O. Box 239

Sterling, VA 22170-0239

(703) 450-4181

Finally, many thanks to all the contibutors to this issue
of TRSTimes - we couldn’t have done it without you.

Welcome to TRSTimes 4.4

TRSTimes magazine
Volume 4. No. 4. - Jul/Aug 1991

LITTLE ORPHAN EIGHTY ¢ v e.o..2
Editorial

THE MAIL ROOM ¢ ¢ttt v eesees.d
Reader mail

THE GREAT VOLCANO HUNTER HACK5
Gary W. Shanafelt

SHELL IN BASIC FOR MULTIDOS e 8
Jim E. King

A FAST SYSTEM DRIVEPT. 211
Lance Wolstrup

FASTER SEQUENTIAL DISK INPUT14
J.F.R. Slinkman

HINTS & TIPS ¢ i i ittt it v oeoes..l9
Matthews, Brennan, Misosys

TIPS FROM THE °UPPER LEFT COAST’21
Eric Bagai

THROWTHEM DICE24
Lance Wolstrup g

EXPLORING CONFIG/SYS, 29
Roy Beck

MODEL 1I/12/16

| want to congratulate Mrs. Welcomb on her article
about Model 4 and Model 12. Very good. Maybe she can
help me with the following: | recently acquired a Model li
with two expansion bays (8 inch SS/DD drives - 509K per
diskette). | have no problems using Mod 1l software on it,
but | also have a Model 6000 HD and | cannot seem to get
the drives in the expansion bay recognize Mod 12
software disks - even when the disk is SS/DD. Is there a
patch that | am missing?

| would also appreciate it if Mrs. Welcomb could explain
the different DOSes on Mod Il up to Mod 6000 in single
‘users mode, and the rationale of THIN, UNTHIN, etc. | also
need to know what to do about adapting Mod |l Basic to
Mod 12 and 16, as | will be upgrading the Mod Ii to Mod
16 shortly. Will the expansion bays still work on that
souped-up Model 11?

I understand that it is possible to connect a Mod I/111/4
to an expansion bay if you have the right interface. How
do | get/make one? It could serve as a cheap way to store
data/programs if one cannot afford a hard drive. Double
sided/double density expansion bays can hold up to 1
meg per drive and the maximum is 3, so that’s a 3-meg
floppy drive.

I am still trying to make a go at XENIX System 1l v3.2.0
on my Model 6000. This version of XENIX is close to the
BSD (Berkeley System) system V release 2 with Xenix
features. Most books at bookshops deal with the UNIX
System V release 4.3, which is different from ours, so go
to used book stores and make sure the XENIX/UNIX
Systrem Il books are dated before 1989.

R. Yves Breton

P.O. Box 95

Stn Place d’armes

Montreal, Quebec H2Y 3E9

WHAT ABOUT SUPERSCRIPSIT,
PROFILE AND VISICALC

| am a new subscriber to your magazine, and | am
happy to have found a source of information for my
computer. | have enjoyed my first three issues and look
forward next one.

Page 4

| do have a complaint, though. Why do you not have
articles about the three most popular software packages
for the Model 4: SuperScripsit, Profile and Visicalc. | think
many of your readers would enjoy reading and learning
about them.

Frank Melchior

Green Lake, WI

Glad you like the magazine. We would be happy to
publish information about the three programs you men-
tioned. As you have figured out by now, TRSTimes exists
only because the readers share information with us in the
form of articles, programs, or both, and lately we have not
had any submissions dealing with SuperScripsit, Profile
or Visicalc. Readers are hereby encouraged to send us
something about these programs.

For the record, may | say that Profile and Visicalc are
fine programs that do the job they were intended for.
SuperScripsit, | understand, has it share of serious
problems. However, all three are DEAD programs; that is,
they are no longer available and they are no longer
supported. It may be smart to move on to software that is
both available and supported by the author. Instead of
SuperScripsit, you can get the latest version of LeScript
(complete with spelling checker) from ANITEK
SOFTWARE, P.O. Box 361136, Melbourne, FL. 32936. Attn:
Peter Ray.

Profile can be replaced with a much more flexible and
faster database manager called LITTLE BROTHER. An
upgraded version has just been released by MISOSYS
Inc. P.O. Box 239, Sterling, VA. 22170. Attn: Roy Soltoff.

Finally, VISICALC can be replaced with either BUSY-
CALC or BCX. Both are brandnew, very powerful spread-
sheets. They are available from COMPUTER NEWS 80,
P.O. Box 680, Casper, WY. 82602-0680.

Ed.

COLLECTION HELP

| am need the following old Radio Shack Catalogs to
complete my collection: RSC-1, RSC-13, RSC-18E and
RSC 19E.

Also, | need a copy of page 116 from the PC-1 pocket
computer manual. Any help will be much appreciated.

Roy Beck

2153 Cedarhurst Dr.

Los Angeles, CA 90027

MODEL Ili & 4 FOR SALE

I have a Model 4 with 128K that | am willing to part with
for $90. | would like to get $40 for the Model lll. If you buy
both, the price will be $100. Contact me any evening
before 11pm (PCT).

Matt Monaster (213) 653-2804

TRSTimes magazine 4.4 - Jul/Aug 1991

THE GREAT
VOLCANO HUNTER HACK

By Gary W. Shanafelt

Of course, | also had to figure
out how to make a number of
programs which ran on my
original Model | also work when
| replaced the Model | with my
current Model 4. | don'’t really
know how much time and effort
| spent on all this, especially
when | embarked on a project of
customizing all the arcade
games| hadtoreturntothe DOS
without the necessity of hitting
the RESET button. | do know
that | spent more time hacking
the games than | ever spent
playing them.

| say all this by way of intro-
duction because nothing | at-
tempted ever came close to the
time and effort a fellow named
Kelly Bates put into hacking a
game called Volcano Hunter.

Volcano Hunter was one of
the last TRS-80 arcade games.
It was written by David Smith of
Mississippi State University. He
was apparently a student there,
for when | tried to write him my
letters got returned with no for-

There are alot of definitions of “hacker.” | suppose in
general a hacker is someone who tries to figure out how
a computer program works by analyzing all the code
modules in it. My wife’s definition is that I'm “hacking”
when my Model 4 is on and I'm doing anything except
word processing on it.

| was originally sucked into this form of computeritis
because of various programs | had which used misspelled
words, which |, as a teacher, couldn’t stand seeing on my
screen. Being compulsive, | didn’tlike having some things
on disk and others on tape, nor did | like protected
programs since | wanted everything | had to run under the
same operating system (which ended up being LDOS in
Model ill mode and LS-DOS in Model 4 mode).

Gary Shanafelt can be reached at:
Dept. of History - McMurry University
Abilene, TX 79697

TRSTimes magazine 4.4 - Jul/Aug 1991

warding address (which | as-
sume means that he graduated). | have no idea what he
is doing now. Volcano Hunter was never one of the big
name games like Galaxy Invasion or Sea Dragon or
Scarfman, perhaps because it appeared at the end of the
TRS-80 game era, in 1984, though it got a four star review
in the September 1984 issue of 80 Micro.

Most arcade games of the time followed one of several
formats. Aliens descended from the top of the screenwhile
you shot at them from the bottom (like Missile Attack or
Defense Command); or you scrolled sideways across an
obstacle-filled landscape while aliens came at you (like
Zaxxon or Penetrator or Eliminator); or you moved in four
directions on the screen among obstacles and aliens (like
Scarfman or Apple Panic).

Volcano Hunter fit none of these molds. it was a sort of
graphic adventure, like Zork might have been if it had

Page 5

B

UL

KB

{11

T

KE
26 rén

il

T
:
E_.:

fa=
= o
S ‘ —
= 2 g =
- - — SR iy
= — i = =L .
" P o | -
= iy = e
— =
I =] sy
=7
= - = o =
' i ;
= = =
= = , =
=
E i e F:
= : =
= i il =
ot o m!};g;},i‘!!-gq & %R Tt = =
Tt H -
—_ 1 L
— it i b =
= i | f g Tf =
A i =
{ t ’ q B £ £ M
| — Joy - - - —— poet -
= l 7
- R =
: — S jit gg it =% & _x
: d — - i
= = =] BEFEEE,
— — = A
& = JKBER : e
26
. = i
= i .
=

o —
g s
=
g — !
i 1
=
- H :
’ 5 =
5 E = B
= = i : 1=
B2 - —i i~
= = : f = —
4| o BP0 + o]
=i e 2] ¥
B T =
i r 5 i rH - -
= o = = =
i ¢ — =
= — = ;
= = g = -
=i == s ; — - —
fos —
i = = - i
= i —— - - =
= = B = = =
=
e | E i# L] - - [
=] [= = = == —_
= = # = = = =
n = —
i -
: = == ar o
= mem £}
g —
f 1 i b —
ol = %
8 S—
= f = —
? =
— -
AE 8 ERED 2 = El
B/ o A 1
S} =
0 0 = = = = :
—-‘_q
omm == ==
| o | ;
= = = == z ;
== = =
i o o |
= = = —
] = — = e
— ot - R
= - = s v i
E ol —
— —
= = =
- - =
| e } -
—

11T

somehow been converted into an arcade game from a text
adventure. There were some other TRS-80 adventure
games with graphics, like MED Systems’ Asylum or War-
riors of Ras series, but nothing with the graphics of Vol-
cano Hunter. In it, you explored the innards of a Volcano
to retrieve fuel canisters and gold. Those innards were
replete with lava, water-filled chambers, ladders, dead
ends, moving conveyer belts, drop-offs, and, of course,
the Drut monsters. Your screen would show you one small
part of this underground maze; you saw other parts as you
advanced in different directions. The trick was to figure out
how each part you saw fit together like the pieces of a
puzzle, so you learned the best ways to penetrate the
world inside the volcano as well as how to get back out
with your fuel canisters. Since you only got eight men,
most people probably never realized just how complex
the whole Volcano world was because they got zapped
before they ever managed to explore very far. Advertise-
ments for Volcano Hunter said that it comprised over 200
screens -- a real tour de force for a program of just 16K --
but most of those screens were probably never seen
except by the program’s author, David Smith... and Kelly
Bates.

Who was Kelly Bates? | never met him. Though he is
now on his second MS-DOS machine, he still tinkers on a
Model 4P and attends a user group in Oklahoma City,
where he resides. | gotto know him five years ago through
the mail after | acquired a tape version of Volcano Hunter
(which | transferred to disk) and began asking around to
locate someone with a disk version. | wanted to know how
the two were different, since the disk version was sup-
posed to have various enhancements absent on the tape
one (as it turns out, it just had a few more screens). Kelly
also had the tape version, and what he had done with it
was truly amazing.

What he had done was to determine to find out just what
all 200-plus screens of Volcano Hunter looked like or die
in the attempt. Arcade games back then often aroused
strange passions in people: | remember staying up all
night once trying to discover what lay at the end of Sea
Dragon, and exhausting myself trying to get to 50,000
points on Galaxy Invasion Plus to see the screen flip
around. It didn't take Kelly long to realize that he could
never get through the entire volcano with just eight men.
So, he went into the program code with the Newdos
diskzapper SUPERZAP, found where the A register was
loaded with the number of men and then decremented,
and nulled the decrement instruction. That meant the men
counter was always set at eight no matter how many times
he was destroyed by the Druts or the heat from the lava
or drowning in the underground pools. Slowly, he ex-
plored and mapped out the whole grid. He discovered
several fuel cells which were totally sealed off, as well as
how the whole program worked.

But that was just the beginning. To make the game
easier to play, he began studying how the various screens

TRSTimes magazine 4.4 - Jul/Aug 1991

were mapped in the program code, so that he could
modify the grid. Each screen, he found, consisted of three
rows of eight hex characters each, for a total of 24 bytes.
Each byte was a special code for a portion of a wall, a hot
spot, a fuel cell, a ladder, etc. The program read the 24
bytes for each screen, then matched them with their
equivalent graphics characters to form a new picture on
the screen. Armed with this information, he could basically
create any pattern of screens that he wanted.

But like any TRS-80 devotee, Kelly was not content to
rest on his laurels. He wanted to see what the entire grid
looked like as a whole, not in 200 separate pieces. With
Karl Hessinger's graphics editor ZGRAPH, he replicated
all the graphics blocks used in Volcano Hunter to create
the individual screens. He then converted those designs
into characters for a Dotwriter font which he called, ap-
propriately, VOLCANO/PR. Finally, with the new font and
Dotwriter, he printed out the entire 200-screen grid on his
Gemini printer. It took several pages which he then taped
together... and he had the only map in existence of all the
byways of Volcano Hunter.

He says it all took him about two years, and he made
his final printout on February 18, 1986. When he sent me
a copy, | was totally amazed. | was amazed first of all at
the sheer work involved, but | was also amazed at just how
incredible a program Volcano Hunter actually was. Like
most people, | had never realized how much was there.
Armed with Kelly’s map, | went into that volcano to explore
new worlds where no one (except Kelly) had ever gone
before.

The glory days of the TRS-80 are over, but | hope that
some of the deeds it inspired will be remembered even
when no one any longer remembers things like expansion
interfaces or supervisor calls.

Page 7

SHELL
in BASIC
for MultiDOS

By Jim E. King

A SHELL is intended to make DOS commands and
general operation easier, one-key operations at best.
When | saw the excellent shell by Stephen Milliken for
TRSDOS 6.2, | decided that | wanted something like it in
MultiDOS.

My Shell is not identical but it does facilitate faster
‘one-key’ operation of many functions. |t takes advantage
of the MultiDOS capability of executing any DOS com-
mand from BASIC. The 1.71 Model 3 version is a little
different fromthe 2.1 Model 4 version, and the 1.71 version
is the one | am looking at while | write this article.

| moved all my operations over to MultiDOS 1.6 some
years ago because it was so user friendly, and this pro-
gram is possible because ANY DOS command can be
executed from BASIC.

The one-key operation is based on my standard inkey$
routine in line 8, and the use of many IF tests on what you
choose in line 8 (lines 102-199).

| always put the menu in line 99 in my programs (no
particular reason for it - it’s just the way | do it), and my
menu does not appear and disappear as you use the
program, but scrolls with everything else. You can still see
what you were working on when you return to the menu.
The reason the UPPER & lower cases look funny, is that
you press the Upper to choose that function.

The programs begins at line 0 with some necessary
setup, definitions, title, and then GOTOs line 80, which
holds the string value of the number of the date developed
by Rosenfelder’s (BF&B) date routines in lines 81-86.

Line 90 tests whether you are entering the program for
the first time, or returning. IF the first time, it routes to line
200 where it displays a day and date, and instructs you to

Page 8

press arrows to change the date, usually the right arrow
(Lines 200-280). This part is my attempt to duplicate the
excellent program 'SETDATE’ by Jack Decker. When you
have displayed today’'s day and date, pressing
<ENTER > saves that date number back into the pro-
gram (lines 290 to the end). The pokes in line 290 put the
date into Time$.

After saving the new date, or there is a value in Time$
in line 90, lines 92-- process the date to display the day &
date in the menu, line 99.

Menu (all with 1 keystroke):

Press a single number for a short directory of any disk
drive (106).

If you want a long directory, press the shifted numbers
and the * for 0 (110).

caT, the special CATalog, will read 1 or 2 sided disks
automatically and configure that drive.

dAte allows you to redo the date.

confiG allows you to quickly configure drives 1-3, 1 or
2 side.

Format....

Map: displays a map of the disk.

List a file and see if you can make sense of it.

copY a file from 1 disk to another with the same name.

rEname a file.

Kill a file.

reStore a killed file.

VFU: Hester's Very Fine Utility for copying, etc.

Zap (go ahead, make my day)

Some commands available that are not shown on the
menu are:

| - type in a FileName to be made invisible.

& - the semi-automatic /BAK routine.

6 - commands S4 to a 64 column screen

8 - commands it to an 80 column screen.

The 2.1 version has added routines to input the time in
24 hour clock for inclusion in Time$.

In general, most of the time, you can recover from an
error, by entering ’ <’ to back up or return to the menu.

Lines 3-79 are subroutines, etc. Note that if you leave
the write protect tab on, line 70 will goto 40 and flash a
message at you. Remove the tab and press any key.

If you want to drop into the READY > mode, press
CLEAR, line 8.

Line 7 changes lower case to UPPER.

Line 9 jumps up a line.

| save the program under the letter 'S’ for speed. Line
1 contains comments to me, things to do. The program
code is 2 pages long, and while it is fairly difficult to type
in, it is worth it. | have been using one version or another
of this program for several years, and it has made my
computing time easier and much more fun.

TRSTimes magazine 4.4 - Jul/Aug 1991

Finally, credit should go to Lance Wolstrup who gave
me invaluable assistance on saving the date back to the
program, and also the time input routines.

The TRSTimes readers are invited to modify the pro-
gram to suit any particular needs.

SHELL/BAS

0 CLEARG99:DEFINTD-R:DEFSTRS-Z:
U="SHELL- Model 3 MultiDOS 1.71":GOSUB 3:
PRINT"Written by Jim E. King with BF&B, Public
Domain, NOT for Sale":

U=":POKE 16409,0:

ON ERROR GOTO 70:GOTO 80 'PokeLowerCase;-S
1 ' AUTO BASIC 1,64746,RUN"START3;

Make Variable table;

Add: Verify File Copy ?7?,

LList of a File;

Conventional hour #s line300 & Inkey$ input

3 PRINT TAB(30-LEN(U)/2)U:RETURN

4 FOR J=0TO 555:NEXT:RETURN

6IF Z="<"OR LEN(Z) > 12 THEN JU=2:GOSUB 9:
GOTO 99

7 IF LEN(Z) THEN FOR L=1TO LEN(2Z):
O=ASC(MID$(Z,L,1)):

MID$(Z,L,1) =CHR$(O + 32*(0 > 96)):
NEXT:RETURN:ELSE RETURN

8 Z=INKEY$:IF Z="THEN 8 ELSE

IF Z=CHR$(31)THEN END

ELSE GOSUB 7:RETURN

9 PRINT CHR$(29)STRING$(JU + 1,27)CHR$(31);:
JU=0:RETURN

10 PRINT"DIR "V"(A,1)":CMD"DIR " +V +"(A,I)":
GOSUB 8:GOTO 102

11 PRINT" FMAP "V:CMD"FMAP "+ V:X =""GOTO 99
12 PRINT TAB(48)CHR$(27)"/PCL?":GOSUB 8:
IFZ="P"ORZ ="Y"ORZ =""ORZ ="@"THEN
X=X+"/PCL":RETURN ELSE RETURN

13 IF LEN(Z) THEN GOSUB 7:X=2Z:GOSUB 12

14 GOSUB9:PRINT"LISTING "X:CMD"LIST "+ X:
GOSUB 8:GOTO 102

16 GOSUB 9:

PRINT"Are you SURE you want to KILL: "X", <Y >/N?"
:GOSUB 8:IF Z="Y"OR Z="K'THEN GOSUBS:
PRINT'KILLING "X;:

CMD'KILL " +X:

Z=V:PRINT TAB(48)"KILLED

17 GOTO 102

18 GOSUB 9:PRINT"Copy "X" from Drive#7? ";:
GOSUB 8:Y=Z:

PRINT STRING$(2,8)" "Y" to Drive#7? ";:

GOSUB 8:

IFZ="<"THEN 99

ELSE:PRINT TAB(56)"COPYING "X":"Z:
CMD"VERIFY":

CMD"COPY "+ X+""+Y+""+ZV=2Z:

GOSUB 8:GOTO 102

TRSTimes magazine 4.4 - Jul/Aug 1991

20 PRINT TAB(8)CHR$(27)CHR$(31)X" to ";:

INPUT Z:IF Z="<"THEN 99 ELSE GOSUB 7:

PRINT TAB(48)CHR$(27)Z:

CMD"RENAME "+ X +""+Z:

GOSUB 8:GOTO 102 :

22 PRINT TAB(47)CHR$(27)" Drive #? ";:

GOSUB 8:PRINT Z:

IF ASC(Z) >47 AND ASC(Z) <52 THEN V=2:
CMD"RESTOR "+ X+""+V:

GOSsuBs

23 GOTO 102

24 |F ASC(Z) <49 OR ASC(Z) >51 THEN ZC=""
GOTO 28 ELSE

PRINT TAB(40)CHR$(27)"<1> or <2> Sides? ";:
GOSUB 8:PRINT Z:

IF VAL(Z) >0 AND VAL(Z) <3 THEN ZS =Z ELSE
JU=2:GOSUB 9:GOTO 99

26 ZC=2ZD +"(Sl="+ZS:PRINT"CMD’CONFIG "ZC

28 CMD"CONFIG " +2ZC:

JU=3:GOSUB 9:GOTO 99

40 U ="REMOVE WRITE PROTECTION"

42 FORI=0TO2:
GOSUB9:GOSUB4:GOSUB3:GOSUB4:

NEXT:

GOSUB8:GOTO360

70 IF ERR=120 OR ERR=136 THEN 40

72 PRINT ERR"Error-Line"ERL;:CMD"E":V =""

74 RESUME 99

79 WD =FNDY$(FNDN!(IR,MO,DY)):RETURN

‘day of week

80 A$="727272"A=VAL(A$)

81 DEF FNDN!(Y%,M%,D%) =Y%*365 + INT((Y%-1)/4)
+ (M%-1)*28
+VAL(MID$('000303060811131619212426",(M%-1)*2
+1,2))-((M% > 2)AND((Y%ANDNOT-4) =0)) + D%
*-Day# p110

82 DEF FNRY%(N!) =INT((N!-N!/1461)/365)

"-Year p111

83 DEF FNRJ%(N!) =N!-(FNRY%(N!)*365
+INT((FNRY%(N!)-1)/4))

T-p1id

84 DEF FNRM%(J%,Y%) = -((Y%ANDNOT-4) < >0)*
(1-(J% >31)-(J% >59)-(J% > 90)-(J% > 120)-(J% > 151)-
(J% > 181)-(J% > 212)-(J% > 243)-(J% > 273)-(J% > 304)-
(J% > 334))-((Y%ANDNOT-4) =0)*(1-(J% > 31)-(J% > 60)-
(% >91)-(J% > 121)-(J% > 152)-(J% > 182)-(J% > 213)-
(J% > 244)-(J% > 274)-(J% > 305)-(J% > 335))

85 DEF FNRD%(Y%,M%,J%) = (J%-((M%-1)*28
+VAL(MID$('000303060811131619212426",(M%-1)*2
+1,2)))) + ((M% >2)AND((Y%ANDNOT-4) =0))

T-p1id

86 DEF FNDY$(N!) =MID$("Friday Saturday Sunday
Monday Tuesday WednesdayThursday ",(N!-INT(N!/7)
*7)*9+1,9)

- p110

87 DEF FNN$(N) = RIGHT$(STR$(N),LEN(STR$(N))-1)
T#-->$

88 DEF FNZ2(N) =RIGHT$(STR$(N),2)

Page 9

ggVv=""

90 IF VAL(TIMES$) =0 THEN 200

92 IR=VAL(MID$(TIME$,7,2)) + 1900:

MO =VAL(LEFT$(TIME$,2)):

DY =VAL(MID$(TIME$,4,2)):GOSUB 79

99 PRINTWD" "LEFT$(TIME$,8)

"DIR<0,1,2> dAte confiG Format caT Map List
copY rEname Kill reStore Vfu Zap elecPencil
Other?":GOSUB 8

102 IF Z="A"THEN 200’date

104 IF Z="G'THEN

PRINT"Configure Sides of Drive # (1-3)? ";:

GOSUB 8:PRINTZ:GOSUBS:

IFASC(Z) > 48 AND ASC(Z) <52 THEN ZD =Z:GOTO 24
ELSE 24

106 IF ASC(Z) >47 AND ASC(Z2) <52 THEN V=2Z:
PRINT'DIR "V:

CMD'DIR " +V:GOSUB8:GOTO102

108 IF Z="*"THENV="0":GOTO 10 ELSE IF Z="1"
THEN V="1":GOTO 10

ELSE IF Z=CHR$(34) THEN V="2":GOTO 10

ELSE IF Z="#"THEN V="3":GOTO 10'(A)

110 IF Z="T'THEN

PRINT"CAT of a Foreign Disk (L) <1,2,3>?";:
GOSUBS:PRINT Z:

IF ASC(Z) > 48 AND ASC(Z) <52 THEN V=2Z:
CMD"CAT "+V +"(L):GOSUB 8:GOTO 99

1121IF Z="M'THEN IF ASC(V) >47 AND ASC(V) <51
THEN GOTO 11 ELSE

PRINT"Display a MAP of Drive # <0,1,2,3>7";:
GOSUB 8:GOSUB 6:V=2Z:GOTO 11

114 IF Z="F'THEN PRINT"Format":CMD"FORMAT
116 IF Z="B'THEN PRINT"Backup":CMD"BACKUP"
ELSEIF Z="V"THEN PRINT"VFU".CMD"VFU"

ELSEIF Z="2"THEN PRINT"ZAP!":CMD"ZAP":GOTO 99
118 IF Z="L'"THEN

PRINT"List FileName ("X"):Drive#? ";:LINEINPUT Z:
GOSUB 6:GOTO 13

120 IF Z="Y'THEN

PRINT"Copy FileName ('X") Without Drive #7? ";:
LINEINPUT Z:GOSUB6

IF LEN(2)THEN GOSUB 7:X=Z:GOSUB12:GOTO 18
ELSE 18

122 IF Z="E'THEN

PRINT"Rename: OldName ONLY ("X")? ";:
LINEINPUT Z:GOSUBE:

IF LEN(Z)THEN GOSUB 7:X=Z:GOSUB12:GOTO 20
ELSE 20

124 |F Z="K'THEN PRINT"KILL FileName ("X")? ";:
LINEINPUT Z:GOSUBS6:IF LEN(Z)THEN GOSUB 7:
X=2Z:GOSUB12:GOTO 16 ELSE 16

126 IF Z="S"THEN PRINT"Resurrect FileName ("X")?";:
LINEINPUT Z:GOSUB6:IF LEN(Z)THEN X=2Z:
GOSUB12:GOTO 22 ELSE 22

. 128 IF Z="$"PRINT"S/BAK ";:

CMD"COPY S S/BAK™

PRINT"Saving S":SAVE"S"

Page 10

130 IF Z=""THEN PRINT"Make File Invisible? ";:
LINEINPUT Z: GOSUBS:

CMD"ATTRIB "+ 2Z +"(I)":

GOSUB8:GOTO102

132 IF Z="P"PRINT"Electric Pencil":

CMD"PENCIL"

170°'IF Z="C"THEN PRINT"Run Account AZC":
RUN"AZC

175°’IF Z="4"THEN PRINT"Run #,$,$,$ Database, D4";
RUN"D4" ELSE IF Z="D"

THEN PRINT"Run 2 Dimensional $ Database, DBZ":
RUN'DBZ

185 'IF Z="W'THEN PRINT"Run WIRE":RUN"WIRE"
195 IF Z="0"THEN PRINT"Run Name/FileSpec ("X"): ";:
LINEINPUT Z:

IF Z="<"THEN 99 ELSE IF LEN(Z) THEN GOSUB 7:
X=2Z:RUN X ELSE RUN X

199 GOTO 99

200 K=0:PRINT"PRESS: Right Arrow to Advance 1 Day,
Left Arrow to Back Up 1 Day, > or < to increment by
10 days. <Enter> when Date is Correct”

210 IR=FNRY%(A):

J=FNRJ%(A):

MO =FNRM%(J,IR):

DY =FNRD%(IR,MO,J)

220 GOSUB 79:

PRINTWD" "FNZ2(MO)"/"FNZ2(DY)"/19"FNZ2(IR):
GOSUB 8

230 IF PEEK(14400) =64 THEN A=A+ 1:K=1:
GOSUB 9:GOTO 210

240 IF PEEK(14400) =32 THEN A=A-1:K=1:
GOSUB 9:GOTO 210

250IF Z=">"THEN A=A+10:K=1:GOSUB 9:
GOTO 210

260 IF Z="<"THEN A=A-10:K=1:GOSUB 9:
GOTO 210

270 IF Z=CHR$(13)OR Z="1"THEN 290

280 GOSUB 9:GOTO 220

290 IR=1R-1900:

POKE&421C,MO:

POKE&421B,DY:

POKE&421A,IR

‘date

300 IF K=0 THEN CLS:GOTO 92

ELSE AA$ =STR$(A):
PRINTTAB(33)CHR$(27)"Saving

330 B =PEEK(VARPTR(A$) + 2)*256

+ PEEK(VARPTR(A$) + 1):

B =B +65536*(B >32767)

340 BB = PEEK(VARPTR(AA$) + 2)*256

+ PEEK(VARPTR(AA$) + 1):

BB =BB +65536* (BB > 32767)

350 FORI=0TO5:

POKE B +|,PEEK(BB + 1+ 1):

NEXT

360 SAVE"S"

CLS:GOTO92

TRSTimes magazine 4.4 - Jul/Aug 1991

A FAST SYSTEM DRIVE pt. 2

HOW ABOUT A °*GRAFDISK’?

128K Model 4 - LS-DOS 6.3.0 & 6.3.1
By Lance Wolstrup

Inthe last issue, part 1 of this mini-tutorial covered the
installation procedure and usage of a normal 128K Model
4 Memdisk. In essence, the system files were copied up
to the Memdisk, which was then configured to be the
system drive with the SYSTEM (SYSTEM =d) command.

Now, | have a 15 meg hard disk hooked up to my
three-floppy Mod 4, partitioned to three logical drives of 5
megs each. For my own personal reasons, the hard drive
partitions are used to store data only; thus none have the
LS-DOS system files. Whenever | boot, it is done com-
pletely from the floppy in drive :0. Upon completion of the
boot, the drives are as follows:

drive :0 (first floppy)

drive :1 (second floppy)

drive :2 (third floppy)

drive :3 (first hard drive partition)
drive :4 (second hard drive partition)
drive :5 (third hard drive partition)

At this point [set up the Memdisk as drive :6, copy the
system files to it, and then switch the drives with the
SYSTEM (SYSTEM =6) command. The drives are now:

drive :0 (Memdisk)

drive :1 (second floppy)

drive :2 (third floppy)

drive :3 (first hard drive partition)
drive :4 (second hard drive partition)
drive :5 (third hard drive partition)
drive :6 (first floppy)

The problem with this setup is that all the system
utilities, such as FORMAT and BACKUP, are now located
on drive :6. Trying to FORMAT a fresh disk in drive :1 will

TRSTimes magazine 4.4 - Jul/Aug 1991

cause a hang-up because the system will try to find
FORMAT/CMD on the unformatted diskette.

To solve this minor problem | needed to make room on
the Memdisk for the FORMAT/CMD utility file, so |
removed SYS0/SYS and SYS13/SYS.

REMOVE SYS0/SYS.SYSTEMS6:0

REMOVE SYS13/SYS.SYSTEM6:0

SYSO0 is not needed, as it is at this point stored in
memory. SYS13 is the Extended Command Interpreter
(ECI). It serves no purpose, unless a user program has
been copied to it. Since | never use SYS13/SYS, it was
expendable.

COPY FORMAT/CMD.UTILITY:6 :0

It would have been handy to also have BACKUP/CMD
available from the Memdisk, but | was fresh out of Mem-
disk-space, so | had to do without this utility.

It is possible to make room for BACKUP/CMD on the
Memdisk by removing SYS5/SYS and SYS9/SYS. How-
ever, | chose not to do that as | need these system files
when | do assembly language programming.

SYS5 and SYS9 contain the code for DEBUG and the
extended DEBUG commands. If you do not plan to use
DEBUG, by all means, get rid of these two files.

REMOVE SYS5/SYS.SYSTEMS6:0

REMOVE SYS9/SYS.SYSTEM6:0

Now there is enough room on the Memdisk for BACK-
UP/CMD, so:
COPY BACKUP/CMD.UTILITY:6 :0

My startup file, called SYSTEM/JCL, is as follows:

SYSTEM (DRIVE =6, DRIVER ="MEMDISK")
D

D

Y

BACKUP /SYS:0 :6 (S)

SYSTEM (SYSTEM =6)

REMOVE SYS0/SYS.SYSTEM6:0

REMOVE SYS13/SYS.SYSTEMS6:0

COPY FORMAT/CMD.UTILITY:6 :0

With this minor annoyance now solved, | have been

happily using Memdisk; that is, until Allen Jacobs asked
me if I'd ever heard of a utility called GRAFDISK!

Page 11

GRAFDISK is written by William R. Bowman and is
available on TRSLINK #26 (December 1989) in afile called
GRAFDSK/ARC.

For the readers not familiar with files having the /ARC
extension, let me just mention that this type of file cannot
be used directly. It is usually a collection of files saved in
compressed format into one file and, before the files are
usable, they have to be 'DEarced’; that is, they have to be
restored to their original format. This can be done easily
with another program available from TRSLINK, called
DEARC4V2/CMD (#21, July 1989).

If you only have two drives, you will have to make room
‘'on your boot disk for both DEARC4V2/CMD and
GRAFDSK/ARC, and then copy these files from the
TRSLINK disks in drive :1 to the boot disk in drive :0.

You can now issue the command:

DEARC4V2 GRAFDSK :1

This will copy the following eleven files to the data disk
in drive :1.

GDINFO/TXT, GDLDSV/DOC, GDLOAD/CMD

GDLOAD/FIX, GDSAVE/CMD, GDSAVE/FIX

GRAFDISK/DCT, GRAFSYSB/JCL, SHRTBOOT/CMD

SWAP/CMD, SWAP/DOC

Of these files, GRAFDISK/DCT, GDLOAD/CMD,
GDSAVE/CMD and SWAP/CMD will be of immediate inter-
rest to us.

GRAFDISK/DCT is the all important one here. It is a
driver that completely replaces MEMDISK/DCT when set-
ting up a memory disk drive. This new driver does every-
thing that MEMDISK/DCT does. What makes it more
powerful is, that if you have a hi-res board installed in your
Model 4, it lets you use the hi-res board memory in
addition to the 64K in banks 1 and 2. In the case of a Radio
Shack hi-res board, it is an extra 32K, giving you a 96K
memory disk drive. The Micro Labs board adds only 24K,
but that still gives you an 88K memory drive.

Ifyoudon’t have a hi-res board, don’t stop reading now,
you can still use this driver. Of course, you won't get the
added memory, but you can benefit greatly from the two
utilities, GDSAVE/CMD and GDLOAD/CMD.

Copy GRAFDISK/DCT to the boot disk in drive :0 and
then issue the command:

SYSTEM (DRIVE =2, DRIVER ="MEMDISK")

Your screen will now display the following prompt:

[A] Banks 1, 2

[B] Banks 1, 2 and Grafmem

[C] Disable GrafDISK

Your choice ?

Page 12

If you have a graphics board installed, choose B, other-
wise choose option A.

You will now be asked:
Do you wish to format it <Y,N> ?

Answer 'Y’ to format the Memdisk (now called
GrafDISK). After the format has been verified, you will be
told that 'GrafDISK Successfully Installed’.

If you are working with LS-DOS 6.3.0 you are now in
business. Depending on the presence of a hi-res board,
you will have a memory disk drive of either 96K or 64K.

However, if you are using LS-DOS 6.3.1, you will have
noticed that the driver does not work. The problem is
GRAFDISK/DCT was written to work with LS-DOS 6.3.0.
When LS-DOS was upgraded from 6.3.0 to 6.3.1 the
system code became slightly larger and, unfortunately, it
GRAFDISK/DCT now overwrites part of SYS8/SYS.

As LS-DOS 6.3.1 is now the standard DOS for Model 4,
a fix was needed, and this fix can be found on TRSLINK
#31 (May 1990). It is a BASIC program, written by L. E.
Evans, called GDMOVE/BAS. Running this program will
patch GRAFDISK/DCT to load at 3000H, and it will now
work with both LS-DOS 6.3.0 and 6.3.1.

| encountered a problem when | tried to run
GDMOVE/BAS. BASIC stopped and told me there was a
syntax error in line 20. Indeed there was, and a very
deceptive one at that.

At the end of the first line, the command 'PRINT’ is
wrapped around to the next line. Somehow, the TRSLINK
text editor inserted a blank between the PRI and the NT.

This also occurs in line 30. Same problem. At the end
of the first line, the command 'PRINT’ is wrapped around
to the next line. The blank is inserted between P and RINT.

Edit out the two blanks and the program will now
correctly patch GRAFDISK/DCT. The syntax errors may
be unique to my copy of the TRSLINK #31disk, but just in
case it is not, you now know what to do.

It is obvious why you should go through all of this
trouble if you have a hi-res board installed - getting 32K
(or 24K) of extra memdisk space allows more Litilities or
programs to reside there. In my case, | now have EDAS,
TED and a disassembler up there and, boy, execution is
fast.

What is not so obvious, however, is why you should
go through the above trouble in order to use GRAF-
DISK/DCT if you do not have a hi-res board installed.

The key to why you should use GRAFDISK/DCT, even
if you do not have a graphics board installed, is the two
utilities, GDSAVE/CMD and GDLOAD/CMD. Read on!

The easiest way to set up a MEMDISK or GRAFDISK is
towrite a /JCL fileto send all the commands to DOS, rather
than typing them yourself each time you boot.

TRSTimes magazine 4.4 - Jul/Aug 1991

My STARTUP/JCL file to initialize the GRAFDISK in my
2-drive Model 4P with a Radio Shack hi-res board and a
15 meg hard drive (partitioned into 4 logical drives) is:

SYSTEM (DRIVE = 2,DRIVER ="GRAFDISK")
B

Y

BACKUP /SYS:0 :2 (S)

REMOVE SYS0/SYS.SYSTEM®6:2
REMOVE SYS13/SYS.SYSTEMG6:2
COPY FORMAT/CMD.UTILITY:0 :2
COPY BACKUP/CMD.UTILITY:0 :2
COPY EDAS/CMD:3 :2

COPY TED/CMD:3 :2

COPY DD/CMD:3 :2

COPY DDFORM/CMD:3 :2

COPY TRSLABL4/CMD:3 :2
SYSTEM (SYSTEM =2)

SYSTEM (DRIVE =1, SWAP =2)

The STARTUP/JCL file to initialize the GRAFDISK in my
desktop 3-drive Model 4 with a 15 meg hard drive (parti-
tioned into 3 logical drives), but without a hi-res board is:

SYSTEM (DRIVE =6,DRIVER ="GRAFDISK")
A

Y

BACKUP /SYS:0 :6 (S)

REMOVE SYS0/SYS.SYSTEM6:6
REMOVE SYS13/SYS.SYSTEM6:6
COPY FORMAT/CMD.UTILITY:0 :6
COPY TED/CMD:4 :6

SYSTEM (SYSTEM =6)

SYSTEM (DRIVE = 1,SWAP =6)
SYSTEM (DRIVE =2,SWAP =6)

Running any /JCL file is very slow. Executing the
GrafDISK/JCL with 'DO STARTUP’ upon boot-up takes
better than a minute, which is almost as slow as my PC.
This is where GDSAVE/CMD and GDLOAD/CMD come to
the rescue.

After initializing and copying all the programs that will
fit on the GrafDISK, you can use GDSAVE/CMD to write
the contents of the high banks of memory, the contents
of the graphic memory, all 8 DCT’s, and the GrafDISK
driver to a disk file.

If you have a hi-res board and chose option B when
initializing the GrafDISK, this file will be 96K in length.
Without a hi-res board, and you chose option A, the file
will be 64.5K in length. 1 have chosen to call the file
GRAFDISK/INI and to store it on my first hard drive parti-
tion (:3), so the command syntax if a hi-res board is
present (option B) is:

GDSAVE GRAFDISK/INI:3

The syntax if the hi-res board is not present (option A)
is:
GDSAVE GRAFDISK/INI:3 (A)

TRSTimes magazine 4.4 - Jul/Aug 1991

Notice that you must specify the (A) parameter if a
hi-res board is not present.

Now we get to the good part. From now on, whenever
you boot, you need not execute the slow STARTUP/JCL
file. Rather, you can use GDLOAD/CMD to initialize the
GrafDISK and restore its contents to what it was when you
saved it. It is much faster than the /JCL method, ap-
proximately 15 seconds, as opposed to over a minute.

The command syntax if a hi-res board is present (option
B) is:
GDLOAD GRAFDISK/INI:3

If the hi-res board is not present (option A), the syntax
is:
GDLOAD GRAFDISK/INI:3 (A)

If you are running LS-DOS 6.3.0, you need not patch
GRAFDISK/DCT with GDMOVE/BAS. | recommend that
you do, however, as the patched version will run on both
6.3.0 and 6.3.1, and you really should be using 6.3.1
anyway.

Users of LS-DOS 6.3.0 will have problems with portions
of my STARTUP/JCL files. The lines with the SYSTEM
(DRIVE =n,SWAP =m) will not work with 6.3.0. These
parameters to the SYSTEM command were not imple-
mented until 6.3.1.

The good news is that the SWAP/CMD file, written by
Franklin Veaux, can completely replace the SYSTEM
(DRIVE =n,SWAP =m) command. SWAP/CMD will work
on both 6.3.0 and 6.3.1 and, frankly, it is more convenient
to'use. The syntax for SWAP/CMD is:

SWAPd=d,d=d....d=d

For example, in the STARTUP/JCL for my desktop
Model 4, the lines

SYSTEM (DRIVE =1,SWAP =6)

SYSTEM (DRIVE =2,SWAP =6)

could be replaced with
SWAP 1=6,2=6 °

In conclusion, let me say that setting up the desktop 4
and the 4P with GrafDISK, while being a bit of trouble to
start with, has proved to be well worth the effort. The
added convenience and speed make the machines even
more pleasurable to work with.

The Model 4 is alive and kicking, still being supported
with good software. Thanks to William Bowman and
Franklin Veaux for these public domain programs that
makes a great computer even greater.

Page 13

Faster Sequential Disk Input
on the Model 4

by J.F.R.

Slinkman

The usual method of reading a sequential disk file under
TRSDOS/LS-DOS 6 is to read it one byte at a time by
pointing the DE register to the File Control Block (FCB)
and invoking the @GET SVC.

However, in certain applications there are much better
and faster methods. One such method is "disk buffering."

Obviously, RAM limitations are why disk buffering is so
rare as to be almost non-existent in TRS-80 software.
However, the benefits of disk buffering are such that the
extra effort and the extra RAM required will often pay for
themselves many times over in program performance.

Disk 1/O buffers, at least in the MS-DOS world, are
usually 4K or 8K in size. | don’'t know why they choose
those particular values. It may just be that programmers
are in the habit of thinking in terms of even powers of two.

For BUFTRACK/ASM and BUFTRAK2/ASM, two of the
three demonstration listings for this article, | used a buffer
size of 4.5K. 1 chose this value because it is the amount
of data on one track of a standard Model lif or Model 4
180K disk drive. The other listing, BUFSECTR/ASM, mere-
ly makes better use of the 256-byte buffer any open file
must have under the operating system anyway.

in all three routines, the next byte in the file will be
returned in the A register by simply making a CALL to
GETBYTE. Also, to only the AF and DE registers are
affected by any of them, the same registers used by the
@GET SVC.

Since BUFSECTR/ASM is the easiest and simplest, and
takes the least RAM of the three, let’s look at it first:

First, be aware that this routine can only be used on
files of a known size, (e.g., /HR graphics files) or files which
contain end-of-data markers or other information, includ-
ing known size after decompression, within them to tell
the program when to stop reading, such as /CHR, /MAC,
/GIF and VisiCalc files. Fortunately, this is rather common
with bitstream (e.g., /GIF and other LZW-compressed
files), bytestream (e.g., /CHR and /MAC files), and meta
files.

To reduce the amount of code, the normal 256-byte /0
buffer is placed on a memory page boundary. The FCB
can be anywhere that FCB’s normally can be.

Upon entry, at GETBYTE, DE is loaded with a pointer
_ to the last byte which was read from the file. The initial
value of this pointer, which is the address of the last byte
in the buffer, causes the routine to read the first sector the
first time the routine is CALLed.

Page 14

The LSB of this pointer is incremented to point to the
byte to be read, which will set the Z flag if all the data in
the buffer has been read. Thus, on an NZ condition, the
branch is made to GTB010, where the updated pointer is
stored for the next invocation, the data byte is loaded into
the A register, and the RETurn made to the calling routine.

If the INC E instruction sets the Z flag, then the next
sector is read into the buffer. Since DE already points to
the first byte of the buffer, control passes to the instruction
at GTB010, described above.

It would be easy to modify this routine to replace the
JR NZ,ERROR instruction with RET NZ, and add a CP A
instruction just before the RETurn, which would have the
effect of returning with the Z flag set if there is a valid value
in A, and an error number in A if the routine returns with
NZ.

The code starting at PUTBYTE illustrates how the same
concept is applied to writing data to disk. Output to disk
also requires additional code in the main program to
handle writing a partially filled buffer before closing thefile.
If you don’t need to maintain the EOF byte in the FCB, this
can be done simply by calling LASTSCT.

This method gives a slight improvement in speed over
the @GET method in many cases, but, surprisingly, gives
a substantial improvement when reading from an ERAM-
DISK using PEXMEM.

The next routine is BUFTRACK/ASM, which has the
same file type limitations as BUFSECTR/ASM, namely that
the program must have some way of knowing, from the
contents of the file, when to stop reading from the file.

Again, to reduce the amount of code, the buffer must
begin on a RAM page boundary.

On entry, at GETBYTE, DE is loaded with a pointer to
the last byte previously read. This pointer is immediately
incremented to point to the byte to be read.

Then the msb of the pointer is tested to make sure the
pointer still points to unread data in the buffer. If so,
control passes to GBT040, where the updated pointer is
stored, the data byte loaded into A, and RETurn made to
the calling routine.

If all data in the buffer has been "used up," then the HL
and BC registers are saved, and B loaded with the number
of sectors which must be read to refill the buffer. HL is
pointed to the msb of the buffer address in the FCB, which
is then loaded with the msb of the address of BUFFER.

TRSTimes magazine 4.4 - Jul/Aug 1991

The sectors are then read into the buffer. If an error
occurs, a branch is made to GBT020, where limited error
checking is done. If no error, the A register is loaded with
28, the code for an end-of-file error. This is done only to
save code, since an EOF error is not fatal, and is not even
acted upon. At GBT020, BC and HL are restored, and the
check made for errors.

If the error involves anything other than an attempt to
read past the end ofthefile, it is treated as fatal. Otherwise
it is simply ignored, since it is assumed the program will
know when to stop CALLing this routine.

Assuming the error is not fatal, DE is loaded with the
address of BUFFER, the location of the first byte of new
data, BUFPTR is updated, the data byte loaded into A, and
the RETurn made to the CALLing routine.

This routine would require substantial alteration to per-
form more sophisticated error handling. If you need it, it
would probably be easier just to use the BUFTRAK2/ASM
routine described below.

The speed increases produced by this routine are
substantial, as you will see from the results chart.

The final routine, BUFTRAK2/ASM, is more general in
that can be used to read any type of file sequentially.
Uponreturn, the Z flagindicates valid data inthe Aregister,
and NZ indicates that A contains an error number. This
routine does not require the 4.5K buffer to begin on a RAM
page boundary.

On entry, at GETBYTE, DE is loaded with a counter of
the number of remaining unread bytes in the buffer, which
is immediately checked for zero. If non-zero, control goes
to GBT060, where the counter is decremented and stored.
Then DE is loaded with a pointer to the next available byte,
which is loaded into A. This pointer is incremented and
stored for the next invocation. The CP A instruction sets
the Z flag for the RETurn to the calling routine.

if there is no unread data in the buffer, a check is made
to see if the disk file has been fully read. This is done by
comparing the ERN (Ending Record Number) and NRN
(Next Record Number) fields of the FCB. If these two
values are equal, then the disk file has been fully read; so
A is loaded with the code for an EOF error and the Z flag
is reset for return to the calling routine.

If the two values are not equal, there is still data to be
read from disk; so control passes to GBT010. Here the
diskfile is read into the buffer in the same manner as within
BUFTRACK/ASM. Assuming no errors, DE is loaded with
the number of bytes inthe buffer, whichis the new counter.
HL is used to update the pointer to the next data byte.
Thenthe BC and HL registers are restored before branch-
ing to GBT060, which is described above.

If an error does occur on one of the disk reads, control
goes to GBT040, where error checking is done. Errors
related to reaching the end of the disk file cause control
to pass to GBT050. Otherwise, the stack is cleared and a

TRSTimes magazine 4.4 - Jul/Aug 1991

RETurn-with-error is made to the calling routine with the
Z flag reset.

If the end of the disk file has been reached, the number
of valid bytes in the buffer must be calculated. At GBT050,
the value in B is subtracted from the number of sectors
worth of data the buffer can hold. The result, which is the
number of sectors actually read, is stored in D, and
becomes the tentative msb of the new counter value.

Then the end-of-file offset byte from the FCB is loaded
into E, and then checked for zero. If zero (which means
100H in this case) then DE contains the actual number of
valid data bytes in the buffer, and control goes to GBT030.
If non-zero, then the value is less than 100H; so the msb
in D must be decremented to arrive at the actual byte
count before going to GBT030.

While this routine has been tested, it was not timed.
However, it should produce speeds nearly identical to
those of BUFTRACK/ASM.

The time tests listed in the chart were made as follows:
four MacPaint files were run through MAC2HR/CMD, a
program which resizes 576 x 720 MacPaint images to 384
X 240 TRS-80 hi-res format images, dithers them, and
displays them on the screen via a hi-res graphics board
(see "Image Processing on the Model 4," TMQ V.ii).

Each of four MacPaint files were read from each of three
types of drives on my Model 4D, equipped with an XLR8er
running at 6.144 MHz, with settings of 0,1,80 and a 2T
refresh cycle duration. The three types of drives were an
ERAMDISK, a MISOSYS 40 MB hard drive, and a 360K

floppy.

After the original program, which uses the @GET SVC,
was run to establish benchmark times, the program was
modified to replace the invocations of @GET, first with the
code in BUFSECTR/ASM, and then with the code in
BUFTRACK/ASM. In the results table, the lines labeled
"sector' refer to the BUFSECTR/ASM version, and the
lines labeled “track" refer to the BUFTRACK/ASM version.

All times are the average of three runs timed with a
stopwatch, rounded to the nearest 0.05 second. They are
still stopwatch times, and are therefore subject to human
reflex time error. However, the trends shown in the chart
are quite clear.

First, look at the "ERAMDISK" column. Frankly, | was
astonished with these results when | first noted them. |
have not delved deeply into all the code of the component
parts of the ERAMDISK driver and the system code which
invokes them, but it appears the relative slowness of
@GET is due to a considerable amount of system over-
head needed to manage single byte /O from disk, which
is bypassed by the much simpler BUFSECTR/ASM, which
performs only input, and has no control or output func-
tions, and only works when the logical record iength (LRL)
equals the sector size of 256 bytes.

Page 15

Another surprise can be found in the "40 MB Hard"
column, where single sector buffering is slightly faster, in
all cases, than 4.5K buffering. The differences, however,
are not major, the largest being approximately 5% for the
46K file.

The most dramatic differences -- and the only ones |
did not find surprising (impressive, yes, surprising, no) --
are in the "360K Floppy" column.

, The important thing to note here, at least in my opinion,

is that in every case (taking into account the effect of the
floppy drive coming to a complete stop not once, but
twice, with the smallest file) is that "track" buffering turned
in better times than @GET from the floppy, the hard drive
and, as incredible as it sounds, even @GET from the
ERAMDISK!

Therefore, if you're writing software involving sequen-
tialdisk input, and ifthere’s any way you can spare roughly
4.5K of RAM in your application, you should seriously
consider incorporating the buffering techniques
demonstrated in BUFTRACK/ASM and BUFTRAK2/ASM.

The result will be significantly faster disk 1/O speed no
matter what kind of drives the user has.

But if your application is such you absolutely can't
spare the extra 4.5K, you should at least think about
implementing the techniques in BUFSECTR/ASM, which
require only a very few extra bytes of RAM.

Time Comparisons
Process MacPaint Files With MAC2HR/CMD
Program running time in seconds

Size Type
in of ERAM- 40 MB 360K
File bytes Access DISK Hard Floppy
SEP/MAC 16,203 @get 20.25 21.60 27.15
sector 17.30 18.10 23.95
track 16.90 18.40 20.50%
NOV/MAC 22,607 @get 2240 23.80 31.25
sector 17.50 1850 25.15
track 17.60 19.10 20.90
AUG/MAC 32,105 @get 2525 27.20 34.90
sector 18.30 19.70 32.90
track 18.30 20.30 22.85
INQUIRY/MAC 46,827 @get 29.05 31.90 4280
sector 18.75 20.70 42.75
track 18.60 21.85 24.85

* The highly compressed nature of this file resulted in
the floppy drive coming to a full stop between the first and
second, and second and third, 4.5K reads, which added
substantially to the time.

Page 16

Frank Slinkman can be reached at:
1511 Old Compton Road, Richmond, Va. 23233
804/741-0205 - CompuServe 72411,650

3
3
3
y

@ERROR

BUFSECTR/ASM -- 03-May-91
by J.F.R. "Frank" Slinkman, 1511 Old Compton Rd.,
Richmond, Va. 23233 CompuServe 72411,650
Released to the public domain

EQU 26
@POSN EQU 66
@READ EQU 67
@WRITE EQU 75
org Oxx00H Isb of buffer address MUST
; be O0H for this code)
BUFFER DS 100H :one sector
DS 20H

FCB

]
)
)
s
)
)
’
’
’

; BUFFER.
; Entry conditions: None
Exit conditions: A contains data byte

; DE altered

GETBYTE LD DE,BUFFER+255 ;initial value forces read

BUFPTR EQU $-2 ;storage for data pointer
INC E ;- next data byte
JR NZGBT010 ;goif still in BUFFER
LD DE,FCB ; else read a new sector
LD A@READ ; from disk
RST 28H
JR NZERROR
LD DE,BUFFER ;- start of new data

GTB010 LD (BUFPTR),DE ;save new pointer value
LD A,(DE) ;get the data byte
RET ;and exit

ERROR OR 40H ;can be as simple as this,
LD CA ; or a sophisticated as
LD A@ERROR ; youwantto make it
RST 28H

; Entry conditions: byte to write in A

H

PUTBYTE LD

Use only for files of known size or which have end-of-
data information within them. File must have been

; opened with an LRL of 0 (256) and a buffer address of

Exit conditions: AF, DE altered

DE,BUFFER

BUFPTR2 EQU $-2

LD (DE),A ;write byte in A to BUFFER
INC E ;advance pointer

LD (BUFPTR2),DE; and store

RET NZ ;if BUFFER not full

TRSTimes magazine 4.4 - Jul/Aug 1991

LASTSCT LD DE,FCB ;if full, write sector
PUSHBC
LD BC,0 ;p/u sector number
RECNUM EQU $-2
LD A @POSN ;prepare for write
RST 28H
INC BC ;update sector counter
LD (RECNUM),BC ; for next write
POP BC
LD A @WRITE ;write the sector
RST 28H
JR NZERROR
RET
END
; BUFTRACK/ASM - 03-May-91

;by J.F.R. "Frank" Slinkman, 1511 Old Compton Rd.,

;:Richmond, Va. 23233

CompuServe 72411,650

;Released to the public domain

@ERROR
@READ

EQU
EQU

: org
BUFFER

ENDBUF
FCB

DS
EQU
DS

26

67

0Oxx00H Isb of buffer address MUST
; be O0H for this code)

9%1024/2 :14.5K

$

20H

Use only for files of known size or which have end-of-
data information within them. File must have been

; BUFFER.

; opened with an LRL of 0 (256) with a buffer address of

; Entry conditions: None
Exit conditions: data byte in A
: DE altered
GETBYTE LD DE,ENDBUF ;initial value forces read
BUFPTR EQU $-2 ;storage for data pointr
INC DE ;--> next data byte
LD AD ;p/u pointer msb
CP .HIGH.ENDBUF ;buffer need loading?
JR NZGBT040 ;goifnot
PUSH HL ; else save regs
PUSHBC
LD B,ENDBUF-BUFFER<-8 ;# sectors
;to read
LD DE,FCB
LD HLFCB+4 ;--> msb of
; buffer address
LD (HL),.HIGH.BUFFER
;FCB --> BUFFER
GBT010 LD A,@READ ;read a sector

RST 28H
JR NZ,GBT020 ;goiferror
INC (HL) ;point FCB to next page
DJNZ GBT010
LD A28 ;phony EOF err saves code
GBT020 POP BC ;restore regs
POP HL
CP 28 ;EOF error?
JR Z,GBT030 ;OK if so
CP 29 ;Out of range error?
JR NZERROR ;OK if so otherwise handle
GBT030 LD DE,BUFFER ;--> start of new data
GTB040 LD (BUFPTR),DE ;save new pointer value
LD A,(DE) ;get the data byte
RET ;and exit
ERROR OR 40H ;can be as simple as this,
LD CA ; or a sophisticated as
LD A @ERROR ; youwantto make it
RST 28H
END
: BUFTRAK2/ASM -- 03-May-91

:by J.F.R. "Frank" Slinkman, 1511 Old Compton Rd.,

:Richmond, Va. 23233

@READ EQU 67

BUFFER DS 9*1024/2

ENDBUF EQU §$

FCB DS 20H

OFFSET EQU FCB+8

NRN EQU FCB+10
EQU FCB+12

ERN

CompuServe 72411,650
;Released to the public domain

;4.5K

Use for files of unknown size which do not have end-of-
; data information within them. File must have been
; opened with an LRL of 0 (256) and a buffer address of

BUFFER.

; Entry conditions:
; Exit conditions:

GETBYTE LD DE,
BUFCTR EQU $-2
LD AD
OR E
JR NZGBTO060
PUSH HL
LD HL(NRN)
LD DE,(ERN)
SBC HL,DE

TRSTimes magazine 4.4 - Jul/Aug 1991

None

DE altered

if Z, data byte in A

if NZ, error number in A

;initial value forces read
;stores # remaining bytes
;is there still unused

; data in BUFFER?

;goif so

;here if must read

;are we at end of file?

Page 17

GBT010

GBT020

GBTO030

GBT040

JR NZGBTO010
POP HL

LD AZ28

OR A

RET

PUSH BC

;go if not

; else restore HL
;End of File error
;reset Z

:return w/NZ

;save regs

LD B,ENDBUF-BUFFER<-8

LD DEFCB
LD HLFCB-+4

LD (HL),.HIGH.BUFFER

LD A@READ
RST 28H
JR NZ,GBT040
INC (HL)

DJNZ GBT020

;# sectors to read

;--> msb of buffer
;pointer

;FCB - BUFFER
;read a sector

;go if error

;F-->CB - next
;memory page

;falls thru if buffer full

LD DE,ENDBUF-BUFFER ;new counter

LD HL,BUFFER
LD (BUFPTR),HL

POP BC
POP HL
JR GBTO060

CP 28

: value

;address of new data
;restore regs

;go get data byte

:was it an EOF error?

JR
CP
JR
POP
POP
RET

GBTO50 LD
SuB
LD
LD
LD
OR
JR
DEC
JR

GBT060 DEC
LD
LD

BUFPTR -EQU
LD
INC
LD
cP
RET

END

Z,GBT050 ;0K if so

29 ;’out of range’ error?
Z,GBT050 ;OK if so

BC

HL ;restore regs

;ret w/error # and NZ

A,.ENDBUF-BUFFER < -8

B ;calc # of sectors read
DA ;new counter msb
A,(OFFSET) ;p/u EOF offset ptr
E.A :new counter Isb

A ;full sector of data?
Z,GBT030 ;:counter OK if so

D ;else adjust msb
GBT030

DE

(BUFCTR),DE ;update counter
DE,BUFFER ;p/u data pointer
$-2

A,(DE) ;p/u data byte

DE

(BUFPTR),DE ;update pointer
A ;set Z for return

Page 18

TRSTimes magazine 4.4 - Jul/Aug 1991

HINTS & TIPS

RECOVERY OF
LOST SCRIPSIT
FILES

Model 4
By M. C. Matthews

This is intended as a guide to saving the text of a file
after a reset while writing a Scripsit document.

There are two basic cases. One where part or all of the
document is on disk and part in memory, and the other
where it is all in memory.

Scripsit stores text on disk after about three or four
pages, or after pressing CTRL W. This means that the
average letter is entirely in memory. This is the simple
case. The document is normally in memory after a reset,
and the first step is to secure it by dumping the memory
to a disk file.

The first part of SAVEMEM/BAS (see the program list-
ing) does this. It dumps the memory from the start of the
buffer at ASCOH to F3FFH to a disk file with the extension
/MEM. This file can be read with list, and TED/CMD will
also load it, but it is of considerable length and much of it
is rubbish.

The second part of the program therefore, recovers the
text from the file and filters out a lot of the rubbish, and
refiles it in a file called RECOVER/ASC. There will still be
some rubbish left which will have to be edited out.

This file can now be converted into a Scripsit document
by using the command A from the Scripsit menu. Note
that RECOVER/ASC may not be closed in a manner that
Scripsit likes. If you get the error message 'File not open’,
exit from Scripsit, call TED, load it into TED by using CTRL
L, and immediately refile it under the same name with
CTRL F. Now try Scripsit again, and all should be well.

SAVEMEM/BAS

10 CLS:GOTO 60:

REM Savemem 30.11.90 V4 . Saves memory from
A5COH to FF3FH used by Scripsit, also saves ASCII
from a Scripsit file. M.C.Matthews

20Zg=""

30 R$ =INKEY$:

IF R$=""THEN 30

ELSE R=ASC(R$):

IF R>96 THEN R=R AND 223:

R$=CHR$(R)

40 IF R=13 THEN RETURN

TRSTimes magazine 4.4 - Jul/Aug 1991

ELSE IF LEN(Z$) >0 THEN IF R=8 THEN
Z$=LEFT$(Z$,LEN(Z$)-1):

PRINT R$;:

GOTO 30

50 Z$=2$%$+R$:

PRINT R$;:

GOTO 30

60 PRINT TAB(10)"Do you wish to save the memory
from ASCOH up? ";:

GOSUB 20:

IF LEFT$(Z$,1) ="N" THEN 90

70 PRINT:

SYSTEM'DUMP SAVEMEMO/HI

(START =X'A5C0’,END = X'FF3F’)

80 PRINT:PRINT"Memory now recorded in file
SAVEMEMO/HI. Do you want to recover the ASCII
text?";:

GOSUB 20:

IF LEFT$(Z$,1) ="N" THEN CLOSE:

END:

ELSE GOTO 100

90 PRINT "If you want the file just written then
press ENTER, else enter the name of the file to be
recovered:";:

GOSUB 20:

IF Z$=""THEN F$ ="SAVEMEMO/HI"

ELSE F$=2%:

PRINT:

PRINT

100 OPEN"R",1,F$:

FIELD 1,128 AS A$,128 AS B$

110 OPEN"0O",2,"RECOVER/ASC":

Y=1
120 GET 1,Y:
FORI=1TO 128:

R=ASC(MID$(A$,1,1)):

IFR=13 THEN 130

ELSE IFR<32 OR R>127 THEN 150

130 D$ = CHR$(R):PRINT#2,D$;:PRINT D$;

140 IF EOF(1) THEN CLOSE:

PRINT:

PRINT TAB(10)"Text now in file RECOVER/ASC":END
150 NEXT:

FORI=1TO 128:

R=ASC(MID$(B$,1,1)):

IFR=13 THEN 130

ELSEIFR<32ORR>127 THEN 180

160 D$ =CHRS$(R):

PRINT#2,D$;:

PRINT D$;

170 IF EOF(1) THEN CLOSE:

PRINT:

PRINT TAB(10)"Text now in file RECOVER/ASC":END
180 NEXT:Y=Y +1:GOTO 120

Page 19

CELEBRATE

Model | & I
By Stacy A. Brennan

This BASIC program should be run on all TRS-80 com-
puters on the 4th of July. Type in the listing and then,
Happy Birthday.

HAPPY4/BAS

10 CLS

20 FORX=0TO 127:FOR J=0TO 2:Y =J+3

30 SET(X,Y +40):SET(X,Y +33):SET(X,Y +27):SET(X,6)
40 IF X =63 THEN 60

50 SET(X,Y +21):SET(X,Y + 15):SET(X,Y +9):

SET(X,Y +3)

60 NEXT:NEXT -

70 FOR X =6 TO 56 STEP 10

80 SET(X,9):SET(X,13):SET(X,17):SET(X,21):SET(X,25)
90 IF X =50 THEN 120

100 X1 =X+5

110 SET(X1,11):SET(X1,15):SET(X1,23):SET(X1,27)
120 NEXT

130 FOR Y =6 TO 32:
SET(62,Y):SET(0,Y):SET(63,Y):SET(1,Y):NEXT

140 IF INKEY$ =" THEN 140 ELSE 10

PATCH FOR LITTLE
BROTHER 2.1.0

Model 4
From Misosys, Inc

Dear folks:

Another small problem has surfaced with LB 2.1.0
affecting only the TRS-80 Model 4 version. The problem
relates to record data corruption when the second se-
quential update or add is performed and the data definition
includes the "date-last-updated" field type. The following
two command line patches will correct the problem in both
the EDIT and ADD modules.

PATCH LB/OV5 (D1B,CB =21 38:F1B =2A 3F)
PATCH LB/OV8 (D35,88 =21 6C:F35,88 =2A 73

| apologize for any inconvenience this may have
caused you.

Roy Soltoff

Page 20

TRSTimes magazine 4.4 - Jul/Aug 1991

TIPS FROM THE
’UPPER LEFT COAST’

By Eric Bagai

I've been here for about a month now, and wherever
this is, it is not North Hollywood. It is green, and quiet, and
wet, and quiet, and cool --sometimes even cold-- but
mostly it’s quiet. None of these things happen in North
Hollywood. They happen here. A lot. It hails twice a week.
It rains three times a week. Nobody notices. Yesterday,
my neighbor didn’t even stop mowing his lawn when it
hailed. Joggers keep jogging. Shoppers keep shopping.
Street basketball (the local mania) just gets faster: when
it rains you can slide into the key. And the vegetation
grows like it's out of a science-fiction movie. You don’t
plan where you want a lawn, you plan where you don’t
want a lawn, and then cover that area with something like
motor oil or plutonium. And quiet? It's so quiet you can
hear the moss growing on your roof. It’s so quiet that, well,
did you know that the TRS-80 Model 3 has an internal fan?

Computing hasn’t changed. The only problee so far is
the curse of irregularity. Electrical irregularity. First there
is static electricity, which is surprising because I'd expect
the humidity to be fairly high. Well, it is when it rains (or
hails), but then it dries out. And then it rains. And then it
dries out. And then it. . . . The irregularity in the weather
seemsto act as an electrostatic pump. A static-dissipation
strip mounted onthe front of your keyboard is a good idea.
It is commonly sold for for under $10 by mail order.

TRSTimes magazine 4.4 - Jul/Aug 1991

Contrary to popular wisdom, static electricity does not
zap the data on disks. The amount of static electricity
needed to alter a magnetic charge on floppy media is
enough to generate ball lightning. But a disk can still hold
and transmit a static charge. If it picks up a charge from
you, and you then put it into a drive, that charge goes right
into your computer. Then, the charge may be saved back
to that disk as a corrupt file. (Static discharge, cosmic
rays, and air pollution account for most of the unaccount-
able errors in your files.)

Power glitches are another story. There are lots of ways
to deal with power glitches. Most of them are insufficient
or incomplete. The usual remedy is a surge/spike/noise
filter that you stick on the end of the power cord. Good
ones (with ratings over 120 joules) can cost well over a
hundred dollars. Alternatively, hardware hackers like to
stick metal oxide varistors (MOVs) all over the inside of
their machines (and delight in explaining why you have to
use three MOVs on your power line). Filters and MOVs will
keep minor noise and spikes from spoiling your day, but
a brownout, or a one-second outage, and you've got
trouble. A nearby lightning strike and you've got burnt
trouble.

If your data are what is important, then one approach,
advocated by Jim King, is to compute with your drive
doors open. He puts "close drive doors" notices into his
disk-saving routines.

And of course, the traditional reason for making peri-
odic disk backups is to minimize data loss. But if your
hardware is fried, what are you going to run your data on?
This is especially a problem if you have the only LNW,
Tano Dragon, or TLS-8E in town.

If your data are not important but you fear for your
machine’s safety (like, if you are a heavy gamer, or a
Wellbeing, or a GEniac), you can just apply a dose of
insurance, like Safeware. It's reasonably inexpensive, and
they will promptly pay for the replacement of any hardware
that gets smoked.

The only way to avoid the nasty things that come out
of your wall socket is to separate your machine from the
power grid. There are several ways of doing this. You can
use a solar panel, a gel cell, and a converter. (All for under
$300 from the Real Goods catalog.) You can use a gas-
powered generator. (From $200 to $500 at Sears or your

Page 21

local Honda dealer.) You can even get "broadcast power"
from a commercial radio station by using a three-foot
copper grid antenna, filtering the received DC output
through a battery and converter, and feeding it to your
computer. You just have to be within 500 feet of the
station’s antenna and be ready to deal with the FCC. But
the most common solution is an Uninteruptable Power
Supply, or UPS.

A UPS will cost you between a hundred and a thousand
dollars, but it works. Outages, brown-outs, major spikes,
sustained surges, ridiculous line noise, and nearby lightn-
ing strikes can all be tamed with a UPS. In fact, you won’t
even be aware of anything less than a total, sustained
blackout. In that event, a small UPS will give you sufficient
time to shut down in an orderly fashion, saving any files
thatare open. A big UPS will allow you to continue working
for several hours --which is longer than most blackouts.
Just be sure to read the ads in Computer Shopper and
send for manufacturers’ info: you can buy a UPS that is
worthless if you don’t read the fine‘print.

But a UPS is only part of the answer. In the words of
the immortal Keye Luke, "A chain is only as strong as its
weakest link." To protect your computer from major power
snarfs you must examine everything connected to it.
What about your printer? If you have a printer plugged into
the wall, and its data cable is plugged into your computer,
then if your printer gets zapped, your computer gets
zapped, too! Unplug the data cable or get a UPS big
enough to handle both machines. What about your
modem? A lightning strike on the phone lines is as deadly
as one on the power line. Either unplug the modem or get
a UPS with a phone-line filter. This may add considerably
to the UPS cost, and even then, the weakest point in the
system will be the phone filter. Best to just unplug the
modem when not in use. The same precautions apply to
everything that you hang on your computer: monitors,
LANs, outboard drives, waxed string; everything.

The last link in the great chain of being zapped is
yourself. (You knew that, didn’t you?) As you walk across
the room toward your computer you can generate enough
static electricity to illuminate swamp gas. So, make sure
the first thing you touch is the static pad. If you are really
concerned about all this, then think redundancy: UPS,
insurance, static sink, line filter, data backup system, and
duplicate hardware. Of course, the safest procedure is to
leave everything unplugged, all the time, and to insulate
each piece of equipment with its original packing carton.

But what’s life without a little risk? You've lasted this
long without losing it all, so what's the big deal? Just figure
your own odds, and act accordingly. But as the summer
gets hotter, and more demand is made on the Western
states power grid, think twice before you turn on that air
conditioner. Inthe long run, the cheapest solution probab-
ly is the solar panel from Real Goods.

Well, that’s all for now from the upper left coast.

Page 22

Real Goods Trading Co.

(Also water and wind turbine systems!)
966 Mazzoni Street

Ukiah CA 95482

(707) 468-0301

National Computer Accessories

(Stat-Mat, Stat-Touch, Stat-Kybd)

1510 McCormack St., Sacramento CA 95814
(916) 441-1568

Safeware Insurance Agency
Box 02211

Columbus OH 43202

(800) 848-3469

TRSTimes magazine 4.4 - Jul/Aug 1991

They say a picture is
worth 1,000 words.
This picture was con-
verted from GIF to
TRS-80 format using
GIFAMOD4. Until now,
Model 4 users had no

way to view GIF images ?

or to send their own

and put it on your hi-
res screen. If uou
have no hi-res board,
GIF4MOD4 puts it in an
/HR disk file so you
can dump it to your
dot-matrix printer.
HRZGIF conuerts /HR,
/CHR and /BLK files to

GIF format.

-- Mail to ~ """ Tmomsm-- N

to
ton Rd., Richmond, vA 23233

hi-res graphics crea- B
‘tions to other types ORDER FOR
J.F.R. Slinkman, 1511 Old Come

of computers. Please send me GIF4MOD4 & HR2GIF for my TRS-80 Model 4.
EIF4MUD4 will dECUdE i I am enclosing $37 .95 + $2.00 S&H (add $2 .00 outside N.
t America. Virginia residents please add 4-1/2% [$1.711) .

any GIF image up to | Neme

1Address

640 x 480 x 256 (UGA) 1City State Zip

ittty

THROW THEM DICE

A game for Model I/III & 4
By Lance Wolstrup

I live only a few driving hours from Las Vegas. This
convenience, coupled with the fact that | love glitter and
gambling, can be tough on the wallet. So, rather than
putting my will power to a strenuous test, | simply stay in
boring old Los Angeles and play gambling games on my
TRS-80. It is not quite as much fun as being in Vegas, but
| feel a lot better when | bet $10,000 - and lose!

The very first gambling game | ever played on a com-
puter was called CHUKLUCK. A friend of mine had put
together his own computer from a kit. Not only did it work,
but he had also managed to get Basic installed and
running. | know this doesn’t sound like much, but this was
in was 1975 or early '76 - before the Model | existed. The
computer had no monitor, so all output went to an old
converted teletype machine. The Basic language was one
of the weird dialects floating around back then - and
certainly not from Microsoft.

Anyway, | was invited to his house to view his new
treasure. To show it off, he loaded a program (yes, it also
had a cassette recorder - very impressive) and after
several tries it finally worked. The program was CHUK-
LUCK and we proceeded to spend the entire evening and
half of the night playing that silly game (his wife, I'm sure,
had plenty to say the next day). This was my introduction
to a 'real’ computer and | have never forgotten the fun we
had.

Torelive that night some 16 years ago, | wrote a version
of CHUKLUCK for my TRS-80's and it is presented in the
program listing at the end of this article. It will work on
Model | and Ill, as well as on the Model 4.

The game is very simple. You are given $500, and your
goal is to convert that money into $100,000 by betting on
three dice. You may bet any or all of the money (in whole
dollars). After you have placed your bet, you select the
side of the die you think will come up. This is called 'your
point’. Since you'll throw three dice, you have three chan-
ces to win. Further, if your point comes up twice, you
double your winnings - and if all three dice matches your
point, your winnings are tripled. Sounds as if you'll win
$100,000in no time at all, doesn't it? Believe me, it is much
more difficult than that! | have yet to reach $25,000 - and

Page 24

| have logged many hours trying. But maybe your games-
manship (or is that gamespersonship?) is better than
mine. Try it - and have fun.

For anyone interested in the program code, here is a
blow by blow description:

e Lines 2 through 6 set up data for the fancy charac-
ter set used for the program title. A special thanks
to the Craft-80 Group in Holland for permission to
use this screen font.

e Line 10 defines the integer variables.

e Line 11 checks if PEEK(42) =64. If 64 is found there
it is fairly safe to assume that the machine is either
a Model | or lll, and thus variable SW (screen width)
is set to 64. Variable H (horizontal position of the
cursor) is set to 2, and 5000 bytes are cleared for
string space. If 64 is not found at PEEK(42) the
machine is assumed to be a Model 4. The screen
width (SW) is set to 80 and, adjusting for the wider
display, the horizontal position of the cursor (H) is
set to 10. Finally, since Model 4 does not automat-
ically turn off the cursor, it is now turned off with a
CHR$(15).

e Lines 13 through 15 read the data forming the pro-
gram name into the HD$(1), HD$(2), HD$(3) array.
The reason that three strings are needed is that the
font is three lines high. Thus, HD$(1) holds the top
portion of the characters, HD$(2) hold the middle
portion, and HD$(3) stores the bottom part.

e Lines 16 through 18 set up the the top of a screen-
wide graphic box in BX$(1), the bottom of a screen-
wide graphic box in X$(2), the top of the die outline
is stored in BX$(3), and the bottom the die outline is
is stored in BX$(4). Also, in line 18, DI$ is formed to
smoothly move the image of the die across the
screen later in the program.

e Line 19 jumps over the subroutines in lines 20
through 70 to the main body of the program, which
begins in line 100.

e Lines 20 through 23 are the print to screen sub-
routines. A GOSUB to line 20 will display whatever
is stored in A$ left justified. A GOSUB to line 21 will
display whatever is stored in A$ centered, and a
GOSUB to line 22 will display the contents of A$
right justified. Variable A$ (the displayable text) and
variable V (vertical position of the cursor) must be
defined before entering each of these routines. All
end up in line 23, which moves the cursor to the
desired position and the text in A$ is displayed. If
the text needs to be positioned other than left,
centered or right justified, a GOSUB to line 23 will

TRSTimes magazine 4.4 - Jul/Aug 1991

do the job. Entering at line 23 requires that variable
H (horizontal position of the cursor), variable V (ver-
tical position of the cursor) and Variable A$(text to
be displayed) are all defined prior to entry. To be
sure, these routines use a lot of string space, but
they make screen formatting extremely easy.
Lines 30 through 38 is the multiple keystroke
INKEY$ routine. | have always disliked the INPUT
command because, in some Basics, there is no
way to control the user input - and | hate the ques-
tion mark prompt. This routine solves both
problems. Before entry, variable L must be set for
the maximum keystroke allowed. In the case where
the user is asked to press <ENTER >, L should be
set1o 0.
Line 30 stores the current cursor position in variable
PO. A$ is 'nilled’, the length of the user answer (LE)
is set to 0, and the cursor is turned on with
CHR$(14).
Line 31 loops until a key is pressed. While looping,
random numbers are constantly stored in variable

_ X. This is simply to generate true random numbers
when we need them later in the program. The num-
bers stored in X here are throwaways. They are
never used. The key pressed is stored in I$.
Line 32 is reached only if a key was pressed. If it
was <ENTER >, the cursor is turned back off, and
the subroutine is exited. Our keystrokes are stored
in A$ or, if just <ENTER > was pressed, A$="".
Line 33 checks for backspace (left arrow). If LE=0
(no characters entered yet) the routine goes back
to line 31 for different keystroke.
Line 34 also check for backspace (left arrow). If it is
a backspace, since we fell through line 33, it means
that there is at least one character in the A$ buffer.
Thus, we need to erase the previous character by
backspacing the cursor with CHR$(8). The length of
the string (LE) is now one less than it was (LE = LE-
1). Make A$ one character shorter with
A$ =LEFT$(A$,LE). Decrement the cursor position
with PO = PO-1 and go back to line 31 for apother
keystroke.
Line 35 locks out control characters (less than 32)
and characters higher than lower case z. If any of
these undesirable characters are pressed, the
routine goes back to line 31 for another keystroke.
Line 36 checks if we have already reached the maxi-
mum length allowed for the user answer. If so, back
to line 31 for another keystroke (backspace or
ENTER would be the only keystrokes that would
now work).
Line 37 is reached only if a legal character is
pressed. The character is added to the A$ buffer.
The length of the input is incremented by one, and
the keystroke is displayed on the screen. Finally,
the cursor position is incremented by one.
Line 38 sends the routine back to line 31 for
another keystroke.

TRSTimes magazine 4.4 - Jul/Aug 1991

Lines 40 and 41 contain the subroutine to display
the 'press <ENTER > to continue’ prompt.

Line 40 displays the prompt centered.

Line 41 sets variable L =0 for use with the inkey$
routine, so that only <ENTER > can be pressed.
Note that this subroutine does not terminate with a
RETURN; instead it uses GOTO 30 to enter the
inkey$ routine. There it eventually RETURNSs back
to the main body of the program in line 32.

Lines 50 and 51 hold the subroutine that will erase
incorrect user input.

Line 50 saves the horizontal position of the cursor
(H) in variable H1. Then the horizontal position is
recalculated to point to the first character of the
user input.

Line 51 erases the screen from the cursor to the
end of the screen with CHR$(31). The original
horizontal cursor position is then copied back to
variable H.

Line 60 is the subroutine that moves the image of
the of the die accross the screen.

Line 70 contain the subroutine that erases the
screen from line 7 to the end and then displays how
much money the user has. Again, this subroutine
does not terminate with a RETURN; instead it uses
the RETURN in line 23.

Line 100 is the actual beginning of the program.
The screen is erased and the program title is dis-
played using the fancy screen font. This is done by
using a loop to display each of the three lines.

Line 120 displays centered a short description of
the program on the next line. Note that, since V was
used as the loop counter in line 100, it is automat-
ically incremented upon exit. Thus, we don’t need
to increment it ourselves.

Line 130 increments the vertical position of the cur-
sor, and the copyright notice is displayed centered.
Line 140 increments the vertical position of the cur-
sor, and the acknowledgement of the fancy font
authorship is displayed centered.

Line 145 checks the value in variable SW to see if
the program is running on a Mod 1/lil or a Mod 4. If
it is a Mod 4, we will make the screen display more
pleasing by taking advantage of the longer vertical
screen.

Lines 150 through 170 draws the screen-wide
graphic box on the screen.

Line 175 determines which vertical position of the
cursor to use, depending on the program running
on Mod I/1ll or Mod 4.

Lines 180 through 230 displays the rules of the
game inside the graphic box. ’

Line 235 stores the user’s startup money in variable
M.

Lines 240 and 250 displays the prompt to press
<ENTER > and go to the inkey subroutine to
process the keyboard response.

Page 25

Line 300 erases the screen from line 6 to the end of
the display.

Line 310 draws a graphic line under the program
headings.

Line 320 uses the subroutine in line 70 to display
how much money the player has.

Line 330 prompts the user to place a bet.

Line 340 erases any possible leftover incorrect bet
(gosub 50), and the maximum number of
keystrokes allowed for the bet is calculated and
stored in variable L. The inkey$ subroutine is then
accessed for the user response.

Line 350 converts the user response (stored as a
string in A$) to a numeric and stores it in variable B.
If the value in B is a whole number, obviously the
player bet a whole dollar amount, and we skip over
the 'dollars and cents’ error routine to line 400.
Lines 360 and 370 hold the 'dollars and cents’ error
routine. It ends by going back to line 330 to prompt
for another bet.

Line 400 check to make sure that the bet is not
larger than the available money. If the bet is legal,
the program skips over the error routine to line 450.
Lines 410 and 420 holds the ’bet larger than money’
error routine. It ends by going back to line 330 for
another bet.

Line 450 checks if the bet is larger than 0. If so, it
jumps over the error routine to line 500

Lines 460 and 470 contain the ’less than 1’ error
routine. It ends by going back to line 330 for
another bet.

Line 500 erases the screen from line 9 to the end of
the display.

Line 510 displays the bet the user just made.

Line 600 prompts the player to enter the side of the
die he/she thinks will come up.

Line 605 accesses the subroutine in line 50, which
will erase any erroneous leftover user input.

* Line 610 sets the maximum character input to one
(L=1) and then goes to the inkey$ subroutine in
line 30 for processing.

Line 620 converts the user answer in A$ to a
numeric in variable P.

Line 630 checks if variable P contains a number cor-
. responding to the side of a die (1-6). If so, we skip

. the error routine by jumping to line 700.

Line 640 and 650 hold the error routine. Here we
simply display a message telling the player what the
legal input is. Then we go back to line 700 for
another try at entering the point.

Line 700 erases the screen from line 10 to the end
of the display.

Line 710 display the point just chosen.

Line 720 prompts the player to press <ENTER> to
roll the dice.

Line 730 sets variable L to only accept <ENTER >
(L=0) in the inkey$ routine, which is then accessed.
Line 740 erases the 'press <ENTER > prompt.

Page 26

Line 750 selects the three winning numbers using
the random number function.

Lines 760 and 770 simulate the three dice being
thrown (one at a time) across the screen. At the
end of each die-throw the side number is displayed
inside the image of the die.

Line 800 sets the vertical position of the cursor to
line 15. Also, variable MA (number of times your
point matches the dice) is set to 0.

Lines 810 and 820 check to see how many times
the point matches the dice. Each time a match is
found, variable MA is incremented by 1.

Line 830 checks if variable MA is zero or non-zero.
If MA contains zero, no match was found. if MA is
non-zero the point has matched at least one die
(the value of MA determines how many times a
match was found) and we go to the win routine in
line 900

Line 840 is the losing routine. No match was found
so the bet is deducted from the money (M =M-B)
and we store a message in A$ telling the player
how much money he/she lost.

Line 850 checks if the player has any money left. If
variable M contains a non-zero value , the player
still has money left and we branch to the routine in
line 1000.

Line 860 is the 'no money left’ routine’. It displays a
message to that effect and then prompts the player
to press <ENTER>.

Line 870 sets variable L =0 so the inkey$ routine
will only accept < ENTER > and then accesses that
routine in line 30. After <ENTER > has been
pressed the program visits the subroutine in line 70
to erase the screen from line 7 to the end of the dis-
play, and display how much money is left. Then the
program jumps to line 1115.

Lines 900 to 950 hold the win routine.

Line 900 pays the winnings (M =M +B*MA). Then
we begin building the appropriate win message in
AS.

Line 910 checks to see how many times the point
matched the dice (MA) and accordingly the pro-
gram is sent either to line 920, 930 or 940 to con-
tinue to build the win message in A$.

Line 950 continues to build A$ by including a mes-
sage telling the player how much he/she won.

Line 1000 is accessed from both the lose routine (jf
the player still has money left) in line 850 and the
win routine in line 950. The building of A$ is finished
by adding the 'Press <ENTER >’ message and it is
then displayed centered on screen line 15.

Line 1010 sets variable L=0 so only <ENTER >
can be pressed in the inkey$ routine in line 30.

Line 1020 checks if the player has reached the goal
of $100,000 or more. If so, the program jumps to
the 'break bank’ routine in line 1100.

Line 1030 is reached if the $100,000 or more goal is
not reached yet, and the program recycles to line

TRSTimes magazine 4.4 - Jul/Aug 1991

320 for another round of betting and choosing a
point.

e Line 1100 is the 'break bank’ routine. Here we ac-
cess the subroutine in line 70, which erases the
screen from line 7 to the end of the display and
then displays how much money the player has ac-
cumulated.

e Lines 1110 stores the 'congratulations’ message in
AS.

e Line 1115 is reached from either line 870 or line
1110. Depending on which line we come from, the
message in A$ reflects whether we have lost all the
money, or we have broken the bank. In either case,
the message is displayed on line 9 centered.

e Line 1120 prompts the player if he/she wishes to
play again. This message is displayed on line 12
centered.

@ Line 1125 calculates the vertical cursor position im-
mediately following the prompt and stores it in vari-
able H1.

e Line 1130 sets variable L =1 to accept only one
keystroke in the inkey$ routine in line 30, which is
then accessed.

e Line 1135 checks the player input returned in A$.
There are three possibilities. The player can have
pressed just the <ENTER> key in response to the
prompt. This is an incorrect response and if this is
the case, it is trapped here and program flow is sent
back to line 1120 for another try.

@ Line 1140 extracts the ascii value of the user input
and stores it in variable A. Then, by performing a
boolean AND operation, it makes sure that bit 5 of
the value in variable A is stripped (reset), thus ensur-
ing that the value is now the ascii value of the key
pressed in upper case.

e Line 1150 checks for the ascii value of upper case
Y. If found, the money (M) is reset to $500 and the
game starts over by going back to line 320.

e Line 1160 checks for the ascii value of upper case
N. If found, the screen is erased and the game ends.

@ Line 1170 is reached if the player typed something
besides Y, y, N, or n, which is an incorrect *
response. Thus, the horizontal position of the cur-
sor (immediately following the prompt) is copied
from variable H1 back to variable H. Then the er-
roneous answer is erased from the screen and pro-
gram flow goes back to line 1120 for another
chance at answering the prompt.

CHUKLUC/BAS

0 'CHUKLUC/BAS for Model I/lll & 4
1°(c) Copyright 1991 by Lance Wolstrup
all rights reserved

TRSTimes magazine 4.4 - Jul/Aug 1991

fancy character set data

2 DATA 150,190,135,139,155,189,128,128,169,171,151,
128, 169,171,151,128,128,169,171,151,128,128,
169,171,1561,128,128,169,171,151,160,166,158,
129,128,128

3 DATA 169,171,151,128,128,128,128,128,169,171,151,
128,128,169,171,151,128,128,150,190,135,139,
155,189,0

4 DATA 149,191,128,128,128,128,128,128,170,170,157,
140,174,170,149,128,128,170,170,149,128,128,
170,170,149,128,128,170,170,157,149,183,128,
128,128,128

5 DATA 170,170,149,128,128,128,128,128,170,170, 149,
128,128,170,170,149,128,128,149,191,128,128,
128,128,0

6 DATA 165,175,180,184,185,159,128,128,154,186,181,
128,154,186,181,128,128,138,154,189,176,176,
182,190,133,128,128,154,186,181,130,166,173,
144,128,128

7 DATA 154,186,181,176,176,184,128,128,138,154,189,
176,176,182,190,133,128,128,165,175,180,184,
185,159,0

initialization

10 DEFINT B-L,N-Z
11 IF PEEK(42) = 64 THEN CLEAR 5000:SW =64:H =2
ELSE PRINT CHR$(15);:SW=80:H=10

13 FOR X=1TO 3:HD$(X) ="

14 READ A:IF A=0 THEN 15 ELSE HD$(X)
+CHR$(A):GOTO 14

15 NEXT

16 BX$(1) = CHR$(156) + STRING$(SW-2,140) +
CHR$(172)

17 BX$(2) = CHR$(141) + STRING$(SW-2,140)

+ CHR$(142)

18 BX$(3) = CHR$(156) + CHR$(140) + CHR$(172):
BX$(4) = CHR$(141) + CHR$(140) + CHR$(142):
DI$ = CHR$(191)+CHR$(128)

19 GOTO 100

=HD$(X)

subroutines

20 H=0:GOTO 23

21 H=INT((SW-LEN(A$))/2):GOTO 23

22 H=SW-LEN(A$)

23 PRINT@SW*V + H,A$;:RETURN

30 PO =SW*V + H + LEN(A$):A$ = ":LE =0:

PRINT CHR$(14);

31 1$=INKEY$:IF I$="" THEN X = RND(6):GOTO 31
32 IF 1$=CHR$(13) THEN PRINT CHR$(15);:RETURN
33 IF 1$=CHR$(8) AND LE =0 THEN 31

34 IF 1$=CHR$(8) THEN PRINT@PO,CHR$(8)::

LE =LE-1:A$ = LEFT$(A$,LE):PO = PO-1:GOTO 31

35 IF I$< CHR$(32) OR I$ > CHR$(122) THEN 31

36 IF L=LE THEN 31

37 A$=A$ +I$:LE =LE + 1:PRINT@PO, 1$;:PO = PO + 1

Page 27

38 GOTO 31

40 A$ ="Press <ENTER > to continue ":GOSUB 21

41 L=0:GOTO 30

50 H1 =H:H=LEN(A$)

51 PRINT@SW*V + H,CHR$(31);:H =H1:RETURN

60 FOR H=ST TO E STEP-1:GOSUB 23:NEXT:RETURN
70 V=7:A%$=CHR$(31):GOSUB 20:

A$="You have $"+MID$(STR$(M),2):GOTO 21

beginning of main program

100 CLS:FORV=0TO

2:PRINT@SW*V +H,HD$(V + 1):NEXT

110’

120 A$="A game of chance for Model I/l & 4":
GOSUB 21

130V=V+1:

A$ ="(c) Copyright 1991 by Lance Wolstrup - all rights
reserved":GOSUB 21

140V=V+1: 4

A$ ="Fancy character set is courtesy of the Craft-80
Group":GOSUB 21

1451F SW=80 THEN V=V +5

150 V=V + 1:A$ =BX$(1):GOSUB 20

160 Y=V:FORX=1TO 7:

V=Y +X:A$ = CHR$(149):GOSUB 20:

A$ =CHR$(170):GOSUB 22:NEXT

170 V=V + 1:A$ =BX$(2):GOSUB 20

175 IF SW=80 THEN V=12 ELSEV=7

180 A$ ="You start the game with $500.":GOSUB 21
190 V=V + 1:A$="Use any or all of this money to bet
on which sides will come":GOSUB 21

200 V=V +1:A$ ="up when you throw 3 dice. Matching
one die will return even":GOSUB 21

210 V=V +1:A%$ ="money. Matching two dice returns
double money, and matching:GOSUB 21

220 V=V + 1:A$ ="all three dice returns triple money.
Only whole dollar bets":GOSUB 21

230 V=V +1:A$ ="are allowed. You win the game if
you can collect $100,000.":GOSUB 21

235 M =500

240 V=V +1:A$="Press <ENTER> to play ":
GOSUB 21

250 L=0:GOSUB 30

300 V=6:A$=CHR$(31):GOSUB 20

310 A$ =STRING$(SW,140):GOSUB 20

320 GOSUB 70

330 V=9:A$="Make your bet, please: ":GOSUB 20
340 GOSUB 50:L =LEN(STR$(M))-1:GOSUB 30

350 B=VAL(A$):IF B=INT(B) THEN 400

360 V=11:A%$ ="We don’t want your spare change":
GOSUB 21

370 V=13:GOSUB 40:GOTO 330

400 IF B< =M THEN 450

410 V=11:A$="You can’t bet more than you have":
GOSUB 21

420 V=13:GOSUB 40:GOTO 330

450 IF B>0 THEN 500

Page 28

460 V =11:A$ ="Minimum bet is $1.00":GOSUB 21
470 V=13:GOSUB 40:GOTO 330

500 V=9:A%$=CHR$(31):GOSUB 20

510 H=9:A$="Your bet: $" + MID$(STR$(B),2):
GOSUB 23

600 V =10:A$ ="Choose your point: ":GOSUB 20
605 GOSUB 50 ’

610 L=1:GOSUB 30

620 P=VAL(A$)

630 IF P>0 AND P <7 THEN 700

640 V=12:A$="Choose 1, 2, 3, 4, 5, or 6".GOSUB 21
650 V=14:GOSUB 40:GOTO 600

700 V=10:A$ = CHR$(31):GOSUB 20

710 H=7:A$="Your point: "+ STR$(P):GOSUB 23
720 V=12:A$ ="Press <ENTER> to roll the dice ":
GOSUB 21

730 L=0:GOSUB 30

740 A$=CHR$(31):GOSUB 20

750 FOR X=1 TO 3:DI(X) =RND(6):NEXT

760 ST=SW-2.E=10

770 FOR X=1TO 3:V=11:A$=DI$:GOSUB 60:

A$ =BX$(3):GOSUB 23:V=V + 1:A$ =BX$(4):
GOSUB 23:V=V+1:A$=STR$(DI(X)):GOSUB 23:
E=E+15:NEXT

800 V=15:MA=0

810 FOR X=1TO 3:IF P=DI(X) THEN MA=MA +1
820 NEXT

830 IF MA THEN 800

840 M=M-B:A$ ="You lost $" + MID$(STR$(B),2) +". "
850 iIF M THEN 1000

860 A$=A$ +"You lost all your money. Press
<ENTER> ":GOSUB 21

870 L=0:GOSUB 30:GOSUB 70:A$="You had a streak
of bad luck - but maybe it’ll get better.":GOTO 1115
900 M =M +B*MA:A$ ="You matched "

910 ON MA GOTO 920,930,940

920 A$=A$ +"once. :GOTO 950

930 A$=A$ +"twice. :GOTO 950

940 A$ =A$ + "three times. "

950 A$=A$ +"You win $" + MID$(STR$(B*MA),2) +". *
1000 A$=A$ +"Press <ENTER> ".GOSUB 21
1010 L=0:GOSUB 30

1020 IF M= >100000! THEN 1100

1030 GOTO 320

1100 GOSUB 70

1110 A$ ="Congratulations. You broke the bank."
1115 V=9:GOSUB 21

1120 V= 12:A$%$ ="Would you like to try your luck again
(Y/N) :GOSUB 21

1125 H1 =H + LEN(A$)

1130 L=1:GOSUB 30

1135 IF A$=""THEN 1120

1140 A=ASC(A$):A=A AND 223

1150 IF A=89 THEN M =500:GOTO 320

1160 IF A=78 THEN CLS:END

1170 H=H1:A$ = CHR$(31):GOSUB 23:GOTO 1120

TRSTimes magazine 4.4 - Jul/Aug 1991

EXPLORING
CONFIG/SYS

By Roy T. Beck

The other day it occurred to me to wonder how the
CONFIG/SYS file worked its magic, which allows my 4P’s
to boot up with the hard drives configured and running. In
case you don’t already know, the CONFIG/SYS file is
created when you run the SYSGEN function. SYSGEN
creates and saves CONFIG/SYS, but as an invisible file,
which is why you may not have become aware of its
presence.

Its purpose is to save a record on the boot floppy of the
configuration of the machine at the time SYSGEN is run.
On the next bootup, the BOOT ROM loads enough of the
system files in order to get started, and then looks for the
CONFIG/SYS file. If it finds a CONFIG/SYS file, it shows
the word SYSGEN where you expect DOS READY to
appear, and installs its contents at the appropriate loca-
tions in your RAM. Among the critical parameters are, in
my case, the driver and DCT’s for my hard disk. (Aha, you
just knew | would get around to hard disks eventually,
didn’t you!)

When these parameters are installed correctly, the
machine immediately knows it has hard drives, etc, in-
stalled and working. It then tries to verify the correct
operation of all the drives. If all is well, you just get DOS
READY. However, if a drive is missing, not turned on,
busted or otherwise geflummoxed, you will get, (usually)
a diagnostic of some sort. If the hard drive controller
(HDC) is dead, asleep or missing, an "H" will appear on
the screen in the upper right corner. If the HDC is working,
but cannot get a sensible response from the hard drive
(the bubble), then some error message will show on the
screen. ERROR 08H can mean the bubble is not up to
speed, for example. | have a 12 Meg bubble which some-
times produces this. Just give it a little time, and then it
comes to full speed and | get DOS READY.

Despite my best intentions, (you all know about the
paving on the road to Hell, 'm sure), | don't always
document things as | should. There being so many pos-
sible themes and variations on partitioning of hard drives,
| decided recently to explore the CONFIG/SYS file, as |
knew all the necessary data was stored in it somewhere,
even if| had failed to document the configuration on paper
when [set it up.

But, how would | recognize and interpret the data for
the hard disks if | found it? From other adventures and
snooping, | have learned of the existence and purpose of
the Drive Control Tables (DCT’s) which the DOS keeps in
RAM so that it in turn knows how to operate its various
drives.

TRSTimes magazine 4.4 - Jul/Aug 1991

At this point | will briefly explain the DCT and its con-
struction. To begin with, each of the eight drives permitted
under TRSDOS 6.X and LDOS 5.X is allocated a DCT,

whether the drive is enabled or not. The DCT consists of
ten bytes, the meaning of some of which vary, depending

upon whether the drive is a floppy, a hard disk, or a
MEMDISK. I will only discuss the DCT as it applies to my
hard drives. For interpretation for the other drives, see
page 37 of the Programmer’s Guide to LDOS/TRSDOS
Version 6, by Roy Soltoff.

TRSDOS HARD DRIVE DCT

NAME

DCT 00
VECTOR

Byte Value Function

C3 Drive enabled flag;
C3inuse, C9 notin use
LSB of driver address
MSB of driver address
Bit mapped as follows:
Meaning

1 = Software Write Protected
Not used

0=5"drive, 1 =8"drive
Not used

1 =Hard disk
0=Removable hard disk
1 =Fixed hard disk
Prefix for byte 05

Bit mapped as follows:
Reserved for future use
Not used

DBLBIT

Not used

Starting head # of partition
Hard disk address

01 F4
02 04
FLAG1 03

=]
;>

NWHAP,OOND
—

2
o

FLAG2 04

3#0!07\!8

80

CURCYL 05

(subject to DBLBIT)
MAXCYL 06 98
on drive (subject to DBLBIT)

CONF1 07 FF Bit Mapped as follows:
7-5 Number of heads assigned to
partition
4-0 Highest numbered sector on track
CONF2 08 7F Bit mapped as follows:
7-5 Granules per cylinder
(Subject to DBLBIT)
4-0 Sectors per granule

DIRCYL 09 40 Directory logical cylinder

(Subject to DBLBIT)

If the drive is not enabled, the first byte is a C9, and the
remaining 9 bytes are garbage. If the drive is available,
then CALLing the first byte gets you to the driver whose
address is in the next two bytes following the C3. If an
unenabled DCT is CALLed, the C9 gives a return and no
harm is done.

Page 29

Prefix with bits 0&1 of byte 03 to
form starting cylinder # of partition

Highest numbered logical cylinder

The DBLBIT, if set, means the partition has more than
203 cylinders, and all references to logical cylinders must
be doubled.

By the way, some details of the above are at variance
with the printed word in the Programmer’s Guide. The
probable reason is that the guide truly was current at DOS
Version 6.2.0, but some changes have been made since
then. Also, since MISOSYS supports several different hard
disks, it appears that some of the original definitions have
been altered to suit actual hardware. Where such devia-
tions occur, what you see is my best interpretation, but
I’'m not perfect.

ACCESSING CONFIG/SYS

How to get into the CONFIG/SYS file? My first step was
to realize the file was present on the BOOT floppy of my
machine. Since | have SuperUltility available, | called it up
and told it to go get the file. | immediately saw the first
sector, and discovered the file was 4 sectors in length.
(This can vary, and may be different in your machine.

ANALYSIS

By dumping each successive sector to the printer, and
then studying the printout with a sharp pencil, | immedi-
ately recognized the familiar pattern of TRS machine code
files. An initial 05, then 06, then the name CONFIG, then
01, n, ssss, and n-2 bytes of data. The 01 identifies a block
of machine code, n bytes long, to be loaded at ss in RAM.
This latter pattern was repeated many times. Finally the
familiar closing sequence 02, 02, mm appeared, where the
first 02 means "this is the end", and 2 address bytes will
follow. The mm is the transfer address, TRA, meaningless
in this particular case.

And now the question of how to recognize the DCT in
the CONFIG/SYS file. First, | knew the eight DCT’s occupy
80D or 50H bytes. By carefully examining the introduction
to each block of code, | found there were only three blocks
of 50H or more bytes. The first one looked like machine
code. (This turned out to be the hard disk driver). The
second contained many ASCIl names and appeared to be
a listing of DEVICES in the machine. The third one was
paydirt! 52H bytes, and 52H-2 = 80D bytes, exactly what
| was looking for. Next | looked for the pattern of 10 bytes
repeated 8 times, which showed up immediately. By listing
the 80 bytes in columns on paper, | had the DCT’s ready
for study. Note the 8 DCT’s are stored in the sequence :0,
1, :2, etc.

Having found the ten bytes for each patrtition of a hard
drive, it is a fairly straightforward task to reconstruct the
configuration and reset the partitions of the drive. -

CAUTION! This essay is true for TRSDOS, but NOT for
DOSPLUS, eventhough it is similar. | don’t use DOSPLUS,
I don’t know how its equivalent of CONFIG/SYS is con-

structed, and | am sure there are differences between its

DCT’s and TRSDOS’s DCT’s. For further info on
DOSPLUS, study the appendices at the back of their DOS

Page 30

manual. | think there is sulfficient info there to repeat what
| have done for TRSDOS, but | won't swear to it, and I'm
not goingto doit, as | use TRSDOS (and LDOS) exclusive-
ly.

There is obviously much more info in the CONFIG/SYS
file; | have barely scratched the surface. Whether or not |
dig deeper really depends upon my needs. Since my
immediate needs were related to my hard drive adven-
tures, that became the focus of my digging. Perhaps in
the future, | or some one of you clever people out there
may further pursue this public documentation of CON-
FIG/SYS. Any takers? '

COMMENTARY

As an aside, Roy Soltoff, the Sage of Sterling, VA
(MISOSYS) once remarked that it would be a simple
matter to create a utility which would pull out and neatly
present all the information in the CONFIG/SYS file. That's
easy for him to say, he having been involved at the
conception of LDOS and TRSDOS, but for me it has been
somewhat of a chore. Now if Roy could find time to put
that utility together......

Seriously, Roy has done a marvelous job, and | never
cease to wonder at all he has accomplished in what must
be little more than a labor of love, all to our benefit. Thanks
again, Roy.

REFERENCE

The Programmer’s Guide to LDOS/TRSDOS VERSION
6, Roy Soltoff, BSEE, MISOSYS, Alexandria, Virginia 1983.
Reprinted by DiskCount Data, Plano, Texas.

SOME ERRATA

My sins have caught up with me! | have to admit to two
errors in my "Speeding Up Your Hard Drive" article in the
May/June 1991 TRSTimes. | must have slipped some bits
in my memory.

Look at the third paragraph of page 8. | will repeat the
paragraph as it should have been:

By the way, MISOSYS’ RSHARD5/6 series asks for a
speed in the range of 10us to 7.5 ms. The values 0.510 4.5
ms are for slower drives. The default "10" value cor-
responds to 10 microsecond buffered seek. Try 10 first. If
you have to settle for 3 ms stepping, the value to be
entered is 3.0.

The second error is in the fourth paragraph of page 9.
The erroneous sentence presently reads "....300 RPM or
5 revolutions per sector." It should read "....300 RPM or 5
revolutions per second." This will make better sense.

All | can say in my defense is, I'm only human. (My wife
sometimes argues that should be subhuman, but). In
any event mea culpa. My apologies to you all.

-Roy-

TRSTimes magazine 4.4 - Jul/Aug 1991

FIECREATIONAL &

'ZHEC is the- -u-nly publ Ication Aovoted 1o the plawul mter-'

action of computers and mathemaglc’---fram digital
- delights to strange attractors, from special number clas-
ses to computer graphics and fractals. Edited amd

published by computer columnist and math professor

Dr Mlchael W Ecker, REC features programs challen-

much more, all Iaser—pnnted HEC suppms many ccrm-

puter brands as it has duna since Inceptic:n Jan 1986 f_

Back issues are avaﬂabie

909 Vtulet Terrace, Ciarks Summit PA 18411 USA ﬁr'

send $1 U ($1 3 mn US) for 3 sample Issues cred:table

THSTlmes has rec&ntly bOUth several collectmns of the

difficult-to-get Model 11/12/16 software and manuals. We

are maklng th;s goldmine avallable to mterested;eaders f

 MULTIPLAN 1 05 00 Modal /12 (disk & manual)
.~ RS264580
 TRS-XENIX ‘l 03 04 Model 16 (4 disks & manual)
RS 26-6040
~ TRS-XENIX 1. 01 00 Model 15 (3 disks & manual)
RS 700-2052
- TRS-XENIX SYSTEM HEFEHENCE MAN UAL
_ Model 16 RS 266401
~ TRS-XENIX COUHSE
~ Model 16 FC-1014 '
~ 15-MEG HARD DISK OWNEH’S MANUAL
- RS 264157
_ TRS-80 MODEL 16 SERVICE MANUAL
RS 6004/5/6 s
e CGMPILEFI BASIC DEVELOPMENT SYST’EM
~ Modet It (dlsk & manual) RS 26-4705
- PROFILE Il Model I {disk & manual) RS 26—4512
_ PROFILE PHDSDRT Model II (disk & manual}
RS 26-4558) .
. PROFILE FORMS Model II
~ (disk & manual) RS 26-4556
_ PROFILE PLUS Model Ii (cllsk & rnanual) RS 264515
~ TRSDOS-II Model 12{168 HD (2 disks & rmanual) |
RS 264912 |
o MODEL 1BB OWNEFI’S MANUAL Model 16B

-f:z_;';.jBASlC HEFERENCE MANUAL

. Model 16B RS 26-6041 o ‘
 ASSEMBLER-16 Model 16B (manual only) RS 26-6041
. TRSDOS 2.0b thinline Mndel 12 (disk & manual)
RS 264911

___TRSDOS 2.0 Mﬂdel 1 (dlsk & manua!) F{S 25-4910

- TRSDOS 2.0b thinline Model 12

. (disk only) RS 26-4911

_ TRSDOS-Il 4.2 Model 12 (disk only) RS- 264912

~ BASIC REFERENCE MANUAL Model 12
_(manual only) RS 264922

~ SERIES-1 EDITOR ASSEMBLER Model ll

~ (manual only) RS 26-4713

~ VISICALC Model Il (disk & manual) RS 26-4511

- COBOL RUN-TIME Model 16 (disk only) RS 26-6101
 FASTBACK 3.0 Model Ii frﬂm Racet Computes

 (disk & manual) '
|l MODuuTILITY PACKAGE from Hacet Computes
Piease send bidto: | (disk & manual)

TRSTIrnes Il/‘l 2/1 6 Auction . -:'Z“f-f}SPEED-UP KIT Mode'l 1/ 16 frum Hacet Cc:rrnputes

5721 Topanga Canyon Blvd. #4 (disk & manual)
Woodland Hllls, CA 91 367 ~ HARD DRIVE SUPERZAP Mﬂdel II

-'.;_;iijéiSNAPP-WAHE TFIIAL PACKAGE

 Model Il (disk & manual)

~ SNAPP-IIl Model 1 (disk & manual)

e PICKLES & TROUT CPM2v22m
Model I (disk & manuals) '
 WORDSTAR 3.30 from MicroPro (disk only)
- VIDTEX | EXECUTIVE 2.1 Model Il (disk only)
:ISAM 2000 Model II (dlsk & manual)

flf}?fgg;gscnlpsur 3 o Model umz for Thlnhne and hard dlsk

f@ff_;ﬁi-gscmPSIT UTILITIES PACK Model Il
:_:;_:__5'-3;(2 dlsks & manual] HS 26—4532

TRSTimes magazine 4.4 - Jul/Aug 1991 Page 31

Letour LB Data Manager solve
your data storage problems

LB Version 2: A Flat File Data Manager with more powerful and
easy to use features in this latest enhancement of Little Brother!

We've added many features asked for over the past few years by LB users; yet LB is still just /4
about the easiest, most flexible data manager you can use for managing your data. It'smenu / . : -
driven for ease of use; absolutely no programming is needed to create a database with | : °
numerous fields, construct input screens for adding and editing data, and creating your own
customized report. Quickly you define your data fields in response to LB's prompts, and
then draw your data input screen using simple keystrokes. In no time at all, you're entering
data. Customize your printed reports with user-definable print screen definitions. LB is X
AN

just what you need in a data manager!

Data capacity per database:
LB supports up to 65,534 records per data base; 1,024 characiers (64
fields) per record; and up to 254 characters per field.

Field types supported:

LB allows ten field types for flexibility: alphabetic (A-Z, a-z), calcu-
lated [operations on "numeric” fields using +, -, *, /], date last modified
(YYYY/MM/DD automatically maintained), dollar {+dddddddd.dd),
floating point {+dddddddd.dddddddd, literal {any ASCII character],
numeric (0-9,-,.], right-justified numeric (flush right numeric), upper
case alphabetic (A-Z, automatic conversion of a-z}, and upper case
literal (literal with automatic conversion of a-z}. All field types utilize
input editing vernification so invalid data cannot be added to a record.
Field name strings can be up to 19 characters long.

Data entry and editing:

LB allows you to design up to ten different input/update screens to
provide extreme flexibility for selectively viewing your database fields.
Using a database password provides the capability of selectively protect-
ing fields from being displayed or printed without entry of the correct
database password, or they can be protected from being altered. This is
quite useful in a work-group environment. Fields may selectively be
established to require a data entry before a record being added or edited
is saved. You canenable a special index file to keep track of records being
added. This can be subsequently used, for example, for a special mailing
o newly added customers. Flexible editing includes global search and
replace with wild-card character match and source string substitution.
Search and replace can be performed on all records, or on records
referenced in an unsorted or sorted index file.

Record selection and sorting:

You can maintain up to ten differént index files to keep your data“

organized per your multiple specifications; keep one alphabetic, another
by address. Records may be selected for reference in an index file by
search criteria using six different field comparisons: EQ, NE, GT, GE,
LT, and LE. You can select on up to eight different fields with AND and
OR connectives. Index files can be left unsorted, or you can sort in
ascending or descending order. By attaching a sorted index file, any
record may be found within seconds - even in a very large database.

Report generation:

Report generation incorporates a great deal of flexibility. Your report
presentation is totally customized through print definition formats which
you define on the screen as easily as you define the input/update screens.
You can truncate field data or strip trailing spaces. You control exactly

-

e

where you want each field to appear. LB provides for a report header
complete with database statistics: database name, date, time, and page
numbers. A report footer provides subtotaling, totaling, and averaging
for dollar, floating point, and calculated fields; print number of records

printed per page and per report. Attach any of the ten index files and you

control exactly what records get printed; even a subset of indexed records
can be selected for printing to give you a means of recovering from that
printer jam halfway through your 30-page printout. You can even force
a new page when the key field of an index file changes value. Up to ten
different printout definition formats can be maintained for each database.
Reports may be sent easily to a printer, the console display screen, or to
a disk file - useful for subsequent printing or downstream data export to
other programs. Report formatting allows for multiple across mailing
labels, multiple copies of the same record, or even printing one record per
page for sales books. You can easily generate mail/merge files of address
or other data for your word processor. Or you can use LB's built-in form
letter capability.

Automatic operation:

For automating your processing needs, LB can be run in an awomatic
mode, without operator intervention. Frequently used procedures can be
saved by LB's built-in macro recorder for future use. Entire job streams
may be produced, so that LB operations may be intermixed with literally
any DOS function that can be batch processed.

Maintenance utilities:

To make it easy for you to grow your database as your data needs grow,
we provide two utility programs for managing your database. One allows
you to construct a new database with an altered data structure and
populate it with data from your existing database Another allows you to
duplicate your database structure, copy or move records from one to
another, or automatically purge un-needed records.

Help is on the way:
The main menu even provides a shell to DOS so you can temporarily

‘exit LB to perform other DOS commands. LB provides extensive on-

line help available from almost every sub-command. A 200-page User
Manual documents every facet of LB's operation.

Specify MS-DOS or TRS-80 (M4) version. LB Is priced at $99 + $5 S&H.
Toupgrade from version 1.0, send Table of Contents page and $40 +S&H.

MISOSYS, Inc.

Remit 1o

PO Box 239
Sterling, VA 22170
703-450-4181 or orders to 800-MISOSYS

	_0531081320_001.pdf
	_0531081346_001.pdf
	_0531081351_001.pdf
	_0531081400_001.pdf
	_0531081405_001.pdf
	_0531081413_001.pdf
	_0531081417_001.pdf
	_0531081426_001.pdf
	_0531081431_001.pdf
	_0531081438_001.pdf
	_0531081443_001.pdf
	_0531081450_001.pdf
	_0531081455_001.pdf
	_0531081502_001.pdf
	_0531081507_001.pdf
	_0531081513_001.pdf
	_0531081518_001.pdf
	_0531081526_001.pdf
	_0531081531_001.pdf
	_0531081537_001.pdf
	_0531081544_001.pdf
	_0531081551_001.pdf
	_0531081557_001.pdf
	_0531081603_001.pdf
	_0531081608_001.pdf
	_0531081616_001.pdf
	_0531081621_001.pdf
	_0531081629_001.pdf
	_0531081634_001.pdf
	_0531081643_001.pdf
	_0531081646_001.pdf
	_0531081652_001.pdf
	_0531081658_001.pdf
	_0531081707_001.pdf
	_0531081710_001.pdf
	_0531081718_001.pdf
	_0531081724_001.pdf
	_0531081732_001.pdf
	_0531081736_001.pdf
	_0531081744_001.pdf
	_0531081750_001.pdf
	_0531081758_001.pdf
	_0531081802_001.pdf
	_0531081808_001.pdf
	_0531081815_001.pdf
	_0531081822_001.pdf
	_0531081826_001.pdf
	_0531081834_001.pdf
	_0531081839_001.pdf
	_0531081855_001.pdf
	_0531081900_001.pdf
	_0531081907_001.pdf
	_0531081912_001.pdf
	_0531081920_001.pdf
	_0531081925_001.pdf
	_0531081932_001.pdf
	_0531081937_001.pdf
	_0531081945_001.pdf
	_0531081950_001.pdf
	_0531081958_001.pdf
	_0531082004_001.pdf
	_0531082012_001.pdf
	_0531082017_001.pdf
	_0531082022_001.pdf
	_0531082039_001.pdf
	_0531082043_001.pdf
	_0531082047_001.pdf
	_0531082054_001.pdf
	_0531082100_001.pdf
	_0531082108_001.pdf
	_0531082112_001.pdf
	_0531082121_001.pdf
	_0531082126_001.pdf
	_0531082132_001.pdf
	_0531082136_001.pdf
	_0531082145_001.pdf
	_0531082150_001.pdf
	_0531082157_001.pdf
	_0531082201_001.pdf
	_0531082209_001.pdf
	_0531082214_001.pdf
	_0531082221_001.pdf
	_0531082224_001.pdf
	_0531082232_001.pdf
	_0531082237_001.pdf
	_0531082244_001.pdf
	_0531082249_001.pdf
	_0531082257_001.pdf
	_0531082300_001.pdf
	_0531082309_001.pdf
	_0531082313_001.pdf
	_0531082321_001.pdf
	_0531082326_001.pdf
	_0531082336_001.pdf
	_0531082341_001.pdf
	_0531082347_001.pdf
	_0531082403_001.pdf
	_0531082407_001.pdf
	_0531082412_001.pdf
	_0531082420_001.pdf
	_0531082425_001.pdf
	_0531082432_001.pdf
	_0531082439_001.pdf
	_0531082445_001.pdf
	_0531082451_001.pdf
	_0531082458_001.pdf
	_0531082504_001.pdf
	_0531082511_001.pdf
	_0531082516_001.pdf
	_0531082524_001.pdf
	_0531082528_001.pdf
	_0531082534_001.pdf
	_0531082540_001.pdf
	_0531082547_001.pdf
	_0531082552_001.pdf
	_0531082558_001.pdf
	_0531082604_001.pdf
	_0531082612_001.pdf
	_0531082616_001.pdf
	_0531082625_001.pdf
	_0531082631_001.pdf
	_0531082637_001.pdf
	_0531082642_001.pdf
	_0531082649_001.pdf
	_0531082654_001.pdf
	_0531082702_001.pdf
	_0531082707_001.pdf
	_0531082713_001.pdf
	_0531082720_001.pdf
	_0531082728_001.pdf
	_0531082733_001.pdf
	_0531082742_001.pdf
	_0531082749_001.pdf
	_0531082758_001.pdf
	_0531082802_001.pdf
	_0531082811_001.pdf
	_0531082815_001.pdf
	_0531082822_001.pdf
	_0531082829_001.pdf
	_0531082835_001.pdf
	_0531082839_001.pdf
	_0531082847_001.pdf
	_0531082852_001.pdf
	_0531082858_001.pdf
	_0531082904_001.pdf
	_0531082912_001.pdf
	_0531082918_001.pdf
	_0531082925_001.pdf
	_0531082929_001.pdf
	_0531082937_001.pdf
	_0531082941_001.pdf
	_0531082947_001.pdf
	_0531082953_001.pdf
	_0531083000_001.pdf
	_0531083005_001.pdf
	_0531083012_001.pdf
	_0531083017_001.pdf
	_0531083026_001.pdf
	_0531083031_001.pdf
	_0531083036_001.pdf

