TRSTIMNES

Volume 2. No. 3. - May/Jun 1989 - $4.00

Reverse video for Model II1 -
I'ranster MacIntosh Graphics to the TRS-80
Reviews - CP/M column & much more

LITTLE ORPHAN EIGHTY

Rather than getting on a
soapbox to rant and rave
about something or other
in the TRS-80 world, let me
sit back, relax, and
reminisce about the early
days spent with the Tandy
machines.

It all started when |
retired from professional
soccer in 1972 and began
playing music for a living.
Having to work only a 4-5
hours per night left much
time to cultivate alternate
interests. While some of the guys in the different bands |
was with over the years spend their time with alcohol and
drugs, | got hooked on calculators. As soon as a new
model came out, just a little better than my current one, |
bought it.

When the early computer kits appeared in the
electronic stores, you guessed it, | brought one home.
However, not being blessed with an abundance of talent
holding screwdrivers, soldering guns, etc., | eventually
managed to blow it up. This cooled me off electronics until
1978.

| left the music business inlate 1977, moving to Tampa,
Fla. to run motels. Tampa had just gotten a franchise in
the North American Soccer League (NASL) and, being a
fan, | bought season tickets. It didn't take me long to
develop a 'game-day’ routine. | would leave home three
hours before the game, park across from the stadium in
the shopping mall where | would have dinner. As luck
would have it, next to the restaurant was a Radio Shack.
After dinner | would look at all the neat gadgets, but for
some time | stayed on the wagon. | went to the game
without buying anything.

Then one day | saw the biggest calculator of them all.
The salesman called it a TRS-80. He explained that this
was a real computer; it could do thousands of calculations
In a matter of seconds, it could play games and, best of
all, it could be programmed to do almost anything im-
aginable. The salesman was so courteous, so friendly, so
knowledgable.

No, | didn’t buy the computer right then. Instead, | went
to the game, but spent the next few weeks thinking,
dreaming and drooling about it. Each 'game-day’ found
me back in the Radio Shack store, learning a couple of
things about this new wonder.

| finally broke down. My thirst for calculators had been
re-awakened and would be denied no longer, so | wrote
a check for what was to become the Model |. The next
month was spent completely absorbed in this little silver

and black monster, sleeping only when | absolutely no
longer could stay awake, learning as much as | could, as
fast as | could. This was heaven.

| had many, many questions which resulted in several
trips back to the store to pick the brains of my friendly
salesman. Each time back, it seemed as though he got a
little less friendly and a little less knowledgable. Also,
being busy enticing other poor souls with the wonders of
the TRS-80, he did not have much time to answer my
questions. However, my problems worked themselves
out and | kept on computing into the wee hours of the
mornings.

| was now programming in Basic, actually making the
computer do things. My first attempt at writing a real
program ended in disaster. It was a bookkeeping program
that would have worked nicely, except for one thing.
Somewhere in the middle of the program was a routine
that closed the motel income accounts for the day, trans-
ferring all monies to a variable that was named, of all
things: NEWBALANCE.

| had not yet saved my program to tape and before
doing so, | proceeded to view my masterpiece. Data after
data was input, everything working just fine. Hey, [really
had something here. Then came the closing sequence
with the cursed variable - POOF - everything gone. Suffice
to say, | have never used long variable names since.

More months passed. Still plenty of questions, but by
now | had figured out that Radio Shack just was not the
place to get the answers. My Basic_ programming was
coming along nicely; by trial and lots of error, | could now
write programs without consulting the manual - some of
them even worked!

In the early eighties | moved to Fresno, Ca. to set up
the new corporate offices of the motel chain. There the
Model | was sold, replaced with a Model Il and a Color
Computer. Working with a DOS that didn’t crash at regular
intervals was enjoyable, and the CoCo held my interest
long enough to write a game called 'CHANGQO’ which |
submitted to 80-US. Amazingly, they bought it. | was on
cloud 9. Imagine, somebody was paying me for writing
code. |

| immediately wrote another 16 or 20 programs and

“sent them to the various magazines. My euphoria was

quickly stopped. Each came back with a rejection slip.
Well, so much for the CoCo. It was eventually put on a
shelf and my efforts were now solely geared to the Model
lll. The money made on 'CHANGO’ was spent buying
Radio Shack’s Editor/Assembler '/EDTASM’. | wanted to
learn Assembly language. However, being out of space,
this story will have to wait for a future issue.
And now............ Welcome to TRSTimes 2.3

Lance .

TRSTimes - Volume 2. No. 3. May/Jun 1989

LITTLE ORPHANEIGHTYcc0v e et et e et e 2
The early days

THEMAIL ROOM . .. ittt ittt ot vs ot o oosonsasssosnsasoensssneenssnensnnas 4
Reader mail

HIDDENVIDEOFUNttt it tttneesessasnssosasnsnsoscosensasnsans sooeons 7
Donald G. Shelton

TRSDOSSYSTEMI1S.REVIEWED0ttt ittt tnntenonenesstennsneansnsans 10
Bob Rose

20 17\ 12
Lance Wolstrup

ATALEOF TWO FILE FORMATS i it ittt ittt eoesonenestonacnonansss 16
Ben Mesander

ASSEMBLY 100t ittt it ittt n s v s o sosonasensoosaseseaeesoneeenssn 20
Lance Wolstrup

AREVIEWOF: MAGICMATHPLUS ittt it itene it teeneneneennanennn 23
Dr. Allen Jacobs

TRSDOS 1.3. CORNER - BASICFULL SCREENEDITOR ittt it iitniennnensn 25
Gary Edwin Campbell

WATERSCHEDULING ittt ittt ittt etntnsooenonsaseesoneneeaeesesnas 29
Elton L. Wood

MOREONTHE CP/MDIRECTORY ittt ittt ittt it tntononotnonnonenennass 31
Roy T. Beck :

BOOK REVIEW: DEBUGGING BASICPROGRAMS ittt ittt ittt eteenennnn 33
Robert M. Doerr

HINTS & TIPS . it ittt ittt o s o s o ooosososoncnsasansoenssaenaensensenas 37
McAninch - Wolstrup - Burkholz - Knight

CLOSE #3 i it i ittt ittt et ososaososensasnsnsnenensosoasossaessnsasas 38
Editorial

TRSTimes magazine is published bi-monthly by TRSTimes publications.
* 20311 Sherman Way suite 221. Canoga Park, CA. 91306. U.S.A.
Entire contents [c] 1989 by TRSTimes publications.
No part of this publication may be reprinted or reproduced by any means
without the prior written permission from the publishers. All rights reserved.

1989 subscription rates (6 issues):
United States & Canada: $18.00 (U.S.)
All other countries: $23.00 (U.S.)

CPM

I’'m very happy that TRSTimes is going to be published
for another year, and thrilled with the great look that laser
printing has given it. It is absolutely first rate.

One minor problem that | notice is the misplacing of
Roy Beck’s CP/M column. I'm sure that it was forced out
ofthe January issue only because of the wealth of material
you felt had to be published, and, of couse, it will return
with the very next issue.

CP/M has given my trusty TRS-80 Model 4P a new lease
on life. I've been able to get languages for CP/M that run
without modification on my Tandy. Turbo Pascal, APL,
Modula-2, and, soon now, ADA. Vast resources of public
domain exists to play with. New software is STILL being
written, albeit slowly.

There is a whole world besides the LSDOS, LDOS,
TRSDOS operating systems for the Model 4 family of
computers. | don’t mean to disparage these fine DOS's.
Rather | mean to point out the rest of the resources of
software that are still available. Please, please, please put
the CP/M column back in. It is much enjoyed and greatly
missed.

Ted Seidler
Aurora, CO.

You are right. The CP/M column was missing from the
January issue, only because we ran out of room, plain
and simple. As you can see from the March issue, as well
as this one, Roy is back. This time he is tackling the CP/M
disk and directory formats, a subject largely ignored in
the CP/M world.

Ed.

Model 4 Scripsit tips revisited

In looking through back issues of TRSTimes, | notice
the item "Model 4 Scripsit tips" (Volume 1, No.4 - July
1988, Page 5). Barry K. Morley of Pudsey, England warned
about SYSGENing the SETKI with minimum RATE and
WAIT settings.

You didn’t mention it, but as you probably have deter-
mined from the manual, you can issue the command:

SETKI (@ [for QUERY?]

and the system will prompt for

TRSTimes 2.3. - May/Jun 1989 - Page 4

Wait=

(a smaller number will speed the response - minimum
is 10), and

Rate=

(a larger number will slow the repeat rate down)

showing you the current setting after each prompt and
allowing you to enter your choice of setting (within limits
allowed by the system).

Then, you can just SYSGEN again and the NEW set-
tings will be saved in your configuration file. | hope the
above information is helpful, without being too wordy.

Patrick H. Larkin
Bedford, TX.

Thanks, Pat. This kind of tip is how we learn to use our
software more productively. Sure, it might be in the
manual, but quite a few of us miss many of the finer points,
so itis, indeed, very helpful.

Ed.

LISTER/BAS

For the record, LISTER/BAS (TRSTimes 2.1.) was first
found in 80 Micro February 1987 in the reader forum
section, submitted by Kenneth M. Frith of Baton Rouge,
LA. The May 1987 issue, same magazine, same section,
had enhancements by M.H Briggs of Walla Walla, WA.
Thanks for your help on this, and for beginning the As-
sembly language tutorial. The new laser printer is a big
improvement.

Jim Savage
Clinton, MS.

A tip of the hat to Kenneth Frith and M.H. Briggs
fromTRSTimes. Good writing.
Ed.

More on LISTER/BAS

Congratulations on the birthday and on the success of
TRSTimes! May the publication and you manage to sur-
vive for years to come! My purpose in writing is to com-
ment on the LISTER program. It is something | could use,
so | took a closer look at it. In such cases | practically
always go through a program to see how it works and
what | might want to do to customize it for something | in
particular might like to have it do. | almost always pick up
a good programming idea or two as well.

LISTER has some clever methods in it, for example the
search for the end of the BASIC line and breaking it into
two or more lines for the printout if necessary. However,
unless | have made a wrong turn somewhere in the
program flow, there can be a problem.

Lines 240 through 330 neatly breaks up a long BASIC
line and print it in segments - that is, if the printout hasn’t

yet reached the end of the page. If, however, there is still
a remnant of the BASIC line left in I$ when line 330 is
reached, the program goes on to skip to the next page. If
single-sheet printout has been selected, lines 400 through
420 create a pause for sheet changing and they do so by
waiting for a keystroke.

This keystroke puts some character into I$ and the
program continues. The problem appears to be that if any
portion of an original BASIC line happens to be left in I1$
when line 55 is reached, it will get replaced with the
keystroke character, whatever it may be. Then line 210 will
read in a new line from the disk and the remainder of the
old line will not get printed.

The problem isn’ttoo likely to show up, of course, since
most BASIC lines will fit onto a single printout line and the
probability of a longer line’s occurring exactly at the end
of a printout page is probably small.

Maybe I'm missing omething, but since you worked
through the program for the reader, perhaps you can spot
my error, if any. If you agree with my diagnosis, however,
| think it would be good to print the very simple fix: merely
replace the variable in line 400 with any other that isn't
used in the program, such as A$.

Thanks for your efforts.

Dick Houston
Durango, CO.

The TRSTimes ’'sharp-eye award’ goes out to Dick.
Line 400 will, indeed, cause the error condition EXACTLY
as described. The fix, also as described, is:

400 A$=INKEY$:IF A$ =""THEN 400

Another error is found in line 180. There we have:

180 IF O)1 THEN....

this should have been:

180IFO>1THEN

Dumb errors like the above have plagued computer
programs from day one, and they will surely continue until
programs are no longer written by humans. Meanwhile,
itis good that we have people out there who care enough
to take the code apart and share the fix. Frankly, that's
why the TRS-80's have lasted as long as they have.

Ed.

Assembly 101

| am a new subscriber and have received issues 1 and
2 of TRSTimes. Thank you for the prompt shipment.
TRSTimes is a fine publication; I'm glad | subscribed. The
"Assembly 101" articles where assembly language is com-
pared to equivalent Basic statements is what | hoped |
would find somewhere. | have RS’s EDTASM manual,
cassette (from my uncle some years ago who has a M3;
he also obtained a M1 disk for it and sent it to me). I've
read the EDTASM manual from cover to cover 3 times
(and realize | will have to read it many more times). The
registers reminded me of file buffers for sequential and
random files. This was a little erroneous in that those

buffers are much larger than 1 or 2 bytes. Your com-
parison of the registers to Basic variables is certainly a
better one. | have wondered for some time what Basic's
INKEY$ and INPUT statements were changed to by the
interpreter (or the source code equivilant). So | will cer-
tainly be looking forward to the next issue.

David K. Berg
Fabens, TX.

Thank you for the kind words. Assembly language is
tough, but we V' _L try to bring it down to earth, as much
as possible.

Ed.

MULTIDOS

"Heck, we may even play around with MULTIDOS."

This statement from TRSTimes 2.2. page 6 has really
aroused my interest and curiosity. | have seen very little
information other than an occasional review on this DOS
over the years. | use it in Models |, Il & 4 versions. On the
Model |, | moved up to ULTRADOS from TRSDOS 2.3. |
used ULTRADOS happily until | installed Radio Shack’s
double density board. | then bought LDOS as Radio
Shack was selling it. After a while, though, | also pur-
chased MULTIDOS. Both DOS's have their advantages
and | have used both since.

| enjoy programming in BASIC and felt that MULTIDOS
had the advantage for this purpose. LDOS 5.3. and LS-
DOS 6.3. have easier to use BASIC than previous ver-
sions. Therefore, | would really enjoy seeing someone
comment on, make suggestions for, add to, etc. MULTI-
DOS. My Model | is still in use, as are the Model 4, 100,
COCO2, and PC1. | have just added a 1000SX to my
collection and am now enjoying working my way through
MS-DOS.

Clifton N. Duval
Star Lake, NY.

ULTRADOS!!! You've been around for a while. We have
been gently twisting the arms of a couple of devoted
MULTIDOS users, hoping they will share some of their
expertise. As time permits, | will disassemble portions of
the DOS to see if | can discover a thing or two. As yet
nothing is firm, but we will definitely do something with
this fine DOS.

Ed.

TRSDOS 1.3.

Keep up the good work! We want to see more articles
on TRSDOS 1.3.-1.3.-1.3. - 1.3. - 13.

| would like to be able to enter some of your Assembly
language programs, but don't know how. Do | need a disk
with an Assembly language "translator” on it? There ought

TRSTimes 2.3. - May/Jun 1989 - Page 5

to be some textbook type books out on the subject that
are easy to understand. What little I've read, | have to
already know the subject before | can understand what
the book is saying.

Thanks for the "PATCH" commands. When | go back
to school in January, I'll try them out. Have you seen the
TRSDOS 1.3. PATRCH UTILITY PROGRAM from com-
puter news 80. It costs $10.00, I'm thinking about ordering
it.

Now about BASIC V.1.3. Do you know where | can get
a disk that will let me RENUMBER the statement line
numbers? Do you know where | can get & disk that will let
me copy BASIC files from one disk to anottiar? (similar to
MS-DOS: COPY *.* B:) Do you know if there is a TRS-80
user group in Houston? Radio Shack doesn't know.

| understand that the CONVERT utility program con-
verts files from Model 1 to TRSDOS 1.3. Will it convert from
Ver. 6 to Ver. 1.3.7

Well, | guess |,ve bent your ear long enough, if you can
help me on any of these, please let me know.

Maurice Superville
Bellaire, TX.

Let's take each question one at a time. Assembly
language programs are entered into an editor/as-
sembler. See the "Assembly 101" article in TRSTimes 2.1.
for a detailed description on how to do this. Regarding
books on the subject, | agree with you 100 percent. | have
not seen one book on Assembly language that REALLY
catered to the beginner.

The TRSDOS 1.3. patch disk from CN80 was put
together by Henry Herrdegen. It is a very fine compilation
of various patches and, at $10.00, it is a bargain. | recom-
mend it to all TRSDOS 1.3. users.

You do not need a special disk to RENUMBER a BASIC
program. You have a command you can use directly from
BASIC that will do exactly what you want. This command
is called NAME and here is how it works:

NAME newline,startline,increment

newline /s the new line number of the first line to be
renumbered. If omitted, 10 is used as the default.

startline /s the line number in the original program
where renumbering will start. If omitted, the entire pro-
gram will be renumbered.

increment is the increment to be used between each
successive line number. If omitted, 10 is used as the
default.

In other words, from BASIC you can type:

NAME
this will renumber all lines with an increment of 10.

NAME 6000,5000,100

this will renumber all lines numbered 5000 up; the first
renumbered line will be become 6000, and the following

TRSTimes 2.3. - May/Jun 1989 - Page 6

lines will be incremented by 100. All line references within
your program will be renumbered also.

As far copying files from one disk to another, you have
the BACKUP utility. This, of course, copies the entire disk.
There are a couple of 'shell’ programs available that will
letyou tag a series of files, and then perform a mass copy.
The one that comes to mind is George Fischer’s DOS-
TAMER. At this point, TRSDOS 1.3. is not capable of
performing ‘wild-card’ copying as in MS-DOS. However,
maybe we can persuade Gary Campbell of GRL software
to write such a utility. (how about it, Gary!!) Incidentally,
do check out the articles written by Gary AND also check
out the ads for TRSDOS 1.4. and 1.5. Gary has done
amazing things for all of us 1.3. lovers.

Unfortunately, | am not aware of a TRS-80 group in the
Houston area. The closest one | know is the MID CITIES
TRS-80 USERS GROUP. P.O. BOX 171566. ARLINGTON,
TX. 76003. Drop them a note, maybe they will know of a
group in your area. Meanwhile, can any of you Texas
people help?

Finally, CONVERT will copy non-system Model | files
over to Model Ill. It will NOT copy Model 4 files to Mod 3.
You can do this by FORMATing a single density disk from
Mod 4 and then copy the desired files to it. Then, use the
Model lll CONVERT utility to transfer the files to Mod 3.
This is the hard way of doing things. Gary Campbell, once
again, came to the rescue. His TRSDOS 1.5. has a utility
that will let you copy files DIRECTLY from TRSDOS-
LSDOS 6, DOSPLUS and LDOS to Model lif TRSDOS. He
also shared a scaled down version with us in his 'CPY’
article (TRSTimes 2.1.)

Ed.

GAMES

Many years ago | subscribed to SOFTSIDE because |
really enjoyed typing in the games. | know that this kind
of software is frowned upon today, but please... how
about it... more games!!

Arnie Setzer
Wheeling, WV

I have known a few people who insisted games were
‘frivolous and a waste of time’. Guess what!! When |
looked through their collection, they all had complete
sets of the Big Five disks (well worn). You just know that
when nobody’s looking, they knock off a couple of rounds
of METEOR MISSION I or SUPER NOVA.

As one who also subscribed to SOFTSIDE because of
the games, | promise that we will never be so stuffy that
we forget to have fun. | am particularly addicted to board
games, so this issue brings ROTATE/BAS for Model 1 &
Il and next issue will feature MAXIT/BAS for Model 4.

We try to please.

Ed.

More PEEKING & POKING Model 4

Hidden
Video
Fun

Reverse Video in the III Mode
of the Model 4

by Donald G. Shelton

You can get reverse video in the Ill mode of your model
4. This may sound simple enough, but | was told by many
very knowledgeable people that it was not possible. That
was a tremendous disappointment to me when | brought
my new 4p to the office and set it next to my dependable
Model lil. | had heard about the 80 x 24 column screen,
internal sound, and reverse video, and eagerly waited to
shazz up my programs.

My heart sank when | found out that most of these

features were only available in the model 4 mode.-| con--

sidered converting my programs, but | had made exten-
sive use of the fact that model Il video was
memory-mapped; since the model 4 was not, | did not see
a way to convert those programs (not until the "Hunting
for Buried Treasure" article in the November TRSTIMES. |
sure could have used that article 5 years ago!)

One by one ingenious TRS-80 users have discovered
ways to incorporate model 4 features in the Il mode:
LDOS 5.1.4 and 5.3 take advantage of the faster clock
speed, TRSTimes had an article showing how to use the

80 x 24 mode, MISOSYS developed the Model 4 interface
kit so we could fully use the keyboard, and now - reverse
video.

Familiarity with the article on using 80 x 24 mode
(September '88, page 26) is helpful, because we will
manipulate the same video port. Bit 3 of port 132 (decimal)
toggles the reverse video. In other words, OQUT 132,8, will
do the trick. You may be manipulating other bits in this
port, such as bit 2 for page 1 of 80 x 24 video. If so, just
add 8tothe figure you are sending to the port. Inthis case,
OUT 132,12 gives you both reverse video and page 1 of
80 x 24 video.

However, it isn’'t quite that simple. The reverse video
characters replace the "special characters” - ASCII
values above 128. The special characters can be toggled
with space compression characters. However, space
compression characters cannot be replaced by the
reverse video characters. Whew! In other words, before
we manipulate port 132 to force reverse video, we must
make sure that special characters/compression charac-
tersare forced to special characters. We do that by turning
bit 1 of byte 16420 (decimal) on:

POKE 16420, PEEK (16420) OR 1

To review:
POKE 16420 -special chars/compression chars

OUT 132- reverse chars/special chars

Type the following for an impressive demonstration
from basic:

POKE 16420,PEEK(16420) OR 1 <ENTER >
OUT 132,8 <ENTER >

Now, if you are using LDOS with the KI/DVR active, hold
down the <CLEAR > key and hit some letter keys. The
letters will appear in reverse video. (Ta-da).

If you are using LDOS without the KI/DVR, or any other
Model Ill operating system type:

PRINT CHR$(193) <ENTER >

This will display letter 'A’ in reverse video onthe screen.
You are adding 128 to the normal ASCII value of the letter
(65 +128). CHR$(194) will give you a 'B’, etc.

Now we have to integrate this into our programs. We've
just looked at the direct method; you can actually type a
line like A$ ="" and fill the quotes with something you type
while holding the <CLEAR > key down (typing this way
is not very easy, but can be done). This is a great way for
dressing up your displays. (this works only with LDOS with
KI/DVR active). However, you may wish to reverse a part
of the screen, such as highlighting a menu choice. This
requires a subroutine.

TRSTimes 2.3. - May/Jun 1989 - Page 7

My MENUDEM/BAS program shows two methods for
doing this. The first method is done entirely from BASIC
and is in the subroutine at line 3500. Basically all you are
doing istelling the routine a starting position on the screen
(PO%) and number of characters to reverse (A1%). The
routine then adds 128 to each character in that range ina
FOR/NEXT loop. This does the job easily, but it can be
slow on anything but a small area to reverse. The program
uses the string pointing technique | demonstrated in "Hid-
den Memory Fun" (TRSTIMES Nov. 88) to store what was
atthat location before it was reversed, so that you can call
it back quickly when the highlight is moved.

The second method is a small machine language
routine embedded in S$. You have to do a few things to
set up for this, but the speed is very rewarding. The top
line of the screen is reversed using this method.

Line 50 DEFines a function (S1%) that expresses num-
bers in signed integer format. You don't really need to
understand this, just know that it is necessary housekeep-
ing for finding our machine languague program.

- Line 60 creates a machine language program inside of
S$. It is a 15 byte routine that does essentially the same
thingas a FOR/NEXT loop that adds 128 to each character
in a defined range, but MUCH faster.

Inline 920 we POKE &H4050 with 80. 80 is the number
of bytes we want reversed. This can be any number up to
256. | chose &H4050 because this location appears to be
unused by most DOS’s, but any free location will do (you
would have to change the machine language routine to
look in the new location).

The subroutine is at 3600.

Line 3610 looks messy, but actually all it is doing is
finding S$ in memory, which is where our routine is.

Line 3620 changes the location to a signed integer
format to avoid errors.

Line 3630 points USRO at S$.

Line 3640 calls the routine. The variable in the paren-
thesis was defined in 930 and is the place for the routine
to start reversing. 15360 is decimal for the beginning of
video memory, so you just add the PRINT@ position to
15360 to get the number.to go in the () after the J = USRO.

Play with it a little bit, and you will find that it is easy to
use, even if you don't fully understand all the specifics of
variable pointers, signed integers and imbedded machine
language (I again recommend Lewis Rosenfelder’s "Basic
Faster & Better" for the lowdown on those subjects).

You can also see that the program is non-functional,
but it would be easy for you to get it working with your
own program choices in the menu. This type of program
sure makes life easier, and reverse video makes the
program look professional.

TRSTimes 2.3. - May/Jun 1989 - Page 8

MENUDEM/BAS

0 'REVERSE PROG "MENUDEM/BAS" demonstrating
reverse video 1989 DONALD G. SHELTON

5 CLS:0UT 132,140:CLS:

PRINT@100,"USE ARROWS TO MOVE HIGHLIGHT"

’ print msg on bottom of screen

10 CLEAR 1000

15 SG$ =STRING$(80,"-"):DEFSTR F

20 OUT 132,12 ' puts in 80 x 24 reverse video

25 POKE 16420,PEEK(16420) OR 1

' special characters ;

30 DATA 320,400,480,560,640,720,800,880,960,346,426,
506,586,666,746,826,906,986,372,452,532,612,692,772,
852,932,1012

40 DIM PO(26):FOR X =1 TO 26:READ P:PO(X) =P:
NEXT X

50 DEFFNS 1%(S!) = -((S! > 32767)*(S!-65536))-
((S! <32768) *S!)

'necessary for signing the integer of varptr(s$) to avoid
overflow error
60 S$ = CHR$(205) + CHR$(127) + CHR$(10) +
CHR$(58) + CHR$(80) + CHR$(64) + CHR$(71) +
CHR$(126) + CHR$(198) + CHR$(128) + CHR$(119) +
CHR$(35) + CHR$(16) + CHR$(249) + CHR$(201)
70 ’line 60 imbeds a short mach lang routine in s$
900 'video print routine
910 CLS:EM$ ="Master Command Console" +
STRING$(50,".") +LEFT$(TIMES,8)
920 PRINT@80,EM$:POKE &H4050,80
‘80 is # of bytes we want to reverse
930 XT = 15360 + 80:GOSUB 3600

1000 SS =80:PRINT@0,5G$;:PRINT@160,SG$::
PRINT@3*SS,CHR$(30);:
PRINT@4*SS,"<A> CALCULATOR";

1002 PRINT@5*SS," CALENDAR";

1004 PRINT@6*SS," < C > DIRECTORY";
1006 PRINT@7*SS," <D > MAILBOX",

1008 PRINT@8*SS," <E > MULT FILE KILL";

1010 PRINT@9*SS,"<F > TREASURER";

1012 PRINT@10*SS,"< G > GRAPHS";

1014 PRINT@11*SS,"< (H> GAMES MENU";

1016 PRINT@12*SS,"<1> INVOICE";

1018 PRINT@4*SS +26,"<J> RESET TIMER";
1020 PRINT@5*SS +26," < K> TAX YIELD COMPARE";
1022 PRINT@6*SS +26,"<L> LDOS";
1024 PRINT@7*SS +26,"<M > MORTGAGE";
1026 PRINT@8*SS +26,"<N > PRINTER CODES";
1028 PRINT@9*SS + 26,"< O > MILEAGE RECORDS";
1030 PRINT@10*SS + 26," <P > CREATE MAILBOX
FILE";

1032 PRINT@11*SS + 26,"< Q> TYPEWRITER";
1034 PRINT@12*SS +26,"<R> LEXBASE";
1035 PRINT@4*SS +52,"<S> SCRIPSIT"
1038 PRINT@5*SS +52,"<T> TYPE-AHEAD";
1040 PRINT@6*SS +52,"<U > FILE SORTING";
1042 PRINT@7*SS +52,"< V> HELP (DOS)";
1044 PRINT@8*SS +52,"<W > WORD CHECKER";

1046 PRINT@9*SS +52,"<X > PRINTER FILTER",
1048 PRINT@10*SS +52,"<Y > LESCRIPT";

1050 PRINT@11*SS +52,"<Z> MORE CHOICES",
1093 PS =1:PO% =PO(PS):A1% =26:GOSUB 40070:
EM$ =AN$: TM$ =AN$:GOSUB 40015:
PRINT@PO(PS),EM$;

1095 GOSUB 40500:IF A$ =CHR$(91) OR A$ =
CHR$(10) OR A$=CHR$(13) OR A$ =CHR$(8) OR
A$ =CHR$(9) THEN GOTO 1500

1096 GOTO 1095

'here is where you would call programs

1500 ‘'move the loca*’ .n of the highlight

1505 IF A$=CHR$:,1) AND PS=1 THEN GOTO 1095 -

1506 IF A$ =CHR$(10) AND PS =26 THEN GOTO 1095
1510 IF A$ =CHR$(91) THEN PRINT@PO(PS),TM$;:
PS =PS-1:GOTO 1550

1515 IF A$ =CHR$(10) THEN PRINT@PO(PS),TMS$;:
PS=PS+1:GOTO 1550

1517 IF A$=CHR$(8) THEN IF PS-9<1 THEN 1095
ELSE PRINT@PO(PS),TM$;:PS = PS-9:GOTO 1550
1519 IF A$=CHR$(9) THEN IF PS +9>26 THEN 1095
ELSE PRINT@PO(PS),TM$;:PS =PS +9: GOTO 1550
1520 IF A$ = CHR$(13) THEN A$ = CHR$(PS + 64):
CLS:RUN

1550 A1% =26:PO% =PO(PS):GOSUB 40070:

EMS$ =ANS$: TM$ = AN$:PRINT@PO(PS),EMS;:
GOSUB 3500:GOTO 1095

3500 'reverse video

3510 FOR XX =PQ% + 15360 TO PO% + 15360 + A1%-1
3520 POKE XX,PEEK(XX) + 128

3540 NEXT XX

3550 RETURN

3600 'reverse video ii

3610 Al = PEEK(VARPTR(S$) + 1) + 256*PEEK
(VARPTR(S$) +2)

‘'where is s$?

3620 Al =FNSI%(A!)

‘avoid overflow error

3630 DEFUSRO=A!

3640 J =USRO(XT)

'val in () is memory loc for beg of screen + position of
area to reverse

3650 RETURN

40015 B1% =0:FOR XX =1 TO LEN(EMS$):

A$ = CHR$(ASC(MID$(EM$,XX,1)) +128):
MID$(EM$.XX,1) =A$:IF A$ =CHR$(160) THEN

B1% =B1% + 1:GOTO 40016 ELSE B1% =0:

NEXT XX:RETURN

40016 IF B1% =1 THEN NEXT XX:RETURN

40017 EM$ =LEFT$(EM$,XX):EM$ = EM$ +
STRING$(26-XX,160):RETURN

40070 AN$ =" ":POKE VARPTR(AN$),A1%:

POKE VARPTR(ANS) + 2,INT(PO%/256) + 60:

POKE VARPTR(ANS$) + 1,PO%-INT(PO%/256)*256:
RETURN

40500 A$ =INKEYS$:IF A$ =

"THEN 40500:ELSE
RETURN .

TRS-80 Software from Hypersoft.

NEW ! PC-Three TRS-80 Model III Emulator !

PC-Three, new program from Hypersoft, lets you run LDOS 5.1-5.3,
TRSDOS 1.3, NEWDOS/80 V2, DOS-Plus 3.5 & MultiDOS on a PC, XT,
AT or compatible. PC-Three emulates a TRS-80 M3 with its Z80
Microprocessor and 64K memory. It supports the printer and serial ports
and most of the functions of the floppy disk controller. To use it you must
be the legal owner of a TRS-80 M3 DOS and either a copy of the
MODELA/III file (on TRSDOS 6.2) or a working TRS-80 M3 or 4.

Runs on PC, XT, AT & compatibles and laptops with at least 384K of
memory. ONLY emulates TRS-80 Model III.

Comes with a special version of PCXZ to transfer your disks to MSDOS. Depending on the type
of drives on your PC you may need access to a working TRS-80.

Price:: (Includes 1 free upgrade) Order #PC3 $109.95

Run Model 4 Software on a PC with PC-Four!

Run your favorite TRS-80 Model 4 programs on a PC!

PC-Four,a program makingyour PC or Compatible act like a 128K TRS-80
M4 complete with operating system, Z80 microprocessor, can run many
true M4 programs: ALDS, ALLWRITE, BASCOM, BASIC, C, COBOL,
EDAS, ELECTRIC WEBSTER, FED, FORTRAN, HARTForth, Little
Brother, MZAL, MULTI-BASIC, PFS FILE, PASCAL, Payroll, Power-
Mail, PROFILE, SUPERSCRIPSIT, TASMON, VISICALC, ZEUS, etc..
Runs on PC, PS/2, compatibles & laptops with at least 384K memory. ONLY emulates M4 mode
of M4. To use it you must transfer your old files to MSDOS disks using PCXZ or Hypercross.
Prices: Order #PC4 $79.95 alone, #PC4H $104.95 with Hypercross.
SX3PCM4, #PC4Z $119.95 with PCXZ. Available on 3.5" disk format

PCXZ reads TRS-80 disks on a PC, XT or AT

PC Cross-Zap (PCXZ), a utility to copy files to or from BASIC automat-
ically, no need to save in ASCII first. Also format & copy disks, explore,
read & write sector data, repair bad directories and much more. Supports:
all double density M1, 3 & 4 formats. Requires: PC, XT, AT or compatible.
You must have at least one 5-1/4" regular or high density drive and 256K
memory. Not for PS/2. Order:#PCXZ $79.95

READ CP/M, CoCO & PC disks on your TRS-80
Use HYPERCROSS to COPY files between TRS-80 disks & those from
many CP/M and IBM-PC type computers on your TRS-80 1, 3 or 4/4P.
FORMAT alien disks, read their directories, copy files to & from them,
copy directly from one alien disk to another. Converts TRS-80 BASIC to
MSDOS or CP/M as it copies, no need to save in ASCII first. Formats
supported: IBM-PCand MS-DOS inc. DOS 1.1,2.0- 3.2, Tandy 2000, single
& double sided. 3.5 & 5 inch. CP/M from Aardvark to Zorba. CoCo format
on XT+ version. HyperCross 3.0 PC reads popular MSDOS 1.1-3.2
formats. Order SX3PCM1, SX3PCM3 or SXPCM4c.cueeeveerennsensons $49.95
HyperCross XT/3.0 reads 90 different CP/M and PC formats. Order
SX3XTM1, SX3XTM3 or SX3XTM4 $89.95
HyperCross XT/3.0-Plus. Reads over 220 formats, including CoCo. Order
SX3XTM1 +, SX3XTM3+ OR SX3XTM4+ $129.95
Specify TRS-80 M1 (needs doubler), 3, 4/4P or MAX-80. Dual model
versions e.g. Mod 3/4 on one disk add $10 extra.

Other TRS-80 Programs

HYPERZAP 3.2G. Our ever popular TRS-80 utility for analyzing, copymg,
repairing and creating floppy disks of all kinds
MULTIDOS 2.1. New for 1988 for 1 or 3. $79. 64/80 for Mod 4(3).. $89 00
Mysterious Adventures - Set of 10 for M1, 3 or 4 (3) complete........$49.95
TASMON debug trace disassemble TASM1 TASM3 or TASMA4.....$49.95

TMDD Memory Disk Drive for NewDOS 80/Model 4 users............. $39.95
XAS68K 68000 Cross Assembler. SpecifyMod 1,3 0r4.........ccoouveruennnas $49.95
ZEUS 780 editor/Assembler for Model 1,301 4.........uocvevervcerrecnennanen $74.00

ZIPLOAD fastload ROMimage. DOS & RAMDISK on your 4P......$29.95

We have more ! Write or call for complete catalog.

HYPERSOFT

PO Box 51155, Raleigh, NC. 27609
Orders: 919 847-4779 8am-6pm. Support: 919 846-1637 6pm-11pm EST
MasterCard, VISA, COD, Checks, POs $3 for shipping. $5 - 2nd day

TRSTimes 2.3. - May/Jun 1989 - Page 9

GET HIGH PERFORMANCE
POWER WITH SUPERCHARGED
TRSDOS SYSTEM 1.5

Bob Rose reviews TRSDOS System 1.5. for Model 111/4

There comes a time when even
the most diehard NEWDOS/80
user, such as myself, will
find a Disk Operating System
that is superior to that which
they are currently using.

Gary Campbell of GRL Software, Kelowna, British
Columbia, Canada has released an upgrade to TRSDOS
1.3. It is called TRSDOS System 1.5. for Model Ill and 4
(in M3 mode). He has managed to take the much
maligned TRSDOS 1.3. system, rewriting, modifying and
upgrading it to such an extent that it is now a pleasure to
use.

INSTALLING AND USING THE SYSTEM

The software package comes on two disks. One con-
tains the System 1.5 data which will perform the upgrade
from TRSDOS 1.3. to SYSTEM 1.5.; the other is a
documentation disk containing files which, when sent to
the printer, will produce a neat 37 page USER MANUAL,
complete with a table of contents.

Also included in the package is a brief three page
"UPGRADING TO 1.5" installation manual. As a bonus,
GRL Software sends along 2 disks filled to the rim with a
variety of good public domain software - a nice touch!

The installation manual, unfortunately, is somewhat
vague. An experienced user should not have problems,
but it could cause a new TRS-80 user needless frustra-
tions, diminishing the pleasuresto come. It starts by telling
you what you will need to install the system:

A backup copy of a virgin TRSDOS 1.3 copied from
drive 0 to drive 1.

A data or system disk containing Basic/CMD.

A formatted disk that you will label System 1.5 Backup.

Easy to use: * kK
Good docs: * %
Bug free: *k ok ok
Does the job: *kokok ok

TRSTimes 2.3. - May/Jun 1989 - Page 10

You are then instructed to place the System 1.5 disk in

drive 1 and type "UPGRADE/NOW".

Once you've gotten this far the upgrade process is
quite nice, as it basically takes over from here.

SYSTEM 1.5 FEATURES

Listed below are just a few of the many enhancements
found in SYSTEM 1.5. Some are modifications to existing
commands, others are brandnew features adding the
dimension and depth sorely lacking in TRSDOS 1.3.

BACKUP - long the nemesis of TRS-80 users wanting
to back up their disks, this command has been changed
to NOT REQUIRING A MASTER PASSWORD and NOT
VERIFYING SECTORS during FORMAT. This results in a
much easier and speedier process.

Backup does require the double sided driver
(DBSIDE) to be installed , or it will not work.

BOOT - SYSTEM 1.5 has added the BOOT command
found on other DOSes. Now you can 'software reboot’
directly from DOS or Basic.

CAT - many programs displaying short directories
have been written, taking up disk space. These are now
passe. SYSTEM 1.5. includes CAT as a library command.
It displays all files, including system files.

DBSIDE - a new library command that extends DOS’
power to take advantage of double sided drives. TRSDOS
was never able to use anything other than a single sided
disk. This enhancement, providing you have double sided
drives, allows you to use the back side of a disk as a
separate drive, thus giving you the possibillity of having 8
single sided drives hooked on to the system - more
storage than ever before.

| did find a slight problem with this feature in that, if side
two of drive 0 is not formatted, the system will sit on the
back side of drive 0 (called drive 4) for a while, and then
abort with an error message. This will occur every time
you are loading a file that does not exist on drive 0, 1, 2,
or 3. In all fairness, any other operating system will do the
exact same thing if it encounters an unformatted diskette
in its search for a program to load. Formatting the back
sides of your diskettes is something you will just have to
remember. But then, isn’t the fact that you can use the

back sides of the diskettes why you are interested in the
system in the first place?

DEBUG - never before did this utility allow access to
the DOS portion of RAM. It has now been improved to
display and modify all RAM addresses

DIR - this much used command is changed to prompt
youto hit <ENTER > whenthe screenis filled. The syntax
has been relaxed, making the delimeter (the colon) op-
tional, thus making it compatible with most of the other
Model Il and 4 DOSes.

Example: DIR 1

(I found this to be one of the best time saving features
in the system.)

LIB - has been expanded to include BOOT - CAT -
DBSIDE - SWAP AND SYSTEM.

CLS - the command to erase the screen from DOS has
been removed to make space for some of the enhance-
ments. Who needs it when we have the < CLEAR > key.

SWAP - another new command that is very useful. On
occassion certain software, such as SCRIPSIT, will balk if
you tell it that your data is stored on a drive numbered
higher than 3. The swap command allows you to bypass
this limitation by swapping one drive number for another.
For example, typing the following

SWAP (0,4) <ENTER >

SWAP (1,5) <ENTER>

SWAP (2,6) <ENTER>

SWAP (3,7) <ENTER>
will make DOS recognize the back sides of the disks as
being in drive 0,1,2, and 3. The front sides will be recog-
nized as drive 4,5,6, and 7. With a little ingenuity you can
have SCRIPSIT in drive 0 along with 7 data disks, giving
you almost one megabyte of on-line storage. Now you
have no excuse for not finishing that book.

Before covering the SYSTEM command, let me briefly
mention some other extremely nice features:

Upper and lower case are now supported in DOS
(a very good addition - having to remember always to be
in upper case was annoying.)

The periods have been removed from DOS Ready
(not an earthshaking change.)

PURGE no longer requires a password
(very nice, but potentially dangerous for new users.)

FORMAT now adds DIR/SYS and BOOT/SYS to disk
and asks you whether or not you want to verify sectors
(good - | like having choices.)

Errors are now displayed as actual error messages
rather than numbers
(very good - never could remember the numbers.)

Bank storage is now available for Mod 4 users; also
4mhz speed is supported
(Mod 4 users running SYSTEM 1.5. in Mod Ill mode can
zip right along. You will be amazed how fast TRSDOS is
now.)

The date and time are now displayed as mm/dd/yy
rather then just mm/yy
(I could have lived without that, but more directory infor-
mation is like chicken soup - it doesn’t hurt.)

The most powerful aspect of the program is the SYS-
TEM Driver. This, not unlike those of NEWDOS/80, LDOS
and TRSDOS 6., will allow you to customize the DOS and
then save the preferences with the SYSTEM CONFIG
command. Once this is done, your config file will load
every time you boot up. If you do not wish to load the
config file, opting for the systems defaults, you can hold
down the right shift key at boot up to disable it.

The SYSTEM command has many options that will
make life easier for most users. My favorite is the SYSTEM
(DATE =Y/N) option. Here you can decide whether or not
you wish to answer a date prompt at boot-up. Entering
the date in TRSDOS 1.3. was mandatory.

The ability to copy files from other DOSes back into
TRSDOS is available with SYSTEM (CPY parameters)
command.

The cursor character can be defined with SYSTEM
(CURSOR ="hexnum’).

The keyboard driver has many new and exciting op-
tions, such as key click, the execution of macros from
DOS, entering graphic characters directly, special control
keys and much more. ‘

The new printer driver also gives added abilities. Not
only do you now have a spooler, you can also add or
ignore line feeds, set top and bottom margins, set number
of lines per page, set page width, enable or disable
type-ahead, and set page numbers, all directly from the
DOS command line.

Anotherfeature which must be mentioned, is HLPGEN.
This converts an ASCII file to TRSDOS 6. /HLP file format.
The HLPGEN P parameter is immensely useful. it will
actually print the ASCII file as a manual, complete with
page headings, page numbers, margins and formatted
text.

CONCLUSION

SYSTEM 1.5. is an exceptional piece of software. It
really makes using TRSDOS worthwhile. (Nota mean feat
to make a NEWDOS/80 fan admit to this.) My enthusiasm
for the program, however, stops with the written
documentation. The manual is only adequate, briefly
covering installation and usage. | think the author as-
sumes that if you are using a TRS-80, you can probably
figure out how to use 1.5. without the manual.

The bottom line: | think System 1.5 deserves a spot in
any TRS-80 users software library.

TRSTimes 2.3. - May/Jun 1989 - Page 11

ROTATS
a gams for Modsl I & I

by Lance Wolstrup

I have always enjoyed games and puzzles. As a kid |
played Monopoly and put together Jigsaw puzzles. As an
adult, it is Chess and the biggest puzzle of them all,
computer programming. These days most of my
programs are of the business variety or utilities, but | still
manage to throw together an occassional game or two.

ROTATE is a combination game and puzzle, a simula-
tion of the old plastic toy with sliding pieces numbered 1
to 15 or lettered A-P. In the old days you could buy this
plastic game at your neighborhood 7/11, or in the junk
section of any toy store, for about 25 cents. Now you can
type in the program and run it on your $1000 computer
(isn’t technology wonderful?)

Seriously, ROTATE is fun and mentally stimulating. It
certainly isn’'t easy. The object of the game is to place the
letters A-P, which have been positioned randomly on a
4x4 board, in alphabetical order by rotating any four
letters clockwise one position. The board may look some-
thing like this:

CFMDO
ABD I
HEGP
NJ KL
Now if you can imagine the board positions as being
123 4
5 67 8
9 1011 12
13 1415 16

you can see that rotating position 5 would move A up
to position 1, C to position 2, F to position 6, and B to
position 5. The board would now look like this:

ACMDO
|

P
L

ZI W@
«“mmm
MO

Notethatlegal movesare 1,2,3,5,6,7,9,10 & 11. In other
words, you cannot rotate 4,8,12,13,14,15, & 16

To make the game a little easier to solve, you are
allowed one special move per game. This move will ex-
change two adjacent pieces and the legal moves are
1,2,3,5,6,7,9,10,11,13,14 & 15

You can abort a game in progress at any time by
pressing <Q> <ENTER>. This will bring you back to
the main menu from where you can choose to play a new
game or quit.

TRSTimes 2.3. - May/Jun 1989 - Page 12

ROTATE, written in Basic, employs a 31 byte machine
language routine to speedily jazz up parts of the program.
The routine simulates an advanced version of the Basic
STRING$ command; that is, it will display a character a
number of times horizontally. The advanced part is that it
will also display the character a number of times vertical-
ly, lightning fast!

To make it more versatile, the routine is written to
accept five parameters before being called. Variable V
holds the vertical position of the cursor, variable H is the
horizontal position, variable CH contains the character to
be displayed, variable L holds the number of times the
character in CH should be displayed horizontally, and
finally, variable W determines how many times the char-
acter from CH should be displayed vertically. Since this
routine is used often, the best way to explain it is to go
through the program line by line.

Line 5 jJumps over the subroutines to fine 100, which is
the beginning of the actual program.

Line 100 clears string space and sets all variables,
except A, as integers.

Line 110 dimensions two arrays, B() and B1(). Each will
hold subscript 1 through 16 (I hardly ever use subscript
0). B() will contain the playing pieces and B1() will make
sure we don’t produce duplicate playing pieces.

Line 120 goes to the subroutine in line 20 where the
machine language routine is POKEd into ML$.

Line 130 uses the ML routine to completely white-out
the screen. Variables V and H are both set to 0 (0,0 is the
top left corner of the screen), L =64 (horizontal length of
the screen), W=16 (vertical width of the screen) and
CH =191 which is the all-white graphic block. Going tothe
subroutine inline 40, V and H are converted into a number
representing the actual video RAM memory location. This
number is further broken down into two numbers (LSB
and MSB) and stored in variables A1 and A2. A quick
excursion to the subroutine in line 30 finds the actual
memory location of the first byte of our machine language
routine. This value is stored in variable A. Now knowing
where the routine is, we return to the line 40 subroutine
and POKE the LSB of the cursor position into memory
location A + 5, the MSB of the cursor position into memory
location A +6, the vertical width into memory location
A+11, the horizontal length into memory location A + 15
and the value of the character we wish to replicate into
memory location A+17. Having done that, we tell the
program that our ML routine starts at memory location A
and proceed to execute it. Then we return from the sub-
routine.

Line 140 sets variable S=0. This is done to create a
split screen which displays the program title and credits.

Since we will later display this at a different place on the
screen, it is written as a subroutine (line 60), with variable
- S as the offset to the horizontal position of the cursor.

Lines 150-170 sets up the menu. Alitext to be displayed
is stored in A$, then routed to the subroutine in line 50
where the screen location is determined according to V
and H and then sent to the the screen with the PRINT@
statement.

Line 180 sets up all the parameters, except CH, to
create a flashy display on the right hand half of the screen.

Line 190 waits for a keystroke to choose one of the
menu items. As long as an appropriate key is not hit,
variable CH is given a random graphic character value
and the ML routine is executed. Not only does the graphic
display jazz up the menu, since we execute the RND
statement an uncountable amout of times, it also insures
that the game will be truly random.

Line 200 checks if we want to quit. If so, a rather unique
method of clearing the screen is used. Again, this is done
by employing the ML routine.

Line 210 checks if we want to see the instructions. If so,
we go to the subroutine in line 680 and do just that.

Line 220 checks if we have chosen to play the game,
in which case we jump to line 230. Otherwise the program
goes back to the INKEY$ routine in line 180.

Line 230 initializes the moves to 0, sets two flags
handling the exchange move (EF & FF), then erases the
left half of the display and moves the title & credits over
to the right side.

Lines 240-280 shuffles the playing pieces. Line 270
makes sure that there will be no duplicates.

Lines 290-340 displays the playing pieces on the
screen.

Line 350 makes a quick detour to the subroutine in line
80 where a flag (FL) is set if the pieces are in alphabetical
order. If the flag is set upon return, the game starts out in
order (very unlikely, but theoretically it could happen), so
we go back to line 240 for a re-shuffle.

Lines 360-410 sets up the scoreboard, the mini-help
screen and the prompt to make a move.

Line 420 sets the position of the cursor, the length and
width of the allowable input, and then erases any potential
characters at that location. We then proceed to the
INKEY$ subroutine in line 70 which returns with the char-
acter(s) in I$.

Line 430 checks if we have chosento quit or exchange.
If quit, we go to the exit routine in line 130. If exchange,
we go to line 440. If neither, the program converts the
string to a numeric and jumps to line 520.

Line 440 checks if the exchange flag is set. If so, we
allow an exchange; otherwise go back and prompt for an
input.

Line 450 turns off the exchange flag to indicate no
further exchanges are allowed. The secondary exchange
flag is setto indicate that only two pieces are to be moved.
The prompt is replaced with the last line of numbers that
can be exchanged.

Line 460 displays the prompt to make the exchange.

Line 470 erases any potential characters at the input
field, and then goes on to the INKEY$ subroutine.

Line 480 makes checks to make sure the chosen ex-
change is legal.

Line 490 increments and displays the moves. The ex-
change is then made.

Line 500 erases the exchange prompt, as well as the
last line of allowable exchange moves. The regular prompt
is then displayed.

Line 510 jumps over the regular rotate routine to 550.

Line 520 is the normal rotate routine. We check if the
input is legal. If not, we go back to line 420.

Line 530 increments and displays the moves.

Line 540 rotates the pieces.

Lines 550-570 determines the row(s) of the moved (or
exchanged) pieces. The first piece is then displayed.

Line 580 displays the second piece. If the secondary
exchange flag is set, we skip displaying the third and fouth
piece (they are already displayed) by jumping up to 610.

Lines 590-600 displays the third and fourth pieces of
the rotate move.

Line 610 checks the subroutine in line 80 to see if the
pieces are now in alphabetical order.

Line 620 determines if we have won. If the flag (FL)
returns from the subroutine set, we go on to the win
routine in line 630; otherwise we go back to line 420 to
make the next move.

Lines 630-670 contain the win routine. A graphic dis-
play is enabled, and we are prompted to play another
game.

Lines 630-940 hold the game instructions.

TRSTimes 2.3. - May/Jun 1989 - Page 13

ROTATE/BAS

1'ROTATE - MODEL | & Iit
2'(c) 1989 Lance Wolstrup
3’ apuzzle game

4 L]

5GOTO 100 »

10 DATA 33,1,60,45,17,1,1,21,29,25,6,1,197,229,6,1,54,1,
35,16,251,225,17,64,1,21,25,193, 16,238,201

19’ ML$ has 31 periods

20 MLS="...ccovrrtrrrrrrrrerrenn "
21 GOSUB 30:FOR X=0 TO 30:READ A0:POKE
A+ X,AD:NEXT:RETURN

30 A= PEEK(VARPTR(MLS) + 2)*256+ PEEK(VARPTR(MLS) + 1):

IF A>32767 THEN A=A-65536

31 RETURN

40 A0=V*64 + H +257:A2=INT (AD/256):A1=A0-A2*256:
GOSUB 30:POKE A+5,A1:POKE A+6,A2:POKE A+ 11,W:
POKE A+15,L:POKE A+ 17,CH:DEF USR0=A:A3=USR0(0):
RETURN

50 LO=V*64+H

51 PRINT@LO,A$;:RETURN

60 V=1:H=8+1:L=30:W=14:CH=32:GOSUB 40

61 V=2:H=S+7:A$="TRSTimes Presents:":GOSUB 50
62V=3:H=S+10:A$="ROTATE"GOSUB 50

63 V=4:H=S+5:A%="A game of mental skill":GOSUB 50
64 V=5:H=S+4:A$="(c) 1989 Lance Wolstrup":GOSUB 50
65 V=6:H=8+1:L=30:W=1:CH=131:GOSUB 40:RETURN
70 A$=""CH=46:GOSUB 40:PO=V*64+H:LE=0
711$=INKEY$:IF I$="" OR I$=CHR$(31) THEN 71

72 IF 1$=CHR$(13) THEN I$=A$:RETURN

73 IF I$=CHR$(9) OR I$=CHR$(10) THEN 71

74 IF 1$=CHR$(8) AND LE=0 THEN 71

75 IF 1$=CHR$(8) THEN LE =LE-1:PRINT@PO + LE,CHR$(46);:

A$=LEFT$(A$,LE):GOTO 71

76 IF L=LE THEN 71

77 PRINT@PO + LE,I$;:A$=A$+I$:LE=LE+1:GOTO 71
80 FL=1:FORX=65TO 80

81 IF B(X-64) < >X THEN FL=0:X=80

82 NEXT:RETURN

100 CLEAR 2500:DEFINT B-Z

110 DIM B(16),B1(16)

120 GOSUB 20

130 V=0:H=0:L=64:W=16:CH=191:GOSUB 40
140 S=0:GOSUB 60

150 V=8:H=6:A$="(P) = Play game":GOSUB 50
160 V=10:A$="(l) = instructions":GOSUB 50
170 V=12:A$="(Q) = Quit".GOSUB 50

180 V=1:H=33:L=30:W=14

190 I1$=INKEY$:IF I1$=""THEN CH=RND(63) + 129: GOSUB 40:

GOTO 180

200 IF 1$="Q" OR I$="g" THEN H=32:L=32:W=1:CH=32;
FORV=15TO 0 STEP-1:GOSUB 40:NEXT:V=0:L=1:W=16:
FORH=0TO 31:GOSUB 40:NEXT:END

210 IF1$="I"OR I$="i"THEN V=8:H=1:L=30:W=6:CH=32:
GOSUB 40:V=1:H=33:W=14:GOSUB 40:GOSUB 680:
GOTO 150

220 IF 1$="P" OR I$="p" THEN 230 ELSE 180

230 M=0:EF=1:FF=0:V=1:H=1:L=30:W=14:CH=32;
GOSUB 40:5=32:GOSUB 60

240 V=2:H=10:A$="Shuffling...".:GOSUB 50

250 FOR X=1TO 16:B1(X)=1:NEXT

260 FORX=1TO 16

270 N=RND(16) +64:IF B1(N-64) =1 THEN B(X)=N:

TRSTimes 2.3. - May/Jun 1989 - Page 14

B1(N-64) =0 ELSE 270

280 NEXT

290 V=2:H=1:L=30:W=1.CH=32:GOSUR 40

300 L=22W=2:X=1

310 FORV=3TO 12 STEP 3

320 FORH=7TO22STEP 5

330 CH=B(X):GOSUB 40:X=X+1

340 NEXT:NEXT

350 GOSUB 80:IF FL. THEN 240

360 V=7:H=42:A%$="Moves: ".GOSUB 50:

PRINT USING"###";M;

370 V=9:H=34:A%$="Legal moves: 1 2 3":GOSUB 50

380 V=10:H=48:A%="5 6 7".GOSUB 50

390V=11:A$="9 10 11":GOSUB 50

400 V=12:H=34:A$="Exchange = X".GOSUB 50

410 V=14:H=34:A$="Enter your move, please: :GOSUB 50
420V=14:H=59:L =2:W=1:CH=32:GOSUB 40:GOSUB 70
430 IF INSTR(I$,"Q") OR INSTR(I$,"g") THEN 130 ELSE IF
INSTR(I$,"X") OR INSTR(I$,"x") THEN 440 ELSE I=VAL(I$):
GOTO 520

440 IF EF THEN 450 ELSE 420

450 EF =0:FF=1:V=12:H=34:L.=122W=1:CH=32:GOSUB 40:
H=47:A%$="13 14 15".GOSUB 50:V=14:H=34:=27:
GOSUB 40

460 V= 14:H=34:A%$="Enter your exchange: ":GOSUB 50
470 V=14:H=55:L=2:W=1:CH=32: GOSUB 40:GOSUB 70
480 |=VAL(I$):IF I<10R I>15 OR I/4=INT(l/4) THEN 480
490 M=M+1:V=7:H=49:A$=""GOSUB 50:PRINT
USING"###";M;:TP=B(1):B()=B(I+1):B(I+ 1)=TP

500 V=12:H=34:L=29:W=1:CH=32:GOSUB 40:
V=14:H=34:L=29:W=1:CH=32:GOSUB 40:

A$="Enter your move, please: ";GOSUB 50

510 GOTO 550

520 |=VAL(I$):IF 1<1 OR1>11 OR/4=INT{(i/4) THEN 420
530 M=M+1:V=7:H=49:A$=""GOSUB 50:

PRINT USING"###";M;

540 TP=B():B(l) =B(1+4):B(1+4)=B(1+5):B(1+5)=B(I+1):
B(1+1)=TP

550 J=1

560 IF J>4 THEN J=J-4:GOTO 560

570 V=3*(INT(I/4)+ 1):H=7+5*(J-1):L=2:W=2:CH=B(l):
GOSuB 40

580 H=H+5:CH=B(l+1):GOSUB 40:IF FF THEN FF=0:
GOTO 610

590 V=V+3:CH=B(l+5):GOSUB 40

600 H=H-5:CH=B(I+4):GOSUB 40

610 GOSUB 80

620 IF FL THEN 630 ELSE 420

630 V=8:H=34:L=29:W=7:CH=32:GOSUB 40

640 V=9:H=41:A$="Puzzle solved":GOSUB 50

650 V=13:H=40:A%$="Try again (Y/N) “:GOSUB 50

660 1$=INKEY$:IF I$=""THEN V=3:H=2:L=4:W=11:
CH=RND(63) + 128:GOSUB 40:H=26:GOSUB 40:GOTO 660
670 IF I$="Y"OR I$="y" THEN 230 ELSE IF I$="N"OR I$="n"
THEN 1$="Q":GOTO 200

680 V=2:H=34:A%$="The object of ROTATE is to":GOSUB 50
690 V=3:A$="put the letters A-O in alpha-":GOSUB 50

700 V=4:A$="betical order. This is done":GOSUB 50

710 V="5:A8$="by rotating groups of four":GOSUB 50

720 V=6:A$="letters clockwise one posit-":GOSUB 50

730 V=7:A$="ion. The letters are number-":GOSUB 50

740 V=8:A%$="ed 1-16 as shown below.":GOSUB 50

750 V=9:A$="1 2 3 4 However, only":GOSUB 50
760V=10:A%$="5 6 7 8 the numbers".GOSUB 50
770V=11:A$="910 1112 1,2,3,5,6,7:GOSUB 50

780V=12:A$="13141516 9,10 & 11 are"GOSUB 50
790 V=13:H=48:A$="valid moves.".GOSUB 50

800 V=14:H=35:A$="Press any key to continue":GOSUB 50
810 I$=INKEY$:IF I$=""THEN 810

820 V=2:H=34:L=29:W=12:CH=32:GOSUB 40

830 V=2:A$="To make the puzzle easier to":GOSUB 50
840 V=3:A$="solve you can exchange any 2":GOSUB 50
850 V=4:A$="adjacent letters. This move":GOSUB 50
860 V=>5:A$="is only allowed once, so be":GOSUB 50
870 V=6:A$="careful not to use it too":GOSUB 50

880 V=7:A$="early. As with other moves,":GOSUB 50
890 V=8:A$="a valid exchange can be:":GOSUB 50

900 V=9:A%$="1,2,3,5,6,7,9,10 & 11.".GOSUB 50

910 V=10:A$="Press <Q> atany time to*:GOSUB 50
920 V= 11:A$="abort the current game and":GOSUB 50
930 V=12:A$="return to the menu.":GOSUB 50

940 I$=INKEY$:IF 1$=""THEN 940 ELSE RETURN

Source code for the ML routine

00100 LD HL,15361 ;start of video +1

00110 DEC L ;now start of video - done
00120 ;to avoid byte of O0H.
00130 LD DE,0101H ;bytes to be POKEd with
00140 ;value of screen pos. +257.
00150 ;done to avoid potential
00160 ;bytes of 00H.

00170 DEC D ;now adjust MSB

00180 DEC E ;and adjust LSB

00190 ADD HL,DE ;HL now points to top
00200 ;left corner of box

00210 LD B,1 ;height of box - actual
00220 ;value POKEd from BASIC
00230 LOOP1PUSH BC ;save heigth counter
00240 PUSH HL ;save screen position
00250 LD B,1 ;length of box - actual
00260 ;value POKEd from BASIC
00270 LOOP2 LD (HD),1 ;chr to screen - will be
00280 ;POKEd from BASIC
00290 INC HL ;next screen position
00300 DJNZ LOOP2 ;go do it again

00310 POP HL ;restore screen position
00320 LD DE,0140H ;DE=320 (256+64)

00330 DEC D ;subtract 256 - done to
00340 ;avoid byte of 00H

00350 ADD HL,DE ;HL now points to the
00360 ;next line

00370 POP BC ;restore height counter
00380 DINZ LOOP1 ;go do it again

00390 RET ;return to program

The inspiration for this program must be credited to
David Ahl, editor of "More Basic Computer Games" from
Creative Computing. He wrote the first version of Rotate
and, though this is a complete rewrite, had ! not thumbed
through his book, | would have never thought of this
game.

MORE GOODIES FOR YOUR TRS-80
R |

Get the latest issue of TRSLINK

TRSLINK is the new disk-based magazine dedicated to
providing continuing information for the TRS-80.
A new issue is published monthly, featuring
Public Domain programs, "Shareware", articles,
hints & tips, nationwide ads, letters, and more.
TRSLINK can be obtained from your local
TRS-80 BBS, or download it directly from:

8/n/1 #4
(215) 848-5728
(Philadelphia, PA.)
Sysop: Luis Garcia-Barrio

Believe it or not:

TRSLINK is FREE

NEW PROGRAMS

from the Valley TRS-80 Hackers’ Group
public domain library
for Model I, il & 4

Send SASE for annotated list
Sample disk $5.00 (US)

VTHG

BOX 9747
N. HOLLYWOOD, CA. 91609

SUPPORT for your TRS-80

THE ONLY MONTHLY PUBLICATION THAT
SUPPORTS YOUR MODEL |, Il 4, 4P & 4D

CONCENTRATION IS ON THE USER APPLICATION
OF PROGRAMS, SOURCES OF PRODUCTS,
PRODUCT REVIEWS, FEED BACK LOOP AND
NEWS ITEMS FOR THE TRS-80 USER

SUBSCRIPTION RATE: $24.00

Comguter News 80

.0. Box 680

Casper, Wyoming 82602-0680
(307) 265-6483

TRSTimes 2.3. - May/Jun 1989 - Page 15

A Tale of Two File Formats

How to convert Macintosh graphics for use
with your TRS-80

by Ben Mesander

| like to do computer graphics, so it might seem odd
that | own a TRS-80. However, | have found that if | am
pusistant enough, | can do almost anything on my TRS-
80. This program allows me to convert graphics created
on Apple Macintosh computers to a TRS-80 format that |
can edit and print out.

My program, MAC2PWR/C, requires that you own the
Powerdot program available from Powersoft. This is a
great program that allows creation of huge high-resolu-
tion graphic files on your TRS-80. Powerdot does not need
a high-resolution graphics board, because it uses the
screen as a scrolling window on a large graphics page.
Graphics files may be larger than memory - up to the size
of your disks. Powerdot runs on model 1, 3, and 4 in 3
mode, as well as LOBO, PMC, and LNW computers

MAC2PWR is written in the small C language on a
model 1 running NEWDOS/80 V2.0 with my own C com-
piler, but it should not be very hard to convett it to other
operating systems and compilers - but it is not trivial
either. | believe LDOS users have a compiler called LC that
should work, Misosys sells a C compiler, and Alcor also
made C compilers for the 1,3, and 4. There is a public-
domain compiler from the Valley TRS-80 Hackers’ Group
(VTHG) for the model 3 called ZC that should work, but
my program will require quite a bit of modification to work
with it. MAC2PWR pretty much sticks to the letter of the
CP/M and MSDOS small C standards.

Macintosh disks cannot be read on a TRS-80, so the
graphic files must be downloaded from a BBS. The ones
you are looking for are fairly common, and usually have
the extension .MAC on MSDOS boards. Others may call
them ReadMac files. This program does not seem to work
on all MacPaint graphics, but out of the ten | have tried it
on, only one has failed to convert properly.

MacPaint files are stored in a compressed format,
because otherwise the files would be very large. A con-
version program first must skip the first 512 bytes of the
Macintosh file. If the 513th byte of the file is a zero, skip
an additional 128 bytes. Now the file is positioned at the
beginning of the dot data, which consists of a bit map 576

System requirements:

Model |, lil, 4 (Il mode) - NEWDOS/80 v2.
POWERDOT program from POWERSOFT
a C compiler (small C is OK.)

TRSTimes 2.3. - May/Jun 1989 - Page 16

pixels wide by 720 pixels tall. Each line is compressed in
a format that is best described by example:

First there is a byte which specifies whether or not the
data is packed, and is also the count byte. It is a negative
number if packed (i.e. the high bit is set). If the high bit is
set, then that complete byte is a two’s complement num-
ber that tells you how many bytes were packed. If it is a
positive number, then it is simply a zero-based count of
how many discrete data bytes there are. Consider the
following example (all in hexadecimal):

Unpacked data: AA AA AA 80 00 2A AA AA AA AA 80
00 2A 22 AA AA AA AA AA AA AA AA AA AA

After being packed by the Mac program MacPaint:
FE AA; (-(-2) +1) = 3 bytes of pattern AA Hex
028000 2A; (2) +1 = 3 bytes of discrete data

FD AA; (-(-3) + 1) = 4 bytes of pattern AA
038000 2A 22; (3)+1 = 4 bytes of discrete data
F7 AA ; (-(-9) + 1) = 10 bytes of pattern AA

or: FE AA 02 80 00 2A FD AA 03 80 00 2A F7 AA
(note the savings from the unpacked data!)

The Powerdot graphics file format is based on the
TRS-80 graphics characters. The first two bytes of a file
are the width of the file in characters - remember each
character is two pixels wide, so our width will be 576 / 2
= 288 (120 Hex). The bytes are in LSB, MSB order so the
first two bytes of the file will be 2001 (Hex). The minumum
width is 64 decimal which is the width of the screen. Next
there is a comment field of 200 bytes. There may be a text
string in this field terminated with a 0D hex (carriage
return). Next there is a 54 byte unused area before the
start of dot data, which begins on the second sector of
the file (2 + 200 + 54 = 256). The dot data is stored as
TRS-80 graphics characters until the end of file. A con-
verted Macint osh file takes about 69K of disk space, so
be sure you have enough!

To compile the conversion program with my small C
compiler, issue the following commands:

cc -lop mac2pwr/c mac2pwr/mac
m80 mac2pwr, =mac2pwr
180 mac2pwr,clib-s,mac2pwr-n,-e

To run the program type:
mac2pwr macintosh_file_name powerdot_file_name

The program will open the files and ask you for the
message to insert in the Powerdot header. After that, it will
unpack the Macintosh file line by line and convert it to
Powerdot format. It will tell you what graphic line it is
currently working on. When it reaches line 720, conver-
sion is done, and the program exits to DOS.

You can then edit the files with Powerdot or print them
out. The two illustrations in this article show converted
Macintosh graphics printed out with Powerdot.

Powerdot is from:

Powersoft

17060 Dallas Parkway, Suite 114
Dallas, Texas 75248

Powerdot is a copyright of Powersoft.

MacAnything (except for MacDonald'’s) is a copyright of
the Apple computer Company.

MAC2PWR/C

*
convert MacPaint/MacBinary format paint files to Powerdot
format - Ben Mesander

*/

#include "stdio/h"
#define BEGIN 0 /* cseek from begin of file */
#define CURRENT 1 /* cseek from current point in file */
#define MACWIDE 576 /* width of mac file */
#define MACBYTE 72 /* 72 bytes per line */
#define MACLEN 720 /*length of mac file */
#define MACHDR 512 /* length of mac header */
#define MACBIN 128 /* length of addtnl padding for Mac-
Binary */
#define ISCOUNT 0x0080 /* mask to see if Mac file counter
*

#define TEXTLEN 200 /* length of text in pwr header */
#define PWRHDR 256 /* length of pwrdot header */

#define PWRWIDE MACWIDE/2 /* width of powerdot file
*/
main(argc,argv)
int argc;
int *argv;
FILE ifd,ofd; /*input & output file descriptors */

printf("mac2pwr/c 1.0 Ben Mesander\n");
if (arge 1= 3) {
fprintf(stderr,"usage:\nmac2dot <mac _file <power
dot _file>");
exit(1);

ifd = efopen(*(argv+1),"r");
ofd = efopen(*(argv+2),"w");

printf("Creating Powerdot header.\n");
pwr_header(ofd); /* make powerdot header */
printf("Reading MacPaint header.\n");

mac_header(ifd); /* skip Macpaint header */
printf("Converting graphic...\n");
convert(ifd,ofd); /* convert bit maps */

*,
pwr_header creates the powerdot header record

*/

void pwr_header(fd)

FILE fd;

t
int i
char *buf;

buf=memory(TEXTLEN);

printf("Enter the message to put in Powerdot header: ");

fgets (buf, TEXTLEN,stdin);

/* write out 2 byte Powerdot width field */
i = PWRWIDE; /* width of powerdot file */
write(fd, &i, 2); /* write out 2 byte length */

/* write out header string */
write(fd, buf, strlen(buf));

/* now pad to 256 bytes total length */
for (i=strlen(buf) +2; i <= PWRHDR-1; i+ +) {
fputc(\0', fd);

if (ferror(fd)) {
fprintf(stderr,"error writing Powerdot header\n");
exit(1);

}

free(buf);
}
/*
mac_header skips over the MacPaint header

*/

void mac_header(fd)

FILE fd;
{

char c;

cseek(fd, MACHDR, BEGIN); /* skip over mac header

*

read(fd, &c, 1); /* get current byte */
if (c==0) {
cseek(fd, MACHDR+MACBIN, BEGIN); /* pack-
ed with Macbinary */
else {
cseek(fd, MACHDR, BEGIN); /* not Mac-
Binaried */
}

if (ferror(fd)) {
fprintf(stderr,"Error skipping Mac header\n");
exit(1);

TRSTim2s 2.3. - May/Jun 1989 - Page 17

}

x

convert(ifd,ofd) converts the MacPaint file positioned at the
start of dot data on fd "ifd" to the Powerdot file positioned to
the start of dot data on fd “ofd"

*/

void convert(ifd,ofd)

FILE
{

ifd,ofd;

char *ibuf,*obuf;
int x,y,macline;

obuf = memory(PWRWIDE); /* allocate powerdot buffer

*/
pad(obuf,0x0080,PWRWIDE); /* clear buffer */
y=0; /* graphics line in powerdot file */
X = 0; /* graphics column in powerdot file */
ibuf = memory(MACBYTE); /* allocate MacPaint buffer */
auxbuf(ifd,4000); /* buffer input */
auxbuf(ofd,4000); /* and output */
_/*convert */
for (macline=1; macline < = MACLEN; macline+ +) {
fprintf(stderr,"Now processing line: %d\n",macline);
unpackbits(ifd,ibuf); /* unpack a line of MacPaint file */
/* transfer a line */
for (x=0; x <= MACWIDE-1; x+ +) {
if (mactest(x,ibuf)) {
pwrset(x,y,obuf);
}
/* if Powerdot buffer full, dump it */
it (y==2) {
write(ofd, obuf, PWRWIDE);
if (ferror(ofd)) {
fprintf(stderr,
"Error writing Powerdot dot data");
exit(1);
pad(obuf,0x0080,PWRWIDE);
}
y = (y+1)%3; /*incrementy pointer */
}
}
/*
unpackbits unpacks a line of the Macpaint file at a time
*/
void unpackbits(fd,buf)
FILE f{d;
char *buf;

int numbytes;

/* number of unpacked bytes */
int n; :

TRSTimes 2.3. - May/Jun 1989 - Page 18

char c;
char *curpos;

/*input char */

curpos = buf;
numbytes = 0;
while (numbytes MACBYTE - 1) {
read(fd, &c, 1); /* get character */

/* literal */
if (!(c & ISCOUNT)) {
n=c+1; /* number of bytes to xfer */

read(fd, curpos, n);
curpos +=n; /*update line ptr */
numbytes + = n; /* update number of bytes */

/* repeat count */

elseif (c 1= ISCOUNT) {
n=(-c)+1; /*number of bytes to xfer */
read(fd, &c, 1); /* getrep byte */
pad(curpos, ¢, n);
curpos + = n;
numbytes + = n;

}* if ¢ = ISCOUNT, nop */
}
if (ferror(fd)) {

fprintf(stderr,"Error reading MacPaint dot data");
exit(1);

*,

mactest tests to see if a bit is set in the MacPaint buffer

*/
mactest(x,buf)
int x;
char *buf;
int mask;
mask = 0x0080 > (x &7); /* bit within byte */

return (*(buf + (x > 3)) & mask);

*,

pwrset(x,y,buf) sets a point in the powerdot file

*/

void pwrset(x,y,buf)

int xv;
char *buf;

{

int mask;
mask = 0x0001 < (({y < 1) + (x&1));

*buf + (x > 1)} | = mask;

}

x,
memory - allocates a block of memory, returns a pointer,

checks for errors

*/

memory(nbr)
int nbr;

{

char *ptr;

if ((ptr = malloc(nbr)) == NULL) {
tprintf(stderr,"out of memory.");
exit(1);

return (ptr);

*
open a file and abort on an |/0 error

*/

efopen(file,mode)
char *file;
char *mode;
{
FILE fd;
if ((fd="fopen(file, mode)) == NULL) {
fprintf(stderr,"\nError opening: %s in mode %s\n"
Jfile,mode);
exit(1);

return(fd);

I would like to make a correction to my LPRINT article
from the Mar/Apr 1989 issue (page 10). The system re-
quirements are stated there as being:

Model |

NEWDOS/80 v2.

EDTASM

STAR NX-1000.

This is not correct. The only system requirements are:
Modet |
EDTASM

Ben Mesander can be reached at 11237 E. Brooks
Street Apt 4., Norman, Oklahoma 73071

Editors note:

The original graphics which accompanied Ben's article
are wonderful examples of what can be done. Unfortunately,
the above, which are third generation photo-copies, do not
do justice to the originals. Use your imagination and picture
them sharp and clear.

Assembly 101

Z-80 without tears
by Lance Wolstrup

Up to now we have concentrated on the Assembly
language versions of the PRINT command. Here is a
quick recap what we have learned so far:

PRINT
Load the HL register with the address of the first char-
acter of the text to display. Then CALL 21BH (model Ili),
or CALL 4467H (model 1).

00100 ORG 7000H
00110MSG1 DEFM 'HI, | AM YOUR TRS-80'
00120 DEFB ODH
00130 START LD HL,MSG1
00140 CALL 21BH- CALL 4467H (M1)
00150 RET
00160 END START
PRINT@

Load register HL with the PRINT@
location + 15360.

Load the contents of HL into
(4020H).

Then load register HL with the ad-
dress of the first character of the text
to display.

Finally, CALL 21BH (model I1l),

or CALL 4467H (model 1).

00100 ORG 7000H
00110 MSG1 DEFM 'HI, | AM YOUR TRS-80'
00120 DEFB 0DH
00130 START LD HL, 15424
00140 LD (4020H),HL
00150 LD HL,MSG1
00160 CALL 21BH- CALL 4467H (M1)
00170 RET
00180 END START
CLS - clear the screen
CALL 1C9H
00100 ORG 7000H
00110 START CALL 1C9H
00120 RET
00130 END START

OK, now let's get on with some new stuff. When you
program in Basic, you might decide to POKE the text or
graphics to the screen instead or PRINTing. For example,
let's POKE the text "HI, | AM YOUR TRS-80" to the screen
beginning at the second line (line 1). That would be POKE
location 15424. The code might look something like this:

TRSTimes 2.3. - May/Jun 1989 - Page 20

10 HL$="HI, | AM YOUR TRS-80"
20 HL$=HL$+CHR$(13)

30 HL=1

40 DE=15424

50 A=ASC(MID$(HLS,HL, 1))
60 IF A=13 THEN 110

70 POKE DE,A

80 HL=HL+1

90 DE=DE+1

100 GOTO 50

110 END

Notice that line 20 adds
CHR$(13) to the end of HL$. This
is done because line 60 checks to
see if A=13. If A does equal 13,
then the program knows we have
reached the end of the string.

I know that this code is sort of
backwards and certainly, if thiswas
meant to be a Basic program, we
could have written it somewhat
more elegantly. However, this is
meant to be an example that can
-~:be translated directly to Assembly
language, so let’s do just that:

00100 ORG 7000H
00110 MSG1 DEFM °HI, | AM YOUR TRS-80'
00120 DEFB ODH
00130 START LD HL,MSG1
00140 LD DE, 15424
00150 LOOP LD A(HL)
00160 CP 0DH
00170 JP Z,EXIT
00180 LD (DE),A
00190 INC HL

00200 INC DE

00210 JP LOOP
00220 EXIT RET

00230 END START

This program introduces three new commands: CP
(compare), INC (increment) and JP (jump). Also, we are
using register A and register DE for the first time.

The CP instruction always compares the specified
value to the contents of register A. In essence, it subtracts
the specified value from the value in register A and,
depending on the outcome, it manuipulates certain bits in
register A’s companion register: F (also known as the

FLAG register - we will look at this in just a few minutes).
Do keep in mind that, even though the specified value was
subtracted from the value stored in register A, the value
in register A remains unchanged... only register F is
changed. You might think of the CP instruction as As-
sembly language’s IF - THEN statement.

The INC instruction is very simple. it INCrements the
contents of the specified register by 1.

INC HL does to register HL what HL =HL + 1 does to
variable HL in BASIC.

The last new instruction is JF. fhis does exactly the
same as the GOTO command in Basic.

Now, let’s compare the Assembly language program,
line by line, to the Basic program:

00100 ORG 7000H, mandatory in Assembly - is not
needed in Basic.

00110 MSG1 DEFM °Hl, | AM YOUR TRS-80’ is the
same as: 10 HL$="HI, | AM YOUR TRS-80"

00120 DEFB ODH serves the same purpose as:

20 HL$ =HL$ + CHR$(13). That is, the text now
has an ending byte that will be checked for in line 60 of
the program.

00130 LD HL,MSG1 points register HL to the first byte
of the text in MSG1.

Basic line 30 HL = 1 points to the first character of HL$
when we get down to line 50.

00140 LD DE, 15424 is exactly the same as:
40 DE = 15424. Register DE (in Assembly) and vari-
able DE (in Basic) now points to the screen location.

00150 LOOP LD A,(HL) is identical to:

50 A=ASC(MID$(HLS$,HL,1)).
Here we better stop and analyze exactly what is going
on, both in the Assembly and Basic line. First, in the
Basic line let’s figure out just what MID$(HLS$,HL,1)
means. Since HL$ is "HI, | AM YOUR TRS-80" and HL at
this point in the program equals 1, then we are looking
at the first character of HL$, "H". We now take the ASC
value of that character (72) and put that into variable A.
This variable now holds the value 72.
The Assembly line is much less complicated, but needs
explanation because we are using a new concept. First,
register A is very special. It is the only one of the 8-bit
registers that is capable of performing math functions.
Since we will need to see if we have reached the ending
byte, we must put each character into the A register
one at a time. At this time register HL is pointing to the
first character of the text, therefore we copy the charac-
ter pointed to by HL into register A. Note that when we
surround a register pair with a parenthesis, the value

stored in the register is treated as a memory location.
Thus LD A,(HL) means: get the value stored in the
memory location pointed to by register HL and copy it
to register A. (whew!!)

00160 CP ODH. Since the A register is the only one
capable of math, CP ODH means: compare register A to
ODH.

This is the first half of Basic line 60: IF A=13.....

The second half is found in line 00170

00170 will be discussed in more detail below. For now,
JP Z,EXIT means:

if the A register holds a value identical to the one we
specified in the CP instruction (ODH), then we will jump
to the label called EXIT.

This is the second half of Basic line 60:THEN 110.
(note that ODH is 13 decimal and the EXIT label has a
RET instruction which brings us back to DOS; line 110
in the Basic program simply ends the program).

00180 LD (DE), A. Since we did not jump to EXIT, ob-
viously the value in register A was not the ending byte
ODH. Therefore it is part of the text, and we put it into
the memory location pointed to by register DE, which is
a screen location. Thus, the character is displayed on
the screen. Basic line 70 POKE DE,A does just that.

00190 INC HL increments register HL to point to the
next character in the string. Line 80 in the Basic pro-
gram, HL=HL + 1, provide the same function.

00200 INC DE increments register DE to point to the
next screen location, same as line 90 in Basic:
DE=DE+1

00210 JP LOOP provides the same function as Basic
line 100 GOTO 50. We go back and check the next
character if it is CHR$(13). This loop continues until
CHR$(13) is stored in the A register. Then the loop is
broken and program flow is directed to the EXIT label
or, in the case of the Basic program, to line 110.

00220 EXIT RET is where we end up when the end
byte, CHR$(13), is found. Since we CALLed this pro-
gram from DOS, the RET instruction returns us to the
caller, thus ending the program. Line 110 END in the
Basic program is only needed because we chose to
GOTO 110 when CHR$(13) was detected.

00230 END START - the END statement is mandatory
in Assembly language - not needed in Basic.
F - THE FLAG REGISTER
The flag register F is never used to hold data. It contains

several bits, logically called ‘flags’, that are set according
tothe RESULTS of other instructions. It is an 8-bit register,

TRSTimes 2.3. - May/Jun 1989 - Page 21

eventhough there are only six flags, and only four of these
are are really important for most programming purposes.

Bt 7 65 4 32 10
FlagS Z H PVNC
The four important flags are:

Z (zeroflag)

S (sign flag)

C (carry flag)

P/V (parity/overflow flag)

The other two flags are:

H (half-carry flag)

N (add/subtract flag)

This tutorial will not discuss the H & N flags. Frankly, |
have never used them, nor do | remember ever seeing an
application that did. We will also ignore the S & P/V flags.
They have no relevance to what we are trying to ac-
complish, at least for the moment.

This leaves us with the Z and C flags.

e The Z flag is set ONLY if the result of an operation
is zero.

e The Cflag (don’t confuse this with register C) is set
whenever an add instruction produces a result that
is too large to store in a single register. It is also set
when a subtract operation produces a borrow.
Other instructions will also affect this flag.

Relating this to our program (lines 00160 & 00170), we
compared the contents of register A to the value 0DH and
the outcome of this operation was stored in the pertinent
flags.

There are basically six different ways you can compare
one thing to another:

1. EQUALTO

2. NOT EQUALTO

3. GREATER THAN

4. LESS THAN

5. EQUAL TO OR GREATER THAN

6. EQUAL TO OR SMALLER THAN

Ifthe value of register A is EQUAL to the specified value,
the Z flag is set (bit 6 of register F is 1), the C flag is reset
(bit 0 of register F is 0).

Ifthe value in register A is NOT EQUAL to the specified
value, the Z flag is reset (0). Should we wish to find out
how they are not equal, we consult the C flag.

If the value in register A is LESS THAN the specified
value, the C flag is set (1). If, on the other hand, register A
has a value LARGER THAN (or equal to) the specified
value, the C flag is reset (0).

Thus, since we merely wanted to find out if register A
is EQUAL to the specified value (0DH), we JP to label EXIT
only when the Z flag is set.

TRSTimes 2.3. - May/Jun 1989 - Page 22

Both Z and C can be used for their alternate state; that
is, NZ (non-zero) and NC (non-carry). This enables us to
make comparisons using four of the six methods men-
tioned above:

e JP ZEXIT - jump if the comparion is EQUAL
o JP NZEXIT - jump if the comparison is NOT EQUAL

e JP C,EXIT - jump if value in register A is LESS THAN
the specified value

e JP NC,EXIT - jump if value in register A is EQUAL
TO OR GREATER THAN the specified value

'GREATER THAN’ and 'EQUAL TO OR SMALLER
THAN' are really not needed, as they can be ac-
complished using the above four methods.

Boy, | am running out of room, so before quitting, let
me quickly tell you that in the next instaliment we will get
tothe Assembly language versions of INKEY$ and INPUT.
We will also begin writing our mailing label program.

Until next issue........ keep practicing.

* NEW *

Recreational & Educational Computing

Have you been missing out on the only publication devoted to
the playful connection of computers and math?

The REC Newsletter features programming challenges and
recreational math, such as:

the Magic of Schram’s 123 String - the probability of an N game
at Bingo - time to complete a collection - 6174 - Next Number in
Sequence - Locate the Bomb - perfect numbers - Fibonacci
numbers - prime number generation and contest -
self-reference and paradoxes - self-listing program challenge
and solution - pi - mystery programs explained - probability -
Monte Carlo simulations
Also:
Fractal art - the world’s best card trick (based on algebra)
reviews of best software and books - editorial - humor -
cartoons - art - reader solutions and more!

Programs supported for: TRS-80, Tandy, MS-DOS and others.
REC is available for $24.00 per calendar year of 8 issues

REC Newsletter

129 Carol Drive
Clarks Summit, PA. 18411

(717) 586-2784

A REVIEW OF:
MAGIC MATH
PLUS

Dr. Michael W. Ecker
Recreational Mathematical Software
29 Carol Drive Clarks Summit, PA 18411
(717) 586-2784

Reviewed by Dr. Allen Jacobs

Occasionally, a software package comes along to
remind us of our mathematical roots. Such a package is
"Magic Math Plus". It is a menu driven compilation of
demonstrations and games embodying several basic
numerological and mathematical principles. In essence,
it is a "mathematical museum" on a disk.

The entire presentation is comprised of 35 "exhibits" on
5 menus. It was written by Dr. Michael W. Ecker, Mr. David
B. Lewis, Mr. Jim Kyle, and Mr. Edward M. Roberts and is
availableata cost of $37.50 + $2.50 shipping & handling.

The disk uses a proprietary Model |l disk operating
system named XDOS, which is compatible with TRSDOS
1.3 format. The system automatically loads Basic, fil-
lowed by an on-screen introduction, a user involved upper
casetest, and then the first menu named Volume 1 arrives.
Thereafter, the entire package runs under a menu driven
shell, in Basic.

Selecting a choice from the menu is as easy as using
the UP and DOWN ARROW keys to point to your choice
and pressing <ENTER>. The selected program loads
and runs.

After a title screen, a self documenting introduction to
each program usually appears. It tells the user what the
program will do and how to interact with it. Usually, some
structured input or action is required from the user. Atthe
end of the demonstration, at the user’s option, the pro-
gram gives an explanation of the mathematical principle
involved.

Other times the user is challenged to provide the
answer himself. The <BREAK> key is always operable
so that the commented basic code can be examined.
After a demonstration is over, it can be restarted, or the
user can return to the menu and select another program
with one or two keystrokes.

The menu for each volume provides opportunities to
select the menu for the previous or the next volume. One
representative program from each volume follows:

"Fastloan!"

"Fastloan!" is a truly fast loan amortization program. Its
simple screen-only I/O is adequate enough to be practical
and it is approximately as fast as my dedicated financial
calculator. Remember that this is Basic running at 2 MHz.
If the program were to be run at 4 MHz on a Model 4 (even
in Model il mode with the clock speed doubled), | would
use it more than the calculator. This is because my cal-
culator has no possibility of hard copy output whereas a
few well placed LPRINT statements in the program can
get the numbers down on paper.

"Not important", you say, because the monthly pay-
ment is all you need? Well, typing "A" at the appropriate
prompt gets you a complete amortization table scrolling
onthe screen, one screen at a time, showing the Payment
Number, the Interest portion of the payment, the Principal
pay-down, and the Balance Owed. Your financial cal-
culator can do this, with the proper volume of keystrokes,
but you can only see one value at a time. That is unless
we are talking about an expensive printing calculator.

if youdon't want to bother adapting "Fastloan!" for hard
copy, Dr. Ecker offers a more full featured version of the
program named "Fastloan [I". | would guess that it can
LPRINT but you would have to write or call to find out. |
have never seen "Fastloan II" but | would like to.

"Super-Blackjack"

"Super-Blackjack" (The game of 110) is analogous to
the standard game of "Blackjack” and is as much of a

TRSTimes 2.3. - May/Jun 1989 - Page 23

challenge. The goal of the game is to accumulate a hand
totalling 110, as one would normally try to hit 21 without
going over (going bust), in regular Blackjack. The major
- difference between the games is the way in which the total
for a hand is calculated. Cards are initially dealt just as in

regular "Blackjack", however, each pair of cardsina hand -

is multiplied. The pair products are then added together.
Unpaired cards are simply added, to achieve the total.
Since the computer does all the math, it's easy to play and
as much fun as any regular Blackjack game in Basic.
Once you get used to thinking in a nonlinear manner,
which takes about two hands, you are on your way to
becoming a "product-sum" riverboat gambler.

"Collatz/Ulam Conjecture"

The "Collatz/Ulam Conjecture" will become the favorite
of all you "mathematical degenerates" out there. The
demonstration shows that any number input to it is
repeatedly processed according to the following rule.
The number is tripled plus 1 if it is odd, and it is halved if
it is even. The pattern thus produced eventually
degenerates into the numerical sequence: 4..2..1..4..2..1.

Although this conjecture apparently works every time
(try it), the author did not call the demonstration a proof.
The demonstration apparently does not formally prove
that this pattern will arise every time it is attempted, even
though it may. To me, formulating an actual proof for this
"conjecture" seems as though it would be more interesting
than the phenomenon itself. | can not even conceive of
how such a formal proof would be "gone about". It would
be interesting to research it. It appears as though it would
make an excellent and inexpensive but difficult science
fair project to attempt.

"Number Guesser"

The "Number Guesser" is a game which will pick any
number you can think of within a user selected range. The
computer will then make a series of guesses which will
soon converge upon the number you picked.

For assembly language hackers, the principle of this
trick should be second nature. Essentially, you are re-
quested to become the conditional branch algorithm of a
binary search. If this explanation does not make any
sense to you, and you want to gain an insight as to how
computers can look something up so rapidly, muse about
this simple game. The demonstration explains itself, at
your request.

"The Fibonacci Numbers"

"The Fibonacci Numbers" is a demonstration of the
unique properties of this number series. The series is
generated by each term being the sum of the two previous
terms in the series. The first term is defined as 1. The
second term is 1 plus nothing, soittoois 1. The third term
is1 + 1 = 2. Continuing, we get: 1,1,2,3,5, 8, 13, 21,
etc. :

TRSTimes 2.3. - May/Jun 1989 - Page 24

The advantage to having the program operating in
Basic over reading about it in print is that the computer is
doing all the calculating for you. Aslong as you can verify
and then "trust" the computer, you can watch the relation-
ships between the members of the series without being
distracted by having to do the math.- This is true to the
spirit of any "museum exhibit. You can watch the
mechanism on display and learn something from it
without having to run it or build it yourseif.

Overall, this package seems to be most suited to three
general types of computer users. One type is the user
who is not as interested in programming as in veing
entertained by more intellectually stimulating games than
"shoot-em-ups" requiring fast reflexes.

The second type of user who would be most interested
in this kind of software would be the computer novice. He
(she) would be both entertained by the demonstrations
and can also learn some programming techniques from
them.

The third category of user is the youngster who is not
yet consumed with interest in computers or mathematics.
Being "turned loose" on an educational package like this
might just spark one of those revelations we have all had,
such as when we suddenly understand or discover a new
concept.

Barring these artificial categories, | think that all but the
most jaded mathematics or programming professional
would find this package at least somewhat interesting.
Personally, | would like to have seen a greater variety of
phenomena demonstrated. Namely, | wanted to see
more and different examples. | guess, that this is a pos-
sible criticism of any "museum". We always want to see
just one more exhibit before closing time.

Here is an additional mathematical phenomenon | just
found in the Sunday comic section of the "Daily News", a
San Fernando Valley newspaper. The issue of March 19,
1989 contained a strip entitled "The Family Circus" by Bill
Keane, in which the following was presented: If you select
any whole number from 1 to 100 and multiply it by 99, the
sum of the resulting digits is always equal to 18. | tried it
and it works. The question is: Why? No explanation was
given in the comic strip.

Itappears to me as though the answer could be worked
into yet another interesting basic program. Maybe you
could add your own additional menu of demonstrations
tothis package, using the conventions you can learn from
studying its examples. Buying the package may en-
courage the authors to expand their efforts and create a
second edition.

It is obvious that just reviewing this software has al-
ready sensitized me to the fact that many more "Magic"
mathematical phenomena exist out there in the world.
Some are known and some are not. The opportunity to
explore this aspect of our universe is the same for all of
us. It just takes the desire, the insight, the effort, and a
little bit of time.

TRSDOS 1.3 Corner

BASIC
FULL
SCREEN
EDITOR

by Gary Edwin Campbell

Requirements: Model 3,4,4P,4D
TRSDOS 1.3 with BASIC Rev 1.3

All model 3 basic programmers most likely edit their
basic programs using the built in basic line editor.

Whether you have a cassette or disk based system, use

LDOS, DOSPLUS, NEWDOS or TrsDos 1.3, the ROM line
editor provides adequate methods to edit basic program
text. You can add/delete/change a line, and immediately
run the program to test out the changes you made.

Basic programs can also be written on a word proces-
sor. As most word processors are "screen oriented", the
basic program can be written much faster, due to the
more advanced editing features. When you think the
program is ready to test, the file must be converted to ascii
format, which is then processed by Basic.

Most screen editors are separate stand alone
programs. Although they offer more powerful editing
capabilities, the basic code cannot be run, tested or
debugged by the word processor.

The program presented here offers you the best of both
worlds. All basic programs will run as usual with this utility
enabled. It can be turned ON or OFF in immediate mode
atany time. Line editing may still be used. When in screen
edit mode, all data displayed on the video screen (pro-
gram lines or displays) can be moved, split, inserted,
deleted or typed over. Line numbers can be added or
erased. Then, ANY PART of the display can be "sent" to
basic as a NEW/OLD program line, or as an immediate
mode command line. The program is self relocating, uses
- only 532 bytes, requires no high memory setting, and is
- 89.99% compatible with all basic programs. Once in-
stalled, it becomes part of Disk Basic itself, reserving its
own space in low memory usually allocated for disk file
buffer Input/Output.

PLEASE NOTE:

The version published here is for use with either
TRSDOS 1.3 Basic Rev 1.3 or LIBDVR/CMD (System 1.5).
If you desire to add these capabilities to LDOS 5.1.3,
LDOS 5.3 or cassette basic, please see the end of article
for ordering information.

Type in the basic program titled EDITOR/BAS.
Save it as EDITOR/BAS.
Run it to create EDITOR/CMD assembler program.

Nowyouare readyto "test" it out. Exit to DOS, and enter
Basic as required by your basic program. (ie: set
files/memory etc.)

At the Basic "Ready prompt" type:

CMD'L","EDITOR/CMD"
DEFUSR = &H4E00H
X=USR(0)

If you make a syntax error before typing the last line,
you must start over.

These commands load and initialize the screen editor.
This is required only once each time Basic is entered. As
the initialization code calls the NEW command ROM
routine, any basic program in memory will be deleted.

BASIC * should not be used to re-enter Basic once the
editor has been installed.

Now, load or run your basic program as usual. Hitting
the BREAK key at the basic ready prompt ' >’ (command
mode) toggles the editor on or off. The < BREAK > key
does not affect the ON & OFF status when a basic pro-
gram is running. When the editor is ON, you will see an
asterisk flash at the top right hand corner of the video. This
reminds you that you are in screen edit mode. To exit the
screen editor, hit the <BREAK> key at any time. The
flashing will stop, and you are returned to normal input
mode.

The screen editor uses the following keys:

Up Arrow Moves non destructive cursor up.

Down Arrow Moves non destructive cursor down.
Left Arrow Moves non destructive cursor backward.
Right Arrow Moves non destructive cursor forward.
BREAK key Enters or Exits Screen Edit Mode.
CLEAR key Marks the start of video text.

ENTER key Marks end of text, sends text to BASIC.
Left Shft CLEAR Clears the screen, marks start (CLEAR).
Left Shit ENTER Clears the screen, LISTS your program.
Left Shft < Deletes the character after the cursor.
Left Shit > Inserts a space at cursor position.

Left Shft Up Arrow Moves text below cursor up 1 line.

Left Shft Down Arrow Z Moves text after cursor down 1 line.

Cntl Z Moves text after cursor down. (Mod 4)
Cn1,n2 Copies existing Line n1, inserts it as Line n2

(This immediate mode command
supported only when editor is OFF!)

TRSTimes 2.3. - May/Jun 1989 - Page 25

All other keys react as usual, except other control
codes are ignored. To printa <or > character, use the
right shift key.

Ok, lets see what we can do! Load and initialize the
screen editor as directed above. At Basic ready, enter the
following:

4

10 FORI=1TO4:NEXTI:FORJ = 1TO12:NEXTJ:PRINTI:PRINTJ
20 K=2:P=101:PRINTSTRING$(30,191)

To enter the screen edit mode, hit the < BREAK> key.

You should see the asterisk flashing at the top of your
screen.

Tap your arrow keys. See how the cursor moves?

Hold down the Left Shift key, and press <ENTER>.
Your program will be listed.

Position the cursor to the top of the screen. The cursor
should now be right on top of the first character of the line
number of line 10.

Whenthe cursor is ontop ofthe 1 pressthe < CLEAR >
key. This notifies the screen editor to mark the starting
position.

Now, type over the 10’ by pressing the 3 and 1 keys.
Your display should look like this:

31 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINTI:PRINTJ
20 K=2:P=101:PRINTSTRINGS$(30,191)

Move the cursor to the end of line 31, just after the
PRINTJ program text.

Now tap the <ENTER > key. You will notice thata >
character appears in about 1/4 second.

As you have probably guessed, this procedure
COPIES or REPLICATES a line. Line 31 should now be
added to your program.

List your program by holding down the left shift key,
and hit <ENTER>. You should see the following:

10 FORI=1TO4:NEXTL.FORJ=1TO12:NEXTJ:PRINTI:PRINTJ
20 K=2:P=101:PRINTSTRING$(30,191)
31 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINTI:PRINTJ

Remember, we marked the beginning of the line with
<CLEAR>. We marked the ending of the line with
<ENTER>. The screen editor tricked the Basic Inter-
preter into thinking that the text between the two markers
was typed in from the keyboard!

Another way to copy a line is by using the Cn1,n2
command. The Cn1,Cn2 command cannot be entered
when the editor is on.

Exit the editor by hitting < BREAK>.
Now type: C10,11 <ENTER>.

TRSTimes 2.3. - May/Jun 1989 - Page 26

Now list your program. It should look like this:

10 FORI=1TO4:NEXTI:FORJ=1TQO12:NEXTJ:PRINTI:PRINTJ
11 FORI=1TO4:NEXTL:FORJ = 1TO12:NEXTJ: PRINTI:PRINTJ
20 K=2:P=101:PRINTSTRING$(30,191)

31 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINTI:PRINTJ

The C10,11 command works by locating the existing
line 10 in memory. If found, the line text is moved to an
internal buffer. Then the line is re-numbered, and sent to
basic for inserting.

Ok, lets restore our original program. Delete line 11 and
line 31.

D11 <ENTER>

D31 <ENTER >

Note: the L, D, E and A (List,Delete,Edit,Auto) com-
mands cannot be used when editor is on!

Turn the screen editor back on by hitting the
<BREAK> key.

The editor can also send commands to basic without
line numbers. The < CLEAR > key marks the start of text.
The <ENTER> key marks the end of text. The text
between is treated as if it was typed in directly from the
keyboard. If the text between the <CLEAR> and
<ENTER > markers was:

CMD"D:0":?"HELLO"

the computer would display the catalog of drive 0, and
then print "HELLO". You would then be returned to screen
edit mode.

So far, just basic program text has been edited. But a
screen editor has another use. Video displays, including
graphics, canalso be edited. For example, if the CMD'D:0"
command displayed:

Drive:0 MYPRG/BAS DATA/TXT BASIC/CMD TEST
TYPE/CMD SPOOL/CMD RECIPE/BAS
READY

By moving the video display over a few characters
using Left Shft > keys, line numbers can easily be added.
The Catalog data above can then be "stored within a
program, as shown below:

17" Drive:0 MYPRG/BAS DATA/TXT BASIC/CMD TEST
TYPE/CMD SPOOL/CMD RECIPE/BAS"
Ready

The Left Shift < and > key combinations will insert a
blank space, or delete a character at the cursor position.

Restore your video by hitting the Left Shift Enter key.

If the cursor was positioned on top of the first "N’ in line
10, and the Left Shift key and the > was pressed, this
would happen:

Before:

10 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINTI: PRINTJ
After:

10 FORI=1TO4: NEXT:FORJ=1TO12:NEXTJ:PRINTI:PRINTJ

If the < was pressed, the character following the cur-
sor is deleted. If the cursor was on the N, the E gets
deleted. ei:

Before:

10 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINT!:PRINTJ
After:

10 FORI=1TO4:NXTI:FORJ=1TO12:NEXTJ:PRINTL:PRINTJ

The Left Shift Down Arrow Z will move the program text
located after the cursor character down 1 line, opening a
64 space line buffer. For example, if the cursor was
positioned on the first colon on line 10, and the Left Shift
Down Arrow Z was pressed:

Before:
10 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINTI:PRINTJ
20 K=2:P=101:PRINTSTRING$(30,191)
After:
10 FORI=1TO4:
NEXTIFORJ=1TO12:NEXTL:PRINTI:PRINTJ
20 K=2:P=101:PRINTSTRING$(30,191)

The Left Shift Up Arrow will move the program text
directly below the cursor up. By using the Left Shift key,
with the Left Shift Up Arrow keys, you can do a "cut and
paste".

Before:
10 FORI=1TO4:NEXTI:FORJ=1TO12:NEXTJ:PRINTI: PRINTJ
20 K=2:P=101:PRINTSTRING$(30,191)

After:
10 FORI=1TO4:PRINTSTRING$(30,191)
20K=2:P=101:

Another nice advantage of a screen editor is that
graphics can also be stored within program text. By
sending a immediate mode command to print a variable
that contains graphics, you can eliminate the
CHR$(X) + CHR$(X) text. For example, type:

<CLEAR> A$ = CHR$(244) + CHR$(245) + CHR$(246):
7"A$="CHR$(34)A$ <ENTER>

Basic will respond , storing the graphics into variable
AS$. If the graphics switch is on (not space compression
codes) the results that are printed on your screen can be
stored into your basic program. (This example prints a
litle pointing hand). To turn on or off the graphics/com-
pression toggle, use the command PRINTCHR$(21)
<ENTER>. This type of editing saves memory space,
use:(?o string storage (as in CLEAR 1000), and improves
speed.

Program lines can also be moved from one program
to another. Just list the line(s), load your new program,
and store it!

About the program:

Disk Basic calls address 41AFh to process immediate
mode input. Extended Disk Basic commands, such as
L(ist), D(elete), E(dit) A(uto) & the ., keys are enabled by
DOS calling address 41AFh. This call address jumps to
57DAh. The code required to process these "added" com-
mands starts at address 57DAh. The Cn1,n2 Copy com-
mand is "patched" into this area. Before DOS checks for
the L D E or A bytes, it now checks fora C command. This
is how the copy command "links" itself to the basic inter-
preter.

During immediate mode keyboard scanning, a call is
made to 49h. This call address waits for a keyboard
character. Instead of calling 49h at 588Ch, processing
jumps to BREAK key testing. The 49h call is made, and
the keyboard input byte is tested. If the character is not a
BREAK, control returns to the original driver. If A=01h, a
flag is checked, and is then set if off. The screen editor is
then enabled by loading 41AFh with the screen editors
address. Instead of jumping to 57DAh when DOS calls
41AFh, it calls the screen editor instead. Unfortunately
only one jump can be processed by DOS at 41AFh. This
explains why abbreviated commands L, A, E, D, and
Cn1,n2 are not supported when the screen driver is active.

LDOS 5.1.3, LDOS 5.3 and cassette versions are also
available from GRL Software (att: Screen Editor), for
$12.95 each.

Other versions for TRSDOS 6.x, LS-DOS, and
DOSPLUS may be written if enough pre-orders are
received. If not, your cheque will be returned.

Please state your DOS type, DOS Version number,
DOS Version date, Disk Basic Revision number, and Disk
Basic Rev. date for EACH request. (The 1.3 version can
also be ordered). Each order is accompanied by the
documentation in this article.

EDITOR/BAS

0 'Screen Editor for TrsDos 1.3 BASIC Rev 1.3

1 'Save program before installing screen editor!

2 'To install, at Basic Ready, type:
3'CMD"L","EDITOR/CMD":DEFUSR = &H4E00:X=USR(0)
4 s

5 'By Gary Edwin Campbell, Suite 209, 1051 KLO Road,
6 'Kelowna, British Columbia, Canada V1Y 4X6

7 'Released to the public domain 03/27/89

8 'Send me a post card stating your interests!

9 |

10 CLS:PRINT"Checking data entry..."CHR$(14);:
CLEAR1000:DEFINTA- Z:RESTORE:D$ ="123456789ABCDEF"

TRSTimes 2.3. - May/Jun 1989 - Page 27

20 READAS,LN,CK:T=0:FORI=1TOLEN(A$)STEP2:
J=ASC(MID$(A$,1,1)):K=ASC(MIDS$(AS,! +1,1)):
IFJ=42ANDK =42THENSOELSET =T +J + K:NEXTI

30 IFT =CKTHEN20ELSEPRINT:
PRINT"Data entry error in line #“;,LN:END

50 IFTCKTHEN30ELSERESTORE

55 OPEN"0",1,"EDITOR/CMD:0":PRINT:
PRINT"Creating EDITOR/CMD file ...";

60 READAS,LN,CK:FORI=1TOLEN(A$)STEP2:
B$=MID$(AS$,,1):C$=MID$(AS, I+ 1,1):
IFB$="*"ANDC$ ="*THENCLOSE:PRINT:
PRINT*EDITOR/CMD created !".END

70 J=INSTR(D$,B$):K=INSTR(D$,C$):
PRINT#1,CHR$(J*16 +K);:NEXTI.:GOTO60

100 DATA 0182004E2AA440013402C5E50936002322A440
E1E5,100,2256

101 DATA 11954EB7ED52E5C1DD21594EDDEECODD6E6017
CB528,101,2437

102 DATA 16E5FDE1FDSE00FD660109FD7500FD7401DD23
DD23,102,2444

103 DATA 18E0215950223E593EC3323D5921954ED1ED53
8C58,103,2350

104 DATA G1EDBOCD4D1BC3191A3E4EAS4EAB4EAE4EB74E
BDA4E, 104,2559

105 DATA CO4ECA4ECD4EFO4EFB4E 164F 1B502A50395045
5084,105,2421 »

106 DATA 501E4F204F220182804E4F244F264F284F2A4F
2C4F,106,2365

107 DATA 2E4F304F324FF94F0000CD4900FEQ1CO3EQ0BY
2803,107,2359

108 DATA 3E01C93D329C4E2AB04122D34E21F24E22B041
2100,108,2326

109 DATA 002201502A1340224150213450221340182BF3
AF32,109,2192

110 DATA 9C4E2A41502213402100002280413E20323F3C
F137,110,2251

111 DATA FBC93E1A18253A8038B7C4C2012A2040220150
3EQE,111,2338

112 DATA CD3300CD490021344FE5010B0182004F00EDB1
280A,112,2318

113 DATA E1FE2038E8CD330018E32BD1B7ED5229111E4F
195E,113,2412

114 DATA 2356EBESC74E3F4FE14EES4E944FBCAFEF4F43
4F6E,114,2532

TRSTimes 2.3. - May/Jun 1989 - Page 28

115 DATA 4F984FC04F015B0A1F08090D 1B1A3C3E3E1B18
C72A,115,2411

116 DATA 2040114000191 1BF3FDF30BDED5B2040E5E5C1
21FF,116,2377

117 DATA 3FB7ED42E5C1E1EDB01100403E207723DF28A1
18F9,117,2401

118 DATA 2A204011C03FDF38021894EB0O1FF3F21BF3F01
8280,118,2360

119 DATA 4F7E020B2BDF20F906402A20403E20772310FC
18E3,119,2340

120 DATA 3E1818A93A8038FE0128043E3C18F321FF3FED
5B20,120,2399

121 DATA 40B7ED52E5C12A204023EDB03E2032FF3F18D6
3E19,121,2397

122 DATA 18D63A8038FE0128043E3E18CB3EOFCD330021
FF3F,122,2405

123 DATA ED5B2040DF28B8B7ED52E5C121FE3F11FF3FED
B83E,123,2516

124 DATA 202A20407718A33A8038B7280BCDC90121C550
0104,124,2283

125 DATA 00181D018200501100007AB3288B2A2040B7ED
5211,125,2245

126 DATA FOOODF30A77DB728A34D06002A0150ED5BA740
CSED, 126,2401

127 DATA BOAF122100002201502AA7402BC1F1AFCOFS3E
003C,127,2339

128 DATA 323650FE142804F 1C30000AF3236503A3F3CFE
2A28,128,2339

129 DATA 073E2A323F3C18EA3E2018F7FE4328077E21A8
59C3,129,2388

130 DATA 4059D5C5E5112542010D00EDB0212542D73805
E1C1,130,2305

131 DATA D118E3CD5A1E7EFE2C014B805020F32322B350
CD2C,131,2403

132 DATA 1B380218E8F1F1F1F1B7ED42E5110500B7ED52
E5CS5,132,2406

133 DATA E101040009ED5BA7401B1BC1EDBOAF06031213
10FC,133,2358

134 DATA 210000CD5A1EC12AA7402B2BAF22E640C3A71A.
4C49,134,2383

135 DATA 535402022D40**,135,623
136 ' Just another reminder! SEND ME A POSTCARD!

WATER
SCHEDULING

for Model 4 - Basic
Model I & III with changes
by Elton L. Wood

A pASAGT|

e

| live in a small rural community which is not blessed
with an abundant supply of irrigation water. During the
summer drought of 1988 the tempers of the local residents
became as hot as the temperatures. In fact, during the
month of July the boiling point was reached. It reminded
me of the old western movies in which the upstream land
owners would dam up the stream and necessitate a heroic
effort by some brave individual to blow up the dam and
save those who lived downstream. While not resulting in
the use of dynamite, many threats and insuits were ex-
changed and some friendly relationships were destroyed.

Because of my involvement in administering the local
culinary water system, | was asked to update the irrigation
watering schedules, which had not been updated for
several years. Since the last preparation of the watering
schedules there had been numerous divisions and sales
of property, so it was not simply a matter of updating the
schedules to reflect new dates. Consequently, | decided
that there must be an easier way of reconstructing the

schedules than laboriously tracking names, dates and
times with a pencil and paper, and then plugging the
results for each name into my word processor.

WATRTURN/BAS is the result of my crash effort to
computerize the watering schedules and, hopefully,
quench some of the heat. The program is self document-
ing. | have "REMarked" each variable and routine, thus
eliminating the need for a line by line discussion of the
code.

10 ' *** WATRTURN/BAS ***

20’ Written for TRS-80 Model 4

30 (c) 1988 - Elton L. Wood

40 ' Please do not remove credit lines

50°

60 ' Calculates & Prints Water Turn Schedules

70’ Can be used for other cyclic schedules

80 3

90’ Enter Data lines of Names & Hours

100 DATA NAME 1,15,NAME 2,15,NAME 3,80.5

110 DATA NAME 4,22.5 NAME 5,15,NAME 6,1,NAME 7,1
120 DATA NAME 8,2.5,NAME 9,3.5,NAME 10,1,NAME 11,2.25
130 DATA NAME 12,2.75,NAME 13,2.75,NAME 14,2.25
140 DATA NAME 15,2.75,NAME 16,2.75,NAME 17,5,NAME
18,4.75

150 DATA NAME 19,4.75

160"

170 ' Initialize

180 TH=187 ' Set TH to Total of Hours in Data lines

190 Z=19' Set Z equal to number of Names in Data lines
200 Y=20" Set Y equal to number of Turns desired for each
name

210 DIM NA$(Z) ' Names

220 DIM HR(2) ' Hours for each name

230 DIM DE(Y) ' Day turn Ends

240 DIM TE(Y) ' Time turn Ends

250 DIM EM(Y) ' Minute turn Ends

260 BM=744" Sets Beginning Month which is then incre-
mented for each succeeding month (744 sets BM to May) -
determined by calculating hours from month in which 1st turn
starts

270 DS=1"Set DS to Day of month 1st turn is to Start

280 TS=14.5"Set TS to Time 1st turn is to Start (24 hour
decimal time)

290 Hi=TH MOD 24’ Hours remaining after dividing Total
Hours by 24

300°

310CLS

320°

330 ' Main routine

340’

350 FORN=1TOZ

360 READ NAS$(N),HR(N)

370°

380’ Print heading

390 LPRINT TAB(20)"SPRING HOLLOW CREEK IRRIGATION
WATER SCHEDULE"

400 LPRINT:LPRINT TAB(38)"FOR 1989":LPRINT

410 PRINT TAB((80-LEN(NAS$(N)))/2);NAS(N)

420 LPRINT TAB((84-LEN(NA$(N}}))/2);NAS(N)

430 PRINT TAB(34);"(";HR(N);"HOURS)"

440 LPRINT TAB(36);"(";HR(N);"HOURS)":LPRINT

450 PRINT TAB(19)"START"; TAB(59)"END"

TRSTimes 2.3. - May/Jun 1989 - Page 29

460 LPRINT TAB(22)"START", TAB(59)"END"

470 LPRINT TAB(15)STRING$(20,95); TAB(50)
STRING$(20,95):LPRINT

480 1

490 ' Calculate Month, Day & Time

500 HY = (DS-1)*24+ TS ’ Convert Day turn Starts to Hours
510 FORX=1TOY

520°

530 ' Determine respective Starting Months for turns

540 IF HY = <BM THEN MS$="MAY"

550 IF HY > BM AND HY = < 1464 THEN MS$="JUN"

560 IF HY > 1464 AND HY = <2208 THEN MS$="JUL"
570 IF HY > 2208 AND HY = <2952 THEN MS$="AUG"
580 IF HY >295" AND HY = <3672 THEN MS$="SEP'
590 IF HY >3672 i'HEN MS$="0CT"

600"

610 ' Determine respective Ending Months for turns

620 IF HY + HR(N) = <BM THEN ME$="MAY"

630 IF HY + HR(N) = > BM AND HY + HR(N) = < 1464 THEN
ME$="JUN"

640 IF HY + HR(N) > 1464 AND HY + HR(N) = <2208 THEN
ME$="JUL"

650 IF HY + HR(N) >2208 AND HY + HR(N) = <2952 THEN
ME$="AUG"

660 IF HY + HR(N)>2952 AND HY + HR(N) = <3672 THEN
ME$="SEP"

670 IF HY + HR(N)> 3672 THEN ME$="OCT"

680)

690 ' Determine respective Day turns End

700 TE(X)=TS+HR(N)

710 IF TE(X) = <24 THEN DE(X)=DS

720 IF TE(X)>24 AND TE(X) = <48 THEN DE(X)=DS +1
730 IF TE(X)>48 AND TE(X) = <72 THEN DE(X)=DS +2
740 IF TE(X)>72 AND TE(X) = <96 THEN DE(X)=DS+3
750 IF TE(X) >96 THEN DE(X)=DS +4

760 IF MS$="MAY" AND DE(X) >31 THEN DE(X) = DE(X)-31
770 IF MS$="JUN" AND DE(X) >30 THEN DE(X) = DE(X)- 30
780 IF MS$="JUL" AND DE(X)>31 THEN DE(X)=DE(X)-31
790 IF MS$="AUG" AND DE(X)>31 THEN DE(X) = DE(X)-31
800 IF MS$="SEP" AND DE(X) >30 THEN DE(X) =DE(X)-30
810’

820 ' Determine respective Time turns End

830 IF TE(X) >24 AND TE(X) = <48 THEN TE(X) =TE(X)-24
840 IF TE(X) >48 AND TE(X) = <72 THEN TE(X) =TE(X)-48
850 IF TE(X)>72 AND TE(X) = <96 THEN TE(X) =TE(X)-72
860 IF TE(X) >96 THEN TE(X)=TE(X)-96

870’

880’ Strip hour from Time & convert decimal part to 60 minute

equivalent

890 SM$=STR$(TS) ' Minutes part of the hour that turn Starts

900 PP=INSTR(SM$,".")

910 IF PP=0 THEN SM$="00" ELSE SM$=
MID$(SM$,PP +1,2)

920 SM=VAL(SM$)*.6

930 SM$ = STR$(SM)

940 IF LEN(SM$) =2 THEN SM$=SM$+"0"
950 EM$=STR$(TE(X)) ' Minutes part of the hour that turn
Ends

960 PE=INSTR(EMS,".")

970 IF PE=0 THEN EM$="00" ELSE EM$=
MID$(EMS$,PE +1,2)

980 EM(X) =VAL(EM$)*.6

990 EM$ = STR$(EM(X))

1000 IF LEN(EM$) =2 THEN EM$=EM$ +"0"
1010’

TRSTimes 2.3. - May/Jun 1989 - Page 30

1020 ' Print Month, Date & Time

1030 PRINT TAB(10)MS$;:PRINT TAB(15)USING"##";DS;
1040 LPRINT TAB(15)MS$;:LPRINT TAB(20)USING"##";DS;
1050 PRINT TAB(25)USING"##";FIX(TS);:PRINT" :";SM$;
1060 LPRINT TAB(28)USING"##";FIX(TS);:LPRINT" :",SM$;
1070 PRINT TAB(S0)MES;:PRINT TAB(55)USING"##"; DE(X);
1080 LPRINT TAB(S50)MES$;:

LPRINT TAB(S5)USING"##"; DE(X);

1090 PRINT TAB(65)USING"##";FIX(TE(X));:PRINT" :";EM$
1100 LPRINT TAB(63)USING"##", FIX(TE(X));:LPRINT" :";,EM$
1110 LPRINT

1120’

1130’ Determine starting Day & Time for next turn

1140 IF TS+19>24 THEN DS=DS+8 ELSE DS=DS+7
1150 IF MS$="MAY" AND DS>31 THEN DS=DS-31

1160 IF MS$="JUN" AND DS>30 THEN DS=DS-30

1170 IF MS$="JUL" AND DS>31 THEN DS=DS-31

1180 IF MS$="AUG" AND DS>31 THEN DS=DS-31

1190 IF MS$="SEP" AND DS>30 THEN DS=DS-30

1200 IF MS$="0CT" AND DS>31 THEN DS=DS-31

1210 TS=TS+HI

1220 IF TS>24 AND TS= <48 THEN TS=TS-24

1230 IF TS>48 AND TS=<72 THEN TS=TS-48

1240 IFTS>72 AND TS= <96 THEN TS=TS-72

1250 HY =HY +TH

1260 NEXT X

1270°

1280 ' Set Day and Time turn starts for next Name

1290 DS=DE(1):TS=TE(1)

1300 LPRINT CHR$(12) ' Send Page Eject to Printer

1310 CLS

1320 NEXT N

1330 END

The following changes are needed
for Model I & IlI.

290 HL=INT(TH/24)*24:Hl = TH-HL
410 PRINT TAB((64-LEN(NAS(N)))/2);NAS(N)

430 PRINT TAB(26);"(";HR(N);"HOURS)"

450 PRINT TAB(11)"START": TAB(51)"END"

1030 PRINT TAB(2)MS$;:PRINT TAB(7)USING"##":DS

1050 PRINT TAB(17)USING"##";FIX(TS);:PRINT" :";SMS$;
1070 PRINT TAB(42)MES;:PRINT TAB(47)USING"##": DE(X):
1090 PRINT TAB(56)USING"##"; FIX(TE(X));:PRINT" :*,EM$

Elton L. Wood can be reached at:
2536 W. Old Hwy Rd.
Morgan, UT. 84050

CP/M - The Alternate DOS for Model 4
More on The CP/M Directory,

and a little on Super Utility
by Roy T. Beck

In the last (March 1989) issue, | discoursed at length
on the file structure of CP/M, and | have some more
information to add along those lines. Since this is a
continuation, | recommend reading the previous article
before reading this one. Also note the Super Utility sector
printout which was inside the back cover of the March
issue.

| promised some more information on directory bytes
9, 10, and 11. These are the three bytes holding the
extension of a filespec. Digital Research identifies these
as t1’, t2’ and t3’, respectively. These bytes have some
additional attributes. Since all eleven bytes in the filespec
of the directory entry are 7 bit ASCIl bytes, there is
inherently the possibility of doing something with bit 7 of
these bytes. Digital Research took advantage of this to put
some "hidden" information in there.

Bit 7 of the first byte (t1’) of the extension is assigned
to mean Read Only (R/O) Status. This can be set or unset
by the STAT command. If set, the file is read only, and
cannot be inadvertently written to. (A similar thing hap-
pens automatically when you swap disks in a drive and
forget to log the new one in with ~C, but that does not
involve the t1’ byie).

The middle byte t2’ of the extension can have its bit 7
turned on by the STAT command to make the entry
invisible inthe DIRectory display. This avoids cluttering up
the screen with files you do not wish to see, but do wish
to keep available. Since TRSDOS SYSTEM files are usual-
ly also INVisible, you can think of this CP/M flag as the
INVisibility flag. Actually, Digital Research calls this the
SYSTEM flag, but you and | can think of it as whatever we
please. | believe DR’s reasoning was that a user may have
some system-type files (FORMAT, for instance) which are
usually desired to be present, but which tend to clutter the
directory display, and they opted to term this property
SYSTEM. Being an old TRS hand, | tend to think of this
property as being INVisible rather than SYStem, but who
cares so long as we know how it works and how to use it.

The third extension byte t3’ can be used as part of an
archiving system. The definition by DR is that this bit 7
should be set to a one whenever the Backup function is
performed. The BDOS wiill clear the bit to zero whenever
thefileis altered in such a way that the data map is altered.
This scheme would therefore limit the backup effort to files
which have been altered since the last Backup. | don't
know if this scheme is implemented in the real world, but
at least the BDOS will perform its portion of the act by
clearing bit 7 of t3’ if a file is altered and bit 7 of t3' was

previously set.

DR also allows use of bit 7 of the first 4 bytes of the
filespec for sorr tagging features unique to MM’s CP/M.
When | become more adept in use of the hard disk, | will
discourse on these and other aspects of life with a hard
disk under CP/M.

The following is not really part of the CP/M directory
structure, but [will include it here anyway.

If you consult the CP/M manuals and look for the AUTO
command, you will find it isn't there. But CP/M insiders
have long known that the equivalent of the TRS AUTO
command has been there all along, hidden away from the
light of day. In the days before Monte, the AUTO com-
mand was only accessible by Zappers. The command
had to be ZAPped into the disk, and was never mentioned
in the official CP/M documentation.

But now, praises be to Monte, he has made the AUTO
command accessible to us mere mortals! But did you
really recognize it when Monte showed it to you?

When you return from the CONFIG operations, you are
given the opportunity of executing one command at
BOOT time. That's the AUTO command. When you
receive your system disk from Monte, he has the MDIR
command set up in the AUTO function, but you can have
any command you want in that space. You can call one
filespec, or issue one command. But don’tforget, that one
command can be a SUBMIT command, which gives you
an entire JCL script.

This just goes to show there really is a lot of capability
in CP/M if you know where to look for it and how to use it.
I found the location of the command by using Super U, as
usual. By installing an unique command as the AUTO
command, and then using SU’s Find String command, |
immediately located the command at byte 8h of sector 3.

When | examined the sector, | saw 16 bytes of space
evidently set aside for the command. But what immedi-
ately followed was a Copyright notice. | deliberately over-
wrote the copyright notice with a long string of X's, and
rebooted. Up came the long string of X's, followed by ?,
which is CP/M’s way of saying it could not find the file.

As an old hacker, | have on occasion used the space
occupied by a copyright as patch space when modifying
a program, but this is the first time in my experience | have
ever seen an author (Monte) deliberately plan for overwrit-
ing of his own copyright notice! | proved this by going to
CONFIG and filling the auto command space with as
much as it would hold. Sure enough, it would take 127

TRSTimes 2.3. - May/Jun 1989 - Page 31

bytes, overwriting the copyright notice in the process.

Why 127 bytes?

| believe the answer is that this is the length of the
command buffer in CP/M. If you use the CONFIG com-
mand to install an AUTO command, all is automatic. If you
ZAP an AUTO command into sector 3, be sure and
terminate the command with 00h, else the command
parser won't know when to quit!

I have now revealed all my knowledge of CP/M direc-
tories, so | will quit while | am ahead. If anyone has other
info to contribute in this area, | am all ears and will write
it up in future columns.

BUT! How many of you gave thought to how Super
Utility, a TRS-type Zap program, could show the CP/M
directory sectors? Did Kim Watt hide some features away
from us? Maybe so. Read on!

In the course of preparing this article, | needed to
refresh my own memory on details of the directory struc-
ture, and looked for an easy means of accessing the
sectors of the CP/M disk, as we do with Super Utility (SU)
on TRS disks.

There are CP/M utilities for this purpose which work in
a fashion similar to SU, but | don’t have any of them.

Casting about for an alternative method, and knowing
SU can copy entire tracks into memory, | immediately
booted up SU and began exploring the MM CP/M disk.

| tried ZAP, and SU told me it could not find sector 0.

Next, | tried one of SU’s clever features. If you don'’t
know the configuration of a disk, SU4+ (but not V3.2)
contains a command which causes it to attempt to identify
the format of an unknown disk. To use this, you reply to
SU’s "Drive, Sector, Track?" command with 10, (assuming
your unknown disk is in drive 0). The "I" causes SU to
analyze the disk and select a TRS format for its Configura-
tion Table which matches the unknown disk.

| knew, of course, that SU doesn't know a CP/M disk
from a pancake, but | thought it would be interesting to
see what happened. Therefore | tried the ZAP command
with 10 on my SS DD CP/M system disk, and what do you
know, the sector 1 image came up on the screen!

I then went to the Config Table to see what SU thought
it was looking at. The table entry was now T3D’, which
translates to Model lll TRSDOS V1.3! WOW!

Now the ZAP function worked correctly, and showed
the original MM System CP/M disk is structured with 40
tracks of 18 DD sectors each, numbered 1 to 18.

Would anything else work? | tried the directory read
command, but got only rubbish. That’s not surprising, as
the directory structure is very different.

~- - The ZAP trick really only worked because Monte opted

for 256 byte, DD sectors on his SS system disk. Sectors
of any other size would not have been correctly read by
SU, but praises be to Monte for choosing 256 byte sectors
for his system disk! (I suspect he may have been forced
into this by the BOOT ROM coding in the machine, but

TRSTimes 2.3. - May/Jun 1989 - Page 32

let’s give him the benefit of the doubt). In any event, we
now have a powerful tool with which to read (and write)
CP/M sectors on single sided system disks. But be aware
this won’t work on our data disks which have larger
sectors.

But, | have just discovered another quirk of Super
Utility. If you try to install T3D" in the config table, SU will
give you T3D’ instead, because it knows a double sided
TRSDOS V1.3 is illegal. BUT...... If the table entry shows
T4D" (for example), and if you give it the command T3D,
then it will change the T4D to T3D, but leave the "!

Now we can read the backside of a DSDD disk whose
sectors are numbered from 1 instead of 0. This is the quirk
| alluded to above.

Using the (illegal) T3D" configuration, | now attempted
to read a DS DD system disk. The Zap command imme-
diately showed me sectors 1 through 18, as expected, but
when | hit the arrow key for the next sector, SU told me it
could not find sector 19.

I then told it to "skip" sector 19. Just to see what would
happen, | then attempted to step one more sector, and up
popped sector 20! Continuing to step, | was able to view
sectors 20 though 37, followed by sector 1 of the next
track. What the heck happened to sector 19?

| then went on to other tracks, and the same pattern
showed. It is no fluke, there is no sector 19! So Monte's
sequenceis sectors 1to 18 onthe front, followed by sector
20 to 37 on the back for a total of 18 sectors of 256 bytes
each.

Why? | dunno.

Super Utility also contains a Read Track Command.
This command will read an entire track from a disk in one
swoop, laying it into memory in a continuous swath, and
giving you access to it. For reasons which are too com-
plex to explain in this limited space, you cannot simply
write that entire block of memory back to a disk track and
expect it to work. Maybe | will write an essay on that
another time.

Anyhow, you can explore the track image to your
heart’s content, including all the funny little things hidden
away between the actual data sectors. The screen print
function of SU will allow you to print out the memory
contents in 256 byte blocks, which is great for analyzing
how tracks are configured.

Can we copy an entire second side of a track into
memory in the same fashion? | think so, but must confess
I have never done it. There probably is a command
somewhere in SU to tell it to take the back side of a track,
but | have never looked for it. Anyone know the answer?
If | solve this one, | will tell you about it.

Meanwhile, that's all for this time, Have fun!

Ry

BOOK REVIEW:
David R. Cecil

Debugging BASIC
Programs.

TAB 1984 171 pp.
Reviewed by Robert M. Doerr

Mr. Cecil’'s book presents nine chapters: . Debug-
ging fundamentals. 2. Prevalent errors. 3. Errors in
logic. 4. Arithmetic errors. (Going from single precision
to double without employing VAL() 5. String errors. 6.
I/O errors. 7. Disk BASIC errors. (Using disk BASIC
commands while in Level I) 8. When all else fails. (Use
TRON) 9. Error messages.

The de-bugging principles presented still apply today,
however, published in 1984, the book should have been
up-dated to cover Mod 4 BASIC (1983) and BASICA
(1982). He wisely urges programmers to work in an or-
ganized manner, to document changes, to make changes
one at a time, etc. It is also explained that DEBUG can be
used for BASIC programs. (That prompted me to con-
sider using Roxton Baker's STOPPER for editing Basic
programs. This program is, or was, available from The
Alternate Source, although it may require NEWDOS and
may not run inthe Mod 4 mode.) ON ERR as a de-bugging
tool is also shown.

Mr. Cecil writes to watch closely for the common case
of a needed item bypassed in an IF construct. The
specifics that he presents include many that are inap-
plicable to Mod 4 BASIC. For example, he writes categori-
callythat all FOR - NEXT loops in Microsoft BASIC execute
at least once. The beauty of Mod 4 BASIC is that no
execution occurs if the limit is satisfied before the loop is
entered. Much of his text on reserved words does not
apply to Mod 4 BASIC. Also, not being updated, this book
fails to cover the difference between Mod Il and Mod 4
BASIC by which the double NEXT is not allowed in Mod
4 mode:

MOD liI;
10FORI=1TO40
20 IF U(l) = VTHEN GOSUB 55: NEXT I: GOTO 50
30 NEXT |
50V =V + 9.5: REM Program continues

MOD 4.
10FORI=1TO 40

20IF U(l) = VTHEN GOSUB55: | = | + 1: GOTO 50
30 NEXT |
50V=V+95 :

Also not covered is the problem of overloading the
stack by caused by jumping from loops, or subroutines
that GOTO instead of RETURNing.

WRONG:

10FOR| = 0 TO 33

20 IF U(l) = V THEN 50
30 NEXT |

50V =V +3.14

CORRECT:

10FOR| = 0TO 33
20 IF U(l) = VTHEN
H=11=33

30 NEXT |

501 =IH:V=V+3.14

An interesting display presented is the list of reserved
words for Mod |1l BASIC:

10FOR| = 5712 TO 6175: A = PEEK()): IF A> 127 THEN
A=A-128

20 B$ = CHR$(A): IF PEEK(l + 1) <127 THEN PRINT B$;
ELSE PRINT B$ " ";

30 NEXT

The reader is reminded that most built-in numeric func-
tions return only single-precision values, and that, in the
world of rounding errors, IF A = B is a poor test. He
presents a chi-square test of randomness. Readers are
warned of rounding errors and a round-up user function
is given, acceptable to bankers, but not consistent with
good practice, as specified in the American Society for
Testing Materials (ASTM) rounding rules.

Also shown, in Basic, is the align-tab function, but,
unfortunately, it is done with an abnormal exit from a loop
shown in a manner that risks stack overflow. Also covered
is sorting by using VARPTR and altering string pointers
instead of moving the strings in memory.

The I all else fails’ chapter includes checking whether
high-memory machine language programs overap, if a
MERGE is done incorrectly, if all POKES are OK, and
whether the program is data sensitive.

To enable saving by a simple GOTO, | have long started
each BASIC program:

1 GOSUB 9000: GOTO 100

2 SAVE "PROGNAME/BAS:2": STOP

3 SAVE "PROGNAME/ASC:2", A: STOP
99 REM Main *****

100 Program starts here

Cecil recommends just such a procedure to avoid lost
versions. If a BASIC programmer finds this book in a
library, it may be worthwhile to check it out.

ROBERT M. DOERR can be reached at
39 McFarland Drive
Rolla, MO 65401

TRSTimes 2.3. - May/Jun 1989 - Page 33

ATTENTION TRSDOS 1.3 USERS!

GRL SOFTWARE PROUDLY ANNOUNCES “SYSTEM 1.5, THE MOST COMPREHENSIVE 1.3 UPGRADE EVER OFFERED!
MORE SPEED!! MORE POWER!! MORE PUNCH!!

While maintaining 100% compatibility to TrsDos 1.3, this DOS upgrade advances TrsDos 1.3 to 1989!

SYSTEM 1.5 supports 16k-32k bank data storage and 4 MGHZ clock speed (4/4P/4D).
DOUBLE SIDED DRIVES ARE NOW 100% UTILIZED! (all models).

CONFIG=Y/N
TIME=Y.N
BLINK=YN
LINES="XX' PRLEN="XX
ALIVE=Y/N
TRON=Y/N
TYPE=B/W/Y/N

Stow

CPY (parm.parm)
SYSRES=Y/N
SPOOL=H/B.SIZE="XX"
SPOOL=N
SPOOL=RESET
SPOOL=CLOSE

FILTER *PR.IGLF=Y/N
FILTER *PR.FILTER

FILTER *PR.FIND="XX.CHNG="XX"

FILTER *PRLINES="XX'
FILTER *PRTMARG="XX"
FILTER *PR.PAGE=Y/N or XX’
FILTER *PR.ROUTE="D0
FILTER *PR.TOF

FILTER *PR.SPEC=Y/N
FILTER *KLCLICK=Y/N
FILTER *KILENGTH="XX'
FILTER *KLECHO=Y/N
FILTER *KIFILTER

FILTER *KLFIND="XX"CHNG="XX'

FILTER *KI.DYORAK
ATTRIB: NAME="DISKNAME"
ATTRIB:d.PASSWORD
SCAN=Y/N/H/IG/6R
HELP FILE KEYWORD

CREATES CONFIG BOOT UP FILE
TIME BOOT UP PROMPT ON or OFF
SET CURSOR BOOT UP DEFAULT
SET *PR LINES BOOT UP DEFAULT
GRAPHIC MONITOR ON or OFF
ADDS an IMPROVED BASIC "TRON"
RIGH/BANK TYPE AHEAD ON or OFF
2 MGHZ SPEED [MODEL ilI's)
COPY/UST/CAT LDOS TYPE DISKS
DISABLE/ENABLE SYSRES OPTION
SPOOL te HIGH or BANK MEMORY
TEMPORARILY DISABLE SPOOLER
RESET (NIl) SPOOL BUFFER

CLOSES SPOOL DISK FILE

IGNORES “EXTRA" LINE FEEDS
ADDS 256 BYTE PRINTER FILTER
TRANSLATE PRINTER BYTE to CHNG
DEFINE NUMBER LINES PER PAGE
ADDS TOP MARGIN te PRINTOUTS
NUMBER PAGES. SET PAGE NUMBER
ROUTE PRINTER te VIDED if oa
MOVES PAPER te TOP OF FORM
ADDS LPRINT CHAS{1-7) CONTROLS
“CLICK™ KEYBOARD SOUND on/of!
SETS KEYBOARD "CLICK™ LENGTH
ECHO KEYS ts the PRINTER

ADDS 256 BYTE KEYBOARD FILTER
TRANSLATE KEYBOARD BYTE to CHNG
G00DBYE QWERTY, HELLO DVORAK!
RENAME DRIVE:d DISKETTE
CHANGE DRIVE:4 MASTER PASSWORD
HOST OR TERMINAL MODE

DOS COMPAT HELP

DATE=Y/N

CURSOR="XX'

CAPS=Y/N

WP=LY/K (WP}
TRACE=Y/N

MEMORY=Y/N

FAST

BASIC2

SYSRES=H/B, XX’
MACRO="XX"TEXT STRING + 7}
SPOOL=D0SIZE="XX"
SPOOL=Y

SPOOL=0PEN

FILTER *PRADLF=Y/N
FILTER *PR.HARD=Y/N
FILTER *PR.ORIG="XX"CHNE="XX
FILTER *PR.RESET

FILTER *PR.WIDTH="XX'
FILTER *PR.BMARG="XX"
FILTER *PR.ROUTE=Y/N
FILTER *PR.ROUTE="R0
FILTER *PR.NEWPG

FILTER *KILEXTKBD=Y/R
FILTER *KI.TORE="XX
FILTER *KI.PORT="XX"
FILTER *KLMACRO=Y/K
FILTER *KI.ORIG="XX".CHNG="XX"
FILTER *K{.RESET

FILTER *KLSPEC=Y/N
ATTRIB:d.DATE="00/00/00"
DEVICE

MMy

HLPGEN

DATE B0OT UP PROMPT ON or OFF
DEFINE BOOT UP CURSOR CHAR

SET KEY CAPS BOOT UP DEFAULT
WRITE PROTECT ANY or ALL DRIVES
TURN (SP) MONITOR ON or OFF
BASIC FREE MEMORY DISPLAY MONITOR
4 MGHZ SPEED (MODEL 4's)

ENTER ROM BASIC [NON-DISK

MOVE /SYS OVERLAY(s) to HI/BANK MEMORY
DEFINE ANY KEY T0 MACRO

LINK MEM SPOOLING te BISK FILE
REACTIVATE DISABLED SPOOLER
OPENS, REACTIVATES DISK SPOOLING
ADD LINE FEEDS BEFORE PRINTING ODA
SEND OCh te PRINTER (FASTEST TOF)
TRANSLATE PRINTER BYTE to CHNG
RESET PRINTER FILTER TABLE
DEFINE PRINTER LINE WIDTH

ADDS BOTTOM MARGIN to PRINTOUTS
SETS PRINTER ROUTING ON or OFF
ROUTE PRINTER to RS-232 if on

SET DCB LINE COUNT fo 1

ENTER GRAPHICS FROM KEYBOARD
SETS KEYBOARD “CLICK™ TONE

SEND "CLICK" SOUND TO PORT XX
TURK MACRO KEYS ON or OFF
TRANSLATE KEVBOARD BYTE to CHNG
RESET *Ki FILTER TABLE

ADDS SPECIAL CODES Cntl 1-7
REDATE DRIVE:d DISKETTE

DISPLAYS CURRENT CONFIG INFO
USER BANK 1/0

CREATE /HLP FILES

All parms above are installed using a new LIBRARY command SYSTEM (parm,parm). Other new LIB options include DBSIDE (enables
double sided drive use by treating the “other side" as new independent drive, drives 0 - 7 supported) and SWAP (swap drive code table #'s).
Previous PATCHER/CMD (DBSIDE) customers may upgrade to SYSTEM 1.5 for only $9.95 US funds, original PATCHER disk must be returned.
Dump (CONFIG) all current high and/or bank memory data/routines and other current config data, to a disk data file. If your type ahead is
active. you can (optional) store text in the type buffer, which is saved. During a boot, the config file is loaded back into high/bank memory,
and interrupts are recognized. After executing any active auto command, any stored type ahead data will be output FANTASTIC! Convert
your QWERTY keyboard to a DVORAK! Route printer output to the screen or your 0S-232. Macro any key, even F1, F2 or F3.Load *01 - *15
overlay(s) into high/bank memory for a memory only DOS! Enter data faster wit. {ne 256 byte type ahead option. Run4 MGHZ error free as
clock disk I/O routines are properly corrected! Spool printing to high/bank memory. Link spooling to disk (Spooling updates DCB upon
entering storage.) Install up to 4 different debugging monitors. Print MS-DOS text files ignoring those unwanted line feeds. Copy, Lprint,
List, or CATalog DOSPLUS, LS-DOS, LDOS or TRSDOS 6.xx files & disks. Add top/bottom margins and/or page numbers to your hard copy.
Rename/Redate disks. Use special printers codes eg: LPRINT CHR$(3); toggles printer output to the ROUTE device. Special keyboard
codes add even more versatility. This upgrade improves date file stamping MM/DD/YY instead of just MM/YY. Adds optional verify on/off
formatting, enables users to examine *01-*15, DIR, and BOOT sectors using debug, and corrects all known TrsDos 1.3 DOS errors. Upgrade
includes LIB/DVR, a /CMD driver that enables LIBRARY commands, such as DIR, COPY, DEBUG, FREE, PURGE, or even small /CMD
programs to be used within a running basic program, without variable or data loss!

: ORDER TODAY!
32k 48k Model III's, 48k 64k 128k Model 4 4P 4D’s. Send $39.95 US funds, plus $4.00 postage/handling to:

GRL Software, Suite 209, 1051 KLO Road, Kelowna, British Columbia, Canada V1Y 4X6
Attention SYSTEM 1.5.

Models L, 11, IV, IVD, IVP

Hard Disk
5 Meg Hard Disk.......$295.00
10 Meg......$425.00 15 Meg.......$495.00
20 Meg......$545.00 30 Meg &up $Call
Hard floppy combinations available.
Hard disk drivers..........ccovovviinneiniiieccnienis e $49.95
supports most DOS's

llI/IV Disk "rive Installation Kits
Complet~ ith controller, drive stands,
power supply, cables, Add drives & Dos.
2 FH Drives $149.95 4 HH Drives $159.95
Controller Only..........ccvvmiecerirrre e $89.95

Double DensitX0
Increase Mod | storage capacity up to 80% w/ this easy to

install board. Works w/ most Dos’s (except TRSDOS) $84.95

Mod IV Memory kits
64K Non Gate Array...$39.95 K Gate Array...$27.95

Mod IV Speed up kits
Non Gate Array 5Mhz..$39.9 Gate Array 6Mhz..$39.95

5 1/a Diskettes
w/ sleeves & labels

Pkg of 10.......84.25 Pkgof 25.......$9.95

Green/Amber CRT Tubes........ccc....... $74.95

External Disk Drives
Complete w/case, power supply and cables.

2 - 40 track DS DD..$259.95 2 - 80 track DS DD..$269.95
1-40/1 - 80 track....$264.95 2 -3.5" 80 track....... $299.95
Bare Drives
40 track DS DD HH..$89.95 80 track DS DD HH..$99.95

SOFTWARE

3.5" 80 tracK..........cunce. $114.95
Specials
40 Track DS DD FH. refurb. $69.95
Replacement for SS Mod I & IV
80 track DS DD FH $49.95
80 track w/case & power supply $119.95
Case & power supply $59.95
65w Power supply $34.95

We'can supply most of the parts (new & used) that you will
need in repairing & upgrading your Mod |, lll. IV's.
Call or write for availability & price.
Look for our BBS Coming soon.

STORAGE POWER
10391 Oakhaven Dr. Stanton, Calif. 90680
(714) 952-2700 (9:30 am - 8:00 pm PST)
All C.O.D. orders are cash only. Calif. residents require 6% sales tax.
All prices subject to change.

WORD PROCESSOR.
Full-featured, with Mail Merge.

InBASIC for Models |, Ill, 4 (Ill mode),
w/16K-48K. Justify, underline, set fonts,
graphics. 20 page manual.

Specify your system.
$12.00 tape/disk.
Tandy 1000 fast compiled $25.00

Delmer Hinrichs
2116 S.E. 377th
Washougal, WA. 98671-9732

TRSTimes on DISK #3

Issue #3 of TRSTimes on DISK is now available.
It features the following programs from the
Janauary, March and May 1989 issues:

LISTER/BAS 4 Al

CPY/CMD il TRSDOS 1.3./1.4./1.5.
VCXREF4 4 TRSDOS 6.2/6.3.
A/CMD ! NEWDOS/80 V2.
LPRINT/CMD | All

SBASIC/BAS Ve Al

NX/CMD 4 TRSDOS 6.2./6.3.
LIBDVR/BAS I TRSDOS 1.3./1.4/1.5.
MENUDEM/BAS 4(lll) Al

ROTATE/BAS Il All

MAC2PWR/CMD I/ il NEWDOS/80 V2.
EDITOR/BAS I TRSDOS 1.3./1.4./1.5.
WATRTURN/BAS 4 Al

WATRTRN3/BAS Il All

TRSTimes on DISK is reasonably priced:

U.S. & Canada: $5.00 (U.S.)
Anywhere else: $7.00 (U.S.)

Send check or money order to:

TRSTimes on DISK
20311 Sherman Way, Suite 211
Canoga Park, CA. 91306
U.S.A.

TRSTimes on DISK #1 & 2
are still available at the above prices.

TRSTimes 2.3. - May/Jun 1989 - Page 35

Surface Plot
The Grafyx Solution” with Depth

Outstanding Graphics. SURFACE
PLOT lets you broaden your imagination
and impress your friends by creating
amazing three-dimensional views on any
Model 4/4D/4P/Ill with Radio Shack’s
hi-res board and GBASIC 3.0 ($39.95) or
Micro-Labs’ Grafyx Solution. The Grafyx
Solution is a plug-in, clipon board which
offers superior hardware and software.

Flexible Graphics. SURFACE PLOT
allows you to enter an equation of the
form Z=F(X,Y) where Z is the height

above the surface for a given X, Y
coordinate. For example, entering the
equation Z=10—X?* draws a hill. The
final picture can be viewed from any
position in space so you can see an image
from underneath, above, or even inside
a hill or valley on the contour plot
surface. You can also specify the size and
perspective of the resulting image. Learn
about three-dimensional equations, view-
points and space the fun way!

Complete Graphics. The program
automatically removes hidden lines for

best results. The documentation contains
complete instructions and sample equa-
tions so that you will have your computer
hard at work without delay. The finished
plot can be saved on disk or printed on
any of 30 popular printers.

The SURFACE PLOT program,
sample hires pictures, and manual is
$39.95. The GRAFYX SOLUTION
package includes the hi-res graphics
board, 40 programs, and a 56 page
manual all for $129.95. Payment is by
check, Visa, Mastercard, or COD.
Domestic shipping is free on pre-paid
orders. Texas residents add 7% tax.

Micro-Lass, INnc. 2142350015
902 Pinecrest, Richardson, Texas 75080

CABINEY

OX

Are you alarmed over the high cost of
long distance rates while downloading
Public Domain Software?

THE FILE CRBINET has the answer...

The All New 1989b
TRS-80 Model 4

High Resolution/MacPaint
and Orchestra-90 have
een upgraded too!

J Disk Catalog

Send in your current catalogs for
your free catalog upgrade!
Don't forget to include return postage!

TRS-80 Model 4 - $5.00
TRS-80 High Resolution/MacPaint - sa.ooh
Orchestra-90 Music Files - $2.00

CATALOG PRICES ARE REFUNDABLE
WITH YOUR FIRST ORDER!

TRS-80 1s a trademark of TANDY Corporation

MORE PROGRAMS!
EASIER TO READ!
EASIER TO PRINT!
BETTER ORGANMIZED!

The File Cabinet

P.0. Box 322, Van Nuys, Ca. 91408
DOWNLORD THROUGH THE MAIL

PRODRAW PATCHES

by Arthur N. McAninch

Here are some patches for PRODRAW to allow reading
directories of drives other than 0-3, as well as patches for
SAVKLOAD/CMD to accomplish a similar function.

FIXPDRAW is as follows:

. This FIX will patch DRAW/LOD of the PRODRAW program by
. GRAFYX SOLUTIONS so that you may obtain a Directory of
. drives 0-7 instead of only 0-3
. (Note: the last patch is only cosmetic so that on Exit,
. LS-DOS Ready is displayed instead of TRSDOS Ready)
. Apply this patch by issuing the command
DO FIXPDRAW

from TRSDOS/LS-DOS Ready
PATCH DRAW/LOD (X'94D2'=37)
PATCH DRAW/LOD (X'9760' =37)
PATCH DRAW/LOD (X'9788'=37)
PATCH DRAW/LOD (X'AEFF'=4C 53 2D)
/JEXIT

SAVLOAD/FIX is as follows:
. This patch will allow you to obtain Disk Directories of

. Drives 0-7 from within SAVLOAD/CMD when utilizing
. either the (L)oad or the (S)ave command
. Apply by issuing the command:;
PATCH SAVLOAD/CMD SAVLOAD
from TRSDOS/LS-DOS Ready

D02,61=37
F02,61=33
D04,23=37
F04,23=33
. Eop

LITTLE KNOWN
MODEL 4 FEATURE

by Lance Wolstrup

Those of us who also own an MS-DOS machine know
that pressing the <F3> key will repeat the last issued
DOS command. This is a very handy feature, and many
times | have wished for something similar for the Model 4.
Talking to Tim Sewell a few weeks ago, the subject came
up. | told him that, if | had the time, | would write a small
utility to perform this function.

Tim laughed and said: "Why bother, you already got it!"

He then proceeded to tell me that both TRSDOS 6.2.
and LS-DOS 6.3. repeats the last DOS command when
you press <CTRL> <R>.

Hey, we had it before MS-DOS.

IT HELPS TO READ

THE MANUAL
by Dennis Burkholz

One evening | was playing around, looking at
LESCRIPT with a monitor program. | noticed that the
program prompts and error messages were written in
both English and French. This was very intriguing so |
spent the rest of the night trying to reconfigure a backup
copy to the French version. | didn’t succeed...

The more | failed, the more determined | became. | was
going to have a copy of LESCRIPT in French. To make a
long story short, after failing many more times, | became
so determined that | finally resorted to unfair methods:
| read the manual.

There it was, plain as day. It is done as a parameter to
the filename. Type:

LESCRIPT % <ENTER>
and 'voila’ you will now see the prompts, headings and
error messages in French.

| did encounter one problem with the French version of
LESCRIPT 1.81. Wanting to see if the spelling checker also
came up in French, | pressed <CTRL> <H>. The spell-
ing checker came up, as usual, in English and immediately
hung up the program. | must have pressed all combina-
tions of control keys, but none worked. | had to reboot.
Thought my experiences might interest your readers.

¢ Modell, lll & 4

The World’s

second smallest
word-processor

by W. Barry Knight

| read with some interest that "lean and mean"
wordprocessing program submitted by Ed Martin in the

.Jan/Feb 89 issue of TRSTimes. By including the PRINT I$;

the operator can now see the text on the screen as he/she
is typing, thus keeping the program almost as lean, and
maybe just a tad less mean.

10 I$=INKEY$:IF I$="" THEN 10 ELSE PRINT I$;:LPRINT 1$;:
GOTO 10

Ed Martin replies: Sure, go ahead and fatten up my
program with fancy bells and whistles. See if | care!!

TRSTimes 2.3. - May/Jun 1989 - Page 37

CLOSE #3

| can’t believe it. This issue, our ninth, marks a year and
ia half of publishing TRSTimes. Sure doesn’t seem that

ong.

Our very first issue was a humble 22 pages; the next
issue grew to 30 pages and we stayed right around there
until issue #6, which sported 36 pages. This count carried
over into the January and March 1989 issues. As you can
tell, you are now reading this column on page 38. We grew
another 2 pages. And they said information for the TRS-80
was adwindling! -

As you might imagine, the flow of mail to TRSTimes is
heavy. We get letters asking questions about a variety of
software, hardware, patches, fixes and numerous other
subjects. The three most frequently asked questions so
far this year are:

1. Will we continue in 19907
2. Will we go monthly?
3. Why don’t we set up a TRSTimes BBS?

The answer to question number 1 is not finalized as of
this time. TRSTimes, for reasons documented in previous
Issues, is a year-by-year project. Now, like last year, | will
take some time off, probably catch some ball games down
in San Diego, relax in the sun, while reflecting on my status
with my family. | will also seriously consider whether or not
TRSTimes will have anything of interest to say in 1990 and
if you, the readers, are at all interested. The early indicators
(sounds like an election, doesn't it?) show that TRSTimes,
more than likely, will do at least one more year. How about
if we change the name to '90 MICRO’? Nah, we'll keep
TRSTimes.

Should we continue in 1990, the bi-monthly format will
be kept. Publishing TRSTimes on a monthly basis is not
possible. | simply cannot double the time spent producing
the magazine. Also, the extra expense would mean dou-
bling the subscription price, making it just too expensive.

A TRSTimes BBS? The answer is a definite maybe!
We are investigating the possibillities, talking to a couple
of people who have had past experience running TRS-80
pboards. Nothing is firm yet, but hopefully we will have an
announcement about this in the next issue.

Let me change the subject for a minute. As all of our
readers should know, there is another TRS-80 publication

available called Computer News 80. Now, while our two |

magazines are to a certain extent competing, we do so on
very friendly terms. As a matter of fact, Stan Slater (CN80
publisher) and | communicate frequently with each other.
Though | haven’t discussed it with Stan, | imagine that he
shares my views on the following subject:

Both CN80 and TRSTimes continue to exist because
you, the readers, are kind enough to send your articles to
us for publication. We do appreciate it, believe me. The
problem occurs when an author sends the same article to
both magazines. We may both like the material and, not

TRSTimes 2.3. - May/Jun 1989 - Page 38

knowing the other also has it, publish it simultaneously.
This just is not fair. It is not fair to CN80; it is not fair to
TRSTimes and, most importantly, it is not fair to the
readers. Many subscribe to both magazines, and they
deserve to get new and fresh information from both pub-
lication, each and every issue. So please, if you submit an
article to CN80, do not send it to TRSTimes; if you send it
to us, please don't send it to CN80. Enough said!

Finally, TRSTimes wishes to salute the people who
helped make this issue possible by sharing their
knowledge and talents with us:

to Donald Shelton for his reverse video trickery....

to Bob Rose for telling us about SYSTEM 1.5....

to Ben Mesander for helping us get to those MAC
pictures....

to Dr. Allen Jacobs for the review of Magic Math PLUS...
to Gary Campbell for another installment of 'miracle’
programming...

to Elton Wood for a most interesting scheduling
program....

to Roy Beck for more CP/M wizardry....

to Robert Doerr for reviewing DEBUGGING BASIC
PROGRAMS....

to Arthur McAninch, Dennis Burkholz & W. Barry Knight
for sharing some fine tips...

Thanks guys - we couldn’t have done it without you.
Lance H.

P

The RAM software Company presents:
SMALL-C compiler version 3.0.
on the TRS-80

A large subset of Kernigan & Ritchie C, with a UNIX compatible I/O
library. Many other library functions are inluded. This is a true
compiler, not a pseudo-code generator like some others.

'
REQUIRES that the purchaser own Microsoft's M89 assembler & L80
linker, or compatible assembler & linker, on a 48K Model | with New-
dos/80 v2.0. More than 1 disk drive is recommended.

$20.00 for executable C compiler, library object code, demo
programs source code and C manual.
$20.00 additional for source code to compiler library and
library building/management utilities + documentation.

Make check/money order payable to:
Ben Mesander
1137 E. Brooks St. Apt. 4
Norman, Oklahoma 73071

Sorry, no COD or credit cards.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf

