§

ZBasic™ Newsletter

Winter 1987/1988

Mac ZBasic 4.01
Now Shipping

Incredible new Hyper-
Text HELP system
makes ZBasic easier to
use than ever.

The newest version of ZBasic
for the Macintosh has finally
shipped. It’s packed with many
of the powerful new features
you've asked for, including:

Zedcor did great

| this year at the

i MacWorld Expo
in San Francisco.
ZBasic sold very

laxing moment.

This Mac show
was the biggest
ever with over
60,000 people.

The Integrated HyperText
Help system brings to users a
378K help file with virtually the
entire manual on line. An al-
phabetical index appears when
you first invoke the system.
Within definitions are cross-ref-
erenced keywords in outlined
format. Just double click an
outlined word and get an instant
definition for that keyword. An
incredible time saver for expert
programmers and a great learn-
ing tool for beginners.

Macintosh page 12

ProDOS ZBasic
Selling Well

The ProDOS version of ZBasic
is selling better than ever.
There must be lots of Apple 11
affectionados out there. The
latest Apple II versions are:

Apple // DOS 3.8 ZBasic
Version 3.2 3/18/87

Apple // ProDOS ZBasic
Version 4.1 1/15/88

Apple page 18

Plenty of Useful
Examples in this
Super Issue

We have an example of doing
Bezier curves in two byte inte-
ger and more examples of the
popular “ShowTyme” graphics
program.

This is a great issue packed with
lots of ideas.

Bezier page 8

IBM ZBasic 4.02
Passes the Test

This quarter we have quite a
few useful subroutines. Includ-
ing routines for creating TSR’s,
reading Cursor positions...

IBM page 22

Letters to the Editor
Request for Articles
ZBasic Bulletin Boards
Doctor “Z”

Example Programs

Apple II

Bezier Curve (two byte routines)
A Look at Heap sort

ShowTyme graphics revisited
The Keyboard Prayer

Precision “Pi”

Macintosh

3D Life program written in ZBasic
Important notes on version 4.01
Interactive Digitized Sounds
PostScript ideas

Network support

Add Libraries

Determining current ROM

Screen Dumps (ProDOS)

Determining Free Disk Space (ProDOS)

APPEND function for ProDOS

Changing Hard Drive Volumes in DOS 3.3
IBM PC/MSDOS
4.02 Bug Report (don’t worry, it’s not bad)

How to write TSR’s in ZBasic
Modem Command routine
Get Drive information

Great “COMPILE” Batch file
Get and Set “Cursor”

—

Michael A. Gariepy
Editor in Chief
Advertising

Andrew R. Gariepy
Technical Editor

ZEDCOR, Inc.

PRESIDENT
Andrew R. Gariepy

CHAIRMAN
Michael A. Gariepy

‘Winter, 1988

"Z" is published quarterly by
Zedcar, Inc., 4500 E. Speedway,
Suite 22, Tucson, AZ 85712-
5305. (602) 881-8101. Support
line: (602) 795-3996.
Subscription rates are $19.95 a
year, $37.00 for two years (add
$5 for overseas and Canadian
orders).

To subscribe by phone call toll
free: 1-800-482-4567.

Please send address changes to
the Zedcor address above.

Advertising offices are at 4500 E.
Speedway, Suite 22, Tucson, AZ
85712-5305. 1-800-482-4567

"Z" is a technical journal not
affiliated in any way with
computer manufacturers.

"Z" and ZBasic are trademarks of
Zedcor, Inc. All rights reserved.

© Copyright 1988, Zedcor, Inc.
All rights reserved.

Programs included in this
journal may be used for non-com-
mercial purposes without
restriction.

Newsletter created with a pre-re-
lease version of FullWrite™ and
Zedeor’s new DeskPaint™.

Letters to the

Editor

Gripes, problems or com-

pliments? Send letters to:
Editor, 4500 E. Speedway
#22, Tucson, AZ 85712.

To the Editor,

In your spring-summer
issue(1987) you advertised hav-
ing routines in the next issue for
finding the elapsed time in days
for any week. Also the “Support
Blues” comic strip and the Sup-
port Notes” would be in the fol-
lowing issue. We'll I can’t find
any of those articles. Is thisa
case of Vapor-Paper?

- Mark Shepard
1773 Creek Dr.
San Jose, CA 95125

Well Mark, I must
" say I'm a bit sorry
. about that. The
Support Blues died
" because I just don’t
* have the time to
© draw one every quar-
_ ter. Iam willing to
pay $25 for any good
comic Strips you
| folks may come up
| with. The routines
for Day of the week
will be in the next
issue (promise). Sup-
\ port notes went the
. way of our last sup-
port guy. If you
2 haven’ noticed,
. | Greg, Andyand I
A have been doing the
. | support lately. We
o figured it gives us
| a better chance to
find and fix the
bugs quickly. We
work in shifts; Greg from 12 to
1:30, Andy 1:30 to 3:00, Mike
3:00 to 4:30. The phones aren’t
nearly as busy as they used to be.
We must be answering questions
to your satisfaction.

To the Editor,

Many thanks for sending the
new debugged version of ZBasic.
It seems to be OK, without the
bugs that were in the original.

The candor in admitting the
bugs and in replacing version
4.0 at no charge is a first time
experience for me (I've spent
close to $1000 for a program
that was full of bugs and the au-
thor wouldn’t even admit to the
problems). I've told many of my

=

computernik friends about what
you have done and they too feel
that it is an unusual thing and
absolutely fabulous. Hopefully
you will get some ZBasic con-
verts, as I talk up the language
and now the company.

Richard B. Mesirov
1700 Riverview Rd.
Gladwyn, PA 19035

We appreciate the feedback. As
embarrassing as it is to admit
mistakes we believe you have a
right to know. When you know
about problems you can avoid
them and/or write code around
them in most cases.

We have taken new steps to in-
sure that future releases don’t re-
peat past problems. In the
meantime, we’ll continue to work
at releasing newer versions of
ZBasic that incorporate the fea-
tures you ask for.

As the guys on TV say; “Thank
you for your support.”

To the Editor,
Enclosed you will find my ZBa-
sic disk for upgrading.

On the rest of the letter; First
your newsletter needs more arti-
cles and information in it. Be-
fore you respond with a “We're
Doing All We can”, consider
paying your customers for arti-
cles. It takes a considerable
amount of time to put together
an article with supporting
source code. There is a lot of
testing and notes that need to be
compiled.

David Postler
P.O. Box 1086
Elgin, IL 60121-1086

“
T R Y A T 3 S e TSR

3

I have to agree with you. Writ-
ing an article is a lot of work.
Thanks for your ideas. See box.

To the Editor,

I have been using your ZBasic
for the past 16 months and find
much to commend it (CP/M ver-
sion). So I thought I would write
a response to your call for sug-
gestions.

The newsletter should be orient-
ed, first, to those materials
which apply to all versions. All
articles on the first page would
be of this type. Second would be
a section reporting new addi-
tions to some version which

makes it more compatible with
another version. Please remem-
ber that the primary reason
many of us bought ZBasic was
because it is mostly compatible
across different machines.

I have two suggestions for addi-
tions to the language. These are

a ECHO and INCLUDE.

ECHO# filenumber would echo
text sent to a disk file to the
screen. The statement ECHO
OFF# filenumber would turn
echo off.

The INCLUDE “filename” state-
ment would bring in source code

at compile time and compile it.

$ Request for Articles $

The “Z” newsletter is open to submissions for articles pertain-
ing to ZBasic. This includes articles about:

U Subroutines

O Graphies examples
U Cartoons

1 File handling

O Games

& Programming Ideas

L Editor routines

1 Fiction/Non Fiction

1 Math puzzles

O Educational programs

We'll pay $20 to $100 for each article that is accepted (based on
size and importance). Program submissions will remain in the

public domain for all to use.

Articles and Program submissions must be text files (ASCII) on
a diskette formatted for IBM PC (360K), Apple II ProDOS or

Macintosh.

BEFORE SENDING ANYTHING call Mike Gariepy at 800-482-
4567 to discuss submission. This is done to ascertain the desir-
ability of the submission and the amount to be paid.

This way you could use subrou-
tines as they were needed.

Another feature I miss from
other programming languages is
a way to show a directory at
runtime,

Richard L. Gorsuch, Ph.D.
Professor of Psychology
Director of Research

Fuller Theological Seminary
180 N. Oakland Ave.
Pasadena, CA 91182

Thank you for your suggestions.
This new edition of the newslet-
ter should be a little more like
you requested. One thing many
of you should realize is that just
because a program example is in
another section doesn’t mean it
can’t be moved to your system
with some adjustments. A good
example is the Bezier curve func-
tion in this issue. It was convert-
ed by Robert Strong to a Two
Byte INTEGER format from four
byte Longlnteger format as it
first appeared in the newsletter.

We are looking at the INCLUDE
statement as it would provide
many benefits.

Directory routines are available
for most machines. I've sent you
a version for CP/M machines.

The ECHO statement does not
seem that important in my opin-
ion. On CP/M systems in par-
ticular there is extreme memory
considerations. To add too
many extra statements to ZBasic
would severely limit program
size. In this respect we have de-
cided to keep commands toa
minimum when other commands
can do the same thing.

To the Editor,

Will ZBasic programs ever run
within Windows or 0S/2? I have
read that OS/2 compatible pro-
grams must be written in “C”.
Could you make a clear “policy
statement” on this.

I also read about BASIC-to-C in-
terfacing as a ray of hope for
BASIC programmers.

Ronald W. Bryan, M.D.
9330 Park West Blvd. #103
Knoxville, TN 37923

It is hard to make a clear policy
statement about OS/2 yet. With
the Macintosh the conversion to
the Mac Environment was rela-
tively straight-forward but re-
quired a considerable amount of
work and learning. We are still
learning about the Mac ROM.

0S/2 is relatively new and we
have to see how widely accepted
it will be. There seems to be
some hesitancy on the part of PC
owners to move over to it. We
are, however, “Cramming” on
these environments and should
be able to tell in the next issue
whether an OS/2 ZBasic will be
forthcoming.

As far as “C” being required to
program in OS/2, Idon’t see
that as being the case. “Inside
Macintosh” is entirely Pascal, yet
ZBasic provides a complete in-
terface to the “Mac Environ-
ment”. The biggest problems we
encountered were translating the
Pascal Jargon to BASIC.

Down with C and Pascal!
LONG LIVE BASIC!

To the Editor,

I have a few suggestions for fu-
ture versions of ZBasic. I cannot
begin to count how many times I
have written a program, run it,
and realized I forgot to set
TRONB. I was just wondering if
you could make this the default.

On a different note, a friend of
mine has recently put up a BBS
and has made me the SYSOP of
a ZBasic forum (see below). We
call the board Compu-Plane and
it is running 24 hours a day on a
PS/2 model 80 under 05/2. We
were wondering if you could put
a small note in your newsletter.

Daniel Neuwirth.

As you request Dan. As far as the
TRONB nuisance I have to agree
with you. I'll talk to Andrew
about that.

=

To the Editor,

I have installed a new BBS just
for ZBasic programmers called
ZBBS.

The ZBBS is operated by and for
all ZBasic programiners, all ver-
sions. We are dedicated to the
advanced use of ZBasic.

Walt Keifer
819 Ave. F ne.
WinterHaven Florida, 33880

It’s great to see the kind of sup-
port ZBasic is getting! I hope
you all support these guys.

Thanks Walt and Dan. see BBS
info below in the box.
z

0
ZBasic Bul

Ca= Y
letin Boards

For those of you with modems that want more information
about ZBasic, try out these two new BBS’,

West Coast
Los Angeles
Compu-Plane
818-843-4874

voice 818-789-0304
24 Hours
300/1200/2400 baud

Dan Neuwirth SYSOP
Log on for more info.

East Coast
Florida

ZBBS (ZBasic BBS)
813-299-5694

voice 813-299-5650
24 hours

300/1200 baud

Walt Keifer SYSOP
Operated by and for ZBasic
Programmers. $15 year.

p—

Dr. =

Dr. Z is half-man,
half-computer;
he’ll answer your
questions about
programming in
ZBasic like no
other being in
the Universe.
His brain is a
bionic Al device
that thinks in
ZBasic, making
him the most
qualified entity
in existence to
answer questions

about your favorite
BASIC.

Dear Dr. Z,

I am using version 4.02 for the
PC on a Tandy SX 1000. I have
two questions relating to the
48K memory limit for object.

1. Does the limit still apply in
the 4.02 version?

2. What symptoms or problems
occur when a program gets
above the lirdit.

I have a program which mea-
sures above 49K without a prob-
lem. May I please have some de-
tailed information on this sub-
ject.

William Stevenson
513 Lincoln Ave.
Winnetka, IL 60093

Stevenson,

Your concerns about memory
considerations are legitimate. If
you look at the Memory Map on
page A-16 of the ZBasic manual
(in the MSDOS appendix), you
will see the maximum size of the
final object code is 64K minus
any runtime code. Since the
Runtime code is about 18K this
leaves less than 50K for com-
piled object code.

In response to question #1: Yes.
Approximately. But the 49K you

are getting INCLUDES the runt-
ime. 49K-18K means your pro-
gram is actually only 31K so
you have another 15-16K
to go before running out
of memory.

In response to ques-
tion #2: ZBasic will
inform you if an out-

of- memory condi-

tion exists. This
will happen at com-
pile time.

are not included
in the Object code.
They take up

{ memory. See the
MSDOS Memory
Map.

Dear Dr. Z,
Page 126 of the ZBasic
manual says under print
syntax for the semi-colon
“” that subsequent prints

will start at the cursor posi-
tion. So why doesn’t this pro-
gram print out the line:
123456789**? The actual output
was: 123456789 %

(he owns the ProDOS version of
ZBasic 4.02) (Program below)

FOR I=0 TO 9

PRINT I;
NEXT I
PRINT"”**"
END

Rod Robichaux
8471 Everett Way #D
Arvada, CO 80005-2354

continued next page...

Dr. Z continued...

Dear Mr. Robichaux,
When ZBasic prints the value of
a numeric variable, it always re-
serves one character position to
the left of the character for the
“Sign” of the number. If the
number is negative, ZBasic
prints a “-”, If the sign is positive
a space is printed. This charac-
ter position is also a part of any
string that is produced with the
STR$ function.

ZBasic also automatically prints
a trailing space when printing a
numeric variable. This trailing
space is NOT included when
converting a numeric to a string
with STR.

If you don’t want the spaces in-
serted by ZBasic, your only re-
source is to convert the number
into a string and then strip the
leading space off. Example:

FOR I=0 TO 9

A$=STRS$ (I)

PRINT RIGHTS (AS,LEN (A$)~1);
NEXT I
PRINT
END

Wik

Returns: “123456789%*",
Voila!

Dear Dr. Z,
{I am] Very satisfied with your
improved version 4.02 (IBM PC).

Question; How do you use
USRS to input a string with full
ability to back-up [with the de-

next key fine but the input rou-
tine starts over rather than in-
cluding the first key pressed.

Scott Stalheim
Box 344
Augusta, W1 54722

Dear Mr. Stalheim,

A simpler way to input keys is
with the regular INKEYS state-
ment although USR3 could also
be used.

The following function will allow
you to create an input routine

=

that will trap your keys and dis-
play them on the screen at the
position you tell it (x,y). You can
also use the backspace key to de-
lete characters (see box).

Things that could be added are a
blinking cursor routine and
more filters for undesirable keys.
You could also check for ALT,
CTRL and Function keys using
USR3.

That’s all for this newsletter.
Keep those letters coming.

CLS
LONG FN Getkey$ (x,v,len)

str$="": Term=0:
DO
DO
key$=INKEYS$
UNTIL LEN (key$)
LONG IF ASC(key$)>31
stré$=strS$tkey$
XELSE
LONG IF ASC (key$)=8

END IF

END IF

PRINTQ(x,V):

CLS LINE

PRINT str$;" ";

SELECT CASE ASC (key$)
CASE 13: Term=1 N
CASE 27: Term=1 N
CASE 10: Term=1l N

END SELECT

UNTIL Term: Y Wait til

END FN=str$

I$=FN Getkey$ (x,v,len)

'Getkey function (example)

PRINT@ (x,y) ;"_";REM unblinking cursor
REM keys pressed

str$=LEFTS (str$, LEN (str$) -1)

REM Exit loop if “RETURN” pressed or len reached

INPUT"Input x,y and len";x,
IF y=0 OR y=0 OR len=0 THEN END

CLS: PRINT:PRINT"The string returned:"; IS

REM Get a key

REM Check if ctrl char.
REM add to other keys

REM Check if backspace

REM Print str$ at x,y
REM clear line of old
REM print string

Return key
ESC key
Linefeed key

a terminating key is pressed

v, len

lete key], but allowing the user END

to press the ESC key to escape

the routine, at least for the first

L o . T A o N O S B e g s |

-3

=

User Conceives
a new Bezier
Curve Routine

User sees LongInteger
version in previous
Newsletter and comes
up with a powerful
(and Fast) two byte in-
teger alternative.

Thanks to Robert Strong of
Charlottesville, VA for this great
Bezier curve routine.

The original appeared in the
Fall Newsletter and required
four byte Integers as used in the
Macintosh version of ZBasic.

This program will run on any
version of ZBasic including the
IBM PC, Apple II ProDOS and
Z80 versions.

Robert wrote; “While this pro-
gram actually uses some float-
ing point computation, the cal-
culation has been restructured
to be faster. The main loop in
your LongInteger program exe-
cuted 100 times, containing 17
floating point multiplications
while my version has only 6. Of
course the LéngInteger version
could be improved by similar re-
structuring.”

This program is quite fast. In
fact it is faster than our original.
Thanks Robert!

1 don't know HOW |
figured out how to
convert it to integer.

Guess | just " THUNK"
real hard.

TWO BYTE INTEGER Bezier Curve Example

Submitted by Robert Strong, Charlottesville, VA

TRON B
DEFSNG N-Z
DIM X(3), Y(3), U(3), V(3)

'

MODE=7: COLOR=15: Set for your system

K=100:TD=1/K
CLS
FOR I=0 TO 3

X(I)=RND (1024)-1: Y(I)=RND(768)~1

NEXT
FOR I=0 TO 3

CIRCLE X(I),Y(I),10
CIRCIE X(I),Y(I),2

NEXT

PLOT X{(1),Y(1) TO X(2),Y(2)
U(0)=X(3)-3*X(2)+3*X (1) -X(0)
V(0) =Y (3) -3*Y (2) +3*Y (1) ~Y (0)

U(1)=3*X(2)-6*X (1) +3*X(0)
U (2)=3*X(1)~3*X(0)

U(3)=X(0)+0.5
T=0: OX=X(0):

V{1)=3*Y (2) -6*Y (1) +3*Y (0)
V{2)=3*Y (1) -3*Y (0)
V(3)=Y(0)+0.5

0Y=Y (0)

PLOT OX,0Y
FOR I=1 TO K

X=0(0): ¥Y=V(0): T=T+TD

FOR J=1 TO 3
X=T*X+J (J) : Y=T*Y+V (J)

NEXT

LONG TF ABS (X-0X)>1 OR ABS (Y-OY)>1
PIOT TO X, Y
OX=X: 0OY=Y

END IF

NEXT
PLOT TO X(3), Y(3)

RUN

' HEAPSORT example program
TRON B REM DIM a(n) where n=number of elements to sort
DIM a(501): n=500

LONG FN HEAPSort (nHEAP)
REM Transforms the elements into a heap

FOR iHEAP=INT (nHEAP /2) TO 1 STEP -1
1ADJUST=iHEAP: nADJUST=nHEAP
GOSUB "ADJUST™

NEXT iHEAP

REM The Heap will place the largest value in array position 1
REM each time the ADJUST is invoked. This loop swaps it to
REM the nHEAPSORT-iHEAP position

FOR iHEAP=nHEAP TO 2 STEP -1

SWAP a(l), a(iHEAP)

iADJUST=1: nADJUST=iHEAP~1: GOSUB “ADJUST"
NEXT iHEAP

GOTO "EXIT HEAPSORT": REM Finished sorting here so exit

"ADJUST"
JADJUST=iADJUST *2
itemADJUST=a (1ADJUST)
WHILE jADJUST<=nADJUST
LONG IF (3ADJUST < nADJUST) AND (a (jADJUST) < a(jADJUST+1))
JADJUST=JADJUST+1
END IF
LONG IF itemADJUST >= a({3ADJUST)
GOTO “EXIT ADJUST"
XELSE
a (INT (JADJUST/2))= a{jADJUST)
JADJUST = SADJUST *2
END IF
WEND

YEXIT ADJUST®
a(INT (JADJUST/2)) =itemADJUST
RETURN

"EXIT HEAPSORT®
END FN=0

REM Program Starts here
FOR X=0 TO n
a (X)=RND (2000} :* Create random array for speed test.
NEXT
CLS: PRINT%(490,380);"Starting Sort of:";n;" items now..."
START#=TIMER: SOUND 100,100: REM Use TIMES w/Apple II & 280
jj=FN HEAPScrt (n)
FOR X=n-10 70 n
PRINT a({X):*' Print last 10 to ascertain good sort
NEXT
LAST#=TIMER:: SOUND 100,100
PRINT: PRINT “Sort took ";LAST#-START#;" Seconds"

END

P

A Look At
Heap Sort

The question of which
sort is faster comes up
again. '

You decide.

This Heap Sort was submitted
by Pat Wojtkiewicz from Shreve-
port, LA. It is another sort type
that we don’t currently include
on our example disks.

Pat says; “I have noticed you
seem to go for the Quick Sort for
high speed sorting; however,
many people overlook the binary
Heap Sort for many applica-
tions. It is an O(nLOGn) sort
and its best and worst cases are
nearly the same. The most im-
pressive point of the Heap Sort
is that its memory requirements
are O(n), unlike Quick Sort
which requires a couple of addi-
tional arrays and stacks (al-
though not substantive. Ed.) I
enclose a copy of it as a LONG
FN”,

Thanks Pat.

We compared the sort on a Mac
and found the Quick Sort to be
significantly faster (10x). Per-
haps someone has ideas about

optimizing this sort?

ShowTyme
Revisited

The ShowTyme Ran-
dom Graphics shape
generator in our sum-
mer issue was very
popular.

We had several people
submit modified ver-
sions of it that create
some complicated and
beautiful shapes.

These programs are added for
your amusement.

Like the original ShowTyme
program these demonstrate the
speed of the integer Sine and
Cosine routines in USR 8 and
USR 9.

Thanks to Charles Stone and
Robert Strong for their submis-
sions.

! ‘EE:'“

' Submitted by Charles H. Stone
* Portland, OR
DEFSNG R
CLS
FOR S = 1 TO 127
CLS: MODE 12 : ' Set mode for hi-res cards
FIN=256*S
PRINT% (0, 730) ; "Step";S;
FOR A=0 TO FIN STEP S
TRON X
GOSUB "FORM"
X=(USR 9 (A))*R+600
Y= (USR 8(A))*R+375
IF A <> 0 THEN PLOT X1,Y TO X, Y1
X1=X: Yl=Y
NEXT A: PRINT:PRINT" "
DO
UNTIL LEN (INKEYS)
NEXT S

"FORM"

=USR 9 (USR 8(a))
R=R/200:RETURN
END

' This program was submitted by Robert Strong
‘' Charlottesville, VA
CLS: 'MODE=7
FOR N=4 TO 255 STEP 4:' Try changing the steps
CLS
FOR D=0 TO 255 STEP 16
'Add COLOR=RND (15)+1 if you have a color machine
PRINT%(0,30); : CLS LINE

PRINT"N=",'N" ll; " D=",°D; " n,. :T=0:C=0
WHILE C<256
TRONX

A=T: X=(N*A) MOD 256: R=USR 8(X)/2
PLOT 511+ ((R*USR 9(A))/128), 383~ ((R*USR 8(A))/128)
DO
A= (A+D) MOD 256
X=(N*A) MOD 256: R=USR 8(X) /2
PLOT TO 511+ ((R* USR 8(A))/128), 383~((R* USR
8(R))/128)
C=C+1
UNTIL A=T
T=T+1
WEND
NEXT D, N
SOUND 100,100: SOUND 500,500
jal¢]
AS$=INKEYS
UNTIL LEN(AS)
END

=

‘The Keyboard Prayer

Our Program
Who art in memory,
Hello be thy name.

Thy operating system come,
Thy commands will be done,
at the pointer as is on the screen.

Give us this day,
Our daily Data,
and forgive us our /O errors
As we forgive those
whose logic circuits are faulty.

Lead us not into frustration,
and deliver us from power surges.

For thine is the algorithm,
the application,

and the solution.
Looping forever and ever.

RETURN

PRINT P

NEXT

END

S=8QR (X} :
P=P* (X+1) / (Y+1)
Y=(Y*S+R) / (Y+1}
X=(R+8) /2

! Example of High Precision Pi

! Submitted by Robert Strong, Charlottesville, VA
! Returns Pi to the maximum precision set

' Under "Configure" for Double Precision
1

FOR II=1 TO 9

R=1/8

Precision TC

Robert Strong has sub-
mitted an interesting
version of Pi for your
mathematical Diver-
sion.

“T ran across something cute
which you might enjoy. Recently
there have been several mathe-
matical articles about a new
way of computing Pi (©) which
is supposed to be real fast. It
gives fantastically large num-
bers of digits in no time, but you
need a language that carries lots
of digits in its arithmetic.

I decided to try this program out
using my Apple ProDOS version
of ZBasic. 1 set the configuration
to 54 digits of accuracy for Dou-
ble and Scientific precision and
ran my little program.

The first 53 digits are correct
the last digit is a 2 instead of a
1. Even carrying 54 digits one
doesn’t expect absolute accuracy
due to inevitable roundoff.

TRON B

DEFDBL M~Z

X=1/S0R (2) Here we have Square roots,

¥=0 Multiplications, Divisions, and
p=2 all the rest -- and the answer is

damn near perfect. It is really
pretty.”

Thanks Robert.

=z

P

Macintosh section contin-
ued from front page...

Other important new features
include COLOR Support for Mac
II, MultiFinder™ and Switch-
er™ support, a SIZE resource
has been added to ZBasic and to
applications created with ZBa-
sic. This resource passes the
memory required by an applica-
tion. It may be changed with
ResEdit™. The editor has been
cleaned up (no more bombs in
the new ROM and new system).
It will even save your window
positions and text sizes if you
want.

How to Upgrade to 4.01
The upgrade to version 4.01 is
free to all owners of version 4.0.
To get your free upgrade send in
your master disk to ZEDCOR.

Still Have Version 3.07
Registered Owners of ZBasic
3.0x may still upgrade to version
4.01 for $39.95 plus $5.00 ship-
ping. This upgrade includes the
new 768 page manual. Send us
your original ZBasic 3.0x disk
and a check for $44.95.

=z

Incredible 3D Life Program written
in ZBasic gets Write-Up in
Scientific American

Scientific American article details 3D version
of Conway’s Life program in ZBasic. Pro-
gram does animated 3D ‘Boxes’ instead of 2D
pixel images like old version of Life.

The article was in the February,
1987 issue of Scientific Ameri-
can. The Life program is avail-
able as a stand-alone applica-
tion. Cost is $28 + $2 Shipping
[$30 total]). The price includes a
__ user’s guide, 400K diskette, and
a large variety of already creat-

. ed 3D Life shapes. Execution is
about .5 to 3 generations/ sec.

Depending on the Tl
relationship of one algra'i
cell to it’s many neigh- -

bors, it is mathematically new releases
determined whether the E T '
form will survive to the

4
) @ I had a chance to try the
next generation. ﬁ;r_q- program and was quite fa-
The life forms are cre. i vorably impressed. Order

This incredible program does
“Conway’s Life” in 3D instead of
two dimensions like the old ver-
sion.

Each 3D cell has 27
neighbors (8 in 2D). It
uses “3D Cubes” to
represent each cell.

gi Iimplore Mr. Bays to make
the “Source Code” available.
This would spur some incredible

from:
ated and move on the
Mae screen in real time. Life Carter Bays
forms settle in to a set pattern Dept. of Computer Science
after several generations of ex- LeConte Bldg.

istence or eventually grow into
an unstable condition (the inter-
relationships of cells) and per-
ish. Itis fascinating to watch
this animated display.

University of South Carolina
Columbia, SC 29208

9

=

Important Notes on Macintosh ZBasic 4.01

Making the Help
System Work
with MultiFinder

New HyperText Help
requires special instal-
lation to work under
MultiFinder.

To make the new HELP Desk
Accessory recognize the ZBa-
sic™ HELP file when you're
using ZBasic under MultiFinder,
you'll need to install the DA di-
rectly into ZBasic using Font/DA
Mover.

The procedure is identical to in-
stalling it into the System ex-
cept that when you are in
Font/DA mover you hold in the
“Option and Command keys”
and select ZBasic instead of Sys-
tem. This installs the Help DA
directly into ZBasic and allows
it to recognize the help file cor-

rectly.
z

Nested Event
Trapping Differs
from Version 4.0

Old 4.0 programs miss-
ing Events in 4.017?
Here’s an easy way to
solve the problem.

It you encounter problems with
your old 4.0 programs missing
events here’s the reason.

When doing an ON Event
GOSUB in version 4.0 and the
user failed to turn off events at
the routine containing the event
handing, an inevitable System
Error 28 would occur. To fix
this, version 4.01 disables event
trapping as soon as an Event
takes place with an ON Event
GOSUB. Event trapping is not
re-enabled until a RETURN is
encountered.

The big problem occurs in rou-
tines where you go to another
event loop based on an event
that took place at a previous
event loop. In this situation
events will not be trapped. If
you press buttons or select
menus or edit fields nothing will
happen. This is because the pro-
gram is waiting for a RETURN
to reactivate event trapping.

Fortunately you don’t have to to-
tally rewrite your programs to
fix this. Since the events are

handled based on iriformation in
a global memory location, you
can simply poke a value into
that location to solve the prob-
lem. The solution is to put this
statement:

POKE PEEKLONG (&£904)-&907,0

in front of subsequent event
loops. Here's a simple example:

Program start...

ON DIALOG GOSUB “Dia”
ON MENU GOSUB “Men”

“Main Event Loop”
DIAT.OG ON: MOUSE ON
Do

UNTIL Loop

DIALOG OFF: MENU OFF

program continues..

“Second Event Loop”

PORE PEEXIONG (&904)-&907,0
ON DIALOG GOSUB “Dia”

ON MENU GOSUB “Men”
DIALOG ON: MOUSE ON

DO

UNTIL Loop

DIALOG OFF: MENU COFF

Note: Use this statement at the
start of each subsequent event
loop.

It doesn’t hurt to use it whenev-
er you like,

=z

Modify Example
Sound Program
to obtain
Asynchronous
Sound Effects

Create Special Sound
Effects for your Appli-
cations that can play in
the background. This
is a modification to
“PlaySound.BAS” in
the Program Example
Folder.

We've included a program in
the Sound example folder of ver-
sion 4.01 to play “beep” sounds.

This is a way for you to add digi-
tized sounds to your programs.
This can come in handy for
Games, Educational and Busi-
ness applications.

For those of you that don’t have
“Beep” sounds try looking in the
Public Domain “Sound Files”
and “HyperCard Sound Effects
Files” on GEnie or Compuserve.

Other sources are Public Do-
main software houses like
EduComp and BudgetBytes.

Unfortunately the program
didn’t play in the background
and a program would grind to a
halt until the sound was fin-

' This is a program that plays digitized “CheapBeep”
' Start-up Beep Sound files. Just run the program and
' select a valid start-up sound or cancel to exit

DO
F$=FILESS (1, "FSSD", ,V%)
IF F$="" THEN END
TEXT 0,12 : CLS
OPEN "I",1,F$,1,V%
L&=LOF (1)

IF L&=0 THEN STOP

P&=FN NEWPTR (L&+6)

IF P&=0 THEN STOP

READ FILE 41,P&+6,L&
CLOSE 1

PRINT "File Name: ";F$
PRINT "Length:";L&; "bytes"
POKE WORD P&, 0 :
POKE WORD P&+2,0

POKE WORD P&+4,32768
A&=VARPTR (AS)

POKE LONG A&+12,0

POKE WORD A&+24,-4

POKE LONG A&+32,P&

POKE LONG A&+36,L&

OPEN A SOUND TYPE FILE
CANCELED FILESS

SET TEXT SIZE/CLEAR SCREEN
OPEN A SOUND TYPE FILE?
GET THE LENGTH OF FILE
IF NO LENGTH THEN STOP
ROOM FOR SOUND RECORD
COULD NOT GET THE MEMORY
READ INTO MEMORY

CLOSE THE FILE

SHOW FILE NAME

FREE FORM SYNTH

RATE OF PLAY (INTEGER)
RATE OF PLAY (FRACTIONAL)
GET A PARAMETER BLOCK

NO COMPLETION ROUTINE
SOUND DRIVER REF-NUMBER
POINTER TO SOUND RECORD
LENGTH OF SOUND RECORD

_(Add the following 4 lines to example)

MACHIG AS, &A403 ' Asynchronous Write
DO
PRINT “.”; : ' Talking and printing at the

UNTIL PEEKWORD (A&+16)=0 : " same time!!

X=FN WRITE (A&) : ' PLAY THE SOUND

X=FN DISPOSPTR (P&) : ' DISPOSE OF SOUND MEMORY
UNTIL 1IOOP : ' Endless Loop
END

Digitized sounds really add a lot

ished playing.
to a program.

Add the changes noted in this

example program to allow these

sounds to play in the back-

ground. You will still realize

about a 20% speed degradation.

Z

New ideas for
using PostScript

Ken Jenkins sent us
some enlightening ob-
servations about using
PostScript.

Here's some information per-
taining to the PostScript exam-
ple you published in the new
ZBasic manual (4th edition). I
thought it might be useful to
other users who are attempting
to write PostScript output for
ZBasic pro-

up, and output to the Laser-
Writer is done through these
drivers. If Laser Prep has not
been downloaded to the printer
already, it is downloaded at this
time.

What is Laser Prep? PostSecript
was published after QuickDraw
(the graphics routines in the
Mac’s ROM) were already estab-
lished as the new graphic stan-
dard at Apple. The Mac gener-
ates QuickDraw primitives, the
LaserWriter only understands
PostSecript... “what we have here

is a failure to communicate.”
What to do?

P~

text file called “PostScript 0...9”
on the desktop.

The PostScript file will include
the Laser Prep prologue fol-
lowed by the postseript for your
document (if you print a blank
page there won’t be much). If
you don’t want the Laser Prep
prepended, then do the same as
above but press the <Command
F> keys instead.

Problems with Apple’s
Laser Prep:

1. It has been notoriously
“buggy”. So much

grams. I would
be very interest-
ed if you come
across an exam-
ple of how to
send PS through
the AppleTalk
network without
encountering the
Print Manager
at all (and sub-
sequent down-
load of Laser
Prep). I don’t have the knowl-
edge of AppleTalk needed to
write such a routine. If you
know of one, please let me know.
(Anyone out there? ed) Another
problem is the 32K limit.

FNPS§("pse T

éd—

Ipowl jledjdod ——

On page E-25 in the ZBasic
manual is an example of how
you can use the PICTURE state-
ment to send PostScript code di-
rectly to the LaserWriter (or
other PostScript devices).

Unfortunately since Apple’s
print manager is used to do this,
the code doesn’t quite go “direct-
ly” to the LaserWriter. Apple’s
LaserWriter drivers are called

sued} A —o

0761582100 2 2V FFTFTT
N A N
X < x o X < DX <L =
S% ¥ 8 7gu23==2523
[V LN L = T P o
2 Q o) w0 v AT TP
[T = 3 NN 1920
& F - o 6—: <®
8 35 & 8=

Enter Laser Prep: Laser Prep is
a PostScript prologue which is
generally downloaded to the
LaserWriter outside the “Server
Loop” so it remains in the print-
er and is in effect from job to job.
The reason for this approach is,
Laser Prep is about 30K and we
don’t want. to have to download
it every time we send a job to
the printer.

If you would like a text copy of
Laser Prep to work with, hold-in
the <Command K> keys imme-
diately after pressing the OK
button from the Print Dialog
box. Instead of sending the doc-
ument to the LaserWriter, the

drivers will create a PostSeript

suateweded ul 189S —-}Z;

so, that Aldus de-
cided to chuck it
altogether and
write their own
prologue, Aldus
Prep, for
PageMaker™,

od psb")

6
JNoA sARSaY

abewn oiydesd __

2. Since
RESOURCES are
altered via the
print manager di-
alogs and written back to the
driver, it is possible for the driv-
ers themselves to be corrupted.

3. Laser Prep puts the Laser-
Writer in a default mode which
causes a couple of problems for
us if we want to send PostScript
code to the printer and have it
behave properly (that is unaf-
fected by Laser Prep). The two
problems are;

a. The PostScript “y” axis is in-
verted. This is what causes the
example in the ZBasic manual
to be up-side-down.

b. PostScript 0,0 original offset
from where it should be.

P

There are two ways to
remedy these problems.

#1. The first is straight forward
but dependent on the version
LaserWriter drivers you are
using. Simply select “Options”
in the “Page Setup” dialog box
(DEF PAGE) and then select
“Flip Vertical”.

Modify Laser Prep!

#2. Calling Laser Prep routines
from our program to defeat de-
fault. Since Laser Prep estab-
lishes a dictionary of its own
when downloaded, there is no
reason why we can’t use the op-
erators in it ourselves.

Of course, since Laser Prep is
not documented anywhere, you
have to do a little digging
around. If you add the line
shown below as the very first
line in the PostScript example in
the manual (or any PostSeript
program you write based on the
same model) it will correct the
problems caused by Laser Prep
(and without having to force the
user to select all the correct op-
tions under DEF PAGE).

If you were to do the above and
then capture the PostSeript out-
put in a file using the <Com-
mand F> method, you would
come across 4 line like this: T T -
8-18 784 59410072721 FFT
F T F psu. This line calls rou-
tines in Laser Prep to adjust the
graphics state of the LaserWrit-
er. We can create our own “psu”
line and override Laser Prep.

Feel free to publish or use this
information any way you wish.
Sincerely,

Ken Jenkins

P.S. The ZBasic manual is one of
the very finest examples of soft-
ware documentation I have ever
seen (and I've seen an awful lot),
great job!

(Ah shucks Ken! Thanks! Ed.)

=

L

Special Version
of ZBasic offers
Network Support

Version 4.01 was out the door
only 48 hours when we discov-
ered a new parameter in the
Apple System software that al-
lows sharing files in both Read
and Write modes. (Previous ver-
sions of ZBasic allowed shared
read files when you set the
“Shared bit” of a data file using
ResEdit”. Ed).

Well we thought about it a bit
and decided to release version
4.01N. The N stands for Net-
work. The only difference be-
tween this and 4.01 is that a
new parameter is offered in the

OPEN statement: OPEN “[RIN”.

The N signifies the file may be
opened for shared read/write.

ZBasic 4.01N opens
Shared Read/Write
files

Since we don’t have a network
here to try it out on, we are
awaiting feedback from end
users. We are not sure if the
user will have to do internal
record lock-out or what sort of
other problems may be encoun- 3
tered. This parameter was of-
fered in the latest Volume “IV”
of Inside Macintosh.

Tt

L.

If you want this new version
send your master disk back with
$10 to cover our costs. We'll re-
turn the “N” version by First

Class mail.
&

Add Libraries to
ZBasic 4.01 for
the Macintosh?

Previously Secret tool-
box resource informa-
tion Now Revealed in
example program
“Show toolbox.BAS”

In the “Program Examples” fold-
er is a new example program in
the “T'oolbox Folder” called
“Show Toolbox.BAS”,

This interesting little program
will show experienced BASIC
programmers how the toolbox
routines are added as resources
to ZBasic.

With a little investigation you
should be able to figure out how
to add your own commands.

When you run the program, the
entire toolbox routine tokens
will be printed with their proper
parameters. Just create your
own libraries the same way and
add them using ResEdit.

Watch for a future release of a

Library Editor so you add and
delete your own commands to

ZBasic!!!

64K, 128K or
256K ROMS?

Ever Wonder how to
Determine if a Pro-
gram is running on a
Mac I1, SE, Plus or
Other type of Macin-
tosh?

Be sure to see the example pro-
gram in the “Mac II folder”
called “Which ROM?.BAS”.

This little program will tell you
if the program is running on a
64K, 128K or 256K ROM.

64K is Mac XL, 128K or Mac
512K. These versions do not
support the new HFS.

128K is the Mac 512KE, Mac
Plus and Mac SE.

256K is the Mac I1.
Note: ZBasic windows on a Mac
II now use PIXMAPS instead of

bit maps. Avoid PEEK/POKE of
direct graphics on a Mac II.

P

End Macintosh Section

A plefalk
Xample

Programs
Wanted

BERAB
ALIVE!

We need good working
examples of AppleTalk
programs for the Macin-
tosh written in ZBasic.
We will pay a $100 re-
ward to the first person
sending us an example
program that illustrates
many of the facets of
using Appletalk (and
works).

This $100 reward is in
addition to the $75 fee
you will get for an arti-
cle about AppleTalk.
Don’t hesitate ...

Send it today.

=

Apple continued from page 1...

If you don’t have the latest ver-
sion you can upgrade by sending
us your master ZBasic diskette
and $19.95 to:

Zedcor, Inc.

Apple II upgrade

4500 E. Speedway, #22
Tucson, AZ 85712-5305

Greg says he’s working feverish-
ly on the Apple //GS version. He
says maybe this summer (we
have our fingers crossed Greg).

He says if you want any special

features, send your ideas now so
he can plan on implementing

them.
Z—

Do Screen
Dumps to a
Printer with this
handy Routine.
For those of you who'd like to

have a PAGE LPRINT command
like the Mac and IBM versions

of ZBasic, here’s another useful
routine by Greg Branche.

Just add this routine to your
program and do: GOSUB
"PAGE LPRINT".

=z

"PAGE LPRINT"

REM Performs an 80-column screen dump to the printer
REM Adapted to ZBasic from Apple Miscellaneous Tech Note #1

ROUTE 128
MACHLG &AZ2,&00, &84, &20, &C1, &FB, &A0, &00, &8D, 01, &C0, &8D, 55, &CO
MACHLG &98, &48, &4A,&90,&03, &8D, &54, &C0, &A8, &B1, §28, &8D, &54, &CO
MACHLG &20, &ED, &FD, £68, &A8, &C8, &C0, £50, £90, &E2, &A3, &8D, &20, ¢ED
MACHLG &FD, &E8, &EO0, &18,&90, &D2
ROUTE O

RETURN

18

How to Get Free
Space on
ProDOS Disk
Volumes

Use this function in
your programs to get
the free space for
ProDOS volumes.

Here’s a LONG FN you can use
in your programs to determine
the amount of free space in a
ProDOS volume.

This can come in handy quite
often, especially when you don’t
want your programs to run out
of disk space.

Thanks again to Greg Branche.

=

GETSIZE.BAS

REM includes and demonstrates a LONG FN that can be used
REM to retrieve the block usage information of a volume

LONG FN GETSIZE (VOLS) i
REM VOL$ contains pathname of the volume to get info
POKE WORD &1F01, VARPTR(VOLS) :REM Set pointer->string
POKE &1F00, 10 : REM 10 parameters for GET_FILE INFO
MACHLG &A9, &C4
REM MACHIG &20, &803 : REM Use this line for 64K ver.
MACHLG &20, &865 : REM Use this line for 128K version
MACHIG &90, 3
REM MACHLG &4C, &809 : REM Use this line for 64K ver.
MACHLG &4C, &87F : REM Use this line for 128K version
MAXSIZE% = PEEK WORD (&1F05) :REM total blocks avail.
USED% = PEEK WORD (&1F08) : REM Get # of blocks used
FREE% = MAXSIZE% — USED% : REM # blocks free

END FN = FREE%

INPUT "ENTER VOLUME NAME -> "; AS

Blocks Free% = FN GETSIZE (AS)

PRINT UNSS$ (MAXSIZE%) " TOTAL BLOCKS, ";

PRINT UNSS$ (USED%) " BLOCKS USED, ";

PRINT UNS$(Blocks_Free%) " BLOCKS FREE"

END

=

APPEND function

for use with
ProDOS ZBasic

Use this Function to
Append data to an
existing file.

Lots of people have asked
for this function so here it
is. Many thanks to Greg
Branche.

To use the example (right),
just add it to your program
with MERGE or APPEND

and then use the following
function in your programs:

FN Open_ Append
Any subsequent output to

an existing file will be ap-
pended without changing

the data.
=z

LONG FN Open_Append (FileNum%, Path$)
REM FileNum% is the file # you wish to use: (1-8)
REM Path$ is the pathname of the file to open for append
OPEN "O", FileNum%, Path$: REM Open the file

REF% = PEEK (&1F05) : REM Get ProDOS refnum

POKE &1F01, REF% : REM Set into parameter block
POKE &1F00, 2 : REM Number of parameters
MACHLG &A9, &D1 : REM IDA #$D1 (GET_EOCF')

REM MACHLG &20, &803 : REM JSR $803 (64K VERSION)
MACHLG &20, &865 : REM JSR $865 (128K VERSION)
MACHILG &90, 3 : REM BCC *+3 (check file error)
REM MACHLG &4C, &809 : REM JMP $809 (64K VERSION)
MACHLG &4C, &87F : REM JMP $87F (128K VERSION)
MACHLG &AS9, &CE : REM IDA #SCE (SET MARK)

REM MACHLG &20, &803 : REM JSR $803 (64K VERSION)
MACHLG &20, &865 : REM JSR $865 (128K VERSION)
MACHLG &90, 3 : REM BCC *+3 (check file error)
REM MACHLG &4C, &809 : REM JMP $809 (64K VERSION)
MACHLG &4C, &87F : REM JMP $87F (128K VERSION)

END EN

OPEN "O", 1, "TESTFILE.DAT" : REM Create the file initially
FOR I =1 TO 10 : REM Just dump stuff to file
PRINT #1, "This is line number"; I
NEXT I
CLOSE #1
: REM Now try the append function
FN Open_ Append (1, "TESTFILE.DAT")}
FOR I = 11 TO 20 : REM Lines 1 - 10 already in file
PRINT #1, "This is line number"; I
NEXT I
CLOSE #1
: REM See what's actually in the file
OPEN "I", #1, "TESTFILE.DAT"
ON ERROR GOSUB 65535 : REM Turn off ZBasic's error check
WHILE ERROR = 0

INPUT #1, AS : REM Get a line of input

PRINT AS : REM Display it
WEND
ERROR = O : REM Must clear ERROR ourselves
ON ERROR RETURN : REM Give error checking back
CLOSE #1

END

Changing Hard-
Drive Volumes
with the Apple //
DOS 3.3 ZBasic

A Helpful program for
Hard-Disk users
“plagued” with DOS 3.3.

A ZBasic user was nice enough
to send us source code that lets
you change volumes using the

old DOS 3.3 version of ZBasic;

Dear Mike,

Enclosed is a sample program
that changes the volumes on an
Apple hard drive formatted in
DOS 3.3. The program assumes
that you are currently in the slot
and drive of the hard drive.

I am currently developing soft-
ware using ZBasic that runs on
these hard drives [see box].
Some of the programs access as
many as thirty different vol-
umes. This method has proven
most successful.

This program should be helpful
to those hard disk users still
plagued with DOS 3.3.

Fran Breit

University of Wisconsin
(at Madison)

Vocational Studies Center

P.S. Thanks for your technical
support. It is appreciated.

(Thank you Fran for sending this
listing. Ed)

End Apple Section

Changing Volumes on Hard Drives
Formatted with Apple DOS 3.3

REM Program demonstrates changing

REM volumes on CORVUS and SIDER hard

REM drives. It assumes these drives were
REM formatted with DOS 3.3.

REM ZBasic allows one to configure the
REM slot and drive but not the Volume.

REM This program lets you get around that
REM by poking the volume you want to

REM access. I suspect this method will
REM work on other hard drives formatted
REM in DOS 3.3 (no guarantees).

REM This LONG FN requires the file name
REM (filename$), the file number (Fnum%)
REM and the Volume number (Vol%)

REM If 0 is returned then no disk error
REM occurred. If a non-zero is returned
REM it is the disk error number.

LONG FN OpenVol% (Filename$, Fnum3%, Vol%)
x%=0
ON ERROR GOSUB 65535:REM Error check on

POKE 43622, Vol% :REM Change volume
OPEN “I”,Fnum%, Filename$

IF ERROR THEN x%=ERROR: ERROR=0
ON ERROR RETURN:REM Error check off
END FN=x%

REM Example...
Error%=FN OpenV% (“Fred.Txt”, 1, 3)
iONG IF Error%>< 0
PRINT “A Disk error occurred”
PRINT ERRMSGS (Error%)
DELAY 2000: STOP
END IF

REM Program continues...

END

=

IBM continued from page 1...

from BIOS; a delay adjustor,
modem routines, a Special rou-
tine that lets you create TSR
(terminate and stay resident)
programs with ZBasic and a cou-
ple more. See following pages...

ZBasic 4.02, IBM ver-
sion Bug Report

The latest version of ZBasic for
MSDOS and IBM PC’s is work-
ing well. There are still a few
quirks (don’t worry they’re not
nasty ones this time). The
following patches fix the
problems:

1. The first problem will

show up if you have a program
line containing an IF statement
followed by a blank line (null
line). When the compiler
converts your source code into
object code, the incorrect
address is stored at a JMP
instruction. To fix the problem
simply don’t put a blank line
after an IF statement. Future
versions will have a fix in-
stalled.

2. The second bug will appear if
you happen to type a quote (") in
place of a colon (:) as a
statement separator in a
program line.* When you
compile the program, the
compiler will flag the quote as
the incorrect character,
highlight the quote, and then
continue to highlight the rest of
the line. When you edit the line,
the first character of the line
will then be converted into a
random line #. To correct this
problem, use ZBasic's patch

utility to change the byte at
address &644C from &B4 to
&B2.

3. Next, we have a slight
problem with the CASE
statement when used with
floating point arguments and
relational operators. For
example:

FOR I =1 TO 3
READ X#
PRINT X# "IS ";
SELECT X#
CASE > 0
PRINT "GREATER THAN 0"
CASE = 0
PRINT "EQUAL TO Q"
CASE < 0
PRINT "LESS THAN Q"
END SELECT
NEXT I
DATA -2.25, 0, 5.75

Produces:

-2.25 IS GREATER THAN 0
0 IS EQUAL TO O
5.75 IS LESS THAN 0

Oops! To fix this, patch location
&9A85 from &73 to &7B.

4, The next problem appears if
you attempt to use the ON
INKEY$ statement to set up
function key vectors. Version
4.02 does not properly clear the
function key vector table during
program initialization. If you
only use the ON INKEY$
statement to set the vectors for
a couple of the function keys, the
remaining vectors contain
garbage. For example, the
sample program on page A-67
only recognizes the F1 and F2
function keys. If you run this
program and press any other
function key, the system will
hang, forcing you to reboot.
To correct this problem,
use the following
¥ subroutine in your
program, and then call the
subroutine prior to executing an
ON INKEYS$ statement:

"FIX ON INKEYS$"
FOR I = 0 TO 24
POKE WORD &187 + I, 0, MEM C
NEXT I
RETURN

5. The next bug will appear if
you attempt to get an address of
an integer array element using
VARPTR. The incorrect address
will be returned by the function.
Install the following patch to

correct the bug:

Address 0Qld Value New Value
&BD72 £52 SE8
&BD73 &BA &CD
&BD74 &C3 &FA
&BD75 &07 &BA
&BD76 SE8 &C3
&BD77 £61 &07
&BD78 &FA &E8
&BD79 &5A &5F
&BD7A &E8 &CA

continued next page...

e e

22

&BD7B &CS &EQ
&BD7C &FA &3C
&BD7D &E9 &FE
&BD7E &3A &30
&BD7F &FE &90
&BDSO &80 &F6
&BDY1 &FB &C3
&BD92 &10 &CO
&BD93 &74 &74
&BD94 &DD &EQ
&BDSC &EO &E2

Once you are sure that the
patches have been installed
correctly, you can save the
corrected code to disk using the
S)ave option from the ZBasic

startup screen.

A TSR WRITTEN
IN ZBASIC!

by Greg Branche

It seems like everybody
has
been
ask-
ing for
a way to
implement a
TSR (Terminate
and Stay Resident
program) using
ZBasic.

What’s a TSR?

Ever use programs like
SideKick™ from Borland? This
is a TSR (Terminate and stay
resident in memory). These pro-
grams are neat because they are
loaded into memory and are al-
ways there by pressing one or
two keys (Control Alt for
Sidekick). When you exit a TSR
you are back in your original
program. To purge TSR’s from
memory you must reboot. The
ESC key is most often used to
exit a TSR, Ed.

Well, 1 finally did it! 1t wasn't

easy, but this particular TSR
demonstrates some useful
techniques that you can use
when you write your own.

While writing this, I also ran
into some problems which you
need to keep in mind when
writing TSR's: MSDOS is NOT
reentrant. This means that a
TSR cannot make use of any
MSDOS functions if the TSR is
called while MSDOS is currently

=

executing a function.

I discovered the consequences
while I was testing the program.
Normally, the TSR was being
activated when the system was
waiting for the user to enter a
command (which is done by
calling MSDOS to get the key
presses).

After
¢ displaying
a message
on the
screen, the
TSR would wait
for a key press by
using the INKEY$

function. ZBasic

implements the INKEY$
function by calling MSDOS to
get a key press (Bingo!). When
it did, of course, MSDOS
overwrote the previous values of
it's system variables, trashing
the values it was using in the
previous call. When the TSR
exited back to the system, since
MSDOS' variables had now been
trashed, the system just locked
up. I had to turn the machine
off and back on again to regain
control. So, keep this in mind
when writing your own TSR's.

You must also be VERY familiar
with architecture of the IBM
and 8088 assembly language.

TSR's usually deal with the
machine at a very low level, and
some things just cannot be done
from a higher level language.
You can see all of the MACHLG
statements in the accompanying
listing.

Now, for some program specific
comments. This particular TSR
can only be executed on

23

P

machines that have true IBM
text compatibility. This is
because of the saving and
restoring of the text screen. The
program uses machine-language
block moves to copy the contents
of screen memory to and from an
array. The screen memory must
be where it's "supposed” to be.

There are no provisions in this
program for the TSR to "unload”
itself from memory. Once
installed, the only way to get rid
of it is to reboot the machine. In
addition, there is no provision to
prevent the installation of more
than one copy in memory. I'll
leave it to the curious hacker to
implement these two features.

Once installed, the TSR checks
the keyboard for a CTRL-ESC
key press sequence. When it
sees this key sequence, it grabs
control of the machine and
displays a simple message on
the screen. In TSR lingo, this
CTRL-ESC sequence is known
at the "hot key."

The first part of the program
contains function definitions
and program initialization. The
Get_Vector function simply
makes a call to MSDOS to
retrieve the current
segment:offset of an interrupt
handler. Set_Vector performs
the inverse function (it sets the
vector of an interrupt handler).

The SaveScreen function per-
forms a machine-language block
move routine that copies the
current contents of screen
memory to a ZBasic array. It
returns the current cursor
position as a 16-bit integer for
storage in a ZBasic integer.
Make sure you DIMension a

large enough array to hold the
contents of the screen (see line
30). PutScreen (530-670) simply
copies the contents of the array
holding the saved screen back
into screen memory. It also
repositions the cursor to it's
saved position. The function
calls to SaveScreen and
PutScreen both assume that a
CGA video adapter is currently
installed. Change the &B800 in
both lines if you are using a
different display adapter. Both
functions also assume that page
0 is the current page. The
functions will have to be
modified slightly if you are
using a different display page.

I save ZBasic's Data Segment
into the compiled object code so
that when the TSR is invoked, it
can find it's variables. Isave
the current contents of the
interrupt &16 vector (the
keyboard BIOS interrupt), point
the vector to the TSR, and set
up some internal pointers. The
last few lines perform an
MSDOS Terminate & Stay
Resident function call to return
control back to the system.
MSIZE% is the number of
paragraphs to reserve, and is
calculated by subtracting MEM
C (ZBasic's lowest segment in
memory) from MEM I (the
INDEX$ segment, which is the
highest segment in memory that
ZBasic uses).

When the TSR actually starts, it
is called each time a program
executes an INT 16h call. The
first thing it does is check the
function number requested. If
it's function 1 or 2, it simply
passes the function call on to the
original interrupt vector
(normally BIOS). Ifitis

function 0, it calls the original
vector itself to get the key press.
It then checks the keypress for
an ESC code. Ifit's any other
keypress, it simply returns the
keypress back to the caller.

If an ESC is pressed, the TSR
checks to see if the CTRL key
was pressed at the same time,
and, if not, returns the keypress
back to the caller. Only if both
CTRL and ESC are pressed at
the same time does the TSR
"take control” of the machine.

First, it must save any registers
that it's going to use (and a
compiled ZBasic program
usually uses ALL of them) so
that they can be restored prior
to exiting back to the
interrupted process. Then the
program picks up the correct
Data Segment, and continues
on.

After performing it's function,
the program restores all regis-
ters, and then re-CALLs the
keyboard interrupt to get the
keypress that was originally
requested.

As I said before, it's not easy,
but it is possible.

Hopefully, this will satisfy your
appetites for Terminate & Stay
Resident style programs.

=z

TSR Example Program listing
starts on next page...

]

24

TERMINATE AND STAY RESIDENT Page 1
' ONLY WORKS WITH TRUE IRM COMPATIBLE TEXT SCREENS

CLEAR O 'DON'T USE INDEXS$ ARRAY WITH TSR'S

DIM Oldoff%, Oldseg% ' MUST be in sequence

DIM Addr%, SSAVE%(79,24) ' for screen save

POKE &342,1 ' Sets to IBM compatible text

Adr% = VARPTR(Addr%) + 2 ' Calculates address of SSAVE array

LONG FN Get_Vector (Vector%, Adr%)
' Vector% contains interrupt #
' Adr% contains address of double word variable to store vector in

MACHIG 6 ' PUSH ES ;SAVE ES

MACHIG &B4, &35 ' MOV AH,35h ;FUNCTION #

MACHIG &AO0, Vector$ ' MOV AL, [Vector%] ; INTERRUPT VECTOR TO GET
MACHIG &CD, &21 ' INT 21h ;CALL DOS

MACHIG &93 ' XCHG BX,AX ; SAVE ADDRESS IN AX
MACHLG &8B, &1E, Adr% ' MOV BX, [Adr%] ;GET ADDRESS OF VARIABLE
MACHIG &89, 7 ' MOV [BX],AX ;SAVE OFFSET OF VECTOR
MACHIG &83, &C3, 2 ' ADD BX,2 ;ADJUST TO VAR ADDRESS
MACHLG &8C, 7 ' MOV [BX],ES ; SAVE SEGMENT OF VECTOR
MACHIG 7 ' POP ES ;RESTORE ES

END FN

LONG FN Set_Vector (Vector%, Seg$%, Offset$)

' Vector% contains interrupt #

' Beg% contains segment of new interrupt vector
Offset% contains offset of new interrupt vector

MACHIG &1E ' PUSH DS ;SAVE DS

MACHIG &8B, &1E, Seg% ' MOV BX, [Seg%] ;GET SEGMENT OF NEW VECTOR
MACHIG &8B, &16, Offset% ' MOV DX, [Offset%] ;GET OFFSET OF NEW VECTOR
MACHIG &B4, &25 ' MOV AH,25h ;FUNCTION #

MACHIG &AO, Vector$ ' MOV AL, [Vector%] ; INTERRUPT VECTOR TO SET
MACHIG &8E, &DB ' MOV Ds,BX ;PUT SEGMENT INTO DS
MACHIG &CD, &21 ' INT 21h ;CALL DOs

MACHIG &1F ' POP DS ;RESTORE DS

END FN

LONG FN SaveScreen$ (SaveAdr%, Seg%)
' SAVE THE CURRENT SCREEN INTO SSAVE, RETURNS CURRENT CURSOR POSITION

MACHIG &1E ' PUSH DS ;SAVE DS

MACHIG &31, &F6 ' XOR SI,sI ;CLEAR SI

MACHIG &8B, &3E, SaveAdr% ' MOV DI, [{SaveAdr$%] ;POINT TO STORAGE

MACHIG &B9, 2000 ' MOV CX, 2000 ;2000 BYTES IN SCREEN MEM
MACHIG &A1, Seg% ' MOV AX, {Seg%] ;GET SCREEN SEGMENT
MACHIG &8E, &D8 ' MOV Ds,AX ;PUT INTO DS

MACHLG &F3, &AS ' REPZ MOVSW ;COPY FROM SCREEN TO ARRAY
MACHIG &1F ' POP DS ;RESTORE DS

MACHIG &B4, 3 ' MOV AH,3 ;MAKE BIOS CALL

MACHIG &B7, © ' MOV BH,O0 ; (CURRENT PAGE #)

MACHIG &CD, &10 ' INT 10h ;TO GET CURSOR POSITION
MACHIG &89, &16, a% ' MOV [a%],DX ;SAVE POS IN a%

END FN = a%

=

TERMINATE AND STAY RESIDENT Page 2

LONG FN PutScreen (SaveAdr%, Seg%, CursorPos%)
' RESTORE THE SCREEN

MACHLG 6 ' PUSH ES ;SAVE ES

MACHLG &8B, &36, SaveAdr% ' MOV SI, [SaveAdr%] ;POINT TO ARRAY
MACHLG &31, &FF ' XOR DI,DI ;CLEAR DI

MACHLG &BS, 2000 'MOV CX, 2000 ;2000 BYTES IN SCREEN
MACHLG &Al, Seg% ' MOV AX, [Seg%] ;GET SCREEN SEGMENT
MACHLG &8BE, &CO ' MOV ES,AX ;PUT INTO ES

MACHLG &F3, &AS ' REPZ MOVSW ;RESTORE SCREEN MEMORY
MACHLG 7 ' POP ES ;RESTORE ES

MACHLG &B4, 2 ' MOV AH,2 ;BIOS CALL

MACHLG &B7, 0 ' MOV BH,O0 ; (CURRENT SCREEN #)
MACHLG &8B, &16, CursorPos% 'MOV DX, [CursorPos%] ;GET SAVED CURSOR POS
MACHLG &CD, &10 ' INT 10h ; SET CURSOR POSITION

END FN

Dseg% = MEM D

POKE WORD LINE "POKE LOC" + 1, Dseg%, MEM C ' Save ZBasic's Data Segment
FN Get Vector (¢l6, VARPTR(Oldoff%)) ' Get vector for keyboard interrupt
FN Set Vector (§A0, Oldseg%, Oldoff%) ' Save in unused vector (&AO0)

POKE WORD LINE "INTVEC", Oldoff%, MEM C ' Set up jmp pointers

POKE WORD LINE "INTVEC" + 2, Oldseg%, MEM C

POKE WORD LINE "ADDRESS FIX 1" + 3, LINE “"INTVEC", MEM C

FN Set_Vector (&16, MEM C, LINE "TSR") ' Set new keyboard vector

PRINT "ZBasic TSR installed!” ' I'm here!

MSIZE% = MEM I — MEM C ' Calculate size of ZBasic memory used

MACHLG &B8, &3100 ' MOV AH,3100h ;FUNCTION 31h, EXIT = 0
MACHLG &8B, &16, MSIZES ' MOV DX, [MSIZE%] ;SIZE OF PGM IN DX
MACHIG &CD, &21 ' INT 21h ;Perform TSR call

"INTVEC" MACHIG 0,0,0,0 ' Storage for original interrupt vector
"TSR"

MACHLG &0A, &E4 ' OR AH,AH ;FUNCTION 02

MACHIG &74, &05 ' JE +05 ;YES, POSSIBLE HOT KEY
"ADDRESS FIX 1"

MACHLG &2E, &FF, &2E, 0, O ' JMP L,CS:[INTVEC] ;ELSE PASS TO ORIGINAL
MACHLG &CD, &AO ' INT ACh ;PERFORM ORIGINAIL CALL
MACHLG &3C, &1B ' CMP AL, 1Bh ;ESC?

MACHIG &74, &01 ' JE +01 ;NO, RETURN TO CALLER
MACHLG &CF ' IRET

MACHLG &50 ' PUSH AX ; SAVE KEYPRESS

MACHLG &B4, &02 ' MOV AH,2 ;GET KEYBOARD STATUS
MACHLG &CD, &AO ' INT AOCh ;CALL ORIGINAI. INTERRUPT
MACHLG &25, &04, &00 ' AND BAX,0100b ;CIRL KEY PRESSED TO0O?
MACHLG &75, &02 ' JNE +02 ;YES, HOT KEY!

MACHIG &58 ' POP AX ;ELSE RESTORE KEYPRESS
MACHLG &CF ' IRET ;RETURN TO CALLER
MACHLG &58 ' POP AX ;FIX STACK

MACHLG &53, &51, &52, &56 ' PUSH BX,CX,DX, SI ; SAVE ALL REGISTERS
MACHLG &57, &55, &lE, &06 ' PUSH DI,BP,DS,ES

"POKE LOC"

MACHLG &BB, 0, O ' MOV BX,MEM D ;GET ZBASIC'S DATA SEGMENT

MACHLG &8E, &DB ' MOV DS,BX

TERMINATE AND STAY RESIDENT
Curpos% = FN SaveScreen% (Addr%, &B800) '
IOCATE ,,0 ' Turn cursor off

DEF PAGE 20,5 TO 59,12 : CLS ' Define window and clear it

DEF PAGE 20,5 TO 59,13 ' Increase bottom to prevent scrolling
COLOR ,11 ' Light cyan border color

PRINT CHR$ (201); ' Print window border

Save the screen

FOR I% = 21 TO 58
PRINT CHRS (205);

NEXT I%

PRINT CHRS$ (187);

' Top line

FOR I% = 6 TO 11
PRINT CHRS(186); TAB(39); CHRS$(186);
NEXT I%

' Window sides

PRINT CHRS$ (200) ;

FOR I% = 21 TO 58
PRINT CHRS$ (205);

NEXT I%

PRINT CHR$ (188);

' Bottom line

DEF PAGE 20,5 TO 59,12 ' Back to actual size of window

COLOR ,14 ' Yellow text color
PRINT @(28,8) "This is your ZBasic TSR"
COLOR ,4 : PRINT @(36,9) "CHARGE!"

RESTORE ' Start at the beginning of the DATA statement
USR 2(725) ' Set correct system speed (8 Mhz 80286)

FOR I =1 TO 6 : ' Charge!
READ T, D: SOUND T,D
DELAY 10

NEXT I

DATA 792,100,880,100,990,100,1188,300,1024,150,1188,500
DELAY 1000 ' Wait a little longer

DEF PAGE 0,0 TO 79,24 ' Back to full screen window
COLOR ,7 ' Restore to white text

FN PutScreen (Addr%, &B800, Curpos%) ' Restore screen

LOCATE

,+1 ' Turn cursor back on
MACHLG &07, &1F, &5D, &5F " POP ES,DS,BP,DI ;RESTORE ALL, REGISTERS
MACHLG &5E, &5A, &59, &5B ' POP SI,DX,CX,BX
MACHLG &B4, &00 " MOV BH,O0 ; PERFORM ORIGINAL CALL
MACHLG &CD, &16 " INT 16h ;RE-CALL KBD INTERRUPT
MACHLG &CF ' IRET ; THEN RETURN

=

ZBasic too Fast
for Some PC
Direct Modem
Commands

A few people are
having problems
getting ZBasic to talk
to their modems
correctly.

When trying to PRINT an "AT"
command, they say that the mo-
dem never receives the
command.

After playing with this
extensively, it has been
discovered that ZBasic's PRINT
routines are simply too fast for
the modem to keep up.

The following program
demonstrates a LONG FN that
can be used to "slow down" the
output to the modem. For the
function to operate correctly, the
modem must be able to echo the
command characters back to the
sending device (usually set with
~ the "ATE" modem command).

In addition, modem commands
must start at the beginning of a
line, hence the CHR$(13) at the
beginning of AT$.

Greg Branche

=

Example for Using Modems

AT$ = CHR$ (13) + "AT"

OPEN "C", -1, 1200, 0, O, 1, &20 ' Inits the com port

LONG FN Comprint (a$)
FOR I = 1 TO LEN(a$) ' Loops through a$

b$ = MID$(a$,I,1) ' Grab one character at a time
WRITE #-1, b$;1 ' Write the character to the port
DO
READ #-1, b$§;0 ' Wait til char echoed by modem
UNTIL LEN (bS)
NEXT I
b$ = CHRS$(13) ' Write terminating carriage return
WRITE #-1, b$;1
DO
READ #-1, b$;0 ' And wait for it to be echoed

UNTIL LEN (b$)
END FN

INPUT "Please enter the number to dial -> ";

Dial$ = ATS + "DT " + N$
FN Comprint (Dial$)

“Fall into a simple Terminal Program”
DO

READ #-1, BS;0

IF LEN(B$) THEN PRINT BS:

B$ = INKEYS

IF LEN(B$) THEN WRITE #-1, BS;1
UNTIL B$ = "]

PRINT "Thanks for using ZTerm!"
END

N$

MACHLG &B4,&19,4&CD, 621, &8A
MACHLG &DO, &B4, &0E, &CD, &21
MACHLG &98, &A3, LDRIVESS

MACHLG &CD, €11, 4&B1, &06, &D3
MACHIG &E8, 25,803, &00, &40
MACHLG &A3,FDRIVESS

MACHLG &B4,&19,4&CD, 21, &98
MACHLG &A3, CURDRIVESS

PRINT LDRIVES%; “Logical”
PRINT FDRIVES%; “Floppy”
PRINT CURDRIVESS;“Current”

How to Get the

Amount of Free
Disk Space for

MSDOS

Returns bytes avail-
able on specified drive.

Ever need to find the free space
on a disk? Well Greg was nice
enough to include a good exam-
ple of fixing this on the ZBasic
Master diskette in the Samples
Subdirectory called
DiskFree . FN.

Try it out. It could come in
handy some time.

P

Get Drive Info
on IBM PCs

Returns Logical, Flop-
py and Current Drives.

If you ever had a need to find
the Logical drive, Floppy Drive
or Current drive from within
your application these routines
are for you.

Greg Branche

=

COMPILE filename

you can compile programs using:
ZBasic filename.BAS filename.COM
but I Hate typing all that! So I wrote this batch program:

File: COMPILE.BAT

Echo off

Cls

IF *%1'=='’ goto nofile

If not exist %1 goto badexit
Echo Compiling: %1

ZBasic %1 $1.COM

Gote exit

:nofile

Echo No file name has been specified.
Echo Please retype the command.
Goto Exit

:badexit

Echo File %1 does not exist.
Echo Please retype command.
texit

So now when I want to compile a program I just type:

COMPILE filename

(from the DOS prompt). This time saver submitted by:
Peter Bennett, Bank of Nova Scotia, 44 King Street West, Suite
1321, Toronto, Ont. Canada M5H 1H1. Thanks Peter!

You've asked for routines and stuff, but how about being able to
compile programs using a simple .BAT file. I like the feature where

P

Get and Set
Cursor
Positions
for

IBM PCs

These routines
will get and set
cursor positions
for different
screens.

The following program
demonstrates a couple
of LONG FNs to get
and set the cursor po-
sition using BIOS
functions.

Feel free to use it in
your programs.

End IBM Z—

Get and Put Cursor Information

' This program demonstrates two functions that can be used
' to save the current cursor position and restore it.

IONG FN Getpos$
MACHLG &B4, 3
MACHLG &B7, 0
MACHLG &CD, &10
MACHLG &92

END FN

IONG FN Setpos% (Curpos%)

MACHIG &B4, 2
MACHLG &B7, O

MACHLG &8B, &16, Curpos%

MACHLG &CD, &10
END FN

LOCATE 40, 20

CUR% = FN Getpos%

X% = CUR% AND &FF

Y% = CUR% >> 8

PRINT

PRINT "X,Y ="X3%","Y%
FN Setpos% (CUR%)
PRINT "HELLO THERE!"
IOCATE 0, 24

END

Returns current position in 16-bits
MOV AH,3

MOV BH,0 ; SCREEN NUMBRER

INT 10h

XCHG DX, AX

Returns a value even w/o the "= var"

Restores cursor position to FN Getpos$%
MOV AH, 2

MOV BH, 0 ; SCREEN NUMBER
MOV DX, [Curpos$]
INT 10h

Position the cursor

Call function to get cursor position
Low order byte is column position
High order byte is row position

Restore to previous position

Position to bottom of screen to exit

is YOUR Newsletter!
Whether you own a PC,
a Macintosh, an Apple Il or a Kaypro 4
you owe it to yourself to subscribe to
time saving programming ideas.

Subscription is only $19.95 a year ($37 for two
years). Overseas orders (outside U.S.) add $5.00. To
subscribe call Toll Free 800-482-4567. Have your
credit card ready. To subscribe by mail please fill
out and and return this card with Credit Card#,
Check or Money order:

Name

Company.

Address

City ST Z1P

Daytime Phone ()

Credit Card#

Expiration date

Signature

ZEDCOR INC.

4500 E. Speedway, Suite 22
Tucson, AZ 85712-5305
(602) 881-8101

(800) 482-4567

Bulk Rate
U.S. Postage
PAID
Tucson, AZ
Permit Number

2220

