£ZBASIC Newsletter

ZBASIC 5.0
RELEASED FOR
THE APPLE
MACINTOSH

In November, ZBASIC 5.0
was released for the Macin-
tosh.

It contains a wealth of new
features, including B+Tree
file utilities, a new Program
Generator that writes source
code for you, a toolbox
editor, a QuickBASIC™ to
ZBASIC conversion pro-
gram, a manual that is
Macintosh specific, and lots
more. ”

The new price of ZBASIC for
the Mac is $199.95.

We also have a special offer
for ZBASIC owners to buy
the new DeskPaint package
at a substantial discount.

If you haven't received your
upgrade notice yet be sure
to contact us. The special
upgrade offer expires the
end of November.

November 15, 1988

Volume 2, issue 2

Andrew Gariepy, President of Zedcor, in a more relaxed
pose . This is how he appeared in MacConnection's "Presi-

dent’s Catalogue” this August.

BETTER LATE
THEN NEVER?

| take all the blame for the
lateness of this newsletter.
When | told you that it would
be printed sporadically, |
didn't really intend it to be
this sporadic.

| promise to have another
newsletter out in a couple of
weeks and the last one out
in December.

Ed.

421 SHIPPING

ProDOS users with ZBASIC
4.1 or lower should upgrade
to version 4.21. It has lots of
refinements and has some
important bug fixes for serial
and chaining statements.

Registered owners call now
to upgrade (be sure to have
your serial number ready). It
sells for $19.95 and comes
with two disks (including
ProDOS) and a read me file
describing the changes.

INSIDE

Letter to the Editor 3
Some interesting letters this month

Dr. £ 10
Some idea about speeding up serial 1/0.

iBM PC and MSDOS 12
Reading directories into string arrays. These
special machine language routines were created
by Greg Branche and should save you a lot of
time.

Apple [l 15
Reading directories into string arrays. These
special machine language routines were created
by Greg Branche and should save you a lot of
time.

Macintosh 19
Another way of doing Hierarchcial

menus 20
Creating Dialogs from ResEdit 24
Registered owner intro 26
Shutdown revisited 27

EWSLETTER

Michael A. Gariepy
Editor in Chief

Andrew R. Gariepy
Technical Editor

ZEDCOR, Inc.

PRESIDENT
Andrew R. Gariepy

CHAIRMAN, CEO
Michael A. Gariepy

“Z" is published quarterly
by Zedcor, Inc., 4500 E
Speedway, Suite 22,
Tucson, AZ 85712-5305.
(602) 881-8101. Support
line: (602) 795-3996.

Please send address
changes to the Zedcor
address above

Advertising offices are at
4500 E. Speedway, Suite
22, Tucson, AZ 85712-
5305. 1-800-482-4567

*Z" is a technical journal
not affiliated in any way
with computer manufac-
turers

*Z" and ZBasic are trade-
marks of Zedcor, Inc. All
rights reserved

© Copyright 1988,
Zedcor, Inc. All rights
reserved.

Programs included in this
journal may be used for
non-commercial
purposes only, without
restriction

Newsletter created with
PageMaker™ 3.0 and
Zedcor's new
DeskPaint™ 20 &
DeskDrawm™

|

LETTERS TO
THE EDITOR

Dear Editor,

This envelope contains a
specific request for help
with a programming prob-
lem, but | am also taking
advantage of my quarter to
give you some feedback on
features and wishes for
ZBASIC 4.01 for the Macin-
tosh. | suspect that this kind
of letter gets filed in a differ-
ent place from programming
guestions; hence two letters.
(see Dr. Z for question. ed.)

First let me say that | am
generally delighted with
ZBASIC 4.01. | am particu-
lary pleased at the easy
access to the Macintosh
special features like Edit
fields, menus, etc. My favor-
ite programming language
is pascal, but | am willing to
give up sets, local variables,
passing variables by refer-
ence (LONG FN comes

close), etc., in order to be
able to include keyboard
equivalents in all my menus
without having to memorize
Inside Macintosh.

| think you have struck a
good balance between
accessability to rather
inexperienced programmers
and availability of advanced
features.

Still, even a very good
language system could be
improved, as follows (all of
these things are true on the
SE and Macintosh PLUS at
my laboratory as well as the
512K upgraded to Plus at
home):

A. System Crashes:

1. Whenver | compile a
program to an application
just about the only thing |
can do without crashing is
to quit ZBASIC. | certainly
cannot compile another
program the same way-that
always leads to a crash.
Memory problems or what?

2. In the editor, when | try to
erase a blank line by back-
spacing from the extreme
left, | get a crash the next
thing I do. It doesn't happen
when the cursor is the cross

form that indicates the whole
line is selected. This crash
doesn't happen in any other
Editor that [use.

B. Printing Program Listing:

1. The default seems to be
Monaco 9 on the first page
and Chicago 12 on all
subsequent pages’ Unless |
carefully select Monaco and
9 point from the menus
before printing, | get this
unpleasant mixture, both at
home on the ImageWriter
and at the lab on the Laser-
Wirite Plus.

2. 1 would like to be able to
turn off auto indent when
listing a program. | indent
for clarity on the screen (a
great feature of 4.01), but
the indentation is then
doubled (too much) when
printed. how about auto
indent on the screen”? Could
this be a configure option?

C. The Editor:

1. This is a great improve-
ment, and | really appreciate
the convenience of the Find
feature. There are several
ways it could be improved
substantially (I have no idea
how hard this is to do, and |
know that you are primarily
interested in writing lan-
guages, not word proces-
sors but...)

a. Find doesn't find parts of
words, words as part of a
string in Quotation marks,
labels without their Quota-
tion marks, different capitali-
zations, etc. It would be
nice if it worked like the Find
in most word processors-
giving a choice of whole or
part of a word, capitaliza-
tion, etc. Even | can figure
how to program those two,
so | am sure you can do it.

b. When a word is found, the
Find dialog box obscures
half the of the line in which it
appears. making searches
for a particular use much
harder. | would prefer
having it find the word in the
middle, not the top, of the
sceen-context is often very
important. (This would also
be a better way to have the
listing shown when there is
an error during compiling.)
Others may prefer the line at
the top and the dialog box
elsewhere-Configure option?
But they should NEVER be
at the same place.

c. The best | can figure i,
Find always starts at the
beginning of the program
when a new target is being
sought. It would be much
more helpful if it could start
at the current cursor posi-
tion, thls making it unneces-
sary to go through dozens
of false Finds when a com-
monly used target is being

sought. We can easily put
the cursor at the beginning if
we want to start there.

d. It would be nice if clicking
on the listing window acti-
vated it after a find. Most
word processors do this,
and having to click "Cancel’
every time is a pain. Here
too, | can guess how to pro-
gram this, so it must be
something that didn't occur
to you.

2. In spite of all this "Find" is
a vast improvement and
really helps. "Replace’
would be an even vaster
improvement, even more
helpful. | know, you're not
writing a word processor,
but....

D. The Language:

1. 1 hope that this version
will have DIALOG ON in-
cluded in the POKE PEEK
LONG (&904)-&907,0 that
was included in the Z news-
letter winter edition.

This made it possible for me
to use version 4.01 for the
first time; | was ready to give
up on it after many attempts
that | could not understand.
Waiting for the newsletter to
notify users of that

absolutely essential patch (I
label the subroutine "Patch
401") was not in the best
traditions of Zedcor. An
immediate postcard to every
user the minute you found
out about it would have
been better-this was a Major
flaw.

2. The CASE command is an
important step in the right
direction, but it is still a bit
cumbersome compared to
the Pascal equivalent. If you
do more work on it, the
ability to handle ranges of
values would be very nice,
as shown here:

SELECT CASE Num%
CASE 1..5
GOSUB "Lownumber"
CASE 6..10
GOSUB "Mid number™
CASE 11..20
GOSUB "High number™

END SELECT

Actually | prefer the shorter
Pascal version:

CASE Num OF
1..5: Lownumber;
6..10: Mid number;
11..20: High number;

END;

but | suppose it is much too
late for such an extensive
change.

3. The first time a program is
saved after it is opened
seems (most of time) to
require a confirmation,
which | think is not a good

idea- most other programs
don't do this. After that, the
response to Command-S is
a simple save, which is what
| would prefer all the time.

4. | don't understand the
use of SEGMENT (not SEG-
MENT RETURN) at all. Is this
a way to make certain that
ZBASIC breaks the program
at safe places-i.e., between
subroutines? | can see how
SEGMENT RETURN would
let the Memory manager
purge unused parts of the
program (as does "Segment
Procedure" in Pascal, but it
is not obvious to me just
what SEGMENT does by
itself. The manual is not too
clear on these points; at
least | can't understand it.

E. Program Examples:

1. Mostly, | would like more
of them. Unfortunately, none
of the computer magazines
publish any ZBASIC pro-
grams, so our only hope of
new techniques is from you
guys. | would happily pay
for a booklet (or disk) of well
documented programs, etc.
Surely you guys are doing
programming that the rest of
us will find useful. Even a
list of helpful hints would be
nice. How about a Compu-
Serve forum for questions
and hints?

2. The ZBASIC Construction
Set, by and large, is rather

disappointing (things cannot
be adjusted after they're
placed, and | rarely get
things right the first time),
but possibly source code for
that program would give us
users a chance to adapt it to
our own preferences. What
I'd really like is a way 1o
convert MacDraw screens to
ZBASIC commands, but this
is the real world.

3. It would be a good if
keywords that require
spaces not be put in ex-
ample programs (like ENDIF
and USR9). Like (I suspect)
many others, | configure for
"Space Between Keywords”
to avoid problems with
embedded keywords. This
seems to me to the best
programming practice, and
you guys should set an
example by not making this
inconvenient.

What has become of the
newsletter? | thought it was
a good idea and | certainly
did not intentionally let my
subscription lapse. The last
issue | received was the
Winter 87/88 issue and we
are near the end of summer.
If there a problems with the
material, | would be glad to
contribute some program-
ming hints.

James R. Florini, Ph. D.
Professor of Biochemistry

Dear Dr. Florini,

Thank you for your compre-
hensive list of suggestions
and feedback. We certainly
listen to our users and don't
get enough feedback from
you all.

| guess a lot of you think that
writting a letter tous is a
waste of time. Let me assure
you it is extremly important
to use that our customers
are satisfied. And we spend
a lot of time discussing the
ideas and feedback we get.
While it is not always pos-
sible to answer your letters
immediately, we do get
back as soon as possible.

| will answer these questions
in the order they were given
and with reference to the
outline numbers.

A.1. System Crashes: This is
a tricky question. The prob-
lem you described in ver-
sion 4.01 may have been
caused by a couple of
things. The most common
reason is that running com-
piled programs that cause
instability in memory- those
programs that POKE in the
wrong place, or programs
that access arrays past the
last element or assign val-
ues to strings greater than
their assigned lengths will
cause this. By setting array
bounds checking and string
length checking under the

configure options will solve
some of these problems.

A.2. The other problem had
to do with the Editor. Which
has now been stabilized.
There were occassions
when it would “lose” its
cursor reference in memory
after a compile and subse-
quently cause problems.
The problem you describe
was been completely fixed.

B.1. Fixed in version 5.0

B.2. We agreed with you.
But this is easily accom-
plished by pasting the
program directly into a word
proccessor and printing it.

C.1.a. The Find dialog box
functions the same as the
FIND command in ZBASIC.
See FIND in the reference
section of the manual to
understand how it works. It
IS quite simple when you
see the definitions. We will
try to put a "text" switch so
that it works like a word
processor, but no promises.

C.1.b. I agree with you on
this. I am working with Andy
to see if we can implement it
before refeasing 5.0. You'll
know when you get the
upgrade.

C.1.c. Noted. We'll try.

C.1.d. Noted. We'll try.

D.1. You're right. Version 5.0
has this implemented auto-
matically. You were
absolutely right about us
being remiss to send out a
postcard to all our users.
This type of thing will not
happen again.

D.2. Your Pascal idea for a
range of numbers indicator
is interesting. We may
implement it in a future
release. In the meantime us
this the following routine |
wrote that accomplishes the
same thing. Although |
agree with you that it is not
as simple as the Pascal
approach which is bit easier
to read.

SELECT CASE
CASE (Num%>0 AND Num%<6)
PRINT "Lownumber"
CASE (Num%>5 AND Num%<11)
PRINT "Mid number"
CASE (Num%>10 AND Num%<21)
PRINT "High number"

END SELECT
D.3. Noted and fixed.

D.4. SEGMENT is an impor-
tant part of the memory
management routines used
in the Macintosh. We have
modified ZBASIC slightly to
make it more simple.

This is a simple command
that tells ZBASIC to start a
new SEGMENT at that
position. Segments are
limited to maximum of about
28K in ZBASIC.

Version 5.0 of ZBASIC no
longer will break a segment
automatically. If the program
compiles to more than about
28K without encountering a
SEGMENT statement, it will
return a "SEGMENT required
error’.

Older versions of ZBASIC
would just place a SEG-
MENT at that point automati-
cally. This, of course, would
cause system errors and
such if the break occurred in
the middle of a loop or
CASE structure.

You are right that you must
manually place your SEG-
MENT statements.

We recommend that SEG-
MENT be placed at the end
of logical subroutines where
it cannot cause problems
inside loops and so forth.

SEGMENT RETURN is
identical to the regular
RETURN statement except
that that segment becomes
‘purgable”.

E.1. You'll like version 5.0. It
has more examples and
they're more structured for
easier reading.

E.2. The new "Program
Generator” in version 5.0

was created just for that
reason. It completely re-
places the Construction set
and gives you complete
freedom to move things
around after you place
them. You can even reload
the files and edit them at a
latter date if you want.

It looks so much like
MacDraw that you will be
pleasantly surprised.

E.3. Noted and fixed in both
the new manual and in the
example programs. Sorry
about that.

The newsletter is in your
hands. Sorry for being late.
You'll get the next one a few
weeks after you receive this
one.

Dear Editor,

| am overjoyed to see the
ZBASIC 5.0 upgrade [no-
tice]. | have been using 4.01
regularly, but have been
extremely frustrated with the
editor which crashes my
system at times.

For lack of any other toolbox
reference with your lan-
guage, | have begun read-
ing selected articles from
MacTutor and it has im-
proved my programming
tremendously.

Unless you get someone to
write a comprehensive
Advanced book (with ex-

amples of how to utilize the
toolbox) your language will
not compete like it should
with Microsoft. My God,
there must be more than five
books out helping Microsoft
BASIC users while all we
have is a better language
and only a reference book.
When can we expect a book
such as this?

| have recently written my
own database program
using edit fields and IN-
DEX$. However, | am not
exactly sure what is the
most efficient way to set up
a file. If you could give me
your thoughts on how you
would save an INDEX$
array, it would be of great
help to me. This INDEX$
array has a maximum of
1000 elements with 80
characters possible in each
INDEX$. A quick FOR/NEXT
loop preceded by an OPEN
statement would do me fine.

The way | am doing it now,
the file size is way to large to
comparable text files.
Surely, [am doing some-
thing wrong.

I am glad to see DeskPaint
doing so well. It will give
ZBASIC more exposure |
think. More exposure will
lead to more books on the
subject. | am starved for

great reading material. I'm
not the only one.

To have extensive examples
of how to use RMAKER and
ResEdit to develop full
fledged ZBASIC applica-
tions would make my day
(year?). For instance, how to
go about creating modal
dialog resources, bit map
animation, and other toolbox
functions.

| am sure many of the ques-
tions | have concerning the
toolbox with ZBASIC will be
answered with the new
version!

You have done an excellent
job supporting the ZBASIC
community (other than the
lack of books) and | want to
congratulate you on your
efforts. You seem to take a
customer's opinions more
seriously than many other
software developers and |
think that's great. If your
program generator does
what the Construction Set
was supposed to do and
more, then I'm sure that's
another welcome addition to
the environment. ZMOVER/
ZTREE/ZCONVERT also
sound interesting.

In closing I'd like to ask you
for information regarding
writing an article in your "Z"
newsletters. | am the chief
designed and developer of

the CavernQuest™ adven-
ture program due out in
1989. It supports full color
animation on the Mac I,
object manipulation and
digitized sounds and
scanned images through-
out, and much more. l'll be
sure to plug ZBASIC in the
credits! By the way, | have
many thoughts on large
scale development in ZBA-
SIC that I'd like to share with
others thorugh your newslet-
ter. Keep up the good work.

Brian Booker
President

ADC Games
P.0.BOX 32360
Columbus, OH 43232

Dear Brian,

Thanks for your comments.
We know of two people
working on ZBASIC books
for the Mac. Be patient. The
one for Macintosh will be
great.

To save and read an IN-
DEXS$ array to disk in the
most efficient way, use the
following simple routines:

As far as articles for the
newsletter, please call me
direct. We are always
looking for new material. We

even pay for good stuff. Good luck on your new
application. | look forward
Please contact me direct to seeing it.
(Mike Gariepy) at 800-482-

4567. Your feedback would

be very welcome by our

readers.

END :! These are subroutines to
;! be called from your program.

“Write INDEXS”
A}

[y

This routines Writes an INDEX$ array to disk. To load it

* back in use the “Read INDEXS$” routine below.

T Mo e

rr]

“Save file as..

i L7, " Index . DATY,vol%)
F File$ = “” THEN END

’ Don’t load if nothing chosen :

i

OPEN”0”,1,File$,,vol%
WRITE#1, LastindexNoé& ‘How many elements
FOR Count= 0 TO LastIndexNo&:
Temp$=INDEXS (Count)
Length$=CHRS$ (LEN (Temp$))
WRITE#1, Length$;1 :
WRITE#1, Temp$;ASC{Length$s) :
NEXT Count

‘Put last element here

‘Get the next element

‘Get the length of string
‘Write the length byte first
‘Save the string

CLOSE#1
RETURD

=4

“Read INDEXS”

\

A This routines reads an INDEXS array saved with the

N “Write INDEXS” routine above,
File$=FILESS (1, “”,,vol%)
IF File$ = “” THEN END ‘Don’t lecad if nothing chosen

OPEN”I”,1,File$,,vol%
READ#1, LastIndexNos ‘Number of elements in INDEXS
FOR Count=0 TO LastIndexNo&

READ#1, Length$;1l

Length%=ASC (Length$) ‘Get the length byte

READ#1, TempS$;Length% : ‘Load only the characters saved
INDEXS (Count) =Temp$ ‘Lead into INDEXS

NEXT

CLOSE#1

RETURN

Dear Editor,

| recently purchased your Z
BASIC for the Macintosh SE.
Since then, | have enjoyed
its versatility and speed. |
have been programming in
BASIC for a number of
years| and | have become
very good at it. Now that |
have adjusted to program-
ming in the Macintosh
environment, | would like o
begin writing some “Real
Macintosh Programs”.

Unfortunately, | have discov-
ered some problems which |
hope you can help me with.

e| would like to include
“snd” resources in my
programs. How?

How?

e| would like to create a
Desk Accessory with Z-
BASIC. How?

o/ would like to put small
icons on the menu bar.
How?

¢/ would like to include a
“True Font Menu” in my
programs.

| own ResEdit, and | know
how to operate it(although a
few of the resources are
unfamiliar to me.) | am quite

experienced with program-
ming, computers, and
Macintoshes. Please answer
as many of the above ques-
tions as possible. Thank
you very much for your
attention,

Aaron Segal
13735 Sprucewood Circle
Dallas, TX 75240

Dear Aaron,
In order:

e See the “Playsound.BAS”
on the example disk. It
allows both synchronous
and asynchronous playing
of sound. You may play
most .snd resource files
direct. Or you can use many
of the public domain pro-
grams like Sound Convertor
or the many Hypercard
stacks that convert Hyper-
card .snd resources to other
sound type files.

e To add icons to your
menus use the caret ()
and the number 1, 2, etc. for
icon 257, 258, etc.

As far as putting icons on
the menu bar, you will need
to access the toolbox di-

rectly and add them. This
gets complicated and you
are on your own.

e To add a FONT menu to
your programs use the new
"Program Generator”. It has
facilities to do this easily.

The new 5.0 manual should
be much easier for,you to
read. | worked hard to
make it is easy to use as
possible.

| would be grateful for ad-
vise on a (I hope) relatively
simple problem that | have
encountered in trying to
connect a Macintosh SE to a
96-well microtiter plate
reader in laboratory. The
reader is a device that
measures light absorbed by
each of the 96 wells in a
plastic plate, and it is very
useful for a lot of laboratory
things. Until now, | have
been reading the output
using an Apple Pascal
program to process the
data, and now want to
convert to ZBASIC on the
Mac so | can make the
interface more intelligible to
the technicians. | first
started using this simple
little program (Fig. 1):

every third one or something
systematic like that. Indeed,
| can't find a specific pattern
that would account for what
is being lost. As you can
see, the baud rate is only
2400, so | can't believe that
the program can't keep up.
The other settings are the
same as | use in my Apple

CLS

MENU OFF

MOUSE OFF

CALL HIDECURSOR
BREAK OFF
"READ"

GOTO READ

| turned off the dialogs to
get maximal speed, but the
screen still shows a lot of
digits are not in the output.
They aren't consistant-not

INPUT "Press “Return” when ready.";N$
OPEN"C",-1,2400,2,1,1
PRINT "Modem Opened”

Here's the nasty culprit that
slows this program down.

READ #-1, A$;O/
PRINT AS;

Fig. 1

Pascal program so I'm
reasonably certain they are
correct.

| know from extensive previ-

ous experience with this
reader that reading each
plate transmits 720 bytes; in
Apple Pascal | used "Uni-
tread (2, CH,720)", where
CH was the array of charac-
ters into which | read data.
Does ZBASIC have a similar
low level FAST way of read-
ing the modem port? |
couldn't identify and such
command in the 4.0 book
but | don't understand all -
or most- of the fancy things
there. Might | find a way to
do this in the dreaded
(tremble) Inside Macintosh?

Sincerely yours,
James R. Florin1, Ph.D.
Professor of Biochemistry

DEAR DR. FLORINI,

ZBASIC provides many
ways to remedy the prob-
lems you described.

The best way to start is to
maximize the speed of
operations in the "READ"
loop by removing the PRINT
statement. Since you aren't
using the WIDTH LPRINT-2
statement, which signifi-
cantly improves the speed
of printing on the Mac
screen, you are really put-
ting a lot of delay in the
loop. A simple fix would be
to fill up a string before
printing it..

The following lines show you
how do to this easily.

10

"READ"
READ #-1,AS$;0
LONG IF LEN(AS)
Ch$=ChS$+AS
LONG IF LEN(Ch$)>250
PRINT Ch$
Chs=""
END IF
END IF
GOTO READ

Another alternative to your
loop would be to set a large
buffer for the data coming
in. This way you will not lose
any data coming in unless
you set the buffer so small
that it cannot hold the ex-
cess.

Since you can set a buffer
up to 32K it would be un-
likely that you would lost
characters even with the
less efficient PRINT state-
ment used in your program.
You can check the status of
the buffer with the LOF (-1)
statement now included in
ZBASIC 5.0.

The ZBASIC equivalent to
the Apple Pascal function
would be:

READ#-1, AS$(0);250
READ#-1, AS(1l);250
READS~-1, AS$(2);220

This would load 720 char-
acterted into the first three
elements of the array AS.

The only drawback of this is
that you would not be able
to "Break out’ of the program

until that many characters DEAR DR. Z

was received. A way
around that would be to
check that the buffer held
that many characters first.:

| have the PC and ProDOS
versions of ZBASIC and
would like to be able to load
directories into string arrays.

"READ', . . .
WHILE LOF (-1)<720 This is important so my
TRON X programs will look profes-
sional.
WEND

READ#-1, AS$(0);250
READ#-1, AS(1);250
READS~1,AS (2);220
TRON X

GOTO "READ"

Lostin Arkansas '
Dear Lost in Arkansas,

You're in luck. See the great
programs submitted by
Greg Branche in this issue
under the MSDOS and
Apple Il sections.

The TRON X will allow you to
break out in case something
goes wrong.

There is also the off chance
that the port settings are
incorrect. See the manual to
be sure the settings are
correct. [|

That's all for this issue. Keep
those inquiries comming!

$ Request for Articles $

The "Z" newsletter is open to submissions for articles pertaining to
ZBasic. This includes articles about:

J Subroutines 0 Programming |deas
0 Graphics examples 0 Edifor routinés

Q Cartoons 1 Fiction/Non Fiction

4 File handling Q Math puzzles
 Games 0 Educational programs

We'll paé $20 to $100 for each article that is accepted (based on size and
value) Program submissions will remain in the public domain for all to
use.

Articles and Program submissions must be {ext files (ASClI) on a diskette
formatted for IBM PC (360K), Apple I} ProDOS or Macintosh

BEFORE SENDING ANYTHING call Mike Gariepy at 800-482-4567 to
discuss submission. This is done to ascertain the desirability of the
submission and the amount to be paid

11

iIBM PC

Reading Directories
by Greg Branche

One day a ZBasic user
asked me to write a couple
of routines for him that
would allow his programs to
read a disk directory and
return the filenames as
ZBasic strings. He need-
ed the routines for both the
Apple and MSDOS versions
of ZBasic. He wanted the
routines to return the file-
names one at a time so that
he could compare the
filenames with one that had
been entered by the user.
That is exactly what these
programs do.

The first one I'll discuss is
the one written to be used
with the MSDOS version of
ZBasic. Things were rela-
tively easy here, since
MSDOS provides built-in
functions to search a disk
directory. All you have to do
is supply a filename (wild-
cards allowed) that you wish
to search for, and MSDOS
will return the first one in the
directory that matches your
specification. Let's take a
look at the program to see
how it's done. (Line num-
bers in the program listings
are for reference only. They
are not referenced in any
way from within the pro-
grams.)

Line 00001 simply allocates

memory for a simple integer
variable and an integer
array. The memory con-
tained in the array will be
used by the program as a
couple of disk buffers for
use by MSDOS. Line 00002
simply initializes a couple of
pointers to the two buffers
within the integer array.

Lines 00006 through 00045
contain the first of two long
functions. GetName$ func-
tion must be called first, and
Is used to give the file speci-
fication to MSDOS and to
retrieve the first matching
filename. The filename that
is given to MSDOS must
consist of eleven charac-
ters, no more, no less. This
is made up by 8 characters
worth of filename, and 3
characters worth of
extension (the “xxx” after the
period). If you pass a file-
name that is less than
eleven characters to the
function, the function will
automatically add “?” char-
acters to the end of the
filename. This “?” character
is the wildcard character.

One other thing to keep in
mind is that the directory to
be searched will be the
currently logged directory.

Lines 14-43 are the assem-
bly language portion of the
function. | like to break my
machine language lines out
into their assembly lan

guage equivalents (with

the assembly language
as comments on the line) to
make it easier to see just
what is going on. It's also
much easier to insert or
delete assembly language
lines this way.

When the function exits, it
returns a string back to the
calling program. This string
contains the first matching
file (if one is found), or a null
string (if no match was
found).

The second function,
NextName$ in lines 49-68, is
called to retrieve the second
and subsequent filename
matches from a directory.
Since we've already given
MSDOS the file specification
by using the GetName$
function, we don’t need to
pass NextName$ any para-
meters. Like GetName$,
NextName$ returns a string
containing the next file-
name, or a null string if no
match was found.

The remainder of the pro-
gram simply demonstrates
how these two functions are
used.

12

00001 DIM X, BUF%$(127)

00002
00003
00004
00005
00006
00007
00008
00008
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
ooo28
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00038
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

‘yes, delete the

N7l

;address of DTA
;tell DOS where it is

i
;address of internal buffer
;clear register
;clear first byte of fcb
;get string segment address
;get address of file spec string
;point past length byte
;string is 11 bytes long
;save current segment
;point to string segment
;move the filespec to FCB
;restore segment
;address of FCB
;find first filename match

;was there a match?

;no, just exit with a null string
;else copy the full filename

; to the return string

;set string length

;address of internal buffer
;find next filename match

;was there a match?

;no, just exit with a null string
;else copy the full filename

; to the return string

;set string length

dta% = VARPTR(X) + 2 fcb% = VARPTR(X) + 66

A

Al

Al

LONG FN GetName$ (FS$)
‘' F$ contains filespec to search directory for
X = INSTR(l,FS$,”.”) ‘extension separated from filename?
IF X THEN F$ = LEFT$(F$,X-1) + MIDS$(F3$,X+1)
‘if not a full filename, then pad with wildcard characters
IF LEN(FS) < 11 THEN F$ = F$ + STRINGS(1l1-LEN(FS$),”2")
StrSeg% = MEM STR ‘determine string segment address
AS = ™ ‘initialize AS
MACHLG &8B,&16,dta% Y mov dx, [dta%]
MACHLG &B4, &1A ‘ mov ah,lAh
MACHLG &CD, &21 vV int 21h
MACHLG &8B, &3E, fcb% Y mov di, [fcb%]
MACHLG &32,&CO Y oxor al,al
MACHLG &AA ' stosb
MACHLG &Al, StrSeg% Y mov ax, [StrSeg%]
MACHLG &BE,FS$ ‘‘mov si,offset f3$
MACHLG &46 ‘' ine si
MACHLG &B9, &0B, &00 ‘' 'mov c¢x,11
MACHLG &1E * push ds
MACHLG &8E, &D8 mov ds,ax
MACHLG &F3, &A4 ' repz movsb
MACHLG &1F * pop ds
MACHLG &8B,&l6, fcb% ‘' mov dx, [(fcb%]
MACHLG &B4,&11 Y mov ah,1llh
MACHLG &CD,&21 Vint 21h
MACHLG &0A, &CO ‘' or al,al
MACHLG &75,&18 ‘' jnz nofile
MACHLG &B8, &0B, &00 ‘' 'mov ax,ll
MACHLG &89, &C1 ‘' mov ¢X,ax
MACHLG &8B, &lE, StrSeg% ‘' mov bx, {StrSeg%]
MACHLG &8B,&36,dta% *mov si, [dta%]
MACHLG &46 ‘ine si
MACHLG &BF,AS ‘'mov di,offset AS
MACHLG &06 * push es
MACHLG &8E, &C3 ‘‘mov es,bx
MACHLG &AA ‘' stosb
MACHLG &F3, &Ad ‘' repz movsb
MACHLG &07 ' pop es
N nofile equ $

END FN = AS

A

A

A

LONG FN NextName$
AS = ™ 1tinit AS to null again
MACHLG &8B,516, fcb% Y mov dx, [fcb%])
MACHLG &B4,&12 ‘' mov ah,12h
MACHLG &CD, &21 ‘int 2ih
MACHLG &0A, &CO v oor al,al
MACHLG &75,5&18 Y dnz nofile
MACHLG &B8, &0B, &00 ‘' mov ax,1ll
MACHLG &89, &C1l ‘' mov cX,ax
MACHLG &8B, &1E, StrSeg} ‘' mov bx, [StrSeg%]
MACHLG &8B, &36,dta% Y 'mov si, (dta%]
MACHLG &46 Vine si
MACHLG &BF,AS ‘'mov di,offset AS
MACHLG &06 ' push es
MACHLG &8E, &C3 ‘' mov es,bx
MACHLG &AA ' stosb
MACHLG &F3, &A4 ‘' repz movsb
MACHLG &07 ‘ pop es
N nofile equ $

END FN = AS

CONTINUED NEXT PAGE...

13

Continued from previous page.

00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090

1

\

\

INPUT “Enter partial filename to find -> “; Z$
Z$ = FN GetName$ (Z2$)
LONG IF LEN(Z3)

Zz$ = LEFTS$(Z2$,8) + “.” + RIGHTS$(Z$,3)
PRINT “LOCATED FILE => “; Z§
INPUT “IS THIS THE FILE YOU WANTED? “; ANSS
ANSS = LEFTS (ANSS, 1)
WHILE ANSS <> “Y” AND LEN(Z$)
2% = FN NextName$
LONG IF LEN(ZS)
2$ = LEPTS(2%,8) + “.” + RIGHTS(Zs,3)
PRINT “LOCATED FILE => “; 23
INPUT “IS THIS THE FILE YOU WANTED? “; ANSS
ANSS = LEFTS (ANSS,1)
END IF
WEND

LONG IF LEN(ZS$)THEN PRINT “FILE SELECTED -> “; Z$ ELSE PRINT “NO SELECTION”
XELSE

PRINT “FILE NOT FOUND”

00091 END IF

14

APPLE I

Reading Directories
By Greg Branche

The routine for the ProDOS
operating system on the
Apple is a little more compli-
cated. Since ProDOS does
not provide the built-in
directory searching that
MSDOS does, we have to
do the work ourselves. It's
much more efficient to do
this from assembly lan-
guage, so | wrote the sub-
routines as a BLOADable
modules that get’s loaded
and executed in the hires
graphics video buffer
($2000). In addition, it was
written to be used with the
128K version, and so re-
quires the use of a 65C02
processor. (In other words,
it won't work with the 64K
version unless some of the
opcodes are changed.)

The first program,
MAKE.DIR.OBJ, simply
POKEs the machine lan-
guage subroutines into
memory and then BSAVEs
the module to a disk file
named DIR.OBJ. Lines 1-26
consist of the BSAVE func-
tion. To save yourself a little
typing, you can start by
loading this function from
your ZBasic disk, and then
adding the rest of the pro-
gram to it.

Lines 40-60 contain DATA

statements that contain the
actual machine language
module. When typing these
lines in, BE SURE THAT THE
VALUES ARE CORRECT.
The program simply reads
each value from the DATA
statements one at a time,
and places the value into
the correct address in
memory. The module is
then BSAVEA to the file on
the disk for use with the
actual directory-reading
program.

The binary file consists of
four main portions. The first
portion consists of vectors
to the three subroutines that
comprise the directory-
reader, plus a 16-bit pointer
variable. By setting up the
vectors and the variable at
the beginning of the memory
image, their location will not
change in the event that the
entry point to one of the
subroutines happens to
move.

The first subroutine is
named “INIT". [t takes a
string specifying the direc-
tory to read, opens that
directory file, and then
initializes some internal
variables. The second
subroutine, named “READ",
is the actual workhorse of
the program. It reads the
directory and fills a ZBasic
string buffer with the next
available filename, or NULL
if no more filenames are
available. The third subrou-
tine, “CLOSE”, simply closes
the directory file once you
are done with it. A generic
ZBasic CLOSE statement
probably would have done
the same thing, but | don't
like to take chances.

Now, how do we use this

little goodie? That's what
the third program listing is
all about.

15

‘DIRECTORY.BAS”
BLOADs the DIR.OBJ file
into memory, and then reads
and displays each filename
in the directory one at a time
and then displays a count of
the active files that it en-
countered. (Nothing really
earth-shattering here. Just
remember, this is a sample
program!)

Lines 1-20 are the BLOAD
function that can be found
on your ZBasic disk. Asin
the previous program, you
can save yourself a little
typing here by loading it
first, and then keying in the
remainder of the sample
program. One more thing
worth mentioning (and |
should have mentioned it for
BSAVE too) is that the ad-
dresses inlines 2, 6, 12, 17,
and 19 (12, 14, 16, 22, and
25 for BSAVE) must be
adjusted for use in the 128K
version. The two functions
supplied on disk have been
set up for use with the 64K
version. Make sure these
addresses match those in
the listing printed here.

Line 22 loads the machine

language module into mem-
ory. Line 23 initializes some
ZBasic variables to make it
easier to use the various
subroutines. The entry
points for the subroutines
are:

INIT - $2000

READ - $2003

CLOSE - $2006

POINTER - $2009

By setting these addresses
into integer variables, it
makes it much easier to
access these addresses
through the use of names
that actually mean some-
thing.

Line 25 allows the user to
enter a string containing the
name of the directory to
read. Line 26 pokes the
address of that string into
the module’s pointer, so that
the module knows which file
to open. Line 27 calls the
INIT subroutine to open the
directory and get the vari-
ables initialized. If there is
no problem during the
initialization, the POINTER
variable will be returned with
a value of 0. If there are
problems, the ProDOS MLI
error number will be re-
turned instead. Lines 28
and 29 check for, and
handle, any error.

Line 30 pokes the address
of a ZBasic string into

POINTER. This string must
be at least 16 bytes long
(the maximum length of a
ProDOS filename, plus the
length byte). The READ
subroutine is then called in
line 31. The subroutine will
scan the directory until it
discovers the first active
filename entry, and then will
copy the filename into the
ZBasic string provided. If
no more active files remain
in the directory, the length
byte of the string will be set
to 0 (in other words, a NULL
string will be returned).

After reading and displaying
all active filenames in the
directory, the program calls
the TERMINATE subroutine
to close the directory and
clean up it's internal vari-
ables, and then displays the
count of the number of
active files encountered.

As they stand now, these
programs don’t have all the
bells and whistles that they
could have. With a little
modification, the methods
presented here could add a
great amount of profession-
alism and user friendliness
to your programs. If you
have any comments or
suggestions, | can be
reached by electronic mail
on GEnie at [G.BRANCHE1],
or on ApplelLink-Personal
Edition at [G Branche].
Have fun!

16

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00028
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060

LONG FN BSAVE (Path$, Fnum%, Adrs%, Length%)
REM First we have to create the file
POKE &1F00, 7 : REM 7 Parms for create call
POKE WORD &1F01, VARPTR(Path$): REM Set pathname pointer
POKE &1F03, &C3 : REM ALLOW FULL ACCESS
POKE &1F04, 6 : REM MAKE IT A BIN TYPE FILE
POKE WORD &1F05, Adrs% : REM Set AUX TYPE field
POKE &1F07, 1 : REM Seedling storage type
FOR x = &1F08 TO &1FO0B
POKE x, 0 : REM Zero out creation date and time
NEXT
MACHLG &A9, &CO, &20, &0865 : REM Create the file
REM Now we can open the file we just created
POKE WORD &1F03, &ACO0 ~ (Fnum% * &400): REM Point to file buffer
POKE &1F00,3 : REM 3 parms for open
MACHLG &AS, &C8, &20, &0865 : REM Go open the file
REM Now that it’s open, write the bytes
POKE &1F0l1, PEEK(&1F05) : REM Move reference number
POKE &1F00, 4 : REM 4 parms for write
POKE WORD &1F02, Adrs%
POKE WORD &1F04, Length%
MACHLG &A9, &CB, &20, &0865 : REM Write the bytes
POKE &1KFO00, 1
REM Make sure the file is closed!
MACHLG &AS, &CC, &20, &0865
“End Bsave” END FN

CLS : PRINT “POKING DIR.OBJ INTO MEMORY” : PRINT
PRINT “ADDRESS -> ™
FOR I = &2000 TO &2142

READ A
PRINT @(11,2) I Reading Directories
POKE I,A

NEXT I

PRINT : PRINT “WRITING FILE TO DISK”

FN BSAVE (“DIR.OBJ”,1,&2000,&143)
PRINT : PRINT “DONE!”
END

DATA &4C,&0B,&20,&4C, &AC, &20,&4C,&37,421,&00,&00,&AD,&09,&20,&8D,&01
DATA &28,&AD,&0A,&20,&8D,&02,&28,8A9,&0A,&8D,&00,4&28,&20,&00, &BF, &C4
DATA &00,&28,&90,507,&8D,&09,&20,&9C,&0A,&20,&60,&AD, &04,4&28,&C9, &0F
DATA &F0,&04,&A9,&4A,680,&EE, &A9,&03,&8D,&00,&28,&29,6&00,&8D,603,428
DATA &A9,&22,48D,&04,428,620,&00, &BF,&C8,600,4&28,&B0, &D7, &A%, &04,&8D
DATA &00,&28,&AD, &05,&28,48D,&01,&28,&A9,&00,4&8D,&02,&28,&A9,&26,&8D
DATA &03,&28,&9C,&04,428,&A9,&02,4&8D,&05,&28,&20,&00, &BF, &CA, &00,&28
DATA &BO,&B2,&AD,&23,4&26,&8D,&12,4&28,&AD,&24,4&26,4&48D,&13,4&28,&AD, §25
DATA &26,&8D,&14,4&28,&AD,&26,&26,&8D,415,4&28,&9C,&19,&28,&9C,&1A,4&28
DATA &A9,&02,&8D,&18,428,&R9,604,418,&6D,&12,&28,48D,&16,&28,&A9,&26
DATA &69,&00,&8D,&17,&28,&9C,&09,&20,4&9C, &0A, &20, &60, &AD, &09, &20, &85
DATA &64,&AD,&0A,&20,485,4&65,&R9,800,8&92,4&64,&AD,&16,&28,&85,&62, &AD
DATA &17,&28,&85,463,4&38,&AD,419,&28,&ED,&14,&28,&AD, &1A,428,&ED, &15
DATA &28,&B0,&59,4&B2,£62,&F0,&0F, &29,&0F, 92,464, &A8,8B1,&62,&91,864
DATA &88,&D0,&F9,&EE,&19,428,&4EE,4&18,&28,8AD,&13,&28,&CD, &18,428,&90
DATA &10,&18,&A5,&62,86D,&12,428,&85,862,&A5,463,869,&00,&85,4&63,&80
DATA &27,&20,&00,&BF, &CA,&00,428,&90,812,&C9, &4C, &D0, &1F, &AD, &14, 4828
DATA &8D,&19,&28,&AD, &15,4&28,48D,&1A,&28,480,&11,4A9,&01,&8D,4&18,4&28
DATA &A9,&04,&85,&62,5A9,426,&85,&63,&B2,4&64,&F0,&98,&A5,&62,4&8D,4&16
DATA &28,&A5,&63,&8D,&17,&28,&60,&R9,&01,&8D,&00,428,&20,&00, &BF, &CC
DATA &00,&28,&60

17

00001 LONG FN BLOAD (File$,Fnum%,Adrs%,Length%)

00002 Buffer% = &AC0O0 - (Fnum$% * &400)

00003 POKE WORD &1F0l1, VARPTR(File$) : REM Set up parmlist
00004 LONG IF Adrs% = 0 : REM Use Address in directory

00005 POKE &1F00, 10 : REM 10 parms for this call
00006 MACHLG &A9, &C4, &20, &0865 : REM Get the file info
00007 Adrs% = PEEK WORD (&lF05)

00008 END IF

00009 IF Length% = 0 THEN Length% = &FFFF

00010 POKE WORD &1F03, Buffer$

00011 POKE &1F00,3

00012 MACHLG &A9, &C8, &20, &0865 : REM Open the file

00013 POKE &1F01l, PEEK{(&1F05) : REM Get ProDOS Reference number
00014 POKE &1F00, 4: REM 4 parms for read

00015 POKE WORD &1F02, Adrs$%

00016 POKE WORD &1F04, Length%

00017 MACHLG &AS, &CA, &20, &0865 : REM Read the file into memory
00018 POKE &1F00, 1

00019 MACHLG &A%, &CC, &20, &0865 : REM Make sure the file is closed
00020 “End Bload” END FN

00021 :

00022 FN BLOAD (“DIR.OBJ”,1,0,0) : REM BLOAD the machine code

00023 Init = &2000 : Read = &2003 : Terminate = &2006 : StrPtr = &2009

00024 :
00025 INPUT “Please enter the directory name -> “; F$
00026 POKE WORD StrPtr, VARPTR(F$) : REM Point to directory pathname

00027 CALL Init : REM Open the directory and init variables
00028 Err = PEEK WORD (StrPtr) : REM Check for any errors

00029 IF Err <> 0 THEN PRINT “ProDOS error $”; HEXS$(Err) : STOP
00030 POKE WORD StrPtr, VARPTR(AS$) : REM Point to ZBasic string
00031 CALL Read : REM Read the first filename

00032 WHILE LEN(AS)

00033 PRINT AS

00034 count = count + 1

00035 POKE WORD StrPtr, VARPTR(AS)

00036 CALL Read : REM Read the next filename

00037 WEND

00038 CALL Terminate : REM Must close the directory when we’re done!
00039 PRINT count; “files are in the directory.”

00040 END

18

SRSV i,

MACINTOSH

If you haven't already re-
ceived your upgrade for
ZBASIC 5.0 be sure to do so
soon.

It is easily the finest BASIC
compiler ever made for any
computer!

Perhaps the neatest thing
added to ZBASIC 5.0 is the
“The Program Generator”. It
is a completely new pro-
gram for generating ZBASIC
source graphically. Itis as
close as you can come to
real MacDraw-like program.

This program was written by
Chris Stasny, a loyal ZBA-
SIC programmer that wasn't
happy with the ZBASIC
Construction set. He said
he could write a program
generator that was much
more powerful. | told him to
go for it. Six months later he
plopped the program on my
desk and | must say | was
very impressed.

So impressed in fact, that |
wanted to make sure ALL
ZBASIC users had it.

In addition to the Program
Generator we have included
the ZMover Toolbox editor,
also by Chris Stasny. [t

allows you add, delete and
modify toolbox routines and
gven create your own cus-
tom machine language
commands.

save you lots of time.

I'm still looking for articles
for the Mac section of the
newsletter. | have some
great submissions from
The ZTREE B+Tree file Frank Turovich this month.
utilites are incredibly useful
as well. With them you can
create your own giant data

bases with little effort.

Thanks Frank.

As for the rest of you... Get
on the stick!

They are 30K of ZBASIC

source code in the form of ed.
LONG FN's. You simply add

the source code to your

program and use one

simple function call to add,

delete or find items in your

index instantly. Multiple

indices may be used so you

can sort your data by any

number of fields.

And, best of all, the new
manual is Mac-specific. Itis
really a joy to use and will

19

Another way of
doing Hierar-
chical Menus
by L. Frank Turovich

With introduction of the
Mac Il several new features
were added to the manag-
ers that resided in the Mac's
ROM. One of these, the
Menu Manager introduced
hierarchical menus.

(There is another great
example of doing hierarchi-
cal menus on the new ZBA-
SIC 5.0 disk in the Program
examples folder. ed.)

To set a series of pro-
gram choices with the old
Menu Manager, required the
program to display a modal
dialog box and force the
user to choose from an array
of button options. Hierarchi-
cal menus, however, allow
the user to quickly select
from a menu any of many
options without a dialog box.
A hierarchical menu is a
sub-menu that appears next
to a regular menu item and
offers a subset of item
choices. In Figure #1 we
see a sample where the
Print option offers three print
qualities in a submenu
instead of a dialog box.

To create hierarchical
menus we will use Reskdit
to create our menus re-
sources and use several

Tool-box calls to implement
them. If you do not have
ResEdit, see page E-32 in
the ZBasic manual for in-
structions on creating a
resource file with RMaker
which is included on your
ZBasic disk.

First, start up ResEdit and
select New to create a
resource file for our pro-
gram. We'll name this file
“Menu.r’. Double-click on
Menu.r to open it's window.
Select New to open the
TYPE's dialog. Scroll until

Ignore the size boxes but
enter the menu’s fitle Print.

To add an item to the
Print menu, select the five
asterisks under the Print title
and choose New. ResEdit
will create a menu item.
Follow the example in Figure
#1 to complete the Print
menu by adding all three
items. Close the Print menu
when done.

Using the same tech-
nique, create the File menu
using Figure #1 as a guide.

Medium Quality
High Quality

you find the resource type
“MENU". Select it and click
in the OK button to create
your resource. ResEdit
automatically opens a
MENU window. Choose
New again to create the
Print menu.

Type in the following in-
formation:

MenulD = 250.
enableflgs= $0000000F

MenulD =100
enableflgs =30000005F.

Close the File menu
when done.

Now is the time to enter
the special information to
link our two menus together.
Select the File menu and
use the Open General menu
option. If you copied the
example your window
should look like Figure #2.

20

Search the data until you
find the Print item. The next
two blocks of data are what
we are interested in.

The hex code 1B is what
the menu manager uses to
decide if there is a hierarchi-
cal menu for that particular
item. The hex code FA (250
decimal) is the submenu’s
MenulD. Since our Print
menu has a MenulD of 250,
that will be the submenu.
Click next to the area to
change and enter the 1B
and the FA. Close the File
menu.

One last thing and we are
done. When ResEdit cre-
ated the menus it gave each
of them a unique 1D number.
We need to change that to
reflect our chosen MenulD
numbers. Use the Get Info
option to select each file
and change the ID field to
the MenulD number. Fi-
nally, close and save the
Menu.r file.

We have created our hier-
archical menus, now let’s
use them.

To use our resource
menus requires ToolBox
calls, specifically GETMENU
& INSERTMENU. GetMenu

retrieves menus identified
by our MenulD number. In-
sertMenu writes the menu to
the menu list in the order
specified by the Before
parameter. |f Before is
zero, the menu is written to
the menu list. If Before is -1,
the menu is inserted next to
the item identified by the 1B
designator, in this case, the
Print item. Finally, we use
the CALL DRAWMENUBAR
to display our menu list to
the screen.

Hierarchical menus can
be nested five levels deep.
In other words, a submenu
can have a submenu,
can...well, you get the pic-
ture. Also, only 255 sub-

menus are allowed. To
have multiple submenus,
simply change each MenulD
into its hexadecimal equiva-
lent and enter 1B and each
MenulD in hex next to each
item where the submenu will
appear.

That’s all there is to it.
Use the program '
‘HierMenu.BAS’ to see your
hierarchical menus in ac-
tion.

continued next page...

[== MENU ID = 100 from Menu.r ==
ep0068a6 bob4 0060 oooe @088 O0dO0DOOOD K
86008808 8000 8008 BO0F @446 00000-0OF
DEBEER 16 B96C 65683 4E65 7788 ilelMewd
fEeeen 18 8008 6004 4F78 656E 00000pen
BEaRan2o 6868 oBpe 8558 72638 O0000Pri
PEEEEP28 GE?4 iBB1B FAGP! @453 ntODOOOS
80806030 61756 635808:5388 0801 ave0SOON0
BEOBBH3ES 2DBB 0606:8664 5175 -000000u
BEEBE6040 6974 6051i0666 00 i10aoon
88886048 :

D oaaaaa INDICATES HIER MENU
ooEEaEG Fi = MENU #250 IN HEX
PBABBAGS

Figure #1

21

FIGURE #2
* — ResEdit Menus in ZBasic

Ref%=FN OPENRESFILE (“Menu.r”)
FileM%=100 : PrintM%=250

FileMenu& = FN GETMENU (FileM%)
PrintMenué& = FN GETMENU (PrintM3%)
CALL INSERTMENU (FileMenué&,0)
CALL INSERTMENU(PrintMenué&, —1)
CALL DRAWMENUBAR

ON MENU GOSUB “MenuEvent”
MENU ON

DO

UNTIL Done

MENU OFF

“MenuEvent”
MenuID=MENU (0) : ItemID=MENU(1)

1

PRINT “You chose Item #”;ItemID;” of Menu

SELECT CASE MenulD
CASE 100

\

\

SELECT CASE ItemID ‘' — GET ITEM &

CASE 1 : PRINT “New Item”

CASE 2
CASE 3 :
CASE 4 :
CASE 6
END SELECT
CASE 250 :
SELECT CASE ItemlID
CASE 1
CASE 2
CASE 3
END SELECT
END SELECT
MENU
RETURN
“QuitProgam”
CALL CLOSERESFILE (Ref%)
END

: PRINT “Open Item”
PRINT “Close Item”
: PRINT “Save Item”
: GOTO “QuitProgam”

-

v

1

\

— OPEN RESOURCE FILE
— DEFINE MENU ID'S

— GET FILE MENU

— GET PRINT MENU

— INSERT FILE MENU TO MENU LIST
— INSERT PRINT MENU TO MENU LIST
— DRAW MENU LIST TO SCREEN

— ENABLE MENU EVENTS
— MAIN LOOP

— DISABLE MENU EVENTS

-~ GET MENU NUM & ITEM NUM
#”;MenulID;”, the %;

- USE CASE FOR EASY READING
- GET FILE ITEMS

RESPOND

— GET PRINT ITEMS

PRINT “Draft Quality”
PRINT “Medium Quality”
PRINT “High Quality”

— UNHILITE MENU

RETURN MAINLOOP

— CLOSE RESOURCE FILE
— PRIOR TO ENDING

22

CREATING
DIALOGS IN
RESEDIT

by L. Frank Turovich

Open your copy of ResEdit
and wait for it to load. We
are going to use one of
ResEdits most powerful
menu commands, New from
under the File menu. With
this command we can
create any resource our
program requires.

Before we can start we need
a file to store our resources
in. Select New from the File
menu and ResEdit requests
a name for our new resource
file. Let's call it ‘Dialog.r'.
Type that into the edit field
and press OK. ResEdit
creates ‘Dialog.r’ and opens
up its resource window.

Select New again and this
time a dialog appears with a
list of the resource types
ReskEdit can create. Scroll
until you see the four letter
resource type DLOG and
double-click on it or type
DLOG into the available field
and press OK. ResEdit
creates a resource of type
DLOG. Open the resource
DLOG by double-clicking.
Select New again. Is this
getting familiar now? Re-
sEdit now creates a DLOG
resource with a unique 1D
number. Make a note of the
ID number as we will need it
later.

Click open the new DLOG
resource to look at the
default window ResEdit
creates. To position the
window, point, click and
drag. To adjust the size,
click near the lower right
corner and drag until it
appears correct in the mini-
ature screen display.

Now, we need to set the at-
tributes of our dialog win-
dow. Go to the DLOG menu
and select ‘View by Text'.
We now see the dialog
window with all its attributes
displayed. See Figure #1
for field information.

Select ‘Display Graphis’
from the DLOG menu to
view your new dialog.
Double-click on our mini-
ature dialog and the full size
version appears. Now we
can fill it with items such as
buttons, edit fields and
icons.

Select New and ResEdit
automatically creates an
item for your dialog. Since
the push-button item is
already selected, we'll start
with it. Type OK into the edit
field and click the windows
close box. Now, use the
mouse to position and size
the pushbutton where you
want it. Do the same for the
other items. Create a static
text item, an icon item, and
an edit field item. Remem-
ber their respective item

numbers for our program
later. See Figure #2 for
possible dialog display.

The last thing to do is set
our dialogs 1D number.
Select ‘Get Info’ and
change the resource num-
ber displayed to 1000, our
dialogs new ID number.
Close the window and your
new ID numbered DLOG is
displayed. Now close all
windows in ‘Dialog.r’ and
save at the alert prompt.

That's it. You've now cre-
ated a unique dialog for
your program.

The routines in the demo
program ‘Dialog.BAS’ can
now be used to call and
control your dialog box.
They will call your dialog
and display it, accept input
to the edit field, then retrieve
that input and write it to the
screen.

One final warning, do not
mix normal ZBasic windows
with toolbox windows as this
will cause several system
errors.

continued next page...

23

continued from previous

page...

Title
Left, Top,Right, Bottom

ProclID
resID
refCon

Visible

GoAwayFlag

If y
: Dial

: Wind

: ID number of DITL used

: Refe
: Dial
called
: Clos

ou want one

0g screens
coordinates

ow types (See
E-156 for info)

rence value
og shown when

e box in window

.

== Dialog 1D = 1000 from Dialog.r
Window title: DLOG rect
- coordinates
New Dialog T
top 80 bottom 216
left g8 right 418
W I NDOW
TYPE Il.>Prucl[l 1 refCon |0
resID |1000 <;1JD.TL ID
B4 Disible b4J goRwayFlag

Dialog item list 1D = 1000 from

§and icons.

Your own resource dialog called from
A ZBasic, including static tent, buttons

ITEM ®# 2

Edit fields too!

ITEM #4

OUR DEMO DIALOG WINDOW

5]

24

REM ZDialog.BAS

REM

REM Demontrates toolbox calls to use dialogs
REM in your ZBasic programs

DIM R%(3)

Ref%=FN OPENRESFILE (“Dialog.r”) : ‘Get our resource file

Err%=FN RESERROR : ‘Check for file error

LONG IF Err%<>0 : ‘If yes, quit

BEEP : GOTO “QuitProgam” i
END IF

“SampleRoutine”

CLS : PRINT “ResEdit Dialog Sample...”

D1gID%=1000 : GOSUB “GetDialog” : ' Look for our dialog In file
PRINT “Finished”

“QuitProgam”

CALL CLOSERESFILE (Ref%) : ' Get Rid Of resource file
END

“GetDialog”
Efld%=4
DlgPtr&=FN GETNEWDIALOG (D1gID%,0,~1): : ' Get dialog
GOSUB “BtnOutline” : Y Qutline main button
GOSUB “WaitLoop” : Y Wait for button press
CALL GETDITEM(DlgPtré&,Ef1d%, IType%, IHand&,R% (0))
: ' Get handle to edit field

CALL GETITEXT (IHand&,EFStr$) : Y Get edit field text

CALL DISPOSDIALOG (DlgPtr&) : ' Remove dialog from screen
PRINT EFStrS

RETURN

“BtnOutline”

ItemNum%=1 : Y Points to OK button

CALL GETPORT (OldPorté&) : Y Save 0l1d Port for Later
CALL SETPORT (DlgPtré&) : ' Set Port to open dialog

: ' Get handle to item to be outlined
CALL GETDITEM (DigPtré&, ItemNum%, IType%, IHand&,R% (0))

LONG IF IHand&<>Q : ' Got Item Handle TO Use
CALL PENSIZE (3, 3) : ' Adjust pen
CALL INSETRECT(R%(0),-4,-4) : Y Standard Outline Offset
CALL FRAMEROUNDRECT (R% (0),16,16) : Y Draw Outline

END IF

CALL SETPORT (OldPortég) : " Restore 0ld Port

RETURN

“WaitLoop”

DO

CALL MODALDIALOG(0, ItemHit%) : Y Wait for ItemHit

UNTIL ItemHit%= : Y If not OK button, Continue

RETURN

25

REGISTERED
OWNER INTRO

by L. Frank Turovich

The wave of copy protection
is passing, and behind it
software makers are resort-
ing to moral and ethical
value systems to protect
their products. One of the
more popular forms ap-
pearing is to have the
owner enter his name when
he first boots up the new
software. Thereafter, the
owner's name appears on
the opening screen for all to
see.

ZBasic makes it easy to
include such a routine into
your applications.

The following Macintosh
program illustrates how to
open the data fork of your
compiled program, get and
save the owners name, then
display it each time the
program is restarted.

CheckOwner is actually a
very simple routine to use.
The key, however, is using
the DEF OPEN command to
reset the applications
CREATOR & TYPE when the
owner is saved, otherwise
the application will become
a file.

“CheckOwner”

Owner§=""
AplName$="<< Compiled Program Name >>"
OPEN “I”,1,AplName$,,Vol%
LONG IF LOF(1)<>0 ' — CHECK FILE FOR OWNER
INPUT#1,0wners$
END IF
CLOSE#1
WINDOW 1, “IntroWind”, (100,50)-(410,150),-2
TEXT 0,12,0
LONG IF Owners$<>"”
* — IF THE OWNERS NAME IS PRESENT - DISPLAY IT
CALL MOVETO(20,25)
PRINT “This software registered to :”
CALL MOVETO(20,45) : PRINT Owner$
DELAY 5000 ' — ALLOW TIME TO READ
XELSE
‘' — IF THE OWNERS NAME IS EMPTY - GET & SAVE IT
‘' — THIS SHOULD ONLY OCCUR ON INITIAL STARTUP
CURSOR 0
CALL MOVETO(20,25)
PRINT “Enter your name as owner :”
EDIT FIELD 1,””, (20,35)-(300,50)
BUTTON 1,1,”0OK"”, (200,65)~(300,85) k

Y — LOOP WAITING FOR BUTTON PRESS
DIALOG ON ' — ENABLE DIALOG EVENTS
DO
D1g%=DIALOG (0)

UNTIL Dlg%=1

DIALOG OFF — DISABLE DIALOG EVENTS

OwnerS$=EDITS (1) ‘' — GET USERS NAME

DEF OPEN “APPL??7?” ‘' — RESET FILE TO APPL
Y — 2727 = YOUR CREATOR

OPEN “0”,1,AplName$,,Vols%

PRINT#1,Owner$ ' — SAVE OWNERS NAME
CLOSE#1 Y — TO DATA FORK
CURSOR 4

END IF

WINDOW CLOSE 1 ‘' — CLOSE WINDOW

RETURN

26

ShutDown-
Power

Routine
by Frank Turkovich

This Macintosh specific
command, SHUTDOWN, is
mislabeled. Restart would
be more appropriate, since
that is really what it does
(Old timers will remember
that Apple changes Shut-
down to both Restart and
Shutdown in newer versions
of the systern. ed).

The ShutDown statement
ejects all disks from the Mac
and then reboots your
system.

The machine language
routine called ShutDown-
Power performs a true
shutdown just like the
Finder. It ejects all disks,
shuts down the system and
then displays an alert box
with the option to reboot.

This may be handy for some
of you:

“ShutDownPower”
MACHLG &H3F3C, &H0001, sHA895

See us a
MacWorld Expo
N
San Francisco!

Booth #2210 In
the Moscone
Center.

27

ZBASIC
NEWSLETTER

7" Newsletter

ZEDCOR

4500 E. Speedway, Suite 22
Tucson, AZ 85712-5305

Send to:

Bulk Rate
U.S. Postage
PAID
Tucson, AZ
Permit number
2220

28

