Playing CatchUp, or
""Please Pass the Heinz 57"

Boy, did I ever ignite a firestorm in our first
issue (at least for a few people). Seems that
y'all got the first Znews after my extended
introductory offer expired. I won't belabor
the reasons for that occurrence except to say
that if you have received this month's
newsletter in May, we have rectified the
problem. Or started to.

But holy guacamole, Batman, did some of
you take great exception to the snafu or
what? I guess a lot of people assumed that
we were out to gouge you in every way
possible. Let me state again, for the record.
that I guarantee your satisfaction. A quick
postcard or call will [ix just about anything.
Please do not assume the worst of us.

Here's my plan to remedy the present
situation: there will no longer be a time limit
on the introductory offer if you were a
subscriber to the old Z newsletter. If you
already resubscribed with us at the higher
price, we will refund the dilference at your
request.

Yes, that cost us a considerable amount of
money. But we're a sole proprietorship with
no need to answer to shareholders - we just
answer to ourselves, and ultimately, you, our
subscribers. We do what we want, when we
want. And we want to convince you of our
good intentions, fairness, goodwill, and
general niceness.

'Nuff said, I hope.

Speaking of good intentions, if you have not
yet subscribed to Znews and you intend to,
now would be a good time. I have included
an order form on page 14 to help expedite
the process.

The reason that I mention subscriptions at
all is that most folks signed on with Zedcor
for one year (four issues). Since the Z-gang
delivered one newsletter in 1988, (no, I don't
count the announcement of our assumption
of the newsletter in January), that means we
owe the one year folks three issues. This is
the third issue and completes our obligations
to most of you.

If you have not received three issues of
Znews (March, April, and May), please let us
know and we will remedy the situation.

It is also apparent that a surprisingly large
number of you folks were not aware that we
publish two ZBasic newsletters: Znews
covers the MS-DOS, Apple II, and Z-80
worlds, while MeZ details all things
Macintosh. The Mac version is sufficiently
different from the others (due to the
infamous toolboxes and the Mac interface),
that we felt everybody would get better
coverage if we split things up.

It is a little premature to say too much at
this point, but we have some plans I'd like to
tell you about. We here at the Ariel igloo
maintain an active presence on several
online databases, including GEnie,
AppleLink PE, and a private bulletin board
being setup in Florida even as I write. We
hope to be the clearinghouse for ZBasic
information worldwide. We've also initiated
some other projects, but I'm not at liberty to
discuss them at this time. My point: we're
working to make your subscription to Znews
a valuable commodity, indeed.

I'm also interested in finding out about
commercial packages written in ZBasic. I've
run across several - I think you'd be

surprised at the terrific things ZBasic users
are able to do - in part because of the
capabilities and usefulness of the language.

Quality Computers, for example, is
publishing Professor Gary Morrion's
RepairWorks, a program dedicated to
repairing and restoring damaged AppleWorks
files. Subscriber David Marans also wrote
some greyhound racing analysis software
with MS-DQOS ZBasic that was even reported
as profitable by the sports section of his
local newspaper. His program inspired this
month's foray into expert systems elsewhere
in this issue.

Tell me more, folks. I don't intend to review
any of the programs here. Rather, my
intention is {o compile a list ol commercially
available software packages written in any
version of ZBasic.

MS-DOS Alert

[don't know if Apple II programmer's submit
artlicles as a way of life or what, but in order
to provide an appropriate balance, I need to
request that some of you MS-DOS and Z-80
fans get crackin'. We pay between $50-$75
when we accept an article, so in addition to
the prestige (?) you can also get a little spare
change for your hardware [und.

We're Moving...

Yes, Ariel Publishing is moving "Outside", as
we say in Alaska. Our new address will be:

Ariel Publishing
P.O. Box 398
Pateros, WA 98846

phone: (509) 923-2025

This address and phone number will be good
after June 10th, 1989, We will be
unavailable from May 29th - June 9th. I
hope that doesn't inconvenience anyone, but
it takes time to move.

We've got a lot of personal reasons for
moving, but one major factor is that it will

AR
SRR

make our publishing business much, much
easier to operate. You cannot imagine the
headaches and hassles we've endured out
here on the Bering Strait.

In spite of our move south, I'm sticking to my
roots; no big towns for this country boy.
Pateros is a tiny community of about 300
people that sits at the mouth of the beautiful
Methow River in Central Washington. The
Methow Valley is famous for apple's (the
fruit, that is, and mostly organically grown)
and trout. The craggy central Cascade Range
provides a gorgeous backdrop to any picture.

Enough trivia. Let's get on with the show, as
they say.

Copyright (C) 1989 by Ross W. Lambert
and Ariel Publishing
All Rights Reserved

American subscribers add $15 per year):

1 year... $35 2 years $...65

Subscription prices in US dollars (Canadian and Mexican
subscribers add $5 per year, all other non-North

A quarterly diskette is available for an additional $20 per
year (non-North American subscribers add $10 per year)

WARRANTY and LIMITATION of LIABILITY

| warrant that the information in Znews is correct and
somewhat useful to somebody somewhere. Any
subscriber may ask for a full refund of their last
subscription payment at any time. MY LIABILITY FOR
ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE. In no case shall t or
my contributors be liable for any incidental or
consequential damages, nor for ANY damages in excess
of the fees paid by a subscriber.

Please direct all correspondence to:

Ariel Publishing
P.O. Box 266
Unalakleet, AK 99684

Znews is a product of the United States of America

ZBasic is a registered trademark of Zedcor, Inc.

Apple, Apple ll, and ProDOS are registered trademarks of
Apple Computers, Inc.

MS-DOS is a registered trademark of Microsoft, Corp.

The ProDOS MLI: An Introduction

by Gary Morrison

Have you ever wondered how to create a subdirectory, a new AppleWorks word processing
file, lock or unlock a file, or how to use ZBASIC's nifty ON LINE command within your
ZBASIC program? There is a rather simple way to greatly expand disk and system access
capabilities of the Apple Il ProDOS ZBASIC. In fact, it's as simple as using a template.

One method of expanding the capabilities of ZBASIC is through the Machine Language
Interface or MLI. Now, do not run away scared because of the termn machine language. What
I know about machine or assembly language will fit between the period at the end of this
sentence and the first letter of the next sentence. Apple first provided assembly language
programmers with this nifty tool, and then ZBASIC provided BASIC programmers with an
easy access to this interface. In fact, if you know how to use the POKE and PEEK commands
you are ready to use the MLI. Let's take a closer look at the Machine Language Interface.

The MLI

Why would anyone want to use the MLI interface when many of the essential MLI calls are
easily done {rom AppleSoft BASIC when BASIC.SYSTEM is operating? For example, in
Applesoft we can create an AppleWorks file with the line,

PRINT CHRS (4) "CREATE MYWORD, TAWP"

(editor: this creates a file of the same filetype as AWP files, but the internal structure is not
necessarily the same.)

An assembly language programmer, however, might want to write a program that does not
require BASIC.SYSTEM (e.g.. APPLWRKS.SYSTEM). Thus, Apple provided the Machine
Language Interface so assembly language programmers would not have to write large
amounts of code just to OPEN and READ a file. Fortunately for us, the MLI is not limited to
just assembly lanugage programmers.

In the ProDOS Appendix of your ZBASIC manual, you will find a one page description of the
MLI interface with some important memory locations. ZBASIC provides us with an 18 byte
"template" starting at memory location $1F00, the machine language code we need to call
the MLI routine, and an error handler if we want ZBASIC to display the error message. All
we need to provide is the information for the template. If you are going to do some serious
programming with ProDOS, 1 would encourage you to purchase a copy of Apple's ProDOS
Technical Reference Manual. Make sure you get the one for ProDOS 8 as the ProDOS 16 and
GS/0S manuals will not be helpful with ZBASIC. Also, I will be using hex numbers (with a
$) to maintain consistency with published information on the MLI calls.

MLI Calls

There are 25 separate MLI calls which Apple divides into four groups. First, there are the
housekeeping calls such as CREATE and DESTROY (delete). Second are filing calls like
OPEN, FLUSH, CLOSE, and READ. The third group consists of system calls for getting the
time and managing interrupts.

Fourth are direct disk access commands like READ_BLOCK and WRITE_BLOCK. We can
also divide the group into those calls that use the ZBASIC MLI template and those that
require us to provide a larger buffer. We will start with the calls that use the ZBASIC MLI
template.

ZBASIC's MLI Template

There are three parts to the MLI template. First is the number of items to be passed back
and forth through the template. This number is referred to as the parameter count
{(param_count). Second is information you provide for MLI interface to use in the call.
This information could be a number, a pathname, a filename, or memory location. Third
is information returned from the MLI call which is referred to as a result. In our ZBASIC
template and in all MLI calls, the first item is the parameter count. Parameter counts for
each of the calls are supplied in the ProDOS Technical Reference Manual. In the ProDOS
calls, the information supplied by you comes next. The results come after your input. Let's
use the MLI to write a program that provides information about a file and allows us to
change that information.

(editor: WARNING! Changing file attributes can render any given file useless. Changing the
Jfiletype of an AppleWorks file, for example, will make it "invisible" to AppleWorks. Test
SET_FILE_INFO on files you don’t care about!)

File Info Program

We will be using two MLI calls, SET_FILE_INFO and GET_FILE_INFO, for our first
program. The param_count for SET FILE_INFO is 7 and GET_FILE_INFO is $A {10 in
base 10).

If we use the GET_FILE_INFO first, we can then use the results from it as the input for the
SET,_FILE_INFO as both of these calls use a similar template. Table 1 shows the template
for these two calls.

As we can see from Table 1, the template for the two calls is just about the same except for
the 7th ,8th, and 9th bytes of SET_FILE_INFO. ProDOS is telling us that we cannot change
the storage_type or blocks_used with the SET_FILE_INFO command. Nor can we change
the creation date and time with this command as they are controlled by ProDOS.

Table 1
SET_FILE_INFO and GET_FILE_INFO Templates

$1F00+ SET_FILE_INFO $1F00+ GET_FILE_INFO

0 param_count= 7 0 param_count=10 ’
1 pointer to pathname 1 pointer to pathname

(two byte pointer) (two byte pointer)
3 acceess 3 access

4 file_type 4 file_type

5 aux type 5 aux_type

{two byte pointen) (two byte pointer)
7 null field 7 storage_type

8 null field 8 Dblocks used

9 null field (two byte pointer)
10 mod_date 10 mod_date
(two byte pointer) {two byte pointer)
12 mod_time 12 mod_time
{two byte pointer) (two byte pointer)

14 create_date
(two byte pointer)

16 create_time
(two byte pointer)

When we use the GET_FILE_INFO call, we must provide three bytes of information. The
first is the parameter count, $A, and a two byte pointer to the pathname. Ooops, there is a
new term--pointer. Pointers are memory addresses that have special significance. For
example a pointer to the hi-res screen would contain the value $2000 which is the start of
the hi-res screen. MLI calls often require a pointer to tell it where a variable such as a
pathname is stored or where the beginning of a buffer is located. We will talk about
pointers in more detail in a moment. The remainder of the "template” will be filled with
information that is the result of the MLI call. The SET_FILE_INFO call requires us to
provide all of the information for the call except for the blank null fields.

In our program (see the listing), we will store the filename in the variable Path$. We can use
the command VARPTR(Path$) to determine the two byte pointer (where the contents of
Path$ are stored in memory) for the pathname variable. Now, we are ready to begin our MLI

call. First, let's set up a LONG FuNction for the GET_FILE_INFO call that POKES the
necessary information into the template. The first byte of the template is for the
param_count. The param_count for GET_FILE_INFO is $A and the line, POKE $1F00,$A,
stores it in the first byte of the template. The second and third bytes of the template for this
call contain a two byte pointer (memory location) to the filename we are using. Since this
is a two byte pointer we use the line, POKE WORD $1F01, VARPTR (Path$), to tell the MLI
where the filename is stored. We only need to provide three bytes of input for this call. The
two MACHLG statements are used to make the MLI call and to have ZBASIC display the
error message. The first statement, MACHLG $A9, $C4, $20, $865; is machine code that tells
ZBASIC which MLI call to do. The second number ($C4 in this example} is the MLI
command number. You will need to change that line each time you program a different
call. The MLI command numbers can be found in the ProDOS Technical Reference Manual.
You can leave off the second MACHLG statement if you have your own error handling
routine as it intercepts and prints any error messages. After we call the function, we can
PEEK into memory and obtain information about the file and display it to the screen.
Below is a LONG FN for the Get_File_Info which has the command number $C4.

LONG FN Get_File_Info (Path$)
POKE $1F00,$A: REM param_count is $A or 10 base 10
POKE WORD $1F01,VARPTR {Path$): REM two byte pointer to our filename
MACHLG $A9, $C4, $20, $865: REM $C4 is MLI number for call
MACHLG $90, 3, $20, $87F: REM Error handler optional
END FN

If we first use the Get_File_Info call, we can then use the SET_FILE_INFO to change
information about the file. Using this call, we can change the access (lock/unlock], the
filetype, auxiliary type, the modification date, or the modification time. Since we used the
GET_FILE_INFO call {irst, we have all the slots in the template filled. Let's keep our first
try simple by locking the file. If the file is unlocked. we should find the value 195 or greater
if we PEEK (81F03). To lock the [ile, we simple POKE a zero into that location of template
(POKE $1F03,0). Then, when we make the call, our file will be locked. We can unlock it by
doing a POKE $1F03,195 and do another MLI call. (Of course, we should AND the original
Access% with 32 to determine if the backup bit is enabled, and add that to the value we are
poking.) Similarly, we can change the file type by poking a new value into $1F04. Table 1
identifies the file attributes you can change using the Set_File_Info call. Do not, however,
try to change the filename with this call.

Changing the filename is done with the RENAME MLI call. We will need to make two
changes to when we program the SET_FILE_INFO call. First, the param_count must be
changed to 7. Second, the command number in the first MACHLG statement must be
changed to $C3. The following program demonstrates the use of these two MLI calls.

Next time, we will take a closer look at how ProDOS stores the date and some new MLI calls.
Just remember, changing the filetype of a text file to a system file does not make the file a
system file. Be careful with your changes as you can cause some problems.

Sample MLI calls in ZBASIC

MODE=2

DIM 65 Path$: REM max length of pathname plus 1 byte for length
INVERSES=CHRS (15) : REM turn on inverse

NMALS=CHRS$ (14) : REM turn off inverse

LONG FN Get_File Info (Path$)

POKE S$1F00,SA: REM param count is $A or 10 base 10
POKE WORD S1FO01,VARPTR (Path$): REM two byte pointer to our filename
MACHLG S$SA9, S$SC4, $20, S$865: REM $C4 is number for MLI call
MACHLG $90, 3, $20, S$87F: REM Error handler optional

END FN

LONG FN Set File Info (Path$,Access?)

POKE S$1F00,7: REM param count is 7
POKE WORD $1F01, VARPTR(Path$): REM two byte pointer to our filename
POKE S1F03,Access%: REM value to change access
MACHLG $A9, $C3, $20, $865: REM $C3 is number for MLI call
MACHLG $90, 3, $20, $87F: REM Error handler optional

END FN

LONG FN Display

REM Now let's see what the call tells us about the file

Access%=PEEK ($1F03)
- X=Rccess% AND 128
LONG IF X=128
PRINT"File can be deleted (Destroy bit is enabled)"”
XELSE
PRINT INVERSES" File cannot be deleted (Destroy bit is disabled)
“"NMALS
END IF
X=Access% AND 64
LONG IF X=64
PRINT"File can be renamed (Rename bit is enabled)®
XELSE

PRINT INVERSES" File cannot be renamed (Rename bit is disabled) "NMALS
END IF

X=Access% AND 32

LONG IF X=32

PRINT"File needs to backed up (Backup bit is enabled)"
XELSE

PRINT INVERSES" File has not been modified (Backup bit is disabled

"NMALS

END IF
X=Access% AND 2
LONG IF X=2
PRINT"File can be modified (Write bit is enabled)™
XELSE
PRINT INVERSES" File cannot be modified (Write bit is disabled)
END IF
X=Access% AND 195
LONG IF X=195

PRINT"File is unlocked access= "X
XELSE
LONG IF X=0 OR X=32
PRINT"File is locked access= "X
XELSE
PRINT"File is restricted access= "X
END IF
END IF

PRINT"File type is "HEXS$(PEEK(S$1F04))
PRINT"Auxiliary type 1s "HEX$(PEEK WORD (S$S1F05))
X=PEEK(51F07)
IF X=S50F THEN PRINT"File is the volume directory"
IF X=$0D THEN PRINT"File is directory"
IF X=1 THEN PRINT "File is a seedling"
IF X=2 THEN PRINT "File is sapling"
IF X=3 THEN PRINT "File is a tree"
LONG IF X=S0F
PRINT"Blocks used on volume are "PEEK WORD (S1F08)
XELSE
PRINT"Blocks used by file are "PEEK WORD (S$S1F08)
END IF
X=PEEK (S1FO0B)
Year=((X AND 254)>>1)+1900
Month=X AND 1
IF Month=1 THEN Month=8 :ELSE Month=0
X=PEEK(S1F0Aa)
Month=((X AND 224)>>5)+Month
Day= X AND 31
PRINT "Mod date is “Month"/"Day"/"Year
X=PEEK ($1F0C)
Minutes=X AND 31
X=PEEK (S1F0OD)
Hour= X AND 63

"NMALS

]

g

PRINT "Mod time is "Hour":"Minutes
X=PEEK ($1FOF)
Year=((X AND 254)>>1)+1900
Month=X AND 1
IF Month=1 THEN Month=8:
X=PEEK ($1F0E)
Month=((X AND 224)>>5)+Month
X=X AND 31
PRINT "Create date is "Month"/"Day"/"Year
X=PEEK(S1F10)
Minutes=X AND 31
X=PEEK($1F11)
Hour=X AND 63
PRINT "Create_time is "Hour":"Minutes
PRINT
PRINT:
END FN

INPUT "Enter the full filename ";Path$
FN Get File Info (Paths$)
FN Display

PRINT “"Locked file= OV

PRINT "Unlocked file=195"

INPUT"Enter value of access bit to change file to “;AS
A=VAL (AS)

LONG IF (Access$% AND 32)=32: REM was backup bit enabled?
Access%=A+32: REM yes, keep it enabled

XELSE
Access%=A

END IF

PRINT"Changing file info"

FN Set File Info (Path$, Access3)

PRINT"New file info is:"

PRINT

FN Get File Info (Path$)

FN Display

END

in software

One of the hottest topics
engineering trade journals these days is
artificial intelligence. And some of the most
expensive software available commercially
within this genre is of a type called "expert
systems”.

If you can forgive an oversimplification, an
expert system is a program that helps an
"expert” in some domain of knowledge or
specific endeavor (maybe a geologist, teacher,
or even a baker) transform a subset of their
knowledge into a sel of rules that the
computer can use for decision making. Some
folks are petrified over the legal consequences
of this type of software; some of the hottest
(and most expensive) packages help doctors
make diagnoses. It is quite conceivable that a
programnmer or software house could be sued
for contributing to medical malpractice! No
wonder the packages are sc expensive. ..

The evolution of this class ol software
shouldn't be surprising, though. Program
bugs and crashed hard disks aside,
computers never forget. Never. It is quite
impossible, I should think, for a modern
physician, lawyer, or even a software
developer to have immediate recall for every
single fact pertinent toc their prolession.
Expert systems can be a real and powerful
aid. The accumlated knowledge of an entire
profession could be redacted to a CD-ROM, for
example, for use by its members. A {riend of
mine is a lawyer - he could have his mail
delivered to the law library at the Universily of
Washingtion. Imagine if his office was
equipped with a program {hat worked
something like this:

Good morning, Mr. Smith. What is the
nature of your current case?

t i

It's a divorce with

complications.

messy

What 1s messy about 1it?

The parties cannot agree about custody
of the dog.

I see. Can you
your client?

tell me more about

She is 30 years old, the mother of two

children, aged 10 and 12. She 1is
currently employed as a dental
hygenist.

Okay. One moment...

Based on two precedents, it appears
that your best course of action 1is to
argue that the children would suffer
unnecessary trauma 1f separated from
the dog. Additionally, other
successful arguments have held that a
dog was necessary for the safety and
security of an older child allowed to

remain at home alone after school
hours.
Click the "Precendents" box to view

the associated precedents and their
details. ..

I hope it is obvious that these systems do not
ever really replace humans. They are a bit
like your pocket calculator in that they just do
what the human could already do - but faster
and easier. It would be extremely dangerous
for non-professionals to think they could
practice medicine, for example, because they
got their hands on a diagnosis related expert
system. I'll be the first to predict that some
fraud with a "diploma-mill" paper on the wall
will try just that, however.,

Knowledge is power, and power can be turned
to do both good and evil.

As you might be able to surmise from our
"sample run" above, an expert system has a
lot in common with your run-of-the-mill
database.

Both must access tons of data

quickly and efficiently. Much of the art in
programming these beasts involves getting at
the information itself in a speedy enough
fashion. We'll be examining database design in
future issues, to be sure.

The other primary hurdle involves
establishing the "rules” by which a program
interprets the data. Our mythical legal expert
system above checked [or relevant cases with
a positive outcome and suggested strategies
based on those used in those cases - an
oversimplification, to be sure, but an example
of the process nonetheless.

As is comumon with computers, yes/no, on/off
sorts of relationships are far and away the
easiest to manipulate in an expert system.
One such system I've seen is available for high
school science classes. Students are queried
by the computer about the properties of a rock
given to them by their teacher. Based on the
student’s observations, the software spits out
a tentative identification. 1 say tentative
becausé students are not always the best
observers (an understatement). This
particular program guarantees itself
understandable student responses - the
students may only supply words and
descriptions offered in menus onscreen.

I'm certain that the soltware just keeps an
array of all the "factors" or characteristics it
uses for each rock. It then checks the "list" of
possibles and reports back the best match.

Sorta like what we're gonna do in Xpert, this
month's software adventure.

Although as literal minded as the rock ID
program I mentioned. Xpert is a tiny bit
different. Xpert is a "shell" into which you can
place your own little domain of knowledge. It
therefore requires two separate programs.
The first module helps you set up and
quantify your "knowledge". The second takes
your data (analagous to the student's
observations I mentioned), compares it to the
knowledge database, and then returns with an
identification.

In it's present form. Xpert is nothing more

than a deformed database. It is brutal (you
cannot even edit your entries once entered), it
is slow (it saves its data in a standard
sequential text file), and it is dumb (the
comparisons it makes are crude match or no-
match decisions). So why bother with it?
Because it could be the core a truly wonderful
expert system. And because you mjght learn
a little {rom it.

If you provided better "rules", Xpert itself
might be able to learn, too. With just a little
more coding, the software might ask for some
differentiating characteristic for items it
cannot positively identify . For example,
check the output of an old BASIC game called
"Animals” in which the software guesses the
animal the user is thinking of.

Does your animal have horns?

No.

Does your animal have a tail?
Yes.

Is your animal a dog?

No.

What 1s the name of your animal?
Cat

How 1is your animal different than a
dog?

It has pointed ears.

"Animals" then proceeds to write the new
information to disk. The next time someone is
thinking of a cat {assuming they don't cheat
like I did), it would eventually add one more
question before giving up. It would ask if the
animal had pointed ears. If the user
responded with a "yes", the program would
guess they were thinking of a cat. If they were
not, it would try to get more information into
its knowledge base, just as in our example.

Xpert could also greatly increase its speed of
operation on any computer with Btree

schemes (for large knowledge-bases), or smart
searches with small ones. A smart search
would involve teaching the program to
examine all of the "factors” in the database. A
factor is one of the characteristics the system
will use to make comparisons. If any factor
was the same for all elements, it would be
ignored-in a search, thereby speeding up the
process (comparisons take a lot of time).

I've already told you how to make Xperl better,
perhaps now I ought to tell you how it does
work.

The program first asks you to identify all of
your "elements”. In the context of this
program, an element is one of the larget
items, analagous to the types of rocks stored
in the geology knowledge-base we discussed
earlier.

Next, Xpert will want to know all of the
"factors” to be used in the identification or
matching process. For example, let's say that
you were crealing a systermn that could identify
certain people based on certain
characteristics. Some of your factors might
include height, weight, hair color, eye color,
identifying marks, etc.

[did plug in a little intelligence - if there is
not a perfect match for any of your elements,
the program will report the closest match and
display all of the {actors for both it and the
user's data. In this way, the program can at
least deal with some measure of probabilities.

Speaking of probability, with only slight
modifications {o the code. Xpert could be
turned into a decision analysis program. The
elements would become the different options
available. The f{actors would be the faclors
affecting your decision. You would go through
and give a weight or rank to each element for
each factor. The software would then add 'em
up and suggest your best option.

That is. as they say, an excercise [or the
reader.

Xpert's code is nothing revolutionary. It was

o PN
SRR

interesting to me how little code it took to get
a workable system up and running. Xpert is
minimal, of course, but I think it is a decent
kernal for exploration.

I limited the potential number of factors and
elements to 15 for no decent reason. In
truth, laziness prevailed - such limits kept the
screen from scrolling (cough, cough).

As I suggested earlier, expert systems seem to
me to be glorified databases. The effectiveness
of a given implementation is greatly
constrained by the data management
properties of the software. In future issues of
Znews I'll be looking at relational databases
and how you can write yer own.

Until then, then.

- Ross W. Lambert, Editor

REM AI Experiment 1 - XPert

REM

REM by Ross W. Lambert, Editor

REM Znews

REM

REM - spaces reg'd between keywords
REM - expressions optimized to integer
REM - locate statement in X,Y order

DIM 30 ELEMENTS (15),FACTORS (13),
IDENTITYS (15, 15)
DIM 81 LS, 2 INVS, NORMS

LS = STRINGS(80,"-")
INVS = CHRS$ (15)
NORMS = CHRS$ (14)

MODE 2

PRINT INVS;" XPert - a Mini-Expert
System ";NORMS

PRINTE (0, 3)"Enter all of the elements
to be identified (RETURN alone

to end) :"

PRINT LS

"doElements"
D

DO

ELEMENT = ELEMENT + 1

PRINT@ (0, ELEMENT+5) "Element number"; ELEMENT;": ";

INPUT "",;ELEMENTS (ELEMENT)
UNTIL LEN(ELEMENTS$ (ELEMENT)) = 0 OR ELEMENT = 15 : REM 15 max or empty
string to end

“"contl"

TOTALELEMENTS = ELEMENT - 1 : REM nab total # of elements and reset
counter

ELEMENT = 1

LOCATE 0,3 : CLS PAGE

PRINT "Enter all of the factors to consider (RETURN alone to end):"
PRINT LS

"doFactors™ : REM cycle through and get each factor to use in making
an ID
DO

FACTOR = FACTOR + 1

PRINT@ (0O, FACTOR+5) "Factor number";FACTOR;":";

INPUT "",;FACTORS (FACTOR)
UNTIL LEN (FACTORS(FACTOR)) = 0 OR ELEMENT = 15
“"cont2"®

TOTALFACTORS = FACTOR - 1 : REM nab total # of factors and reset
counter
FACTOR = 0

FOR ELEMENT = 1 TO TOTALELEMENTS : REM get attributes of each element

LOCATE 0,3 : CLS PAGE

PRINT "For each element, enter the value for each factor:"
PRINT LS

PRINT INVS; "Element name: ";ELEMENTS (ELEMENT) ; NORMS
FOR FACTOR = 1 TO TOTALFACTORS
PRINT@ (0, FACTOR+*8) ; FACTORS (FACTOR) ; ":"; : INPUT "

";IDENTITYS (ELEMENT, FACTOR)
NEXT : REM factor loop
NEXT : REM element loop

LOCATE 0, 3:CLS PAGE
PRINT"Saving matrix to disk..."

OPEN "O", #1,"XPERT.INFO"

PRINT #1, TOTALELEMENTS

PRINT #1, TOTALFACTORS

FOR X = 1 TO TOTALELEMENTS
PRINT #1,ELEMENTS (X)

NEXT

FOR X = 1 TO TOTALFACTORS
PRINT #1,FACTORS (X)
NEXT

FOR X = 1 TO TOTALELEMENTS
FOR Y = 1 TO TOTALFACTORS
PRINT #1,IDENTITYS$(X,Y)
NEXT
NEXT

CLOSE

MODE 2
PRINT "Done!"
END

REM AI Experiment 1

REM XPert .USER module

REM

REM by Ross W. Lambert, Editor
REM Znews

REM

REM -space reg'd between keywords
REM -expressions optimized to int
REM -locate statemnt in X,Y order
REM — = e o e e e e e e e e

DIM 30 ELEMENTS (15),FACTORS(15), IDENTITYS(15,15), INFOS$(15)
DIM 81 LS, 2 INVS, NORMS

LS = STRINGS (80,"-")
INVS = CHRS$ (15)
NORMS = CHRS3 (14)

MODE 2
PRINT "Reading XPert.INFO..."

OPEN "I",#1,"XPERT.INFO"
INPUT #1, TOTALELEMENTS
INPUT #1, TOTALFACTORS

i

FOR X 1 TO TOTALELEMENTS
INPUT #1,ELEMENTS (X)
NEXT

FOR X = 1 TO TOTALFACTORS
INPUT #1,FACTORS (X)
NEXT

FOR X = 1 TO TOTALELEMENTS
FOR Y = 1 TO TOTALFACTORS
INPUT #1,IDENTITYS(X,Y)
NEXT
NEXT

CLOSE

CLS
PRINT INVS;" XPert - USER MODULE ™;NORMS

PRINT@ (0, 3) ;"Enter your data for each factor below and press RETURN."
PRINT LS

FOR FACTOR = 1 TO TOTALFACTORS
PRINT@ (0, 5+FACTOR) ; FACTORS (FACTOR) ; ": "; : INPUT ""; INFOS (FACTOR)
NEXT
LOCATE 0,3
CLS PAGE
PRINT "Working..."

FOR ELEMENT = 1 TO TOTALELEMENTS : REM loop through all elements

FOR FACTOR = 1 TO TOTALFACTORS : REM ... and all factors for each
element
IF IDENTITYS (ELEMENT,FACTOR) = INFOS(FACTOR) THEN MATCH = MATCH +
1
NEXT °

LONG IF MATCH > BIGGESTMATCH
IDENTITYELEMENT = ELEMENT
BIGGESTMATCH = MATCH

END IF

MATCH = 0

NEXT

LOCATE 0,3
LONG IF BIGGESTMATCH > 0 AND BIGGESTMATCH < TOTALFACTORS: REM we got a
match on at least one factor

PRINT "The closest element is: ";ELEMENTS(IDENTITYELEMENT)
GOSUB "DisplayData"
GOTO "Exit®

END IF

LONG IF BIGGESTMATCH = TOTALFACTORS : REM match on all counts

PRINT "You exactly matched: ";ELEMENTS (IDENTITYELEMENT)
GOSUB “"DisplayData"
GOTO "Exit"

XELSE : REM no matches at all
PRINT "Your data matches none of the elements."
END IF

" Exit 1
PRINTE (0,20) "Done!"
END

"DisplayData"
PRINT@(0,5) "Factors";TAB (30);"Your data";TAB
(60) ;ELEMENTS (IDENTITYELEMENT)
PRINT LS
FOR FACTOR = 1 TO TOTALFACTORS
PRINT @ ({0, 7+FACTOR) ; FACTORS (FACTOR) ; TABR
(30);INFO$(FACTOR);TAB(60);IDENTITY$(IDENTITYELEMENT,FACTOR)
NEXT

RETURN

Don't miss a single issue! Re-up today!

Mail to: Ariel Publishing, Box 398, Pateros, WA 98846 or call (509) 923-2025 after June 10th

Name
Address

City State
Zip Code

Canadian and Mexican orders please add $5 per item checked. Non-North American orders add $15 per item checked.
1. Znews 1 year, $29.95
___2.Znews 2 years, $52
3. Quarterly disk 1 year, $20 (see note below #4)
4. Quarterly disk 2 years, $35
Quarterly disk orders: indicate computer type (MS-DOS, Apple Ii, or Z-80) and
preferred format (i.e. 5.25" or 3.5")

_____5.ProTools, ZBasic programmer’s libraries, $39.95 (Apple Il ProDOS only at present)
order total
extra shipping for non-USA (see above)
Total enclosed

Method of payment: check charge card purchase order
If a credit card, check one: Visa MasterCard

Credit card or purchase order number:

Signature
Date

. - . &ﬂm%‘\‘. ¥
Ariel Publishing /4§’ NN ST ‘

' Y el $ =
pox 206 Pomyeute | S hsrl
Unalakleet, AK 99684 \ / :%?\ I

' S\ 4 Ll I Te . 4

AN / Z 4 ”“m}ﬁg‘ é" o

L psnd LR S S

Mail to:

