August 1996 OS"9 International Vol. 5, Issue 2

startup 3
OS9Lib - Unix C Routines for 05-9 4
0S5-9 Network Connectivity via IPX 10
Stack Quo Vadis? 16
sh for 0S-9 Version 2.0 18
0S-9 Consulting Offerings 29
Letters to the Editor 30
The EFFO 1996 AGM 32
_getsys(); 34

EFFO European Forum For 0S-9

S 8606 Greifensee, Switzerland sFr. 12.00
Fi 41 1940 38 90
O email osdin@effo.ch ISSN: 1019-6714

Software + Hardware + Know-how + Service ...

No matter if you are interested in CPUs, graphics,
image processing or system configurations:
ELTEC offers high-quality products and services
providing industry suitable solutions for complex
problems in process automation.

Modular fiexibility from low-cost to high-end

offers, for example, the Basic Automation Board

BAB:

» MC68060 CPU or MC68040 CPU

e up to 32 MB DRAM using PS/2 SIMM
modules

e up to 1 MB EPROM

« optional SVGA graphics

(4 bit overlay, 1024 x 768 pixel,

16 or 256 colors)

network

optional SCSI-2

2 serial interfaces

3 type Il PCMCIA like sockets usable for

various functions

» BEB for daughter board carrier extension
using either IPIN-, MODULbus- or M-Mo-
dules

ktronik mainz

ELTEC Elektronik GmbH - P.0.Box 421363 - D-55071 Mainz
Phone ++ 49 (6131) 918-0 - Fax ++ 49 (6131) 918-198

or our distributor in Switzerland:
SPECTRALAB - BrunnenmoosstraBe 7 - CH-8802 Kilchberg
Phone ++ 41 (1) 7153807 - Fax ++ 41 (1) 71554 47

.. the Winning Development-Platform Under 05-9!

startup

During the last months, OS-9 International’s and EFFO’s mail addresses have been used increas-
ingly for support requests. Most of the requests were related to articles in 0S-9 International or to
EFFO PD software but some requests were even related to more general aspects of OS-9 develop-
ment systems and system integration.

Up to now, our policy was as follows: whenever time permitted, requests have been answered as
rapidly and exhaustively as possible. In earlier days, this was nearly always possible but today,
EFFO’s resources are no longer sufficient to answer all requests in a way they would merit it. In
addition to the higher number of requests, the average work load to answer a request has also
increased — mostly because today’s software problems are more complex than they were in the
past. Another explanation may be that 90 percent of our members are professional software
engineers and system designers, whereas five years ago 90 percent of our members were pri-
vate users. To satisfy the curiosity of the latter was probably easier than to give professional
support to the former.

The increasing need for information about 0S-9 may further be documented by the positive
response to the announcement of EFFO’s first conference on OS-9. More than 50 active and
passive participants plan to attend this meeting. We here at EFFO will do our very best to make
the meeting as informative as possible and are looking forward to it.

As another consequence to the increased number of inquiries for support, OS-9 International has
launched a further project to improve support for OS-9. In one of the next issues of the journal,
a market survey will be given listing all service providers that offer support for 0S-9 and related
topics. A questionnaire about any offered software support is, therefore, sent together with this
issue of OS-9 International to all subscribers. In addition, this questionnaire is sent to all other
companies that are active in the field of embedded systems and software consulting. The ques-
tionnaire can also be obtained upon request from EFFO and OS-9 International.

We hope that this activity will help to make life easier not only for the programmer but also for
the user who, finally, will get more performant and more reliable OS-9 software.

And now to something completely different. We apologise for the delay of this issue of 0S-9
International. We will try our very best that this will never happen again, but we are pretty sure
that the next issue will also not be in time due to the OS-9 conference.

Carstent Emde
Reto Peter

Werner Stehling

05-9 international 2/96

OS9Lib - Unix C Routines for OS-9

Carsten Emde & the EFFO OS9Lib Working Group*

Introduction

Standardised and portable development platforms are becoming more and more important,
partly because of the increasing use of the client/server architecture and partly because of the
growing costs of software development. The latter has led to the strategy that every single line of
software must be written in such a way that once successfully tested it must run on every
reasonable platform. The term ‘reasonable platform’ normally stands for a 32-bit CPU system
with ANSI C compiler and a standard C library. Although there is not one generally accepted
standard to describe what a ‘standard’ C library is, many people would probably agree to define
it as the functionality required to compile most of the currently used utilities such as GNU
system software, GhostScript and PBM+ image processing packages, BSD network tools and X
Window programs. With a few exceptions, the OS-9 kernel supports much of the required
functionality so that it was possible to provide a ‘standard’ C library for OS-9 called o0s9lib. An
updated version of this library is now available; it is described in the following article.

History

The first version of the os9lib was released as part of the TOP package in 1988, a first update
followed about one year later. After this second release, only very few errors have been reported,
so that TOP did not release a newer version. Unfortunately, the TOP project has been discontin-
ued in 1991; in consequence, some OS-9 programmers have made additions and modifications
to the os9lib without sending patches to a common maintainer of the os9lib software. From
1993 onwards, the os9lib is maintained by EFFO. Since then, it was tried to create a common
source pool from the various software versions. In addition, the software was upgraded con-
stantly. Today, most of the EFFO ports of Unix software (e.g. GNU-C/C++, gmake, expr, grep, sed
etc.) have been produced with the help of the os9lib.

*Marc Balmer, Hans-Werner Bippus, Beat Forster, Pius Meier, Conny Niederhauser, Wolfgang
Ocker, Stephan Paschedag, Reto Peter, Wolfgang Reinert, Werner Stehling, Kei Thomsen

2/96 0S-9 international

Naming Convention 5

Naming Convention

Initially, the os9lib contained both Unix and non-Unix functions. The latter provided additional
functionality intended to facilitate programming under OS-9, e.g. accessing the module direc-
tory in the same way as if it were a disk directory. The current version of the 0s9lib no longer
contains non-Unix functions; they are now available in a second library called os9ext.l (0S-9
extension library) that is also contained in the EFFO PD.

Requirements

Most of the functionality required to realise Unix C calls under OS-9 is already available under
0S-9 and can be provided without modifying any of the system files. Some functions, however,
require that system files are maintained more carefully than it is the case in a normal off-the-
shelf OS-9 system. A few other functions require additional system files that can be provided
easily. Finally, there are some functions that rely on information provided by additional system
tools. These system tools are

part of the EFFO 0s9lib distri- Name Function Replaces
bution and are listed in Table setup Install sysinfo data base B
. . getinfo Display sysinfo data base -
1. They may be redistributed logon User authentication login
without any restriction. Spe- mmon Time-sharing monitor tsmon
cial thanks go to Wolfgang passwd Set encrypted password -
who List current/recent users -

Ocker who made available the
current sysinfo package as
public domain software and to

Table 1: System tools included with OS9Lib.

Ulli Dessauer for bequeathing gethostname may require the HOST environment vari-
logon and mmon to EFFO. The able. , ,

. gettz requires the TZ environment variable
following overview presents all (time zone).

functions of the 0s9lib sepa- 1pe 3: Functions that may require specific environment
rated into the above given four settings.

categories.

The functions that may be used without any modification are listed in Table 2; functions that
may require specific environment settings are listed in Table 3.

Functions that require carefully handled or expanded system files are listed in Table 4. They
require that the password file /dd/SYS/password is managed more consistently than exempli-
fied in Microware’s 0S-9 distribution. Most importantly, a user ID number must not occur
more than once - even not across groups, and the user names must also be unique. In addition,
it may be necessary to provide the gecos entry that contains additional user information.

0$-9 International 2/96

OSI9Lib - Unix C Routines for OS-9

_bootdrive
_cmpuid
_console
_doprnt
_getpw
_strccmp
_strnccmp
alarm
allocal0
atime

bcmp
bcopy
bsearch
bzero
crypt
dbminit
ddfopen
delete
dup2
encrypt
errnoprint
execl
execl_chain
execle

Table 2: Functions to be used without any modification.

Functions relying on additional files are listed in Table 5. Three

execle_chain
execlp

execv
execv_chain
execve
execve_chain
execvp

execvp chain
fchmod

fentl

fetch
firstkey
forder

fstat

fsync

ftime
ftruncate

get maxerrnum
get_sys_errlist
get_sys_nerr
getargs
getcwd
getdtablesize
getegid

geteuid
getgid
gethostid
getopt
getopt_long
getopt long only
getpass
getppid
gettimeofday
gtime
initstate
ioctl
isadisk
isapipe
isatty
iswhat
mkdir
nextkey
pclose
perror
perror_long
perror_none
pipe

additional files may be required to use these functions:

1. The file /dd/SYS/group that contains the name of every

user group in the format

<group name>:<password>:<group ID>:<user> [, <user>]

for example:

root::0:root

bin::1:root,bin,daemon
daemon: :2:root,bin, daemon
sys::3:root,bin,adm

2. The file /dd/SYS/termtypes that contains the type of a ter-

minal connected to a given port in the format

<port descriptor> <terminal type>

for example:

term

3. The file /dd/SYS/printertypes that contains the type of a

vt100
t2 gvt211l

printer connected to a given port in the format

<port descriptor> <printer type>

2/96

popen strchr
ralarm strcspn
rand strdup
randint strerror
random strpbrk
regcomp strrchr
regexec strspn
regsub strstr
rename strtok
rmdir swab
set_maxerrnum sync
seteuid times
setgid truncate
sethostid ttyname
setitimer unix_ chown
setkey unix_getgid
setstate unix_getuid
shell unix_setgid
signal unix_setuid
srand utime
srandom utimes
stat xpopen
store xshell

chome

chown

ctermid

cuserid

endpwent

fchown

fgetpwent

getpw

getpwent

getpwnam

getpwopt

getpwuid

setpwent

Table 4: Functions that
require carefully handled

or expanded system files.

endgrent
fgetgrent
getgrent
getgrgid
getgrnam
getgroups
printertype

setgrent
termtype

Table 5: Functions relying
on additional files.

0S-9 International

Reguirements

for example:

P £x80
t1 hplj

Functions that may require or
require additional system
tools (e.g. network, setup,
logon, mmon) are listed in Ta-
ble 6.

Compatibility

Maximum attention was drawn to make the os9lib functions as compatible as possible not only
to Microware system extensions and tools but also to third party software. The function

_utmp_stat getutline
_utmp_write getwd

endutent getwhoent
endwhoent info_change
findmod info_is_locked
gethostname info_kill
getlogin info_lock
getutent info_num
getutid info_signal

info_str
info_type
info_unlock
pututline
setutent
setwhoent
sockethostname
utmpname

Table 6: Functions that may require or require additional

system tools.

gethostname may serve as an example for this compatibility. It consecutively attempts to re-
trieve the host name from a variety of different sources and only returns an error condition, if

none of them was successful:

LynxOS

0OS-9/68xxx
VxWorks | =

MGR

* and additionally Linux and SunQS/Solaris for cross development

reccoware systems ’

reccoware svstems, Wolfgang Ocker, Rapperzell, Fohrenstrafic 8, D-86576 Schiltberg, Phone +49-82 59-10 48, Fax +49-82 59-10 49, Email: reccoware@recco.de

All brands or product names are trademarks or registered trademarks of their respective holders

8 0S9Lib - Unix C Routines for 0S-9

int gethostname (char *host, int size)
{

char *envhost, *cp, *hp;

FILE *fp;

/* 1. try to determine hostname from socket using SS_GNam */

host [0] = '\0';
sockethostname (host, size);
if (host[0] == '\0') {
/* 2. try sysinfo database */
if (info_str("hostname", host, size) == NULL) {
/* 3. try to get hostname from environment */
if ((envhost = getenv("HOST")) == NULL) {
/* 4. try to fork program 'host' and to read its output */
if ((fp = popen("host", "r")) == NULL ||
fgets (host, size, fp) == NULL) {

if (fp != NULL)
pclose(fp);
/* 5. try to fork program 'rpchost' and to scan its output */
if ((fp = popen("rpchost", "r")) == NULL ||
fgets(host, size, fp) == NULL) {
if (fp != NULL)
pclose(fp);
/* all else failed, return error condition */
errno = E_ILLARG;
return(-1);

}
pclose(£fp):
/* did the program produce something like 'Hostname is: nnn' ? */

if ((cp = index(host, ':')) != NULL) {

while (*(++cp) == ' ');

for (hp = host; *cp != '\0';)

*(hp++) = *(cp++);

}
/* remove trailing carriage return, if available */
if ((cp = index(host, '\n')) != NULL)

*cp = '\0';

} else

strncpy (host, envhost, size);

}
return(0);

Test Environment

For the first time, a test environment is available. Every Unix function available in the os9lib
has its own test function called test_<function> that tests at least some of their most usual
applications. In addition, the two programs testos9lib and testos9ext are part of the os9lib
distribution. These programs make consecutive calls of all supplied test functions.

2/96 0S-9 International

Conclusion 9

Conclusion

The above described version of the 0s9lib is now available from EFFO as PD #112. As always,
there is no warranty for the program to the extent permitted by applicable law and bug support
cannot be guaranteed. EFFO will, however, try to expand, adapt and improve the o0s9lib as much

as possible. Bug reports and other requests relative to the os9lib should be addressed to
bugs@effo.ch.

Carsten Emde can
be reached at
<carsten@effo.ch>.

PCMCIA- JEIDA.
interface

ADDRESS
BUFFER

EKF-Elektronik GmbH

Systemhaus fur Microcomputer
und Industrie-Blektron

Phitipp-Reis-Straf3e 4
D-59065 Hamm
Phone +49 (0)2381-6890-0
Fax +49 (0) 23 81-6890-90

O0S-9 Network Connectivity via IPX

Jiirgen Pfeifer, Lothar Albrecht

Introduction

Originally, network connections between OS-9 computers were done using Microware’s net-
work protocol OS-9/Net. The OS-9/Net Network File Manager (NFM) allowed for accessing the
other computer’s I/O devices in the same way as local devices. The disadvantage of OS-9/Net,
however, is its restriction to OS-9 systems, since OS-9/Net protocol handlers and NFM client
and server software are not available for other operating systems.

The standard Unix network file system (NFS), on the other hand, is non-proprietary software
that is available for a wide variety of operating systems including OS-9. One limitation is that
only mass storage devices can be shared via network and other 1/O devices such as serial
devices or pipes can not. Another limitation is that NFS is mainly used on Unix derived operat-
ing systems using the TCP/IP protocol. In the past, DOS or Windows based systems were
difficult to connect via NFS. Even today, in the year after 95, the large majority of existing DOS
and Windows network installations is not based on TCP/IP services but rather on the more
popular NetWare software. The latter is based on Novell’s Internetwork Packet eXchange (IPX)
protocol.

In order to connect an 0S-9 system to a Windows computer via IPX, appropriate OS-9 software
had to be developed. Such a product is available from Dr. Rudolf Keil GmbH, Dossenheim,
Germany; it is called NeWLink. This article gives an overview about the various software com-
ponents and describes the steps required to develop an example application. This example
software will allow to use OS-9 terminals under Windows comparable to telnet terminals under
X Window.

Prerequisites

0S-9 Computer

The 0S-9 computer must be equipped with a network controller interface (Ethernet or Arcnet).
The system must run 0S-9 version 2.4 or higher. Low-level driver software for the network
controller must be available; this software is normally part of the system’s software distribu-

2/96 0S-9 International

Prerequisites 11

tion. In addition, the NeWLink package must be installed consisting of the following compo-
nents:

¢ File manager nwm,

¢ Network demon nwmon,

¢ Buffer manager syskbuf,

¢ Service Advertising Protocol (SAP) demon nwsapd,

¢ SAP library nwsap.l,

* Sequenced Packet Protocol for IPX (SPX) library nwspx.l,

* Hardware-independent high-level driver for IPX, OS-9/Net and/or TCP/IP.

Windows Computer

The Windows computer must be equipped with a corresponding network controller interface
(Ethernet or Arcnet). The system must run under Windows 3.1, Windows 3.11 or Windows 95.
A Windows NT version is under development. In addition, the NeWLink software package must
be available consisting of

¢ [PX/SPX protocol handler,
e SAP library.

Prerequisites for Target Installation

The related NeWLink target licence is required for the OS-9 target; a standard Novell network
software is sufficient under Windows.

Example Application

Problem Definition

The aim of this example application is to provide 0OS-9 login terminals under Windows. For the
sake of simplicity, the maximum number of possible terminal connections is restricted to 10
but, in principle, a more sophisticated solution would not have this limitation. Similar to a
telnet connection, the OS-9 application should not notice any difference to a physical terminal,
i.e. every character entered at the PC is immediately forwarded to the application and any
output produced by the application is sent to the terminal emulator, where it is displayed.

05-9 International 2/96

12 0S-9 Network Connectivity via IPX

Solution

The solution of the above task is, again, similar to the way remote terminals are created using
the telnet service and is shown in Figure 1.

Providing the Login Network Service

The mechanism of dynamically offering or requesting a network service is defined in Novell's
Service Advertising Protocol (SAP). This protocol defines that a service provider informs all
network clients about the availability of a given service. The related network packets must
contain the provider’s station name, socket number and name of the service and the service
provider’s network address. These packets are regularly sent to the network as broadcast mes-
sages. In principle, every system connected to the network can dynamically offer or request
such services. In the current application, the OS-9 system is the provider of a terminal login
service and the PC is the service requester.

Session Initiation Windows 0S-9

There are two ways for session
initiation by the client: Client —— Demon

* Broadcast message The
network software on the PC ?
waits for the next SAP :
broadcast message from ": SCF Driver Fork
the OS-9 system. In conse- ‘
quence, it may take a cer- Windows
tain time until the next SAP Function ,
packet arrives. —

Login

Read/Write

Read/Write

* Dedicated request The PC

sends a network packet to T
the OS-9 system request-
ing the terminal login serv-
ice. The OS-9 system then
returns a dedicated form of Terminal 2 Shell r——
the above described SAP
packet to the requester.

Terminal 1 Read/Write Fork

Figure 1: Schematic drawing of the software blocks (see
text).

2/96 0S-9 international

Example Application 13

Thus, whenever the PC user wants to login on the 0S-9 system, the Windows client (C) in
Figure 1 creates a new window on screen (T) and establishes the network connection to the
0S-9 demon (D). This can, for example, be realised as shown in the following code section in
Visual Basic.

‘definition of type pc_out
Type pc_out

cmd AS Integer

t_id AS Integer

char AS String * 1
End Type

'‘global declaration of structure pc_out
Global pc_out AS pc_out

Sub pbconnect_Click (Value As Integer)
If termnum >= MAXTERM Then

MsgBox "Maximum number of terminals reached - request rejected.", 16,
"Terminal management”

Else
pc_out.cmd = TERMINAL_REQ
pc_out.t_id = 999 'dummy value, correct value will be defined by demon
pc_out.char = "a"
Send_SendData
End Sub

Data submission from the client to the demon is realised in a general SPX send subroutine as
follows:

Sub Send_SendData ()
Dim x As String * 174

StrucInStr x, pc_out, Len (pc_out) ‘copy data from global data structure to
'‘communication string

frmmain.spxl.Send = x 'send packet

This packet arrives on the OS-9 side, where the OS-9 demon uses the following code in the C
language:
/* install terminal service */

if (error=AdvertiseService(servertype, "0S9_TERM EMU", Socketnum))
printf ("Advertise error %d\n", errno);

/* wait for a connection */
if (error=1listen_con_spx(&con_id, S_name))

printf ("Connect listen error %d\n", error);

/* read from network */
size=sizeof (struct data in);

0S-9 International 2/96

14 0S-9 Network Connectivity via IPX

if (error=read_data_spx(con_id, (ipx_spx_data buff*) s&buff_ in.i_s_header,
&s8ize))
printf ("Read error %d\n", error);

The structure element cmd is evaluated in a switch command. In the above code example, the
value TERMINAL_REQ has been sent.

switch (Swaplé6(buff_in.t header.cmd)) {
case TERMINAL_REQ:

buff in.t_header.t_id

buff in.t header.cmd

Swapl6 (termnum) ;
Swapl6 (TERMINAL_ID):;

In a subsequent step, the OS-9 demon creates the scf descriptor, the device number of which
reflects the requested terminal number, initialises the device and forks the login procedure (L).
The latter has its standard input, standard output and standard error paths redirected to the
newly created scf device. After successful authentication, the login procedure may fork a user
shell (S). Only in case everything has completed without error, the terminal creation is acknowl-
edged:

size = sizeof(struct term_header);

if (error=write_data_spx(con_id, (char*) &buff in.t header, &size))
printf ("Write data spx error %d\n", error);
break;

/* other cases */
default: break
} /* end switch */

The OS-9 demon process not only initiates the network link and starts the login procedure but
also creates a data module that contains a ring buffer structure to be accessed by both the
demon process and the driver. It also takes care of triggering the transfer of the buffer content
to the PC. Finally, the demon sends data to and receives them from the network. The scf driver
implements all typical functionality of a serial line driver except that no hardware is accessed
and no interrupts are used.

For reading and writing, OS-9 uses the same commands as shown above for session initialisa-
tion (read_data_spx and write_data_spx). On the PC, the related commands are spx.send and
spx.receive, respectively. The approach to transfer data from one system to the other is different
depending on the direction of the data being sent.

Sending Characters from the PC to the OS-9 System

Data from the PC created by entering characters at the keyboard are transferred one character
per packet. Whenever such a character is received by the demon process at the OS-9 system, it
is stored in the input buffer; thereafter, a wake-up signal is sent to the scf driver. The latter is
required in case the OS-9 application is waiting for input using a read command.

2/96 0S-9 International

Example Application 15

Sending Data from the OS-9 System to the PC

Data transfer from the OS-9 system to the PC often occurs in larger quantities. In order to keep
the network load low and to attain a high data throughput, the data are transferred in packets
of up to 512 Bytes using a circular buffer for each terminal window. There are two possibilities
to initiate the network transfer of the output buffer contents: first, whenever the buffer be-
comes full, the driver sends a buffer-full signal to the background process, which in turn sends
the content of the buffer via network to the PC. Second, the demon process has installed a
cyclic alarm, which may generate a time-out signal. This mechanism takes care of flushing the
buffer in regular intervals so that data are sent to the PC, even if the buffer is not yet full.

Session Termination

Two ways exist to terminate a session

* The terminal window on the PC is closed. As a consequence, the PC sends a special code to
the OS-9 system causing the current application to be aborted, the device deinitialised and
the descriptor removed from memory.

e The user uses the logout command. The background process sends a request to the PC to
close the terminal window. To close the network session between the two systems, the SPX
function terminate_spx(CON_ID) can be used.

Conclusion

As exemplified in the above application, a running IPX link between a Windows client and an
0S-9 demon can be realised requiring only a few lines of code. In contrast to the described
project, more complex applications can certainly be realised having, for example, a state-of-the-
art graphical user interface as expected by many users. Up to now, such a graphical user
interface required either a local graphics controller on the 0S-9 system or the use of network
based remote graphics such as X Window. The OS-9 system may not have graphics hardware
installed or may be located far away from the operator. The X Window solution may require
more system performance and resources than a particular OS-9 system can offer. The NeWLink
software is especially helpful, if the integration of a given system requires the use of an already
existing Novell network, a Windows-based graphical user interface and a real-time perform-
ance that cannot be achieved by a PC.

Jiirgen Pfeifer and Lothar Albrecht can be reached via email at <pfeifer@Keil.de> and
<alb@Keil.de>, respectively.

0S-9 International 2/96

Stack Quo Vadis?

Carsten Emde

Problem

In contrast to some other operating systems, 0S-9 uses stack space to assign memory to local
variables. In consequence, a program that defines

main()
{

char local[4000];
}

will require about 4 kByte of stack space and, therefore, not run, if the default stack size of
3 kByte is not increased. The latter can be done using the linker’s -m=<size> option. The predic-
tion of the required stack is, of course, less simple, if a program is very large and makes many
subroutine calls. If the program contains recursive function calls such as in some sort algo-
rithms, it is even more difficult to predict the stack requirements.

Solutions

One solution is to use a dynamic stack as implemented in the current version of EFFO’s GNU C
compiler by Stephan Paschedag [1]. This feature can be selected by a command line option. The
advantage of dynamic stack is that there is no longer any need to care about stack size. As a
disadvantage, however, the program may no longer execute at maximum speed. Another more
empirical solution is to add the following lines of code to the program to be executed before the
program exits

#ifdef _ STDC___

#define freemem _freemem
#define stacksiz _stacksiz
#endif

main ()
{

func():;

printf ("The program '%s' allocated %d Bytes of stack, \n",
_prgname(), freemem() + stacksiz());

printf (" a maximum of %d Bytes (%d %%) was used\n",
stacksiz(), (stacksiz() * 100) / (freemem() + stacksiz())):

2/96 0S-9 International

Solutions 17

func()
{
char bigstack[2048];

}

and to stress the program with respect to maximum stack allocation. As a rule of thumb, the

stack memory requested should be about 2 to 3 kByte larger than the maximum stack depth
printed out by the above statement.

Reference

[1] Paschedag S (1995) The GNU C Compilers, Part 3. OS-9 International 4(1):13-20.

Carsten Emde can be reached via email at <carsten@effo.ch>.

~ Reobtime system integration

| (Baquiremgo{:s}_ f Hordware % f Software

" Ubranes | [

Help

(€ (omputer Experts AG - Seenger Str. 23 - C(H-5706 Boniswil - Phone +41 62 767 7032 - fax +41 62 767 7033
emall ce@ceong.ch - In Germany contact: Phone +49 8259 89930 - Fox +49 8259 82931

sh for OS-9 Version 2.0

Carsten Emde

Introduction

Despite the development of powerful graphic systems such as X Window and MGR, a command
line interface between the user and the computer remains an indispensable tool the perform-
ance of which continues to contribute to the efficiency of the entire system. This especially
applies to development and prototype systems. In the early days of OS-9, only a very rudimen-
tary shell program was available from Microware. Today, an improved shell (mshell) can be
obtained from Microware but, unfortunately, this one uses a proprietary script language and
still does not understand the syntax of shell scripts commonly used in the Unix world. It is,
however, not only the desire to execute Unix shell scripts under OS-9; many people also wish to
have a shell that incorporates all the useful features from C shell (csh), Korn shell (ksh) and
Bourne-again shell (bash). On the other hand, writing a new shell always is a serious challenge,
because the new shell must be fully backwards compatible to the one it is going to replace -
nobody wants to use two different shells interchangeably. In the case of 0S-9, the challenge
was to integrate all features of the original Microware shell into the Bourne-like shell sh for
0S-9.

Since the last report on sh for 0S-9 [1] that covered version 1.6, edition 32, a number of addi-
tions have been made. The current version 2.0, edition 63, is now very close to the ambitious
target of creating a fully compatible shell for OS-9. It can be used without problems as the only
shell of a system and gives both Unix and OS-9 people the feeling of being ‘at home’. In addition,
the great majority of Unix Bourne shell scripts, especially those that are implicit part of makefiles,
can be executed under 0S-9 without requiring any adaptation. This greatly facilitates server-
based multi-platform software development. Such programming technique that helps to make
software independent from a given system architecture is considered, for the time being, an
important way of creating future-proof software and, thereby, helping to protect software in-
vestment.

This article gives an overview on the current state of sh for OS-9 with respect to the compatibil-
ity to the Microware shell and to the various Unix shells. This article, however, cannot give
exhaustive information about sh’s entire functionality. Such information can be found in the
users’ manual that is available in electronic and in printed form as part of the public domain
distribution of the EFFO PD #107.

2/96 05-9 international

Compatibility Issues 19

Compatibility Issues

The principle goal was to implement important shell language constructs and built-in com-
mands from all currently used Unix and OS-9 shells. In case several Unix shells were incom-
patible to each other, bash was used as reference. In case shell language elements such as the
pipe symbol ‘!’ or the stack resizer ‘#’ are defined for other purposes in bash, a context-sensitive
parsing mechanism was implemented. This was, however, not possible in the particular situa-
tion of the ‘>>’ output redirection symbol that means appending redirection of standard output
path in bash and redirection of standard error path in shell. To solve this conflict, two operating
modes, i.e. the default Bourne mode and the optional shell mode, have been introduced. When-
ever the asterisk is used as comment symbol or a Microware shell option is entered without set
command, sh switches to the shell interpretation of the >>’ syntax. The first use of the ‘#
comment symbol switches sh to Bourne mode. Thus, a user can force sh to start interactive
sessions in shell mode just by adding a line containing a single asterisk to the .profile file.

Compatibility to the Microware Shell

The major version number of sh was incremented, because this version for the first time under-
stands Microware’s condensed I/0 syntax, e.g. <>>>/nil, which was sh’s major incompatibility
to shell. The other incompatibilities that still could not be removed are less important and
normally not encountered in released shell scripts. A complete list of all changes is provided in
the history file changelog.sh as part of the delivery of PD #107. There are, however, several
compatibility issues that are important enough to be mentioned explicitly:

Missing whitespace

The parsing strategy of the Bourne shell script interpreter is, in principle, based on the same
mechanism that is used to separate commands and arguments from each other when calling a
program, i.e. the end of a word is defined by the first occurrence of a whitespace character.
Such whitespace characters are normally space, tab and carriage return/line feed. This be-
comes very evident, if two or more test conditions are executed consecutively and the results
combined using Boolean algebraic operators:

if test (strl = str2) -a (strl != str3 -o strl != strd)

Every parenthesis must be separated from the preceding and the following word by whitespace.
In contrast, Microware’s shell parser defines the end of a word as the first occurrence of a
character that would not be legal in an 0OS-9 file name. Therefore, a program option or a priority
reassigner, for example, can be immediately appended to the program name as in the two
commands

dir-e
dir~120

0S-9 International 2/96

20 sh for OS-9 Version 2.0

Unfortunately, sh for OS-9 cannot support this linguistic extravagance, since operating sys-
tems other than OS-9 may define other characters to be legal file name components, Under
Unix, for example, both dir-e and dir*120 are accepted as legal file names.

Handling of unmatched wildcards

sh passes wildcard symbols to the called program, if they do not match at least one file name.
Microware's shell writes the message “Wildcard match failed for command ‘<cmd>" in such a
case and does not call the program. The majority of sh beta testers, however, have voted in
favour of the current approach, that will, therefore, most probably not change in the next
future.

Compatibility to Most Unix Shells

Internal execution of grave constructs

Grave constructs (‘<command>’) are no longer executed in a separate shell but are evaluated
and executed internally. This change was necessary, since a command in the grave construct
can, by definition, also be a shell function or an alias that may not be known in a sub-shell
environment. As an advantage, this change made grave evaluation considerably faster.

Implementation of new built-in commands

In order to become compatible to most Unix shells, the following commands had to be imple-

mented that were not available in earlier sh versions.

¢ builtin <builtin> [<args>] Execute the shell built-in command <builtin> passing arguments
<args>. Required, if a function has the name of a built-in command, but the built-in com-
mand needs to be executed within that function.

» dirs Display the current stack of remembered directories.

¢ enable [-n] [command] This command allows to enable or to disable (-n) a shell built-in
command so that a disk command with the same name can be executed. If enable is entered
without arguments, all shell built-in commands are displayed on screen preceded by a '+’ or
a -’ sign, if the particular command is enabled or disabled, respectively.

¢ popd [+n] Removes the entry ‘n’ from the directory stack. If popd is entered without argu-
ment, the top directory is removed from the stack and made the current data directory.

* pushd [dir] or pushd [+n] Adds a directory to the top of the directory stack, if dir is a valid
directory; otherwise, the directory stack is rotated until the nth element of the directory
stack is at top. If pushd is entered without argument, the top two directories are exchanged.
After the rearrangement of the stack, the top directory is always made the current data
directory.

* suspend [<signal>] The shell is suspended until the signal <signal> is received. Any activity
is suspended except that traps for other signals (installed using the trap <command>
<number> command) are executed. If <signal> is not specified, any signal will restart the
shell.

2/96 0S-9 International

Compatibility Issues 21

e tty [<devno>] Return the name of the path number <devno>. If not specified, <devno> de-
faults to O.

e unset [-f] <function> or unset <variable> Make a previously defined function undefined. If
the -f option is not specified, unset is identical to unsetenv except that no error is generated,
if an attempt is made to unset a non-existing variable.

* unsetenv <variable> Make a previously defined environment or shell variable undefined.

Improved error messages

The syntax error message now contains the relative line number and the line in error of the
shell script, if shis not interactive. In any case, the column next to the error is clearly marked
with the caret symbol (similar to the way shell does it). The same applies to errors in the built-
in command test.

Name completion

Another important addition deals with name completion. In general, name completion means
that only the first few characters of a word (command, file name, etc.) need to be typed in. If the
completion key (usually TAB) is entered, the shell attempts to complete the name based on the
word’s context. If the entered character sequence is unique, the complete word is inserted into
the command line; otherwise, the shell beeps and, if the completion character is hit another
time, all matching names are listed on screen.

Five different completion modes have been implemented in sh; the first four of them are avail-

able in most Unix shells:

¢ Command completion If the first word of a line or of a grave expression is being completed,
commands are matched. A command can be an alias, a shell function, a built-in shell com-
mand, an executable program in the module directory and, if the -g option is specified, a file
in one of the execution directories (components of the PATH environment variable or current
execution directory).

¢ Shell variable name completion If the first character of the word to be completed is a ‘¢’
character, shell variables are matched.

e User name completion If the first character of the word to be completed is the tilde ‘~’
character, user names are matched.

* File name completion If none of the above applies, the entered string is assumed to be the
beginning of a file name that is evaluated relative to the current data directory.

* History line completion If the first character of a line is the history match symbol 1, a
matching history line is searched and, if found, copied into the current command line so
that it can be edited. History line completion never reports more than one match, even if
there are less recent entries that also match. In contrast to the other completion modes,
history line completion is also not limited to words but the entire history line including any
white space is inserted. If the history match symbol !’ is followed by a number, the history
line at this line number is taken.

In contrast to most Unix shells, sh's name completion even works, if the name to be completed
contains a wild-card character or a regular expression.

0S-9 international 2/96

22 sh for OS-9 Version 2.0

The not operator

The not operator ‘" was implemented. It may appear after if, elif, while, until, ‘| I’ and ‘&&’. For
example, the command sequence

if condition
then
This is the no-op command
else
command
fi

can now be written as

if ! condition
then

command
fi

The syntax is equal to the syntax implemented in bash and is intended for better readability of
the script code.

The ‘$@ and the ‘$* are handled differently, if in double quotes

If the ‘$@ argument variable is expanded within double quotes, a separate word is created for
every command line argument of the currently executed shell script or function. If the ‘$*
argument variable is expanded within double quotes, the first character of the Internal Field
Separator IFS is now used to separate the command line arguments. By default, IFS is set to
<SPACE><TAB><CR>. In addition, the first character of the IFS is now also used to split words
after blank expansion.

Shell variable SH VERSION

The unsettable read-only variable SH_VERSION containing sh’s edition number has been intro-
duced. A shell script, for example, that requires shell edition 52 or higher may contain the
following code section

required=52

if test -z $SH VERSION || test $SH_VERSION -1t $required
then
if test -z $SH_VERSION
then
echo Current shell is too old
else
echo Current shell is edition $SH_VERSION
fi

echo Edition $required required
echo Please upgrade
exit 1

fi

2/96 0S-9 International

Compatibility Issues 23

Returning to the most recent directory

The argument ‘-’ has been added as a legal argument to the cd command. The command ‘cd - is
equivalent to ‘cd $LWD', i.e. the most recent directory is made the current directory.

Unix names

In order to allow for running identical shell scripts (e.g. from a server) under Unix and 0OS-9, the

following Unix names are silently transformed:

¢ Areference to /dev/null is replaced by /nil

* Areference to /tmp is replaced by the directory specified in the TMPDIR environment vari-
able or to /dd/TMP, if TMPDIR is not defined.

¢ Areference to /bin/<command> after the ‘#!" symbol is replaced by the basename, i.e. <com-
mand>.

Unique Features of sh _for OS-9

Language Extensions

In addition to some features that make the interactive use of sh for 0S-9 more user-friendly,
one general useful language extension has been made to the built-in command read, that now
accepts input not only from standard input but also from a pipe, which is further explained
below. This extension should, of course, better not be used in development environments where
the same shell scripts are executed under Unix and under OS-9, unless the same extension is
also made to the other shells. The remaining language extensions are specific to OS-9 so that
they cannot occur in a script that is intended to be used under both 0S-9 and Unix.

The read command further enhanced

The built-in command read now accepts input from a pipe; this makes it possible to realise a
simple string parser as exemplified in the following interactive dialogue:

<sh>: echo argl arg2 | read a b
<sh>: echo $a

argl

<sh>: echo $b

arg2

Testing whether a given name refers to a memory module

Added -m option to the built-in command test that returns true, if the argument is an existing
memory module. Note that this does not imply that a process can link to it.

05-9 International 2/96

24 sh for OS-9 Version 2.0

Script Execution

Starting sh scripts from the Microware shell

Introduced -y option: if standard input path is not a TTY, standard output and standard error
paths are examined. The first of them being a TTY is used as input path for the entire shell
session. This feature is required for shscripts that are started from the Microware shell and use
the read command, e.g. for installation purposes.

Automatic Script Execution

More rules for automatic script execution have been added, which allow other programs than
sh to execute the script. The following rules that are identified by the first character(s) of a
script are now available:

First character(s) of script Executor
sh
@ zsh
- shell
* shell
% cfp
#!<prog> <prog>

The cfp identification characters ‘~* make use of the feature that cfp defines the tilde *~’ as
comment character. A c¢fp script that contains the identification characters ~* as the first char-
acters of the file may simply be called by entering its name as if it were a command. The sh shell
will take care to fork ¢fp and to pass the script name as first argument.

Non-Blocking Read during Command Line Editing

Terminal editing may now be made non-blocking (-nb), i.e. sh’s standard input device may be
used as output by another program even while sh interactively waits for the next character to
be entered. Default is blocking (the default SCF behaviour). This feature is useful, if other
programs such as a mail checker may asynchronously write to sh’s input port.

Resetting the Terminal’s SCF Options

The kS termcap capability (default Ctrl-G) resets the terminal’s SCF options to the setting en-
countered when sh was started. If, for example, a program disables the end-of-record character
and prematurely quits before the SCF options are restored, input from command line is no
longer possible, unless the reset key is hit.

2/96 0S-9 International

Unique Features of sh for OS-9 25

Kill by Name

The kill <name> syntax has been implemented to kill a process by its module name. If the
module is running more than once, a message is displayed so that either all processes or none
may be killed. This message also contains the affected process IDs and the device names of the
first three 1/0O paths of the affected process IDs so that a particular process can be identified
safely.

Memory and CPU Requirements

Despite the named additions and despite an overall functionality that is no longer much inferior
to bash, the size of sh for 0S-9 is only about 72 kByte, initial memory requirement amounts to
about 40 kByte. This was made possible by writing sh’s own cstart module, to access the oper-
ating system by sh’s own C bindings and to avoid any buffered and formatted I/0. In addition,
algorithms and procedures were carefully optimised to minimise memory and CPU require-
ments. On the other hand, no CPU-specific optimisations have been made so that sh for 0S-9
runs on any 68-k based 0S-9 system including good old MC68000 and any member of the
MC683xx family.

Important Enhancements since Vers. 1.6 Ed. 32

Test whether a File is Writable

An interesting finding was that the standard OS-9 library function
access ("name", S_IWRITE);

does an
open ("name", S_IWRITE);

which implicitly updates the date of the file’s last modification when the path is closed, irre-
spective of whether any write action took place or not. This is the reason why

test -w name

unexpectedly also touched the file. Now, access is no longer used so that the last modification
date remains unaltered after testing whether a file has write access.

0S-9 International 2/96

26 sh for 0OS-9 Version 2.0

Controlling the History File

Two new modes of the history command have been added: when history read is entered, the file
~/.sh_history is read in the same way as when sh starts. The current contents of the history
buffer are written to ~/.sh_history when history save is entered in the same way as at logout. In
addition, history now writes a usage message, if ‘-?’ or an invalid argument is entered. The
logout command may now have the argument nohist; if this is entered, the contents of the
history buffer are not saved. If a user, for example, wants to open an additional sh session on
another terminal or in another X or MGR window that inherits the history from the existing sh
session, history save can be entered before starting the additional sh session. If this history
setting is planned to be used by future sh sessions after the additional session has been closed,
the latter must be quit by explicitly specifying logout nohist.

Installing a Data-Carrier-Detect (DCD) Interrupt

In order to make a modem connection more reliable, the -w command line option can now be
specified. A login sh that has been started with this option will attempt to install a signal via the
0S-9 C library function _ss_dcoff. If this function returns without error, the serial driver will
send the specified signal to sh in case the DCD line changes from high to low, i.e. the data
carrier was lost. The sh shell will then kill all child processes recursively and abort with error
E_HANGUP (220). This makes it possible to equip an 0S-9 system with a modem login facility
using the standard tool tsmon that does not have any modem support.

Miscellaneous

¢ If the -l option is set, EOF can now be entered by hitting twice the end-of-file character
(normally Escape) at beginning of an input line. EOF entered at prompt level causes sh to
logout; EOF entered in read command causes the read command to abort, to return false
and to leave the input variable unchanged.

¢ sh no longer writes nonsense messages such as nowhere found, if a shell script contains
non-ASCII characters (e.g. German umlauts etc.), since 8-bit characters between OxcO and
Oxff are now also accepted. If, however, processed by sh, the sign bit of the 8-bit character is
stripped.

¢ sh’'s own termcap library is modified in such a way that the TERMCAP environment variable
is taken from the current set of exported variables. Any modification of the TERMCAP envi-
ronment variable may, therefore, be made available to the current sh terminal emulation, if
TERM is set to the terminal type that is described in the modified TERMCAP string.

2/96 0S-9 International

Important Enhancements since Vers. 1.6 Ed. 32 27

Frequently Asked Question

Q: If I enter the command

break

to invoke the ROM level debugger, the message
Bad break/continue level

appears on screen.

A: Unfortunately, Microware has used the reserved shell and C language word break for a
command. One solution is to add the line

enable -n break

to the file .profile in the user's home directory and to add the line

alias break builtin break

to the file /dd/SYS/profile. Since the local profile is sourced after /dd/SYS/profile and a non-
interactive shell does not evaluate a user’s .profile, the command break will only call the ROM
level debugger, if called interactively. As a disadvantage, any script that wants to call the ROM
level debugger (which is less usual) must explicitly specify /dd/CMDS/break and any interac-
tive request of the shell builtin break (which also is less usual) must specify builtin break in-
stead. Another solution is to provide an shscript named, for example, romdbg that contains the
two lines

enable -n break
break

so that the command romdbg will invoke the ROM level debugger.

Conclusion

0S-9 projects can be developed using one of two very different approaches: self-hosted and
cross development. Originally, OS-9 was used predominantly (more than 95%) as a self-hosted
development system, i.e. compilation, testing, source file maintenance etc. were all done under
0S-9. The same hardware - or a hardware similar to the development system but down-sized -
was then used as target system. The most important advantage of such a self-hosted system
was the availability of a complete set of dedicated debug tools even on the target systems. Thus,
self-hosted systems were often used in hardware-dependent systems that were difficult to simu-
late on a cross-development platform. In recent years, more cross-development platforms than
self-hosted systems have been installed; on average, about 80% of OS-9 development in Europe

0S-9 International 2/96

28 sh for OS-9 Version 2.0

is currently still done on self-hosted systems. One argument against using 0S-9 as a self-
hosted system was the lack of platform-independent tools such as a standard shell, ANSI com-
pilers, a standard make, standard source revision systems etc. This argument is no longer true,
since all these tools are now available — sh for OS-9 described in this article is one of them.

Reference

(1] Emde C (1994) An sh-like Shell for 0S-9. 0S-9 International 3(2):26-33.

Carsten Emde can be reached via email at <carsten@effo.ch>.

Plug & Play with FasTrak™

e Complete Host Environment Packages
- BSPs
- 1/0 Drivers
- Extended 0S-9
- Utilities
- FLASH Support
- PROFIBUS
¢ ROM Image Generation

* Pre- Conﬁ%ured Diskless Target Systems

¢ Support of all PEP CPU Boards based on
Motorola 68302, 68360, 68030, 68040
and 68060 CPUs

¢ Connection via Ethernet or SLIP

Germany : Tl ++5(0) 8341803 0 Belgium :el.: ++32 (0-)2 461 04 08
USA :Tl: ++1 412 921 3322 Holland : Rel.: ++31 (0)76 217 957
UK. :Rl.: ++44 (0) 1273 44 11 88 Sweden :Rl.: ++46 (0) 8 756 72 60

Fance : Tel.: ++33 (0) 13916 10 30 Poland : R1.: ++48 (0) 22 2513 35 Modu,ar computers®

0S-9 Consulting Offerings

Hans-Werner Bippus

Rationale

The O0S-9 operating system offers a number of standard tools for software development similar
to other operating systems. Thus, 0S-9 does not impose more difficulties to write platform-
independent software than any other system. Unfortunately, a typical OS-9 application is not
hardware-independent, it even uses system resources to fullest extent. This includes events
and signals to synchronise processes. Shared memory using OS-9 data modules provide com-
mon data and trap handlers to reduce memory requirements. In contrast to other operating
systems, the required knowledge to handle these specific features is not generally available, but
is accumulated in the heads of some few 0S-9 system programmers. These coryphaei are either
too busy or not allowed to share their expertise with others. The wheel is, therefore, often
reinvented at every single company making OS-9 projects more time-consuming and also more
expensive than necessary. In the recent past, companies were increasingly willing to purchase
external OS-9 know-how, i.e. as a formal training course, as in-house training and consulting
or in form of outsourcing. It is rather difficult, however, to gain information about such 0S-9
training and consulting offerings.

Solution

EFFO has designed a questionnaire on OS-9 consulting activities that is attached to this issue. If
your company can provide software support related to OS-9 or related to tools that are com-
monly used under OS-9, please complete the questionnaire and return it to EFFO. One of the
next issues of 05-9 International will present the returned information in detail. In addition, this
information will be used whenever requests for software support are submitted to EFFO being
beyond the scope of EFFO’s honorary capability.

EFFO kindly invites you to complete the attached questionnaire.

Hans-Werner Bippus can be reached via email at <hwb@effo.ch>.

0S-9 International 2/96

Letters to the Editor

Remote Commands and Network Time Services for OS-9

0S-9 International 1/95, p. 23

Recently, I received the EFFO Remote Command disk and tried to install the rsh mechanism to
start an xterm on our 0S-9 system remotely from my PC. Unfortunately without success. The
only message I am constantly receiving is “Permission denied”. The explanation in the related
article in OS-9 International is, sorry to say, not terribly helpful. Could you provide a more de-
tailed explanation of how the rsh authentication mechanism works? As there seem to be some
differences between the Unix rsh mechanism and the 0S-9 implementation of the rsh mecha-
nism, could you also go into that in more detail? Remark: I am working with OS-9 2.4, ISP 2.0,
rsh/rshd/rshdc Edition #10 of 29.3.95.

Hermine Arnold, Joanneum Research, Graz, Austria <arnold@pdibm.joanneum.ac.at>.

We apologise for the confusion created in the article on remote commands under OS-9. Here
comes another attempt to describe the authentication procedure incorporated in the remote
commands. In compliance with general practice, we have not implemented features that will
behave different from their Unix versions. As an addition, rshd's debug and trace output has
been improved as shown below.

User Authentication

As a general principle, user authentication can be divided into two generally different proce-
dures depending on whether the user wants to become superuser on the server system or not.

1. The user wants to become superuser on the server system.

Only the file .rhosts in the superuser’s home directory on the server is checked but the file
hosts.equiv is never checked. The file .rhosts must be owned by the superuser, must have at
least private read access and must not have write access for anyone else than the superuser. At
least one of the lines in the file .rhosts must contain the name of the calling host in the first
column; otherwise, permission to use one of the remote commands is not granted. If the host
name is found, it is checked whether it is a fully qualified host name including the host domain
or not. If not, the host domain is queried from the system and appended. If the line with the
matching host name does not contain more than a single column, the authentication is suc-
cessful, if the client user name is the same as the server user name. If it contains more col-
umns, every word is matched against the client user name and the authentication procedure is
only successful, if the user name can be found. In other words, the client user name is only
allowed to be different from the server user name, if specified explicitly.

2/96 0S-9 International

Remote Commands and Network Time Services for OS-9 31

2. The user does not want to become superuser on the server system.

In a first step, the file hosts.equiv is checked. The lookup procedure is identical to the one
described above: If i) the host is listed, ii) the host domain name matches and iii) the client user
name is the same as the server user name or the client user name can be found in the list of
user names, permission is granted. Otherwise, the user’s .rhosts file is checked. Again as ex-
plained above, the file .rhosts must be owned by the specified user, must have at least private
read access, must not have public write access and must contain the client host name followed
or not by user names as above. If this second authentication step also fails, permission is
denied to use any of the remote commands.

Software upgrade

In order to facilitate debugging of the authentication procedure, the respective functions have
been rewritten entirely. A complete protocol is now output to /dd/LOG/rshd.log, if the highest
debug level (-dddddd) is specified in the command line of rshd.

The following example protocol has been generated when the user carsten (user ID 200.200) at

host thllin executed the command procs -e on host thlmak as user weo (user ID 201.201) using
the command

rsh thlmak -1 weo '@procs -e'

Contents of the file /dd/LOG/rshd.log on host thimalk:

rshd: Starts at Sun Jun 2 14:10:03 1996
rshd: Connect from 192.52.109.60 @ Sun Jun 2 14:10:03 1996

rshd: trying to check-in user 'carsten' from client host 'thllin.ceag.ch' as normal user
rshd: user 'carsten' is user 'weo' on the server system

rshd: client host name 'thllin.ceag.ch' transformed to 'thllin.ceag.ch' length 6
rshd: trying to open file '/dd/SYS/hosts.equiv' ... success

rshd: checking client host 'thllin.ceag.ch' in file '/dd/SYS/hosts.equiv’

rshd: domain qualifier found

rshd: client host 'thllin.ceag.ch' does not match host field 'thlpci.ceag.ch’
rshd: domain qualifier found

rshd: client host 'thllin.ceag.ch' exactly matches host field 'thllin.ceag.ch’
rshd: user 'carsten' is different from user ‘weo!

rshd: found user 'weo' with home at '/h0/USR/weo' in server's password file
rshd: successfully opened file '/h0/USR/weo/.rhosts’

rshd: got stat info of file '/h0/USR/weo/.rhosts'

rshd: good, uid of file '/h0/USR/weo/.rhosts' (201) is the same as the user id 201
rshd: good, file '/h0/USR/weo/.rhosts' is not public writable

rshd: checking client host 'thllin.ceag.ch' in file '/h0/USR/weo/.rhosts'

rshd: domain qualifier found

rshd: client host 'thllin.ceag.ch' exactly matches host field 'thllin.ceag.ch®
rshd: comparing client user 'carsten' with specified user 'carsten' ... passed
rshd: _validuser() returns 0 to indicate successful validation

rshd: executing 'procs -e'

Carsten Emde <carsten@effo.ch>.

0S-9 International 2/96

The EFFO 1996 AGM

Reto Peter, EFFO Secretary

The EFFO annual general meeting took place on Saturday, 9th March 1996, 14:45 to 19:40 at
the Gasthof zur Herberge in Teufenthal (near Aarau). All registered members of EFFO had re-
ceived a written invitation including the proposed agenda and the proposed budget for 1996.

The president, Werner Stehling, welcomed the members present to the 9th general assembly of
EFFO. He reported on the past year starting with expressing his thanks to all active members of
EFFO. The number of members has increased considerably to as much as 125. The observed and
already mentioned shift from private users towards companies continued, and today only very
few of the EFFO members are private users.

The considerable increase in the number of members is primarily based on support activities
from Eltec and PEP, who continued to inform their customers about EFFO and to offer a free one-
year membership to those customers who purchased an 0OS-9 development system.

The orders of PD disks have doubled during the last year. An average of four titles were re-
quested per order. The number of PD software packages has grown from 15 to 20. These addi-
tional five titles include three of the four packages announced in last year’s protocol.

Three issues of EFFO’s journal 0S-9 International have been published in 1995 at the scheduled
dates. This is especially remarkable as still only very few articles are contributed by external
writers. One more positive aspect is the larger number of advertisements placed in 0S-9 Interna-
tional, although some of them created unexpected work load to integrate them into the layout
and to ensure adequate printing quality.

Formal Points of the Agenda

The profit and loss account and the balance for the last year were presented and checked by the
auditor and accepted unanimously upon his request.

The elections of the officers were performed rapidly, and all nominees were elected with the
maximum of votes possible. The members of the committee for 1996 are:

President Werner Stehling (as before)
Vice-president Reto Peter (as before)

Secretary / registrar Reto Peter (as before)
Treasurer Stephan Paschedag (as before)
Chief editor Carsten Emde (as before)
Auditor Hans-Werner Bippus (as before)

2/96 0S-9 International

Formal Points of the Agenda 33

Two problems have been discussed on the financial side. First, there are the fees for banking
transactions, especially if foreign currencies are involved. In some cases, up to 25 percent of the
money sent to EFFO has been retained by the bank to cover transfer fees. In nearly all of these
cases, Swiss Franks have been sent to the German account or vice versa. In order to avoid these
unnecessary costs, EFFO asks its customers to exclusively send German currency to the Ger-
man account and Swiss currency to the Swiss account. EFFO decided to accept credit cards to
cope with this problem and also to facilitate the payment of orders from overseas. For the time
being, however, Visa is the only credit card that EFFO can handle to receive payment for PD disks
and membership fees.

The second problem was the drastic raising of prices for postage, which is also considered in
the budget for 1996. As a consequence, the prices for PD orders do not include postage any
more; it will be charged separately. The prices for 0S-9 International still include handling and
postage fees, but they needed to be adapted.

The annual EFFO membership fee remains unchanged, members from Eastern Europe continue
to get a free EFFO membership.

Miscellaneous

The two main items planned for 1996 are the preparation and publication of another three
issues of 0S-9 International and the organisation of the first EFFO OS-9 conference. The issue
3/96 of 0S-9 International will contain an article reporting on the outcome of this conference. As
an encouraging result of our activities, a considerable number of participants have already
registered.

Regarding EFFO’s PD software packages, the following enhancements are planned:

* Perl version 4.3, already finished, but not yet released,

. a universal plot package for graphical output in a variety of different formats,
. a largely enhanced version of the OS9Lib,
. the commonly used revision control system RCS.

Please note that these disks may only be ordered after they appear on our list of officially
released PD software packages.

EFFO plans to offer its services on the World Wide Web. Some activities are, therefore, started to
set up our own home page. More details will be given as soon as the service is available.

Reto Peter can be reached at <reto@effo.ch>.

0S-9 International 2/96

_getsys();

Reto Peter

Monthly EFFO Meetings

The monthly EFFO meeting takes place each first Friday of a month in the Restaurant Palmhof in
Zurich. Its exact address is Universitatsstr. 23, CH-8006 Zurich, phone +41 1 261 69 90. It can
easily be reached from the main railway station using tram 10. As usual, the meeting starts at
8 PM, but most participants meet at 7 PM in the Restaurant to have supper together. Everybody
interested in OS-9 is kindly invited to join the meeting.

EFFO ’s OS-9 Conference

The already announced OS-9 conference organised by EFFO takes place in Emmetten, Switzer-
land, from September 20 until September 22, 1996. More than 50 participants have registered.

(OS-9 NeWLink fir Peer-to-Peer Verbindungen

NeWLink/PP erlaubt den Aufbau von !

FaSTrak Netzwerkverbindungen zwischen OS-9-Systemen
NeWLink und PCs mit dem Standardprotokoll IPX/SPX.

NeWLink/PP

MultiNet Eigenschaften von NeWLink:
RTF » Terminal-Emulation
» Nutzung von Standardwerkzeugen am
IBF PC (Visual C++, Visual Basic usw.)

Einsatzbereiche fiir NeWLink/PP sind:

» Aufbau heterogener Netze und verteilter
Systeme,)

» Ubertragung von MeBdaten/Produktionsdaten :
auf Auswerte-PCs, Ubertragung von
Steuerdaten zum OS-9-Rechner,

» ProzeBvisualisierung und -steuerung.

Fur weitere Informationen stehen wir hnen gern

zur Verfigung oder rufen Sie unsere Mailbox unter

06221/864228 an.

Zertifiziert
nach DIN ISO 9001
Dr. Rudolf Keil GmbH
Tel.: 06221/862091
Fax: 06221/861954

' Imprint 05-9 International

Published by European Forum For OS-9 (EFFO)
President Werner Stehling
Vice President Reto Peter
Director of Finance Stephan Paschedag
Editor-in-Chief Carsten Emde
Design Marc Balmer, Werner Stehiing (layout)
Address

European Forum For 0S-9

P.O. Box FAX +41 19403890
8606 Greifensee email o0s9int@effo.ch
Switzerland

‘ Copyright © 1996 by European Forum For 0OS-9 (EFFO).
Copyright © (design) 1994 by Marc Balmer.
\ Allrights reserved. No part of this journal may be reproduced without the

| prior written permission of the publisher. All source code is provided with-

- out any warranty. Trademarks are not marked as such.

! Printed directly from disk by Fotoplast, Zurich, Switzerland
ISSN: 1019-6714

Subscriptions
05-9 International 1s the official organ of the European Forum For
0S-9 (EFFO). The subscription 1s included with the annual EFFO member-
ship fee. In addition, it is available by separate subscription for non-EFFO
members, single issues are also available. Ali following prices are given in
Swiss Francs, shipping included:
Switzerland ~ Europe Overseas

" One year (3 i1ssues) 26.00 37.00 45.00

Single issue 12.00 15.50 18.00
To subscribe to 0S-9 International or to order a single 1ssue send a letter,
postcard, fax or email to EFFO

' Advertisements
05-9 International is not only an ideal platform for discussing 0S-9 re-
i lated topics, it 1s also the ideal place to advertise. 05-9 International reaches
‘ end-users, system-software developers and, nevertheless, decision-mak-
ers.
‘ Please contact EFFO for detailed information on how to place an ad in
1 OS-9 International.

0S-9 International

2/96

	OS-9 International
	Table of Contents
	startup
	OS9Lib- Unix C Routines for OS-9
	Introduction
	History
	Naming Convention
	Requirements
	Compatibility
	Test Environment
	Conclusion

	OS-9 Network Connection via IPX
	Introduction
	Prerequisites
	OS-9 Computer
	Windows Computer
	Prerequisites for Target Installation

	Example Application
	Problem Definition
	Solution
	Providing the Login Network Service
	Session Initiation
	Sending Characters from the PC to the OS-9 System
	Sending Data from teh OS-9 System to the PC
	Session Termination

	Conclusion

	Stack Quo Vadis?
	Problem
	Solutions
	Reference

	sh for OS-9 Version 2.0
	Introduction
	Compatibility Issues
	Compatibility to the Microware Shell
	Missing Whitespace
	Handling of Unmatched Wildcards

	Compatibility to Most Unix Shells
	Internal execution of Grave Constructs
	Implementation of New Built-in Commands
	Improved Error Messages
	Name Completion
	The not Operator
	The "$@" and the "$" are Handled Differently, if in Double Quotes
	Shell Variable SH_VERSION
	Returning to the Most Recent Directory

	Unique Features of sh for OS-9
	Language Extensions
	The read Command Further Enhanced
	Testing Whether a Given Name Refers to a Memory Module

	Script Execution
	Starting sh Scripts from the Microware Shell

	Automatic Script Execution
	Non-Blocking Read During Command Line Editing
	Resetting the Terminal's SCF Options
	Kill by Name
	Memory and CPU equirements

	Important Enhancements since Vers. 1.6 Ed.32
	Test Whether a File is Writeable
	Controlling the History File
	Installing a Data-Carrier-Detect (DCD) Interrupt
	Miscellaneous
	Frequently Asked Question

	Conclusion
	Reference

	OS-9 Consulting Offerings
	Rationale
	Solution

	Letters to the Editor
	Remote Commands and Network Time Service for OS-9
	User Authentication

	The EFFO 1996 AGM
	Formal Points of the Agenda
	Miscellaneous

	_getsys()
	Monthly EFFO Meetings
	EFFO's OS-9 Conference

