May 1995 0S-9 International Vol. 4, Issue 2

startup 3
PCMCIA Cards and Non-PC Operating Systems 4
0S5-9 Meets PLC 9
Memory Modules 15
Shared Libraries Using Subroutine Modules 18
GNU make for OS-9 30
Debugger Insights 35
Letters to the Editor 38
_getsys(); 39

EFFO European Forum For 0S-9

S 8606 Greifensee, Switzerland sFr. 10.00
F 41 1940 38 90
9 ema;il 0-;9int@efj‘o.ch ISSN: 1019-6714

SYSTEM-PAK I/MGR

The window
system for

OS-9/68xxx,
LynxOS and

VxWorks:

Piant Control
Image
Processing
Data
Presentation
Software

Development

5 e
on: Tearhiny

Example dialog from the teaching phase of an automatic high-speed bottle sorter. The graphical user interface is
running under the MGR window manager and has been designed using the MGR/ALib application library.

reccoware systems

1mstuog 9046-HD 'OV uonewony SYNOLSHHD £q uorssnuuad puny yim pajuniday

New Address: reccoware systems, Wolfgang Ocker, Rapperzell, Fohrenstrafie 8, D-86576 Schiltberg, Phone ++49 (0) 82 59 10 48, Fax 1049, Email: reccoware@recco.de

startup

This issue of 0S-9 International is dedicated to word processing. At least, about half a year ago we
had the idea that it would. But reality is different.

At first sight, word processing under OS-9 appears to be an anachronism. In these days, when
the appearance of a printed article is considered more important than its content, any fixed-
font output is certainly obsolete. The minimum configuration for creating a printed document
consists of a Macintosh PC so that WYSIWYG. Producing the journal OS-9 International this way
has made two things very clear to us: i) you never see what you get, and ii) normally, you are
happy that you don't get what you see.

What can be done on a typical OS-9 system? First, we need an editor. Unless you decided to
never give up your favourite one, we recommend Daniel M. Lawrence's Emacs. It is available
on virtually any computer system and lets you type a text much faster than with an over-
featured and mouse-controlled word processor.

Second, we need something to format the output. Donald E. Knuth's type setting system TEX is
the formatting program of choice. If a scientific article has to be published, TEX is often the only
accepted format, because the publisher denies the existence of an alternative. If TEX is good
enough for scientific articles, why should it not be suitable for other purposes?

Last but not least, a printed output must be generated. Almost every desktop publishing pro-
gram is able to produce a PostScript file, and also TEX may do so via the dvips utility or similar.
This does not represent a problem if you own a PostScript printer or your document is intended
to be produced by a printing-office. If, however, this is not the case, L. Peter Deutsch’s Ghostscript
interpreter fills the gap. It generates an appropriate printout on nearly every available printer
including 9-pin zwieback milling machines.

As you can see, only three high-level PD program packages are required for word processing
under OS-9. So far our dreams — unfortunately, two of the packages mentioned did not reach
the required quality to be released, although various versions are available via network and on
mailboxes. Actually, the effect that several ports exist, represents the problem: each of them
comes with specific nice features but none includes them all. On the other hand, the main
problem is not the lack of a feature, but the lack of the required stability. This is an Example For
Failed Organisation!

Porting such large packages requires a different strategy than hacking a tiny little utility. The
first goal should be to convince the authors of the original program to include support for
0S-9 in the official release in order to make future upgrades reasonably painless and to reduce
the number of ports. As a prerequisite, all major Unix development tools are now available
under OS-9: in addition to the already existing GNU C/C++ compiler, Bourne shell and Unix C
library, the appropriate GNU make has now been released as can be read in this issue. In
consequence, there is some hope that the above mentioned tools will be released soon.

Werner Stehling

0S-9 International 2/95

PCMCIA Cards and
Non-PC Operating Systems

Lukas Zeller and Axel Berghoff

Introduction

Memory and I/O devices based on an interface standardised by the Personal Computer Memory
Card International Association (PCMCIA) are widely available at competitive prices. Unfortu-
nately, they cannot easily be used on computers with a non-PC operating system such as an
embedded OS-9 computer. The aim of the current article is to analyse the existing difficulties
and to propose a procedure to overcome them.

History

The principle of memory cards has been invented by the Frenchman Roland Moreno in 1974.
Such memory cards can be classified into cards with contacts and contactless ones and have
been designed to fulfil many purposes such as data transfer, memory extension, personal iden-
tification, telephone cards etc. Pin layout and electrical characteristics in cards with contacts
and data transfer methods in contactless cards were mainly defined by the particular manufac-
turer. Only in 1990, the pin layout and electrical characteristics of memory cards with contacts
were standardised by the Japan Electronics Industry Development Association (JEIDA). Two
types are primarily used, the 68-pin JEIDA-4 and the 88-pin JEIDA-5 standard. JEIDA-4 cards
have an 8- or 16-bit wide data bus, their memory capacity ranges from 64 kByte to 16 MByte,
but the number of address lines allows for a maximum of 64 MByte. JEIDA-5 cards are avail-
able with 32- or 36-bit wide data bus so that, in principle, memory cards can be designed being
large enough to replace mass storage devices.

In view of the requirements of the rapidly growing market for portable computers, the impor-
tance of memory cards was recognized, and the PCMCIA was founded in 1990. Its main goal is
the creation of an appropriate standard for a card-size interface comparable to the memory
cards with the additional ability to connect mass storage devices such as hard disks via this
interface. This standard was called PCMCIA-1.0 and was based on the JEIDA-4 memory cards.
Furthermore, it was the aim to define a multi-purpose interface that uses the same pin layout
and allows to connect many other types of I/O devices to a portable computer, e.g. a serial
controller for modem and an Ethernet network interface. Therefore, the initial PCMCIA 1.0
standard was supplemented with functions such as “I/O Read”, “I/O Write” etc. and published

2/95 0S-9 International

Technical Background 5

as PCMCIA 2.0. This enhancement was possible, since some of the 68 pins of the JEIDA-4
standard have been left unassigned so that the above functions could be realised without ex-
tending the connector.

Today, the PCMCIA standard has become very successful, and card-size devices are available
for many purposes at a very competitive price. It is, therefore, highly desirable to use such
devices also with computers that work under operating systems other than the one used on the
normal PC. These computers must not necessarily be portable, but memory cards can ideally
be used for software upgrades in embedded systems. Furthermore, card-size 1/0 devices offer
the possibility to temporarily connect such systems to phone lines, networks and mass storage
devices. Several VMEbus manufacturers have already presented products equipped with a
PCMCIA interface. A prominent example is the BAB-40 CPU board (Eltec, Mainz, Germany),
that relies completely on PCMCIA technology:; it has one internally and two externally accessi-
ble PCMCIA slots.

Technical Background

The electrical specifications and especially the pinout of the JEIDA memory cards were, obvi-
ously, designed to be compatible with memory chips approved by the Joint Electron Design
Engineering Council (JEDEC). Since PCMCIA, however, was primarily interested in creating a
standard for IBM compatible PCs, it is obvious that they tried to make the PCMCIA 2.0 interface
as compatible to the ISA bus as possible. JEIDA-4 already defined a mechanism to identify a
memory card. This technique is called Card Identification Structure (CIS) and, basically, repre-
sents a linked list of small records of information stored under a well-defined ID. There are
records defining size, speed, JEDEC ID, manufacturer etc. This identification strategy was
incorporated into the PCMCIA 2.0 standard; it required, however, the definition of additional
records, e.g. for I/O-purposes.

Drivers for Non-PC Operating Systems

In principle, the PCMCIA interface technique can be used under any operating system. There-
fore, its implementation on operating systems such as 0S-9 should, generally, not differ from
implementing any other interface technique by writing an appropriate driver. The only prereq-
uisite, however, is that the device fully conforms to the standard and the manufacturer pub-
lishes the complete interface specifications. Different approaches are required for i) transpar-
ent memory cards, ii) standardised mass storage devices, iii) standardised modems and iv) any
other 1/0 devices using proprietary interface definitions.

0S-9 International 2/95

6 PCMCIA Cards and Non-PC Operating Systems

Transparent Memory Cards

Transparent memory cards (static random-access memory, read-only memory) can be used
without major difficulties. It is either possible to make the addressable memory region visible to
the operating system at boot time, or to use an already available RAM-disk driver. Under OS-9,
the standard ram driver can be used for this purpose, if the descriptor contains the RAM card’s
absolute start address (long word) at offset M$Port (0x30).

Standardised Mass Storage Devices

Since PCMCIA 2.0 already has ISA-like properties, it was possible to re-use another PC stand-
ard, the AT bus. Under the name PC-AT attachment (ATA) this technique dating from the early
eighties was resuscitated by integrating it almost unmodified into the PCMCIA standard. The
fact that not a state-of-the-art standard was defined but an outdated technique was re-used is
the reason for many problems encountered when dealing with PCMCIA devices - especially in a
non-PC environment. There is also an Auto Indexing Mass Storage (AIMS) standard as part of
PCMCIA, which was designed as a newer alternative to ATA, but it is used very rarely.

Standardised Modems

The interface between the CPU and a modem is relatively simple due to its single, serial channel
with moderate speed as compared to high-volume data links such as network or graphics.
Therefore, one of the early 1/0 applications of PCMCIA devices were card-size modems for use
not only in notebooks but also in subnotebooks, palmtops and Personal Digital Assistants
(PDAs). The use of PDAs is remarkable insofar as they contain other processors than members
of the 80x86 family. This was possible since the modem interface is documented as part of the
standard. Recently, a generic driver for a PCMCIA modem connected to a non-PC notebook was
released (MC680x0, series 500 PowerBook, Apple).

Other I/0 Devices

Other type of PCMCIA devices such as graphic controllers, network interfaces, A/D converters
etc., follow the standardisation only in the way the memory is addressed, but are just small
ISA/EISA cards in all other aspects. Therefore, they require specific drivers for either not or
insufficiently documented controllers. In the PC world, an installation disk normally accompa-
nies such a device that allows using it on a standard PC. Since OS-9 or any other non-PC
operating system is completely unable to execute such installation procedures or programs,
these devices cannot be used. But even if drivers were available or the individual controllers
were well documented, other restrictions may apply: industrial computer systems have differ-

2/95 0S-9 International

PCMCIA 3.0 7

ent requirements with respect to product life-time, warranty etc. than standard office automa-
tion systems. Finally, mechanical properties and thermal characteristics of most of the initially
used PCMCIA devices may not be acceptable in the industrial environment.

PCMCIA 3.0

The newly 1995 released PCMCIA 3.0 supplements this standard in two ways. Firstly, the
remaining not yet implemented ISA/EISA signals were added to the PCMCIA connector. Sec-
ondly and most importantly, a PCI-derived standard called CardBus was integrated to PCMCIA.
Among others, this standard enables the host to determine specific device properties, e.g. whether
a card supports 5V or 3.3V PCMCIA, or CardBus (always 3.3V). This new standard is so impor-
tant because, for the first time, a bus is supported not being dedicated exclusively to 80x86-
based PCs. Finally, since People Can’t Memorise Computer Industry’s Acronyms, the name
PCMCIA is replaced by “PC Card standard” from version 3.0 onwards.

What Is Needed to Make PCMCIA Suitable for
Industrial Applications?

Up to now, PCMCIA devices are mainly used in 80x86-based portable computers and office
automation systems. This market segment needs large quantities, low cost but has few require-
ments with respect to industrial quality, extended temperature range, longevity and documen-
tation. It may not be easy for PCMCIA manufacturers to enter such a different market. On the
other hand, PCMCIA devices offer a wide variety of functionality that is not easily achievable
using other components. For example, CPU boards may be extended with various memory
circuits and hard disks in a flexible way, data transfer between different computer systems is
highly facilitated and I/0 interfaces may be connected temporarily to embedded systems. In
order to be acceptable to industrial customers, manufacturers of PCMCIA devices must provide

 confirmed product availability of minimally three years, better five years, after first release,
* stability of the electrical properties during the entire production cycle,

¢ unrestricted access to all relevant technical data, at least for system developers,

» extended warranty period of up to five years,

¢ optionally extended temperature range.

The higher price of products with such enhanced quality most probably will be accepted by
industrial customers. Indeed, there is already an emerging segment of industrial PCMCIA ap-

plications and cards that fulfil at least some of the above requirements. PCMCIA manufacturers
may have realised that their products cannot compete with their non-miniaturised counter-

0S-9 International 2/95

8 PCMCIA Cards and Non-PC Operating Systems

parts in cases where mechanical dimensions are not an issue. For instance, data transfer using
a floppy disk in office automation systems is certainly less expensive and probably not worse
than using a PCMCIA SRAM card.

Request for Comments

It is well conceivable that embedded OS-9 systems would profit from the availability of an open
PCMCIA market. Although a certain interest of PCMCIA manufacturers in industrial customers
can be noticed, much more activity is needed to bring these two worlds together. In order to
determine the interest in such an activity, 0S-9 International has installed the email address
<pcmcia@effo.ch>. Comments, proposals and any other kind of contributions are welcome.

Lukas Zeller developed PCMCIA interfaces and software for a Swiss company. He can be reached
via email at <luz@zep.ch>.

Axel Berghoff works, among others, as consultant in the VMEbus market. His email address is
<aberghoff@aberg.pfm-mainz.de>.

Software + Hardware + Know-how + Service ...

No matter if you are interested in CPUs, graphics,
image processing or system configurations:

ELTEC offers high-quality products and services
providing industry suitable solutions for complex
problems in process automation.

Modular flexibility from low-cost to high-end offers,
for example, the EUROCOM®17 board:
e 1 0r 2 MC68(EC)040 CPUs
upgradable to 2 MC68060 CPUs
e DRAM
e optional SVGA graphics
(4 bit overlay, 1152 x 900 pixel,
256 out of 2 colors)
optional network
SCSI-2
4 serial and 2 parallel interfaces
LEB for IPIN mezzanine cards

The IPINs Intelligent Serial Interface Controller
(IPIN 1700) and flexible Camera Interface (IPIN 1900)
open up the fields of

e telecommunication and

e image processing

Especially for the fields of industrial /0 and control
ELTEC offers a modified EUROCOM*17 board as
carrier for e MODULbus and

¢ M-Module
mezzanine cards.

Special software modules offer a transparent use of 2
CPUs under 0S-9 with MGR and other operating
systems.

elektronik mainz

ELTEC Elektronik GmbH-P.0.Box 421363 -D-55071 Mainz
Phone ++ 49 (6131) 918-0 - Fax ++ 49 (6131) 918-198

or our distributor in Switzerland:
SPECTRALAB - BrunnenmoosstraBe 7 - CH-8802 Kilchberg
Phone ++ 41 (1) 7153807 - Fax ++ 41 (1) 71554 47

... the Winning Development-Platform Under 0S-9!

0S-9 Meets PLC

Hans Wiedemann

Introduction

Plant control systems are normally realised using Programmable Logic Controls (PLC) that do
not offer the development support and real-time capabilities inherent in the 0S-9 operating
system. These and other advantages make OS-9, in principle, ideally suitable for plant control
systems but, for the time being, only few systems have been based on 0S-9. This article ex-
plains the differences between PLCs and OS-9 systems and presents a solution to bring them
together.

0S-9 and its Normal Environment

A VMEbus CPU board powered by a Motorola MC68xxx processor is still the standard develop-
ment platform of the OS-9 operating system. Such systems are normally equipped with a SCSI
interface, serial ports for terminal and other serial connections, an oscillator for the system
tick, a real-time clock (RTC), a built-in graphic controller, a network connection (e.g. Ethernet)
and, optionally, digital or analogue 1/0. Cross development systems running on Unix worksta-
tions (Unibridge) and PCs (PC Bridge) can be used, too. More recently, FasTrak that has a
graphical user interface gained wider acceptance. FasTrak is available on a variety of Unix
platforms and even on PCs running MS-Windows. Although this wide range of development
environments is available, target systems, in principle, do not differ very much from each other
nor from the classical MC68xxx-based OS-9 development system as described above. This makes
it, for example, possible to realise a graphical user interface for purposes such as process
visualisation even on a target system. The increased complexity of such systems does not nec-
essarily represent a problem for programming and debugging, since one of the advantages of
the OS-9 operating system is that all host debugging tools can be made available on the target
as well. Using the described 0S-9 target hardware in plant control systems, however, has two
important disadvantages: firstly, it has a relatively high price and, secondly, the normal PLC
programmer may find OS-9 not terribly easy to conquer.

0S-9 International 2/95

10 0S-9 Meets PLC

The Classical PLC

Programmable Logic Controls are programmed using a special technique in industrial automa-
tion technology. Basically, a number of logical input states are combined using Boolean algebra
to form a logical output state. Whilst first generation PLC systems used a relay-based technique
for this purpose, the state-of-the-art hardware is, of course, based on microprocessor technol-
ogy. Despite this evolution, PLC programming is still done using an assembly-like syntax that
mainly consists of logical and integer operations; bare floating point operations are tough to
deal with. On the other hand, today’s ergonomics and safety requirements in plant control
systems are usually satisfied with technologies such as computer graphics and networks. Such
technologies can no longer be realised with classical PLC. Its functional elements, however, are
still needed, since PLC has a long and successful tradition and is supported by many leading
companies having accumulated a large body of PLC-specific know-how. Traditionally, the in-
stallation costs of a PLC-based system are calculated as a multiple of the number of atomic PLC
points; a small and apparently unimportant increase in the price of a single point may, there-
fore, result in an important cost factor for the entire system. In consequence, it is only possible
to introduce a new PLC concept, if the costs per point do not exceed the currently accepted
range. This applies even to systems having enhanced capabilities such as a graphical human/
machine interface and network connectivity.

The Best of Both Worlds

The idea was, therefore, born to integrate both the power of 0S-9 and the tradition of PLC into
a common concept. Such a system, called Smart I/0, consists of a low-cost MC68302-based
CPU without VMEDbus interface, the processor's inherent serial interface capabilities and a DC/
DC converter — everything integrated in an appropriate industrial housing. Sockets for EPROM
and/or Flash EPROM, DRAM, SRAM, and serial EEPROM are available. I/O functionality may
be extended via the MC68302’s serial communication port [1]. This port allows to exchange
status and control information with a variety of serial devices, using a subset of the Motorola
serial peripheral interface (SPI).

2/95 0S-9 International

Programming the Smart I/O Board 11

Programming the Smart I/O Board

Standard OS-9 Programming

Programming can either be done on an 0S-9 VMEbus system or on one of the above named
cross development systems. Since Smart I/O computers are equipped with a nearly complete
Extended OS-9 system, and appropriate drivers are available for all I/O modules, virtually any
existing software can be used provided that it does not require special hardware. This software
strategy ensures protection of software investments and a high level of compatibility from high-
performance MC68060 based VMEbus CPU boards down to Smart I/0 systems.

PLC Programming

The second method is the newly created link from OS-9 to the PLC world. Driven by unsatisfied
customers, the JEC committee defined a programming standard (IEC 1131-3) that includes
sequential function charts, function block diagrams, ladder diagrams, instruction lists and
structured text. All of them can be combined without restriction to form a specific application.
There is even a way to call standard routines written in ANSI-C language (see below). A full
implementation of the IEC 1131-3 standard is available as a commercial product (ISaGRAF)
from CJ International (Grenoble, France). When used in conjunction with 0S-9, the ISaGRAF
kernel is executed in the same way as any other user task and takes control over the downloaded
PLC application. The development platform for ISaGRAF is a PC under MS-Windows.

Mixed Programming

Actually, the simultaneous availability of 0S-9 and PLC represents the important innovation of
Smart I/0: a PLC programmer can program it using the traditional way without being con-
fronted with languages and techniques he never wanted to know. At the same time, the OS-9
specialist can program it using C language and take advantage of his beloved operating system
without being confronted with programming strategies he thinks have been abandoned long
time ago.

The Communication

An important aspect of PLC systems has not yet been discussed: communication of several
PLCs between each other and also to supervising process control systems. On a standard VMEbus
0S-9 system, this would probably be done using Ethernet network communication. Price re-

0S-9 International 2/95

12 0S-9 Meets PLC

striction and tradition of PLC systems, however, dictate that a traditional serial communication
be used. Such serial communication would be a field bus, the only question is which one to use.

Data of the most popular field buses are given in the following table:

Profibus FIP Bitbus CAN Interbus-S
Standard | DIN 19245 UTE-C46-6xx | IEEE 1118 ISO/DIS 11898 DIN 9258
CIA/DS201-205,207
Access Multi-master Producer/ Master/Slave Multi-master Master/slave
procedure | Master/slave distributor/
consumer
Medium twisted pair, twisted pair, |twisted pair + | twisted pair, twisted pair
fiber optic fiber optic optical clock fiber optic (ring)
Transfer | 9.6 - 500 kB/s | 31.25 kB/s, 62.5 kB/s - 2.4 | up to 1 MB/s 300 kB/s
rate (1.5 MB/s} 1 MB/s, MB/s (500 kB/s)
2.5 MB/s,
5 MB/s (FO)
Hardware | 68302 & FIPART, 80C152, 8044 | ICAN 82526/527, SuPl, MA1l
support 68360 pucode, FIPIU, BCAN 80C200,
8051, V25, FULLFIP MC68HC705X4/16,
SPC, PBSO1 NEC pPD72005
Max. data| 246 Bytes 128/256 250 Bytes 8 Bytes 512 Bytes
per frame | (32/246 Bytes) | Bytes
Overhead | 9 Bytes 6/12 Bytes 13 Bytes 6 Bytes 6 Bytes
per frame
Partici- 127 nodes 65536 sync. 28 nodes, | 2032 idendifiers 256 nodes
pants objects/ 16.7 | self-clocked
million msgs | 250 nodes

With respect to Smart I/0, the important advantage of the Profibus is that the bus protocol (OSI
level 2) is nearly completely implemented in the micro code of the MC68302 and MC68360
processors. In addition, Profibus is market leader in Europe and gains a lot of popularity world-
wide. Therefore, it was decided to equip all Smart I/O modules with Profibus firmware (OSI
level 7) by default utilising the already existing hardware. Support for other buses must be
ordered separately.

Since the Extended OS-9 run-time license includes TCP/IP, it allows to go even one step fur-
ther, i.e. to realise transparent network communication. Already implemented is the Serial Line
Internet Protocol (SLIP) that runs via the RS232 interface and, additionally, the implementation
of TCP/IP on top of Profibus is currently under development. This will open Smart I/0 for all
socket-based applications including even NFS.

The Link between ISaGRAF and C

There are three ways to write specific user functions in C language and to connect them to
ISaGRAF:

2/95 0S-9 Internattonal

Conclusion 13

Enhancing the ISaGRAF Kernel

Additional user functions can be developed in C language, compiled on the PC using PCBridge
or FasTrak and linked to the ISaGRAF kernel. This newly created kernel is then downloaded to
the Smart I/O module. The disadvantages of this method are that the additional user functions
cannot be accessed from outside the ISaGRAF kernel and that a new kernel has to be created
each time a new function has been added.

Trap Handler

Another method is to use a trap handler that may be created automatically using an already
existing procedure on the development system. The functionality of this trap handler, if
downloaded in addition to the standard ISaGRAF kernel, may then be used by the ISaGRAF
kernel and also by other tasks.

Independently Running Tasks

The required functions can be realised in an independent task that concurrently runs with the
ISaGRAF kernel. Common access to global data is best achieved using an OS-9 data module.
The OS-9 task uses the standard C functions to link to the data module; ISaGRAF provides an
equivalent functionality using standard communication commands. It is even possible to let
the ISaGRAF kernel access RAM at absolute addresses. If the latter method is used, such
memory regions should be made inaccessible to the OS-9 kernel, for instance, by excluding
them from the memory list in the init module.

Conclusion

Up to now, 0S-9 based VMEbus computers and PLC controllers lived in two different worlds.
The realisation of Smart I/0 modules as presented herein shows that the basic concept of the
0S-9 operating system is flexible enough to integrate even a PLC kernel. This allows for the first
time to design homogeneous plant control systems that are based on the same operating sys-
temn from low-level logic control up to high-level system supervision being managed via graphi-
cal user interface and providing network connectivity.

0S-9 International 2/95

14 0S-9 Meets PLC

Reference

{1 Motorola (1991) MC68302 Integrated Multiprotocol Processor User’s Manual, edition 2,
Motorola Ltd., European Literature Center, 88 Tanners Drive, Blakelands, Milton Keynes,
MK14 5BP, England.

Hans Wiedemann works in business marketing at PEP Modular Computers GmbH. His main
interest centres on real-time operating systems, field buses and graphics software. He can be
reached via email at <HANSWI@pep-kaufbeuren.de>.

SMART 1/0 Starter Kit

Micro-PLC + Computer + IEC1131-3 + PROFIBUS

ersiies SR g,
eSS {"
S TR Mgs\@i’*;:

PRt Lt

Further Details doot S8RT I/0 o 10
Extensian Modiles areavedldde fram :

» VVMEIbus Systems

ERRTIE, An 1509001
X PEP Modular Conputers G, o ertifie
%ft‘ﬂafe m(patlble mmm .16 // /{)m 1SO 902\\\ Company
87600 Kaufbeurean ﬂﬂ[: .
Germany.

Modular Computers®

Memory Modules

Werner Stehling

Introduction

Memory modules represent a main design aspect of the OS-9 operating system. They are espe-
cially important for real-time behaviour, because the required data and code can be loaded into
memory before programs are started; this reduces unpredictable timing due to access of mass
storage devices. In addition, the memory module concept greatly facilitates the creation of em-
bedded ROM-resident systems.

Typically, a user program resides in a program module, but it can also be stored in a subroutine
module or in a user trap library. Data may not only reside in static variables but also in data
modules. These module types are less known, although they probably merit more considera-
tion. It is, therefore, the aim of this article to give an overview about the module concept and to
present data modules, subroutine modules and user trap libraries in more detail.

0S-9 Module Concept

Up to now, OS-9 defines ten different types of memory modules. They can be classified into
three main groups:

Module group | Module type MSType | Description Examples
System-state Systm 12 System module kernel
program Flmgr 13 File manager rbf, scf, sbf
modules Drivr 14 Device driver rbteac, scsce, sbviper
User-state Prgm 1 Program USer programs
program Sbrtn 2 Subroutine module | tcp, udp
modules Multi 3 Multi-module reserved for future use
TrapLib 11 User trap library cio, csl
Data - Data 4 Data module inetdb
containing CSDData 5 Configuration not standard
modules Status Descriptor
Devic 15 Device descriptor | hO, t1, mtO

All modules have the same structure: a 24-word common module header including a 1-word
header parity is followed by a module specific header extension of up to 8 long words, the

0S-9 International 2/95

16 Memory Modules

module body and a CRC checksum value. Data-containing modules normally do not require a
header extension.

Module Integrity Checks

The first two bytes of a valid 0S-9 module are the so-called Sync Bytes ($4AFC). Validity can
further be checked by XOR-ing together all 16-Bit words of the header which must result in
$FFFF. A third check considers the CRC checksum value that is calculated over the entire
module. Practically, the CRC value is only tested when a module is loaded into memory, but the
header parity is checked whenever a process links to the module. This makes it possible to
modify the module body of a memory resident module but any change to the module header will
result in error 236 (E$BMHP). Attempting to load a module with an invalid CRC value leads to
error 232 (E$BMCRC) but, from OS-9 version 3.0 onwards, this does not apply to data modules
anymore.

Data, Subroutine and Trap Library Modules

While the functions of a program or a device driver module are rather obvious, the tasks of data,
subroutine and trap library modules are defined less strictly. These latter three module types
are supported by the same kernel functions F$Load, F$Link, F$SetCRC, F$Unlink and F$Unload
but are, however, treated differently when produced by the 168 system linker.

Data Modules

Data modules are frequently used to exchange data between processes. These processes must
not necessarily be user-state programs, but also drivers and file managers can link to a data
module. Data exchange is best done by globally defining a data structure, the pointer of which
is assigned to the entry of the data module.

A common problem centres on the synchronisation of write and read accesses, since only one
program may be permitted to write at a time, and reading must be inhibited while data are
invalid. This problem is frequently solved using events but, in principle, any method of inter-
process communication can be used. Another approach is to declare an access flag in the data
module itself. An appropriate instruction must be used to test and set this flag, because this
action must be indivisible. It is recommended, whenever possible, to have only one writing
process and one or more reading processes, since this makes synchronisation easier.

2/95 0S-9 International

Summary 17

Subroutine Modules

Historically, the subroutine module was probably invented in order to provide an adequate
module structure for good old Basic09’s I-code. Of course, it is not limited to this special appli-
cation. In contrast to data modules, a subroutine module is intended to contain executable
code, and the linker takes care of referencing global data relative to the global data pointer a6.
It also sets the M$Mem field in the header extension appropriately.

User trap libraries

User trap libraries are more complex than data and subroutine modules. A specific kernel
command F$TLink is available for their installation. Furthermore, the linker not only sets the
total amount of global data storage, but also prepares lists at offsets M$IData and M$IRefs.
These lists are required to allow for position-independent code.

Trap handlers are relatively common in OS-9 systems: the C I/O library (cio), the C shared
library (csl), the mathematical function library (math) and, of course, the kernel itself. Neverthe-
less, a trap handler is often a synonym for complication, unexpected results and a technique
that is difficult to manage. This represents an interesting psychological phenomenon that is
probably due to two facts. First, the name “trap”, in general, does not suggest confidence;
secondly, traps are managed in the same way as all other exceptions, namely interrupts, bus
errors, address errors, divide by zero etc. Indeed, this close relation to all those bad things that
can happen to an OS-9 system lets traps appear even less attractive. There is, however, nothing
dangerous with trap handlers, as they represent a safe and reliable method to provide library
functions that reside only once in memory but are accessible to more than one process.

Summary

Under normal conditions, an OS-9 programmer does not need to worry about user trap librar-
ies or subroutine modules. A simple command line option of the C front end instructs the linker
whether to produce a program that uses the C trap library or one that does not. Subroutine
modules are automatically created by Basic09 but are not supported officially for other pur-
poses. However, OS-9 is flexible and transparent enough to allow for using these modules and
also data modules in a very specific way to fulfil the needs of given system requirements.

Werner Stehling works as hardware and software engineer in the Radio Astronomy Group of the
Swiss Federal Institute of Technology. He can be reached at <stehling@effo.ch>.

0S-9 International 2/95

Shared Libraries Using
Subroutine Modules

Carsten Emde

Introduction

Irrespective of how often an OS-9 program is running concurrently on the same CPU, there is
only one copy of the program present in memory. This behaviour being well known to OS-9
users and programmers is called re-entrant. It helps to design powerful systems without wast-
ing memory, since a general law in system integration says “the same code doesn’t need to stay
in memory more than once”. If, however, different programs use the same library, this library
code is linked into every single program so that this code definitely stays in memory more than
once. The question, therefore, arises of how to make a library re-entrant so that it behaves like
a program module. Other operating systems have solved this problem by shared library con-
cepts or by dynamic link libraries (DLLs). Under the OS-9 operating system, trap handlers are
normally used for this purpose. They represent a basic working mechanism of the 68k proces-
sor family, and many commonly available programs make use of trap handlers; nearly all 0S-9
utilities use the C library trap handler (cio in 0S-9 2.4 or csl in 0S-9 3.0) and the math trap
handler that are both part of the OS-9 standard delivery. Even the OS-9 kernel is, in principle,
a trap handler (trap number 0) and every system call is a trap handler call to the kernel. Writing
a trap handler is not very difficult, and from version 2.4 of OS-9 Professional onwards, example
programs of how to create a trap handler library are part of the standard delivery (/dd/C/
SOURCE).

Many OS-9 programmers and system integrators, however, do not like and, thus, do not use
trap handlers. Frequently used arguments against trap handlers are their lack of flexibility,
slow calling interface, poor documentation and non-trivial integration into an existing make
environment. It is often proposed to use subroutine modules instead. Unfortunately, most of
the above arguments apply to subroutine modules as well. In addition, subroutine modules
normally cannot have initialised global variables nor are they managed in any other way by the
kernel. They just are accepted as memory modules. The only existing development support is
that the linker appropriately sets the global data requirement in the module header. On the
other hand, a working development environment to use subroutine modules for shared librar-
ies has not yet been made available. It is, therefore, difficult to decide which one a trap handler
or a subroutine module is better suited for a given purpose. The aim of the current article is to
develop and to present a shared library concept for OS-9 that is based on subroutine modules.

2/95 05-9 International

Principle 19

Principle

General

A subroutine module that contains a shared library is best composed of two main code sec-
tions, a jump table that is written in assembly language and the actual shared library func-
tions. In the example presented herein, the latter are written in C language but, in principle,
they could have been written in any other language. When a program requires a particular
function from the subroutine module, it must be linked against a special library that manages
the access to the subroutine module containing that specific function. This management li-
brary is written partly in assembly and partly in C language.

In addition to these two functionally different parts, subroutine module and management li-
brary, an example program written in C is provided. Names and purposes of the various parts
are given in the following table:

Name Purpose Destination
Subroutine modules

submod.a Subroutine module body with jump table submodO, submod1
submodprog0.c Shared library functions submodO
submodprogl.c Another set of shared library functions submod]l
Management library

submodlib_a.a Data initialisation and pointer management submodlib.]
submodlib_c.c Data allocation and handle management submodlib.1

Example program
submuodlib.] Complete management library usesubmod
usesubmod.c Example program that uses a shared library usesubmod

Global Data Allocation and Pointer Management

Since the main program and the subroutine module are linked independently from each other,
both global data pointers start from the relative position 0. As a consequence, write accesses to
global data in the subroutine module would destroy the data in the main program and vice
versa. It is, therefore, necessary to provide an initialisation function that allocates the required
amount of global data before any function of a subroutine module is called. Information about
the required amount of memory is provided by the linker in the module header at offset M$§Mem
or _mh._mdata. In addition, prior to every call of a subroutine function, the global data register
a6 must be set to point to this newly allocated data space. It must be reset to point to the main
program'’s data space whenever program execution leaves the subroutine module and resumes

0S-9 International 2/95

20 Shared Libraries

in the main program. Finally, a termination function should be available that returns the granted
memory to the system when a particular subroutine module is no longer needed.

Global Data Initialisation

Unfortunately, it is not sufficient to simply allocate the required data space. Languages such as
C define data types that are automatically set to O (global data) or are even set non-procedurally
to any given absolute or relative value (initialised global data). In a normal OS-9 program, this
initialisation is partly done by the linker and partly by the kernel when executing an F$Fork
call. The kernel’s action is needed, because OS-9 does not use a mapping memory management
unit so that the positions of code and data are only known at run-time and must, therefore,
remain position-independent until then. The linker provides two lists in the program module
for this purpose; one of these lists is located at header offset M$IData or _midata and contains
offsets and initialisation values for non-remote (16-bit offsets) and remote (32-bit offsets) global
data. The other list is located at header offset M$IRefs or _midref and contains offsets and
initialisation values for pointer data. Correctly speaking, the second list again consists of two
lists, the first list contains offsets to data locations that need to be corrected by the start ad-
dress of the program module and the second list contains offsets that need to be corrected by
the start address of the global data space. All these lists are generated, when the linker pro-
duces a normal OS-9 program or a trap handler - subroutine modules normally do not contain
such lists. The concept for shared libraries as presented herein is, therefore, based on the
principle that a trap handler is produced in a first step and only transformed into a subroutine
module later. This procedure forces the linker to correctly set-up the initialisation lists.

Realisation

Creation of the Subroutine Module
Subroutine modules can only be created by an assembly language directive that specifies the
adequate module characteristics:

psect submod_a, (SubMod<<8)+0Objct, (ReEnt<<8)+Revisgion,1,0,entry, 0

As mentioned above, in a first step a trap handler and not a subroutine module is created.
Thus, the appropriate assembly directive to create the module is

psect submod_a, (TrapLib<<8)+0Objct, (ReEnt<<8)+Revisgion,1,0,entry, 0

The label “entry” points to a table header

2/95 0S-9 International

Realisation 21
org 0
SM$Magic do.l 1 ; Magic number
SM$IFRev do.w 1 ; Interface revision
SM$ModRev do.w 1 ; Module revision
SM$Funcs do.1l 1 ; Number of functions

that is followed by a jump table that contains as many

SE$Flag
SESReturn
SE$Func

org 0
do.w
do.1
do.1l

1
1
1

H
;
i

Flag
Return buffer size
Function offset

entries as functions indicated at offset SM$Funcs.

In addition, the module must contain information to reserve global memory as required by
cstart in form of

_sttop:
_mtop:
_stbot:

etc.

statements.

vsect
ds.l

ds.1
ds.1l

ends

[y

stack top
current non-stack memory top
current stack bottom limit

Thus, the remaining code for the trap handler module that will, later on, become a subroutine
module with two example functions getprop() and putprop() has the form

Revision

entry

firstfunc

lastfunc

The required macros are defined in submod.d:

submod_header macro

0S-9 International

use
use

equ

psect

<oskdefs.d>
submod.d

submod_a, (TrapLib<<8)+0Objct, (ReEnt«<8)+Revision,1,0,entry, 0

submod_header

s
sm

ends

dc.l

dc.w
dc.w

2

SUBMOD_INT, 0,getprop
SUBMOD_INT, 0, putprop

SUBMOD_MAGIC
SUBMOD_IFREV
\1

.
.
I
’

magic
interface revision
module revision

2/95

22 Shared Libraries

dc.1l (lastfunc-firstfunc) /ENTRYLEN ; number of functions
endm
sm macro
dec.w \1
dc.1 \2
dc.1l \3
endm

Metamorphosis from Trap Handler to Subroutine Module

In order to convert a trap handler that has been created as explained above into a subroutine
module, a special program called traptosub.c is needed. The only important source code lines
are:

mod-> mh. _mtylan = mktypelang (MT_SUBROUT,ML_ OBJECT);
_setcrc(mod) ;

The call to the traptosub program is part of the automatic make procedure. The makefile as well
as other code segments not shown here are available on the OS-9 International code disk.

Global Data Allocation

Before a program can use code located in a subroutine module, the module must be loaded into
memory or, if already there, its link count must be incremented. This is done in the function
init() from the management library. It must be called prior to any function call in the subroutine
module. The init() function expects the name of the subroutine module as first and a revision
number as second argument. The name of the subroutine module is passed to the _init_c()
function that attempts to link to the module or, if this fails, to load the module. If both fail, an
error is generated and the function exits. Otherwise, _init_c() looks for a free entry in the module
handle list. This handle list is a dynamically growing list the entries of which contain the start
address of a subroutine module, the start address and the size of its global memory as given in
the following structure type definition

typedef struct submodhandle {
mod_exec *submod;
char *globmem;
int globmemsize;

} SUBMODHANDLE;

If a free handle can be found, the memory for the handle is allocated, and the subroutine
module’s start address is written to the structure element submod. The total amount of re-
quired global memory is then taken from the module header at offset _mdata and allocated
from the system; its address and size are also written to the structure. If a free handle cannot
be found, e.g. during the first call to the init() function, the handle list is expanded by

2/95 0S-9 international

Realisation 23

HANDLECHUNK that is currently set to 32. This part of the library is written in C language and
has the following main elements:

/*
* init _ ¢
*/
int _init_c(char *submodname)
{
int i, rv, datasize;
mod_exec *submod;

if ((submod = modlink(submodname, mktypelang(MT_SUBROUT,ML_OBJECT))) ==
{mod_exec *) -1) {
if ((submod = modloadp(submodname, MP OWNER_EXEC, NULL)) == (mod_exec *) -1)
return((int) submod);

datasize = (submod->_mdata + 8) & Oxfffffffc; /* add 4 plus alignment */

if ((rv = findfreehandle()) == -1) { /* no free handle found */
if ((_handles = (SUBMODHANDLE **) realloc((char *) _handles,
sizeof (*_handles) * (_handlenum + HANDLECHUNK))) == NULL)

return(-1);
memset ((char *) (_handles + _handlenum), O,
sizeof (*_handles) * HANDLECHUNK) ;
_handlenum += HANDLECHUNK;
rv = findfreehandle();
}
if ((_handles[rv] = (SUBMODHANDLE *) malloc(sizeof (**_handles))) == NULL)
return(-1);
_handles[rv]->submod = submod;
_handles[rv]->globmemsize = datasize;
if ((_handles[rv]->globmem = (char *) malloc(datasize)) == NULL) {
free(_handles[rv]);
return(-1);
}
memset ((char *) _handles[rv]->globmem, 0, datasize);
return(rv);

}
/*
*findfreehandle
*/
static int findfreehandle()
{
int i;
for (i = 0; i < _handlenum; i++) {
if (handles[i] == NULL)
break;
}
return{(i == _handlenum ? -1 : i);
}

0S-9 International 2/95

24 Shared Libraries

/*
*gahowsubmods
*/

void showsubmods (void)

{

int i;
for (i = 0; i < handlenum; i++) {
if (_handles[i] != NULL)

fprintf (stderr, “Subroutine module ‘%8’ has %d Bytes at %08X\n”,
(char *) _handles[i]l->submod + _handles[i]->submod-> mh. mname,
_handles{i]->globmemsize, _handles[i]->globmem);

}

The function showsubmods() writes a list of all currently known subroutine modules together
with size and start address of its global memory to the standard error path. It is not really
needed, but is intended for debugging purposes during program development.

Global Data Initialisation

As already mentioned above, global data initialisation is normally done by the kernel. Since the
subroutine module requires exactly the same procedure, the code in the initdata() function is
probably not very different from the code that is part of the kernel's F$Fork call.

The two functions _init_c() and initdata() are called by the actual init() function that, again, is
written in assembly language. In addition, if the subroutine module is not planned to be linked
with a C trap handler (cio or cs)), this function performs the initialisation of all global variables
that are needed by the C library, mostly for stack checking and buffered 1/0.

init:
move.w dl, _revision(aé6) ; save expected revision
bsr _init_c ; do memory initialisation in C
tst.1l do ; test return value
blt.s _init99 ; end, if error
move.l d0, _handle(aé6) ; save handle
movem. 1 do-d3/a0-a3, - (a7)
move.l _handles(a6),a2 ; base of handles
move.1l do,d2 ; our handle nummer
move.l (a2,d2.1%*4),a2 ; our handle
move.l SI$SubMod(a2),al0 ; get address of our subroutine module
move.l SI$GlobMemSize(a2),d0 ; get size of our static memory
move.l SI$GlobMem(a2),a2 ; get address of our static memory
move.l a0,dz2 ; save address of our memory module
move.l a0,al
bsr initdata ; initialise global data

imitate cstart

2/95 0S-9 International

Realisation

25

movem. 1l (a7)+,d0~-d3/a0-a3
move.l _handle(aé6),do H
rts

restore our handle number

The function that performs the jump to the code in the subroutine module is defined in a macro

in submod.d

func macro

\1:
movem. 1l d0-d3/a0-a3, -(a7)
move.l a6, -(a7)
bsr _init ;
bces _reverror
lea.l SM$Table (al),al :
move.l SE$Func+sm$\l1l(al),d2
move.l di,do H
jsr (a2,d2)
bra —end
endm

returns module in a0, mod entry in a2

start of entry table
; function offset
first argument

so that the actual call of the getprop() or putprop() function in the library is short and easy:

func getprop
func putprop

Should the library be supplemented with other functions, they may simply be appended here

using the above given macro func.

Finally, a library function is needed that is called prior to every jump to the subroutine module
and that takes care of the global data pointer. In addition, it checks whether the subroutine
module is valid and has a correct revision number.

*

* init

*

* Check revision and set submod’s global

*

* Input: do handle number

*

* Output: a2 start of submod

* Output: a0 entry into submod

*

_init
move.l a6,al H
move.l _handles(a6),a0 H
move.l (a0,d0.1*4),a0 }
move.l SI$GlobMem(al),a6 ;
cmp.1l #0,a6 H
beqg.s _init99 :
adda.l #$8000,a6 H
move.1l SI$SubMod(al),a0 ;
move.l al,az2 ;
add.l M$Exec(a0l),al :
move.l SM$Magic(a0),d3
cmp.l #SUBMOD_ MAGIC,d3 H
bne.s _init99 ;

0S-9 International

memory pointer

save main’s global data pointer
base of handles

our handle

set submod’s global data pointer
initialised?

no!

bias

start of submod
save it

module entry

match?
no!

2/95

26 Shared Libraries
move.w SM$ModRev (a0),d3 ; get module interface revision
cmp.w _revision(al),d3 ; at least expected revigion?
bhi.s _init99 no!
rts
_init99 ori.b #1,ccr ; set carry
rts

Shared Library Functions getprop() and putprop()

The entries getprop and putprop are already referenced in the subroutine module’s jump table
but not yet defined as a valid code segment. They must be defined in the program section that
is intended to be made available in form of the subroutine module. Such programs are normally
written in the C language. Since global data and even initialised global data are supported, all
elements of the C language can be used without any restriction. The following program
submodprogO.c is intended to serve as an example and does not perform any useful action
except testing. A similar program (submodprogl.c) is available that is linked into a second
subroutine module (submod1l). Both subroutine modules are called from a test program in
order to show the ability of the shared library concept to support more than one simultaneously
linked subroutine module. Here are some example lines from the source code (submodprog0.c)
that contains the first set of the two shared library functions getprop() and putprop():

2/95

char *strconst;

char *initstrconst = “I am an initialised string constant\n”;

int initint 12345678;

int putprop():

int (*function) () = putprop;
char **gtraddr = &initstrconst;
int *initaddr = &initint;

/*

*getprop

*/

int getprop{(char *str)
{

int i;
errno = 216;
strconst = “I am a string constant\n”
if ((i = readln(0, str, 255)) > 0)
str[i - 1] = ‘\0’;
else
str[0] = ‘\0’;

printf (“You entered ’‘%s8’\n”, str);

H

printf (”“Setting errno to %d\n”, errno);

return(getpid());

0S-9 International

Realisation

27

/*

*putprop

*/
int putprop(char *str)
{

char buffer([128];
char *cp;

writeln(l, str, strlen(str));

writeln(l, “\n”, 1);

writeln(l, “Printing a string constant:\n”, 80);
writeln(l, strconst, strlen(strconst));
writeln(l, initstrconst, strlen(initstrconst));
writeln(l, *straddr, strlen(*straddr));

cp = getenv(“TERM”);
printf (“TERM is ‘%s’\n”, cp == NULL ? “unknown” : cp):

printf (“Does buffered I/0O work?\n”);

printf(#“Initialised integer %d\n”, initint);
printf(#“Initialised integer = %d\n”, *initaddr):;

sprintf (buffer, “Our process ID is %d\n”, getpid()):;

printf (”This function is located at address %08x\n”, putprop);
printf (#This function is located at address %08x\n”, function);

printf (“This is an MC%d CPU\n”, _getsys(D_MPUType, 4)):;

return(0);

Test Program

Last but not least, a test program is needed. The following code lines are part of a program that
links and tests submodo first, then links to submod1 and, finally, uses them both interchange-

ably:
main()
{
char *gubmodname(= SUBMODNAMEO;
char *submodnamel = SUBMODNAME];
int submodno0, submodnol, retval;

printf(#Initialising...\n”);
gubmodno0 = init (submodname0, IF_REV);
if (submodno0 == -1)
exit (_errmsg(errno, “can‘t init subroutine ‘%s’ due to “, submodname0));

printf (“Asking for input:\n”);
retval = getprop(submodnol, str);
str(strlen(str) - 1] = “\0‘;
printf(“errno set to %d\n”, errno);

05-9 international

2/95

28 Shared Libraries

printf (“Input was ‘%s’\n”, str);
printf (“Function returned %d.\n”, retval);

strcpy(str, “OUTPUT”);

printf (“\nOutput will be ‘%s’\n\n”, str):

if ((retval = putprop(submodno0, str)) < 0)
exit(_errmsg(errno, “can‘t write due to ”));

printf (“\n\n”);

printf (“Function returned %d.\n”, retval);

printf(#Initialising another one...\n”);
submodnol = init (submodnamel, IF_REV);
printf (“Done (%d).\n”, retval);
if (submodnol == -1)
exit (_errmsg(errno, “can’t init subroutine ‘%s’ due to ”, submodnamel));

showsubmods () ;

strcpy(str, “ANOTHER OUTPUT”);
printf (“\nOutput from second subroutine module will be ‘%s’\n\n”, str);
if ((retval = putprop(submodnol, str)) < 0)
exit (_errmsg(errno, “can’t write due to *));
printf (“\n\n”);
printf (“Function returned %d.\n”, retval);

strepy(str, “OUTPUT”);
printf (“\nOutput from first subroutine module will be ‘%s’\n\n”, str);
if ((retval = putprop(submodno0, str)) < 0)
exit (_errmsg(errno, “can’t write due to #));
printf (“\n\n”);
printf (“Function returned %d.\n”, retval);

printf (“Terminating...\n”);
retval = term(submodnol);
printf (“Function returned %d.\n”, retval);

printf (“Terminating another one...\n”);
retval = term(submodnol);
printf (“Function returned %d.\n”, retval);

printf (“Thank you for using SUBMODs.\n”);

Limitation

There are two different ways to use the above shared libraries: one way is to combine them with
the standard OS-9 trap handler (cio or csl). If this is done and both the main program and the
subroutine module use the same trap handler, all I/O function including buffered 1/0 are safe,
and there are no known limitations as to what extend buffers and pointers may be shared
between functions of the main program and functions of the subroutine module. If, however,
library C functions are used, or C functions are used even interchangeably from trap handler
and library, the shared library concept has one important limitation that is obvious from the

2/95 0S-9 international

Conclusion 29

way C library global data are handled. Information is then only transported from the main
program to the shared library function but not vice versa. In addition, the information is not
updated after the call of the initialisation procedure. Therefore, buffered I/0 must always be
flushed before branching between the main program and the subroutine module. In addition,
buffered files must not be opened in one module and closed in the other module and vice versa.

Conclusion

The concept for shared libraries based on subroutine modules presented herein, has been
thoroughly tested and used in a real-world application. If the above limitation is considered,
this concept can be recommended without any other restriction.

Reference

[1] Dayan PS (1992) The OS-9 Guru, 1 — The Facts, edition 1, Galactic Industrial Ltd., Dur-
ham UK.

The complete development environment for shared libraries based on subroutine modules as
described in the current article is available on the OS-9 International code disk.

Carsten Emde can be reached by email at <carsten@effo.ch>.

PCMCIA/JEIDA support under 0S-9
PCMCIA/JEIDA card raw access

L4 i § Aot i ;

¢ FLASH read/write supported High-Tech-Made in Switzerland

« EPROM emulation devices available

* MCDISK — SCSI device with full PCMCIA/ Tafernstrasse 20 Tel. ++41 56 83 30 80

JEIDA and ATA support CH-5405 Baden-Dattwil Fax ++41 56 83 30 20

GNU make for OS-9

Carsten Emde

Introduction

The availability of the GNU C compiler gcc2, a Bourne-like shell sh and a Unix-like library of C
functions o0s9lib.l has made it much easier to port Unix software to OS-9 than ever before. One
important tool, however, was still missing: a standard make. This article presents GNU make
for OS-9 that executes many Unix makefiles without requiring more than only marginal adap-
tations. In order to allow for the coexistence with the original 0OS-9 make tool, GNU make for
0S5-9 was called gmake.

Technical Details of the Port to OS-9

Very few modifications were necessary to adapt gmake to OS-9; the main changes relate to the
default settings in the file default.h. In order to let gmalke behave similarly to OS-9's original
make tool — as far as the search strategies and names for default directories are concerned - the
following changes were made to the default variables and implicit rules.

Default Variables

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
LINK.c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)
LINK.r = $(CC) $(LDFLAGS) $ (TARGET_ARCH)

LINK.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)
COMPILE.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $ (TARGET_ARCH) -c

Implicit Rules

o o°
o .
°
H

$(LINK.r) $(RDIR)/$~ $(LOADLIBES) $(LDLIBS) -o $(ODIR)/S$@

a:
.r: %.a
$(RC) $(SDIR)/$< $(RFLAGS) -o=$(RDIR)/$@

X °

2/95 0S-9 International

Using gmake 31

of o

80 o
(2]

$ (LINK.c) $(SDIR)/$* $(LOADLIBES) $(LDLIBS) -o $(ODIR)/$@

$ (COMPILE.c) $(SDIR)/$< $(OUTPUT_OPTION)

$ (LINK.cc) $(SDIR)/$* $(LOADLIBES) $(LDLIBS) -o $(ODIR)/$@

$ (COMPILE.cc) $(SDIR)/$< $(OUTPUT_OPTION)

Similar changes were made for other languages (FORTRAN, Pascal) and other tools (yacc, ling.

Using gmake

The gmake program is easy to use, since most of the frequently required run-time options, for
example ‘-n’ and ‘-d’, are the same in the two make tools gmake and make. But gmake has a
number of additional features such as the ‘-p’ option. This option lets gmake reproduce the
current status of the internal data base (implicit, environment-derived and explicit variables,
and implicit and explicit rules). These settings are written in form of a makefile which is very
helpful for debugging purposes.

When gmake is started with the -h’ option the following usage information is provided:
Usage: gmake [options] [target] ...

Options:
-b, -m Ignored for compatibility.
-C DIRECTORY, --directory=DIRECTORY
Change to DIRECTORY before doing anything.
-d, --debug Print lots of debugging information.
-e, =--environment-overrides
Environment variables override makefiles.
-f FILE, --file=FILE, --makefile=FILE
Read FILE as a makefile.
-h, --help Print this message and exit.
-i, --ignore-errors Ignore errors from commands.
-I DIRECTORY, --include-dir=DIRECTORY
Search DIRECTORY for included makefiles.
-j [N], --jobs[=N] Allow N jobs at once; infinite jobs with no arg.
-k, --keep-going Keep going when some targets can’t be made.
-1 [N], --load-average[=N], --max-load{=N]
Don’t start multiple jobs unless load is below N.
-n, =-just-print, --dry-run, --recon
Don’t actually run any commands; just print them.
-o FILE, --old-file=FILE, --assume-old=FILE
Consider FILE to be very old and don’t remake it.
~p, —-print-data-base Print make’s internal database.
-g, --question Run no commands; exit status says if up to date.

05-9 International 2/95

32 GNU make for 0S-9

-r, --no-builtin-rules Disable the built-in implicit rules.
-8, -—-silent, --quiet Don’t echo commands.
-S, --no-keep-going, --stop

Turns off -k.

-t, --touch Touch targets instead of remaking them.

-v, =--version Print the version number of make and exit.

-w, =--print-directory Print the current directory.

-~no-print-directory Turn off -w, even if it was turned on implicitly.

-W FILE, --what-if=FILE, --new-file=FILE, --assume-new=FILE
Consider FILE to be infinitely new.
~-warn-undefined-variables Warn when an undefined variable is referenced.

Important Features

GNU make has so many features that it is impossible to describe them as part of this article,
but a detailed users’ manual in Postscript format (make.ps) is part of the software distribution.
Only three important features are mentioned here in order to exemplify gmake’s versatility.

Make without makefile

Actually, gmake does not require a makefile to be present; if the default rules are acceptable, it
is sufficient to simply enter

$ gmake program

but it is even possible, again without makefile, to define specific compiler and linker options,
e.g.

$ gmake program 'CFLAGS=-02 -v' ODIR=/dd/MYCMDS

Include Directive

System-wide definitions such as compilation rules and options can be held in a separate file
and included in the same way as header files can be included into C sources. The following
settings may, for example, be written to /dd/SYS/cflags

OPT = -optasm -02 -fomit-framepointer
CPU = -mc68020

TRP = -uwlibs -ctrap

CF = $(OPT) $(CPU) $(TRP)

2/95 05-9 International

Important Features 33

and included into every project’'s makefile

include /dd/syYS/cflags

CFLAGS = $(CF)
LDFLAGS = $(TRP) $(CPU)
ODIR = /dd/MYCMDS

program: program.r

Environment Variables

All environment variables can be evaluated in the makefile. This allows, for example, defining
environment variables that modify the compilation and linking procedure. A common applica-
tion is the definition whether a host or a target software version is produced. The make proce-
dure may then also take care that the newly produced target version is sent to the target, e.g.
via network. Such a makefile could have the following form:

program: program.r

ifeq ($(PLATFORM), HOST)

@echo Producing host software

@$(cCc) $(LDFLAGS) -D$(PLATFORM) $@.r -o $@
endif

ifeq ($(PLATFORM), TARGET)
@echo Producing target software
@$(cc) $(LDFLAGS) -D$(PLATFORM) $@.r -o $@
@send2target

endif

If host or target software is to be compiled, the lines
$ setenv PLATFORM HOST
$ gmake
Producing host software
or
$ setenv PLATFORM TARGET
$ gmake
Producing target software

Sending software to target ... Done.

must be entered, respectively.

05-9 International 2/95

34 GNU make for 0S-9

Conclusion

The compatible make utility for 0S-9 fills the remaining gap in the list of tools that are required
for porting Unix software to OS-9. Many large software packages such as Ghostscript etc. can
now be ported much easier to 0S-9, since most time was spent in the past to adapt the make-
files. The port of small tools to OS-9 may even take no more time than it takes to port these tools
to a Unix station, the operating system of which also is not explicitly listed in the makefile. The
current version of GNU's stream editor sed, for example, could be ported to OS-9 without
requiring any major change to the makefile or to the sources so that the entire port was done in
less than 5 minutes.

The described software is available as PD #1 15 from EFFO. The printed version of the mentioned
manual (more than 160 pages) is also available from EFFO at a nominal handling fee.

Carsten Emde can be reached via email at <carsten@effo.ch>.

SY 01/95

More power for VME-boards thanks to the PowerPC from Motorola.

The new product family MVME160x establi-
shes new standards concerning price/perfor-
mance as well as concerning maximum per-
formance. Optimal flexibility is achieved by a
modular design: processor-, memory- and !
mezzanine-modules for /O are exchangeable.

PCI
PMC Slot

The user has, for example, the choice between
CPU-module with PowerPC603 or -604 (66
resp. 100 MHz clock frequency) and 8 to 128
Mbyte DRAM that are mounted on the base
board with the I/O controllers.

DIt PO Looal Buis.

.:,-‘ Bl
PCI/ISA Bridge
82387

SCSI-2 Wide
NCR 53C825

VMEG4
VMEchip2

The base board offers maximum functionality
with Ethernet, 16-bit SCSI-2, superVGA- |
graphics, mouse-port, keyboard-port and ——
four serial-ports in one single VMEbus-slot. MVYME 160X Base Board l

0S-9 is released on these boards. © =1PClBus Load PowerPC Modules by Motorola
Omni Ray AG

Industriestrasse 31, CH-8305 Dietlikon/Zurich, Phone 01 835 21 11, Fax 01 833 50 81
A Company of Sonepar Electronique International SEI

Debugger Insights

Carsten Emde

Hard Versus Soft Breakpoints

In principle, two different methods exist to execute a program under the control of a debugger.
The first method is called “soft breakpoint”, it simply surveys the program counter register: the
debugger executes the program step by step, and the address in the program counter is com-
pared with a predefined value (the breakpoint) after every single instruction. The advantage of
this method is that it can be used irrespective of whether the code is located in RAM or ROM,
since the code does not need to be modified. As a disadvantage, the program executes much
slower than under normal conditions; in consequence, a code section with critical timing con-
ditions normally cannot be debugged with soft breakpoints. In addition, debugging can be very
time consuming. Therefore, a second method exists that is based on exception processing, e.g.
using the “illegal instruction” vector. In a first step, the debugger inserts the address of its own
exception handler at the appropriate vector (e.g. vector #3), and then replaces the instruction at
the chosen breakpoint by an instruction that causes exception processing, e.g. Motorola’s re-
served “illegal” instruction 0x4AFC. The debugger may then start the program in the same way
as if it had been started without debugger, but execution is stopped and control is returned to
the debugger whenever the program counter reaches the inserted illegal instruction. This is
called “hard breakpoint”; its only disadvantage is that the code must be modified, i.e. the method
cannot work, if the code is located in ROM.

0S-9 Debuggers

The source level debugger srcdbg and the system-state debugger sysdbg always use hard break-
points. The user-state debugger debug and the ROM-level debugger, however, may be employed
in different ways so that they use either hard or soft breakpoints. Unfortunately, these two
debuggers have a different user interface so that different commands must be employed for a
particular breakpoint method.

The User-state Debugger debug

The commonly used commands to prepare a program for execution, to set a breakpoint and to
start execution are

0S-9 International 2/95

36 Debugger Insights

$ debug

dbg: f program

default symbols belong to ‘program’

dn: 00000031 0000002E 00000081 00000003 00000000 000004E2 000017DO 00000000
an: 00000000 001227p0 00000000 01678BOO 00000000 001222EC 00129000 001222EC
pc: 01678B50 <cc: 00 (—)

<FPCP in Null state>

_cstart >2D468010 move.l 46, _totmem(ab)
dbg: b main

dbg: g

dn: 00000001 0012271E 00000001 00000003 00000000 000004E2 000017DO0 00000000
an: 0000014C 00000000 0012271E 00122714 00122710 00000000 00129000 001222E4
pc: 01678D90 cc: 10 (X—)

<FPCP in Null state>

main >4E550000 link.w a5, #0

If these commands are entered, debug uses soft breakpoints, i.e. execution is relatively slow
and any real-time behaviour is disabled. Instead of ‘g’ (go), however, the 'x’ (execution) com-
mand can be used. This command uses hard breakpoints, but in contrast to ‘¢’ an argument is
expected that specifies the maximum number of instructions to be executed, unless a break-
point is encountered. In order to imitate the ‘g’ command, the highest number possible must be
entered, i.e. ‘ffffffff. Since debug automatically transforms negative numbers to the 2’s comple-
ment representation, -1’ can be entered instead. In conclusion, the command

dbg: ¢
starts execution with soft breakpoints, the command
dbg: x-1

starts execution with hard breakpoints.

The ROM Level Debugger

By default, the ROM level debugger is set to use hard breakpoints. The command ‘o’ allows to
modify various program settings that can be inspected with the ‘0?’ command:

RomBug: o?

a - toggle control register display
(68010/68020/68030/68040/683XX)

b<n> - numeric input base radix

c<n>[:£] - set MPU type to <n> (68000/etc), FPCP type to 6888<f>

- toggle FPCP decimal register display

<addr> - display exception frame (default <addr> is .a7)

- toggle FPCP register display

toggle MMU register display

- toggle rom type (soft) or ram type (hard) breakpoints

- toggle disassembly hex output format

X HE Hho o
1

2/95 05S-9 International

Hard Versus Soft Breakpoints 37

v - display vectors being monitored

v[-]1[8lu]l] [dl<n> [<m>] - monitor exception vector (‘’-’ to restore vector)
‘g’ system state only, ‘u’ user state only
‘d’ display only, <n> vector number in decimal,
‘m’ upper limit vector number in decimal

v? ~ display all exception vector values

As can be seen, the ‘or’ command toggles the breakpoint method. In conclusion, the ROM level
debugger uses hard breakpoints by default; the command

RomBug: or

entered once, causes the ROM level debugger to use soft breakpoints.

Carsten Emde can be reached via email at <carsten@effo.ch>.

The Only Real-Time Total Selution Supplier

Letters to the Editor

Big Hard Disks Under OS-9

OS-9 International 1/95, p. 21

We read with interest the article about big hard disks. There is an important addition to make
that supports the recommendation to limit the size of an OS-9 hard disk partition to 2 GByte:
NFS for OS-9 is unable to address a file, if it is located at a higher logical address than 2 GByte.
According to Microware, this limitation is already part of Sun’s original NFS software and was
not removed in the OS-9 port. The problem is still present in 0S-9 V3.0, and Microware has not
announced any plans to release a new version that allows to mount larger hard disks than 2
GByte via NFS.

Gerald Nimmrich, EKF Elektronik Messtechnik GmbH , <gn@ekf.werries.de>

0S-9 3.0 - What is New?

OS-9 International 1/95, p. 9

There is a comment to be made to Beat Forster’s article “OS-9 3.0 - What is New?”, since, in the
meantime, Microware has released the 3.0.1 drop-in upgrade accompanied by a bug report. In
general, the article reflects quite well the situation as reported by Microware; the tsleep(1)
problem has, in fact, been solved. The kernel's P$PModul (primary module) field that pointed to
the kernel's name instead of its address, however, was also fixed and now behaves identically to
all other modules. Retrospectively, the irregular behaviour in 3.0.0 was a mistake and not, as
the article suggests, a feature.

Wolfgang Ocker, reccoware systems, <weo@recco.de>

2/95 0S-9 International

_getsys();

Reto Peter

Monthly EFFO Meetings

The winds of change have again visited EFFO. Starting in June, the monthly EFFO meeting takes
place in the Restaurant “Zunfthaus am Neumarkt” in Zurich. Its exact address is Zunfthaus am
Neumarkt, Neumarkt 57, CH-8001 Zurich, phone +41 1 252 79 39. It is located in the heart of
Zurich and can easily be reached from the main railway station using tram 3 or bus 31 (stop

“Neumarkt”).

As usual, the meeting starts at 8 PM, but most participants meet at 7 PM in the Restaurant to

have supper together.

Everybody interested in OS-9 is kindly invited to join the meeting.

Imprint 0S-9 international
Published by European Forum For OS-9 (EFFO)
President Werner Stehling

Reto Peter
Stephan Paschedag
Carsten Emde

Vice President
Director of Finance
Editor-in-Chief

Design Marc Balmer, Werner Stehling (layout)
Address

European Forum For 0S-9

P.O. Box FAX +41 194038 90
18606 Greifensee email os9int@effo.ch
. Switzerland

: Copyright © 1995 by European Forum For OS-9 (EFFO).

Copyright © (design) 1994 by Marc Balmer.

Alirights reserved. No part of this journal may be reproduced without the
prior written permission of the publisher. All source code is provided with-
out any warranty. Trademarks are not marked as such.

- Printed directly from disk by Fotoplast, Zurich, Switzerland
ISSN: 1019-6714

Subscriptions

0S-9 International 1s the official organ of the European Forum For
0S-9 (EFFO). The subscription s included with the annual EFFO mem-
bership fee. In addition, it is avallable by separate subscription for non- -
EFFO members, single issues are also avallable. All following prices are
given In Swiss Francs, shipping included:

Switzerland Europe Overseas
One year (3 issues) 25.00 30.00 35.00
Single issue 10.00 12.00 14.00

To subscribe to 0S-9 International or to order a single issue send a
letter, postcard, fax or email to EFFO.

Advertisements

0S-9 International is not only an ideal platform for discussing OS-9 |

related topics, it 1s also the ideal place to advertise. OS-9 International 1

reaches end-users, system-software developers and, nevertheless, deci- !

sion-makers.

Please contact EFFO for detailed information on how to place an ad in !

0S-9 International. i
|

	OS-9 International
	Table of Contents
	startup
	PCMCIA Cards and Non-PC Operating Systems
	Introduction
	History
	Technical Background
	Drivers for Non-PC Operating Systems
	Transparent Memory Cards
	Standardized Mass Storage Devices
	Standardized Modems
	Other I/O Devices

	PCMCIA 3.0
	What is needed to make PCMCIA Suitable for Industrial Applications?
	Request for Comments

	OS-9 Meets PLC
	Introduction
	OS-9 and its Normal Environment
	The Classic PLC
	The Best of Both Worlds
	Programming the Smart I/O Board
	Standard OS-9 Programming
	PLC Programming
	Mixed Programming

	The Communication
	The Link between ISaGRAF and C
	Enhancing the ISaGRAPH Kernel
	Trap Handler
	Independently Running Tasks

	Conclusion
	Reference

	Memory Modules
	Introduction
	OS-9 Module Concept
	Module Integrity Checks

	Data, Subroutine and Trap Library Modules
	Data Modules
	Subroutine Modules
	User trap Libraries

	Summary

	Sharing Libraries Using Subroutine Modules
	Introduction
	Principle
	General
	Global Data Allocation and Pointer Management
	Global Data Initialization

	Realization
	Creation of the Subroutine Module
	Metamorphosis from trap Handler to Subroutine Handler
	Global Data Allocation
	Global Data Initialization
	Shared Library Functions getprop() and putprop()
	Test Program

	Limitation
	Conclusion
	Reference

	GNU make for OS-9
	Introduction
	Technical Details of the Port to OS-9
	Default Variables
	Implicit Rules

	Using gmake
	Important Features
	Make without makefile
	Include Directive
	Environment Variables

	Conclusion

	Debugger Insights
	Hard Versus Soft Breakpoints
	OS-9 Debuggers
	The User-state Debugger debug
	The Rom Level Debugger

	Letters to the Editor
	Big Hard Disks Under OS-9
	OS-9 3.0 - What is New?

	_getsys()
	Monthly EFFO Meetings

