August 1994 OS—9 |n‘ternati0na| Issue 2/94

startup 3
Peter Dibble at CERN 4
How Long Do We Sleep? 9
The GNU C Compilers 13
An sh-like Shell for 0S-9 26
_getsys(); 34

EFFEQO European Forum For 0S-9
S 8606 Greifensee, Switzerland sFr. 10.00

[g S ISSN: 1019-6714

Egal, ob Sie sich fiir CPUs oder Grafik, fiir Bildverarbeitung oder
Systemkonfigurationen inferessieren:

ELTEC liefert anspruchsvolle Technologien und Dienst-
leistungen fiir industriegerechte Losungen komplexer
Aufgaben der ProzeBautomatisierung.

Modulare Flexibilitdt vom low-cost bis zum high-end Bereich
bietet 2.8. der EUROCOM’17-
1 oder 2 MC6B{EC)040 C(PUs
2- 32 MB DRAM (63 MByte/sec)
opt. SVGA Graphik
(1152 x 900 Pixel, 256 aus 16 Mio. Farben)
e opt. Netzwerk
e S(51-2
4 serielle und 2 parallele Schnitisteflen
o LEB {fiir IPIN-Erweiterungshoards)
Die ELTECIPIN-Module Intelligent Serial Interfoce Controller
(IPIN 17) und flexible Camera Inferface (IPIN 19) erschliefien
Ihnen zusiitzlich die Einsatzbereiche
o Telekommunikation und
o Bildverarbeitung.

Software + Hardware + Know-how + Kundenniihe ...

insbesondere fiir den I/0- und Control-Bereich bietet ELTECjetzt
den EUROCOM"17 in modifizierier Form als Trger fir
Mezzanine-Boords der

o MODULbus und

o M-Module

Spezielle Softwaremodule erlouben den villig fransparenten
Einsatz von zwei (PUs unter 0S-9 mit MGR und anderen
Betriebssystemen.

elektronik mainz

ELTEC Elekironik GmbH - Postfach 42 13 63 - D-55071 Mainz
Telefon +49 (0 6131) 918-0 - Fax +49 (0 6131) 918-198
oder unser Distributor in der Schweiz:

SPECTRALAB - BrunnenmoosstraBe 7 - CH-8802 Kilchberg
Telefon (01) 7153807 - Telefox (01) 7155447

... die ideale Entwicklungs-Plattform unter 05-9 !

startup

Surprise, surprise, here we are again. We are sure that nobody would ever have expected an-
other issue of 05-9 International after such a short time. So even did we.

If you take a closer look at this issue, you may notice some layout changes. The reason is easy
to explain: all former issues were produced using TgX on a NeXT station, this is the first one
created using a Macintosh computer. It was not just a funny idea to change the system, the
background is more serious. O5-9 International originally was Marc Balmer’s idea. He not only
recognized that there is a demand for a publication dealing exclusively with OS-9 but he also
put this idea to reality and was responsible for all issues released up to now as publisher and
editor. In fact, the increasing number of inquiries about 0S-9 International proves him right.
Unfortunately, he decided to resign from these activities, since he no longer can afford the time
needed to produce future issues of this journal.

Marc’s decision has brought the European Forum For OS-9 into a peculiar situation: EFFO lost
its official organ. Therefore, EFFO decided to take over the responsibility for OS-9 International.
Hence, starting with this issue, please blame EFFO directly for everything that goes wrong with
0S-9 International. In accordance to the decisions taken at the 1994 Annual General Meeting,
there will be three issues per year.

Marc, we will do our best to continue your work.

In consequence, neither the layout nor the contents will undergo a principal change. There is
really no shortage of ideas for articles. Besides articles that focus on problems primarily of
interest for system programmers, we will increase the number of articles to help users coping
with everyday’s problems. In addition, we will present the EFFO PD collection in some greater
detail and bring suggestions of how to make life with OS-9 more comfortable. The latter was
always EFFO’s most important goal.

We hope you will profit from OS-9 International, enjoy this new issue and stay with us in the
future.

Werner Stehling

0S-9 Internationat 2/94

Peter Dibble at CERN

Martin Merkel

What’s About to Be New

Microware is currently preparing the release of OS-9 Version 3.0. A prerelease has been distrib-
uted to the local Microware agents where final tests, mainly on packaging, are done. The second
major new upgrade is Ultra C Version 1.1 which is shipping now. The near future will bring
Ultra C Version 1.2, an enhanced version of FasTrak, a new release of 0S-9000 as well as a C++
front end to Microware'’s Ultra C compiler. Mid 1994 we will see a port of OS-9000 to the
PowerPC and later to the MIPS RISC architectures. Further away in the queue is Microware’s
multiprocessor operating system, Hydra, based on 0S-9000. OS-9 Version 4.0 is currently
scheduled for 1995, as well as 0S-9000 Version 2.0.

FasTrak

Microware now has version 1.1 of FasTrak, its new cross development tool. FasTrak, which is
currently supported on SUN 3 (Motorola 68k based) and SUN 4 (SparcStations), Hewlett Pack-
ard PA/RISC and Silicon Graphics workstations, is a replacement for the old cross develop-
ment environment UniBridge. Ports to Microsoft Windows and native OS-9 systems will even-
tually be done as well. FasTrak is based on an X11/Motif user interface and includes a work-
bench, a graphical overlay to a text editor, a makefile editor, a source and assembly level debug-
ger and a target profiling tool. Compared to UniBridge, FasTrak is running entirely on the host
system. Communication with the target stations is maintained by two small daemons on the
target that can be activated within the target startup file. This implementation scheme will
allow future support for system state debugging of C code as the actual debugger task is run-
ning on the host. Future releases of FasTrak will be more integrated within Hewlett Packard’s
SoftBench, which is available from HP as a software product. SoftBench differs from FasTrak in
that it supports software development distributed across multiple development stations. Inte-
gration into SoftBench will also allow the use of CASE tools, one of the items Microware cus-
tomers were asking for. Other items which will be addressed in updates of FasTrak are support
for emulators and the possibility of watching address locations in memory.

2/94 0S-9 International

Ultra C Version 1.1 5

Ultra C Version 1.1

Microware has recently updated its new ANSI C compiler. Version 1.1 now shows a much
improved compatibility with the old Kernighan & Ritchie compiler:

e In backward compatible mode, #asm/#endasm statements are allowed for embedded as-
sembly code. See the following code example :

void myfunct (x, y) int x; int y; {
#asm

move.l %d0, (%a4d)

move.l %dl, (%a4
#endasm }

The corresponding Ultra C syntax would be

void myfunct(x, y) int x; int y; {
_asm("

move.l %40, (%ad)

move.l %dl, (%ad)
"); }

¢ Type checking has been relaxed in the backward compatible mode.
e Support of casts on Ivalues has been improved in the backward compatible mode.

A new feature that has been introduced with Ultra C Version 1.1 is support for alignment of
code and data segments. Alignment may be controlled both at assembler and object code linker
level. r68 interprets a new flag -p”:

-p<n> Align orgs to <n> boundary. <n> may be 2, 4, 8 or 16.
Similarly 168 has two new directives:

~-b=<n> Align code and data segments to <n>. <n> may be 2, 4, 8 or 16.
-x=<n> Align execution offset to <n> boundary. <n> may be 2, 4, 8 or 16.

Inlining library functions has been improved as well. A new library csl! is included in the
distribution to support code inlining of calls to the C subroutine library, which previously has
been provided only as a trap handler module. Similarly the floating point support package
library fpsp.l has been announced, but this is not included in the distribution yet. Code with
inlined fpsp calls will certainly be much bigger, as is for example the fpsp module with 37 KByte
compared to the 6 kByte of fpu040. As a further enhancement of Ultra C, Microware is currently
working on a C++ frontend to their compiler. This C++ implementation will come with a pre-
coded C++ library. The current schedule foresees a beta test version for the end of Q1/94 and
the final product release for end of Q2/94. Future releases of Ultra C will undergo a lot of
improvements in the area of interprocedural optimization which is not fully exploited yet.

0S-9 International 2/94

6 Peter Dibble at CERN

0S-9 Version 3.0

The major new product release from Microware is OS-9 Version 3.0. Currently 0S-9 3.0 is
shipped as a prerelease to the local distributors. The original schedule was for 0S-9 3.0 to be
released in April 1993, but bugs discovered in-house delayed shipping until end 1993. Never-
theless Version 3.0 is regarded as stable. As a matter of fact only minor changes were applied to
the kernel since April 1993. OS-9 Version 3.0 introduces the following new features:

* Preemptible kernel. An important new feature in OS-9 Version 3.0 is that the kernel may
be preempted by processes running with higher priority. This will lead to improved deter-
minism for critical tasks. Kernel preemption may be optionally disabled in the init module.
Preemption may also apply to file-managers with the exception of ISP and SBF.

* Atomic 0S-9. 0S-9 Version 3.0 includes as an optional replacement for the standard oper-
ating system kernel the so called Atomic kernel. This new kernel is primarily aimed at em-
bedded systems as it will be approximately 15% smaller and will be about 15% faster than
the standard kernel. The major features in which the Atomic kernel differs from the stand-
ard kernel are that with the Atomic kernel installed every process runs in super user group,
there is no support for the system security module and debugging hooks in the kernel have
been omitted.

e IOMan is a separate module. = More configurable. = Bigger. = Almost as fast.

* Many new kernels. There will be a separate kernel for each CPU type (68040, 68020/030,
68000, CPU32, ...). An optional buddy memory allocation scheme will be available which
works slightly faster under normal conditions but much faster under worst case. On the
other hand this implies that only the full memory area that has been allocated can be given
back to the system, partial deallocation is not possible. All in all 0S-9 Version 3.0 will ship
with a total of 32 different kernels.

* 683xx systems. OS-9 Version 3.0 will also include more support for the 683xx family of
processors. Microware will provide bootable code for 68302, 68332, 68340, 68349 (which is
a 68340 plus DMA and onchip cache) and soon 68360 systems.

* SSM may be used just to turn on copy back caching.
¢ Numerous small enhancements.

In the performance area a lot has been improved concerning the interrupt response time, which
is nearly twice as fast as for OS-9 Version 2.4. Equally, interprocess communication, namely
signals, named and unnamed pipes, alarms, data modules and sockets is on average 10-30%
faster compared to Version 2.4. Additionally, a new interprocess communication mechanism in
the form of binary semaphores is introduced with Version 3.0. Binary semaphores are approxi-

2/94 0S-9 International

New Release of 0S-9000 7

mately 10-15% faster than signals. They are implemented with 4 system calls _os_sema_init,
_os_sema_p to reserve, _os_sema_v to release the semaphore and _os_sema_term.

0S-9 Version 4.0

0S-9 Version 4.0 will again be not system state compatible with OS-9 Version 3.0. The major
item addressed in this release will be the improvement of file managers.

New Release of OS-9000

0S-9000 has been recompiled with Ultra C. This results in 10-20% faster code. Interrupt
handling is now approximately 30% faster. The portability among PC compatibles has been
improved as well. The new OS-9000 will include support for RAM sizes above 16 MBytes. VPC
(virtual PC), which is included as default in the current distribution, will be optional in the next
release to increase general performance. Equally the SSM is optional.

0S-9000 Version 2.0

0S-9000 Version 2.0 will benefit from many improvements introduced with OS-9 Version 3.0.
It also will include modifications from experience gained with the Hydra project. This includes
for example lightweight threads that are required for the multiprocessor 0OS-9000. Further
changes will emerge out of the port of 0S-9000 to the PowerPC architecture. 0S-9000 Version
2.0 will also include modifications from POSIX. Nevertheless these modifications depend on the
time-scale of the POSIX standardization process. To get an idea of the problems one can run
into with the implementation of POSIX, Peter is currently implementing a subset of POSIX
functions in the form of a library. Eventual public availability of this library will be announced
in comp.sys.os9. Further enhancements Microware has in mind for OS-9000 Version 2.0 in-
clude, for example, that OS-9 binaries should be directly executable under 0S-9000.

RISC Architectures

The current schedule foresees availability of the PowerPC version of 0S-9000 for middle 1994,
The port to the MIPS architecture currently has only second priority and will come towards the
end of 1994.

0S-9 International 2/94

8 Peter Dibble at CERN

Multiprocessor OS-9000

The Hydra project was originally intended as a VME based network implemented with shared
memory on Motorola MVME147 CPU’s. As network technology generally improved, the current
design is more oriented towards a PDP (parallel distributed processing) system. As currently
priority is given to the PowerPC port, the work on Hydra is moving ahead only very slowly.

Peter Dibble from Microware Systems Corporation visited CERN on November 26, 1993, to give
an overview of new products and releases for OS-9 and OS-9000 currently under development
within Microware.

Martin Merkel wrote this summary of Peter’s presentation. He can be reached by email at
<martinm@dxtemp.cern.ch>.

This article is reprinted from CERN'’s in-house newsletter "Online” with kind permission of the
author.

0S-9 V3.0 on PEP Systems

» Development systems with
Disk-Based or Extended 0S-9
on PEP's 68030 and 68040
CPUs

. B BSP's for all PEP CPU

i boards: complete support of
PEP 1/0 boards through RBF,
SCF and VBF (variable block file
manager) drivers; improved
SCSI features with auto
parameter recognition,
disconnect/reselect and higher

performance
|
» New ISP backplane driver P Important fieldbus |
adapted to PEP CPU boards implementation (PROFIBUS, :
CAN, BitBus) under 0S-9 V3.0 Modular Computers®
i P MGR, reccoware's manager » Other networks such as Pep “A'Og:llit'gnc%fg?;tggsgmb”
| for powerful and independent X.25, ISDN, Ethernet, DECNet, Dp-876009Kaufbeuren
window systems, available on 0S-9 Net on Ethernet, Telefon: 0 8341-4302-0

‘ i Fax: 0 8341-4302-39
PEP's WGA graphic board SINEC-H1 available E-mail:postmaster@pepkfb.uucp

How Long Do We Sleep?

Carsten Emde

The Sleep Command

The
sleep (seconds) ;

command is probably one of the most important and characteristic commands of a realtime
operating system such as 0S-9. The argument passed to the sleep(] function is a 32-bit integer
that defines how many seconds the current task is abandoned and other tasks may use the
available processing power. If the argument is 0, the function still does something: the task falls
into sleep of undefined length ~ it will only wake up, if it receives a signal. This, in fact, is the
reason why the sleep() function is so important. It allows for interrupt driven timing which is
much superior to any form of polled timing. Therefore, some people believe that serious source
code intended for other purposes than just for in-house testing should avoid the sleep() func-
tion that passes any other argument than O or 1.

The Problem

If, however, the system should be suspended for a given time, what numbers may legally be
used? Under OS-9 the C library transforms the sleep() command into the F$Sleep system call
by converting the number of seconds into the number of system ticks that are needed to deac-
tivate the process for the given number of seconds. This is done using the global variable
D _TckSec (number of ticks per second) which normally is in the range between 10 and 1000
(corresponding to a system tick duration of 100 and 1 ms, respectively). As a consequence, the
minimal sleep time that can be obtained using the sleep() function is 1 second and the maxi-
mum depends on the number of ticks per second. In a 10-ms system, for example, the sleep()
function may theoretically be used to suspend a task for (23! - 1) / D_TckSec ~ 248 days:

#define SECSPERDAY (60*60*24)
sleep (248*SECSPERDAY) ;

but this is, of course, a somewhat optimistic assumption, since the system may either have
been re-booted or the CPU board reaches its MTBF in between.

0S-9 International 2/94

10 How Long Do We Sleep?

Small timing intervals are certainly much more important than the above given long one. The C
library for OS-9, therefore, includes another sleep function, tsleep(), that allows to suspend the
current task for the number of given ticks. As in the above case, tsleep(0) suspends the system
until a signal is received. When small intervals are concerned, it must also be considered that
the tsleep() function may be executed at any time within the current time slice but the task may
only restart at the beginning of a time slice. In consequence, timing accuracy is limited to the
tick duration. In a 10-ms system, for example, the command

tsleep(l);

may have any duration between 0 and 10 ms and is normally used just to give up the current
time slice. Similarly, the command

tsleep(2);
may have any duration between 10 and 20 ms.

More important, however, the tsleep() function in the above form has a significant disadvantage:
it is hardware dependent, i.e. dependent on the tick duration of a particular computer system.
Microware has, therefore, implemented a very useful feature: if the sign bit of tsleep’s argument
is set, the sleep duration is not expressed in ticks but in 256th of a second. For example, the
command

tsleep (0x80000000 + 128);

will suspend the current task for 500 ms.

Recommendation 1

Before using the tsleep() function with any other argument than 0, make sure that this is
unavoidable. Often this is used for polling purposes, e.g. waiting until input arrives from stand-
ard input path:

main()
{
while(_gs_rdy(0) <= 0)
tsleep(0x80000000 + 5); /* wait for 19.5 ms */
}

This program section may easily be replaced by a version avoiding a constant for timing:

0S-9 International 2/94

Recommendation 2 11

f##define SIG_INPUT 1000
signalhandler (signum)
int signum;

{

}

main()

{
intercept (signalhandler);
_88_8s8ig(0, SIG_INPUT);
tsleep(0);

}

The latter program section is, admittedly, somewhat longer but has the great advantage that
the task will not waste any computing resources while waiting. In a practical case, the signal
handler may need some improvements to appropriately treat any other arriving signal.

Recommendation 2

Whenever the
tsleep(ticks):;

function is used with another argument than O or 1, make sure that the sign bit is set so that
the sleep duration is expressed in 256th of a second. Otherwise, the software will run reliably
only on a system that is set to the same tick rate as the development system, which is probably
not what you want. The OS-9 NFS 1.1 package, for example, has the

tsleep(2);

command in the RPC library. When this software was started on a 1-ms system, utter chaos
occurred. The NFS package could only be run on this computer after the offensive code was
patched to

tsleep(20);

Unfortunately, two program versions, one for the normal 10-ms and one for the 1-ms system
had to be created, since the C compiler translates the above code to:

7014 moveqg.l #20,d0
4E40000A os9 F$Sleep

The correct code, however, requires the sign bit set and, therefore, moveq.l to be replaced by
move.l:

203C80000005 move.l #$80000000+5,40
4E40000A os9 F$Sleep

0S-9 International 2/94

12 How Long Do We Sleep?

This code would need 4 Bytes more than the original code, so that it could not be corrected by
patching.

Carsten Emde works as system integrator and software engineer for a Swiss company. He can
be reached by email at <carsten@effo.ch>.

05-9 V3.0 now on FORCE Boards

FORCE COMPUTERS has ported OS-9 3.0 to
some MC680x0 based VME boards including
the IBC-20, CPU-30 and CPU-40 !

The new package ‘Extended OS-9’ includes :

- Atomic Kernel - Standard Kernel
-I10OMan - PIPEMan

-SCF - RBF

- SBF - PCF

- ISP - NFS Client

- Ultra C Compiler - C-source level debugger
- uMACS - M-Shell

- Complete manual set

This package is the natural upgrade to
0S8-9 2.4 professional

F ORC E
Force Realtime GmbH

Industriestrasse 7 Telefon 056 86 40 45
CH-5432 Neuenhof Telefax 056 86 64 56

0S-9 International 2/94

The GNU C Compilers

Stephan Paschedag

Introduction

Thanks to the Free Software Foundation (FSF) C and C++ compilers are available to the public.
The C compiler was called GCC, the C++ compiler GPP (G++). Both were designed to be highly
portable. Today, they are the most widely used and accepted C and C++ compilers. They have
been ported to more than 20 different processors and to even more different operating systems.
The author is responsible for the OS-9 ports of the current versions. This first article focuses on
its history, language extensions and OS-9 specifics, and will give examples of how to call the
GCC from OS-9 command line and makefiles. Forthcoming articles will describe compiler in-
ternals, libraries and other topics.

History

When Atsushi Seyama released the first port of GCC version 1.37 to OS-9 in May 1990, many
0S-9 C programmers were pleased about the availability of such an efficient tool. At this time,
it was mostly used to facilitate porting UNIX programs to OS-9. In addition, the optimization
procedures offered by the GNU C compiler were more than welcome. Under some condition,
performance could even be doubled compared to Microware’s Kernighan & Ritchie (K&R) C
compiler. This initial port formed the basis for further improvements and additions made by
German and Swiss OS-9 programmers.

In 1991, the author ported the GPP component to OS-9. This port was facilitated by the fact
that GCC was not only designed to be portable to different computer systems, but it was also
designed to share its code generation part with other compilers.

In 1992, the FSF introduced version 2.0 of the two compilers GCC and GPP. This version was
also ported to OS-9 by the author and first released in 1993. Due to state-of -the-art optimiza-
tion procedures, version 2 provides a further performance increase of about 50% compared to
version 1. The strategy used for this second port differed to some extent from the strategy used
for the first port. Because of the increasing size of the GNU source package, it was no longer
possible to simply use preprocessor statements. In addition, the desire to keep up with the
rather quick release of new versions made such a strategy obsolete. The OS-9 specific part was,
therefore, collected in separate source files.

0S-9 International 2/94

14 The GNU C Compilers

Version 2 of the GNU compilers include even more C dialects and languages. It adds an Objec-
tive-C compiler, which implements the object oriented C dialect used on NeXT machines. There
are also Numerical C and Pascal compilers available, but they have not yet been ported to
0S-9 or still are in beta state.

Language Extensions

GCC is a highly optimizing C compiler that can compile source code written in C language as
described by K&R as well as in ANSI C. In addition it introduces a lot of useful language exten-
sions. Some of the more important ones are described here. It must, however, be noticed that
these extensions are disabled if strict ANSI mode is specified. Certain others are disabled in the
‘traditional’ K&R mode. As a disadvantage, this causes trouble if GNU C extensions should be
used in a general-purpose header file. The way to solve these problems is to use alternate
keywords; they are constructed by adding * _’ (double underscore) at the beginning and the end
of the normal keyword.

Nested Functions

A nested function is a function defined inside another function (they are not supported for GPP).
The name of the nested function is local to the block where it is defined. In the following exam-
ple we define a nested function named square and call it twice:

double foo (double a, double b)

{
double square (double z) { return z * z; }
return square (a) + square (b);

}

The nested function can access all variables of the surrounding function being visible at the
point of its definition. This is called lexical scoping.

Naming an Expression’s Type

One can give a name to the type of an expression using a typedef declaration with an initializer.
Here is how to define NAME as a type name for the type of EXP:

typedef NAME = EXP;

2/94 0S-9 International

Language Extensions 15

This is useful in conjunction with the feature that statements can be included in an expression.
Here is how both together can be used to define a safe macro that returns the maximum of two
values independently from the arithmetic type of the arguments:
#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b? _az: _b; })

Referring to a Type with typeof
Another way to refer to the type of an expression is by using the keyword typeof. It is used
similarly to sizeof, but the construct acts semantically as a type name defined with typedef.

There are two ways of writing typeofs argument, with an expression or with a type. Here is an
example with an expression:

typeof (x[0]1(1))

This example assumes that the variable x is an array of functions; the type described is that of
the return values of the functions.

Here is an example with a type name used as argument to the fypeof keyword:
typeof (int *)
The type described in this example is that of a pointer that points to an integer.

As already mentioned at the beginning, the alternate keyword __typeof _ must be used instead
of typeof, if the header file is intended to be used in ANSI C programs.

The typeof-construct can be used at any place in the source code where a typedef name could
be used. For example, it can be used in a declaration, in a cast or inside of sizeof or typeof.

Conditionals with Omitted Operands
The middle operand in a conditional expression may be omitted. If the first operand is unequal
to zero, it determines the value of the conditional expression. Therefore, the expression

X ? :y

has the value of the variable x, if x is unequal to zero; otherwise, it has the value of the variable
y. This example is perfectly equivalent to the traditional syntax

X ? X 1y

05-9 International 2/94

16 The GNU C Compilers

Double-word Integers

GNU C supports data types for integers that are twice as long as long int. Simply long long int for
a double-sized signed integer can be used, or unsigned long long int for a double sized unsigned
integer. To make an integer constant of type long long int, add the suffix ‘LL’ to the integer. To
make an integer constant of type unsigned long long int, add the suffix ‘ULL’ to the integer.

Complex Numbers

GNU C supports complex data types for both integer numbers and floating numbers. The key-
word __complex__ has been introduced for this purpose.

For example, the declaration
__complex_ double x;

declares the variable x as a variable whose real and imaginary part are both of type double. The
declaration

_ _complex__ short int y;

declares the variable y to have real and imaginary parts of type short int. The latter is not likely
to be useful, but this example has been included to show that the set of complex types is
complete. To write a constant with a complex data type, use the suffix ‘i’ or j’. These two suffices
can be used interchangeably, since they are equivalent. For example, the statements

__complex float x = 2.5fi;
and
_ _complex int a = 3i;

define assignments of a complex float and a complex integer constant, respectively, to a vari-
able of the same type.

Such a constant always has a pure imaginary value, unless a real constant is added. To extract
the real part of the complex-valued expression EXP, the keyword __real _ can be used, as in

__real EXP

Likewise, the __imag__ keyword can be used to extract the imaginary part of a complex value.
The operator ‘~’ performs complex conjugation when used on a value of a complex type.

2/94 0S-9 International

Language Extensions 17

Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like any
other automatic array, but with a length that is not a constant expression. The storage is
allocated at the point of declaration and deallocated when the brace level is exited. For example:

FILE *
concat_fopen (char *sl, char *s2, char *mode)
{
char str([strlen (sl1l) + strlen (s2) + 1];
strcpy (str, sl);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping into
the scope is not allowed; an error message is generated when such an attempt is made.

Macros with Variable Numbers of Arguments
In GNU C, a macro can accept a variable number of arguments like a function. In fact, the
syntax for defining the macro is quite alike to that used for a function. Here is an example:

#define eprintf (format, args...) \
fprintf (stderr, format , ## args)

In this case, the parameter args is a ‘rest argument: it takes in zero or more arguments, as
many as the parameter list of the call contains. All of them including the commas in between
form the value of args, which is substituted into the macro body where args is used. Thus, the
following expansion takes place:

eprintf (“%s:%d: “, input_file_name, line number)
will be replaced by
fprintf (stderr, “%s:%d: “, input_file_name, line_number)

Note that the comma following the string constant comes from the definition of eprintf, whereas
the last comma comes from the value of args.

Non-constant Initializers

The elements of an aggregate initializer for an automatic variable are not required to be con-
stant expressions in GNU C. Here is an example of an initializer with run-time varying ele-
ments:

0S-9 International 2/94

18 The GNU C Compilers

foo (float f, float g)
{
float beat_freqgs[2] = { f-g, f+g };

Labelled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed order, the same as the
order of the elements in the array or structure being initialised. In GNU C, the elements can be
assigned in any order, specifying the array indices or structure field names they apply to.

To initialize a certain array element, its index value must be enclosed in square brackets and
followed by an equal sign and the value. For example,

int a[6] = { [4] = 29, [2] = 15 };
is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values, however, must be constant expressions, even if the array being initialised is
automatic.

Likewise, to initialize certain fields of a structure, the name of a field to be initialised is followed
by a colon and the value to be assigned to the field in the structure initializer. For example:
typedef struct str {
int a;
double 4;
short undef;
} STR;

STR 8 = {a: 10, d: 1.234};

Case Ranges

A range of consecutive values can be specified in a single case label:
case LOW ... HIGH:

This has the same effect as the proper number of individual case labels, one for each integer
value between and including LOW and HIGH. This feature is especially useful for ranges of
ASCII character codes:

case ‘A’ ... 'Z’':

2/94 0S-9 International

Language Extensions 19

An Inline Function Is As Fast As a Macro

The GCC can integrate a function’s code into the code of its callers by declaring this function
inline using the keyword inline. This makes execution faster by eliminating the function call
overhead. In addition, if any of the actual argument values are constant, their known values
may permit simplifications at compile time. This has the advantage that in some cases not all of
the inline function’s code needs to be included. The effect on code size is less predictable; object
code may be larger or smaller with function inlining, depending on the particular case. Inlining
of functions only makes sense if any optimization level is enabled. Otherwise, the net effect is
only an increase in code size. The following is an example of an inline function:

inline int

inc (int *a)

{

(*a) ++;

}

Again, the alternate keyword __inline_ must be used instead of inline, if the source code is
intended to be compiled in strict ANSI C mode.

The compiler can also be directed to inline all functions being “simple enough” with the option
-finline-functions. However, certain usages in a function definition can make it unsuitable for
inline substitution.

Assembly Instructions with C Expression Operands

C expressions can be used to specify the operands of an assembly instruction, if the asm syntax
is used. This makes it much easier to include assembly statements into C code, because the
compiler takes care of providing the correct memory address or register number for any given C
variable.

For example, here is how to use the fsinx instruction of the 68881 coprocessor:
asm (“fsinx %1,%0” : “=f” (result) : “f” (angle)):;

The variable angle is the C expression of the input operand while result is that of the output
operand. The ‘f in front of them is an operand constraint, saying that a floating point register is
required. The equal sign in ‘=f indicates that the operand is an output operand. More details
about operand constraints will be discussed in one of the following parts of this article.

0S5-9 International 2/94

20 The GNU C Compilers

Controlling Names Used in Assembly Code

Another feature to control the assembly code is to specify different variable names for the C and
the assembly level. The keyword asm (or __asm__ for strict ANSI mode) is used for this purpose.
In the following examples, the C variable foo is renamed myfoo, and the function func is re-
named FUNC in the assembly output, respectively.

int foo asm(“myfoo”);
or

extern func () asm (“FUNC”);
func (x, y)
int x, y:

{
}

This can be very useful in GPP programs where the compiler normally uses a mangled name
(depending on name, type and argument types) in the assembly code.

Variables in Specified Registers

A final feature mentioned here is that GCC allows to reserve specific hardware registers for a
few global variables. Particularly, a register can be specified to be used for an ordinary register
variable. This is exemplified in the following source section where the C compiler is forced to
use always register a4 for the variable foo, if possible.

register int *foo asm(“a4”);
The following general rules apply for specifying registers for C variables:

* Global register variables reserve registers throughout the program. This may be useful in
programs such as programming language interpreters which have a couple of global vari-
ables that are accessed very often.

* Local register variables in specific registers do not reserve the registers. The compiler’s data
flow analysis is capable of determining where the specified registers contain live values, and
where they are available for other uses.

These local register variables are sometimes convenient to be used in conjunction with the
extended asm feature. This allows to direct the compiler to write the output of the assembly
instruction directly into a particular register. However, this requires that the specified register
matches the constraints defined for this output operand.

2/94 0S-9 International

0S-9 Specific Options 21

0S-9 Specific Options

To improve OS-9 support, various options have been added to the standard GCC. They are
available through command line options of the compiler executive gec2:

-mremote By default GCC generates 16-bit offsets to variables restricting the overall size of
global variables to a maximum of 64 kByte. Programs exceeding this limit can only be linked,
if this option is specified.

-mlong-calls By default GCC generates 16-bit code offsets restricting the maximum branch
distance to +32 kByte. This maximum can be extended using 32-bit offsets, if this option is
specified. For execution on a 68000 target, the -ucc option must be specified too.

-uce Use Ultra C utilities (opt68k, r68, 168).
-mnostack-check This option turns off the stack-checking code, which results in faster code.

-mstdstack-check GCC normally uses a faster technique for stack-checking on 68020/030/
040 processors. This special technique can be turned off with this option.

-mmocom In C language, it is possible to declare the same variable in two different modules
without using the extern prefix. To support this feature, these variables have to be mapped
into the common section instead of into the standard vsect. All released versions of 168 run
into problems if one of these variables is initialised. Therefore, this feature can be turned off
using this option.

-mgss If a C program has to be debugged on assembly level (for example drivers), it is useful to
have global labels for static functions, which can be enabled with this option. The labels will
be of the form <function>@<module>.

-++lib Adds the standard GPP libraries to the link list.

-uwlibs Link the original Microware clib.l instead of the new GNU gclib.l This option cannot be
used together with -++lib.

-ucclibs Link Ultra C libraries instead of clib.l or gclib.L
-col The collector output file is not deleted.

-nocol Force the collect program to output an empty table only instead of processing all speci-
fied files. This leads to faster link times, but prevents C++ programs from working properly.

-cio Link Microware’s trap library cio.l instead of the normal library. This option requires the
-uwlibs option as well.

-gsrcdbg, -gg Generate a .dbyg file for Microware’s source level debugger.

0S-9 International 2/94

22 The GNU C Compilers

-g Generate .stb module for debugging.

-F<prog>s<stack>p<prior>x[<xprog>Jo[<opts>] Call <prog> with additional <stack>, priority
<prior> and options <opts>. For example -F168s100p2000[-sm] will result in the command
line

168 #100 2200 -sm

The ‘x’ option can be used to choose an alternate <xprog> instead of the given <prog> for a
cross compiler. To enclose the names for xprog and opts, ' and ‘]’ may not be omitted.

Examples

Normal practice of calling a compiler is not from the shell level but via the make program. The
main advantage of this procedure is that only those files that need to be recompiled are proc-
essed. In consequence, the following examples for calling the GCC are provided as makefiles.

m Die Grafik-Ober- g
< D firche for o s
O8-9/68xxx und ry - R §
2 LynxOS: e %
~. = :
— :z: Eg;
%5 0
2 E :
< Maschinen- =l g
‘s 3
n_ steuerung - H
i = g
Bildverarbeitung - >
= L)
E MeBwert- k- %
L z :
darstellung & :
m Software- [y
> entwickiung . L S e i

Dialog aus der "Teaching "-Phase einer Flasch . Dre
flache wurde mit dem MGR und derMGR/ALzb Application Library realisiert.

reccoware systemsE]
reccoware systems, Wolfgang Ocker, UlrichstraBe 26, D-86551 Aichach, Tel. (08251} 5 12 99, Fax (08251) 5 13 01, Email: reccoware@recco.de

Examples

23

Single Source File

The first example probably represents one of the simplest ways to start the GCC from a stand-

ard OS-9 makefile. During compilation, GCC generates a message

gcc2: unrecognized option ‘-r=.‘ ()

but this is only a warning and may safely be ignored. The ‘-r=." command line option is gener-
ated by the make program to advise the compiler that the relocatable output file has to be
placed into the current directory, which GCC does by default.

3k 3 3 I W HF

TMPDIR
#

ccC =
#
CFLAGS
LFLAGS =
#
SDIR
RDIR
ODIR
#
PROG.OBJ=
#

all: prog

Makefile exampleil:
One source file

No debug files
Relocatables in source directory
GNU C library, no trap handler
No optimization

No additional library

No additional stack memory

/x0
geec2

-T$ (TMPDIR) -c

/dd/CMDS

prog.r

@echo “Program ‘prog’ made”

#

prog: $(PROG.OBJ)
$(CcC) $(LFLAGS) $(PROG.OBJ) -0

0S-9 International

$ (ODIR) /5@

2/94

24 The GNU C Compilers

More than One Source File, Small Binary, K&R Libraries

The second example redefines the compile rule so that the above warning is avoided. This is
done in the line that starts with the ‘.c.r:’ statement. Any changes made to the built in rules can
be inspected when make is started with the ‘-d’ option. Furthermore, it is assumed that in this
example two code modules are going to be linked into a single program. Minimal program size
is ensured by using Microware’s K&R libraries, the cio trap handler and enabling full optimiza-
tion. The resulting code may not behave in accordance with the ANSI standard.

Makefile example #2:
Two source files
No debug files
Separate RELS directory
Microware’s C library and trap handler
Full optimization
One additional library
No additional stack memory
#
TMPDIR = /x0
#
ccC = gce2
#
COMPAT = -cio -uwlibs
OPT = -02 -068 -ob -fomit-frame-pointer -mnostack-check
CFLAGS = $ (COMPAT) $(OPT) -T$(TMPDIR)
LFLAGS = $(COMPAT) $(OPT) -L/dd/LIB -lo0s891lib.1l
#
SDIR = .,
RDIR = RELS
ODIR = /dd/CMDS
#
PROG.OBJ= sourcel.r source2.r
#
.Cc.xr:
$(CC) $(CFLAGS) $*.c -c¢ -o $(RDIR)/S@
#
all: prog
@echo “Program ‘prog’ made”
#

prog: $(PROG.OBJ)
chd $(RDIR); $(CC) $(LFLAGS) $(PROG.OBJ) -o $(ODIR)/S@

More than One Source File, Larger Binary, ANSI Libraries

The last example also redefines the compile rule; in addition, debug files are produced for
assembly and C level debugging. Optimization is disabled to facilitate debugging. The resulting
binary is relatively large but the C library functions are likely to behave in accordance with the

2/94 0S-9 International

Examples 25

ANSI standard. Additional stack of 4 kByte is provided as an example; its size only depends on
the amount of local variables that are declared in the source files.

Makefile example #3:
Two source files
Debug files for srcdbg source level debugger
Separate RELS directory
Microware’s C library, no trap handler
No optimization
No additional library
Four kByte additional stack memory
#
DEBUG = -gg
#
TMPDIR = /r0
#
cc = gcc2
#
COMPAT = -uwlibs
CFLAGS = $(DEBUG) $(COMPAT) -T$ (TMPDIR)
LFLAGS = $(DEBUG) $(COMPAT) -8 4
#
SDIR = .
RDIR = RELS
ODIR = /dd/CMDS
#
PROG.OBJ= sourcel.r sourcel2.r
#
.C.r:
$(CC) $(CFLAGS) $*.c -c -o $(RDIR)/S%@
#
all: prog
@echo “Program ‘prog’ made”
#

prog: $(PROG.OBJ)
chd $(RDIR); $(CC) $(LFLAGS) $(PROG.OBJ) -o $(ODIR)/S$@

The internals of GCC will be described in the next issue of 0S-9 International. This article will
include a description of the different passes that GCC executes to process a source file. Fur-
thermore, the implemented optimization techniques will be explained.

The GCC and GPP compilers are available as PDs_from EFFO. The current version is 2.5.8 which
requires approximately 4 MByte of RAM to execute. On smaller systems with a minimum of
2 MByte of RAM, the more limited version 1.42.0 can be used. EFFO will continue to provide this
smaller version but it is no longer maintained.

Stephan Paschedag works as a hardware and software engineer for a Swiss company. He can
be reached by email at <stp@effo.ch>.

0S-9 International 2/94

An sh-like Shell for OS-9

Carsten Emde

Introduction

More and more projects require the simultaneous availability of different computers such as,
for example, UNIX workstations and OS-9 realtime systems. When users, however, have to
work interchangeably on these systems it is highly desirable that standard programs (shell,
editor, process viewer, window managers, etc.) are identical. Although most programs are avail-
able for OS-9 in the same version as for other operating systems, there still was one program
lacking: the shell.

About 6 years ago, the first version of an interactive sh-style shell was introduced to 0OS-9 as
part of the famous TOP project by Wolfgang Ocker, Ulli Dessauer and Reimer Mellin. Reimer
wrote a large part of the initial version. About 3 years ago, when it became clear that the TOP
project would not be released once more, the author of this article decided to take over the
sources and to continue sh's software maintenance. The sh for OS-9 is now available from
EFFO; the current version is 1.6, edition 32.

This article shortly summarizes the program’s functionality. As usual, the complete user’s manual
is part of the EFFO distribution.

Overview

The sh shell program was intended as a surrogate for the original 0OS-9 shell from Microware.
Maximum attention was, therefore, drawn to offer the basic functionality of this shell and also
of the Bourne shell in order to allow for the use of both OS-9 and UNIX shell scripts. In addi-
tion, useful features of the csh have been integrated. Compatibility of these three sources was,
however, not always possible: the OS-9 pipe symbol (1) is the history symbol in the csh, and the
Bourne shell standard output append symbol (>>) is the standard error redirection symbol of
the Microware shell. In addition, command line editing using emacs commands was not always
compatible to the line editing commands of the original shell: Microware shell's redraw current
line command (Ctrl-A) sets the emacs cursor to the beginning of a line. There are, however,
much more compatibilities than incompatibilities; normally, it does not take more than a day or
two to become familiar with sh for OS-9.

2/94 0S-9 International

Getting Started 27

Getting Started

The following command line arguments are available:

$ sh -2
Syntax: sh [<opts>] [<scriptfile>] [<argl>] ... [<argn>]
Function: Operating system user interface (shell)
Options:

-c exit after reading and executing one command

~-d trace commands

-e[=<path>] print error explanations using file <path>

-h=<n> set the # of history lines to <«<n»>

-ni suppress shell messages

-1 require “logout” to logout.

-pl=<prompt>] print prompt

-8 stop command execution

-t echo input lines

-u display references to unset variables

-X exit on error (default if non-interactive)

All options may be prefixed by an ‘'n’ character to invert their sense.
For example
$ sh -ep="<$HOST/$USER/sh@>$CWD: "
will invoke the sh with the prompt
<thlel7/carsten/shl>/h0/SH/DOC:
and define the standard error message file /h0/SYS/errmsg for displaying error texts.

Some of the options can also be set by environment variables or by built-in commands:

Option Environment variable Built-in command
-e=<path> setenv EMSG_FILE <path>

-h=<n> history <n>
-p=<prompt> setenv PS1 <prompt>

In addition, the set <option> syntax can be used to set options within the current sh session.

The special setup file .profile is searched in the HOME directory and executed at the end of sh's
initialization procedure. The commands contained in the .profile file are executed in the same
way as if they had been entered manually.

0S-9 International 2/94

28 An sh-like Shell for 0S-9

Command Line Editing and History

One of the most important features of the sh for 0S-9 is the command line editing and history
function. Editing of the current command line is always possible; the history function is only
active, if enabled using the -h=<lines> option when sh is started or using the history built-in
command at a later time.

The following editing commands are available; default keys are used, if the particular termcap
entry is not specified.

Command Default key | Termcap name
Delete previous character Ctrl-H (BS) bc
Delete character under cursor Del (0x7f) kD
Cursor backward Ctrl-B k1l
Cursor forward Ctrl-F kr
Next history line Ctrl-N kd
Previous history line Ctrl-P ku
Cursor to end of line Ctrl-Z kH
Cursor to start of line Ctrl-A kh
Clear to end of line Ctrl-K kKE
Delete current line Ctrl-X kL
Transpose current and previous Ctrl-T kT
character

Toggle insert/overwrite mode Ctrl-v kI
Expand single file name TAB ta
Clear screen Ctrl-L kc

Editing commands and default keys

Program Execution

When a file is found in one of the PATH directories, an attempt is made to execute the file;
default is /dd/CMDS, if the PATH variable is empty. The first file found is executed, irrespective
of whether it is a binary program or a procedure file. In the latter case, the file is, of course, not
directly executed but forked using the shell that is taken from the first line of the file. If the
procedure file starts neither with a *’ nor a ‘#' (forcing sh or shell, respectively), the shell pro-
gram is taken from the SHELL environment variable. If the file is not found in one of the PATH
directories, an attempt is made to execute it from the current execution directory, but this
requires that the file has the execute attribute set. As above, also a file in the current execution
directory may be either a binary program or a procedure file. The dot (*.’) symbol in the PATH list
(e.g. /h0/CMDS:.) has a special meaning: It always refers to the current data directory and not

2/94 0S-9 International

Important Features 29

to the current execution directory, since the latter is scanned anyway. The same rule applies to
the *./’ prefix (e.g. ./procedure) that also refers to the current data directory.

Important Features

Regular Expressions
Regular expressions are evaluated whenever a string is entered. If, for example, all files that
have ‘a’, ‘b’, or ‘c’ as first character are to be deleted, the command
del [abc]l*
will do the job. Alternatively, the command
del [a-c]*

can be entered for this purpose.

Availability of Environment Variables

All environment variables are available as part of a command when preceded by the ‘$’ sign.
Inspecting the current setting of the TERM environment variable is, for example, done by enter-

ing
echo $TERM
The command
dir $CLIB -e

produces an extended directory listing of all files that are available in the linker’s default library
search path.

Adding the directory /h0O/BIN to the PATH environment variable can be done by entering

setenv PATH $PATH:/h0/BIN

0S-9 International 2/94

30

An sh-like Shell for 0S-9

Overview About Symbols, Environment Variables,
Built-in Commands and Language Constructs

Most of the following symbols, variables and commands are self-explanatory and similar to
other shell programs. Therefore, only short listings are presented in the following. A more de-
tailed description can be found in the user’s manual, and in the literature, e.g. [1].

Symbols

Pipe symbol

Redirection symbols
History event symbol
Asgignment symbol

Variable symbol

Concurrent execution symbol
Sequential execution symbol
Evaluation symbol

Comment symbol

Test symbol

Shell level symbol

Single quote

Double quote

Mark symbol

Escape character symbol

Environment Variables

III or l!l
I<I' I>I’ 12>I, l>>I’ Iys4?,

Pyt

‘1, if first character of an input line

£
1$1
&
R
10y
l#l
[
I@l
177
1z
feg?
\

SHELL shell program for subsequent forks
_sh shell level

EMSG_FILE error message file

TMPDIR directory for temporary files

PATH search path for programs and procedures
HOME home directory

CWD current working directory

LWD last working directory

TERM termcap settings

IFS word separators in arguments

PS1 input prompt

PS2 input prompt, if command split up

2/94

0S-9 International

Important Features 31

Built-in Commands

alias <new> <old>

break

cd <dir>

chd <dir>

chx <dir>

continue

echo [-b|-n|-r] <stringl> <string2> ... <stringn>
eval <cmd>

ex <cmd>

exec <cmd>

exit

export <namel> <name2> ... <namen>
false

history {<num>}

kill {-<signal>} {-s=<signal>} <pidl> <pid2> ... <pidn>
logon

logout

readonly <var>

read <var>

return {<val>}

show

true

test <optl> <argl> <opt2> {<arg2>}
trap <command> <number>

set <varl> <var2> ... <varn>
setenv <variable> <value>

setpr <pid> <priority>

setstack <stack>

setuid <group.user>

shift <n>

unsetenv <variable>

unset <variable>

version {<overview>}

wait <pid>

Language Constructs

for <var> {in <vall> <val2> ... <valn>}
case

esac

while <cond>

do

done

if

in

then

else

0S-9 International 2/94

32 An sh-like Shell for 0S-9

elif

until <cond>
fi

ii

|

&&
*)

Example sh Scripts

Argument Passing

The first sh script is intended to exemplify argument passing in general; the output lines from
the devs program are only displayed, if they match the pattern passed as argument. If no
pattern is specified, the complete program output is displayed.

#!sh script
if test $# -eq O
then

devs
else

devs | grep $1
fi

Scanning Libraries for a Required Function

The second example is most useful when the linker complains about an unresolved reference,
e.g. the function myfunc(), but there are many libraries in the standard directory that may
contain the requested code.
for i in /dd/LIB/*.1
do
echo Now scanning library ‘$i‘:

rdump $i -g | grep myfunc
done

Swapping File Names

It may be necessary to swap the names of two files; assuming the following script is named
swap.sh, the command

swap.sh filel file2

2/94 0S-9 International

Example sh Scripts 33

will swap the names of these two files. The intermediate name will be dummy suffixed by sh’s
process id.

rename $1 dummy.$$
rename $2 $1
rename dummy.$$ $2

Setting the TERM Environment Variable

The next example helps to correctly set the TERM environment variable for a given port, if other
methods cannot be used. It is assumed that a Televideo 920 terminal is connected at port /t5.
This script section is best placed at the end of the .login file; if started as a procedure from an sh
session, the setenv command will have no effect on the current session.

if test $PORT = /t5
then

setenv TERM tvi920b
fi

If this particular user has several terminals connected to several ports, the case statement may
be more appropriate. The following example assumes three different ports, one with a Televideo
and two with Qume terminals. Again, the following script section has to be placed at the end of
the .login file; it has no effect on the current TERM variable, if started as a procedure.

case $PORT in

/t5) setenv TERM tvi920b ;;

/t8) setenv TERM gvt21l ;;

/t9) setenv TERM qgvtl0l ;;

*) echo “Unknown PORT: can’t set TERM variable.”
esac

References

[1] Kernighan, B. W., Pike, R., The UNIX Programming Environment, Prentice Hall, 1978.

Carsten Emde can be reached by email at <carsten@effo.ch>.

The sh shell program is available as PD-107 from EFFO.

0S-9 International 2/94

_getsys();

Reto Peter

0OS-9 Archive Sites

The following archive sites have been checked to carry up-to-date OS-9 software and informa-
tion:

e FTP chestnut.cs.wisc.edu

* FTP lucy.ifi.unibas.ch

Monthly EFFO Meetings

Fortunately, communication via email has not yet replaced personal meetings held from time to
time. Therefore, monthly EFFO meetings are organized where computer related topics in general
are discussed giving specific emphasis to OS-9. These meetings are open to everybody, non-
members can participate without any obligation. The greatest danger of attending the meeting
is that this almost always represents the first step in becoming a regular EFFO member.

The first part of the meeting is a rather formal one based on the agenda that is distributed at
least one week in advance. Main topics cover the maintenance of the EFFO PD software pool, the
current state of EFFO owned computer hardware and software, and correspondence with the
outside world. Later in the evening, we focus predominantly on sharing experiences and dis-
cussing the latest news regarding hardware and software in general.

The EFFO meeting always takes place at the first Friday in a month. For the rest of this year, the
scheduled meeting dates are:

* Friday, September 2, 1994
* Friday, October 7, 1994
* Friday, November 4, 1994

* Friday, December 2, 1994

2/94 05-9 International

Monthly EFFO Meetings 35

The official meeting starts at 8 pm, but most of the participants meet already at 7 pm to have
supper together.

Looking for a central place being easy to reach, we found a nice restaurant in Brugg, a town
somewhere in the middle between Zurich and Basle. We meet in a restaurant called Rotes
Haus, which actually is a red house and can be found easily in the center of Brugg. Its address
is Hauptstrasse 7, 5200 Brugg. If you need a map of the city you can ask for a copy via the EFFO
address or fax.

We would like to invite you to join one of the next meetings and look forward to seeing you.

Reto Peter works as a software engineer for a Swiss company. He acts as vice president, secre-
tary and registrar of EFFO since the early days. He can be reached by email at <reto@effo.ch>.

Imprint 0S-9 International Subscriptions
Published by European Forum For OS-9 (EFFO) 0S-9 International is the official organ of the European Forum For
President Werner Stehling ~ OS-9 (EFFO). The subscription is inciuded with the annual EFFO mem-

Reto Peter
Stephan Paschedag
Carsten Emde

Vice President
Director of Finance
Editor-in-Chief

Design Marc Balmer
Layout Werner Stehling
Address

European Forum For 0S-9

P.O. Box FAX +411 9403890
8606 Greifensee email o0s9int@effo.ch
Switzerland

Copyright © 1994 by European Forum For OS-9 (EFFO).

Copyright © (design) 1994 by Marc Balmer.

All nghts reserved. No part of this journal may be reproduced without the
prior written permission of the publisher. All source code is provided with-
out any warranty. Trademarks are not marked as such.

Printed in Switzerland
ISSN: 1019-6714

0S-9 International

bership fee. In addition, it is available by separate subscription for non—
EFFO members, single issues are also available. All following prices are
given in Swiss Francs, shipping included:

Switzerland Europe Overseas
One year (3 issues) 25.00 30.00 35.00
Single issue 10.00 12.00 14.00

To subscribe to OS-9 International or to order a single issue send a
letter, postcard, fax or email to EFFQ.

Advertisements

05-9 International 1s not only an ideal platform for discussing 0S-9
related topics, it 15 also the ideal place to advertise. 0S-9 international
reaches end-users, system-software developers and, nevertheless, deci-
sion-makers.

Please contact EFFO for detailed information on how to place an ad in
0S-9 International.

2/94

	OS-9 International
	Table of Contents
	startup
	Peter Dibble at CERN
	What's About to be New
	Fastrak
	Ultra C Version 1.1
	OS-9 Version 3.0
	OS-9 Version 4.0
	New Release of OS-9000
	OS-9000 Version 2.0
	RISC Architectures
	Multiprocessor OS-9000

	How Long Do We Sleep?
	The Sleep Command
	The Problem
	Recommendation 1
	Recommendation 2

	The GNU C Compilers
	Introduction
	History
	Language Extensions
	Nested Functions
	Naming an Expression's Type
	Referring to a Type with typeof
	Conditionals with Omitted Operands
	Double-Word Integers
	Complex Numbers
	Arrays of Variable Length
	Macros with variable Numbers of Arguments
	Non-constant Initializers
	Labelled Elements in Initializers
	Case Ranges
	An Inline Function is as Fast as a Macro
	Assembly Instructions with C expression Operands
	Controlling Names Used in Assembly Code
	Variables in Specified Registers

	OS-9 Specific Options
	Examples
	Single Source File
	More than one Source File, Small Binary, K&R Libraries
	More than One Source File, Larger Binary, ANSI Libraries

	An sh-like Shell for OS-9
	Introduction
	Overview
	Getting Started
	Command Line Editing and History
	Program Execution
	Important Features
	Regular Expressions
	Availability of Environment Variables

	Overview About Symbols, Environment Variables, etc.
	Symbols
	Environment Variables
	Built-in Commands
	Language Constructs

	Example sh Scripts
	Argument Passing
	Scanning Libraries for a Required Function
	Swapping File Names
	Setting the TERM Environment Variable

	References

	_getsys()
	OS-9 Archive Sites
	Monthly EFFO Meetings

