June 1994

Published by:
Marc Balmer

Hagentalerstrasse 12
CH - 4055 Basel

OS-9 International Issue 1/94
startup 3
Keep Your Clock Up To Date, Part 2 4
Simulating dip-switches 13
Can't execute “J" 19
Parallel processing under OS-9 21
Of Mice And Men 27
The EFFO 1994 general assembly 35
getsys(0S-9 International); 39
Phone +41 61 43 55 01 Editors:

Fax +41 61 43 55 02
E-Mail o0s9int@msys.ch
ISSN 1019-6714

Marc Balmer
Carsten Emde

Dialog wit Video ...

Mip: Camera 1 (640x480) el T Fiiters |
fomme : o —

W Medium |3 Heavy

Hit ESCAPE 10 Intemipt

IP: nfree

Yanahys alloosticn saze: 5.00 K-hytss i
Number of memory segments: PARAMETERS ! QuIT
Total RAM at startup: 9125.00 X-bytes]l T

@ HELP- - i)
Muore Next ; Proy . List . Find | FRes { ENewt] FRree | Cul | Golo | Pes ; Tabs | Foul 0}
FITTERE S
Listed lere ars the filtérs that are 1ncluded with XIP. The filters have
Alfferent levels (light, mnmm eand heavy). Thas indicates how aggrassively
the filter sttscks the imag

Sharyen - This sharpens the lusge's sdges by creating more cantrast
betueen the sdges and the surrcwnding p (5

&
e SR e 2

Fenster in die Zukunft.

reccoware systems - Wolfgang Ocker
UlrichstraBe 26, 8890 Aichach-Unterwittelsbach
Tel. (0 82 51) 512 99, Fax (0 82 51) 5 13 Ol

: A ' : : s St el S -
* der MGR 1auft ouch im Overloy zahlreicher BlldverorbelTungskorTen “* fur O$-9/680x0 und LynxOS

startup

Finally, the first end-users have received their copies of OS-9 version 3.0. The
following two new features may be representative for the 3.0 upgrade changes:

First, task-switching is no longer disabled in system mode. In the past, it
could happen that a high-priority process did not become active as quickly as
expected because a low-priority process was in system mode where it could not
be suspended by the task switcher. In 3.0, this no longer happens provided
that the setting of the respective compatibility bit is appropriate to allow kernel
preemption.

Another less spectacular upgrade change relates to the dsave utility. The ”tmode
-w=1 pause” string in the pre-3.0 version of dsave-generated backup procedu-
res has not only served as an example for ignoring basic strategies of software
engineering, but it also stimulated the invention of strange work-arounds. The
*-t” option of the 3.0 dsave makes such work-arounds obsolete and shows that
Microware continues to be interested in improving OS-9 even if only somewhat
hidden details are concerned and even if some people may feel that it comes very
late...

What is still lacking? The pre-2.4 file system used a file descriptor block that
contained an 48-entry long segment list but only 47 of them were used. The
48th entry was always set to 0 — reserved for future expansion, ¢.g. to point to
the location of the segment list’s continuation. That’s what we thought. Who at
Microware can imagine our disappointment when we realized that from version
2.4 onwards this 48th entry was simply used to store an additional entry? Why
was this free entry not used to let RBF dynamically expand its segment list so
that error #217 (segment list full) would disappear from 0S-9’s error list? The
fact that a 512-byte sector medium allows for a maximum of 99 segments does
not help very much: Murphy teached us that, if there is a limitation anywhere
in a system, this limitation will not only certainly be reaclied but also at a time
and in a place where it leads to maximum trouble. Unfortunately, tools that
refresh a scattered disk are not included in Microware’s set of standard tools nor
do they reasonably work if purchased from third parties. Microware’s comment:
Good old RBF will certainly never be expanded, but a new file manager with a
more effective file structure can be expected in the future.

So, let’s thank the people at Microware for the changes made in the 3.0 version,
but let’s also continue to keep them informed about what still needs to be done.
One of the aims of OS-9 International is to provide a medium for such information
and, again, we invite our readers to use 0S-9 International for this purpose.

Carsten Emde

Keep Your Clock Up To Date, Part 2

Marc Balmer, Gerd Oxé

Exact time and date information

Every OS-9 computer is equipped with at least a clock chip or a general pur-
pose device to provide a timer function. While these timers are certainly precise
enough for measuring relatively short periods of time, they are not well sui-
table for keeping the correct time and date over a longer period, since almost
every chip drifts by a few seconds per day. Even so called real-time clocks only
approximately meet the real time.

Time signal stations can be a solution to this problem as they emit very precise
time information using specifically modulated radio frequencies. Time signal
stations are available in many countries; unfortunately, almost every transmitter
is using its own time format, see [1].

The last issue of OS-9 International presented a receiver for the German DCF-77
time signal station [2]; the current article covers the software aspects.

Receiving the time signal

The DCF-77 time signal station uses a simple technique to transmit time infor-
mation: the complete time information is packed into 59 bits (see diagram in
the last issue of OS-9 International), and one bit is transmitted every second by
reducing the transmitter’s amplitude by about 75%. A logical 0 is encoded by an
amplitude reduction that lasts 100 milliseconds; a reduction of 200 milliseconds
denotes a logical 1. Using this scheme, the complete time information is trans-
mitted during one minute. To allow for exact synchronization, the transmitter’s
amplitude is not reduced during the last second of every minute.

Connecting the receiver to the system

Various techniques are applicable to connect a DCF-77 receiver to a computer
system: The most obvious way is to convert the two states of the amplitude to

Connecting the receiver to the system)

a square wave signal. i.e. to a stream of zeroes and ones. In this case, the length
of the reduction is determined to define the logical bit state.

A more sophisticated way that is used by most commercially available receivers
and by the receiver presented in the first part of this article is to provide a data
line with the decoded time information and a separate clock line. These lines
can be used to load a shift register or to enter the data on an input port bit
using the clock line as an interrupt generating strobe. A device driver is required
to read the data line and to combine the bits to the complete time information.
In this case, the time of the amplitude reduction is measured by the receiver.

The DCF-77 receiver presented in the first part of this article, however, not only
provides the data and clock line but also the undecoded square wave signal on the
clock line as an additional information. This allows for a rather unconventional,
but elegant, method to both connect the receiver to the computer hardware and
decode the time information. In essence, this method is based on interpreting
the undecoded square wave signal as if it were an RS-232 bit stream signal so
that a standard serial interface and the standard read command can be used.

Using the serial interface

Before the bit stream signal can be used as an RS-232 input signal, the required
communication parameters must be determined and the controller be program-
med accordingly: The longest duration of the low state of the square wave signal
(200 ms) is taken as ten consecutive serial bits (one start bit, eight data bits,
one parity bit) each of 20 ms, so that a total of 50 bits would be transfered per
second. Consequently, if the serial interface is set to 50 Baud, 8 data bits and
even-parity, a 20-ms section of the square wave signal represents one bit in the
controller’s input byte; the first 20-ms section, however, is not considered since
it is interpreted as start bit. Figure 1 shows this relation between the DCF-77
timing and the 50-baud serial protocol. A logical 0 encoded from the time si-
gnal station as a low-level pulse of 100 ms duration, therefore, causes the serial
controller’s input byte to contain binary 11110000 (hexadecimal F0). A logical
1 encoded as a 200-ms low level pulse simply causes an input byte of 0.

The only hardware requirement to connect the square wave signal from the
DCF-77 receiver to a serial RS-232 port of an 0S-9 system is a TTL-to-V.24
level shifter. This shifter is realised using Maxim’s MAX232 chip. Only the
receive data (RxD) and ground (GND) pins are used, all other pins remain
unused. Figure 2 shows the basic circuitry.

Keep Your Clock Up To Date, Part 2

6 7 Parity Stop

Data-format

. 200 ms

—_— FO Hex

——» 00 Hex

Figure 1: The DCF-77 time information in relation to a serial protocol.

v OV input
10uF % 'T : 10 uF/6.3V

1
10 UF/6.3V &3

4
10 UF/16V &5 MAX232
n

From receiver »—

TIL Inputs L0

12
TTL Outputs :E

2

6

& 10 UF/16V

4

j_j RS 232 Outputs

13
z RS 232 Inputs

_[_15
GND

To host

Figure 2: Circuitry required to connect the DCF-77 receiver to the RS-232

interface.

Connecting the receiver to the system 7

Decoding the time information

The very low level functions do nothing else than collecting the time bits and
storing them in a structure. As the low-level interface may nced to synchronize
with the DCF-77 transmitter, it cannot be expected to return very quickly.
Under worst-case condition, i.e. if the function is entered just after the first
bit has been transmitted, it may take up to two minutes until the function has
completely collected the time information.

Collecting the bits

There is, however, still a problem when using the serial interface to decode the
time information. This problem is due to the evaluation of the parity bit. Both
input byte values, hexadecimal FO and 0, would need the parity bit to have the
even (high level) state. This is alright in the first case; but in the second case
(200 ms low level), the input signal has still low level when the parity bit is
expected so that a parity error is generated. Fortunately, standard OS-9 SCF
drivers cope with this situation since they return the E§Read error (errno 244)
in case of a parity error. The decoding routine has, therefore, only to consider
the error condition. If the read lunction returns without an error condition, a
logical 0 was received from the iime signal station. If the read function returns
with an error, a logical 1 has been received. The resulting bit collecting routine
is surprisingly simple, especially if no error checking is done:

int dcf77bit(int fd)
{

char c;

return read(fd, &c, 1) ==1 : 0 7 1;
}

If a particular serial line device driver does not correctly handle the parity error
bit of the communications controller, the return value of the read function must
be considered.

The time decoding algorithm

At any time the decoder is started, it must synchronize with the DCF-77 time
signal station. To do so, it waits for a delay between two bits that is significantly
longer than one second. The following function uses a delay of 1.5 seconds:

8 Keep Your Clock Up To Date, Part 2

#include <time.h>
#define CUR_TCK ((clock_t) _getsys(D_Ticks ,4))
#define 150_TCK (CLK_TCK + (CLK_TCK >> 1))

static int dcf77sync(int fd)

{
register long last_tick, tick;
register int this_bit;

tick = CUR_TCK;
do {
last_tick = tick;
this_bit = dcf77bit(fd);
tick = CUR_TCK;
} while (tick - last_tick < 150_TCK);
return this_bit;

After this prolonged gap, the next bit to receive is bit zero of the subsequent
time information packet. The algorithm then picks up the bits until all 59 data
bits are collected. In case the algorithm falls out of synchronization and misses
some bits, maybe due to bad reception of the radio signal, it detects the data
loss by the time elapsed between two bits which must not be more than one
second. In this case, the algorithm re-synchronizes with the DCF-77 signal and
restarts.

Once the complete time information is received, it is immediately decoded and
converted into an OS-9 standard time structure (struct sgtbuf, defined in time.h)
which is returned to the caller after the bit zero of the following minute has been
received. The time obtained can then be used in a subsequent call to the setime()
function.

clock_t dcf77time(int fd, struct sgtbuf *t, int *wday, int *dst)
{
static long last_tick = OL;
long tick;
static int sec = 0; /* Current second */
static int bit[59];

flush(fd); /% Flush any pending input */
wvhile (sec < 59) {

bit[sec] = dcf77bit(fd);

tick = CUR_TCK;

if (tick - last_tick > (CLK_TCK + 5) {

Connecting the receiver to the system 9

bit[0] = dcf77sync(fd);
last_tick = CUR_TCK;

sec = 1;
t->t_year = 0;
} else {

last_tick = tick;
t->t_second = sec++;
if (sec < 60 && t->t_year)
return OL;
}
}

t->t_second
sec = 0;

(char) 0;

1l

t->t_minute = (char) bit[21] + (2 * bit[22]) + (4 * bit[23]) +
(8 * bit[24]) + (10 * bit[25]) + (20 * bit[26]) +
(40 * bit[27]);

t->t_hour = (char) bit[29] + (2 * bit[30]) + (4 * bit[31]) +
(8 * bit[32]) + (10 * bit[33]) + (20 * bit[34]1);

t->t_day = (char) bit[36] + (2 * bit[37]) + (4 * bit[38]) +
(8 * bit[39]) + (10 * bit[40]) + (20 * bit[41]);

if (wday != NULL)
xwday = bit[42] + (2 * bit[43]) + (4 * bit[44]) - 1;

t->t_month = (char) bit[45] + (2 * bit[46]) + (4 * bit[47]) +
(8 * bit[48]) + (10 * bit[49]) - 1;

t->t_year = (char) bit{50] + (2 * bit[51]) + (4 * bit[52]) +
(8 * bit[53]) + (10 » bit[54]) + (20 * bit[55]) +
(40 * bit[56]) + (80 * bit[57]);

if (dst !'= NULL)
*dst = bit[17];

bit[sec] = dcf77bit(fd); /* Wait for second 0 */
last_tick = CUR_TCK;

/* Return the tick that was valid when the minute started */

return bit[sec++] == 1 ? last_tick - 20 : last_tick - 10;

If the time deocding function is re-entered within less than one second interval,
it does not need to re-synchronize. In this case, the function waits for the next

10 Keep Your Clock Up To Date, Part 2

data bit, stores it, increments t_second in the time structure and immediately
returns to the caller. In consequence, the function needs at least two minutes
ounly for the first call; if, however, called regularly, the function returns after
about one second so that, for example, a display can continuously be updated.

We are always late

The above-described method to decode the DCF-77 data bits has one disadvan-
tage: We are always late. When the read function returns, indicating that a
new sccond just started, we are already late for 100 or 200 milliseconds which is
the time that is needed to transmit the data bit. This delay must be taken into
consideration when the exact time of the starting of a new second is needed.
Nevertheless, calculating the correction factor is easy; if the bit just received
is a logical 1, we are CLK.TCK / 5 ticks late; if it is logical 0, we are only
CLIKK_TCK / 10 ticks late.

Adjusting the system time

While receiving and decoding the time information is comparingly simple, in-
troducing the current time into the computer system may be a complex task.
Generally, it is recommended to set the system time during the boot procedure,
for example as part of the startup procedure. In this case, everything is simple
and no problems will arise. If it is, however, intended to update the system
time while the computer is running and possibly executing programs that rely
on absolute time or on time intervals, serious problems may occur.

Changing the time at run-time

There are two generally different concepts to change the system time at run-
time. The first concept gives maximum priority to the continuity of the time,
i.c. the time may be compressed or stretched, but under no circumstances may
a discrete time value get lost. The second concept regards time as a sequence of
time units with fixed length which can neither be stretched nor be compressed,
but it is allowed to miss or insert a time unit.

The distinction between the two different methods is necessary as in a real-
time environment the time must not be changed without prior consideration of

Adjusting the system time 11

the software that is running. Imagine a demon program that has to start other
programs at a given time: If the continuity of the time is broken-up, a particular
program may never be started. Such software would only run properly, if time
adjustment is done by stretching or compressing the time axis.

Other software may not rely on the absolute time but on the accuracy of the
system clock (tick) rate. If, in this case, the time is adjusted by speeding-up
or slowing down the tick rate (i.e. stretching or compressing the time axis),
this software probably will fail. Such software would only run properly, if time
adjustment is done just by changing the time settings.

If both types of software simultaneously run on the same system, the time cannot
be adjusted without producing unpredictable results. In this case, the system
time should better not be adjusted at run-time.

Changing the absolute time

Changing the absolute time is very easy as OS-9 provides the F$STime function
to set the absolute system time.

Adjusting the tick rate

Adjusting the tick rate at run-time is a delicate operation that OS-9 does not
support per se. The tick rate can be changed by either inserting or omitting a
system tick (resulting in a twice or half as long tick) or by changing the tick
duration. In the latter case, the heartbeat of the system must be changed by
reprogramming the clock device which is not possible in all cases. In the first
case, the clock device driver must be modified.

References

(1] Klawitter, Gerd, Time Signal Stations, 11th edition, Meckenheim: Siebel,
1988.

[2] Oxé, Gerd, Keep Your Clock Up To Date, in “OS-9 International”, 2/93, page
32.

12

Keep Your Clock Up To Date, Part 2

Marc Balmer can be reached through the OS-9 International office or by E-Mail

at <balmer@ifi.unibas.ch>.

Gerd Ozé can be reached by E-Mail at <gerd@tangens.pr.net.ch>.

0S-9 V3.0 on PEP Systems

» Development systems with
Disk-Based or Extended 0S-9
on PEP's 68030 and 68040
CPUs

» BSP's for all PEP CPU
boards: complete support of
PEP 1/O boards through RBF,
SCF and VBF (variable block file
manager) drivers; improved
SCSI features with auto
parameter recognition,
disconnect/reselect and higher
performance

P New ISP backplane driver
adapted to PEP CPU boards

» MGR, reccoware's manager
for powerful and independent
window systems, available on
PEP's WGA graphic board

P> Important fieldbus
implementation (PROFIBUS,
CAN, BitBus) under 0S-9 V3.0

» Other networks such as
X.25, ISDN, Ethernet, DECNet,
0S-9 Net on Ethernet,
SINEC-H1 available

Modular Computers®

PEP Modular Computers GmbH
ApfeltrangerstraBBe 16
D-87600 Kaufbeuren

Telefon: 0 8341-4302-0
Fax. 0 8341-4302-39
E-mail:postmaster @ pepkfo.uucp

Simulating dip-switches

Marc Balmer

In a software project for an embedded graphics controller, the software had to be
developed at a time when the hardware was not yet available. A major function
of the code relies on the settings of a dip-switch bank present on the target
machine but not on the development system. In detail, the dip-switch allowed
for the definition of the screen orientation to be either upright or upside-down.

It is, of course, possible to compile two different versious using C language
preprocessor statements. This, however, has the disadvantage that the binary
code for the target system cannot reliably be tested on the development system.
It was, therefore, decided to produce a program that runs with and without a
dip-switch bank. In detail, a library was written that contains functions to read
out a physically existing dip-switch bank or to simulate it, if not existing. In
addition, it was planned to allow for the simulation of the dip-switch setting also
on the target system, so that different settings can be tested without actually
altering the switches.

The most obvious way to simulate the dip-switches is to use an environment

variable, e.g. “DIPSWITCH".

unsigned char dsw_get(void)
{

register char *env;

env = getenv("DIPSWITCH");
return env ? (unsigned char) atoi(env) : 0;

}

If, for example, the MSB position of the dip-switch has to be simulated, it is
sufficient to enter the shell command “setenv DIPSWITCH 128" prior to starting
the application software.

Unfortunately, this procedure can only be used for programs and not for device
drivers since the latter have no access to the shell environment variables. On
the other hand, it is a device driver and normally not a user program that would
need to inspect the settings of a dip-switch bank.

The final solution was to use a data module that stores the current dip-switch
settings and to provide another dsw_get() function that links to this module
and either returns the simulated setting or inspects the memory location of the

14 Simulating dip-switches

hardware dip-switch bank. If the module is not found, a default value of 0 is
assumed and returned.

The dsw_set_val() function is used to set a dip-switch value, the dsw_set_adr()
function allows to set the memory location of the dip-switch bank. A flag in the
data module indicates whether the dip-switch value is simulated or not. Please
note that the dip-switch data module must be present in memory in any case,
even if a hardware dip-switch bank is available.

The header file dsw.h contains all necessary definitions:

/* dsw.h */
#include <module.h>
#define DSW_MOD "dsw.inf"

typedef struct {
struct modhcom _mh;

unsigned long dsw_adr; /* Address of real dip-switch (if any) */
unsigned char dsw_flags; /* Flags, see below */
unsigned char dsw_val; /* Simulated value */

} mod_dsw;

/* Dipswitch flags */

#define DSW_SIM 0x01 /* Dip-switches are simulated */
#define DSW_NEG 0x02 /* Sense of dip-switch is inverted */

The utility program “dsw” is provided to manipulate and inspect the current
dip-switch settings:

#include "dsw.h"

unsigned char dsw_get(void)

{
register mod_dsw *m;
register unsigned char dsw;

if ((m = (mod_dsw *) modlink(DSW_MOD, 0)) == (mod_dsw *) -1)
return 0;
else {
if (m->dsw_flags & DSW_SIM)
dsw = m->dsw_val;
else
dsw = *((unsigned char *) m->dsw_adr);

}

if (m->dsw_flags & DSW_NEG)

Simulating dip-switches

dsw = “dsw;

munlink(m) ;
return dsw;

Another utility program contains the above-mentioned dsw_set_val() and dsw_set_addr()
functions. In addition, the data module can be saved to disk so that it may be
distributed together with a specific software version.

/*

* dsw.c - DIP Switch simulation
*

*

* All rights reserved.

*x/

#include <stdio.h>
#include <errno.h>

#include "dsw.h"

void main(int argc, char **argv)
{
register unsigned char dsw = 0;
register unsigned char n;
int i, £, j;
char *dsw_str = NULL;
unsigned long arg;

for (i = 1; i < arge; i++) {
if (argv[il[0] == ’-’) {

Copyright (C) 1994 by 0S-9 International and Marc Balmer, CH-4055 Basel.

for (j = 1; argv[il[j] !'= 0; j++)
switch (argvl[il[j]) {

case ’7’:
usage();
case ’a’:

if (argv[i] [++j] ==

++j;

sscanf (&argv[i] [j],
dsw_set_adr(arg) ;

break;
case ’v’:

n‘y‘xu s &arg) ;

if (argv[i] [++j

++3;

sscanf (kargv[i] [j1, "%X", &arg);
dsw_set_val((unsigned char) arg);
break;

16 Simulating dip-switches

case ’c’:
dsw_clr_sim();
break;

} else
dsw_str = argv[il;

}

if (dsw_str == NULL)
dsw_print(dsw_get());

else if (strlen(dsw_str) == 8) { /* Supports only 8-bit switch */
for (n = 0; n < 8; n++)

if (dsw_str[n] == ’1°)
dsw += 1 << (7 - n);
if (dsw_set_val(dsw) == -1)

exit(_errmsg(errno,

"Can’t create dipswitch data module \"%s\".\n", DSW_MOD));
dsw_print(dsw_get());

}

}

void usage(void)

{
fprintf(stderr, "Syntax: dsw [<opts>] [<settings>]\n");
fprintf(stderr, "Function: display or set dip-switch settings\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -v=<hex> set dip-switch value to <hex>\n");
fprintf(stderr, " -a=<hex> set the dip-switch memory location to <hex>\n");
fprintf(stderr, " -c clear dip-switch value (stop simulation)\n");
exit(0);

}

/* Set dip-switch value */

int dsw_set_val(unsigned char dsw)
{

register mod_dsw *m;

register int unlink = 1;

if ((m = (mod_dsw *) modlink(DSW_MOD, 0)) == (mod_dsw *) -1)

if ((m = (mod_dsw *) _mkdata_module(DSW_MOD,
sizeof (mod_dsw) - sizeof(struct modhcom),
mkattrevs (MA_REENT, 0),
MP_WORLD_MASK | MP_GROUP_MASK | MP_OWNER_MASK)) == (mod_dsw *) -1)
return -1;

else
unlink = 0;

m->dsw_flags |= DSW_SIM;

Simulating dip-switches 17

m->dsw_val = dsw;
if (unlink)

munlink(m);
return O;

}
/* Set (real) dip-switch base address */

int dsw_set_adr(unsigned long adr)

{
register mod_dsw *m;
register int unlink = 1;
if ((m = (mod_dsw *) modlink(DSW_MOD, 0)) == (mod_dsw *) -1)
if ((m = (mod_dsw *) _mkdata_module(DSW_MOD,
sizeof(mod_dsw) - sizeof(struct modhcom),
mkattrevs (MA_REENT, 0),
MP_WORLD_MASK | MP_GROUP_MASK | MP_OWNER_MASK)) == (mod_dsw *) -1)
return -1;
else
unlink = 0;
m->dsw_adr = adr;
if (unlink)
munlink(m) ;
return O;
}

/* Clear dip-switch simulation flag */
int dsw_clr_sim(void)
{

register mod_dsw *m;

register int unlink = 1;

if ((m = (mod_dsw *) modlink(DSW_MOD, 0)) == (mod_dsw *) -1)

if ((m = (mod_dsw *) _mkdata_module(DSW_MOD,
sizeof (mod_dsw) - sizeof(struct modhcom),
mkattrevs (MA_REENT, 0),
MP_WORLD_MASK | MP_GROUP_MASK | MP_OWNER_MASK)) == (mod_dsw *) -1)
return -1;

else
unlink = 0;

m~>dsw_flags &= “DSW_SIM;
if (unlink)

munlink(m) ;
return 0;

18 Simulating dip-switches

/* Print current dip-switch settings =*/

void dsw_print(unsigned char dipswitch)
{

register unsigned char mask;

printf("Current DIP Switch settings:\n\n");

printf(" 7 6 5 4 3 2 1 0\n");

mask = 0x80;

while (mask) {
printf("%s ", dipswitch & mask ? "ON " : "OFF");
mask >>= 1;

}

printf(*\n");

Conclusion

Why does such a simple task like simulating a dip-switch merits the development
of the above software? It was, of course, not the primary aim of this article to
provide ready-to-use software but arguments for writing hardware-independent
code. The OS-9 platform makes this easy and data modules are an important
feature that may often be used for this purpose.

Marc Balmer can be reached through the OS-9 International office or by E-Mail
at <balmer@ifi.unibas.ch>.

Can’t execute *“J”

Carsten Emde

Have you ever encountered the rather cryptic shell error message ’shell: can’t
execute “J”’7? Here is an explanation for this message and a small C language
program that provides a more helpful message. Whenever a command is entered
at shell level, the first string is regarded as command and searched at the fol-
lowing places in the given order: Module directory, current execution directory,
directories specified in the PATH environment variable, and current data direc-
tory. A file in the current execution directory and in the PATH directories may
be both an executable OS-9 module or a procedure file; a file in the current data
directory, however, may only be a procedure file. If the latter is not the case
and an executable OS-9 module is found instead, the shell will try to execute
it as a procedure file anyway. Since all valid OS-9 modules start with the ille-
gal instruction code hexadecimal 4AFC, this number is erroneously interpreted
as ASCII characters “J” and vertical bar with the sign-bit set. The latter is,
obviously, regarded as an end-of-word character so that the shell searches for
a program called “J” and tries to execute it. Since this fails, the above error
message appears.

A remedy for this inconsistent behavior is given in the following program that
is called “J” and that will display a more digestible error message.

#include <module.h>

/*
* this small program is intended to let 0S-9 novices no longer
* suffer from the ’shell: can’t execute "J"’ message

*/
main(argc, argv)
int argc;
char *argv[];
{
int i;

if (argc == 2 && argv[0][0] (char) (MODSYNC >> 8) &%

argv[0][1] == °\0’ &&
argv[1]1[0] == (char) (MODSYNC & Oxff) &&
argv[1][1] == >\0?)
help();
else
usage();

20 Can't execute “J"’

/*
* print explanation why there was a problem
*/

help()

{
printf("shell: the requested program could not be forked, since it is\n");
printf("located in the current data directory and, therefore, regarded\n");
printf("as a procedure and not as a program.\n");
printf("One of the following actions will solve the problem:\n");
printf("1. load the program (load <prog> -d).\n");
printf("2. copy the program into the current execution directory.\n");
printf("3. copy the program into one of the PATH directories.\n");
printf("4. make the current directory the execution directory.\n");
printf("5. include the current directory into the PATH variable.\n");
printf("6. enter the fully-qualified file name.\n");
printf("7. use a less rudimentary shell.\n");

/*
* print usage, if the program was started manually
*/
usage ()
{
printf("Sorry, this program (j) does not provide any meaningfull\n");
printf("user-accessible functionality.\n");

}

Carsten Emde can be reached by E-Mail at <carsten@ce.pr.net.ch>.

Parallel processing under OS-9

Carsten Emde

Whenever the result of a computer’s calculation is required in less time and
algorithms and compiler already ensure maximally optimized binary code, more
computer power is needed. This can be realized by installing a more powerful
CPU board, if available. If not available, however, parallel processing must be
employed. The way this is done, depends — among other things — on the
number of tasks involved in the particular computing procedure.

Single-task projects

A typical time-sensitive single-task project is, for example, a fore-casting pro-
gram that, obviously, must have finished the calculations early enough before
the relevant time period starts: A weather forecast for the next weekend would,
of course, make no sense if only available on Sunday evening. Such problems
require either more single CPU power or the availability of several CPUs and
an adequate tool that separates the given algorithm into parallel tasks. For the
OS-9 operating system, however, single-task computing power is limited to the
maximum speed that can be achieved using Motorola’s CISC processors family
since compilers that transform a single task source into concurrently running
procedures are normally not available for OS-9. Single-task projects that need
more computing power than about 40 MIPS can, therefore, not be realized under

0S-9.

Multi-tasking projects

On the other hand, many computer projects, especially under 0S-9, already con-
sist of several concurrently running procedures; such situation can much easier
be transformed into parallel processing than the above described situation of
single-task computing. The current article, therefore, focuses on parallel proces-
sing of a multi-tasking environment under OS-9. Another reason for this article
is that a new principle of multi-processing has recently been made available:
VMEbus boards with tightly-coupled processors. The term “tightly-coupled”
means that the processors are connected to the same bus and have, therefore,
common access to the entire memory. One processor is the master processor

22 Parallel processing under 0S-9

that, by default, receives interrupts from the peripheral device controllers, the
other processors have special control registers for reset and interrupt, but this
is the only difference between them. Currently existing boards have two proces-
sors installed, but future boards may even have more. Thus, multi-processing
does no longer require several CPU boards being connected to each other via
VMEbus but may be done on one single board. As a consequence, a drastic
increase in the performance of such systems can be achieved since all memory
accesses are local and no longer limited by the VMEbus.

In general, there are three different ways to transform an OS-9 multi-tasking
project into multi-processing: 1. using independent OS-9 systems that are
connected via network, 2. installing a special kernel extension that distribu-
tes the active tasks to all processors instead of only one, and 3. using a driver
interface to run programs without OS-9 in the additional CPUs. In addition,
Microware is working on an OS-9000 multi-processor system (“Hydra project™)
but has not yet announced any definite plans for release [1].

Independent OS-9 systems

Several independent OS-9 systems can run simultaneously one per processor
provided that the memory sections assigned to the processors do not overlap.
This is normally achieved by individually defining a particular processor’s me-
mory in the ’init’ configuration module. In a double-processor board with 32
MByte RAM one would, for example, define start address and memory size as 0
and 0x1000000 for the first processor, and as 0x1000000 and 0x1000000 for the
second processor, respectively. After booting the first OS-9 system, a special
download program may be started that boots the second CPU. If the second
CPU does not need any specific mass storage, its OS9Boot file may contain a
'/dd’ device descriptor for a RAM floppy whose disk image is also provided as
part of the OS9Boot file. The 'init’ configuration module must then, of course,
specify '/dd’ as the primary disk device. Another, very elegant, feature is to
incorporate the NFM file manager, drivers and descriptors into the OS9Boot
file so that the newly booted OS-9 system may access all peripheral devices via
OS9Net through the master processor. Since both OS-9 systems may access
cach other and the NFM file manager allows to access not only RBF devices but
all other I/O devices including pipes, the network link may as well be used for
synchronization purposes.

The “Doubler” 23

Advantages and disadvantages

The advantage of having two independent OS-9 systems running on one CPU
board is that there is no need for specific software. Already existing software
that was, for example, written for a master and a slave CPU board connected to
each other via backplane net may easily be adapted to run on a double-processor
board. But not all software projects may easily be transformed to communicate
via network and not all customers are familiar with the configuration that is
needed for such master/slave applications. It may also be difficult to decide in
advance what part of the project should run on what processor. In addition, it
must be mentioned that two OS-9 runtime licenses must be bought since two

independent kernels are needed, irrespective of whether they run on one or on
two CPU boards.

The “Doubler”

Recently, the Syac company (Sy.A.C. S.R.L., Trieste, Italy) has released OS-9
system modules that implement multi-processing in a single OS-9 system. Es-
sentially, the existing OS-9 scheduling algorithm is modified so that the active
tasks are distributed not only to one but to two processors. This software is cal-
led “Doubler” since it supports two processors. After installing the “Doubler”
module, the single-task behavior of the system is not affected, i.e. a benchmark
program such as the Dhrystone program has virtually the same performance with
and without the “Doubler”. If, however, the benchmark program is simultane-
ously started from two terminals or from two MGR windows, the performance
can nearly be doubled. The increase in performance, however, depends from the
particular application and may be less pronounced. The following values have,
for example, been measured (68040, 33 MHz):

Without “Doubler” With “Doubler” Percent

One Dhrystone 50.352 50.120 100
Two Dhrystones 24975 49.309 197
Three Dhrystones 16.563 32.808 196

C compilation ca. 160

24 Parallel processing under OS-9

Advantages and disadvantages

The advantage of the “Doubler” is, as in the first method, that any existing
software can be used without restriction. Whenever at least two processes are
active, the increase in performance takes place. This increase, however, is not
always as big as in the above example since only user programs are executed
concurrently. If a program heavily relies on kernel calls, the increase in per-
formance may be less pronounced. This must, therefore, be considered when
deciding between the two first methods of parallel-processing. The frequency
of I/O calls, however, is not an important argument, since I/O is exclusively
handled by the master processor in both methods.

Driver interface (TCP/SP)

Finally, a software package, the Tightly-Coupled Processors Support Package,
has been developed that manages the additional CPU through a driver inter-
face. This driver interface, although based on the SCF file manager, does not
primarily provide read and write functionality. The main part of the driver is
implemented in form of SetStat calls. There are, for example, specific calls to
start and stop the additional processor, to install exception handlers and to pro-
vide communication channels using interrupts and signals. In addition, a ’fork’
function is available that allows to run OS-9 program modules on the additional
processor. This function fully emulates the OS-9 F$§Fork kernel call, i.e. memory
is allocated for static and global data and those pointer variables that refer to
the program code or to static data are made position-independent. Bindings for
the C language are available to facilitate the calling interface. The following ex-
ample presents the code that is necessary to let the additional processor execute
a loop for one second and to stop:

#include <modes.h>
extern int errno;
void prog(void);
void main(void)
{
char *cpu2name = "/cpu2";

int cpu2;

if ((cpu2 = open(cpu2name, S_IREAD | S_IWRITE)) == -1)

Conclusion 25

exit(_errmsg(errno, "can’t open ’%s’ CPU device due to ",
cpu2name)) ;

_ss_tcpsp_runlow(cpu2, (char *) 0, prog);
/* no stack memory needed */

sleep(1);

_ss_tcpsp_stop(cpu2);
}

#asm
prog:
cinva bc ; invalidate both caches
loop
bra.s loop
#endasm

Advantages and disadvantages

The advantage of this method is that small and effective programs can run on
an additional processor, that there is no overhead from the operating system
and that no run-time licence is required. In consequence, the Tightly-Coupled
Processors Support Package is ideally suitable for image processing (filters, re-
duction in bit depth, template matching, etc.) and number-crunching. The fact
that no specific debugging facilities are available cannot be considered an im-
portant disadvantage, since both processors arc connected to the same memory
so that the development of the slave software including debugging can easily
be done on the master processor. It must, however, be realized that — except
inquiring system globals and low-level string output — kernel functions such as
memory allocation, I/O etc. are not available. Standard software can, therefore,
not easily be adapted to run on an additional processor using this method.

Conclusion

In comparison to some other operating systems, OS-9 is less well equipped with
already existing and generally available support software for multi-processing.
There are, however, at least three distinct ways to transform a multi-tasking
environment into multi-processing. All of them have specific advantages so that
in many cases where more OS-9 computing power is needed, an adequate method
is available.

26 Parallel processing under OS-9

References

(1] Kemp, Douglas, Peter Dibble at CERN, in “0S-9 International”, 1/93, page
13.

Carsten Emde can be reached by E-Mail at <carsten@ce.pr.net.ch>.

Software + Hardware + Know-how + Kundenniihe ...

Egal, ob Sie sich fir CPUs oder Grafik, fir Bildverarbeitung oder
Systemkonfigurationen inferessieren:

ELTEC liefert anspruchsvolle Technologien und Dienst-
leistungen fiir industriegerechte Losungen komplexer
Aufgaben der Prozeflautomatisierung.

Modulare Flexibilitét vom low-cost bis zum high-end Bereich
hietet .. der EUROCOM 17:
o | oder 2 MC68(EC)040 CPUs
® 7-32 MB DRAM (63 MByte/sec)
opt. SVGA Graphik
{1152 x 900 Pixel, 256 aus 16 Mio. Farben)
o opt. Netzwerk
e SCSI-2
4 serielle und 2 parallele Schnittstellen
o LEB (filr IPIN-Erweiterungshoards)
Die ELTEC-IPIN-Module Intelligent Serial Interface Controller
{IPIN 17) und flexible Camera Interface (IPIN 19) erschlieBen
Ihnen zusiitzlich die Einsatzbereiche
e Telekommunikation und
o Bildverarbeitung.

Inshesondere fiir den /0- und Control-Bereich bietet ELTECjetzt
den EUROCOM 17 in modifizierter Form als Triiger fiir
Mezzanine-Boards der

o MODULbus und

o MModule

Spezielle Softwaremodule erlauben den vallig transparenten
Einsatz von zwei (PUs unter 0S-9 mit MGR und anderen
Betriehssystemen.

elektronik mainz

ELTEC Elektronik GmbH - Postfach 4213 63 - D-55071 Mainz
Telefon +49 (06131) 918-0 - Fax +49 (0 6131) 918-198
oder unser Distributor in der Schweiz:

SPECTRALAB - Brunnenmoosstrafie 7 - CH-8802 Kilchberg
Telefon (01} 7153807 - Telefax (01) 7155447

... die ideale Entwicklungs-Plattform unter 05-9 !

Of Mice And Men

Marce Balmer

Connecting a pointer device such as a mouse or a track ball to an OS-9 system
is definitely not an easy task. This observation has probably been made by
everyone who tried to install an OS-9 graphic systeis such as the MGR Window
Manager or X Window that relies on a poiuter device.

There are mainly two reasons for this difficulty. First, generally available mice
use a variety of different transmission protocols; this is normally not a problem,
since most mice are designed to be used in conjunction with DOS computers
and applicable drivers are normally delivered together with every mouse. Users
of other operating system, however, must themselves provide adequate driver
software. Secondly, mice manuals usually do not contain any pertinent informa-
tion that is needed for writing a driver and the technical manual is either not
available or, if available, contains mostly DOS-related information.

The current article, therefore, gives a detailed description of the most frequently
used mouse protocols and appropriate recommendations of how to distinguish
them between each other.

How The Mouse Works

At first glance, the mouse accomplishes a fairly simple task, namely to convert
physical movement to numerical values — the mouse coordinates. At a closer
view, however, the mouse is a rather complicated mechanical device with its own
microprocessor, serial interface and movement tracking mechanism.

Most mice use an opto-mechanical principle: Whenever the mouse’s position on
a surface is changed, a rubber-coated ball rotates. Using two optical encoder
disks, LEDs and photo-transistors, the movement of the mouse is encoded into
a series of pulses for each axis separately with 90 degree phase difference. The
number of pulses is a measure of the distance, the interpretation of the phase
indicates the direction. The positional resolution and the specd range may be
very high so that more than 100 dpi and up to 5 meters per seconds are possible.

To relinquish the host processor from counting the individual horizontal and
vertical pulses, a microcontroller is built into the mouse that keeps track of the
current position and that informs the main processor via the serial interface of
mouse movements or buttons being depressed or released.

28 Of Mice And Men

Hardware Prerequisites

There are a few hardware prerequisites that must be fulfilled before a mouse can
be connected to a serial port. As the mouse is powered from the RTS and/or
DTR line of the serial interface, at least the RTS line must be wired. Some line
driver cicuitry does not provide enough current through the RTS line to drive
the mouse properly; the DTR line must be wired as well in this case.

If the DTR is not wired and the RTS line does not provide enough current, the
mouse must be powered by an external battery or mains adaptor. See figure 1
for the simple schematics.

If the mouse is powered from the DTR line, it is still desirable to connect the
RTS line as well, because the RTS line may be used to automatically detect the
type of a Microsoft compatible mouse.

Mouse side Host side
5 m
9o o ©
o —0
G ‘O
60— Te}
ol o)

NC 6 DSR e} “— External power supply

1

2 ™xD 7 RIS O——— (atleast 9
3 RD 8 CTS Suiten (at least 9V)
4 DIR 9 NC

5 GND

Figure 1: Powering the mouse from an external source.

Mouse Protocols

The most frequently used mouse protocol are 1. the Five Byte Packed Binary
Format, 2. the Standard Microsoft Protocol (MS) and 3. The Extended Micro-
soft Protocol (M+).

The Five Byte Packed Binary Format

Everytime the position of the mouse is changed or a button is depressed or

released, the mouse sends a 5-byte long data packet to the host computer through
the serial interface.

Mouse Protocols 29

The first byte has its most significant bit always set. Bits 3 through 6 are not
used and are always cleared. Bits 0 through 2 represent the current button
state. Bit 0 indicates the state of the right mouse button, bit 1 indicates the
state of the middle mouse button and bit 2 represents the left button. Note that
a value of 0 in bits 0 through 2 means that the corresponding button is currently
depressed. In the normal idle state of the mouse with no buttons pressed, the
first byte thus always reads hexadecimal 87.

Each of the following four bytes contain information about the relative change
in the mouse position; they are tranmitted as two’s complement binary numbers
yielding each a range of -128 to +127. The second byte and the third byte
represent the horizontal and the vertical offset, respectively, i.e. how far the
mouse has been moved in horizontal and in vertical direction since the last
report was generated and sent to the host. The last two bytes also contain
horizontal and vertical offsets, but these numbers indicate how far the mouse
has been moved since the current report was started. To get the complete offset,
the first and second offset values of both horizontal and vertical displacement
must be added to each other.

As the mouse only transmits relative motion data, it is up to the host’s appli-
cation program to maintain the absolute position of the mouse. Although there
exist data formats that transmit absolute mouse positions, they should better
be avoided.

The Standard Microsoft Protocol (MS)

The standard Microsoft data format uses seven data bits at 1200 bps. Each
report is three bytes long and encodes the relative movement since the last
report similar to the above Five Byte Packed Binary Protocol. In detail, the
following definitions apply:

The first byte transmitted encodes the mouse button data in bit number 5 (left
button) and bit number 6 (right button). Additionally, the first byte contains
the two most significant bits of the relative movement in x-direction (bit 1 and
0) and y-direction (bit 3 and 2), respectively. To allow for synchronisation with
the mouse, bit number 6 of the first byte is always set to logical 1, whereas in
the subsequent bytes it is always set to logicl 0.

The second byte contains the remaining six bits of the relative horizontal mo-
vement. This byte can directly be used as a signed binary value. The last byte

30 Of Mice And Men

encodes the six least significant bits of the relative vertical movement. These
bits can also be used as a binary number.

To decode the full movement information carried in the data packet, the app-
lication software needs to add bit number 0 and bit number 1 of the first byte
to the second data byte to get the relative x-movement. To decode the relative
y-movement, bit number 3 and 2 of the first byte must be added to byte number
3.

When the middle button on a three-key mouse is pressed, bit 5 and 4 of the first
byte are both set to logical 1.

The Extended Microsoft Protocol (M+)

The Standard Protocol (MS) cannot encode a situation where the third button
is pressed additionally to one of the other buttons. Therefore, the Extended
Microsoft Protocol (M+) has been defined that can handle three mouse buttons
independently from each other. In all cases except when the middle mouse
button is pressed, the Extended Protocol behaves exactly like the Standard
Protocol. When the middle mouse button, however, is pressed or released a
fourth byte is added to the data packet. This additional byte contains the state
of the middle button in bit number 5. The remaining bits encode the device
type which is logical 0 on all bits for a mouse device. The remaining values are
reserved for future use.

Mouse types

Different mouse types differ in the number of buttons, the transmission protocol
and whether they are programmable or not. To distinguish mice from cach
other, they can be put into two different categories: Mice that are Microsoft
compatible and mice that are not.

Microsoft compatible mice

Three different Microsoft compatible mouse types exist, type M, type V and
type W. Although only slightly different, the classification is needed, since the
different behavior primarily affects transmission properties and recognition pro-
cedures.

Not Microsoft compatible mice 31

Type M mice

Type M devices from Microsoft or 100% Microsoft compatible serial mice from
other manufacturers use the MS protocol and operate at 1200 bps. They have
no receive capability, i.e. type M mice generally cannot be programmed.

Type V mice

Type V mice are also Microsoft compatible but they support a third mouse but-
ton and, therefore, require another protocol - the Microsoft Plus (M+) protocol.
Type V mice neither have any receive capability.

Type W mice

Type W mice are more versatile than type M and V mice. They support the
MS protocol as well as the M+ and the Five Byte Packet Binary format. They
can operate at 1200 bps or 9600 bps. Type W mice can accept data from the
host over the serial line; in consequence, the behavior of a type W mouse can
be programmed (sensitivity, baud rate, mouse protocol etc.).

Not Microsoft compatible mice

Type C mice

Type C mice are the most versatile mice. They can receive commands from
the host and operate at 1200, 2400, 4800 or 9600 bps. Three data formats are
supported by type C devices: MM Series protocol, Relative Bit Pad One Packet
Binary and Five Byte Packed Binary.

Type C mice can operate in incremental stream mode or in prompt mode. Ad-
ditional commands allow for system checking and information retrieval on the
mouse type and revision number.

32 Of Mice And Men

Detecting the mouse

As there are different mouse protocols available, it is important to properly
identify the mouse type prior to using it. Every mouse has an option that allows
for identification of the device. Unfortunately, the identification procedure is not
the same for all mice.

Whereas type M, V and W devices respond to a state of change on the RTS
line, type C mice respond to a status command which must be sent over serial
line. To further complicate the identification process, type W mice must receive
a command after RTS toggle function in order to properly being identified.

The RTS toggle function

All mice but type C mice respond to an RTS toggle by sending one or two
characters to the host:

Mouse type Response
Type M “M”
Two-button type V “M”
Three-button type V.. “M3”
Two-button type W “M”
Three-button type W “M3”

The first character will be sent at last 20 ms after the rising edge of the RTS
line. If a second character is to be sent, it will be transmitted at last 100 ms
after the first character.

Mouse Identification

The process of completely identifying a mouse is somewhat more complicated.
The following nine steps must be performed in order to automatically detect the
mouse type:

1 Open the serial line in raw mode at 1200 bps with 7 data bits.
2 Toggle the RTS line.

3 If the response is “M” or “M3” proceed to the next step, else set speed to
9600 bps and return to step 2.

Detecting the mouse 33

4 If the response is neither “M” nor “M3”, it is not a type M, V or W mouse.
Goto to step 6 to see if it is a type C mouse.

5 Send the status command to the mouse. If it responds, it is a type W
mouse. If it does not respond, it is either a type M or V device, depending
on the RTS toggle response. As the mouse is identified, goto step 9.

6 Set the serial line to 1200 bps and 8 data bits.

7 Send the status command. If the mouse returns a proper status message,
goto to step 9.

8 Multiply the serial line speed by two. If the speed exceeds 9600 bps, abort,
the mouse cannot be identified else go back to step 7.

9 The mouse has successfully been identified. Return information.

Mouse Operating Modes

In addition to selecting the transmission protocol, different operating modes
may be selected by sending appropriate commands to the mouse.

Stream vs. Prompt Mode

In stream mode, the mouse automatically sends a report to the host whenever
the mouse is moved or a button is pressed or released. A simple analogue to
the stream mode is an interrupt driven device which delivers its data to the
operating system upon reception.

In prompt mode the mouse only sends a report to the host computer when asked
for. Prompt mode can be compared to a polling device.

Polling a mouse contradicts the philosophy of OS-9 and real-time data proces-
sing; hence, the prompt mode is normally not recommended.

The Mouse Report Rate

There is, however, a problem when the mouse is in stream mode and the user
moves the mouse quickly over the desktop: The mouse continuously sends po-
sition reports to the host at a very high rate and, thus, unnecessarily increases
the system load.

34 Of Mice And Men

To prevent the computer system from frequent serial line interrupts, the mouse
report rate can be limited; a value between ten reports per second and up to
150 reports per seconds can be programmed. If the mouse position or state is
not altered, of course no report is generated.

Conclusion

There are no specific requirements to connect a mouse to a computer system that
0S-9 does not provide. The above-named procedure for mouse recognition, i.e.
toggling the RTS line and waiting a defined time for one or more input bytes, can
easily be realised by an OS-9 program or, better, by an OS-9 driver. The main
prerequisite for writing such software is the availability of the technical data; this
was the aim of the current article. One of the next issues of OS-9 International
will present the driver software for a mouse subsystem that works with any of
the described mouse types without requiring any specific configuration.

Marc Balmer can be reached through the OS-9 International office or by E-Mail
at <balmer@ifi.unibas.ch>.

The EFFO 1994 general assembly

Reto Peter, EFFO secretary

The EFFO general assembly was held on Saturday, February 19, 1994, from
2:15 pm till 6:50 pm at the Gasthof zur Herberge in Teufenthal (near Aarau).
All registered EFFO members have received written invitations including the
proposed agenda and the proposed budget for 1994.

President Werner Stehling opened the 7th general assembly by reporting on the
EFFO activities of the last year. The number of members has grown in the last
year: there are now more than fifty members from Austria, Denmark, France,
Germany, Italy, the Netherlands, Russia, Switzerland and the United States of
America. EFFO’s reputation has also improved; this is revealed by the fact that
more professional users such as companies, software developers and university
institutions have applied for EFFO membership.

Two companies from Switzerland and Germany have decided to include the
EFFO software order form to all products. This support is very helpful and has

certainly contributed to the increase in software orders. EFFO hopes that other
companies follow.

The interest in the EFFO software is evenly distributed among the available
public domain disks. EFFO will continue to regularly update the disks and to
add new disks whenever possible.

During the last year, computer networking and electronic mail has again become
more important. The various EFFO activities would not have been possible
without these media.

Formal topics of the agenda

The profit and loss account and the balance for the last year were presented,
checked by the auditor and accepted unanimously by the audience. The elections
of the officers were performed, and all nominees were clected with the maximum
of votes possible. Hence the members of the committee for 1994 are:

President Werner Stehling (as before)
Vice-president Reto Peter (as before)
Secretary / Registrar Reto Peter (as before)
Treasurer Stephan Paschedag (new)
Auditor Carsten Emde (new)

36 The EFFO 1994 general assembly

EFFO members from Eastern Europe are eligible, for the time being, to a mem-
bership together with a subscription to OS-9 International free of charge. No
special rules, however, apply for software orders from Eastern Europe. The
prices for public domain disks and annual subscriptions for EFFO membership
were approved and remain unaltered.

Various items from the agenda

The next issue of 0S-9 International has been completed (you will probably figure
out this yourself). The quality of the magazine is relatively high. It, therefore,
requires a lot of time to prepare an issue, and it will take a great deal of work
to maintain this high standard in future issues.

One major goal of EFFO for 1994 is to increase the number of public domain
disks. Hubert Nehring has announced to produce a Micro-emacs disk. Avi
Cohen Stuart from the Netherlands has offered to produce a public domain disk
that contains various packing and compression utilities.

Currently, a certain backlog in copying and distributing public domain disks
exists. All pending orders should have been shipped by the publication date of
this issue of OS-9 International.

The standardisation of the documentation of PD software is still an unresolved
item. Carsten Emde proposes to reserve one of the next EFFO meetings to
select a common layout. It was decided to put this as main item on the agenda
of the EFFO meeting in April.

A German VMEbus company has offered to provide, free of charge, a 68040-
based computer board with high-resolution 4-bit graphics, and OS-9 and MGR
development software on a removable hard disk. Initially, it was planned to
use this computer as the EFFO mail server. But everybody agreed on that it
would be a waste to use this system as a mail server. It was decided to use
this system as a general EFFO OS-9 system for internal use. In addition, the
system is available for a limited time to every EFFO member for special projects
requiring features or the power of this system. Power supply and VMEbus crate
are still needed, but will be made available by EFFO members.

An EFFO member offered a used 68020-based system free of charge. This would
be an ideal computer for a mailbox system. EFFO gladly accepted this offer.

EFFO budget for 1994 in Swiss Francs

37

EFFO expresses its sincere gratitude to Eltec and to Hans-Werner Bippus for

their generous offers.

The public relation activities in 1993 were not successful at all. None of the
magazines published the supplied information about EFFO.

EFFO budget for 1994 in Swiss Francs

subscription of 30 single members a 80.00
subscription of 10 group members a 150.00

yield as a result of PD distribution
yield from sale of organizers

for documentation

carry forward from 1993

60 subscriptions to OS-9 International
reserve fund OS-9 International
subscription to InterEUNet

running costs for mailing service

500 disks for PD distribution

20 organizers for documentation a 20.00
hardware reserve fund

public relations

general assembly 1995

guests

postage

envelopds, paper, toner

travelling expenses of editors
unexpected expenses

carry forward to 1995

total

1994

income

2400.00
1500.00
2000.00

500.00

3583.66

9983.66

The next EFFO meetings

expense

900.00
1000.00
240.00
360.00
500.00
400.00
1000.00
500.00
250.00
150.00
200.00
400.00
500.00
500.00
3083.66

9983.66

1993
income
2400.00
1500.00
2000.00
450.00

6350.00

bf expense

1000.00
500.00

500.00
600.00
1000.00
500.00
250.00
150.00
250.00

500.00
1100.00

6350.00

The next EFFO meetings will be held at the restaurant “Gasthof zur Herberge”
in CH-5723 Teufenthal at 7 p.m. The meetings are scheduled as follows:

38 The EFFO 1994 general assembly

Fri. 06.05.94 (meeting)
Fri. 03.06.94 (meeting)
Fri. 01.07.94 (meeting)

Every person interested in EFFO or OS-9 is kindly invited to attend the mee-
tings.

What PD software is most needed?

EFFO staff members not only collect and distribute OS-9 software. They also
put a lot of effort in porting software from other platforms to OS-9. The GNU C
compiler ported by Stephan Paschedag or the Ghostscript Postscript-language
interpreter ported by Carsten Emde may be seen as examples.

Porting and preparing software involves a lot of work and is a time—consuming
task. Therefore, EFFO would like to coordinate such activities and wants to
know what kind of software is most needed by the OS-9 community.

We kindly invite you to state your personal preferences; please contact EFFO
through the OS-9 International office by mail or fax. Of course, you can also send
an E-Mail message to one of the EFFO board members.

Reto Peter can be reached through the EFFO office.

_getsys(0OS-9 International);

Advertisements

0OS-9 International is not only an ideal platform for discussing OS-9 related to-
pics, it is also the ideal place to advertise. OS-9 International reaches end-users,
system-software developers and, nevertheless, decision-makers.

Please contact our office for detailed information on how to place an ad in 0S-9
International.

Subscriptions

0S-9 International is exclusively available by subscription. We currently offer a
subscription of six issues at the following subscription fees:

CH and FL Europe Qverseas
Six issues CHF 45.00 CHF 68.00 CHF 83.00

To subscribe to 0S-9 International send a letter or postcard with your address
to OS-9 International (see cover page for address).

We are sure that you understand that subscriptions from outside Switzerland
have to be prepaid. This must be done in Swiss currency drawn to our bank
account: Account # 10-107,666.0, Marc Balmer, Swiss Bank Corporation, CH-
4000 Basel, Switzerland. Your subscription will start upon receipt of your pay-
ment.

Subscribers in CH and FL will receive a bill mailed together with the subsequent
issue.

Code Disks

All code presented in this issue is available in electronic form on 3.5” OS-9
universal format disk. This disk may be obtained by sending CHF 20.00 to

0S-9 International. Please specify the issue for which you want to receive the
code disk.

40 _getsys(OS-9 International);

0S-9 Archive Sites

The following archive sites have been checked to carry up-to date OS-9 software
and information:

FTP chestnut.cs.wisc.edu (formerly cabrales.cs.wisc.edu)
FTP lucy.ifi.unibas.ch

New phone numbers

Please note that our phone and fax numbers have changed on April, 24. 1994.
The new numbers are:

Phone +41 61 381 55 01
Fax +41 61 381 55 02

0S-9 International

ISSN: 1019-6714

Published by Marc Balmer

Editors: Marc Balmer, Carsten Emde

Copyright © 1994 by Marc Balmer, Hagentalerstrasse 12, CH-4055 Bascl.
All rights reserved.

No part of this journal may be reproduced without the prior written permission
of the publisher.

	OS-9 International
	Table of Contents
	startup
	Keep Your CLock Up To Date, Part 2
	Exact Time and Date Information
	Receiving the Time Signal
	Connecting the Receiver to the System
	Using the Serial Interface
	Decoding the Time Information
	Collecting the Bits
	The Time Decoding Algorithm
	We are Always Late

	Adjusting the System Time
	Changing the Time at Run-time
	Changing the Absolute Time
	Adjusting the Tick Rate

	References

	Simulating dip-switches
	Conclusion

	Can't Execute "J"
	Parallel Processing under OS-9
	Single-task Projects
	Multi-Tasking Projects
	Independent OS-9 Systems
	Advantages and Disadvantages

	The "Doubler"
	Advantages and Disadvantages

	Driver Interface (TCP/SP)
	Advantages and Disadvantages

	Conclusion
	References

	Of Mice and Men
	How the Mouse Works
	Hardware Prerequisites

	Mouse Protocols
	The Five Byte Packed Binary Format
	The Standard Microsoft Protocol (MS)
	The Extended Microsoft Protocol (M+)

	Mouse Types
	Microsoft Compatible Mice
	Type M Mice
	Type V Mice
	Type W Mice

	Not Microsoft Compatible Mice
	Type C Mice

	Detecting the Mouse
	The RTS Toggle Function
	Mouse Identification
	Mouse Operating Modes
	Stream vs. Prompt Mode
	The Mouse Report Rate

	Conclusion

	The EFFO 1994 General Assembly
	Formal Topics of the Agenda
	Various Items from teh Agenda
	EFFO Budget for 1994 in Swiss Francs
	The next EFFO Meetings
	What PD Software is most Needed?

	getsys(OS-9 International)
	Advertisements
	Subscriptions
	Code Disks
	OS-9 Archive Sites
	New Phone Numbers
	OS-9 International

