~__ NORTHERN BYTES

vl it

Volume 5 Number 3 R

Welcome to another issue of NORTHERN BYTES. Hopefully,
this publication will be appearing on a somewhat more timely
basis in the future. I expect that if all goes well, we will publish
between four and six issues this year. There is a tradeoff
involved - we can have more issues and fewer pages per issue, or
fewer issues with more pages: I think that it is not unreasonable
to expect this publication to appear on at least a quarterly basis,
but more often than that might put a strain on the budget.

We want you to consider NORTHERN BYTES as your forum
for exchanging ideas and public domain software. The TAS Public
Domain Software Library is now a reality, and if you are
interested in acquiring some good public domain software, send a
self-addressed stamped envelope to TAS for information on the
library. We are striving for quality rather than quantity in this
library, so although we have relatively few public domain disks at
present, those disks have many good programs on them.

Please feel free to contribute your public domain programs
to the Library, and/or for publication in Northern Bytes. If you
send us a program, please state whether it's intended for
NORTHERN BYTES or for the Public Domain Library. If you don‘t
specify, we’ll assume we can use your program in either medium,
or both. In fact, unless you tell us otherwise, we’ll assume that
any submission to NORTHERN BYTES may also be placed in the
Public Domain Library.

We've got a lot of material to go into this issue, so I'm not
going to waste any more space on long-winded opening remarks, 1
hope you enjoy this issue of NORTHERN BYTES!

NOTICE TO COMPUTER
CLUBS AND USER GROUPS: Many
computer clubs and user groups are receiving NORTHERN BYTES
on an exchange basis. The word "exchange" implies just that - you
send us your club or user group newsletter, we send you
NORTHERN BYTES in return, Granted, we don’t publish monthly,
but generally speaking, an issue of NORTHERN BYTES usually
contains at least two or three times as much material as the
average computer club newsletter (you have my congratulations
and respect if your ¢lub has an above-average newsletter!).

Some user groups have been getting a “free ride" - we've
been sending NORTHERN BYTES, and those groups have not
reciprocated by sending their newsletters, THIS WILL BE THE
LAST ISS5UE of NORTHERN BYTES that those groups will receive,
unless we start receiving their newsletters, If, for some reason,
your club is temporarily not publishing your newsletter (for
example, if you're "between” editors), please write and explain
the situation, and I will consider your case on an individual basis,
If I don‘t hear anything from your group, though, this will be it!

Even if you think your group is exchanging newsletters with
us, it might not hurt to have your club secretary check your
mailing list, Due to the long delay between appearances of
NORTHERN BYTES, we were dropped from a few exchange lists,
and apparently have not been reinstated. I‘d hate to drop a club
from the mailing list due to a simple mixup.

I very much enjoy reading the newsletters from the various
TRS-9;0 user groups, and hope to continue receiving one from your
group!

THE EXTERMINATOR - This is where we kill the bugs that
have been lurking from previous issues.

In Northern Bytes, Volume 5, Number 1, we ran an article
entitled, “Color Computer and Model I/III Compatibility", which
featured the NEWDOS/80 FDRIVE settings required to read Color
Computer disks, Unfortunately, some of our readers took that to
mean that they tould pull a directory and read files from the CoCo
disks Sorry about that. When you use the PDRIVE settings
mentioned, you can do only two things (or so I've been told):
First, you can do a full disk copy from one CoCo disk to another,
FROVIDED that BOTH disks are ALREADY FORMATTED" You
CANNOT format a CoCo disk, or copy anything less than the full
disk. Second, I am told that you can use SUPERZAP to scan

individual sectors on the CoCo disk. And that is ALL you can do,
at Jeast until one of you folks sends us some sort of neat utility
program that will transfer files to and from a CoCo disk,

In our last issue of Northern Bytes (Volume 5, Number 2) we
featured Tony Domigan’s TRSDIR program (a program to pull a
directory from a Model II1 TRSDOS 1.3 disk while using
NEWDOS/80), which I had modified in order to make it run on the
Model I and to add other improvements. Unfortunately, 1
outsmarted myself this time. Tony’s original program used code
similar to that shown below, which I replaced with a CALL OFBDH
instruction (this call converts a number stored in the arithmetic
accumulator to a string for display purposes). 1 figured that I
was saving a few bytes, since the code below and a CALL OFBDH
instruction produces the exact same format string with any
pasitive integer. Since this code is used to display the number of
free granules remaining on the TRSDOS disk, I figured it was safe
to make the change because; after all, you can’t have a negative
number of free grans on a disk. Besides, the replacement routine
worked every time I tested it,

Unfortunately, the routine at OFBDH does not consider zero
as a positive integer - technically, zero is neither positive or
negative. It seems that the ROM routine at OFBDH is a stickler
for the technicalities, and the resulting string is in a slightly
different format when zero is the value to be displayed. And, of
course, it’'s quite possible to have zero grans of free space left on
a disk. The program as published last month would display
something like "0@#% Free Granules” in that situation.
Naturally, in compliance with Murphy’s Law, I didn‘t try to pull a
directory off of a completely full TRSDOS disk before I published
the program.

What to do to fix the bug? I took a look at Tony’s original
routine, put it back into the program, and found that it does work
with a value of zero, He got it from Mumford Micro Systems’
book, "Inside Level II", and they apparently got it from the ROM
(starting at OFB2H). Actually, I've made one change in the code -
the ROM, "Inside Level II", and Tony Domigan all used an OR (HL)
instruction. Since HL is set to 4130H in the subroutine at 1034H,
1 substituted an OR L instruction to reset the Z flag (it may not
be shorter, but it saves seven whole T-states, After all, a true
hacker has to be able to improve on the original code somehow!)

So - if you typed in the TRSDIR program from the last issue,
please insert the following lines into the program to replace the
CALL OFBDH instruction, and re-assemble it. And, if you've tried
use the ROM subroutine at OFBDH and found that it didn’t format
the numeric string quite the way you wanted it to when zero was
the value to be displayed, you may find that substituting the
following code will do the trick for you. Here‘s the replacement
code, which can be inserted into the program using the line
numbers shown (line 1750 is replaced):

01750 XOR A iSpecify non-format edit
01752 CALL 10348H iSetup edit flag & buffer
01754 OR L 1Set NI flag

01756 CALL OFD9H iChange to numeric string

LETTER TO THE EDITOR ~ The following letter is from Greg
Small, Box 607, Stouffville, Ontario, Canada LOH 1L0O . Greg’'s
ideas should be of interest to you NEWDOS/80 users, so I am
reprinting his letter here!

Dear Jack!

I was speaking to Charley last week about a Newdos/80
users group and he suggested I write to you with my thoughts,

+ Apparat appears to have ceased supporting Newdos/80.

+ There seems to he a large number of users of ND/80 and
they have nowhere to turn for support or advice.

+ There is a need for support programs and support service
for ND/80.

I propose the setting up of a loose knit international
(world-wide) user group with approximately 25 regional bulletin

boards as the base. Each beoard would further service local
boards,

These regional boards would collect and disseminate
information as available, If a question was asked or information
became available locally that was not available to the group as a
whole the local collector would pass this on to either a central
clearing house or to the next board in the chain, who wauld then
pass it on to the next, until the message had made it back to its
starting point.

The local boards would access the regional boards for
information, As well, there would be a "published" newsletter
that would further serve to collect all information as hardcopy, to
be available to those without communication facilities on their
computer,

I envisage a nominal membership fee to defray the costs of
the regional or local boards information exchanges, This would be
something on the order of $10 per year with a small percent going
to the international organization to defray the cost of keeping the
whole thing together.

I would like to see it set up as a non-profit organization
with perhaps some corporate sponsorship in exchange for
advertising in the newsletters. In the event that the organization
made substantial money the costs would be reduced for the
following year.

We appear to, collectively, have a vast amount of
information. But, this is not available to the Newdos/80
community as a whole due to the lack of an organization. It also
seems that many of us duplicate the work of others.

I also feel that large numbers of users will not upgrade
their system for the forseeable future as they have everything
they want in their present system. Thus, it is imperative that
Newdos/80 be kept alive.

Please let me have your thoughts on this. I have sent
Charley a copy as I wanted him to be kept up to date on this,

Best regards, Greg Small

{(Voice-7pm—9pm 4146~640-4700, Data—24 hours 416-4£40-3434)

Editor’s comments! I feel that Greg’s ideas have merit for
two reasons. One is that considering the large number of
NEWDOS/80 users, it is very surprising that you seldom see
NEWDOS/80 user groups on either a local or national level. QOne
factor in this may be that NEWDOS/80 is easy to use, something
that cannot be said for some of the other disk operating systems
(perhaps the users of some of thaose operating systems HAVE to
band together in order to figure out how to operate their DOS),
Nevertheless, 1 feel that a NEWDOS/80 user arganization would
be a worthwhile source of information.

Also, Greg proposes the "networking" together of many BES
systems - something that should be a reality already in the BBS
community, but in fact is done rarely or not at all, I have often
wondered why a BBS user cannot leave a message on his local BBS
for a user of another (distant) BBS, and have the message
forwarded (over a period of time) to the receipient’s local BBS
system: A message base could be "shared"” among more than one
BES: As far as I know, there is no BBS software available that
really embraces the concept of sharing a message base among
more than one system. The actual transfer of messages could be
either on a general basis (all BBS's eventually receive all
messages) or on a "directed” basis (messages could be
"addressed" to a spedfic receipient BBS), or a combination of
both, and the actual transfer of messages could be either hy
telephone (perhaps at night when rates are low) or by mailing
disks containing the message base files, If a number of BBS's
could be networked together, a "master" BBS could use outward
WATS lines {or MCI, SPRINT, etc, service) to call all "satellite"
systems once or twice each night {(perhaps once to receive all
incoming messages, then after "sorting® the messages it would
call back each BBS and "leave" the messages directed to that
BBS), Those of you into telecommunications might enjoy the
challenge of writing the software to accomplish something like
this,

But, to get back to the original thought of Greg’s letter, I
hope that those of you that use NEWDOS/30 and that feel you
could benefit from belonging to a nationwide users group will
contact Greg and register your support for this projects If you
don’t, then don’t complain the next time you need some assistance
and have nowhere to turmn!’

MOVING MODEL 4 ROM INTO RAM - The hardware design of
the Model 4 makes it possible to "flip* the ROM code intg the

Model 4's low RAM, so that Model III BASIC becomes RalM-hased,
which in turn makes it possible to patch BASIC or other parts of
the ROM (such as the device drivers)s I use this capability in my
VIDEO4 programy in order to patch certain BASIC commands and
functions to operate correctly in a 24x80 display environment.

This works fine as long as you don‘t use LDOS 5.1 or
NEWDOS/80 as your Disk Operating System. However, both of the
aforementioned DOSes use the ROM area (starting at O0000H or
0100H, respectively) as a "bit bucket" during disk write-with-
verify operations, so when you have moved the ROM code into
RAM, LDOS or NEWDOS/80 will bomb it as scon as you do any
disk write operation (including a write to the disk directory, as
wauld happen when a file is KILLed or RENAMEd). The following
patches move the location of the "bit bucket” from 0000H or 0100H
to 3800H (the memory-mapped keyboard area, which is still
considered a “read-only" section of memory). I'm not certain, but
I suppose it's remotely possible that under certain conditions,
LDOS or NEWDOS/80 might use a "bit bucket" of more than the 1K
of keyboard memory located between 3800H and 3BFFH. If that
were to happen; garbage would be written into the video display
memory {(starting just above the keyboard memory, at 3C00H), so
you would have a visual indication of the problem. If you actually
experience this phenomenon, I'd like to hear from you. Here are
the patches!

LDOS 5.1 for the Model III! Type the following line from
LDOS READY:

PATCH SYS0/SYS.RSOLTOFF (X’/446C2/=38)
(NOTE! You may wish to verify that this byte is the correct
location to change before applying this patch. If so, use DEBUG
to examine the three bytes starting at 46C1H in memory, Prior to
the application of this patch, they should be 26 00 CD. Also, note
that the password RSOLTOFF used in the above command line
contains two ZEROES, not two letter "O"s),

NEWDOS5/80 version Z.0 for the Model III! Use the DFS
function of SUPERZAP to make the following zap to SYS0/SYS, file
sector 02, byte AB!

change! 24 01 CD tal 26 38 CD

(NOTE TO MODEL I USERS! This same zap can be applied to
the Model I version of NEWDOS/80, but the lpcation to pateh is
SYS0/5YS, file sector 03, byte 24, so if you are a Model I owner
with a hardware modification that allows you to move ROM into
RAM, you alsa can fix NEWDOS/80 to work with your system,)

PLEASE NOTE that these patches have NOT been completely
tested. If you apply them, please test them thoroughly before you
use them with any irreplaceable programs or data.

Thanks to GREG SMALL from Stouffville, Ontario, Canada
for his assistance in helping to discover the source of the
problem. NO thanks to Apparat, because they offered absolutely
no assistance in tracking down the problem (it seems that they are
now pursuing the IBM market, and don’t have much interest in
providing further support for the TR5-20 products that made them
rich in the first place).

ANOTHER VIDEO4 PATCH - If you prefer TRSDOS 1.3 to
NEWDOS/80 (see above item), try this patch to fix up the
directory display format when using VIDEO4. It does not seem to
affect the normal directory display when VIDEO4 is not in use.
From TRSDOS READY, enter the following command:

PATCH #& (ADD=5AFA,FIND=3F,CHG=0F)

VIDEO4 UPGRADE AVAILABLE FREE! - If you are a
VIDEO4 owner, and you did NOT receive a registration form when
you purchased VIDEOA4 (or if your copy of VIDEQO4 does not
display a copyright notice and version number when you first vun
it), you may return your master VIDEO4 disk and a.
self-addressed, stamped disk mailer (or whatever you use to mail
disks) to TAS for a FREE upgrade,. You MUST enclose the
stamped, self-addressed disk mailer or your disk will NOT be
returned (you have been warned')s There is no other charge for
the upgrade. If you live outside the U.S.A., you may send an
unstamped mailer and 54 cents in U,.5. coins (or 63 cents in
Canadian coins) - if you live outside the U.S,A, or Canada, that
will buy surface delivery only (small packet rate).

The upgraded version of VIDED4 supports the on-screen
clock display (available from DOS through use of a CLOCK ON or
CLOCK Y command), and also makes the clock keep the correct
time when the fast clock speed is used, It also causes the
computer to emit an audible "beep" when certain BASIC errors
occur. Along with the upgrade, you will receive a registration
form which will allow you to register your copy of VIDEO4, You'll

also receive a PATCH UPDATE sheet which will inform you of the
one-byte patch you need to make to your DOS in order to use
VIDEOS4, if you use NEWDOS/g0, LDOS, or TRSDOS 1.3 (these
patches are the same ones mentioned in previous paragraphs of
this newsletter),

Let me also mention a couple of other DOS compatibility
~otes - if you use VIDEOA with TRSDOS 1.2, you should probably
NOT use the fast clock speed option, unless you like saving
garbage instead of good data to your disk files, And, if you use
VIDEO4 with MULTIDOS, make sure you have the current version
of MULTIDOS, If you do not have MULTIDOS version 1.4b (or
later), send your master disk and a $5.00 upgrade fee to
Cosmopolitan Electronics (NOT to TAS) to get upgraded to the
current version,

Some of you may be wondering, "what is VIDEO4?" The
answer is that it's a program that permits use of the 24X80 video
display mode and fast clock speed of the Model 4, while in the
Model III mode. Although there are similar packages available
that are less expensive, VIDEO4 is a far superior package, and
COMMENTED EDITOR-ASSEMBLER SOURCE CODE is included on
the disk, in case you want to “tweak" the program a bit! Contact
The Alternate Source for further information on the VIDEO4
package.

SRRING. X OUR.. QN /315 OV ERl -l sverbhbrslidiltidboiid) DY
Jack Decker - The purpose of this article is to give you some
basic information you may have wished you’d had if you ever
wanted to add your own /§YS overlays to a Disk Operating
System. This article is written for those that already have some
familiarity with DOS operations - specifically, I will assume that
you know how to use the SUPERZAF program supplied with
NEWDOS/&0.

You might wonder why you'd want to add a /5YS overlay to
your DOS. The answer is that you might want to add a command or
function to your operating system that requires more code than
that which can be placed in a simple patch to an existing system
file, Actually, I had a somewhat similar problem, which prompted
me to ferret out this information. As you may be aware, TRS-80
Disk BASIC uses an “ampersand (&) function" to convert
hexadecimal or octal constants to variables, Its application is
fairly limited, for example, you can‘t use the INPUT statement to
input a string of hexadecimal digits and then use the &H function
to convert them to decimal, because the &H function only works
with constants placed within the program itself, not with
variables, So, I wrote an improved ampersand function routine,
which appears in Appendix VI of my book, "TRG-£0 ROM Routines
Documented." The only problem with the new routine was that it
had to be lpaded into high memary after calling up BASIC from
DOS READY, Since I usually didn‘t bother to do this, the routine
was never available when I wanted to use it, What I wanted to do
was to make my “improved" ampersand routine a more-or-less
permanent part of Disk BASIC.

Even though BASIC is, strictly speaking, an application
program (that is, a visible /CMD file) rather than a part of the
DOS, there are nevertheless several /5YS overlays that are on
the disk solely to support and provide additional functions for
BASIC, Since BASIC can call and use those /5YS overlays, I
figured that I ought to be able to convert my ampersand function
routine into a /SYS overlay that BASIC could access at any time.

The following paragraphs describe how I did this with
NEWDOS/80. If you are using another DOS, the actual method
may be different (and you are on your ownl, but some of the
principles involved may be similar, The NEWDOS/80 manual has a
discussion of user coded system routines in section 1Z.6.1, but it
is so brief that it is almost unintelligible (as a matter of fact, 1
didn’t even know it was there until someone ralled my attention to
it after reading a first draft of this article ~ which was probably
a good thing, because I think I would have been more confused had
I read the manual discussion first),

First of all, I made a few changes to the source code of the
ampersand function routine as published in the book (if you don't
have the baook, you're in luck - sort of. The routine had a bug in it
so the corrected version is being printed elsewhere in this
newsletter. However, if you need the instructions for using the
routine, you'll have to get your hands on a copy of my book). In
addition to fixing the bugs in the routine, I deleted lines 100-140,
changed the ORG address in line 170 to 4D0OH, and changed line
1260 (now line 1230 in the corrected version) from END OACCH to
END START:. Then I assembled the program using the filename
§YS79/5Y610 . At this point I had created a usable DOS overlay

with the name SYSI¥/5YZ, which resided an the system dizk un
drive zero, and which when loaded would reside in the DOS overlay
area starting at 4D00OH, The only problem was, BASIC had no idea
that it was there, or that it was now supposed to use this overlay
to interpret any "&" function call,

Time to patch the DOS exit for the "&" function, This is
found at 4194H, and in the Model I version of NEWDQOS/G0
normally contains a JP 5790H instruction, Instead of going there,
we want it to call our new §YSZ%/5Y5 overlay and execute it, so
we simply change this to a LD A,3FH 1nstruction followed by a
RST 22H instruction. RST 28H is used for DOS overlay requests
lamong other things), on entry, the value in the A register
indicates the DOS overlay to be called. Wait a minute - how do we
get 2FH out of system overlay number 7% (§Y829/5YS), I hear you
ask, Well, for one thing, the actual filename used is not
important here - once we get this working, we could change the
filename SYS29/5YS to TOADSTL/FRG or something equally
ridiculous and it would still work ~ I'1] explain later. But, for the
time being, consider the byte in the A register as TWO numbers -
one in the most significant three bits, and the other (the /5YS
overlay number) in the least significant five bits, In other words,
our eight-bit byte looks like this!

TUUsSsEsss

The bits in YUV are a “user code", and are defined as such
so that one overlay can be used by more than one command or
function, as will be explained later. These three bits can be set
to any value EXCEPT 000 (zero), meaning that user codes from one
through seven (decimal) are permissible, Since we are only using
this overlay for one function, we can use any non-zero value we
want to, so for the sake of argument, let’s set the user code to
“i{" (that's 001 binary).

Bits 55655 are the system overlay number PLUS TWO. So, in
this case, we have a "user code" of 001 binary and an overlay
number of 29 + 7 = 31 decimal = I{F hexadecimal or 11111 binary.
Put those binary numbers together and we have 001 11111
binary, or 3F hexadecimal ~ which is why we load the A register
with 3FH before doing the RGT 28H, Note that the LD instruction
is two bytes long and the RST instruction is only one byte long, so
this code fits nicely into the DOS exit for the "&" functian.

We could, of course, POKE the proper code into the DOS exit
each time we enter BASIC, but we can make the change permanent
by using SUPERZAP to patch BASIC/CMD. In the Model I, the
patch is as follows!

BASIC/CMD,17,44 change 44 C37057 C3 to &4 3E 3F EF C3
Model III users may need to apply the patch in a different
location, if so, the F (find) function of SUPERIAP may aid you in
finding the proper location to patch.

Hold it, Fillmore, we're not quite through yet. If you go into
BASIC and try to use the "&" function, you’ll probably get a
SYSTEM PROGRAM NOT FOUND message and then you'll get
thrown back to DOS READY. The reason is that the DOS does not
look for its /5YS overlays by using the filename, Instead, it
expects to find SYSn/SYS in directory slot number n+2 (that's why
we had to add two tp the system overlay number in the above
paragraph). If the first byte of that directory slot is 5FH,
indicating that the protection level of the program is “system",
then the DOS could care less what the actual filename is - it
figures that that’s the SYS averlay it wants, and goes ahead and
uses it. So, before we can use our new SYS29/5YS, we have to get
its directory entry into the proper slot, and we have to protect it
as a /SYS file,

Time to call up SUPERIAP again, Use SUPERZAF’S DFS
function to examine DIR/SYS!0, and use the + key to page through
the directory, Find SYS0/SYS, then SYS51/5YS, then §YS2/5YS,
and so on. You’ll soon notice a pattern — with the exception of
the first two sectors of the directary t(the GAT and EIT sectors),
the /SYS files are arranged in ascending order through the
DIR/SYS file. It's easier for you to discover the pattern by
examining DIR/SYS with SUPERIAP than it is for me to try and
explain it, so go ahead - I'll wait.

Oh, you're back. Well, if you're any kind of a programmer at
all, you’ve probably already figured out which directory slet your
5Y529/5YS file has to occupy - it’s the slot just below §YSZ1/5YS
on the SUPERZAP display (from the top of the display you’ll see
§YS5/8YS, SYS12/5YS, 5YS21/5YS, and the slot just below that is
where SYS2Z27/5YS must go)e So, how do you get SYS2?/5YS into
that directory slot? Well, you could copy the SYSZ?/5YS directory
entry from its present location into that slot, then zero the
original slot and use SUPER-UTILITY or a similar program to fix
the Hash Index Table, You could veread Pernington’s book and

rebuild the directary to proper specifications. Or, you could cheat
a b1t ang do it the Jazy man’s way. I took the latter route.

Basically, it works like this. First of all, let’s assume that
there’s already a valid directory file entry occupying the siot that
5YS2%/8YS should be iny Copy that file tp another disk (you can
copy it back to your system disk later), If there is no valid
directory file entry in that slot (no entry at all; or the entry of a
previously KILLed file, as indicated by the first byte of the entry
containing a value of zero), then use the CREATE command and
keep CREATING files (create five or ten at a time - use short
filenames like 01, 2, etc.) until you get a valid file to occupy
that directory slot. Check with SUPERZAP to make sure that the
first byte of that directory slot is a non-~zevo value,

Once you have the directory entry of a valid file (one that
has not previously been KILLed) occupying the directory slot
where SYSZ?/5YS should be, note the filename presently in that
slot (let’'s suppose it's OLDFILE/CMD), Be sure to copy
OLDFILE/CMD to another disk if you want to save it, then issue
a command of the formi COPY §Y522/5YS TO OLDFILE/CMD .
Then KILL SYS529/58YS and then
RENAME OLDFILE/CMD TO SYS29/5YS . You should now have
SY529/5YS in its proper slot (use SUPERZAP to check), but it still
isn‘t protected as a system file, To do that, use SUPERIAP to
change the first byte of the directory entry from whatever it is
now (probably 10) to 5F, You may also wish to drop down to the
second line of the directory entry and change the password bytes
(the first four bytes on the second line) so that they are the same
as those in the directory entries for the other /5YS files on that
disk.

Don’t forget copy the file you moved to another disk (if any)
back to your system disk, and/or to kill all of those “garbage"
files you CREATEd in a previous step (if any).

Admittedly, this process is a lot easier to do than to
describe, particularly if you're already familiar with SUPERIAP
and with the organization of the disk directory. The whole point
of the above few paragraphs was to get our new SYS27/GYS file
into the proper directory slot where the DOS could find it, If you
have an easier method of accomplishing this, by all means use it
{then write it up and send it in so the rest of us can use it),

1 mentioned that an overlay could be used for more than one
function, Suppose that we combined the ampersand routine
mentioned above with a two-byte POKE command (which would
complement the SPEEK function of the ampersand routine). We’ll
use the command NAME POKE because NAME is a reserved BASIC
keyword that is unused in NEWDOS5/20, and is vectored out to
reserved RAM (in much the same way that the ampersand function
is, except that NAME is considered a BASIC command, while the
ampersand function is just that - a function: This is an important
distinction, because PEEK is a function while POKE is a command,
In BASIC, you must always "do something” with the result of a
function ~ PRINT it, assign it to a variable, etc, ~ but the same is
not true of a command),

Let’s use the same overlay for both the ampersand function
routine and the NAME POKE routine - the only difference is that
we’ll continue to use a user code of one for the ampersand
function routine, but we’ll assign a user code of two (actually any
valid user code other than one) to the NAME POKE routine. Both
routines will be part of §YS2Z9/8YS, but when we want to call the
NAME POKE routine, the user code two {010 binary) will he
combined with the bits in 85555 (still 11111}, giving us a combined
code of (10 11111 binary or 5F hexadecimal. So, when we want to
use our NAME POXE function, we would simply load the A register
with SFH and do a RST 28H, This would normally be done from the
NAME command DOS exit at 412EH - if you're patching BASIC, the
Maodel I patch would be!

BASIC/CMD,17,2E change S7 C34A IEC3 to 57 2ESF EF 2
The contents of the A register are not destroyed by the act of
loading the DOS overlay, so at the very start of the overlay we
can test the value of A and jump to the appropriate section of the
overlay. This is done in the following section of code. To add
this code to the ampersand function routine, first delete all lines
up to and including line 180 in the present version of the routine,
then add the code shown below to the start of the routine, Then
assemble it as §YS29/8YS using the same method detailed above!

O00&0 ORG 4D00OH tBystem overlay area
00070 START CP ZFH iCalled from & function?
00020 JR 1,AMPRFN 1Go if so

Q0020 RST 2 {Syntax Error if "POKE"
00100 DEFE 0OBlH H

doesn’t follow "NAME"

4

60110 CALL BCYH iGiet address to POKE
00120 PUSH DE isave address to FOKE
0017320 RST = iSyntax Ervor if comma
00140 DEFB { doesn’t follow address
00150 CALL ZBOUH iGet value to POKE

00140 EX (SP),HL i2ave In ptr get POKE adr—_
00170 his TRLOH ‘Fimsh up in ROM

00180 AMPRFN RET 10H iGet next character

Note that at the ztart of this section of code, we tested the
A register for ZFH (3 user code of cne, indicating that the
ampersand function waz called) and if we did not find it, we
assumed that the A ragister contained SFH (user code two) since
those are the only two ways that this overlay can be entered.
However, note that values of 2FH, 5FH, 7FH, FH, BFH, DFH, and
FFH could all be used to access gverlay SYSZ?/5YS, and that
those values correspand to the seven possible user codes, At the
start of the overlay, we could test for the various possible values
and jump to the appropriate routine. So, one overlay could hold up
to seven different routines, which need not be related to each
other in any way other than being contained within the same
overlay file!

The point of all this is that sometimes when you want to add
an extension to the DOS or to Disk BASIC, it's not always
necessary to make it high-memory resident — particularly if it's
code that’s only used occasionally for a specific purpose, Think
about using overlays for those "once in a while" applications!

‘nmibaadt. ROUTINES ROCUMENTEDR! BUG - It's been
said that no program is ever fully debugged, and I'm beginning to
believe it, For example, I wrote an "Improved Ampersand
Function” routine that ultimately became Appendix VI of my book.
I tested it every way I could think of, and it seemed to work just
fine. Others have used it for months, and it was reprinted in a
computer club newsletter, and I hadn’t heard of anyone having
problems with it, That‘s why I was a bit incredulous when Nathan
Harrington phoned me from Lincoln, Nebraska to tell me that he
had found a bug in it. As it turned out, he was right.

It seems that if the routine is enabled and the following line
is executed from BASIC, the system bombs with a "STRING.
FORMULA TOO COMPLEX ERROR" on the tenth loop!

10 FOR A=1 TO 20! PRINT SH(&FN(A)): NEXT

Nathan thought that the &FN routine (which converts a number to
a hexadecimal string) was the source of the problem - a logical
assumption, but not correct, Actually, the &H(string) routine was
the culprit. Nathan also thought that the string workspace in
reserved RAM was not being cleaned up properly, and that DID
turn out to be corrects In any event, I sat down with my copy of
"Model III ROM Commented" (which I could probably sell a
thousand copies of if I had them to sell, since the publisher, Soft
Sector Marketing, is no longer in business), and discovered a
handy ROM routine (what else?) that not only did the job of
cleaning up the workspace and eliminating the bug, but also did
some of the wark that I had been doing in my routine, This
actually allowed me to shorten the routine by a few bytes.

The listing of the vevised program is below. Changes from
the book version are as follows! The ORG address in line 179, and
the changed code in lines 770-810., Also, line €Z0 and all lines
following were numbered greater by 10 in the book version (320
was 830, etcy). And last (and probably least), the glaring error in
the caomment in line 100 has been fixed (it’s not a link to the USR
function vector..h

The text in the book is still correct, with the exception of
the MEMORY SIZE of 32591 in the last paragraph, which now
reserves a bit (well, four bytes, actually) too much memory!

The revised program listing follows., I am sorry for any
inconvenience this may have caused anyone. Flease advise me if
you have any further problems with this routine,

00108 ; LIMG TO & FUNCTION VECTOR
00110
2494 00120 ORE 4198 IVECTOR FROM 8" FUNCTION
4194 CISTF 09130 N3 START { U TO START OF ROUTY ™
00140
00150 § HATN PROGRAH EECING HERE
00140
752 00170 ORG 7FS3H I HATN FROM-MAY RELOCATE

7R3 07 00180 START RST 10K 1GET NEXT CHARACTER

7F54 CB7F
7F56 7844
7¥58 5
7Fae b7
7F5a £D2CT5
7F5D E2
JFSE ES
7FSF CO7FDA
762 F1
7F63 FEES
TF63 2009
TF6T SE
7F48 23
TF69 56
7FéA EDT32141
7FEE £1
TFeF 9
7F70 FEEE
TF72 C29719
7F75 EB
7F74 CDBO7F
7F79 CD9310
7F7C €5
7F7D C33978
7F80 213041
7F83 7A
7F84 CDBS7F
7F87 7B
7F88 F5
7F89 OF
7FBA OF
7F8B OF
JFeC OF
7F80 CD9ATF
7F90 Fi
TF91 ESOF
7F93 C6%0
7F95 27
7F94 CEA0
798 27
w99 77
7F94 23
7F98 C9
7F9C 010201
7F9F FEAZ
TFAL 280F
TFA3 011004
TFhS FEAB
748 7808
7FA4 010803

7F82Z D7
7FB3 FEZ8
7FES 2018
TFB7 5
7re8 C02C25
TFBE E3
7FEC €5
TFED CDO72A
7FCO CY
7FCL OF
7FCZ 23
7FC3 7€
7FC4 23
TFCS 66
7FC6 &F
7FC7 EB
778 19
7FC9 tB
JFCA CDD27F
7FCD E1
7FCE €9
7FCF 1IFFFF
7FD2 7B
7FD3 E5
7FDA 216000
7FD7 CD9ADA
7FDA E3

foi90
00200
10219
00220
00230
08240
00230
00260
00279
00280
00290
00300
00310
00320
50336
00346
00350
00340 NOTPK
00370
00380
00390
o0400
80410
00420
40430 COW
00440
00450
00460
00479 CONZ
00480
#0490
00500
06510
00520
08530
00340 CONV3
80530
90548
00570
00580
80590
00608
086110
00420 NOTTKN
o430
00440
006360
80440
00670
60480
00496
99790
00710
00720 CONT
00738
00740
80756
80740
06778
00780
10790
00800
oosie
00820
00830
00840
00830
08840
00870
08880
90890
08900
10910
08920
10930 NOTEXF
00940 CONT?
00950
80940
00970
60980

BIT

e

R3ERERECEcEE3 R aE» 955 C 5 CARCEEEEEIEEE 88 5CRCC~FRRR®3A3EE

LD
DEC
FUSH
LD
CALL
EX

74h
Z,NOTTEN
3

10H
252CH
(SF),HL
H.

0A7FH

A

ESH
NZ,NOTFK
E, (HL)
H

0, (HL)
(81214} ,DE
H.

OBEH

NZ, 19974
DEHL
Cow
1693H

BC

283

HL ;41304
)0
CowzZ
AE

A

Ay 76H
A,A0H

(HL) A
BC, 1024

BC, 4104

DE, OFFFFH

H
BATAH
(SP),HL

$CHECK FOR TOKEN

GO IF NOT BASIC TOKEN
$SAVE TOKEN

JGET NEXT CHARACTER
SEVALUATE EXPRESSION
JSAVE BASIC POINTER
$RE-SAVE TOKEN

JCHANGE TO INTEGEK

1GET TOKEN

$2-BYTE PREK?

+IF NOT 2-BYTE PEEK

$GET CONTENTS OF ADDRESS
+ POINTED TO €Y HL AND
4 FUT IN DE REGISTERS

} AND MATH BUFFER
$RESTORE BASIC POINTER
{NUMEER IN BUFFER & DE
CHECK FOR HEX CONVERSION
$SN ERROR IF NOT HEX COMWV
JPUT VALUE IN DE
$CONVERT TO STRING

THARK END OF STRING

sFOR ROM TO DISCARD
$RETURN THRU 5TR$ ROUTINE
JASCIT CONV. WORKSPACE
JCOMVERT D RECISTER

+ TD ASCIT (HEX)
$CONVERT E REGISTER
1SAVE BYTE TO COMVERT
ROTATE HIGH NYBELE

+ DOWN TO LOWER

+ FOUR BITS

JCONVERT T0 ASCII (HEX)
RESTORE BYTE T0 COW
JUSE LOWER FOUR BITS ONLY
$THIS ROUTINE CONVERTS
HEX VALUE IN RANGE
00H-0FH TO ASCII CHAR
0-7 R A-F

$STORE RESULT ASCIT CHAR
$EUMP WORKSPACE POINTER
+(THIS ROUTINE RECURSIVE)
$SET UP BINARY PARAMETERS
$IS IT BINARY?

160 IF BINARY

$SET UP HEX PARAMETERS
15 IT HEXADECTMAL?

360 IF HEXADECIMAL

$SET UP OCTAL PARAMETERS
3IS IT OCTAL?

360 IF OCTAL

JOCTAL ASSIMED

$GET MEXT CHARACTER

+1S CHARACTER A "("?

$60 IF MOT A "("

$SAVE COUNTER & MAX DIGIT
$EVALUATE EXPRESSION
$SAVE BASIC BYTE POINTER
{RE-GAVE CNTR & MAX DIGIT
$CLEAN UF WORKSPACE
RESTORE CNTR & MAX DIGIT
$GET STRING LENGTH IN £
GET ADDRESS OF FIRST

3 CHARACTER OF STRING

} AND STORE TN HL

+ REGISTERS

.. e

tHL=STRING LNGTH, DE=STRT
YHL=STRING END + 1
{HL=6TART, DE=END + 1
JEVAL, STRING EXPRESSION
tRESTORE BASIC POINTER
PNUMBER IN MATH EUFFER
$CHECK TO NONHEX CHAR.,
{BACK UP BASIC POINTER
$SAVE BASIC POINTER

$ZERD MATH ACTIRULATOR

+ & SET TYPE FLG TO INT,
$HL=BASIC POINTER, (SP)=0

7FDE DDEL 10990 NXTDGT FOP X 1GTORE 4 56 FAR IN IX
7FOD D7 01000 RST 10H $GET MEXT CHAR. (DIGIT)
7FDE 68 01010 EX oF 6F }SAVE CHARACTER & FLAGS
TFOF OF 01020 RST igH JCHECK FOR END OF STRING
7FED DO 01030 RET NC SRETURN IF END OF STRING
JFEL 08 01040 EX AF A/ JRESTORE CHAR. & FLAGS
JFEZ 3805 01850 JR C,DIGIY $IF CHAR, IN RANGE 0 TO 9
7FES FE41 11060 CF 41H IS CHAR BELOM ASCIT "A"?
7FES DB 11079 RET C SEND OF MUMBER IF £ “A"
7FE7 D607 1080 SuB 7 JOFFSET FOR ALPHA CHARS.
7FES D430 01096 DIGIT SUB M =0 T0 15 FOR -9 OR A-F
7FEE B9 01108 cr C 1C=2, 8, OR 10H ¥AX DIGIT
JFEC DO 05110 RET L) JEND OF NUMBER IF >= MAX.
JFED DDES 61120 PSH IX }PUT # SO FAR ON STACK
JFEF E3 01130 EX (sP),H tHL=# SO FAR, (SP)=PNIR
7FF0 €3 01140 PUSH BC $SAVE COUNTER & MAX DIGIT
7FFL 29 01150 TIMESZ ADD HLHL PMULTIPLY HL TIMES 2
7FFZ DABZ07 01160 i C,7e2H JERROR TF OVERFLOW FFFFH
7FFS 10FA 01170 DNz TIMESZ $REPEAT MULTIPLY ‘TIL B=0
TFF7 & 01180 LD C,A 1ADD VALLE OF LATEST
7FF8 09 81190 ADD H.,BC i DIGIT FETCHED TO HL
TFF9 222141 01200 Lb (4121H) ,HL $CURRENT HL TO BUFFER
7FFC €1 01210 POF EC {RESTORE CNTR & MAX DIGIT
JFFD E3 81220 EX (SP),HL tHL=BASIC PNTR, (SP)=4
7FFE 18D #1230 &R NXTDGT SGET NEXT DIGIT (IF ANY)
01240
84CC 01250 END 06CCH sUSE 1A19H FOR HODEL III
11240 3 OR 4020H FOR DOS
00000 TOTAL ERRORS
coNT 7FBR CONTZ 7FD2 cow 7F80 cowz 7res
tows 7P DIGIT 7FE9 NOTEXP 7FCF NOTPK 7F79
NOTTKN 7F9C NXTDGT 7FDB START 7F33 TIMES? 7FF1

vt et el G UMENTEDMEGRADE, - If you
have purchased my your copy does not have the
*Hexadecimal Address Cross-Reference” on pages 122-125, you
have a copy of the first printing. You may receive an upgrade free
of charge by removing the last page from your hook (the one with
the "Afterword" on it - this page is replaced in the upgrade) and
sending it AND a large (approximately 9" by 12"), self-addressed
stamped envelope with 54 cents postage to me at TAS,
Alternately, if you don’t have the large envelope send 45 cents
U.S: {or 80 cents Canadian) in coin and a pre-addressed mailing
label and I'l] supply the envelope and stamps. Please be patient,
I’ll probably wait until I've received several requests and then
send them all out at once.

Alsp, it has come to my attention that a few copies of my
book that were of substandard quality were inadvertently shipped
out, If you got a copy that has pages that are difficult to read
(particularly if they are extra light at the top or bottom of the
page), please feel free to return it for a replacement copy at no
charge {(we’ll even pay the postage), On the other hand, if your
copy has anly one or two bad pages, you may elect to tell us which
pages are bad and we’ll send you replacements, If you do want to
return your present copy for replacement, you may want to wait a
couple of months just in case I discover any more bugs and make
further revisions, but that’s entirely up to you, However, I do
apologize to anyone that got a bad copy (by the way, if you
ordered my book and had to wait a while to get it, it was because
we had some real quality-control problems for a while, We have
had to scrap practically two entire print runs due to thece
problems! So, my apologies to anyone that had to wait - and a
double apology if you had to wait and still got a bad copy').

by R. Barto is excerpted from NYBBLER -
If you use Newdos/80 and use the command "Format [dn)" you will
notice that the disk will have a name of "NOTNAMED" and a date
of "00/00/00" [only if you did not set the system date when you
booted the DOS -ed.ls You can change both of these with the
command "PROT {dn] Name=Newname Date=newdate", but if you
want to have a new default name, you can with the added feature
of lowercase and punctuation. Using SUPERZIAP, enter DFS, then
SYS&/8YS, then MOD 2D, You can change all bytes to byte 44 (8
bytes) to whatever you want, Do not change the "B" at 2C, only
3D-44 replacing the word "NOTNAMED". The entries must be in
hexadecimal, and you can use the trial and error method if needed.
I use "Bob’‘sfmt" and lave it.

4 £20% ASSEMBLER IM MICRCSOFT BASIC
by Clarence Felong and Hen Brown

Wten the Radio Shack Color Computer was first announced, it
appeared to be a break-through in price/performance. It was
hazed on the Motornla 4507 CPTY, had colar graphics, Basic in ROM
ard cost under $S0¢' At zbout this same time we became very
interested in graphics and animation t.e, games). The Basic was
good, faster then the TRS-20's, but not fast enough to handle
real-time animation. Assembly language programming seemad the
way to co.

BACKGROUND

A problem arose very quickly, Where do you get a 4807
azsembler to run on the Color Computer when the Advanced Basic
and add-on RAM was not even available? What could the £20% DO,
anyway? After many phone calls to Radio Shack, Motorola part
distributors and local book stores, we obtained a book entitled,
*“MCA2807 PRELIMINARY PROGRAMMING MANUAL" from
Motorola., Preliminary, indeed! The listings in the book came
from a &20% cross-assembler running on a 4200 based machine and
many of the romments were hand written, This was interesting
but did not solve our problem.

Our pleas to Radio Shack for information on availability of
an assembler went unanswered. South West Technical Products
had a 4809 hased computer running on the S§5-30 bus but we were
unwilling to spend several thousand dollars for a computer to
write code for aneother computer., Spectral Associates had
advertised an assembler but were "weeks" away from delivery at
that time. It appeared that our options were to wait or write our
awn. We decided to write our own.

The Color Computer did not then have the memory capacity to
run a 809 assembler written in Basic for itself on itself, We both
owned disk-based TRS-80 Model I systems and this seemed the
natural system to write cade on. We could take the generated
object code and input the data to the Color Computer through
DATA statements which could be POKEd into the Color Computer’s
memory and then CSAVEd to cassette in machine executable form.
Once we could execute 4809 code on the Color Computer, we could
write a serial transfer program on it and the TR5-80 Model I and
send data through the R8232 ports, We decided to write the
assembler in Basic for ease and speed of implementation. The
following Basic program is the result.

One of the primary requirements for an assembler is an
editor which can be used to write and modify source code. Rather
than writing our own, we decided to use Apparat’'s EDTASM editor
(Miosys’ EDAS can also be used). 4809 source code can be input,
edited and saved to disks The "built-in" 180 assembler is not
used, The format of files saved by EDAS or EDTASM is as
follows!

line 1 characters 1-7 filename (NOT USED)
line 1 characters 8-12 line number — high bit set
line 1 characters 13- source code line text
line 2 characters 1-%5 line number — high bit set
line Z characters &— source code line text
line 3.n character -5 line number - high bit set

e character &~ source code line text

End Of File (EQF) is decimal 24 (HEX 1A or control-2)
RUNNING THE ASSEMBLER

When the 4307 assembler Basic program is run, it prompts
the user for a filename. The filename must contain any extension
needed - i.e "PONG/ASM", This file must have been generated by
EDTASM or EDAS or be in the same format as described above.
The source code file is opened and source lines are displayed on
the CRT as read, After the program is read into memory, the
program asks if gutput should be directed to the printer, If a“Y"
is input, the compiled object code and associated source line is
output to the printer, NOTE - the input of source code and
compilation takes a substantial amount of time for long source
code files. After compilation, the user can opt for DATA
statement output to the printer, This allows one to copy the
generated code te the Color Computer as DATA statements.

Extremely long source code files should be broken into parts
as the assembler may run out of RAM on source line input or
compilation, The two sample 420% assembler listings are meant to
be linked together for evecution. This may be done by first
POKEing the PONG program into the Colur Computer and then
POKEing the SETRES program, The combined programs then can be.
CSAVEd to tape. Later a Basic program can be RUN on the Colo
Computer saving RAM for the assembled code by use of the
CLEAR command., The binary code tape can be CLOADed by the
Basic program and CALLed by it.

LIMITATIONS AND CHANGES FROM STANDARD 48509

Programming a-4807 assembler on the TRS-20 has forced
some limitations and changes, Indirect addressing in the standard
Motorola format is indicated by left and right square brackets. In
this version, the exclamation point, *'* iz used in place of either
bracket. Also note that the standard 4209 assembler differs from
a 7180 assembler in that comment fields after opcodes or labels
need no "}" for delineation. An "#" in column 1 makes the entire
line a comment, To assign a label to the current PC, the "#" is
used - i.e. "START EQU %", Hex values begin with "$" - i.e.
" ORG $E000", The IS0 pseudo op~code, DEFB (DB) corresponds
to either FDB for byte definitions or FCC for string definitions -
i.e, "STEP FDB 4A1" and "MSG FCC /THIS IS A MESSAGE/",
Generally speaking, 4809 code is PC relative, This means that
generated code can be run anywhere in RAM without recompilation
- no ORG statement is needed in assembler as presented. The
two 6809 assembler source code files given as examples contain
most of the different op-codes and pseudo op-codes used by our
assembler,

Both source code and object code are kept in RAM memory.
Because of this constraint, source code is limited to 270 lines and
cbject code is limited to 1000 bytes. These constants may be
adjusted in line 130 of the Basic program. Microsoft Basic is
VERY slow in "string garbage collection" and makes the assembler
run correspondingly slow. Five minutes for a long source code file
assembly is not unrealistic (have patience').

POSSIBLE CHANGES AND ENHANCEMENTS

The assembler as written is designed for the TRS5-80 Models
I & 111, It should port with very minor changes to other systems
running Microsoft Basic (such as CP/M based machines). To
handle larger programs, the praogram could be easily modified so
that source code lines are not kept in RAM, The program can (and
has') been slightly changed to work under the Microsoft Basic
Compiler, All DIMensioned statements should be changed to
include numeric constants in the declaration rather than variables
as in line 140, The CLEAR statement in lines 110 and 3780 should
be deleted, The passing of variable values using POKE and PEEK
in line 3780 is not necessary under a compiler, With the inclusion
of more logic, macros could be supported.

CONCLUDING REMARKS

The assembler as listed here is freely given to the Public
Domain. We ask only acknowledgement of the authors in any
distribution of the program. The program has undergene much
testing and use. We are not aware of any bugs, but some may
exist, Included with this article are a couple of sample programs
and listings used in the construction of a Pong-type game, these
also may be used and reproduced freely, We are no longer using
this program in any form and no modifications or enhancements
will be forthcoming,

BASIC PROGRAM LISTING

NOTE: This listing has been "formatted" for publication, so
that where multiple statements (separated by colons) are found in
a line, each new statement (and the colon preceding it) is placed
on a separate line. Also, all continued lines (whether continued
becavse of multiple statements on the line, or becavse the line
was simply too long to fit the allotted column width) have been .
indented five spaces. When typing the program into your
computer, you need not try to "format" the program as shown - it
has been printed this way for clarity.

If you do not wish to type in the listings, they will he
available on a TAS Public Domain Library disk. For further
information on the TAS Public Domain Library, send a

self- 5

Perr:
io
28
30
40
S0
&0 7
70 ¢
80
90 7
100

110
120

130
140

i50

1460

170

180

120

200

250

2460

270

arrssed etamped envelope The Alternate Source, 704 North
L.vama Avenve, Lansing, Michigan 4570&,

KKK K0 KK KK 0 20 38 3 3K K S KK K K K 8 2K 2K KK KK K K KK KKK XK
KK 3K KK KK K KK
X

X
X 4809 ASSEMELER IN MICROSOFT EBAS
Ic %
X

x
x BY CLARENCE A, FELONG & KEN E
ROWN x .
* 3533 PROSFECT AVE, GLENDALE, CA 9
1214 x
x

x
x DONATED TO THE FUBLIE DOMAIN - MARC
H, 1983 *
*

b 4

£ OK MK KK KKK KK K KKK KKK 26 0K KKK KK 0K K K KKK XK K
K KK KK KKK KK
CLEAR 11500
DEFINT A-Z

i DEFSNG F,T,S5
DIM AM(270),0BJ(1000),5RCH(270),LN$(270)
MS=70

1 DIM SL(MS), SK(MS), SS$(MS), SVNS)
ML=6

3 OINg=" 1Y

! UD$="4-x/, " + INS$

MN$ (0)="/aEX/58,3/ADCA/137,8/ADCE/201,8/ADDA
/139,8/4DDE/203,8/ADDD/195,9/ANDA/132,8/AND
£/196,8/ANDCC/28,2/A5LA/72,3/A5LE/88,3/A8L/
104,10/ASRA/71,3/ASRE/87,3/A5R/103,10/BCC/3
6,5/L.BCC/4132, 4"

MNS$ (1)="/BCS/37,5/LECS/4133,4/BEQ/3%,5/LBEQ/
413%,4/BGE/44,5/LEBGE/4140,4/B6T/46,5/1LBGT/4
142,4/BHI/34,5/LBHI/4130,4/EHS/36,5/LBHS /41
32,4/BITA/133,8/BITE/197,8/BLE/47,5/LEBLE/41
43, 4"

MNS (2)="/BL0/37,5/LELD/4133,4/BLS/35,5/LELS/
4131 ,4/BLT/45,5/LELT/4141,4/EM1/43,5/LEML/4
139,4/ENE/38,5/LENE/4134,4/BRA/32,5/LERA/ZZ
+4/BRN/33,5/L.BRN/4129,4/B5R/141,5/LBSR/23,4
/BVUC/40,5/LBVC/4136,4/EVS5/41,5/L.BVS /4137, 4"

MN$(3)="/CLRA/79,3/CLRE/?5,3/CLR/111,10/CHFA
/12%9,8/CMFE/193,8/CMPD/4227 ,9/CHHPS/4492,9/C
MFU/4483,9/CMFX/140,9/CMFY/4236,9/C0MA/ 47,3
/COME/B83,3/CO0M/99,10/DAA/25G,3/DECA/74,3/DEC
E/90,3/DEC/106,10"

MN$ (4)="/EORA/1346,B/EO0RE/200,8/EXG/30,4/INCA
/76,:3/INCE/92,3/INC/108,10/JMF/110,10/JSR/1
73,10/LDA/134,8/1L.DE/198,8/LDD/204,9/LDS/430
2:9/LDU/206,92/LDX/142,9/1.DY/4238,9/LEAS/T0,
1/1LEAU/S51, 1/LEAX/48,1/LEAY/49,1"

MN$(5)="/LSLA/72,3/L.5LE/88,3/L.5L./104,10/LSKRA
/68,3/LSRE/84,3/L8R/1008,10/MUL/61,3/NEGA/L4
» 3/NEGE/80,3/NEG/96,108/N0F/18,3/0RA/138,8/0
REE/202,8/0RCC/26,2/FPSHS/52,7 /FEHU/G4,7"

MN$ (6) =" /PULS/53,7 /7FULU/55,7/ROLA/73,3/ROLE/
8%9,3/R0OL/105,10/RORA/70,3/RORE/86,3/ROR/102
+10/RTI/59,3/RTS/57,3/5ECA/130,8/8BCE/194,8
/SEX/Z29,3/8TA/167,10/8TB/231,10/8TD/237,10/
57T5/4335,10/5TU/239,10"
MN$(7)="/8TX/175,10/8TY/4271,10/SUEBA/128,8/S
UEE/192,8/3UED/131,9/5WI/63,3/8WI2/4159,3/8
WI3/4415,3/8YNC/19,3/TFR/31,6/TSTA/77,3/TST
E/93,3/16T/109,10
MN$ (8)="/EQU/0,-1/FCC/0,~2/FCE/D,-3/FDE/0,-4

DIM RF(11),EM$(14)

HX$="0123456789ABCDEF"
! REGS="/D/O0/X/LV/Y/2/0/3/6/4/PC/9/A/8/B/9/0
C/10/DF /711"

FORT=0TO11
+ READ RF(T)
$ NEXT
! REM REG FUSH/FULL EQUATES

280
290

300
310
320
330
340
350
360
370
380
3920
400
410

420
430
440
450
460
476
480

490

300
510

530
540

i
o
=

560

580

600

410

620
&30

640
65

660

DATAG, 1&,32,464,64,128,0,0,2,4,1,8
FORT=0T0(3

I READ H(T)

NEXT

DATA 4096,2%b6,16,1

REM H() = FOWERS OF 16
EM$(0)="TINVALID HEX ($HHHH)
EM$ (1) ="TLLEGAL LA "
EM$(2)="TILLEGAL INSTRUCTION
EM$ (3)="MULTIPLY DEFINED SYMBOL®
EME(4)="IMFROFER STRING DELIMITER"

EM$ (5)="UNDEFINED SYMEOQL"™

EM% (6)="MALFORMED ARITHMETI(EXPRESSION"

EM$ (7)) ="0VERFLOW/UNDERFL.OW"

EM$(8)="MISSING LAREL"

EM$ (9)="EXTRANEQOUS DATA IGNORED"
EM$(10)="8YNTAX FRROR (ILLEGAL ADDRESSING MO

DEHY"

EM$ (11)="SOURCE & DESTINATION REGS

BLE"

EM$ (12)="INVALID REGISTER DESIGNATION"
EM$(13)="TILLEGAL INDEX REGISTER"
EM$(14)="TLLEGAL USE OF INDIRECT ADDRESSING"
GOTO 3790

UOREM ®X00KKK KK
FASS=1

$OIRMKX FASS 1 MXKX
PC=0
1 GN=1
R T=0 70 M5

SLATY=~1

SR(T)=~1

GEE(T)y="

NEXT
Sl.=0
Sl.=HBL+1
t IF Strbl
! REM xxx
F=1
; LEg=
T AMOSL)=0
F
F
+

. 2 e

NUMEBER"

INCOMFATL

F‘

R LI L= Y

THEN RETURN
END OF PASS 1 XXx

S4=GRC$ (51
- LEN(5$)=0 THEN 510
LEFT$(5%,1) = "x" THEN
¢ REM SKIF COMMENT LINE
GOSUE 1270
REM FIND NEXT FIELD
Ch=1 THEN COSUE 1300
GOSUE 1270
TF LE$="" THEN Te1
COSUE 3540
CR=TINSTR(S$," ")
COSUE 1270
IF MID®(S$,0F,3)="EQU" THEN 510
INSTR(CF,S%," ")
t TF T=0 T=LEN(S5$)+1
Tez=0/0 4 MID$ (5%,CF, T-CF) +
P LT=0
T=INSTR(MN$ (LT),T$)
VP IF T=0 THEN LT=LT+1
IF LT<9 THEN 590
REM FIND OFCODE MNEMONIC
T=0 THEN T=2
GOSUE 3540
IF LE$="" THEN 510 ELSE TT=FC
GOSUE 1380
GOTD 510
! REM BAD INSTR==3:PUT VALUE OF LAEEL
ANYHAY
TT=T
! REM SAVE FNTR TO START
T=INSTROT+HE,MN$(LT), " /") +1
CP=CF+T-TT-2
{ KEM UFDATE CF TO FOINT JUST FAST MNEMONIC
OEJ (FC)=VAL (MID$ (MN$ (LT) ,T,4))
AM (5L =VAL (MIDS (MN$ (LT) , INSTR (T, MN$ (LTY, ", ™)
+1,2))
IF LE$<:"" AND AM(SL)<>~1 THEN TT=FC
! GOSUE 1380
: REM STO VALUE OF NEWLY DEFINED L.AEBEL

w10

]
| ve 4w we 4t 2e se T ve

-
#!

Lyl

4
o or 20 44 40 TE 4e aa o

AS FC

OF MNEMONIC STRING

AS F

670
480
4690

700
710

730
740
750
760

770
780

790

800
810

820
830

8490
850

860

870

880

890

900

910
?20

230
240

700
9460

970
980

¢ IF THIS ISN’T AN EQU STHT
OFC=PC
t REM SAVE FC VALUE FOR THIS INSTRUCTION
TE AMCSL)Y<0 THEN ON -AM(SL) GOSUE 700,770,80
0,820 ELSE ON AM(SL) GOSUE 840,910,%30,950,
?10,910,%910,970,1020,1070
GOTO S10
REM "EQU" SER
IF LE$="" THEN T=8
+ GOSUB 3540
t RETURN
GOSUE 1270
! EQ$=LES$
t REM POSITION TO START OF 2RD FIELD
GOSUR 2750
¢t IF TT=1E38 THEN RETURN
LE$=EQ$
: GOSUE 1380
${ REM STORE VALUE OF LABEL
GOSUE 31906
RETURN
REM “FCC" SER
T=INSTR(E5%,"/")
TT=INSTR(T+1,5%,"/")
IF TT=0 OR T=0 THEN T=4
GDSUE 3540
AM(SL)=0
RETURN
REM FIND STRING LENGTH
=PC + TT - T - 1
RETURN
M llFCBll
OSUE 1570
! FC=FPC+T
! RETURN
REM "FDR"
GCOSUE 1570
! FC=FC+TX2
! RETURN
KEM "aM=1" SER
GOSUE 1270
t IF MID$(54,CP,1)=IN$ THEN CP=CF+1
! REM GET NEXT FIELD, SKIF INDIRECT CHAR IF
THERE
GOSUE 910
! REM UFDATE FT FOR MOST INDEX CASES
T$=MID$(5%,CF,1)
1 IF T#="A" OK T$="E"
$(SH,CP+1,1)=","
{ REM INDEX MODE 5,6,
IF T$:="A" AND T$="2"
) <=0 THEN FC=FC+2
! REM INDEX MODE 9, 13
IF T$="," THEN RETURN
! REM INDEX MODE 0, 1, 2,
T=VAL(MID$ (5% ,CF,6))
! IF T=0 THEN RETURN ELSE XIF T-128 AND T>-1
29 THEN PL=FC+1
! RETURN
! ELSE PC=FC+2

-
] o0 (7 o0 oo o0 o0 o0 oo

R SBR
G

SER

OF T$="p"
THEN RETURN

& 11

OR INSTR(CF,S$,",PCR"

THEN IF MID

OrR 3

RETURN
! REM INDEX MODE 4,8,
REM "AM=2,0,6, & 7" SER
IF OBEJ(FCI>25% THEN FC=PC+3
RETURN
ELSE FC=FC+2
RETURN
REM “AM=3" SER
IF OBJC(FCI =250 THEN PC=FC+Z
t RETURN
! ELSE FC=FC+1
¢+ RETURM
REM "AM=4'" SER
IF OBJCFC) =295 THEN FC=FC+4
RETURN
ELSE FC=PC+3
RETURN
REM "AM=8"
GOSUE 1270
t GOSUE 1140

& 9

e 45 we

e s

SER

REM WAL EA
P90 IF MID$(S$,CF,1)="%" THEN GOSUE 910
t RETURN
! REM IF IMMEDIATE ADDRESSING, INC FC ACCOR
DINGLY o
1000 OBJ(PCY=0BJ(FCI+32
! REM CTHANGE OEJECY CODE TO THAT FOR INDEX
AM
1010 GOSUE 840
{ RETURN
¢ REM DO FROCESSING FOR INDEX AM
1820 REM "AM=9" GER
1030 GOSUER 1270
t GOSUE 1140
+ IF T=0 THEN RETURN
! REM EA
1040 IF MID$(S$,CF,1)="4#" THEN GOSUER 950
! RETURN
! REM IF IMMEDIATE ADDRESSING, INC FC FOR D
EL-BYTE & OF-~CODE
1050 OBEJ(PC)=0BJ(FC)+32
! REM CHANGE OBJECT CODE FOR INDEX AM
1060 GOSUE 840
¢ RETURN
t REM DO INDEX AM
1070 REM AM=10 (INDEXED OR EXTENDED) FASS 1
1080 GOSUE 1270
$ GOSUB 1210
¢t IF T=1 THEN GOSUE 840
¢ RETURN
¢ REM IF NOT EA, THEN INDEX ADDR
1090 IF MID®(S%$,CF,1)<>IN$ THEN OBJ(FC)=0BJ(FC)+
14
¢ REM IF INDIR EA, OF-CODE SAME AS INDEX EéA
1100 GOSUE 1110
1 RETURN
1110 REM EXTENDED ADDRESSING FASS 1 (FC UPDATE)
1120 REM ALTHO INDIRECT EXTENDED IS ACTUALLY IND
EXED, IT IS HANDLED AS A SEPERATE SER ™
1130 GOSUE 240
$ REM UFDATE FOR SIZE OF OF-CODE
1140 IF MID%(5%,CF,1)=IN$% THEN FC=PC+3 ELSE FC=F
C+2
1150 RETURN
1160 REM FOR FASS 1, AM=8,9
! SEE IF EXTENDED ADDRESSING, UFPDATE OBJ &
FC IF S0
1170 7OUTFUTS T=0 IF EA, T=1 IF NOT
1180 GOSUE 1210
! IF T=1 THEN RETURN
¢ REM NOT EA
1190 IF MID$(S8%,CF,1)=IN$ THEN OBJ(FC)=0BJ(PC)+3
2 ELSE OBJ(FC)=0BJ(FC)I+A48
{ REM UFDATE OF-CODE FOR INDIRECT OR REGULA
R EaA
1200 GOSUE 1110
P T=0
! RETURN
1210 REM SEE IF EXTENDED INDEXING SER
1220 "OUTFUT?! T=0 IF EXTENDED, T=1 IF NOT EXTEND
ED
1230 IF MIDS$(S4,CF,1)="#" THEN T=1
t RETURN
1240 TQ=CF
t CP=INSTR(CF,8%," ")
t IF CF=0 THEN CP=LEN(S%)
! REM FIND END OF OFERAND FIELD
1250 T=INSTR(MID$(S5%,TO,CF-TQ+1),",'")
t IF T<-0 THEN T=1
$ REM IF NOT INDEXED MODE, THEN IS EXTENDED
[)
1260 CP=TQ
{ RETURN
1270 REM "FIND NEXT FIELDY SER
1280 IF CP=LEN(S5$) THEN RETURN
1290 IF MID$(S%$,CF,1)=" " THEN CFP=CF+1
t GOTO 1280
¢ ELSE RETURN
1300 REM "EXTRACT LABEL" SEBR-~-CF FOINTS TO START

IF T=0 THEN RETURN

e se

1310
1320

1330
1340
1350
1360
1370
1380
1390

1400
1410

1430

1440

1450
1460
1470
1480

1490

1560
1570
1580
1590

OF LABEL

L.E:s__._..ll L1

T$=HID$(S$,CF,1)

¢ IF T#<"A" DR T$:"Z" THEN RETURN
! REM NOT A LABEL

TT=CF

¢ REM FIND LENGTH OF LAREL IN TT
T=INSTR(VDS,MID$(5%,TT,1))

t IF T=0 THEN TT=TT+1

§ TF TT<=LEN(S$) THEN 1340
TT=TT-CP

LE$=MID$ (5% ,CP,TT)

: TF TT»ML THEN LES=LEFT$(LES$,ML)
CR=CE+TT

$ RETURN

REM "ADD NEW LABEL SER"
JINFUTY LE$-—-LAEEL

! TT--VALUE OF LABEL
Té=LES

$ GOSUEB 1420

t IF Té<»"" THEN T=3

$ GOSUE 3540

$ RETURN

REM FIND SPOT FOR LABEL IN SYM TEL--EXIT
IF MD ERROR

IF TT»6553% OR TT<-45536 THEN T=7

$ GOSUE 3540

¢ RETURN

IF LE$<S8$(LT) THEN SR(LT)=SN ELSE SL(LT)=8
N

$ REM ATTACH NODE TO FARENT

SS$ (SN)=LE$

SU(SN)=TT

SN=GN+1

RETURN

REM "GET LABEL DR NUMEER VALUE' SEBR
JINFUTS: CP--FNTS TO START OF LABEL/NUMEBER
‘DUTFUTS CP—-PNTS TO START OF DELIMITER

‘ T-~VALUE OF LABEL/NUMBER--1E38 IF
NOT DEFINED

IF MID$(S$,CF,1)="x" THEN T=0FC

CP=CP+1

RETURN

REM IF “x" PSEUDO-OF THEN RETURN VALUE OF
FC FOR THIS INSTR

GOSUE 1300

t IF LES$<:H"" THEN T$=LE$

GOSUE 1620

IF T#="" THEN T=5

GOSUE 3540
T=1E38

RETURN

ELSE T=8V(LT)
RETURN

REM IF LAEBEL,
T$=MID$(S$,CF,1)

.. o0 e

s 2o 2o

e 20 44 44 42 4 e 2o @

FIND LABEL & RET VALUE

! IF T#="-" THEN T$=MID$(5%$,CF+1,1)
IF T$="$" THEN GOSUB 1730
! RETURN
TF T$£"0" OR T$>"9" THEN T=6é
GOSUE 3540
T=1E38
RETURN

REM INVALID IF NOT LABEL OR NUMBER!
=UAL(MID98,CP;6))
CP=CP+1

REM GET VALUE OF LABEL,
IBLE SIGN CHAR
T$=MID$(5%,CF,1)

t IF T$=="0" AND T#<="9" THEN CFP=CF+1

$ GOTO 1550

: REM RE-ADJUST CF TO PNT TO 18T CHAR AFTER
DIGIT
RETURN
REM "COUNT COMMAS" SBR

‘OUTPUTY T--& OF COMMAS + 1
T=0

t GOSUR 1270

t LT=INSTR(CF,G%," ')

t IF L.T=0 THEN LT=LEN(S%)

s on oo ot os we

SKIF CF OVER FOSS

1730
1740
1750
17460
1770

1780

17990

1800
1810

1820

1830
1840
1850

1860

1870

1880

1890

1200

1910

1920

FOR TT=CF TO LT

t IF MID$(S$,TT,1)="," THEN T=T+1
NEXT

$ T=T+1

t RETURN

REM "FIND LAEEL IN SYM TAELE" SEBR

SINFUTS: T$——-LAEBEL BEING SEARCHED FOR
"QUTFUT :

/ LAEBEL FOUND! T$--LAREL AS INFUT

’ LT--FPOINTER TO NODE HITH L
AEEL

‘ LABEL NOT FOUND: T$-—-NULL

’ LT--FOINTER TO WOULD-E
E FARENT NODE

LT=0

IF T4=SS%(LT) THEN RETURN

IF T4<SS$(LT) THEN T=SR(LT) ELSE T=5L(LT)
IF T=-1 THEN Té$=""

RETURN

ELSE LT=T
GOTO 1700
REM “EVALUATE
FINFUTS
‘OUTPUT S

o se ae

‘$HHHH SER™
CP——FOINTS TO 4 WITHIN STRING
CP-~FOINTS JUST FAST LAST ‘H’
T-~$HHHH VALUE IF NO ERROR, 1E38 I
F ERROR

TT=0

T=0

Cr=CP+1
Q=INSTR(HX$,MID$(5%,CF,1))

IF TE=0 THEN CP=4-TT

T=0

GOSUE 3540

T=1E38

RETURN

2T+ {(TA-1)xH(TT)

CP=CP+1

TT=TT+1

IF TT<4 THEN 1780 ELSE RETURN
REM xxxx FAGS Z XXXX

FASS = 2

FC=0

SL=0

L=SL+1

IF SL»LL THEN RETURN

REM x%xx END DF PASS 2 xxx
$=8RCS (SL)

CP=1

F LEN(S%$)=0 THEN GOSUE 3580
GOTO 1820

F AM(SL)>=0 THEN GOSUE 3580
GOTO 1820

vo 24 ot) o4 o0 4o 44 4o =] oo o4

B

[e R L R

0

IF MID$(S5%,1,1)=" " THEN T=1
REM T=#% OF FIELD
F MID$(5%,CF,1)="
GOTO 1870

ELSE T=T+1

IF T3 THEN CP=INSTR(CP,G5%," ")

IF CP<>8 THEN 1870

REM FIND START OF 3RD FIELD
FC=FC

IF AM(SL)>0 THEN TT=0EBJ(FC)

IF TT»255 THEN T=2

GOSUER 28710

DEJ(FC)=T

OBJ(PC+1)=TT

FC=FC+2

ELSE FC=FC+1

REM CONVERT 2Z-EYTE OF-CODE TO Z EYTES

IF aM(SL)<0 THEN ON -AM(SL) GOSUR 3210,3250
,3290,3340 ELSE ON AM(SL) GDSUE 1940,2340,2
390,2410,2450,2480,2540,2610,2650,2730

IF OFC=FC THEN 1930 ELSE TT=0FC

¢ GOSUE 2980

t REM O/F FC

IF FC-0OPC = 9 THEN TT=0FC+5 ELSE TT=FC

¢ REM SET LIMIT OF % OF EYTES OF OBJECT COD
E TO O/F

T=0EJ(OFC)

“ THEN CF=CF+1

P e s

1930

1940
1950

19460
1970

1980

1990

2000
2010
2020
2030
2040

2050

2060

2070
2080
2090
2100

2110

2130
2140

2150
2160

21790

GOSUE 3060

GOSUE 3010
OFC=0FC+1

IF OFC<TT THEN 1920

s 2o se te 4

THIS INSTRUCTION
GOSUE 3580

t GOTO 1820
REM "FASS 2Z--AM=1"

IF MID$(8%,CF,1)=IN$ THEN GOSUE 3440

{ IF T=0 THEN RETURN

$ REM THIS MEANS IF INDIRECT, MAY BE INDIR
ECT EXTENDED, WHICH IS ACTUALLY INDEXED,

IT'S OK HERE!!!!

BFC=FC

i REM SAVE SFOT FOR FOST-BYTE
FC=FC+1

: REM SKIF SFOT FOR FOST-EYTE

IM=0
PE=128
IF MID$(S5%,CF,1)=IN$% THEN IN=1
CF=CF+1
ELSE IN=0
Te=MIDE(S$,CF,2)
t IF T$="A," THEN IM=6
t GOTO 2159
IF T$="8," THEN IM=5
{ GOTO 2150
IF T$="D," THEN IM=11
+ GOTO 2150
IF LEFT$(T$,1)="," THEN 2170
$ REM IM=0-3
GOSUE 2750
{ IF T=1E38 THEN FE=0
{ GOTO 2280
T0=T
IF MID$(5%,CP,1) <> "," THEN T=10
GOSUEB 3540
PE=0
GOTO 2280
CP=CF+1
t IF MID$(S5%,CF,3)="PCR" THEN 2130
REM IH"—""'B} OR 9

vo oo 2e ve oo T
el
i
=

P R

+

GOSUE 3390

¢ IF RR>3 THEN 2280
IF I0=0 THEN IM=4
! GOTO 2280
IF 104128 AND ID»-12%9 THEN IM=8
T=1

TT=I0

GOSUE 2870
OBJ(PCY=T
FC=PC+1

GOTO 2280
M=9

T=2
TT=10

GOSUE 2870
OEJ(PC) =T
OBEJ(PC+1)=TT
FC=FC+2

GOTO 2280
M IM=13
M=13

Cr=CP+3
FC=FC+2

T=2

TT=10-FC
GOSUE 2870
DEJ(FC-2)=T
OBJ(FC-1)=TT
GOTO 2280
REM IM=%,6,11
CP=CF+2

! GOSUE 3390

t GOTO 2280
REM IM=0-3

TH re oo 4o +4 o0 oo oo bof s sh oo 4o oo v

R = |

REM O/F UF TO 5 BYTES OF OBJECT CODE FROM

10

2180

2190

2310

2320
2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

CR=CF+1
¢ IF MID$(S$,CF,1)="-" THEN 2250
COSUE 3390
! IF RR:=3 THEN 2280
FMID$(S$,CF,1)<>"+" THEN T=10
GOSUE 3540
PE=0
GOTO 2280
F=CF+1
T$=MID$ (S%,CF, 1)
IF T$="" QR T$=" " OR T#=IN$ THEN 2280
REM DONE IF ONLY ONE "+ (IN=0)
F T#$<>"+" THEN T=10
GOSUE 3540
FE=0
GOTO 2280
SP=CF 41
T$=MID$(5%,CF, 1)
IF T4<>"" AND T<:=" * AND T#<-IN$ THEN T=

00 0 o+ 00 [44 o6 se bf 45 oo wa [J o4 oo o4 bof +

GOSUE 3540

IM=1

! 6OTO 2280

REM IM=2-3

CP=CF+1

IH=2

IF MID$(S$,CP,1)="~" THEN IM=3
CP=CF+1

COSUE 3390

REM SER TO STORE FOST-EYTE FOR INDEXED ADDR
ESSING

IF FPE=0 THEN OBJ(BFC)=PE

: RETURN

IF IN=1 THEN IF IM=0 OR IM=2 OR MID$(S$,CF,
1)<>IN$ THEN T=14

i GOSUE 3540

$ OB (BFC)=0

! RETURN

! ELSE CF=CF+1

GOSUE 3190

: REM CK FOR EXTRANEOUS DATA
FE=FE OR INX16

PE=PE OR RRX32

$ FE=PE OR IM

{ OBJ(EFC)=PE

t RETURN

REM "PASS 2, AM=2" SBR

FC=PC+1

$ IF MID$(G$,CF,1)<="4" THEN T=10
{ COSUE 3540

t T=0

! GOTO 2380

CP=CF+1

GOSUE 2750

IF TT=1E38 THEN T=0
COTD 2380

.
+

N

+

+

+
T=1
.

+

.

H

. o oo

GOSUEB 2870

REM CONVERT TO 1 "HEX"™ BYTE
QEJ(FC-1)=T

{ GOSUE 3190

t RETURN

REM "PASS 2Z--AM=3" SEBER

RETURN

{ REM NOTHING TO DO!

REM “"FASS 2--AM=4" SBR
PC=FC+2

Gosue 27350

IF TT=1E38 THEN TT=0 ELSE TT=TT-FC
2

GOSUE 28710

OEJ(FC-2)=T

DEJ(FC-1)=TT

GOSUE 3190

t RETURN

REM "FASS 2--AM=5" SER
FC=FC+1

¢ GOSUR 2750

t IF TT=1E38 THEN TT=0 ELSE TT=TT-FC
T=1

sa se as = oo +e
t

2480
2490

]
£
«
L

[I

2580
2590

2400

2610

2620
2630
26410
2650

2660
2670

2680
2690

2700

2750

2760

2770

2780
2790

GOSUE 2870
DBJ(PC-1)=T
GOSuE 3190

RETURN
REM "PASS Z-—AM=4"
FC=FC+1

¢ FPE=0

GOSUE 3100

IF Tr11 THEN 2530
F MID$(S$,CF,1)
GOSUE 3540
GOTO 2530
BT

CP=CP+1

GOSUE 3100

IF Tx11 THEN FEBE=0

GOTO 2530

osue 3190

IF (PE>S AND T<6) OR (FE<6 AND
E=0

T=11

GOSUE 3540

ELSE PE=PE+16%T
REM REGS MUST EE
BJ(FC-1)=PE
! RETURN
REM "PASS 2--AM=7"
PC=PC+1

! PE=0

GOSUE 3100

$ IF Tx11 THEN STOFFE=0

! GOTO 2600

IF (T=3 AND OBJ(FC-2)>53) OR (T=4 AND OBJ(F
C-2)<54) THEN PE=0
T=12
GOSUE 3540
GOTO 2600
! REM CK THAT U/S REGS OK
PE=FE OR RF(T)
IF MID$(8%,CF,1)="," CP=CP+1

e o0 20 o

SER

i

“y" THEN T=10

PO

-

T+%) THEN

LEN

o 3 ee o5 te 06 T ae GJ 44 2o 20 ee

SER

. *s o be

t GOTO 2560 ELSE GOSUE 3190
0eJ(FC-1)=FE

¢t RETURN

REM "FASS 2-—-AM=8" SER

IF MID$(S$,CP,1)="4"
t RETURN

GOSUE 34460

! IF T=1 THEN GOSUE 1940

1 REM IF NOT EA, THEN INDEXED
RETURN

REM "PASS Z2--AM=9" SER

TF MID$(S8%,CF,1)="#" THEN 2490
GOSUE 34460

f IF T=1 THEN 1940

¢ REM IF NOT EA; THEN INDEXED
RETURN

REM aAM=2-BYTE IMMEDIATE ADDRESSING

THEN GOSUE 2340

PC=FC+2

CP=CF+1

GOSUE 2750

IF TT=1E38 THEN TT=0

- es 2o 2e

=2

¢ GOSUR 2870
OBJC(PC-2)=T
POBJ(PC~1)=TT

i+ GOSUE 3190

! RETURN

REM "FASS Z--AM=10 (INDEXED OR EXTENDED)" S
BR)
GOSUE 3440

IF T=0 THEN RETURN ELSE GOSUE
RETURN

REM IF NOT EXTENDED, THEN INDEXED

REM "EVALUATE EXFRESSTON" SUBROUTINE
JINFUTS CP--FOINTS TO START OF EXPRESSION
DUTPUT S CP—=FOINTS TO EXFRESSION DELIMITER
IF NGO ERROR

! TT-—EXFRESSTON VALLE

’ ——~1E38 IF ERROR

1940

e e e

11

2800
2810

2820

2830

2840

28%0

2860
2870

2880
2890
2900
2910
2720
2930

2940

2950

2960
2970

2980
2990
3000

3010

3020
3030
3040

3050
3060

3070
3080
3090

3100
3110

GOSVE 1450

POIF T=1E38 THEN TT=T

¢t RETURN

tOELSE TQ=T

1 REM GET VALUE OF 18T (ONLY?) OFERAND OF E
“R TON
$=MIDS (8%, CF,1)

$OIF INSTROVDS,0F$)=0 AND OF&:2"" THEN T=6

¢ GOSUR 3540

P OTT=1E38

¢ RETURN

! REM IF OPERATOR INVALID, RETURN

IF INSTRC(" ,"+IN$,0F¢) <=0 OR OF$="" THEN TT

=T0

¢ RETURM

1 REM DONE TF
TON DELIMITER

"OFERATOR" 18 A VALID EXPREGS

CP=CF+1

¢ GOSUE 1450

t IF T=1E38 THEN TT=T

! RETURN

IF OF4$="+" THEN TQ=TQ+T ELSE TIF (QF$="-" THE
N TR=TQ-T ELSE IF OF$="x" THEN TO=TQxT ELSE
TA=TQA/T

GOTO 2820

REM CONVERT 1 DECIMAL TO 1 OR 2 "HEX
" BYTES (>0)
/INFUTS T=# OF EYTES
‘ TT=NUMBER
T=18T BYTE
TT=2ND BYTE (IF NEEDED)
IF T=2 THEN 2950
IF TT:255 OR TT<-256 OR ((TT> 127 OR TT-12
8) AND AM(SL)=5) THEN T=7
GOSUE 3540
T=0
RETURN
F TT<0 THEN T=TT+256
RETURN
ELSE T=TT
RETURN
F TT>65535 OR TT<-65536 THEN T=7
GOSUB 3540
T=0
TT=0
RETURN
IF TT<0 THEN TT=TT+65536
T=INT(TT/256)
! TT=TT-TX256
! RETURN
REM OUTPUT 2 HEX EYTES,
*INPFUT?! TT--NUMBER IN DECIMAL FORM (EG,
=2
GOSUE
GOSUE
GOSUE
T=TT
GOSUE
GOSUE
T$=II "
GOSUE 3010
RETURN
REM FRINT T4 ON CRT AND FOSSIELY LP (IF FF=
1
*INPUT

NUMEER

‘OUTFUT S
£

v oo 2b 4o jf o6 06 20] ok oo oo

FOLLOWED EY A SPACE
FC)

2870
3040
3010

3060
3010

et 4% 44 44 F2 20 s 20 a0

T$--STRING TO FRINT

FF--1 IF O/F TO FRINTER ENABLED
FRINT T%;

! IF PF=1 THEN LPRINT T4;

RETURN

REM CONVERT "HEX"
RING

SINPUTE: T—--"HEX" BYTE

‘OUTFUT?! T$--HEX ASCII EBYTE

TE=MIDS (HX$,INT(T/16)+1,1) + MID$(HX$,T~CIN
TCT/16)%X16)+1, 1)

1 RETURN

C=0) BYTE TO ASCII HEX ST

REM SER TO GET REGISTER FROM INFUT STRING
JINFUTE CP--POINTS TO A REGISTER IN I/F ST
RING

21240
3130
3140
3150

3160

3170

3180

3190

32590
3240
13270

3280
3290
3300

3310

3320

3330
2340
3350

3360

3370

3380

3390
3400
3410

FQUTFUTS CR--POINTS TO CHAR AFTER REGISTER
IF ONE FOUND

’ T--THE % OF REGISTER, IF ONE FOUND
e 11 1F NO VALID REGISTER FOUND
IF LEN(S$)=CP THEN 3170

! KEM CAN'T EE A 2-CHAR REG
Té="/" + MID$(S$,CF,2) + /¢
T=INSTR(REGS,T$)

IF T30 THEN LT=2

GOTO 3180

REM LOOK FOR 2-CHAR REG 1ST
$="/" 4+ MID$(S$,CF, 1) +"/"
T=INSTR(REGS, T$)

IF T=0 THEN T=12

GOSUE 3540

RETURN

ELSE LT=1
=VAL (MID$ (REGS, T+LT+2,LT))
CP=CP+LY

RETURN

T$=MID$ (5$,CF,1)

:OIF T$<E"" AND T#<3" " THEN T=9
! GOSUE 3540

RETURN

! REM CHECK FOR EXTRANEOUS DATA SER
REM “PASS 2--EQU" SER
CF=1

GOSUE 1300

IF LE$="" THEN T#$="?27?? "
GOSUE 3010

RETURN
$=LE$

GOSUE 1620

IF T$="" THEN T$="?77?

GOSUE 3010

RETURN

TT=SV(LT)

: GOSUE 2980

! RETURN
REM "FASS 2--FCC" SER

CP=CE+1

T$=MID$(5%,CP,1)
! IF T$x"/% THEN OBJC(FC)=ASC(TS)
FC=FC+1

CP=CF+1
6OTO 3270
RETURN
REM “FASS 2--FCE" SER
GOSUE 2750

t IF TT=1E38 THEN TT=0

T=1

GOSUE 2870

REM CONVERT TO A 1-EYTE NUMBER
BJCFC) =T

FC=FC+1

T4=MID$ (5% ,CF,1)

TF T4, THEN GOSUE 3190

s 44 =i 43 ¢4 44 46 ee o] ve as 4 oe

vs 20 on 00 =] 44 oo ss se

e s ta o

P e

REM DONE AFTER LAST COMMA FOLLOWED EY A #
CP=CF+1

! IF MID$(5%,CF,1)="," THEN 3320

¢ ELSE 3300

REM "FASS 2--~FDE" SER

GOSUE 2750

$IF TT=1E38 THEN TT=0

T=2

P GOSUE 2870

v REM CONVERT TO A Z-BYTE NUMEER
OBEJ(PC)=T

¢ OBJ(FC+1) =TT

¢ FC=PC+2

¢ Te=MIDS(5%,CF, 1)

$OIF T, THEN GOSUER 3190

! RETURN

CP=CFP+1

! IF MID$(S$,CF,1)="," THEN 3370
¢ ELSE 3350

REM "GET INDEX REG" SER

‘INFUTS CP--FOINTS TO "R"
SOUTFUT: CP-—-FDINTS TO JUST AFTER "R"

3420
3430

3440

3450
3440
3470
3480

3490

3640

3640

3670

3480

(1
(2)
(3)
(47

|l;""
3690

12

RR--0~-3 IF WALLID REG, >3 IF NOT.

OSUE 3100

RR=T-1

IF RR<0 OR RR>3 THEN STOF

T=13

R=13

GOSUE 3540

FE=0

RETURN

$=MID$(S$,CF, 1)

TF T4<="" AND T#<=" " AND T4<="+" AND T#<
=TN$ THEN T=9

¢ GDSUE 3540
RETURN
REM "FASS 2 EXTENDED" SER

FOUTPUTS: T=1 IF NOT EXTENDED ADDRESSING

! T=0 IF EA. IF EA, FC, OBJ(FC) UFD

G

G

4o mf 4o ae 26 es 4e 2s se

ATED
GOSUE 1210
¢+ IF T=1 THEN RETURN
IF MID$(S%,CF,1)=IN$ THEN IN=1
1 CP=CF+1
¢ ELSE IN=0
GOSUE 2750
t IF TT=1E38 THEN TT=0
IF IN=1 THEN OEBJ(FC)=159

FC=FC+1

TIF MID$(S%,CP,1)<xIN$ THEN T=14

GOSUE 3540

REM IF INDIRECT ADDRESSING, ACTUALLY IS I
DEXED ADDRESSING, S0 STORE FOSTEYTE = #9F
=2

GOSUE 2870

DEJ(FC)=T

OEJ(FC+1)=TT

FC=FC+2

T=0

RETURN
"RINT"FPASS"PASS"ERROR

“IEME(T)
IF PF=1 THEN LPRINT "PAGS"FASS"ERKOR
P "IEMS(T)
IF FASS=1 THEN GOSUE 3580
RETURN
REM PRINT LINE NUMBER & SOURCE LINE SER
FRINT TAEBC16) LN$(SL);
t IF PF=1 THEN LFRINT TAB(164) .LN$(SL)}
FRINT TAE(Z2Z) 8%
t IF PF=1 THEN LFRINT TAE(ZZ) G%
RETURN
FRINT
${ PRINT"CURRENT TIME AND DATE ARE
3 "TIMES
FRINT
! INFUT"DO YOU WANT LLINE PRINTER OQUTFUT?"3T
$
t IF Té="Y" THEN FF=1 ELSE FF=0
IF FF=1 THEN LPRINT"é6809 ASSEMELER - VERS
I0oN 1.2 "3 TIME
$
$ LPRINT" ™
¢ LFRINT " ¢
GOSUE 470
P GOSUER 1800
PRINT"DUMF OF LAEEL TAELE FOLLOWS
FORT=1TOSN~1
TFRINTSS$(T) , 5U(T)
FNEXT
CLS
$ INPUTDO YOU WANT TO

+
+
.

-] Z s se ee ee

v T 2e 4o 4o o4 2o e

SEND OBJECT CODE TO FRINTER
RETURN TO EDTASH

RETURN TO DOS

RE-ASSEMELE

IF T<1 OR T:4 THEN 3680 ELSE IF T=4 THEN 36

29

37080
3710

3720

3770
3780

3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890

3700
3910
39290
3730

3940
3950
‘60
/79

3980
3990
4000
4010
4020
4030

4040

4050
4060

ANC)

B0

IF T<21 THEN 3780

INPUT"STARTING LINE NUMBER?"ILN

$1Z=0

LPRINTSTR$(LN) 3" DATA"ISTRS(FCIY
tREM==>8IZE OF OBJECT CODE"

L.N=LN+10

LPRINT STR$(LN) ;" DATA";STR$(OBJ(Z))}
tT=0

Z=Z+1

$IFZ>PC-1THEN3770 ELSE LPRINT",";MID$ (STR$(
OBJ(Z)),2)}

T=T+1

tIFT<7THEN3750ELSE

tLPRINT

tZ=7+1

1 IFZ<=PC~1THEN37 30

GOTD3480

POKE -200,7

! CLEAR 590

¢ T=PEEK(-200)

t IF T=2 THEN CMD"EDTASM" ELSE CMD"S"
cLS

I=1

INPUT"ENTER FILE TO BE INFUT "“iFIs
OFEN“"I",1,FI$

LINEINPUT#S1,B¢
IP$=RIGHT$(BS,LEN(ES$)-7)

GOsSUB 3940

FPRINTLN$(X)3" “3SR$(I)

I=I+1

LINEINPUT#1,IP$

IF EOF(1) OR LEFTS(IP$,1)=CHR®(26) THEN 393
0

GOSUB 3940

PRINTLNSCI) 3" "}GR$ (1)

GOTO 3870

Li=T-1

¢t GOTO 3620

FOR J=1 TO S
HO$=HO$+CHRS (ASC(MIDS (IP$,J,1))~-128)
NEXT

HO=0

$6F=0

LN$(I)=HO%

HD"“ L]

SR$(I)=RIGHTS(IP$,LEN(IFS$)-4)
HO=INSTR(SR$(I),CHR$(?))

IF HO=0 THEN 40640
SP=HO-(INT(HO/8)x8)

{SFP=8-5P

SR (I)=LEFTH(SR$(I),HO~-1)+STRINGS (8F," ")+R
IGHT$(SR$(I),LEN(SR$(I))-HD)

GOTO 4010

RETURN

VARIABLE USAGE FOR 6809 ASSEMBLER

ADDRESS MODES OF OPCODES - IMMEDIATE, INDIRECT, ETC.
STRING FOR INPUT LINE FROM SOURCE FILE

TENPORARY PROGRAM COUNTER STORAGE - USED W/ POST BYTE
CHARACTER POINTER USED NHEN PARSING INPUT SOURCE LINE
ERROR MESSACE STRING ARRAY

TEMPORARY HOLD FOR LABELS

FILE NAME FOR SOURCE INPUT

ARRAY OF PONERS OF 14 FOR DECTMAL TO HEX CONVERSIONS
USED FOR POSTTION FORMATTING FOR OBJECT CODE AND SYMBOL TABLE
STRING USED FOR STRING FORMATTING (SEE HO)

HEX CHARACTERS STRING USED FOR DISPLAYING HEX VALLES
TMOEX FOR NUMEER OF INPUT SQURCE CODE LINES

INPUT MODE (TYPE OF ADDRESSING) USED FOR BYTE COUNT, ETC,
INDIRECT ADORESSING MODE FLAG

TNDIRECT ADDRESSING MODE CHARACTER - ON TRS-80, "!"
TEMPORARY HOLD FOR TYPE (T) OF OP-CODE

INPUT STRING FOR SOURCE CODE LINE NUMEER AS SET BY EDTASBM OR EDAS
TENPORARY LOOP COUNTER

STRING REPRESENTATION OF PROGRAM LABEL

LINE COUNT LIMIT (MMBER OF INPUT LINES)

START LINE MUMBER FOR DATA STATEMENT QUTPUT

LINE NUMBER STRING ARFAY USED FOR ASSEMELY LISTINGS

LT
[Il

08O

REGS
RPO)

¢
SO
SN
SR()
SROO
S5¢¢)
VO

™
T4

POINTER TO SYMBOL TABLE NODE FOR GIVEN LABEL
MAXINUM LABEL LENGTH (6 ON TRS-80)

OFCODE HMEMONIC STRING ARRAY TABLE

MAXTHUM SIZE FOR FOR SYMBOL TABLE MNODE ARRAYS
ARRAY FOR HOLDING GEMERATED OBJECT CODE

TEMPORARY HOLD FOR SINGLE INSTRUCTION OP-CODE VALUE
STRING TO HOLD OPERATOR (+,-,/,%)

VARTAELE FOR ASSEMBLER PASS MUMBER

POST BYTE VALUE USED FOR CERTAIN OP-CODES

PROGRAM COUNTER (PC) VALLE

PRINT FLAG (VALUE = 1 MEANS OUTPUT TD PRINTER)
REGISTER SYMBOLS AND NUMERIC ASSIGNMENT STRING
REGISTER PUSH/PULL EQUATES ARRAY

REGISTER VALUE RANGE (0-3 VALID RANGE)

TEMPORARY STRING FOR SOURCE COOE LINE

SOURCE LINE COUNT FOR PROCESSING PASSES

LEFT SIDE VALUES OF BALANCED TREE FOR SYMBOL TARLE
SYMBOL NUMBER (SYMBOL TABLE COUNT/INDEX)

SPACE COUNT USED FOR FORMATTING QUTPUT

RIGHT SIDE VALUES OF BALANCED TREE FOR SYMEOL TRBLE
SOURCE CODE LTNE HOLD ARRAY

SYMEOL TABLE STRING ARRAY

SYMBOL. TABLE VALUE ARRAY

TEHPORARY VARTABLE

TERPORARY STRING VARTABLE

TEMPORARY WARTABLE WHEN T ALREADY IN USE

UARTABLE USED TO HOLD DECIMAL VALUE OF PC

VALTD DELINITERS STRING

LENGTH OF CODE FOR USE WITH DATA STATEMENTS

SAMFLE LISTING #1 - PONG/ASM (ABSEMBLER QUTPUT)

6809 ASSEMBLER - VERSION 1.2

03/01/83 18107832

0155 00100 LOCI EQU 34t KEYEDARD SCAN LOCS
0156 00120 LOC2 EW M2
0158 00140 LOC3 EQU M
0153 00140 LOCA EW 3N
(E74 00180 NOPLAY EQU 3700 AREA ABOVE BASIC PROG
0E7% 00200 XBALL EQU NOPLAY+1
0E7¢ 00220 YBALL EQU XBALL¥]
77 00240 DELTAX EQU YBALL®
(€78 00240 DELTAY EQU DELTAXH
(E7% 00280 LFTPDL EQU DELTAY+
fE7a 00300 RGTPDL EQU LFTPDL+
E78 40320 LFTCLR EQU RGTPOL+L
E7C 00340 RCTCLR B LFTCLRH
fE70 00340 STATUS EQU RGTCLRH
0E7E 00380 XCOORD EQU STATUSH
IEF 00400 YCOORD EQu XCOORD+1
0EBO 00420 COLOR EQU YCOORDHL
0E81 00440 OPTION EQU COLORY)
13 00440 RESWLT EQU OPTIONH
00480 DOVEIT EOU RESWLTH
0000 2437 oos00 PBHE DyXyYi(C SAVE REGISTERS
9002 eoib 90320 BSR WWPDLL HOVE LEFT PADDLE
1004 BSOE7A 00540 LDA NOPLAY GET MUMBER OF PLAYERS
1007 8162 00540 ¥, L T 2 PLAYERS?
bo09 2402 00380 BE AEA NO - CONTINUE
00k ep7e 00400 BSR WRDL2 YES = WOVE RIGHT PADDLE
100D 7FOE7D 00420 AHEADL (LR BTATUS CLEAR STATUS
9010 17000C 00440 LBSR MVBALL MOVE BALL - SET STATUS
0013 epoc 00440 R MPDILL MOVE PADDLE §
0015 BEOE7A 00480 LA NOPLAY N0« OF PLAYERS %
goie 8102 foro0 [L
00ia 2602 0720 BE GETOQUT i~ CONT
001C B04A 00740 BSR MWPOLD 2 = WOVE PADDLE
001E 38Y 00740 GETOUT PA8 D,CCyX,Y
002t ¥ 00780 RTE RETURN TO BASIC PROGRAM
00800 x
g:gg X WOVE LEFT FADDLE SUBROUTINE
¥
0021 84FF 00840 HVPDLY LDA #S00FF RESET WEYIN BITS FOR NEN
0023 E70155 0oeel g LOGY KEYBOARD READ
0026 B7O1SE 00900 ST LOC2
0029 6401 09920 (1 T LEFT PADDLE X = COORD
0028 BYOE7E 00940 ETA XCOORD SAVE FOR SUBRTN CALL
002E BADE7R 00940 L4 LFICLR LEFT PADDLE COLOR

2031 B7 635
1634 7FOEEL
0037 ADSY AD0D
003 815K
§070 2623
3039 BAOE7?
1p42 8103
8044 2741
0045 8001
0048 B7OE79
0048 8001
004D B70E7F
0050 170147
0053 8E03
0035 B7OETF
0053 £401
0054 F7OERL
003D 170134
0046 2025
0042 8104
8064 2621
0066 E4OETS
0049 811C
1048 2714
006D 8EO1
006F B79E79
0072 8E01
4074 B70E7F
0077 170120
0074 8003
007C B70E7F
007F 8601
0081 E70E81
0084 179113
1087 39

0088 B4FF
9084 B70158
008D E70153
0990 843
9092 B70E7E
0095 B6OETC
0098 E70ERD
0098 7F0EB1
009 ADYFADDD
00A2 8109
00A4 2623
00A6 BOOETA
1949 8103
B0AE 2741
004D 8001
00AF B7OETA
00B2 8001
00B4 E70E7F
0087 1700E0
00BA 8803
00BC B7OE7F
00BF CA0%
00C1 F70EBL
00C4 170003
00C7 2025
10Ce 810C
60CE: 2621
00CD BSOE7A
8000 811C
802 2714
00D4 BEOL
1Dé E70E7A
0009 8e01
0008 B70E7F
00DE 170089
60E1 8003
00E3 E70E7F
00E4 Co03
J0ES F70EBL
J0EE 1700AC
DOEE 39

40980 STA
110980 (LR
01028 JSR
61648 CHra
01640 ENE
01080 LDA
81109 CHF6
01120 BEQ
81140 SUEA
t1160 STA
31130 SUEA
01296 STA
122 LESK
1240 ADDA
01260 STA
61280 LDE
01300 STE
01328 LESR
01340 BRA
01340 AHEADZ CHPA
01380 ENE
01408 LDA
01429 CHPA
01440 BEQ
01440 ADDA
01480 5TA
(11500 ADDA
#1320 STA
01340 LBSR
01540 SUBA
01380 STA
01600 LDA
01620 STA
01640 LESR

01668 FDIOUT RTS
01680 x

61700 x

011720 =

01740 WPDLZ LDA

01760 STA

81780 STA

01800 LDA

01820 STA

01949 LbA

01840 STA
01880 CLR

01909 JSR

01920 CHPA
01946 ENE

01960 LDA

01980 CHPA
02080 BEG

02020 SUBA
12040 STa

02040 SUEA
62080 STA

2100 LESR
02120 ADDA
02140 STA

02180 LDE

02180 STB

02200 LESR
02220 ERA

07240 AHEAD3 CMPA
02260 ENE

02280 LDA

02300 CHFA
82320 EEQ

07240 ADDA
02340 STA

02380 ADDA
12400 5Th

02420 LESR
02440 SUBA
02448 STA

02480 LDE

012500 sTe

02520 LEGR

12540 PDZOUT RT5
02560 x

COLOR
OFTION
1$A000:
$I05E
AHEADZ
LFTFDL
L]
FOLOUT

#0004
FOA0UT
LFTFOL
8
FDL0UT
#
LFTPOL
#
YCOORD
SRPSBR
13
YEOORD
#
OPTION
SRPSBR

#S00FF
L0E3
LOC4
62
XCOORD
RGTCLR
COLOR
OPTION
1$A000!
#
AHEAD3
RGTFOL
3

STORE FOR SUBRTN CALL
0 = SEY OFTION
POLL KEYEDARD
UF ARROW ?
NO - CONTINUE
GET CURENT PADDLE FOS.
UFFER EOUND
YES - EXTT
NEM = 0D - 1
SAVE NEW POSITION
= NEW FOS TO SET
STORE Y FOR SUBRTN CALL
SET NEW FOINT

= OLD FO5 TO RESET
STORE Y FOR SUERTN CALL
1 = RESFT
SET UP CALL
RESET OLD POINT
EXIT
DOMRN ARROW 2
NO - EXIT
GET LEFT PADDLE FOS
LAST POSITION ?
YES - EXIT
FOINT TO NEW POS
STORE NEW P05
NEW POINT TO SET
SAVE FOR SUBRTN
TURN ON POINT
OLD POINT TO RESET
SAVE FOR SUBRTN
OPTION = RESET

RESET 0LD POINT
EXIT

MOVE RIGHT FADDLE SUEROUTINE

RESET CURRENT KEY-IN
FOR NEW READ

COLUMN = 82 FOR RIGHT
SAVE FOR SUBRTM CALL
GET RIGHT FADDLE COLOR
STORE FOR SUBRTN CALL
OPTION = SET

FOLL KEYEDARD

LEFT ARRON ?

NO - CONTIME

GET RIGHT POSITION
UPPER LIMIT ?

YES - EXIT

NEW POS = OLD - 1
STORE MNEW POSITION
POINT TG SET

SAVE FOR SUBRTN CALL
SET NEW POINT

FOINT 70 RESET

SAVE I7

1 = RESET

OPTION = RESET

RESET OLD POINT

EXIT

CLEAR KEY ?

N0 - EXIT

GEY RIGHT POS

LOSER LIMIT ?

YES - EXIT

NEW POS = OLD FOS +
SAVE NEM POS

NEW POINT TO SET
SAVE FOR SUBRTN CALL
SET NEW POINT

POINT TO RESET

SAVE IT

I = RESET

OFTION = RESET

RESET FOINT

EXIT

14.

GOEF 8601
G0F1 E70E81
00F3 84605
G0F4 E70EB0
B0F9 BSOETS
10FC E70E7E
DOFF FABE7S
0102 F70E7F
0105 170092
0108 BROE77
0108 FEOE7S
010E E70E7S
0111 E7OE7E
0114 €102
0116 2002
0118 €402
0131A C11D
011C 2F02
011E C41D
1120 F7O0E74
1123 F70E7F
1126 7F0EB]
0129 17004E
012C 8102
012E 2405
6130 FOOEY?
01133 2018
0133 8130
0137 264
0139 3802
0130 B4OE74
013€ 8102
0147 3502
0142 2709
0144 €601
0146 F70E7D
0147 €10
0148 2004
114D FOOE7A
#1508 F70E78
0153 700E77
0156 CiFF
0158 2726
0154 C100
01sC 272
015E C101
01460 271E
8162 2130
1164 2613
1166 B4IE7S
0169 8102
1168 2705
016D T00E77
0170 2015
8172 8404
0174 B70E7D
1177 2020
1179 8603
0178 E70E7D
M7E 2019
0180 8402
0182 B70E7D
1185 2012
0187 C102
0189 2r0s
018k C11D
018D 202
018F 2008
0191 700E78
0194 8401
0196 E7OE7D
0199 39
0194

12580 *

02500 x

2620 WEALL LDA
12640 STA
02660 LDA
02680 STA
92700 LDA
02720 5TA
2740 LDE
82750 STE
07780 LESR
42800 ADDA
02820 ADDE:
02840 SKIF1 STA
02860 STA
02680 CHrE:
02990 EGE
129260 LDE
42940 SKIFZ CMPE
02950 ELE
02980 LDE
03000 SKIF? STB
03020 STE
03040 CLR
03040 LESK
83880 CHFA
03100 ENE
#3120 SUEE:
93140 ERA
03160 BALLY CMPA
03180 ENE
13260 PSHS
43220 LDA
13240 CHra
83760 PULS
03280 BEQ
03300 LD&
03320 STe
43340 LDE
013340 ERA

3380 PATCHI SUEE
02400 BALLZ STE
03420 FATCHZ NEG

03440 CHe
13960 BER
13480 e
03300 BEQ
03520 CHPE:
03540 BEQ
13360 CHPA
03580 BNE
13400 LDA
03620 cHPA
03540 BEQ
03660 NEG
03580 ERA
03700 BALLZA LDA
03720 STA
03740 BRA
13760 BALLZE LDA
13780 5TA
03800 ERA
03820 EALL3 LDA
03846 STl
3840 BRA
03980 BALLY CWPE
03900 BE
03920 Cire
03940 EGE
13960 ERA
03980 BALLS MNEG
84000 LDA
04020 STA
04040 BALOYT RTS
03040 SRPSBR EQU

HOVE BALL SUBROUTINE

#
OFTION
5
COLGR
XEALL
XCOORD
YEALL
YCOORD
SRPSER
DELTAX
DELTAY
XEALL
YCOORD
A
SKIFZ

| 74

129
SKIF3
29
YEALL
YCOORD
OFTION
SRPSER
¥
EALLY
LFTFOL
BALLY
#51
BALLY
A
NOFLAY
2

A
PATEHY
#
STATUS
#6
PATCH2
RGTFDL
DELTAY
DELTAX
00FF
BALL3
0
BALL3
#
BALL3
$#41
BALL2E
NOPFLAY
E 74
EALLZA
DELTAX
EALLA
#
STATUS
BALOUT
3
STATUS
BALOUT
24
STATUS
BALOUT
2
BALLS
329
BALLS
BALOUT
DELTAY
#
STATUS

OFTION = RESET
COLOR = WHITE

GET £ALL X-COORD
STORE TT

GET BALL Y-COORD
STORE IT

KESEY OLD EALL
GET NEW X-F(05
GET NEW Y-FOS
STORE NEW X COORD

=2 - SHIP

<= 28 - SKIF

STORE NEW Y VALUE

OFTION = SET

SET NEW BALL

LEFT BORDER ?

MO - CHECK RIGHT
FADDLE POS - Y COORD
JUMF AROLMD RIGHT LOGIC
RIGHT EORDER ?

NO - MISSED EALL

SAVE A

2 PLAYERS ?

RESTORE A
2 - CONT

1 FLAYER

BALL & PADDLE POS
IF HIT - NEW DELTA Y
DELYA X = - DELTA X
MIMUS ONE 7

YES - STATUS = HIT
07

YES - STATUS = HIT
17

YES - STATUS = HIT
RIGHT LINIT 7

NO - STATUS = MISSED
GET NO, OF FLAYERS

27

YES - CHECK HIT/MISS
ND - DELTAX= -DELTAX
CHECK BORDERS

STATUS = RIGHT MISS

EXIT
STATUS = LEFT MISS

EXIT
STATUS = PADDLE HIT

EXIT

CHECK UPPER BOUND
YES - SET STATUS
CHECK LOWER ROUND
YES - SET STATUS
GET OUT

DELTA Y = - DELTA Y
STATUS = EOUNDRY HIT

EXIT
ADD CODE FOR GRAPHICS

SAMFLE LIETING #Z 8TARTS SN NEXT PalE

SAMPLE LISTING #7 - SETRES/ASM (ASSEMBLER QUTPUT)

6309 ASSEMELER

0E74
0E75
8E78
te77
iE78
0E79
DE7A
0E7R
9E7C
0E7D
0E7E
0E7F
BEBY
333}
0EB2
0EB3

6000 3437
o0z 3F
1003 B4OE7E
0005 44
0007 2401

0009 5C
0604 3402
000C BAOE7F
000F 44
0018 2407

0012 CADZ
6014 3402
0014 8408
0018 54
0019 2803
001E 44
001C 20FA
061E E70EE3
0021 3362
0023 €420
6025 30
0026 1F0L
0028 3502
0624 3086
102C 30690400
0030 A4B4
8032 F4OEBY
1635 271
0037 G4
9038 2732
8034 F

0038 40

- VERSION 1.7

00100 x

03/01/83 20:18:37

00120 x SET/RESET/POINT FOR LOW-RES COLOR GRAPHICS

0140 =

90160 x FOR USE WITH PONG - NOTE EQUATES

20180 x

08220 x

00240 NOPLAY EQU
00260 XAl EQU
00780 YRALL EQU
00300 DELTAX EQU
0320 DELTAY EQU
00340 LFTPOL EQU
90340 RCTFDL EQU
00380 LFTCLR EQU
00400 RGTCLR EQU
00420 STATUS EOY
$0440 XCOORD EQU
40440 YCOORD EQU
00480 COLOR EQU
60500 OPTION EQU
00520 RESWLT EQU
10540 DOTEIT EQU
00540 x

3700
NOFLAY+]
XEALL+
YEALL+L
DELTAX+)
DELTAY+1
LFTPDLH
RETPDL+1
LFTCLR+1
RGTCLR+1
STATUS+H
XCOORD+1
YCOORD+1
COLOR+1
OPTION+HL
RESILT+1

COLOR---% FROM 1 - 8 IF OFTION = 0
OPTION--D=SET, 1=RESET, 2=POINT
QUTPUT? RESULT—AS IN BASIC FN POINTCX,Y)

USES FOLLOWING ALGORITHM TO DETERMINE DOT

XLATION RESULTANT #

8

4
2
1

SAVE TMPORTANT REGS

B WILL GET COUNT OF 0-3
GET X-COORDINATE IN A
DIVIDE X COORD EY 2

IF BD WASN'T SET (X EVEN),
DON‘T INC B

X 0DD—SET B0 IN E

SAVE X/2 TEMPORARILY

GET Y-COORDIMATE

DIVIDE Y BY 2

IF Y EVEN, B HAS CORRECT
COUNT NOW

SET E1 IN B SINCE Y 0DD
SAVE Y/2 TENPORARTLY

SET BIT IN 1 TO LSR

DEC CNT OF LSR'S

DONE WHEN & < 0

SHIFT BIT IN A LEFT BY 1
LOOF TILL A HAS 8,4,2, OR 1
STORE VALUE OF BIT TO SRP
GET Y COORD / 2

PUT 32 IN & FOR MLT
/2232

X-FER RESILT 10 X

GET X COORD / 2

ADD X/2 70 Y/2¢32

FORM ADDR TO GRAPHICS BLK
GET WORD MOW IN THIS SPOT
GET OPTION (0-2)

IF 0, OPTION=SET

IS IT 17

IF 1, OPTION=RESET
DFTION=POINT--SET RESULT
REG TO “OFF"

DOS80 * SRPSER—SET, RESET, POINT SBR
00400 * INPUT: XCOORD—# FROM 0 - 43
00620 x YCOORD—# FROM 0 - 31
00630 x

00660 %

00480 x

00700 x

00720 x

00740 x

00760 x X

00780 x E 0 ¢
00800 x 0 [
00820 x E 10
00840 x 0 11
10840 x (E=EVEN, 0=000)
00880 x

00900 SRFSER PSHS DyX,Y,CC
00920 CLRE

00940 LDA XCOORD
00948 LSRA

60980 ECC DONEX
91000 «

01020 INCE

01040 DONEX FSHS A
01060 LDA YCOORD
91080 LSRA

01160 Bee DONEY
01170 »

11148 ORE: 74
01160 DONEY PSHS A
01180 LDA L]
91200 BITLP DECE

11220 BML GOTBIT
01240 |.5RA

01260 ERA EITLP
01280 GOTRIT STh DOTEIT
01300 MALS A
01320 LD& 32
01340 ML

01350 TFR %D
41380 LS A
01400 LEAX AuX
01420 LEAX 1024,X
01440 LbA 0,X
01460 LOE OFTION
01480 BEQ SET
01500 DECE

81520 EEQ RESET
01340 CLRE

01360 x

1580 15TA

IS B7 OF WORD SET?

003C 2894 #1600 EMI NOTALF
003€ CAFF 41420 ORE: FO0FF
0040 200E 11640 ERA EXIPNT
£042 BADER3 01640 NOTALF ANDA DOTEIT
0045 2709 01480 EEQ EXIPNT
0047 E6BY 017900 LDE 0,X
0049 CA7F 01720 ANDE #$007F
0048 o4 01740 LSRE

004C 54 01740 L5RE

004D 54 01780 LSRE

004E 54 01800 LSRE

004F 5C 01820 INCE

0050 F70E82 01840 EXIFNT STE RESULT
0053 201F 01860 BRA EXISRF
0855 BADER3 01880 SET ORA DOTEIT
0056 848F 1909 ANDA #$008F
0054 F4OERD 11920 LoE COLOR
6050 9 41940 DECE

905 28 01940 LELE

005F 58 01980 LoLB

0040 S8 0z000 LSLE

1061 S8 92020 LOLE

0042 3404 02040 S B

0064 AAED 02060 ORA)6+
0066 BABD 02080 ORA #0080
6068 A784 02100 STA 0,X
006h 2008 02120 ERA EXISRF
004C 730E83 02140 RESET COM DOTEIT
104F EADES3 82140 ANDA DOTELT
8072 A784 02180 STA 0,X
0074 3537 02200 EXISRF PIRS D,CC,X,Y
0e76 39 bzz20 RTS

SAMPLE DATA STATEMENT
QUTPUT FOR PONG/ASM:

100 DATA 410iREM==/SIZE OF OBJECT CODE
116 DATA 52,55,141,29,182,14,116,129
120 DATA 2,38,2,141,123,127,14,125
130 DATA 73,0,220,141,12,162,14,116
140 DATA 129,2,38,2,141,106,53,55

150 DATA 57,134,255,183,1,85,183,1

160 DATA 84,134,1,183,14,124,182,14
170 DATA 123,183,14,178,127,14,119,173
180 DATA 159,140,0,129,94,38,35,182
190 DATA 14,121,129,3,39,65,128,1

200 DATA 183,14,121,128,1,183,14,127
210 DATA 23,1,71,139,3,183,14,127

220 DATA 198,1,247,14,129,23,1,58

230 DATA 32,37,129,10,38,33,182,14

240 DATA 121,129,28,39,26,139,1,183
250 DATA 14,121,139,1,183,14,177,73
260 DATA 1,32,128,3,183,14,127,134
270 DATA 1,183,14,129,23,1,19,57

280 DATA 134,255,183,1,88,183,1,83
290 DATA 134,62,183,14,124,182,14,124
300 DATA 183,14,178,127,14,129,173,1%9
310 DATA 160,0,129,9,38,35,182,14

320 DATA 122,129.3,39,45,128,1,183
330 DATA 18,172,128,1,163,14,127,23
340 DATA 0,224,139,3,183,14,127,198
356 DATA 1,247,14,129,23,0,211,32

340 DATA 37,129,12,38,33,182,14,122
370 DATA 129,28,39,26,139,1,183,14
380 DATA 122,139,1,183,14,127,23,0

390 DATA 185,128,3,183,14,127,198,1
400 DATA 247,14,129,23,0,172,57,134
419 DATA 1,183,14,129,134,5,183,14

420 DATA 128,182,14,117,183,14,126,246
430 DATA 14,118,247,14,127,23,0,146
440 DATA 187,14,119,251,14,1290,183,14
450 DATA 117,183,14,126,193,2,%4,2

IF E7 SET, NOT ALPHA HODE
~1=AL FHANGHERIC HMODE

STO RESULT & EXIT

15 THE BIT SET?

IF RESET, RET 0 (IN B)
GET MORD WE'RE TESTING
CLEAR BIT 7

RT-JUSTIFY COLOR EITS &-4
S0 COLOR POINT IS SET TO
WILL EE RETURNED IN E

E NOW HAS COLOR TO RET
STORE RESWLT OF FOINT
EXIT

SET EIT ON FOR DOT
CLEAR COLOR BITS

GET COLOR 10 SET DOT
DEC 50 IN RANGE 0 - 7
FUT COLOR IN BITS 6 - 4

FUT COLOR EITS ON STACK

OR INTD GRAPHIC WD; CLR STK
SET GRAPHICS BIT ON

STO HORD IN VIDED MEMORY
EXIT

SET ALL BITS EXCEPT THE 1
RESET EIT FOR THE DOT
STORE WORD WITH DOT RESET
RESTORE SAVED REGS

RETURN

440 DATA 198,2,193,29,47,2,198,29

470 DATA 247,14,118,247,14,127,127 .14
480 DATA 129,23,0,110,129,2,38,5

490 DATA 240,14,121,32,27,129,61,38
500 DATA 78,32,2,182,14,116,129,2

910 DATA 53,2,39,9,198,1,247,14

320 DATA 125,198,16,32,6,240,14,122
538 DATA 247,14,120,112,14,119,193,255
540 DATA 39,38,193,0,39,3%,193,1

550 DATA 39,38,129,41,38,19,182,14
560 DATA 114,129,2,39,5,112,14,119
370 DATA 32,21,134,4,183,14,125,32
580 DATA 32,134,3,183,14,125,32,25
590 DATA 134,2,183,14,125,32,18,193
600 DATA 2,47,6,193,29,44,2,32

610 DATA 8,112,14,120,134,1,183, 14
620 DATA 125,57

SAMPLE DATA STATEMENT
QUTPUT FOR SETRES/ASM:

1000 DATA 119:REM=-5IZE OF OBJECT
CoDE

1010 DATA 52,55,95,182,14,126,68,34
1020 DATA 1,92,52,2,182,14,127,68
1030 DaTA 36,2,202,2,52,2,134,8

1040 DATA 90,43,3,48,32,250,183, 14
1050 DATA 131,53,2,198,32,61,31,1
1060 DATA 53,7,48,134,48,137,4,0

1070 DATA 166,132,246,14,129,39,30,90
1080 DATA 39,50,99,77,43,%,202,255
1090 DATA 32,14,180,14,131,39,9,230
1100 DATA 132,196,127,84,84,84,04,92
1110 DATA 247,14,130,32,31,186,14,131
1120 DATA 132,143,244,14,128,90,88,88
1130 DATA 88,88,52,4,170,224,138,128
1140 DATA 147,132,32,8,115,14,131, 180
1150 DATA 14,131,167,132,53,55,57

ZAP TO DISABLE LDOS 5.1 PASSWORD CHECKING -~ This
was found lying around on a scrap of paper(!), I don't own a copy
of LDOS, so I can’t verify this, but you may try it if you like (let

me know if it works')

To disable password checking in LDOS

%.1.x, change 5Y52/5YS, Record 2, Byte 19H from 28H to 18H
{surrounding bytes should be! 52 E1 xx 2D 79

15

BOOK REVIEW - DR. DOBB’S JOURNAL, VOLUME SIX
(Published by Hayden Book Company, Inc., $29.93) - Back in the
days before anyone ever heard of the TR5-80 (1974, to be exact), a
magazine called Dv, Dobb’s Journal of Computer Calisthenics &
Orthodontia began publication (their motto was, "Running Light
Without Overbyte"), If I may risk the comparison, Dr. Dobb’s was
to the early microcomputer user what The Alternate Source
Programmer’s Journal was to the TRS-80 user - that is, a
magazine for folks that got into such things as assembly
language, operating systems, and the latest innovations in
high-level languages. Each volume of Dr. Dobb’s has been printed
as a bound volume, and the latest in that series is bound volume
six, which includes all of the issues of Dr, Dobb’‘s that were
published in 1981, The book itself is fairly hefty - with 558
pages of good, heavy paper stock, it’s even thicker than an issue
of BYTE,

To get right to the point, you may wonder if this volume
contains much of interest to the TRS-80 user. That depends, If
you‘re looking for programs that you can just type in and run,
forget it - unless you happen to be a tape user and need a fast
cassette 170 routine for BASIC arrays, because that is the only
program specifically written for the TR5-80 in the entire book!
There is also an article describing how to interface a TRS-80
Voice Synthesizer to other hrands of microcomputers, and a few
reviews of TRS-80 related products, but not much else.

However, if you're willing to try and adapt programs written
far other machines, yau can try your luck on several 2-80 programs
(such as a file comparator, video drivers, a memary test, a floppy
disk test, and a cross-assembler that will permit you to generate
object code for an 8086 or 8088 CPU), There are also several
short but useful 7-80 subroutines in various places around the
book, Two cautions, however: some of the assembly listings use
octal constants (rather than the more familiar decimal or
hexadecimal); which may not be a problem for you, since many
TRS-80 Editor-Assembler packages are capable of handling octal
numbers provided that they are suffixed with the letter "o (or
whatever the assembler uses to indicate octal)s The other
problem is that some of the listings use 8080 style mnemonics,
instpad of the more familiar 7-80 opcodes. Most TRS-80
assemblers will choke on 8080 mnemonics! Have fun converting
them to Z-80 format.

On the other hand, if your interest is in computer languages,
you'll probably find that many of the articles in this book will
catch your fancy, especially if your interest is in FORTH - there
are a number of FORTH-related articles included in this volume.
Other languages discussed include C, COMAL-80, Tiny BASIC,
PARFOR, SLIC, PIDGIN, LISP, and various dialects of assembly
languages.

Several program listings are included, most of which are
utilities of one type or another, with a Rubik’s Cube simulator in
BASIC as a notable exception (and the only program in the book
that even resembled a game), Many of the listings are
demonstration routines, designed to show how to use a particular
algorithm under discussion, or intended to illustrate a better way
to program a specific task. This seems to be the general theme of
Dr, Dobb’s - it’s definitely written for programmers and "“true
hackers" (I‘m using the word "hacker" as computer people use it,
nat as Hollywood does).

My favorite part of this volume was a monthly column that
began in the May, 1981 issue, entitled “Dr. Dobb’s Clinic” and
written by D E, Cortesi, One purpose of this column was to
salicit input from readers of the magazine, to provide solutions to
various problems that were presented (for example, the fastest
way to divide by 10 in assembly language, or how to define a MIN
or MAX function in a version of BASIC that doesn't have those
functions built in - such as TRE-80 BASIC)., It was very
interesting to see some of the clever answers that were provided
to do the task faster, better, or with less memory usage.

Dr. Dobb’s Journal began accepting advertising in 1981, The
ad pages were removed from the bound volume, but in at least one
instance, a couple of pages of program listings were (probably
inadvertently) removed as well, Unfortunately, the missing pages
were part of the "Dr. Dobb’s Clinic" column in the November, 1981
issue (pages 60—41), Boo, hiss!

The bottom line ~ if you really get into the inner workings of
microcomputers in general (ot just the TRS-80), you'll love this
book. If your interest is limited to the TR5-80; you may find it
hard to justify spending $29.95 for the book, although it may be
worth the money if you are really into languages such as FORTH,
or if you’d enjoy the challenge of converting programs written for

16

other I-80 based computers to run on the TRG-80. If you aren’t
sure you want to spend the $29.95, you might want to buy or
borrow an issue of Dr, Dobb’s Journal and look it over, to get an
idea of the type of material they publish, If you like the
magazine, go ahead and buy the bound volume, If you like bound
volume six, you may be interested to know that the previous five
bound volumes are still available, at $25.95 each. I haven’t seen
any of the previous volumes, so I cannot comment on them. If you
want further information about Dr. Dobb’‘s Journal, you might try
writing to the publisher: People’s Computer Company, Box E, 1263
El Camino Real, Menlo Fark, California %4025,

As an example of the type of interesting little routine I
found in "Dr., Dobb’s Clinic", here’s something that originally
appeared in the October, 1981 issue of Dr, Dobb’s. It was sent by
a reader in response to a challenge to find the fastest way to
divide a number by ten in assembly language:

vAllen Ashley of Pasadena, CA sent in what is certainly the
most unique division algorithm we‘ve seen., It can handle only
numbers less than 2540, for reasons that will become clear as you
study the code. It’s very quick, and could be useful as in-line
code in certain special applications, Ashley‘s analysis runs thus!
given that HI. is equal to or greater than zero but less than 2540,

756#(HL/10) = Z5#HL + (&#HL)/10
= 25#HL + HL/2 + HL/10
and his code to generate the latter expression is an education?”

} Ashley’s Unique Division Routine

{ INPUT! HL contains a positive binary integer less than 2560,
{ OUTPUT! H only contains the input divided by 10,

y ALTERS! ALL

1
HLDiCc LD

B,H

LD C,L

CALL HX2S t HL = 25+HL

OR A

LD AB

RRA

LD BA

LD A,C

RRA

LD CiA

ADD HL,BC {HL =25%HL + HL/2Z

LD E,H

LD D,0H + DE = (25,5%#HL)/25¢&, or about HL/10

ADD HL,DE {HL = 25%HL + HL/2 + HL/10

INC HL t after fudge)

RET t H=HL/10 when HL<2540
HX25 CALL HX5S
HXS LD D,H

LD E,L

ADD HL,HL

ADD HL,HL

ADD HL,DE

RET

[Editor‘s note! I have changed the 080 mnemonics used in the
original listing to Z80 mnemonics in the above listing, since most
TRS-£0 assemblers accept 280 mnemonics only. However, I did not
optimize the code for use on the 280. I suggest that 180 users
substitute SRL B and RR C instructions for the code that falls
between (but not including) the CALL HX25 instruction and the
ADD HL,BC instruction. This would further improve execution
time and save a bit of memory, and would have the added benefit
of saving the contents of the A register.]

8030/8085 TO I80 CONVERSION CHART - The I80
microprocessor is "upward compatible" with the older 8080
microprocessor - that is, programs written for the 8080 can run on
the 180, though the reverse may not be true. The 8085 has the
same instruction set as the 8080, except that it has two added
instructions (RIM and SIM - these read and set the £085
Yinterrupt mask", so there is no I80 equivalent of these two
instructions), However, 8080/8085 assembly language uses
different mnemonics than I80 assembly, so conversion of
published programs for the 8080/8085 becomes a difficult task
unless you have a conversion chart, This is such a chart, The
3030/8085 mnemonic is found in the left column, the equivalent
280 mnemonic on the right, Now you can convert those nice
8020/8085 subroutines that you sometimes find in non-TRS-80
magazines for use on your ‘80,

(NOTE: Register pairs are indicated by only the first letter
of the register pair in 8080/8088 assembly language listings, thus
INX H translates to INC HL.)

"USER FRIENDLY" BANNED BY UNICORN HUNTERS - The
Unicorn Hunters of Lake Superior State College (located right
were in good old Sault Ste. Marie, Michigan) have included the
phrase "user friendly" among the words and phrases on their tenth
annual dishonour list of words and phrases banished from the
Queen’s English for mis- or over-use, as well as general
uselessness.,

According to nominator Edward C. Loyer of the University of
Michigan, "user friendly" comes “from the same folks who have
given us ‘up’ meaning functioning and ‘dawn’ meaning broken."

The Unicorn Hunters further note that "a light switch which
glows in the dark is ‘user friendly’ A corkscrew is not. Mr,
Loyer is concerned not with the ‘user’ but with the ‘friendly!’ 'Is
this to give me the urge to take a particular system to lunch, or to
find some alternative way to get intimate with it? Are there also
systems or machines that are "user-unfriendly"?"

Actually, the term "user friendly" wasn’t the number one
banishment for the year 1984, That honor goes to the term "high
tech”, which is said to be "used by politicians, advertisers, and
educators to signify nothing except a vague jumble of concepts
which they favor. Its most important contribution to the world of
jargon is its potential for grammatical formulations. Does one
vuse high tech like a wrench? Or operate it like a bulldozer?
Practice it like a religion? Was high tech invented, developed,
discovered or manufactured?’

For a copy of the 1984 banishment poster (price 50 cents) or
further information about the Unicorn Hunters, phone
(906) $35-2315 or write Unicorn Hunters, c/o Lake Superior State
College, Sault Ste, Marie, Michigan 49783.

PERSONAL SOFTWARE MAGAIINE - The following item
comes to us frem the New York Amateur Computer Club
newsletter;

«has anyone seen the new magazine, Personal Software?
Describing itself as "The Monthly Review of the Best Packages",
it takes the dubious position of nat saying anything bad about

- anybody’s product, ever. This is because, to paraphrase the
editor, they’ve already checked it put and if there was anything
wrong with it, at all, they wouldn‘t waste our time by reviewing it
in the first place. A beneficial aside, of course, is that none of
those companies with all those Big Ad Bucks ever get mad at
Personal Software: Got it?

8080/8085 180 8080/8085 780 8080/8085 180

aCIn = ADC An INn = IN A,in) RAL =RLA
ADCr = ADC Ay INRr =INCr RAR = RRA
ADCM = ADC A,(HL) INRM =INC (HL} RC =RETC
ADDr = ADD Ay INXrr =INCrr RET = RET
ADDM = ADD AfHL) JCnn =JP Cn RLC = RLCA
ADIn = ADD Asn JMnn =JPMnn RM =RET M
ANAr =ANDr JMPnn =JPnn RNC = RET NC
ANAM = AND (HL) JNC nn = JP NCynn RNZ = RET NI
ANIn =ANDnN INZnn =JPNI,nn RP =RETP
CALL nn = CALL nn JP nn = JP Pynn RFE = RET FE
CCnn =CALLCion JPEnn =JPPEnn RPO = RET PO
CMnn =CALLM,,n JPOnn =JPPO,nn RRC = RRCA
CMA = CPL JZ nn =JP I,nn RST n =RSTn
CMC = CCF LDAnn =LD Aynn) RZ =RET Z
CMPr =CPr LDAX rr = LD A,{rr) SEB r = SBC Ay
CMPM =CP (HL) LHLD nn =LD HL,lnn) SBBM =SBC A,(HL)
CNC nn = CALL NC,an LXI vr,nn=LD rr,nn SBIn = 5BC A)n
CNZnn = CALL NZ,nn MOV r,y =LDr,y SHLD nn = LD (nn),HL
CPnn = CALL P,nn MOV M,r = LD (HL)yr SPHL =LD SP,HL
CPEnn = CALL PE,nn MOV r,M = LD r,(HL) STAnn =1D (hn)A
CPIn =CPn MVIrn =LDvn STAX rr =LD (rrhé
CPOnn = CALL PO,nn MVI M,n = LD (HLWn STC = §CF

CZ nn = CALL Z,nn NOP = NOP SUBvr =GUBr
DAA =DAA ORAr =0ORr SUBM =SUB(HL)
DADrr =ADDHLyr ORAM =O0R(HL) SUIn =8UB N
DCRr =DECr ORIn =0Rn XCHG =EXDEHL
DCRM = DEC (HL) QUTn =0UT (nhA XRar =XORr
DCXrr =DECrr PCHL = JP (HL) XRAM = XOR (HL)
DI = DI POPrr =POPrr XRIn =XORn

EI =EI PUSH rr =PUSH rr XTHL = EX (SP)HL
HLT = HALT

17

CHRISTIAN COMPUTER-BASED COMMUNICATIONS is a
group you might want to be in contact with if your church owns or
uses a microcomputer, They list their objectives as follows:

1) To spread the GOSPEL of God's Love among all people
through means of the technology now available to us.,

2) To aid new Christians with answers to questions of their
Faith, Doctrines and Teachings.

3) To provide the secular world with Christian Alternatives
to the Questions of Life.

4) To promote alternatives to the popular Video Games with
Co-operative Games emphasizing Christian Moral Values,

S) To promote programs and teaching games which emphasize
the Christ-Centered Life.

&) To aid Church administrators in their task as stewards of
the Christian Bady by providing computer-assisted aids to the
efficient organization of their time.

7) To promote the use of Christian Computer Programs
through distribution to associate members.

T received a rather lengthy letter from Mr, John Easton of
Christian Computer/Based Comrunications, which indicates that
their work actually goes quite a bit beyond what you might think
by reading the above. I‘d like to reprint one part of Mr. Easton'’s
letter, which makes me suspect that at one time or another he’s
had contact with that unique breed known as “"computer
salespersons”:

",v I suppose that brings me around to pne of my minor
peeves at Mainframe oriented thinking, Does one REALLY need
to know how many times a parishioner’s family has had Measles,
and whether they individually and/or collectively enjoy the hobby
of birdwatching? Quite apart from the ability to process such
trivia (albeit perhaps not quite so tongue-in-cheek), the need of
which many Mini systems salespersons appear to impress
prospective clients with, it really quickly comes back to the
person who is responsible for the upkeep of such records. After
all, it is only as these multi-information databases are kept
aceurate, that we can use them for anything like the supposed
whiz-bang manipulations we were originally sold on. I can’t
picture OUR parishioners bothering to inform the secretary of
every minute change in ‘church-roll status’ {why they wouldn‘t
probably be aware that much of the information existed on file, or
that it was in any way necessary to the ‘efficent’ running of the
church), and I certainly wouldn‘t like to be in the position of our
local church secretary should the responsibility ultimately rest on
HER shoulders to keep up the records!”

I reprinted the above because it is food for thought, for
anyone maintaining a computerized database. Do we really NEED
to file away every last bit of information about a person?

If you are interested in contacting Mr. Easton and/or
obtaining further information about Christian Computer-Based
Communications, you may write him at 44 Delma Drive, Toronto,
Ontario M8W AN6 or phone him at (4186) 251-1511 (home) or
{416) 965~1230 (work), or contact him through Compuserve
71426,1371, I will mention that this organization does have
some church-related software available for sale, but
unfortunately, at the present time it is mostly written for
Commodore machines (Commodore has a much better dealer support
network in Canada than they do in the U.S.). However, the CCBC
folks attempt to write these pragrams in ‘plain vanilla’ BASIC so
that they can be easily transferred to other machines. They also
apparently have a "once in a while" newsletter. If your church is
using (or thinking about using) a computer, at least drop them a
line and let them know what you're up to.

DISKETTE TIP - How many of you remember -T-C-5-2, or
the Tidewater TRS-80 Users Group (if you do, then you probably
owned or used a TRS-80 Model I back before microcomputers
became the "in" thing)s Anyway, you may remember Les Logan, one
of the driving forces behind that group. Well, Les is alive and
well and running a disk drive alignment apd repair business in
Norfolk, Virginia, and he passes along this tip}

Do you know why alignment diskettes don’t have hub rings?
Because the rings and the diskettes they are "supposed" to
protect have different temperature and humidity expansion
coefficients {(or maybe it is the adhesive that's different).
Anyway, the rings don‘t return to the original shape after
expanding/contracting with temperature and humidity changes as
plain diskettes will, so they can cause randomly placed areas of
head compliance and alignment problems, especially at 94 or 100
tracks per inchs The price you pay for durability is reliability,
unless you maintain good temperature/humidity control,

MODEM PROTOCOL DOCUMENTATION by Ward Christensen
- Many people ask me for documentation on my modem protocol [a
popular ervor detecting and correcting protocol used by many
Bulletin Board Systems -ed.], so here it is}

1/1/82 by Ward Christensen [last revision was 8/9/821, 1
will maintain a master copy of this. Please pass on changes or
suggestions via CBBS/Chicago at (312) 545-8084, CBBS/CPMUG
(312) 849-1132 ar by voice at (312) 849-4279,

NOTE this does not include things which I am not familiar
with, such as the CRC option implemented by John Mahr.

At the request of Rick Mallinak on behalf of the guys at
Standard Oil with IBM P.C.s, as well as several previous
requests, I finally decided to put my modem protocol into writing.
It had been previously formally published only in the AMRAD
newsletter.

Table of Contents!

1, DEFINITIONS

2. TRANSMISSION MEDIUM LEVEL PROTOCOL

3. MESSAGE BLOCK LEVEL PROTDCOL

4, FILE LEVEL PROTOCOL

5. DATA FLOW EXAMFPLE INCLUDING ERROR RECOVERY
6. FROGRAMMING TIPS,

1, DEFINITIONS: <soh> 01H,
<nak> 15H, <can> 18H,

2. TRANSMISSION MEDIUM LEVEL PROTOCOL:
Asynchronous, 8 data bits, no parity, one stop bit. The protocol
imposes no restrictions on the contents of the data being
transmitted, No control characters are looked for in the 128-byte
data messages. Absolutely any kind of data may be sent - binary,
ASCII, etc. The protocol has not formally been adopted to a 7-bit
environment for the transmission of ASCII-only (or unpacked-hex)
data , although it could be simply by having both ends agree to
AND the protocol-dependent data with 7F hex before validating
it. I specifically am referring to the checksum, and the block
numbers and their ones-complement.

Those wishing to maintain compatibility of the CF/M file
structure, i.e. to allow modemming ASCII files to or from CP/M
systems should follow this data format:

ASCII tabs used (09H); tabs set every 8.

* Lines terminated by CR/LF (ODH 0AH)

End-of-file indicated by ~Z, 1AH. {one or more)

Data is variable length, i,e. should be considered a
continuous stream of data bytes, broken intoe 128-byte chunks
purely for the purpose of transmission,

® A CP/M "peculiarity"! If the data ends exactly on a
128-byte boundary, iwe. CR in 127, and LF in 128, a subsequent
sector containing the ~1 EOF character(s) is optional, but is
preferred. Some utilities or user programs still do not handle
EOF without ~Is.

The last block sent is no different from others, i.e, there
is no "short block".

3. MESSAGE BLOCK LEVEL PROTOCOL:
trancfer looks like!

{80HO><blk #>{255-blk #><{--128 data bytes-->{cksum>
in which?

{SOR> = 01 hex

<blk #> = binary number, starts at 01 increments by 1, and
wraps OFFH to 00H (not to 01)

{255-blk #> = blk # after going through 8080 "CMA"
instruction, i.e, each bit complemented in the 8-bit block number,
Formally, this is the "ones complement”,

{cksum> = the sum of the data bytes only, Toss any carry,

4, FILE LEVEL FROTOCOL?

4A, COMMON TO BOTH SENDER AND RECEIVER! All errors
are retried 10 times, For versions running with an operator G.e.
NOT with XMODEM), a message is typed after 10 errors asking
the operator whether to "retry or quit".

Some versions of the protocol use <can>, ASCII ~X, to cancel
transmission. This was never adopted as a standard, as having a
single "abort" character makes the transmission susceptible to
false termination due to an <ack> <nak> or {soh> being corrupted
into a <{can> and canceling transmission.

The protocol may be considered "receiver driven", that is,
the sender need not automatically re~transmit, although it does in
the current implementations.

4B, RECEIVE PROGRAM CONSIDERATIONS! The receiver
has a 10-second timeout. It sends a {(nak> every time it timesy
out., The receiver’s first timeout, which sends a <nak>, signals
the transmitter to start, Optionally, the receiver could send a
<{nak> immediately, in case the sender was ready, This would save

{eot> 04H, <ack> 04H,

Each block of the

18

the initial 10 second timeout. However, the receiver MUET
continue to timeout every 10 seconds in case the sender wasn’t
ready.

Once into a receiving a block, the receiver goes into a
one-second timeout far each character and the checksum., If the
receiver wishes to <{nak> a block for any reason (invalid header,
timeout receiving data), it must wait for the line to clear, See
"programming tips" for ideas

Synchronizing! If a valid block number is received, it will be!
1) the expected one, in which case everything is fine} or 2) a
repeat of the previously received blocks This should he
considered OK, and only indicates that the receivers <{ack> got
glitched, and the sender re-transmitted; 3) any other block number
indicates a fatal loss of synchronization, such as the rare case of
the sender getting a line-glitch that looked like an {ack>. Abort
the transmission, sending a <can>.

4C, SENDING PROGRAM CONSIDERATIONS: While waiting
for transmission to begin, the sender has only a single very long
timeout, say one minute. In the current protocol, the sender has a
10 second timeout before retryings I suggest NOT doing this, and
letting the protocol be completely receiver—driven. This will be
compatible with existing programs.

When the sender has no more data, it sends an <eot>, and
awaits an <ack>, resending the <eot> if it doesn’t get one. Again,
the protocol could be receiver—driven, with the sender only having
the high-level 1-minute timegut to abort.

5. DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY!
Here is a sample of the data flow, sending a 3-block message. It
includes the two most common line hits - a garbaged block, and an
{ack> reply getting garbaged. <{xx> represents the
checksum byte.

SENDER RECETVER
times out after 10 seconds,

{mmn <nak>

<gsoh> 01 FE -data- $o0 -—>
{ {ack>

<goh> 02 FD -data- sx —> (data gets line hit)
— <{nak>

<soh» 02 FD -data~ o0 —>
e {ack>

‘sohr 03 FC ~data- vt —>

{ack gets garbaged) <~ {ack>

{sofi» 03 FC -data- xx -—> {ack>

{eot> -3
L {ack>

& PROGRAMMING TIPS!

The character-receive subroutine should be called with a
parameter specifying the number of seconds to wait, The receiver
should first call it with a time of 10, then <nak> and try again, 10
times.

After receiving the {soh>, the receiver should call the
character receive subroutine with a 1-second timeout, for the
remainder of the message and the {cksum>. Since they are sent as
a continuous stream, timing out of this implies a serious like
glitch that caused, say, 127 characters to be seen instead of 128,

¥ When the receiver wishes to <nak>, it should call a
"PURGE" subroutine, to wait for the line to clear, Recall the
sender tosses any characters in its UART buffer immediately upon
completing sending a block, to ensure no glitches were
mis-interpreted,

The most common technique is for "PURGE" to call the
character receive subroutine, specifying a 1-second timeout, and
looping back to PURGE until a timeout occurs, The <nak> is then
sent, ensuring the other end will see it.

* You may wish to add code recommended by John Mahr to
your character receive routine - to set an error flag if the UART
shows framing error, ar averrun, This will help catch a few more
glitches - the most common of which is a hit in the high bits of
the byte in two consecutive bytes. The {cksum> comes out OK
since counting in 1-byte produces the same result of adding S80H +
80H as with adding 00H + O0H.,

MODEM FILE TRANSFER PROTOCOL by D.L. Cavill is
reprinted from Personal Systems (San Diego Computer Sodety
Newsletter):

The file transfer protocol used in the MODEMx series of
programs is a very good (although not perfect) protocol that has
become something of a de facto standard, berause it is in the

T~

—

P

public domain and nas been widely distributed on various remute
CP/M systems in the country.

The protocol was originally developed by Ward Christensen,
who wrote the original MODEM,ASM, It has since been enhanced
by several others. This writeup is based on an article by Kelly
_Smith in CP/M News, Janvary 1981, extended to include
" ‘scussion ot CRC and batch transfers.,

WHAT I35 A PROTOCOL AND WHY DO WE NEED ONE?

A protocol is, quite simply, the ritual courtesies exchanged
by two separate but equal computer systems in order to insure an
orderly and correct transfer of information. For short,
interactive communications we can do without one because the
information transferred is visible, and if it looks wrong or we
lose it we can immediately ask for it again.

The situation is different when transferring data or program
files, The volume to be transferred is greater, thus there is a
greater chance of transmission errors, It‘s hard to tell whether
an error has ocourred (such as in COM files), and retransmitting
the entire file would take too long and might only make thinas
worse,

A pratornl provides!

a. Pouitrve control over the process and procedure,

b. A means of detecting errors in the transmission process.

©. The ability to retransmit any portion that has errors,

Note. hpwever, that BOTH parties to the transmission must
use the SAME protocol, or the ritual doesn’t works That's the
reason for this document ~ so that people that want to (or have
to) use a program other than MODEM7 can implement the XMODEM
protocol and join the great army of public-domain transmitters.

CONTROL CHARACTERS USED

The following ASCII standard control characters are used in
the protocol!

SOH Start of Heading 01H (CTRL-A)
ACK Acknowledge 0AH (CTRL-F)
NAK Negative acknowledge 15H (CTRL-U)
EOT End of Transmission 04H (CTRL-D)
CAN Cancel 18H (CTRL-X)

GENERAL TRANSMISSION SCHEME

Data is sent in 128 byte numbered blocks, with a single
ecksum appended to each block. The receiving computer
performs its own checksum as it acquires the incoming data, and
upon completing each block compares its result with the checksum
from the sending computer. If they match, it returns an ACK to
the sender, meaning "received OK, send some more." If they don‘t
match, a NAK (15H) is returned, meaning "that didn’t look right,
please send it again." This process continues until the entire file
has been transmitted (or the number of errors causes one of the
parties to give up)

Received data is stored in memaory, then written to disk
every 1& blacks (more or less - on the FORUM version, this is
every 20 blocks).

BLOCK FORMAT

The sending computer transmits a block in the following
form:

SOH Start of Heading O1H

Block # € bits
Complement of block # 8 bits
{128 data bytes> 8 bits each
Checksurn 8 bits

The checksum is calculated by summing the SOH, block
number, block number complement, and the 128 data bytes.

STARTING THE TRANSMISSION

The sending and receiving systems have to get "in sync" to
start the transmission. This is easy - the sending computer
simply waits for an initial NAK from the receiving computer, He's
sure to get one, for the receiving computer will "time out* looking
for data and send the NAK as a signal that he didn’t receive a
data block, The sending computer knows this and uses it as a
signal to start the transmission.

Sending computer Receiving computer
(waiting) (waiting)

------ (times out)

—————— NAK (15H)
Datablockt 00 o——eeemee

e ACK (06H)

Data block 2

19

et

RE-TRANSMITTING A BLOCK
What happens if the block is NAK’ed?
computer just re—=endes the previows block,

Easy, the sending

Sending corputer Receiving cemputer

Data block 2 lerrors, NAK
Data block 2 (again} ACK
Data block = etc

But what if the sending computer never receives the ACK (or
NAK)? The sending computer times out after 10 seconds, decides
that it has failed, and re-transmits the block. This is the reason
for the block numbers - the receiver detects that this is the
previous block all over again, throws it away, and returns an ACK,
thereby catching up, The integrity of the block number is verified
by summing the SOH (01H) with the block number plus the
complement of the block number - this result must be zero for a
proper transfer (e.g., for block 7, 01+07+FZ=00),
The sequence of events then, looks like this!

Receiving Computer
ACK (garbled)

ACK (but disregards
duplicate data)

ete,

Sending Computer
thes

Data block 2

Data block 2 (again)

Data block 3

CONCLUDING A TRANSMISSION

Normal completion of a data transfer concludes with an EOT
(End of Transmission, 04H) from the sending computer, with a
final ACK from the receiving computer.

Sending Computer Receiving Computer

Last data block ACK
EOT ACK
<END> {END>

MODEM7 BATCH TRANSFERS

The MODEM7 program allows "batch" file transfers - the
sending program says something like:

SB NEWSTUFF .+
and the receiving program says simply "RB."
The B sub-option means (a) that more than one file will be
transmitted and (b) that the sending computer will send the file
names as well as the data, What concerns us is the protocol for
sending the file name,

(This function was added by someone other than Ward
Christensen; it works, but isn’‘t normal communications practice.)
Basically, the sender sends the file name ONE CHARACTER AT A
TIME, and the receiver ACK's each character separately. At the
end, the sender sends an EOF (1AH) and the receiver replies with
the checksum' If it matches, the sender sends an ACK, the
receiver replies with a NAK, and we fall into the normal file
transfer sequence.

Receiving Computer
(awaiting file name)
(times out) NAK

Sending Computer

tree

1at letter ACK

2nd letter ACK
11th letter ACK

EOF (1AH) checksum
ACK NAK
Data block 1 etc

At the end of the data transmission, the receiver sends
another NAK and gets either another file name or another EOT,
indicating that there aren’t any more. (Note! This may not be
precisely correct in all details - the program is hard to read after
al] the volunteer labor on it}

CRC CHECKING

MODEM7 also added a Cyclic Redundancy Check (CRC) aption.
This replaces the one-byte checksum with two bytes of CRC, CRC
checking is much more reliable than checksums, giving better that
99.99% probability of error detection, If CRC checking is
requested, the receiving system sends a ‘C’ in place of the initial
NAK. If the sender responds within 3 seconds, the transfer

continues with CRC checking in effect. If there is no reply witkan
2 seconds, the receiver assumes the sender doesn’t know about
CRC checking (old version or different program), sends a NAK, and
settles down to use the old checksum system. In batch mode, the
decision about the first file carries forward for the others.
MODEM7 and XMODEM are set up for CRC checking by default,
but the user can specify either method at will,

ERROR ABORTS

The protocal will tolerate a reasonable amount of line noise,
retransmitting when necessary. If the line quality is really
trashy, however, after 10 retries (on the same block), the
receiving computer will display "Retry or Quit?", If the operator
enters "G", a CAN (CANcel, 18H) is sent to cancel the entire
transfer session,

PROBLEMS

Unfortunately, the protocol is not entirely bullet-proof,
While the following cases are very rare, they can conceivably
accur!

1. At end of transmission, if the receiving computer misses
EOT, it will continue to wait for the next block (sending NAK's
every 10 seconds, up to 10 times) and eventually "time out.”

Z, There is a possibility that an ACK could be "garbled" to a
CAN, thus aborting prematurely.

Do not use the "V (View) sub-option during file transfer
with a slow (4800 baud or less) terminal or hard copy printer. It
takes too long to write each character to these terminals, so you
don’t always get back in time to catch the next one from the
madem. This should be readily apparent if it ocours.

USE FOUR DOUBLE-SIDED DISK DRIVES WITH A TRS-80
MODEL I? - I'm told that this is possible, but don‘t have the full
details, However, I'll give you what I do have and perhaps some
of you hardware hackers can take it from here,

The apparent problem is that the Western Digital FD1791
disk controller (or equivalent) IC used in most Model I double

" density adapters does not have side select output. Most DOSes
"fudge" a side select by using the line that would normally control
the fourth drive in a four-drive system for side select purposes
(this probably isn’t technically accurate but it's a close enough
approximation for the moment)., However, the FD1795 is an
equivalent to the FD1791 with only one difference - pin 23 is
defined as a side select output instead of a read gate, If a
FD1793 controller was originally used (the equivalent of a FD17%1
except has a true data bus instead of an inverted data bus), the
FD1797 would be the replacement with side select.

Now comes the part that I‘m really not sure of. I'm told that
you can just pull the original controller IC, plug in the
replacement with side select output, connect up a disk drive cable
that has no pins pulled (that is, you do NOT want to use the stock
Radio Shack disk drive cable), and you're ready to run
double-sided with four drives, Well, maybe, But this leaves a
whole host of unanswered questions, such as what are the
requirements for the disk operating system?

So, here’s a challlenge to you hardware hackers with Model I
TRS-80s, How about setting up your system to run four
double-sided drives, using as much of the above info as you can
get to work for you. Keep track of the steps you had to go
through to make it work (including how you configured your DOS)
and send it to me (also please mention what brand of double
-density adapter you’re using, if you know), 111 print the info here
in Northern Bytes, Maybe some of us can start using our old
Model Is at full disk drive capacity!

MISCELLANEOUS MODEL 4 INFORMATION from various
sources (authors unknown)?

The following patches can be applied to your TRSDOS 4.0
working disks to make life a little easier. They should not be
applied to your master disk.

Patch for TRSDOS 6.0

.To force file allocation to start from track 1 upward
Jdnstead of using the random allocation it comes with
+Apply the patch SYS0/SYS.LSIDOS

D04,E1=ZE 01 00 00 00 00:F04,E1=D5 CD B8 06 D1 4C
+End of Patch

Patch to prevent the DIR cmd from clearing the screen
+Apply to SYS4/5YS.LSIDOS

D07,55=0DIF07,55=1C

«End of Patch

JToe follawing will replace the Lib Command Word "REMOVEY
with the word "KILL" to maintain consistancy i the method
.of getting unwanted files off your disks.

WApply to 8Y&1/578,1851D0OS .

D01,C2=4B 49 4C 4C 20 20:F01,03=52 45 4D 4F 56 45

.End of Patch

The following patch 15 by Guy Omer?

JPatch to Re-format ‘LOG-ON’ and ‘MENU’ of COMM/CMD £.0.0
J{C) 1922 Guy Omer

JUPFDATE: 06/12/82

DO7,1B=4D 45 4E 55

F07,1B=20 3F 3F 3F

D09, FD=2E 2C 38

F0%,FD=2D 28 ZE

DOA,00=2E 20 && &F 72 20 4D 45 4E S5

FOA,00=20 &6 LF 72 20 &D &5 4E 7T 0A

The following patch is by Jimmy Nord!

. FSTBOOT/FIX - 07/28/83

+ This patch modifies the BOOT/SYS medule to

. increase the speed of read/write disk i/o.

+ To execute patch type!

. 'PATCH BOOT/SYS,V6KCZA USING FSTBOOT/FIX',

. To remove patch type:

. '"PATCH BOOT/SYS, V4KCIA USING FSTBOOT/FIX (REMOVE),
« Note! This patch will make the clock less accurate

. and type-ahead may lose characters during disk 170,

, Patch by Jimmy Nord [70605,3273)

DOC,AS=0EF3 CDAB OF {E 14 DBFO A3 28 FBED A2 7A
FOC,AS=0E CD AB OF {E 14 DBFO A2 22 FBED A2 F2 7A
DOD,56=00 00 00

FOD,5=CD 00 05

DOD,F5=FAF2 CD¢B OF 1E 764 DBF0O A3 72 FBED A2 DB
FOD,FS=FACD 4B OF 1E 74 DBFD A% 22 FEED A2 F2 DB
« end of speed patch,

The passwords for TRSDOS 6.0 are as follows!

DBO
WHMZ

/8YS - LSIDOS or
/FLT - GHNA or
/DRV - V71A or UBJ
/CMD - WOCK or QJ&0
/BASIC - BASIC (includes overlays)
/DCT - WOCK or QJ&0

The first of these are the "Real" passwords, the second, decnded
with SU+

The following /JCL file can be used to move TRSDOS é&.x
/8YS programs into the MEMDISK!

4
*
»
+

s7alert 3,3,3,2
. Creating MEMDISK in Banks 1 and Z

system (drive=2,driver="memdisk")

d g,

d 1 /7alert 4,4

Y ;1 « Write protecting MEMDISK
g

' i system (drive=0,wp)

77alert bybybye,0,0,0,0 g

7 rexit

\Maoving system files to MEMDISK
backup $/sysi0 iZ (sys)

.

. S~

+

o
\Press <ENTER to swap system drive
//alert (3,3)

system (system=2)

If you want to format double sided disks, just specify the

following in the format command line!
FORMAT !? (SIDES=2)
with the ? being the drive you want to use.

The Model 4 BASIC does have a sound command, even if it's
not in the book, The syntax is SOUND (X,Y) where X is the tone
{{ thru 7) and Y is the duration, It will accept 1/2 second
intervals in the duration,

Here are a pair of BASIC speed change subroutines for use
in the Model IIT mode. You've probably seen the wrong way to do
this in other publications, well, here‘s the correct way!

S / THESE TWQ LINES USED AS SUBROUTINES WILL TURN ON
THE 4 MHI CLOCK ON A MOREL 4 (LINE £000) AND TURN IT
BACK OFF (LINE 9000)

4 ' THESE MAY BE USED AS SUBROUTINES WITH APPROFRIATE
GOSUBS BEFORE AND AFTER DISK 1/0Q. NEWDOS/80 HAS
PROVISIONS FOR HIGHER SPEED CLOCKS (SYSTEM OFTION BJ).
TURN HER ON AND LET HER RUN,

2000 X=PEEK(14912); X=X OR 64! POKE 16912,X! QUT 236,X}
RETURN

9000 X=PEEK(146912)! X=X AND 191! POKE 146912,X: OUT 234,X!
RETURN

ITH THE

OW SOME PROGRAMS TQ WORK

Special patches to TRS-80 MOD III transferred programs so
that they will work with NEWDOS/80 version 2,0 TRSDOS does
not use the same <BREAK> key initialization as does NEWDOS.
Therefore, certain programs that you transfer over from TREDOS
to NEWDOS will not work properly. The following zaps will allow
{BREAK> key operation. Use SUPERZAP in the DFS mode to
apply the following zaps!

1) PROGRAM! FORTRAN/CMD (also known as EDIT/CMD)
Filespect EDIT/CMD
Sector 02, byte DAH from #F 32 IE 53
to C3 A8 7C 10
Sector 43, byte S from 00 00 00 08 09 #0 068 86 20 00 00 80
toF RIESIECON78MCIN A
2) PROGRAM! F80/CMD (within the FORTRAN package,
. Compiler)
Filespec: F80/CMD
Sector 00, bute 04 from C3 AL 57 00 00 08 00 80
to¥CP3278MC3A 57

3) PROGRAM L80/CMD (within the FORTRAN package, Linker)
Filespec! L80/CMD
Sector 00, byte 07H from AF 32 15 43
to3E674 00
Sector 35, byte 724 from 30 00 00 40 00 09 00 08 09 60 00 00
toECOTBEMANZISNACITN

4) PROGRAM Geries I Editor Assembler -~ Disk (This is a
prettier program than is supplied on your NEWDOS/80 operating
disk, and is supplied by Radio Shack
Filespect EDTASM/CMD
Sector 02, bryte O0H from 24 0D 48

toC3IEASE
Sector 05, byte BOH from 4C 69 63 65 4E 73 &3 44 20 74 6F 20

o AEECT 3278 4424 00 40 C3 6B 58

The purpose of these zaps is to reload the BREAK enable
function of NEWDOS/80, which TRSDOS generally fails to do.

3E,C9,22,78,48 is the group of HEX bytes to be patched into
appropriate areas of the various TRSDOS, and other programs
that require the {BREAK> key to works You should be able to
patch other TRSDOS programs. By using LMOFFSET/CMD to
locate the program’s entry point and looking at the program, a
careful choice of patch can be determined. I hope that this helps
those that want to use the great features of NEWDOS/€0 with

their TRSDOS programs.
Bob Dratch 06/12/82

NEWRQS/80 PDRIVE SETTINGS - The following information
was placed on the Lansing, Michigan CompuNet BBS by SYSOP
Gordon Williams, The PDRIVE settings shown helow can also be
used on the Model I, provided that when TD=E, the letter & in
specification TI=A,... must be changed to C, D, or E depending on
whether a Percom, Radio Shack, or LNW type double-density
modification is used!

21

PDRIVE settings for NEWDOS20 version 2 Model = -- to be
used when youy want to read/write diskettes written under other
DOS’s (compiled from information provided by Greg Small and
Dennis Hill, two fellow Sysops... Thanks, fellas')

MODEL III DISKS!

To read/write Model III TRSDOS v 1.3 (DDx
TI=AM,TD=E,TC=40,5PT=18,TSR=3,GPL=6,DDSL=17,DDGA=2

To read/write Model IIT DOSPLUS and LDOS (DDY: B
TI=A,TD=E,TC=40,5PT=10,TSR=3,GFL=2,DDSL=20,DDGA=2

MODEL I DISKS:

To read/write Madel I TRSDOS v 2,3, DOSPLUS, LDOS (SD)
T1=A,TD=A,TC=35,5PT=10,TSR=3,GPL=2,DDSL=17,DDGA=7

To read/write Model I NEWDOS80 v 2 (DD)!
TI=AK,TD=E,TC=35,5PT=18,TSR=3,GPL=2,DDSL=17,DDGA=2

To read/write Model I DOSPLUS and LDOS (DD)}
TI=A,TD=E,TC=35,8PT=10,TSR=3,GPL=2,DDSL=17,DDGA=2

NOTE: If Model I disks were written with 40 tracks, change
"TC" to 40 Land, for DOSPLUS or LDOS, change DDSL to 20 —ed.1,
“DD" and "SD" are abbreviations for Double Density and Single
Denzity respectively., I have not tested these settings on an
LDOS disk, but they should work since DOSPLUS and LDOS can
read each other.

To change the FDRIVE table on the disk in drive 0, and to
make the changes effective for diskettes placed in drive 1!

FPDRIVE O 1 TI=C TD=E s1ees DDGA=2 A
If anyone knows how to set PDRIVE for 80 track DOSPLUS and
LDOS diskettes, please contact Gordon Williams at CompuNet
{517-339-33467) or Dennis Hill at Bahblenet (517-485-46232),
Gordon Williams Oct. 10, 1983

[Editor's note! According to a recent article by Alan
Abrahamson in the Voice of the ‘20 Newsletter, a Model 1
MULTIDOS "P" Density disk would take the same PDRIVE
settings as a standard Model 1 NEWDOS/20 (DD) disk, except that
DDSL would be set to one—half of the TC value]

MAX-80 PATCH FOR TASMON - The following LDOS patch
file allows TASMON to run on a Lobo MAX-80:
{LTASMON/FIX ~ 02/12/82
+Patch to TASMON/CMD to allow use of LDOS #KI #DO and #PR
Jwrivers allowing TASMON to run on Lobo MAX-80
X'7933'=DS 11 15 40 FBCD 12 00 F3 D1 C9
X‘7A1C'=D5 11 1D 40 CD 1B 00 D1 C?
X'7A4%=D5 11 25 40 CD 1B 00 D1 C9
+End of patch

ARE YOU BORED? Here’s an item I can agree with (at least
sometimes) - it’s excerpted from "I/0 News Update" by 8i Hawk
in The 1/0 Port!

Programming is a boring job! That was the finding by a group
of researchers at the University of Colorado, After examining
data from more than &,000 computer programmers the group found
that over 50% found their jobs boring and unchallenging. The
researchers further declared that by making programming jobs
mare satisfying the resulting increase in programmer productivity
would amount to 10% to 40%.

BOOBY TRAPS is reprinted from the Winnipeg Micro-80
User's Group newsletter!

I was given an article about Software Piracy that mentioned
a new way I hadn’t heard of, Here’s a bit of info from the article!

BOOBY TRAPS - a particularly insidious variety of
psychological warfare that either lets you spend hours creating
files on your pirated program, before NEWing your diskette, or
{even worse) a new breed of diskette with holes punched
strategically around the perimeter to ENSURE that it will be the
LAST diskette you copy on that drive.

The last one is used on some (expensive) business software
packages. The label on the disk clearly states)

THIS DISK IS COPY PROTECTED. Any attempt to duplicate
may cause permanent damage to disk drive.

It appears that this is no idle threat, By rotating the
diskette in its sleeve, one finds a 3 mm hole punched in the
magnetic media, near the outside edge, If the diskette was
duplicated, the drive would attempt to read the whole dishette
and catch the hole, which could tear the diskette and/or bounce
the recording head mechanism off the platter, PERMANENTLY
DAMAGING the disk drive:

I've seen the first one operate hut haven’t run into the
second. Forewarned is forearmed.

How to make it on your own with computers. New product forecasts, used equipment and residual value studies, price/
performance studies, DP spending analyses, evaluation of acquisition methods. What's new and what's best in hard-
ware, software, courseware, databases, networking, publications, grants, videodisks and ¢onsortia. Money-making
opportunities for microcomputer owners. Business ideas, opportunities, pitfalls to beware, marketing hints and
sources for the micro-entrepreneur. The booming computer industry has produced an explosion in hardware and soft-
ware that offers confusion to some computer owners and enlightening predictability to others. The key to business
success in the computer business is good information. Yet the business experience from which good information is
derived can be very expensive. The experts who publish the services offered in this unique package are professionals
with long experience and who devote their full time to their work. Here's how you can obtain the Iruits of their experi-
ence for less than 90¢ apiece. Through this bargain-packed offer, SELECT INFORMATION EXCHANGE, America’s
leading financial subscription agency, makes available 1o you a selection of 16 sample subscriptions to a variety ot

money-making, money-saving

P publications, magazines and newsletters. Their regular subscription prices range

as high as $295 apiece. Your price for the entire package under this amazing one-time-only offer is $14, or about 90¢
apiece. Exact descriptions of each of the 16 publications are below. To order the entire package of 16 sample subscrip-
tions, merely complete and return the coupon below, along with your $14 remittance.

1. FINANCIAL & INVESTMENT SOFT-
WARE REVIEW. Receive a sampling of
articles from past issues. Contains invest-
ment software reviews, and unique articles
on investing strategy, with a special focus on
micro-computerized investing. 1 Yr, $60.

2. SMALL BUSINESS COMPUTERS. The
practical computer magazine for busines-
speople. Offers clear solutions to problems
. common to microcomputer users. Includes
in-depth reviews of equipment and software,
industry news, and new products. A non-
technical approach for individuals consider-
ing acomputer purchase as well as for those
who already own a system. 1 Yr, $12,97.

3. COMPUTER ECONOMICS REPORT.
The financial advisor of DP users: new prod-
ucts forecasts, current third party lease
prices, used equipment prices and residual
values forecasts, price/performance charts,
tax and law factors, data processing spend-
ing analyses, evaluation of acquisition
methods. 1 Yr, $295.

4. SCOPE. Designed for developers and
users of software for instruction, re-
search, and communication on the uni-
versity level. Reports on hardware, course-
ware, databases, networking, publications,
campus news, grants, videodisks and con-
sortia. Especially useful is an international
calendar of related conferences. 1 Yr, $47.

5. COMPUTER EXECUTIVE LETTER.
Information to assist and support the deci-
sions of DP executives: cost of ownership,
analyses of new product announce-
ments, DP personnel salaries, evaluation
of price versus performance, forecast of
future products, residual value forecasts,
and more. 1 Yr, $195.

6. COTTAGE COMPUTING. Monthly maga-
zine designed to help microcomputer
owners cash in on the booming computer
industry. Each issue is packed with factual
articles, news, trends, case studies, money-
making opportunities, pitfalls'to beware, and
- much more. Learn how others are making
cash with their computer and how you can
- jointhem. 1 Yr, $14.

*7.COMPUTER FRAUD & SECURITY BUL-

- LETIN. Reports on techniques of computer
crime, security management, management
audit and financial control, recruitment and
employee screening, new security hardware
and software. Written for auditors, inspec-
tors, DP managers. financial and corporate
management in computer using companies
—especially banks, finance houses. etc.
1 Yr, $190.

8. COMPUTER SHOPPER. A buy, sell and
trade publication for computer equipment
and software. Bargains from individuals and
dealers worldwide. Approximately, 84 big
11" x 14" pages every month. 1 Yr, $10.

9. MICRO MOONLIGHTER NEWSLET-
TER. Devoted exclusively to aiding the
owner of a personal computer in the crea-
tion, building, and maintenance of a home-
based business. Contains business ideas,
marketing hints, and sources for the micro-
entrepreneur. 1 Yr, $25.

10. MICRO M.D. JOURNAL. Focuses on Hi-
Tech and Medical stocks with comprehen-
sive analysis of stability and growth potential
using highty successful measures of market
momentum. Provides reviews of new finan-
cial software for tax management, stock
investment and commodities trading. In
depth reports on computer applications for
the health professional. 1 Yr, $60.

11. COMPUTER DESIGN: Serves those
companies or organizations concerned with
design and application of Digital Equipment
and Systems in computing. data processing,
control and communication. This field
covers engineering activities being applied
in industry, government, the Military, busi-
ness and the sciences. 1 Yr, $50.

12, EDP WEEKLY. Industry Reports Inc.
The top news in the data processing indus-

" try, plus digest of new contract awards.

Government procurements, of orders,
installations and applications of EDP equip-

ment; highlights of Wash ington events that
affect E%P usiness; listings of new prod-
ucts and literature; business, financial and
corporate news, major personnel changes
and upcoming events. 1 Yr, $120.

13, PERIPHERALS DIGEST. Industry
Reports Inc. A sophisticated newsletter
directed to Executives in Electronic Data
Processing covering convetters, data com-
municators, disc, displays. drums, OCR,
plotters, printers, remote computing, tape
and time-sharing. 1 Yr, $88.

14, SOFTWARE DIGEST. Industry Reports
Inc. A bi-weekly roundup of significant devel-
opments in all areas of the computer soft-
ware industry. 1 Yr, $88.

15. WORLD SOFTWARE MARKETS. Cov-
erage of microcomputer software markets
world-wide. Overseas business opportuni-
ties for software publishers. distributors.
Market trends. Turnkey projects. Overseas
publishers distributors seeking. franchises,
licensing. joint-venture development.
School use of microcomputers. Leading
magchines. Distribution and marketing chan-
nels. 1 Yr, $60.

16. BUSS. Covers Heath Kit and Zenith
micro-computers with announcements of
new Heath. Zenith compatible products.
reports of user's experiences with their sys-
tems, news about Heath Zenith corporate
activities and user community events.
“Assistance Wanted” and "For Sale”
columns. 1 Yr, $28

FREE COMPUTER MAGAZINES? Answer this questionnaire!

Own personal computer? (A) Yes (B) No. Plan 10 buy within year? (C) Yes (D) No. Want free
PC magazines? (E) Yes (F) No. Any children under 187 (G) Yes (H) No. Brand owned or to be
bought: (1) Adam (J) Apple (K)Atari (L) Commodore (M)} Compagq (N) DEC (O) Epson (P) IBM
(Q) Kaypro (R) NEC (S) Osborne (T) Pet (U) Radio Shack (V) TI (W) VIC (X) Viectar (Y) Xerox

(2) Zenith (2) Other

™™ ™ The Alternate Source
| 704 North Pennsvivania Avenue
Lansing, Michigan 48906

Package #48

YES. Please send me your package of sample subscriptions to 16 different specialized
| computer advuaory services as described above. Afthough the regular annual subscrip-

tions range as

: plete payment for the package.

igh as $295 apiece, | am enclosing only $14 or about 90¢ apiece. as com-

: NAME

| ADDRESS

|
ey

STATE

zZIP

| NOTE: Publications listed,sthis ad are those participating in the offer at the time the ad was prepared.
Over the course of time. many of those listed might discontinue or withdraw from the offer. When this
occurs, other publications of the same general substance are substituted. Therefore. some of the publi-

cations actually received under the offer might be different from some of those fisted in the ad

I

MODULA-2!

NOW AVAILABLE

The Alternate Source Information Outiet is now the North
American distributor for the Hochstrasser Computing Modula-
2 Svstem for 280 CP/M! If you thought that Modula-2 wasn't
possible on an 8-bit machine. keep reading! The programmer
goals were to create a full Modula-2 comeiler for an 8-bit
machine that generates a reasonably small amount of codeina
reasonably small amount of time leading to reasonably short
execution times. These goals are now realities!

WHAT MAKES MODULA-2 SO GREAT?

in several PASCAL dialects, there exists possibilities to spiit
programs apart into different “modules”. These modules are
comeiled as if they were complete programs Just lacking the
main program. You can freely use procedures declared in one
such "module” in others. All you have to do is to declare how
this procedure looks and indicate that it is “external”. [tisatool
that is indispensable for the successful mastery of larse
programming projects. {t is especially helpful for prolects that
are carried out by groups of programmers. In programmer
terms. Modula-2 takes the concept of "local” and "global”
variables to new dimensions. The programmer has complete

control.

THE DOCUMENTATION

. Manual Release 3-28-85/pwh — almost 300 pages -- is very
complete and well indexed (nine pages of carefully thought out -

subjects and subdivisions). [t is presumed that the user has a
some familiarity with PASCAL. Please note that the current
documentation has been updated since an older version of this
product was critisued in an issue of BYTE. For persons who et
squeemish at the thought of spending money, we have
constructed a "Modula Sales Kit” which includes the complete
Table of Contents and other information from the manual. One
of these is free upon request, .

POWER IS WHAT YOU GET

The Modula-2 Compiler Package for Z80 CP/M includes a
linker, a reference lister, a converter, a system configuration
package, two libraries (detalled below) and three test
programs. Complete step-by-step instructions are included for
assembling the test programs. The System generates fast,
ROMable. reentrant Z80 native code. Assembly languasge
integration Is supported. as well as assembly language

compiier outeut.

SOFTWARE SUPPORT

included with this version of Modula-2 is a complete set of
source code library routines including TERMINAL., SEQO,
TEXTS. REALTEXTS. INOUT. REALINOUT. MATHLIB,
SYSTEM, ASCIl. CHAINING., CMDLIN. CONTROLS.
STRINGS., LONGSETS. CONUERSIONS, CONVERTREAL.
FILENAMES. FILESYS, FILES, MOUES and OPSYS. The new
documentation incliudes a START-UP GUIDE.
INTRODUCTION TO MODULA-2, IMPLEMENTATION GUIDE,
ADUVANCED PROGRAMMING GUIDE and APPENDICES that
detall error messages, object code format considerations,
reserved words and symbols, the ASCI character set.
languagte definition, a bibliography and 9 pages of index. A
special section is devoted to Programming With Befter
Etficiency. The documentation is filled with small sample
Modufa-2 programs.

SYSTEM CONSIDERATIONS

Please note that this Is a (arge system. The compiler itself uses
about 170k of disk space. It s desirable fo have at least two
drives holding 350 Kilobytes of disk storage each to work
comfortably with the svstem. A single double-sided elghty
(holding Z00k) would be ideal. Unless otherwise requested, the
Modula-2 Compiler for Z80 CP/M will be shipped using the
Montezuma Micro 40-track. single-side format. The compiler
is only tested under CP/M 2.2. Eight inch CP/M formats are aiso
available uron request.

FOR NEW MODULA-2 PROGRAMMERS

Folks near the mid-Michigan area: This summer we are
planning at (east one seminar detailing the use of Modula-2. We
have a special package price on the seminar, which inciudes the
price of the compiler and compiete documentation, along with
PERSONAL INSTRUCTION and enough diskettes fo make a
backup of your software and for working/scratch purposes.
The price of the Modula-2 Complier Package for CP/M,
including the seminar and all mentioned above is $200. This
price reauires that vou bring YOUR OWN CP/M computer. The
price for the seminar with OUR computer is $300. The price
for the software without the seminar is $165. The seminar
without the software (vou provide your own Modula-2 comeiler
and computer) is $59.95 if you make vour reservations by
August 1st, $99.95 after that date. The 8-hour seminar will
take place In Lansing on Saturday, August 10th, and include
lunch. Advanced seminars are planned and will depend on the
success of this seminar, naturaily. '

| WHERE TO GET IT!

ipl=
"ALTERNRATE
S@UIRCE

TAS /0

704 N. Pennsyivania
Lansing, MI 48906
(517) 482-8270

NORTHERN BYTES

Subscription Information

Northern Bytes Is edited by Jack Decker and published on
an irregular basis by The Alternate Source Information
Outiet. Back issues are available starting with Uolume 5.
Number 1. issues prior to that are not available. Some of
the most valuable articles from earfier issues may be
reprinted in future Issues of Northern Bytes. Currently
there are elght back issues available for Volume 5, as well
as all issues from Uolume 6. All back issues are $2 each.

it is very easy to be placed on the Northern Bytes
REGULAR list. Simely place vour address, Visa or
MasterCard number and expiration date on file with us.
We will start with the issue you request. We do not bill you
for ANY ISSUE until that issue has been mailed, This way.
we can continue 10 offer vou top quality information with
absolutely no risk to vou. There's no duestion of what to

do about unfulfilled issues if we decide to auit publishing.
Unless otherwise requested, we presume vour

- subscrirtion will extend through the month of your

expiration date.

Don't have a charge card, huh? We understand the myriad
of reasons for not having them and we feel thata"To-Be-
invoiced” policy could help increase the demand for
Northern Bytes. If you'll do it for us, we'll do it for you.
Would vou like to be placed on a regular list TO BE
BILLED for each issue? You could then send a check for
the issues as they are malied, If you didn’t send a check,
we would presume that your Interest has died and
discontinue your subscription. The only requirement for
detting onto the list is to pay for the first issue up front:
the next will be mailed automatically. if you request. You
are insured that you will receive top of the line TRS-80
information as it (s released. Ask to be piaced on the NO
RISK "To-Be-Invoiced Northern Bytes List”.

Call or write, but SIGN UP TODAY!
‘The Alternate Source Information Outlet
<04 North Pennsylvania Avenue
Lansing, Ml 48906

NORTHERN BYTES

c/o Jack Decker

1804 West 18th Street

Lot # 155

Sault Ste. Marie. Michigan 49783
MCI Mall Address: 102-7413
Telex: 6501027413

(Answerback: 6501027413 MCI)

(517) 482-8270

POSTMASTER: [f undeliverable return to:

The Alternate Source. 704 North Pennsvivania Avenue. Lansing, Michissn 48906

To:

P

ES

