(The Miljronmh Newslotter "S55

MILLER MICROCOMPUTER July—-August 1980

SERVICES vol.l No.3

(617) 653-6136 Copyright 1980 by MMS

BYTE PRINTS SPECIAL FORTH ISSUE!

Hurry up and get your copy while they last! The August issue
of BYTE Magazine is a collector’s item for Forth fans everywhere!
Several good articles, tables and an excellent editorial by Gregg
Williams provide information on Forth from introductory examples
through <BUILDS and DOES> . It includes our full presentation of
BREAKFORTH, complete with source code for users of Cassette
MMSFORTH. (Byte has had so many Forth articles submitted that it
will run some in following issues.) As a convenience, MMS will
send a copy of the August BYTE with your next order; add $4.00,
including the extra postage. Your regular BYTE dealer can supply
it for a mere $2.50, so we recommend that alternative if it is
available.

In addition to the many good articles in BYTE, we also liked a
recent article by Michel Mannoni of Forth, Inc. which appears on
Page 175 of the July 19th issue of Electronic Design magazine, We
found a few small errors - can you?

MEET THE CREW AT MMS! (Editorial)

Thanks for the vote of confidence, often of eagerness if not
outright addiction, for our MMSFORTH Newsletter! By sending in
your $10.00 check you have told us we are doing it at least
reasonably right for a lot of users, Given your encouragement, we
intend to keep it coming.

Speaking of subscriptions, we strongly recommended FIG, the
Forth Interest Group, in Newsletter #1. FIG's membership cost has
inereased, and it’s still worth it. The new price is $12.00 for
this year's dues (including six issues of FORTH DIMENSIONS); an
additional $6.00 gets you the first six issues, as well. For
overseas air, make those prices $15.00 and $8.00, respectively.

Some of you who have chatted with and met some of the MMSFORTH
crew have suggested that we share the secret with all our active
users. We are your usual crew of TRS-80~happy programmers, mixing
business and pleasure by forsaking most pleasures other than
business! MMS believes that microcomputers and powerful
programming tools such as MMSFORTH can provide affordable
computing power to individuals and small businesses while still
gasisting in the big shops. True to our beliefs, we bought our
first TRS-80 the day after they were announced in August 1977, and
we use them and a mess of peripherals to build a state-of-thew-art
cottage industry.

From 9 A.M. to ¢ P.M. Jill and Dick (known as A. Richard to his
friends) Miller are apt to be found at the MMS office, which they
intend to keep in their cottage/home on the shore of Lake
Cochituate near Boston. They are assisted by a friendly blue
parakeet named Alistair Cook (known as Cookie to his friends) who
flies about the house saying "I want to play with the computer®,
"Garbage in, garbage out", and dropping other wuseful hints. In
prior incarnations Dick has been an electrooptical physicist
sending sophisticated garbage to the Moon, and an environmental
activist getting it out of his favorite lake. Now Dick writes
this Newsletter and the MMSFORTH literature, handles most
marketing activities and company communications, and is getting
better and better at using and explaining Forth. Once a month
Dick forgets his job and relaxes - as President of TRUGEM, the
very first TRS-80 Users Group.

Jill is Dick's pretty wife, which makes him her ugly husband.
She has some 15 years of systems analysis and business programming
experience in many languages, mostly on IBM mainframe systems.
She marvels that so many of her co-programmers haven't yet noticed
the professional capabilities of the microcomputer. Personally
she finds it a much more satisfying working environment - now that
she is equipped with Forth! Once a week Jill takes a few hours
off to cook great food, tend to her beehives and garden {she has a
green thumb and a degree in botany), or to participate in her
quilting group. This time of the year Dick and Jill often obey
Cookie, who also says, "Go jump in the lakel®.

The hero of this intimate expose is Tom Dowling, Forth
programmer extraordinary. Tom 1is the author of MMSFORTH and toils
over it to keep Dick, Jill and you working in the perfect language
~ if he has his way. Tom has created five versions of Forth
before ours; his knowledge of Forth and the Millers' knowledge of
the TRS-80 have resulted in the heady blend we all use today.
Unlike most geniuses, Tom doesn't live in an ivory tower. He
lives in a granite tower, instead - and we mean literally! Once a
year Tom, his wife Sunny, Jill and Dick all enjoy sailing on
100~year-old wind jammer schooners off the Maine coast, as a change
from jumping in the lake or slaving over their hot keyboards.

Others - socme of you - also are working on upcoming MMSFORTH
products, In future issues we will introduce you to more members
of the MMS team, our network of talented wusers in this growing
cottage industry.

-~ Dick Miller, Editor U4th Class

SETTING FORTH (for beginners)
KALEIDOSCOFPE:

You'll like this one! Following a recent MMS presentation on
Forth, Dave Huntress challenged us with his roughed-out BASIC code
for this routine. "This program draws a neat display," he said,
"but in BASIC it runs too slow to be interesting. Can Forth do
graphics?®

Can it everl Qur previous SETTING FORTH programs used
graphies, but not the TRS-80 Level II-style graphies set which
also is supported in MMSFORTH (in single- and double~widih element
sizes!). Here we use MMSFORTH's single-element word, ESET., Dave
decided to go Forth as soon as he saw the dramatic speed-up.
Others may be even more impressed with the structured readability
of the Forth code - once you understand Forth, that is! Now we've
got a great introduction for our next talk, and so do you!
Because 1it's a one~block program it is particulary easy to
demonstrate a point and then return to execution. After 81 EDS
and 81 LOAD, just Break during the drawing phase and enter V to
re~View the screen; enter KSCOPE to restart your kaleidoscope!

Now that you are getting better at writing in Forth, we won't
explain this one in detail. Instead, we spent extra effort
arranging the source block neatly and picking meaningful word
names to aid in your reading of our code, Here are two clues to
help. DX and DY get reset for each new set of 4 lines, and can
only have values of 1, -1, or 0. We use V1.9's new OR command to
decide if any of the four proposed lines will exceed the sereen
borders, then reverse the truth with a NOT to see if it fits, not
if it overlaps. (You can insert OR in Block 18 Lines 1 and 2 of
your pre-~V1.9 MMSFORTH System and reprecompile basic MMSFORTH, as
we did, or you can insert it near the top of the KALEIDOSCOPE
bloeck:

CODE OR HL POP DE POP L A MOV E ORA A L MOV H A MOV D ORA
A H MOV PSH)
Take it from therel

BLOCK : 81

0 (KALEIDOSCOPE PROGRAM, FROM BASIC PROGRAM BY D. HUNTRESS 7/80)
13 TASK ; 32 LOAD { RANDOM NUMBERS) 33 LOAD { GRAPHICS)
2 64 CONSTANT X 23 CONSTANT Y (OFFSETS TO CENTER OF SCREEW)
3 O VARIABLE LENGTH O VARIABLE DX O VARIABLE DY (INCREMENTS)

3

5 PFIT X DX &+ 0K Ypreées+ ¢¢<

6 X DX @ + 64 > Y DY@+ 23> OROROR NOT ;

7 : 4-LINES LENGTH € 0 DO <2FIT IFDX € ' X +! DY @& 'Y #!
8 Y X ESET Y 127 X - ESET 47 Y - X ESET 47 Y - 127 X - ESET
9 ELSE LEAVE THEN LOOP ;

11 : PAUSE 20000 0 DO LOOP ; (PAUSE FOR 2 SECONDS)
12 : MESSAGE 14 2 DO I DUP 2 # 13 + PTC " MMSFORTH" LOOP PAUSE ;

1% : XKSCOPE BEGIN CLS 70 0DD 3 RND 2 -DX ! 3 RND2 - DY I
15 30 RND LENGTH ! X4~LINES LOOP MESSAGE 0 END ; KSCOPE

GET-TOGETHER

Consider sharing your questions and answers with a MMSFORTH
User Group, or contact MMS for help in starting one in your
metropolitan area., Here is our present list of contacts for local
MMSFORTH User Groups:

Morris Herman, 503
(805/964~7144) .

Rich Royea, 6456 Lubau, Woodland Hills CA 91367 (213/704-6859).

Ed Laughery, 1222 Jascon Drive, Denham Springs LA 70726
(504/665-7537) .

Jim Gerow, 1630 Worcester Road, Framingham MA 01701 ({(617/843~9521
x3562 days, 617/872~1882 eves.).

Kim Watt, Box 1013, Berkeley MI 48072 (313/288~9422).

Bob Zwemer, 6408 South Washington, Lansing MI 48910
(517/393-9287) .
Larry Goforth,
(512/836-0981).
Jim Shepard,
(214/661-9702) .
Paul van der Eijk, 4910 Fran Place #204, Alexandria VA 22312
(703/354~7443),

Rod Proctor, 13520 N.E. 29th Place, Bellevue WA 98005
(206/885~4171 days, 206/883~1923 eves.). Rod also is on THE
SOURCE.

Rosario Drive, Santa Barbara CA 93110

10203~d Golden Meadow, Austin TX 78758

16210 Arbor Downs Drive, Dallas TX 75248

NOTE: Program trading is one popular facet of these meetings, but
NOT commercial programs and WITHOUT MMSFORTH SYSTEMS aboard!
Promote legitimate sharing, discourage pirating, and take care not
to jeopardize your own MMSFORTH serial number.

ADVANCED FORTH

ABSOLUTE ASSEMBLER (no extra charge!):
by Jill Miller, programming by Tom Dowling

Foreword:

4 significant number of MMSFORTH users have requested a
cross-compiler; that is, a method to write in MMSFORTH but to
compile into code which then can be run on a TRS-80 without a
MMSFORTH system. MMSFORTH is not set up for this, and there are
poth marketing and technical problems in doing this well on a
general basis. We don't want to run a weak version of MMSFORTH in
DOS or CP/M. MMS provides custom cross-compiling services for
this and other purposes, and finds that each job requires a
somewhat different approach for optimal results. And we are
understandably cautious about providing a few MMSFORTH users with
an inexpensive tool to keep their customers away from exposure to
Forth instead of bringing them systems which utilize the full
power of its language/operating system.

While awaiting a perfect solution to this dilemma, here 1is a

compromise tool at a price that's right: our new Absolute
Assembler written in MMSFORTH which can be used by you to create
SYSTEM cassettes for running without MMSFORTH -~ or for loading

under conventional disk operating systems with TAPEDISK (in
TRSDOS), LMOFFSET (in Apparat's NEWDOS+) or a similar routine.
MMS used it to create the additional command modules in the
expanded version of NEWDOS+ for the CORVUS 10~-megabyte hard disk
drive, It will be the most versatile assembler you own; it
embodies a number of Forth constructs and in experienced hands it
can be used to redefine your favorite MMSFORTH words - or anything
else!

~ Editor

Herewith is presented an Absoclute Assembler and a routine to be
used to create SYSTEM tapes. Together these two MMSFORTH routimc
give the user the ability to create TRS-80 load modules, which can
be used without Forth under TRSDOS or Level II BASIC.

The Absolute Assembler consists of four blocks. The first
block defines the special variables for setting up the Absolute
Assember. The second and third blocks define the 8080 Absolute
Assembler, (The Z-80 Assembler instructions could be substituted
by those who have the Floating-Point/Z-80 Assembler Package.) The
fourth block sets up the logic constructs available to the
programmer and loads the two blocks of the "IBUG Dump®" which
allows system tapes.to be created.

All functions used in the Absolute Assembler must be defined
using the Absolute Assembler; i.e., standard FORTH vocabulary
words are NOT available., The advantage of the MMSFORTH Absolute
Assembler over other available assemblers is that it allows the
user to debug an assembly language program incrementally, one
routine at a time, under MMSFORTH using CODE vocabulary words,
then with a few minor changes to create a load module, and it
provides most of the Forth logic constructs., Since the source for
the Absolute Assembler is provided, further enhancements such as
macro ability can be added.

Functions supplied with the Absolute Assembler:
1) Full 8080 Assember. (If you own the Floating Point/Z~80
Assembler Package, you may wish to modify it using the example
of the 8080 Assembler to get a Z-80 Absolute Assembler.)
2) Subroutines can be created and called by name.

BLOCK : 12

0 (ABSOLUTE ASSEMBLER ROUTINES 1 OF &) : TASK ;

1 (COPYRIGHT 1980, MMS/T.DOWLING; FOR MMSFORTH LICENSEES ONLY!)
2 0 VARIABLE ORG O VARIABLE BAREA 2046 H +!

3 0 VARIABLE PC 0 CONSTANT OFFSET

4 VOCABULARY ABS-ASMB ABS-ASMB DEFINITIONS

5 CODE C, PC LHLD HL INX PC SHLD XCHG ' OPFFSET LHLD DE DAD
6 DE POP HL DCX E M MOV NEXT

7 CODE , PC LHLD HL INX HL INX PC SHLD XCHG ' OFFSET LHLD
8 DE DAD DE POP HL DCX D M MOV HL DCX E M MOV NEXT

9 : LABEL PC @ CONSTANT ;

10 : BTABLE LABEL BEGIN BL WORD HERE @ 8705 = IF 1 ELSE

11 HERE NUMBER DROP C, 0 THEN END ;

12 : INITASMB ORG @ PC ! BAREA ORG & - (') OFFSET 1

13 BAREA 2048 ERASE ;
14 : % 37 WORD HERE 1+ PC @ OFFPSET + HERE C€ DUP PC +! MOVE ;
15 BASE C€ HEX

BLOCK : 13

0 (ABSOLUTE ASSEMBLER 2 OF U)

11 1BY C3: C,

2 2F 1BY CMA 3F 1BY CMC 27 1BY DAA F3 1BY DI FB 1BY EI

3 76 1BY HLT 00 1BY NOP E9 1BY PCHL 17 1BY RAL 1F 1BY RAR

4 C9 1BY RET 07 1BY RLC OF 1BY RRC F9 1BY SPHL 37 1BY SIC

5 EB 1BY XCHG E3 1BY XTHL

6 : 2BY C;: C, C, ; : BCON CCONSTANT ;

7 CE 2BY ACI C6 2BY ADI E6 2BY ANI FE 2BY CPI DB 2BY IN

8 F6 2BY ORI D3 2BY OUT DE 2BY SBI D6 2BY SUI EE 2BY XRI

: 3BY C;: C, , ; CD 3BY CALL

10 C3 3BY JMP 3A 3BY LDA 2A 3BY LHLD 22 3BY SHLD 32 3BY STA

11 0 BCON B 1 BCON C 2 BCON D 3 BCON E 4 BCON H 5 BCON L & BCON M
12 7 BCON A 8 BCON BC 9 BCON DE OA BCON HL OB BCON SP OB BCON PSW
13 OE BCON #0 OF BCON =0 10 BCON NC 11 BCON CY 12 BCON PO

14 13 BCON PE 14 BCON >=0 15 BCON <0

15

it=}

3) Routines and memory locations can be labeled.

4} The following MMSFORTH logic constructs are supplied:
a) IF...ELSE...THEN
b) BEGIN...END
¢) WHILE...PERFORM...PEND
Note: Because DO...LOOP uses Forth's Return Stack, it
cannot easily be implemented in the Absolute Assembler,
However, loading and decrementing a register (see example)
can serve as well.

5) Program can be located anywhere in RAM.

6) Name the program.

7) Specify any desired entry point.

The Absolute Assembler work area is originally set at 2K (2048)

bytes, but can be easily adjusted to any size permitted by
available memory in your TRS~-80. The Assembler plus the dump
routines take 4045 bytes.

To Use the Absolute Assembler: N

1) Create and debug your program with regular MMSFORTH CODE
words (no FORTH vocabulary words are allowed).
2) At the beginning of the program insert ABS-ASMB to invoke
the Absolute Assembler vocabulary. Specify a starting location
for the completed program in memory by storing its address in
ORG . Call Assembler initialization, INITASMB .
3) Change CODE and : definitions to subroutines as necessary.
Change : definition of last word (program name)} to LABEL .
4) Add JMP as last instruction in program.
5) To create a SYSTEM tape:

entry-point TDUMP name

Important variable names in the Absolute Assembler:

1) ORG is the origin address of the program. It must be set at
the beginning of the program.

2) PC is the Position Counter which points to the next
available memory location. Usually it is incremented by the
Absolute Assembler, but the programmer may wish to manipulate
it himself (for example, to set aside a large data area).

3) BAREA is the start location of memory set aside for storing
the binary progranm, You will want to enlarge the number
following it for any program which is larger than 2K (2048
bytes).

Line-by~line (almost) examination of the Absolute Assembler:
First Block (12): This block is in DECIMAL.

Lines 2 & 3 set up variables for the Absolute Assembler.
ORG indicates the wmemory location from which the program
will execute.
BAREA is the work area where the binary program will be
built, Its original size is 2048 bytes (2046, + 2 bytes
from the VARIABLE definition itself).
PC 1is the Program Counter or Position Counter. It keeps
track of how many bytes from the beginning of your program
you have filled with program.
OFFSET holds the difference between the contents of ORG and
the address of BAREA. It allows the Absolute Assembler to
calculate correct JUMP addresses.
Line 4 sets up the special vocabulary for the Absolute
Assembler.
Lines 5-8 define the words , and C, for the Absolute Assembler.
They will do the same thing as the FORTH words of the same
name, but in the work area for the Assembler.
Line 9 defines a word to put a label on the next location. To
label a call location in ROM:
(address) CONSTANT KOUT

BLOCK : 1%

¢ ARGERR " ARGUMENT ERROR - " QUESTION ;
1RG DUP 0< OVER 7 > + IF ARGERR THEN ;
1YS C;: SWAP 1RG + C,

88 1YS ADC 80 1YS ADD A0 1YS ANA BS 1YS CMP
B0 1YS ORA 98 1YS SBB 90 1YS SUB A8 1YS XRA

: 1Y1 C;: SWAP 1RG 8% + C, ;

05 1¥1 DCR O4 1Y1 INR €7 1¥1 RST

: MVI 1RG 8% 06 + C, C, ;

: MOV 1RG 8% SWAP 1RG + 40 + C, ;

: 2RG DUP 8 < OVER OB > + IF ARGERR THEN 8§ - ;
1YP C;: SWAP 2RG 16% + C,

b

09 1YP DAD OB 1YP DCX 03 1YP INX OA 1YP LDAX
C1 1YP POP C5 1YP PUSH 02 1YP STAX

: CRG DUP OE < OVER 15 > + IF ARGERR THEN 0OE - 8% + C, ;
¢ LXI 2RG 16% 1+ C, , ; : RETC CO SWAP CRG ;
¢ 3YC C5;: SWAP CRG , ; C4 3YC CALLC C2 3YC JMPC

BLOCK : 15

(ABSOLUTE ASSEMBLER 4 OF 4)
: BEGIN PC @ ;
: END 1 XOR JMPC ;
¢ LAD BEGIN OFFSET + 2 -~ ;
: IF 0 SWAP END LAD ;
: THEN BEGIN SWAP 1 ;
: ELSE 0 JMP THEN LAD ;
¢ WHILE BEGIN
PERFORM IF ;
PEND SWAP JMP THEN ; 0 CONSTANT AMODE

: SUBRTN FORTH <BUILDS PC € , DOES> &

AMODE IF ASSEMBLER CALL FORTH ELSE ABS-ASMB CALL FORTH THEN ;

H

BASE Ct
FORTH DEFINITIONS 16 2 LOADS (TBUG DUMP)
{ ENTRY-POINT TDUMP <NAME>)

: TDUMP PC € ORG € ~ ORG @ BAREA TAPE-DUMP ;

Then, KOUT CALL to call that routine.
Lines 10~11 allow set-up of a table of bytes of information
(not used in this example).
Lines 12-13 initialize the Absolute Assembler by setting the
variables PC and OFFSET and clearing BAREA. If you have
changed the length of BAREA, change the length here, too.
Line 14 defines %, equivalent to $L but without its length
byte. Example: LABEL STR ¢ ABCY% creates 3 bytes with
contents ABC ; can be addressed by specifying STR .
Line 15 saves current BASE on stack and goes to HEX .

Second and Third Blocks (13-14): Define the Absolute Assembler
8080 instructions.

Fourth Block (15):
Lines 1-2 define BEGIN...END construct.
Line 3 defines a word to get last address used.
Lines 4-6 define IF...ELSE...THEN constuct.
Lines 7-9 define PERFORM...WHILE...PEND construct,
Lines 10-11 use <BUILDS and DQES> to define SUBRTN, which will
cause a name to be applied to a subroutine. The subroutine
then can be called simply by specifying the nanme. {Whereas a
routine defined with the word LABEL must be called by
specifying the name followed by CALL .)
Line 12 resets BASE as before,
Lines 13-15 provide Compile routines for creation of SYSTEM
tapes.

Fifth and Sixth Blocks (16=17): This TBUG Dump routine creates
SYSTEM tapes.

PLUS, AN EXAMPLE WHICH TESTS YOUR TAPE SYSTEM:

The example used here is a program which reads in tapes written
by the WTST {write-test) Program {see Block 21) with a simple
12345..., etec. The purpose of the program is to ascertain if a
TRS~80 cassette recorder is writing and reading properly,and over
what range of volumes. Blocks 21 ami 22 are MMSFORTH programs to
write the tape and read it in again.

Block 20 is the Absoclute Assembler version of Block 22, It
allows one to run the test without MMSFORTH. The test data tape
must already have been created by WIST, from Block 21 (using
MMSFORTH) .

Line 1: ABS-ASMB , same as 12 4 LOADS . But first, you must

add this definition to the directory commands on Block 10:

¢ ABS-ASMB 12 4 LOADS ;

Then, this second use of ABS-ASMB invokes the Absolute

Assembler vocabulary which is redefined in Block 12, Line 4.

This way, if you already have loaded the Absolute Assembler it

merely invokes the vocabulary twice instead of loading an

additional copy.

6000 ORG ! sets 6000 hex (24576 decimal) as the location where

the program will be loaded later.

INITASMB initializes the Absolute Assembler,

Line 2 defines the subroutine to ECHO a character to the screen

by calling location 33 in the ROM.

Line 3 defines CR (carriage return) as a 0D hex (13 decimal)

ECHO .

Line 4 defines CLS (clear screen) as 1C (home cursor) and 1F

(elear to end-of-frame).

Line 5 defines routine to turn on the cassette recorder (same

as Line 2 of Block 22).

Line 6 defines routine to turn off cassette recorder (same as

Line 3 of Block 22).

Line 7 Qefines routine to synchronize on data {(same as Line 4

BLOCK : 16

0 (ENTRY~POINT CNT START-ADR BUF~ADR TAPE-DUMP <NAME>)
1 BASE C@ HEXY 0 CONSTANT OFST

2 CODE TON A XRA 212 CALL NEXT

3 CODE TOFF 1F8 CALL NEXT

4 CODE TWRITE-LEADER BC PUSH 287 CALL BC POP NEXT

5 CODE TCHAR-OUT HL POP L A MOV 264 CALL NEXT

6 CODE TWORD~OUT HL POP L A MOV 264 CALL H A MOV 264 CALL NEXT
7 CODE HI-BYTE HL POP H L MOV 0 H MVI PSH

8 (ADDRESS CNT DATA-BLOCK)

9 : DATA-BLOCK 3C TCHAR-OUT DUP TCHAR-OUT (CNT)

10 OVER TWORD-OUT (ADR) OVER DUP FF AND SWAP HI-BYTE +

11 { CKSUM OF ADR) ROT OFST + ROT

12 0 DO DUP C@ ROT + SWAP DUP C@ TCHAR-OUT 1+

13 LOOP DROP TCHAR-QUT (CKSUM)

14 (ENTRY-POINT ENTRY-OUT)

15 : ENTRY-OUT 78 TCHAR~-OUT TWORD-OUT ;

BLOCK : 17

0 { TAPE-DUMP ROUTINES 2 OF 2)

1 (TAPE FORMAT: 255 ZEROES ASH 55H 6-BYTE FILENAME)

2 (DATA~BLOCKS 78H ENTRY~ADDRESS)

3 (DATA~BLOCK FORMAT: 3CH CNT DATA CHECKSUM)
4 CHECKSUM = 1 BYTE SUM OF ADDRESS AND DATA)

5 (ENTRY-POINT CNT START~ADR BUF-ADR TAPE-DUMP <NAME>)
6 : TAPE~-DUMP OVER - (') OFST ! TON TWRITE-LEADER 55 TCHAR-QUT
7 BL WORD HERE 1+ DUP HERE C€ 6 MIN + SWAP

8 DO I C& TCHAR~-OUT LOOP

9 HERE C@ 6 - 0< IF 6 HERE C€ - 0 DO 20 TCHAR-OUT LOOP THEN
10 SWAP WHILE 100 - DUP 0 >=
11 PERFORM OVER 100 DATA-BLOCK SWAP 100 + SWAP
12 PEND

13 DUP ~100 <> IF 100 + DATA-BLOCK ELSE DROP DROP THEN
14 ENTRY-OUT TOFF
15 3 BASE C!

of Block 22).

Line 8 defines routine to read data from tape (same as Line 5
of Block 22).

Line 9: LABEL RTST defines _RTST (read-test) as a labeled
routine. This is the program itself, from CLS to JMP on Line
12.

Line 13: RTST . prints the entry~point of the program. This
is an optional routine and serves as documentation only.

RTST TDUMP RTST puts the name RTST on the SYSTEM tape and
also dumps the compiled program from the work area (from ORG
through current value of PC), Its entry point will be the
beginning of the RTST routine in the program. The format of
this sequence is:

{entrypoint) TDUMP (name)

Line 14: Clean up after the program, reset BASE , FORGET the
program and return to Directory.

BLOCK : 20

0 (TAPE CALIBRATION ROUTINE RTST, USING ABSOLUTE ASSEMBLER)
1 ABS-ASMB ABS-ASMB HEX 6000 ORG ! INITASMB
2 SUBRTN ECHO BC PUSH 33 CALL BC POP RET

3 SUBRTN CR 0D A MVI ECHO RET

4 SUBRTN CLS 1C A MVI ECHO 1F A MVI ECHO RET

5 SUBRTN TRON BC PUSH A XRA 212 CALL BC POP RET
6 SUBRTN TROFF BC PUSH 1F8 CALL BC POP RET

7 SUBRTN RSYNC BC PUSH 296 CALL BC POP RET

8 SUBRTN TREAD BC PUSH 235 CALL BC POP RET

9 LABEL RTST CLS TRON
10 BEGIN CR RSYNC 3C B MVI
11 BEGIN TREAD ECHO B DCR =0 END

12 JMP

13 RTST . RTST TDUMP RTIST
14 DECIMAL FORGET TASK DIR

15

BLOCK : 21
(WIST IN MMSFORTH) : TASK ;

0

1

2 HEX CODE TRON BC PUSH A XRA 212 CALL BC POP NEXT

3 CODE TROFF BC PUSH 1F8 CALL BC POP NEXT

4 CODE RSYNC BC PUSH 296 CALL BC POP NEXT

5 CODE TREAD BC PUSH 235 CALL BC POP A L MOV O H MVI PSH
6 CODE TWRITE HL POP L A MOV BC PUSH 264 CALL BC POP NEXT
7

8

¢ WTST TRON BEGIN O TWRITE 0 TWRITE A5 TWRITE
9 6 0 DO OA 0 DO I 30 + TWRITE LOOP LOOP " *" 9KEY END TROFF ;
10

11

12 DECIMAL

13 WIST FORGET TASK DIR
14

15

BLOCK : 22

0 (RTST IN MMSFORTH) : TASK

1

2 HEX CODE TRON BC PUSH A XRA 212 CALL BC POP NEXT

3 CODE TROFF BC PUSH 1F8 CALL BC POP NEXT

4 CODE RSYNC BC PUSH 296 CALL BC POP NEXT

5 CODE TREAD BC PUSH 235 CALL BC POP A L MOV 0 H MVI PSH
6 CODE TWRITE HL POP L A MOV BC PUSH 264 CALL BC POP NEXT
7

8

: RTST CLS TRON BEGIN CR RSYNC 3C 0 DO TREAD ECHO LOOP
9 ?KEY END TROFF ;
10
11 DECIMAL
12
13
1
15

RTST FORGET TASK DIR

PICK & ROLL:

Some Forth users believe these two words are indispensable
while others feel they are superfluous to the experienced TForth
user. They are variable-depth stack-manipulation words. n PICK
picks out a copy of the nth entry on stack and places it on top of
stack, while n ROLL removes the nth entry from stack and places it
on top of stack instead, rolling all higher entries down one in
the process. So 2 PICK is equivalent to OVER, 2 ROLL is SWAP, 3
ROLL 1is ROT, etec., Got the idea? We have provided Forth versions
for understandability and Forth 8080 Assembler versions for speed
of execution. Try it, you may like it!:

BLOCK : 78
(PICK AND ROLL IN COMPILE FORTH - MMS/TD)

¢ PICK 2% 'S+ @ ; (18 BYTES)

0
1
2
3
4% : ROLL DUP 1 > IF 2% DUP <R 'S + DUP @ SWAP 1 ~ DUP 2+ R>
5 -MOVE SWAP DROP ELSE DROP THEN ; (58 BYTES)
6
7
8

9
10
1
12

BLOCK : 79

0 (PICK AND ROLL IN ASSEMBLER FORTH - MMS/TD)
1
2 CODE PICK HL POP HL DCX HL DAD SP DAD M E MOV HL INX

3 M D MOV DE PUSH NEXT (19 BYTES)
4

5 CODE ROLL HL POP L A MOV HL DCX HL DAD SP DAD HL INX

6 L EMOY HD MOV BC PUSH

7 M B MOV HL DCX M C MOV HL DCX BC PUSH A C MOV

8 WHILE C DCR #0

g PERFORM M A MOV DE STAX HL DCX DE DCX

10 M A MOV DE STAX HL DCX DE DCX

1" PEND

12 XCHG BC POP B M MOV HL DCX C M MOV BC POP

13 NEXT (48 BYTES)
14

15

MMSFORTH QUICKIES

This month's program quickies consist of short utility routines
suitable for dashing off from keyboard or temporarily patching
into programs during development, Some are contributed, others
provided by MMS as the result of user suggestion or our own
programming usage. The usual response from first-time wusers has
been, "Great! You ought to incorporate this into your next
version of MMSFORTHI® In general, we disagree, As you get to
know Forth you too will dash off the right one for the job when it
is appropriate, and not clog up the system when it is not,
Besides, next month you're going to send us improved versions and
a new rash of "necessaries®, right?

PRINT, UNSIGNED:

This quickie eliminates the beginner's confusion or expert's
impatience with negative values returned by Forth for
single-precision numbers greater than 32%. It also applies
MMSFORTH's pictured numeric output in an interesting manner, and
may inspire you to experiment further with these PRINT USING-like
words.

: .U SPACE <# #S #> TYPE ;
PRINT STACK:

Plant this beauty in your development package to report the
immediate situation in tricky places, or call it from the keyboard
during interpretive debugging. It gives you a stack printout, but
leaves the stack itself as is. Note that we first find the
stack's base address, 30, and that we don't subtract 'S from 30 .
Why neot? Because in Forth, S0 'S - will first add SO to the
stack, yielding a larger answer for 'S .

HE 19203 € 256 - ;
.3 'S 80 - IF 'S SO SWAP DO I ? 2 +LOOP THEN ;

Forth beginners are encouraged to use ,3 to familiarize
themselves with Forth's stack manipulator words:
123 .3 yields 3 2 1

SWAP .3 231

ROT .S 123

OVER .S 2123

DROP .S 123

- .8 -1 3 ..., ete.

Want those unsigned numbers, instead? Just load the .U
definition first, then substitute I € .U for the I ? in .3 .
A1l the necessary clues for finding S0 are in the Memory Map on
Page 3 of Newsletter #1. We are indebted to Jim Gerow for a much
larger routine which did this and also printed the ASCII character
equivalent, if any. For sheer simplicity and minimum code, Dick

MILLER MICROCOMPUTER
SERVICES

61 LAKE SHORE ROAD, NATICK, MASS. 01760
{617) 653-61386

Landau offers a rough-cut version suitable for some uses:

.S *S 10 DUMP ; Now, THAT's compact!

AVAILABLE MEMORY:

We mentioned this one in Newsletter #1. It fits in nicely
here, using our new .U in place of . :

+ MEM S PAD -~ .U ;
ASCII:

Tom Dowling provided this definition after a suggestion by Paul
van der Eijk of the Washington, D.C.-area user group. Follow
ASCII by any ASCII-character to put- its code on top-of-stack.
This ‘t"intelligent® definition may be used in compiled. or
immediate~execute modes, and can improve the readability of some
routines.

1 ASCII IMMEDIATE BL WORD HERE 1+ Ce
STATE €& IF (L) (L) , , THEN ;
Example: ASCII A& . yields 65 .

MMSFORTH MODIFICATIONS
MMSFORTH SYSTEM:

While creating the Forth version of this month's KALEIDOSCOPE
program, I discovered an old mistake lurking deep within Block 32
of the MMSFORTH System. This block is accidently concluded with a
35 (required in some versions of Forth but optional in ours),
Wefre modifying our statement in the MMSFORTH Glossary to explain
that ;3 concludes the loading not only of the present block but of
any other blocks within a single LOADS command. That's why our
KALEIDOSCOPE block loads Blocks 32 and 33 separately instead of 32
2 LOADS . After you remove the ;S from the end of your system's
Block 32, you can use the 32 2 LOADS command successfully.

THE DATAHANDLER:

Here are two improvements to add to copies of THE DATAHANDLER
V1.1 produced prior to 8/19/80 (see date on original write-protect
tab). These changes eliminate a rare junk read-out following a
SORT on a numerdic field.

First, several routines now use temporary scratch space 512
bytes above PAD , sc be sure to leave adequate RAM space to
accommodate them without interfering with the stacks. Load THE
DATAHANDLER, press Bresk, and enter: S PAD - . to display the
remaining available bytes of RAM. MMS recommends leaving at least
650 bytes; if this test reads less, either delete some source
programming or set M#BLOCKS (at extreme left of Bloek 140, Line 2)
to a lower number of 1K-byte blocks,

Secondly, the DATAHANDLER routine, VAL (Block 25, Lines 0 and
1), should be moved up 512 bytes to that area, as follows:
0 : VAL FIELD PAD 512 + $! 0 PAD 512 + DUP C& + 1+ C! PAD 512
+
1 NUMBER DROP #PT C€ 0= IF HI# & SWAP 1 #PT Ci THEN ;
{Some custom versions define 2VAL instead, and will require
equivalent changes thereto.)

After changing either or both of the above items reload the
source blocks and, if appropriate, reprecompile as well.

THE LAST WORD: "Go Forth and COMPILE®
- from the newest testament (USING FORTH?)

FIRST CLASS MAIL
U.S. POSTAGE
PAID
Framingham, MA 01701
Permit No. 207

	01.pdf
	02.pdf
	03.pdf
	04.pdf

