PRICE $ 2.00

|

e ENCIN B N S 1IN LI o

%
£
M
{1
f

SEPTEMBER 1980 ISSUE #6
‘.0..‘..........OC...O...l'.'.“.....‘...0..0..'.0'..Q...0..'...‘.......0..'!.l.

NOTE: The term "IRS-80" is a registered trademark of Radio Shack, a
division of Tandy Corporation. THE 80 NOTEBOOK is not affiliated with
Radio Shack or Tandy Corporation in any way.

‘0....’0...‘.......O'.‘I...........‘....’O.‘..O..l......O.....QC‘C..O.....‘O....

CYBERMATE ANNOUNCES LOW PRICES AND EXPANDED SERVICES

CYBERMATE has announced some special sale prices for its products and
services and an expansion in the scope of its services. Its package of 41
program listings for the TRS-80 Model I Level 2 with 16K covering games, natural
language, astronomy, graphics, data base management and word processing has been
reduced to $9.00 while individual program listings have been reduced to 90¢ each
and individual programs on cassette tape have been reduced to $2.50 each. Orders
received from outside the U,S,A, must include $1.50 for postage and handling,

CYBERMATE's monthly "unusual programming" publication for the TRS=80 Model
I Level 2, THE 80 NOTEBOOK, has reduced its subscription rates to 95¢ for a
sample copy, $11+00 per year in the U.SeAsy $16.00 per year in Canada, and $23,00
per year for air mail delivery outside the U.,S.A. and Canada.

With 11 years of programming experience, CYBERMATE has expanded its
operation to be available for business, scientific, education, operating systems
and general programming assignments on a contract basis at a limited time
special rate of $11.,00 per hour of work required, All programming assignments
must be for a TRS=-80 Model I Level 2 with the cassette tape, minifloppy disk
and sufficient memory recommended for the job at the time a quotation is given.
The programming can be done in either BASIC or Assembly language and will
include complete system, program and user documentation. All contract
programming is guaranteed to meet the specifications requested with program
maintenance services availables To order or for further information on any of
the above products or services, write to CYBERMATE, 5967 Sullivan Trail,
Nazareth, PA 18064 or phone 215-759~6873,

.OO...Q.O.CQ'OD..‘....O...O.Q‘.C.l.."'.‘U..Q’.0.0.."’.."..Q.!....'.’..O......

MACHINE LANGUAGE AND ASSEMBLY LANGUAGE:
PROGRAMMING MADE AS SIMFLE AS BASIC

In the course of your programming experience with Level 2 BASIC, you will
realize the execution speed limitations of using BASIC - particularly in
programming graphicseWhen you reach this level of capability, you may wish to go
beyond BASIC into the high speed world of your TRS=-80's Z~80 machine languages
To do this, you must first understand how your TRS-80 functions internally.

SEPTEMBER 1980 PAGE 1

As you may know, the memory in your computer is made up of cells called
bytese Each byte can hold a character, a small number, or graphic display
informatione Each byte is made up of & bits, Each bit can represent a 1 or a ¢
depending on whether the bit is on or off magnetically. This string of 8 bits
can then form a binary number ranging in value from @ to 255,

This can best be illustrated by a study of the numeric conversion table
found on page G/1 of the Radio Shack Level 2 BASIC Manual. As shown, each bit
position containing a 1 can be translated into a decimal value, By summing all 8
potential values in the bytey a numeric value for the byte can be obtained, From
left to right, bit 1 is 128, bit 2 is 6y bit 3 is 32, bit 4 is 16, bit 5 is 8y
bit 6 is 4y bit 7 is 2, and bit 8 is 1.

These numeric values can be further translated into how the TRS=80
interprets them when a byte is to be treated as a character, These character
equivalents can be studied on page C/2 of the manual, For example, the alphzbet
A thru 7Z is the numeric range 65 thru 90,

By studying the video display worksheet on page L/1 of the manual, you can
see that each character position in the display memory holds 6 graphic positionse
A graphic byte can be identified by a 1 in the bit 1 position and bits 3 thru 8
holding the 6 graphic points. Because individual bits can be turned on and off
in a byte, several graphic points can be on at one time in s bytes The use of a
byte as graphic display information is only valid in the area of memory assigned
to the video display.

In viewing the 6 graphic points as arranged in any character position on
the worksheet, the upper left point is bit 8y the upper right point is bit Ty
the middle left point is bit 6, the middle right point is bit 5y the lower left
point is bit 4 and the lower right point is bit 3. In a graphic byte, bit 2 is
not used,

Each byte in the computer memory can be located by its addresse The first
byte is at address @, the second byte at address 1 and so one For example, the
video display memory starts at address 1536f.

Now you might ask where in memory you can place your machine language
programs, The answer to this question depends on how much memory your computer
has and how large the BASIC programs, if any, that are going to execute the
machine language routines you have loaded into memory are. If a BASIC program
is to call one or more machine language routines, you must know exactly how
much memory is allocated by your BASIC program versus the total memory in the
computers The remainder of available memory must be sufficient to load and
execute the machine language routines. The minimum sixe BASIC program that
must be considered will be the relocating loader program which we will discuss
laters If you have a 16K machine, the end of memory is at address 32767, a 32K

is at 49151, and a 48K is at 65535,

To fix the address of the start of the machine language program area at
the tail end of the computer, enter the address of the highest memory location
your BASIC program will use (when it is loaded and executed) to the "MEMORY
SIZE" prompt at the time of power-up. Since the BASIC program area of memory
starts at address 17129, the total memory which your BASIC program can use
would be from 17129 to the address entered to the "MEMORY SIZEM prompt. For
example, if you have a 16K computer using a BASIC program needing less than 15K

SEPTEMBER 1980 PAGE 2

of memory and a machine language routine needing ogg bytes, the reply to the
"MEMORY SIZE" prompt should be 31865, This will leave a few bytes between the
two program areas as a buffer and starts the machine language area on an even
address (something useful in some machine language programs but not necessary).

Now that we have talked a little bit about memory and where a machine
language program might be stored for executiony let's take a look at what
machine language is and how it is represented in the computer memory, First,
machine language is the set of instructions which the electronic circuits in
your TRS=-80 recognize and carry out when they are found within a program ares,
in the computer memory. When you power up your TRS~80, the circuits start
looking for and executing the instructions it finds starting at address @. As
instruetions are carried out, the computer can jump around from program ares
to program area or within a program area as needed to carry out a series of
tasks performed by the programs in memory. BASIC itself is a large program
stored to the first 16K of memory. This memory is a special block of memory
composed of ROMe The ROM hardware allows the circuits to fetch and execute
instructions contained in that section of memory but not to store any new
instructions or data in that memory., Because of this, BASIC uses the memory
addressed above the ROM to store and manipulate data and execute BASIC program
code,

Internally, machine language instructions are composed of an operation code
followed by any required operandse Normally, an op code is a number stored in a
single bytes The operands which may follow an op codey as required, in
successive bytes include an address, a single character, a register I,D., a
numeric value or a displacement value, Some operands are combined and stored in
a single byte while some op codes take up 2 successive bytes with no operandse

To understand some of these operands, you must understand the architecture
of the TRS~80 computer from the internal aspecte Besides the main memory in the
computer, which we discussed earlier, the computer has a specialy separate block
of memory divided into areas of one or two bytes called registers.

The PC register holds the 2 byte address pointing to the location in main
memory where the next instruction to be executed by the computer can be found.
As instructions are executed, the number of bytes taken up by the instruction
and its operands is added to the PC register so that the next instruction's
address is always available to the computer, If an instruction requiring a change
in address in the PC register is executed, the new address is stored in the
register rather than the normal incrementing.

The A register is a 1 byte accumulator used for a variety of functions by
many instructions,

The F register is a 1 byte flag containing & bit flags used by the computer
to show the result of arithmetic and comparison (logical) instructions. When a
bit flag is 1, it signals that its representative condition exists.

Flag 1 indicates the sign of the A register. ilhen using the A register as a
signed accumilator (by some instructions) so that a range of values from =128 to
+127 are possible, the first bit of the accumulator is stored in the sign flag
and is treated as a non-numeric bit showing the signe A sign flag of 1 represents
a negative number in bits 2 thru 8 of the accumulator.

SEPTEMBER 1980 PAGE 3

Negative numbers are expressed in twos compliment which means that each of
bits 2 thru & that would be set to 1 for a normal number would be set to @ and
a @ bit would be set to 1 (bit inversion).

Flag 2 indicates that the result of an arithmetic instruction on the A
register is zero or that the result of a comparison was equal,

Flag 3 is not used by the computer but can be set and examined by a orogranm
allowing you to use it as a status flag.

¥lag 4 is a half carry flag. This will be discussed later in the section
covering the instructions that affect it,

Flag 5 is also not used by the computer,

Flag 6 is the parity/overflow flage This flag is set when the result of an
arithmetic instruction on the A register is greater than +127 or less than ~128
or when the number of 1 bits in the A register after a logical or bit shift
instruction is an even count.

Flag 7 is the add/subtract flag used to indicate what arithmetic instruction
was last performede

Flag 8 is the carry flag set when an 8 bit add instruction generates a
carry (or 9 bit result, greater than 255) or an 8 bit subtract instruction
requires a borrow (or 9 bit minuend in the A register, greater than 255),

There is a set of general purpose 1 byte registers identified as By Cy Dy E,
H and L which can also be used by certain instructions as 2 byte register pairs
for address manipulation or 16 bit numeric manipulation, These register pairs
are identified as BC, DE and HL, It should be noted here that the A and F
registers can also be used as a register pair with some instructions., When this
1s done, the pair is identified as AF. Registers A, Fy, By Cy Dy E, H and L have
a set of alternate registers for each main register. This allows you to use 2 A
registers, etcs A simple exchange instruction allows you to change which set of
registers a following logical or arithmetic instruction will address.

The IX and IY registers are index registers used to hold the address of an
area in main memory where data is to be stored or manipulated. These registers
are often used to step through a table of valuess

The SP registers hold the address of the top end of a stack. This stack is
a section of memory you reserve in your program to save address and register
pair values which are stored and retrieved in a last in first out organization,.
Bach entry in the stack contains 2 bytes. The stack is mainly manipulated by
the PUSH, POP, CALL and RET instructions. As entries are added to the stack,
the address in the SP register is decremented by 2 with the reverse occuring as
entries are removed,

You may be wondering what role assembly language plays in all of thise
Rather than trying to write a program in machine language by calculating and
storing in memory the series of numeric codes and address values they will
Trequire as operands, assembly language allows the user to write the same machine
language program by expressing the instructions in a symbolic form,

SEPTIMBER 1980 PAGE 4

Each possible instruction in machine language has an assembly language name.
Correspondingly, operands can be expressed as names. Register I.Des have unique

names in assembly language,

When an instruction must address an area in memory in your programy the
starting address of that area can be given a name and the name used in the
operand to the instruction. Using this technique allows the user to place data
areas anywhere in his program he wishes without knowing the actual address of
that area, Likewise, names may be used to address instructions in your progran
which would be used to jump from one place to another within your program. This
will be highlighted further when we take z look at programming examples,

Now that we have the basics, let's take a look at the actual set of
instructions available to us in Z~-80 machine language and how they work:

Each instruction explored will be called by its assembly language name and
the characteristics covered will include the number and type of operands required
by the instruction,

Before we do that, you should be familiar with how 16 bit arithmetic works
and how it is applied to addresses., 16 bit arithmetic takes place in register
pairse The two registers are locked together to form a string of 16 bits which
can hold a large numeric value similarly to the way a byte holds a numeric values
From left to right, each bit position containing a 1 bit has the following values
which, when accumulated, make up the numeric value represented in the register
pair: bit 1 is 32768, bit 2 is 16384, bit 3 is 8192, bit 4 is 4096, bit 5 is
2048, bit 6 is 1024, bit 7 is 512, bit 8 is 256, bit 9 is 128, bit 10 is 64, bit
11 is 32, bit 12 is 16, bit 13 is 8, bit 14 is 4y bit 15 is 2 and bit 16 is 1.

In order to perform 16 bit arithmetic, values must be loaded before and
stored after the operation, to and from the register pair, from and to memory,
For example, a 16 bit value might be the address of a table in menory you wish
to increment to arrive at the table entry desired,

When not being manipulated, 16 bit values are stored in data fields in a
section of memory reserved by you in your program, These two byte fields hold
the values in an altered format, The first 8 bits in a 16 bit value are stored
in byte 2 and the last 8 bits are stored in byte 1. This is done by store and
PUSH instructions, The reverse operation is performed by load and POP
instructions,

In the course of discussing how an operation code uses its operands,
different types of operands will be utilized, When the register notation M is
used, it means the one byte operand is in the memory location pointed to by the
address in the HL register pair.

The index operand is pointed to by an address in the IX or IY registers,

The operand notation may contain a displacement address value from 1 to 255

which, when present, would be added to the address in the register to arrive at
the actual location of the operand byte in memory, This displacement value does
not affect the contents of the IX or IY register, It is useful when scanning g
table of data values in memory containing several fields of information per

table entry by having the address of the start of a table entry in the IX or IY
register and the relative starting position of the field within an entry, minus

SEPTEMBER 1980 PAGE 5

one, as the displacement values An example of the assembler operand notation
for a displacement value of 1@ would be expressed by IX + 1¢ as opposed to
just IX for a displacement value of zeroc,

Some instructions require a flag bit condition as an operand which is used
to control whether the instruction will be carried out or ignored, These
condition operand codes are: 1 to test for a carry bit of 1, 2 for a carry bit
of @ (no carry)y 3 for a sign bit of 1 (minus)y 4 for a sign bit of § (positive),
5 for a zero bit of 1, 6 for a zero bit of # (not zero), 7 for a parity bit of
1 (parity even or signed numeric overflow)y & for a parity bit of @ (parity odd)
and 9 for uncondition execution,

A bit number operand is used to address a single bit within a bytee. The
possible codes are 1 thru & numbering bits from left to right. In some
assemblers, bits are numbered @ thru 7 from right to left in a byte,

An immediate value operand is a numeric value ranging from @ to 255,

An absolute address operand is a numeric address value ranging from ¢ to
65535

A label operand is a symbolically addressed location within your progran
using a naume,

A byte operand may include either the contents of registers Ay By Cy D, Ly
Hy L or the My immediate value or index operand values,

As you can see, the addressing possibilities used in operands can be
endless in terms of combinationss The specific allowable combinations used by
individual instructions will be discussed in the following review:

The ADC instruction adds its byte operand to the A register, If the carry
flag was set to 1 before the instruction was executed, the A register is also
incremented by 1.

The ADCX instruction adds either the BC, DI, HI, or SP operand to the HL
register pair, If the carry flag was set to 1 before the instruction is executed,
the HL register pair is also incremented by 1.

The ADD instruction adds its byte operand to the A register, The ADDX
instruction adds either the BC, DE or SP register pair in operand 2 to the HL,
IX or IY register pair in operand 1. Operand 2 may also be the same as operand
1 for doubling.

The AND instruction logically ands its byte operand to the A register., In
anding, the corresponding bit positions from each of the bytes involved are
compared to each other one bit position at a timee If both bytes contain a 1
bit in that position, the corresponding bit position in the A reglster is set
to 13 otherwise, it is set to {,

The BIT instruction examines a bit position (pointed to by the bit number
in operand 1) in the byte operand in operand 2. If the bit is 1 the zero flag
is set to @; otherwise, the zero bit flag is set to 1.

SEPTEMBER 1980 PAGE 6

The CALL instruction is executed if the condition expressed in operand 1
existss Operand 2 contains the absolute address or label operand locating the
subroutine you wish to execute, The address of the next instruction after the
call (in the PC register) is pushed onto the stacke When the subroutine executes
a RET instruction, whose operand is also a condition codey the stack is popped
into the PC register causing execution to continue with the instruction at the
new address in the PC register,

The CCF instruction moves the carry flag bit to the half carry flag bit
and the carry flag is examined. If the bit is ¢, the carry is set to 1; otherwise,
the carry is set to o This instruction has no operands.

The CP instruction compares the byte operand to the A register, The zero,
signy half carry, parity and carry flag bits are reset to f. If the comparison
is equal, the zero flag is set to 1, If the A register is less than the byte
operand, the carry flag is set to 1. If the A register is greater than the byte
operand, a not zero flag with a no carry flag will indicate it.

The CPD instruction compares the implied M operand to the A register,
setting condition flags as in the CP instruction, The HL and BC register pairs
are both decremented by 1.

The CPDR instruction performs the same function as the CPD instruction
except that the BC register pair is checked for a zero content after the
decrement, If BC is not zero and a not equal condition resulted from the
comparison, the PC register is reset to re-execute the instruction until an
equal condition is found or the BC register is zero.

The CPI instruction is identical to the CPD instruction except that the
HL register is incremented, not decremented, after the comparison,

The CPIR instruction is identical to the CPDR instruction except the HL
register is incremented as in the CPI instruction.

The CPL instruction performs bit inversion on all the bits in the A
register,

The DEC instruction subtracts 1 from the byte operand (other than an
immediate value).

The DECX instruction subtracts 1 from the register pair BC, Dk, HL, SP, IX
or IY operand,.

The DJNZ instruction decrements the B register by 1e If the result is not
zero, a signed numeric value operand of between =128 to +127 would be added
algebraically to the PC register after it has been adjusted by +2 for the length
of the instruction machine code. This allows a jump to be made to an instruction
in your program from 126 bytes before the DINZ instruction and to 129 bytes
after the DINZ instruction, In assembler language, a nearby addressed area name
(label) may be used as an operand and the assembler will compute the signed
displacement value from the DINZ instruction,

The EXS instruction exchanges the contents of the HL, IX or IY register
pair operand with the contents of the top entry in the stacke

SEPTEMBER 1980 PAGE 7

The EXD instruction exchanges the contents of the DE and HL register pairs.
No operand is required,

The EXA instruction exchanges the contents of the main AP register pair
with the contents of the alternate AF register pair. No operand is reguireds

The EXX instruction exchanges the contents of the main By C, D, E, H and L
registers with the contents of the alternate B, C, D, &, H and L registers, lio
operand is required,

The INC instruction is like the DEC instruction except that it adds 7
rather than subtracts 1.

The INCX instruction is like the DECX instruction except that it adds 1
rather than subtracts 1.

The JP instruction uses the condition code in operand 1 to decide if the FPC
register should be changed (e jump) to the named or absolute address indicated
by operand 2, For an unconditional operend 1, the operand 2 address may be the M,
IX or IY register,

The JR instruction performs a jump to a nearby location in your program
based on the condition code in operand 1 and a signed numeric disvlacement
value or nearby address label name similar to that used by the DJNZ ingtruction,
as operand 2.

The LD instruction moves 1 byte areas of information from one place to
another, Operand 1 is the receiveing area, operand 2 the sending area. Operand 1
may be an absolute address or address label name, M, A, B, C, D, E, H, L, index
operands, an address in BC (@BC), or an address in DR z@DE). Operand 2 can be a
byte operand, an absolute address or address label name, an address in BCy or an
address in DE. The @BC and @DE operands (similar in operation to M) can only be
used with the A register as the opposing address operand, Both operands can not
be an index operand, My an absolute address or label,

The LDX instruction moves 2 byte areas from one place to another, Operand 1,
the receiving address, can be an absolute address or address label name, BC, DI,
HL, IX, IY or SF; while operand 2, the sending address, can be an absolute
address or address label name, an immediate address literal value (an absolute
address prefixed by a #), IX, IY, 5P, BC, HL or DE, Both operands can not be the
samey an absolute address, label or immediate address value, The BC, DE, HL, IX
or IY operand 1 possibilities can only allow the absolute address, label or
immediate address value operand 2 possibilitiese The SP operand 1 can have any
operand 2 except BC, DE or SP,

As you can see, the LD and LDX instructions perform the load and store
instruction processes,

The system hardware has 256 I/0 ports, numbered @ thru 255, used to
communicate with various peripheral equipment (keyboard, cassette tape, etce)
connected to it.

The IN instruction inputs a byte into the A register from the I/0 port
specified in the immediate value operand.

SEPTEMBER 1980 PAGE 2

The LDD instruction moves the byte addressed by HL to the location addressed
by DEs Then BC, DE and HL are all decremented by 1.

The LDDR instruction performs the LDD function and then BC is checked for a
zero contente If not zero, the instruction is repeated.

The LDI instruction works like LDD except DE and HL are incremented by 1,
not decremented,

The LDIR instructions performs like LDDR except DE and HL are incremented
by 1y not decremented,

The NEG instruction subtracts the value in the A register from zero and
stores the result in the A register,

The NOP instruction does nothing except use up 1 machine cycle of time
delay.

The OR instruction ors the corresponding bit positions of the byte operand
with the A register, If either corresponding bit is 1, the A register bit is set
to 1; otherwise, it is reset to f.

The OUT instruction outputs the byte in the A register to the I/0 port
specified by the immediate value operand,

The POP instruction releases the top entry of the stack into the AF, BC,
DE, HL, IX or IY register pair operand and adjusts the SP register accordingly.

The PUSH instruction stores the AF, BC, DE, HL, IX or IY register pair
operand onto the top of the stack and adjusts the SP register accordingly.

The RES instruction resets a bit position (specified by the bit number in
operand 1) in the byte operand (other than an immediate value) specified in
operand 2 to @a

The RL instruction shifts the bits in the byte operand (other than an
immediate value) one bit position to the left and copies the carry flag bit into
the rightmost bit and copies the originally leftmost bit into the carry flag

bite

The RLC instruction works like the RL instruction except the original
leftmost bit is also copied into the new rightmost bit position rather than the

originsl carxry flag bit.

The RR instruction shifts the bits in the byte operand (other than an
immediate value) to the right one bit position and copies the original carry
flag bit into the new leftmost bit position and then copies the original right-
most bit into the carry bit.

The RRC instruction works like the RR instruction except the original
rightmost bit is also copied into the new leftmost bit position rather than the

original carry flag bite

the SBC instruction subtracts the contents of the byte operand from the A

SEPTEMBER 1980 PAGE 9

register, If the carry flag was 1 before the subtraction; the A register is alsoc
decremented by e

The SBCX instruction subtracts the contents of the BC, DE, HL or SP operand
from the HL register pairs If the carry flag was 1 before the subtractiong the
HL register is also decremented by 1.

The SCF instruction sets the carry flag to 1e

The SET instruction sets a bit position (indicated by the bit number in
operand 1) in the byte operand (other than an immediate value) in operand 2, to

Te

The SLA instruction shifts the bits in the byte operand (other than an
immediate value) to the left one bit position and copies the original leftmost
bit into the carry flag and resets the new rightmost bit position to fe

The SRA instruction shifts the bits in the byte operand (other than an
immediate value) to the right one bit position and copies the original rightmost
bit into the carry flag and the leftmost bit position retains its original
setting,

The SRL instruction works like the SRA instruction except the new leftmost
bit position is reset to fe

The SUB instruction subtracts the contents of the byte operand from the A
register.

The XOR instruction performs an exclusive or function on each of the
corresponding bit positions in the byte operand with the A register bitse If
only one of the two corresponding bits is 1, the corresponding A register bit
is set to 1; otherwise it is reset to fe

These are not the only 7-80 machine instructions availables Those not
covered involve more complex I/0 functions, interrupt handling, BCD manipulation
and some redundant instructions which the normel assembly language application
program does not require, There are other assembler systems which support the
full Z=-80 instruction set,

Besides the Z-80 instructions, an assembly language must have some
directive instructions to assign address label names and set up data area in
your programe. The directive instructions we have selected for our assembly
language include the following:

The TAG instruction assigns the name given as an operand to the location
in your program where it is found, Other assemblers assign label addresses
found to the left of assembly op codes in a source programe

The ORG instruction adjusts the assembler location counter (this tells the
program that converts your assembly language program intc machine language for
execution vhere to put the next converted instruction in terms of memory
addresse The counter is set to @ at the start of a program conversion and can
never become negative in values When a converted program is loaded for execution,
its memory addresses will be relocated to the load address the user desires, In

SEPTEMBER 1980 PAGE 10

this way, the counter acts as a relative address from the chosen base (load)
address.5 using the signed numeric operand supplied ranging in value fron ~65535

Eo +65535, This is useful in redefining data areas in your program in terms of
ormate

The DS instruction reserves a block of memory for date storage starting at
the location of the instruction in your programe Its numeric operand 1, ranging
from 1 to 32768, specifies the number of bytes to be reserved,

The DC instruction sets up a character string literal in your progranm
memory using the character string enclosed in quotes in operand 1,

The DB instruction sets up a byte with the 8 bits set as shown in its
operand 1 containing a string of 1's and @'s.

The DW instruction sets up a 16 bit numeric value using its numeric operand
1 value,

The DN instruction sets up a byte with the signed numeric value specified
in its operand 1 value.

The DA instruction sets up a 16 bit address value field from the absolute
address value or address label name specified in its operand 1.

The DM instruction sets up a byte with numeric value from @ to 255 using
the numeric operand,

The DS, DC, DB, DW, DN, DA and DM instructions can have an optional
operand 2 which will assign a name to the starting address of the field being
defined,

In next month's issue of THE 80 NOTEBOCOK, we will cover how to use these
instructions to meke use of the I/0 service routines (for the keyboard and
cassette tape) found in the BASIC ROM memorye We will present the complete
programming system to enter, edit and convert assembly language programs into
machine language using cassette tape files for input and output. We will also
explain how relocation works and how to pass information (fields) back and forth
between BASIC and assembly language programse A relocating loader utility
program will be presented for the loading and executing of assembly language
application programs and the loading and performance of assembly language
subroutines by BASIC or assembly language application programse. He will also
take a look at the actual machine language code generated for these assembly
language instructions and how much memory it takes upe We will also take a loock
at some assembly language programming examples to help you get started in the
interesting world of assembly language programming.

PLBEPERIFPIOOSERCLPV ORIV GOV ICHIPREBSICROTEIDONOONCOOORVOHNILDOIRTESCOCANOEBIIIVASERS
Y, o
NEW PRODUCTS
SOPDLPIIRRNLOEOEIVNOOPIBOBEDPONIIIOPROOPAENAOSNIBORIOORROROONICOLOORRBVALELNOORGESESOOSIOGERERS

TR3~80 users will be happy to learn that a Text Editor is now available for
standard Level II BASIC from Southeastern Software, 512 Conway Lane, Birmingham,

SEPTEMBER 1980 PAGE 11

AL 35210, at a cost of $40400. A manual is optionally available for $7.50 per
copye The Southeastern Textan is a multifaceted machine language editor

designed to operate with at least 16K of memorye. It is a video, not line,
oriented editor exclusively designed with a Basic programmer in mind, The Textsn
is designed such that it reads program tapes written by Level II BASIC and
returns to BASIC with the program fully loaded upon completion of the edit
function. Its features include thirty-two (32) command functions and twenty-six
(26) reserved word keys.

The commend functions allow for: top, bottom, and center of screen; end of
and first of line; character, word, to end of line, and line delete; previous
screen, word, and line; next screen, word, and line; search; search and replace;
auto line numbering; top and end of text; line and character insert; quit insert
mode; block delete; display free memory; move cursor down one line, up one line,
lefty and right; and tape load.

The reserved word keys will automatically enter: AND, GOSUB, CHR$, DIM,
ILSE, FOR, GOTO, THEN, INPUT, RETURN, KILL, LEFT$, MIDS, HEXT, OPEN, PRINT,
RUAD, RIGHT$, STRING$, TAB(, USING, VAL, DATA, RIM, LEN, and STRS with a single
keystroke,

CPLICBCROERPRPENETRIPPUOPSEPRLOBCIBEDEPNRELEEIRIODEOCECOLTIENERBBSOEBOTEEIESEIBIO P

The MANAGEMINT, producer of low=-cost software for TRS=-80 users in the
programming, small business and broadcasting areas announces a programmer
utility called The FORTRANSLATCR.

The FORTRANSLATOR is designed to aid in the literal translation of TRS5=80
Disk Basic Model I programs to TR5-80 FPORTRAN,

This copyrighted, machine language program will run in a 32K or larger
machine with at least one disk drive. A printer is desirable.

The FORTRANSLATOR converts BASIC into the struectured FORTRAN "READY /
MYRITEM / "FORMATY constructse It also translates BASIC key-words and procedures
such as IP-THFN=-ELSE into the correct stylee. FORTRAN indentation and spacing; "C"
lines; "DOY loops and other conventions are produced, Unique "GOTO" line numbers
are created and subroutine "CALL" is supported. In addition, a "template" is
created for FORTRAN specific items, so that the user may "plug-in" these items
after translation.

The translated program is on a diskette file that is compatible with the
editor in the FORTRAN packagee

Depending upon the program, at least 85% of the physical work of
transfering the BASIC program to FORTRAN is eliminated, Use of the FORTRANSLATCR
means that a program can be created and "debugged" in BASIC and then translated
to the compiled FORTRAN for fast, efficient operation,

The FORTRAIISLATOR is priced at $R29.95 (+tax in Texas), supplied on a Model
I data diskette, Instructions for use are included with the diskette,

A version written in MicroSoft BASIC, (listings only) is available for those
wishing to run on other computers, at extra cost, on special order only.

SEPTEMBER 1980 PAGE 12

FORTRANSLATOR is available from: The MANAGEMENT, Box 111, Aledo, TX 76008,
.“0.0.‘OC.‘.Q.CO.“C"OC.'C.OO‘C.O‘C‘.OQ..C".OO.‘C.OC"COC..QOCQ‘O.CCCO..’CQOO

QUEUE's Catalogue #3 is now available, The catalogue is a directory of
educational software available for Apple, Pet, TRS~80 and Atari, Fundreds of
programs from over L0 educational software publishers are grouped by computer,
subject matter and grade level, and described, All the programs can be ordered
d%rectly through QUEUE, $8+95 firom QUEUE, 5 Chapel Hill Drive, Fairfield, CT
064324

.CO.C‘C...C‘OOO..‘...C.'.QQC....CO'O"!‘.0.0.‘.C.OOQ.D..“’CO‘O"OC'I.C.C.C.O‘.C

A new monthly newsletter, MICROCOMPUTERS IN EDUCATION, will commence
publication in Octobere The newsletter, to be published by the publishers of
QUEUEy will carry reviews of educational software, new product ammouncements,
reports on CAI in the classrooms, reviews of books and magazine articles, news
of meetings, and industry news. Yearly subscriptions are $15, Microcomputers in
Education, 5 Chapel Hill Drive, Fairfield, CT 06432,

...O.Q".O'Ol"ﬁ‘.’....00"Q‘.'DQQ’.OQ"..’Q‘.O...'C’.C.O.."QO.l..“""'...‘l.

WORKSHOPS

"'Q.l..‘OI'Q.'C.Q...“.O.QC..OO‘OQ.QQQC'.‘..O..’O‘l.'0”‘0.il'.‘."...l‘.“""

Horkshops to Feature Studies on Visicalctm and Z=~80 Softcardtm

Palo Alto, CAe Avalanche Productions, Inc. today amnounced a new series of
intensive one day workshops on microcomputer software development and licensing
for the producers of consumer and small business software. Hach workshop will
include an in-depth case study on the development and merchandizing of selected
software products,

The Workshop dates, locations, and selected case studies are:

WORKSIIOP CASE STUDY
October 17, 1980 7mB0 Softcard ™
Jack Tarr Hotel Vern Rayburn, Prese Consumer Products
San Francisco, CA Microsoft, Inc,
Hovember 17, 1980 Visicalc™™
Waldorf Astoria Dan Bricklin, Vice President
Hew York, NY Softuare Arts, Ince

tm

Hovember 19, 1980
Howard Johnsons
Cambridge, MA

Visicale
Dan Bricklin, Vice Pregident
Software Arts, Ince

Richard Milewski, Fditor-in-Chief of the trade newspaper Infollorld, and a
principel of an established microcomputer software housey The Software VWorks,
Ince will introduce and moderate the San Francisco Horkshopa

SEPTEMBER 1980

PAGE 13

Each workshop is directed toward applications programmers and analysts
with experience on large and small systems who wish to understand the complex
marketing, legal, and publishing issues facing the contemporary software
authors The morning session will focus on techniques for identifying vertical
market segments for specific product areas, and progress into an extensive
discussion on strategies for packaging and marketing selected productse

Tim Barry, noted author and lecturer, will lead the early morning session
in defining key software development issues for the immediate fubure, lMr. Barry
is a co=founder of Pragmatic Designs, Ince and is cxpert in both the hardvare
and software of microcomputerse

Later in the morning, case studies will be presented by the authors and
managers directly responsible for the development and marketing of major
microcomputer software productse

David Cole, Senior Computer Science Iditor for CBS, Ince, will explore the
ilssues of:

=~ The selection of distribution channelss

- How to evaluate a software publisher.

=~ Pre~contract relationships and non~disclosure agreements.
=~ Royalty advance requirements and schedules,

« Product maintenance issues,

= Typical contracts and agreements,

A thorough review of the copy right law and the legal mechanics of software
protection will be presented by associates of Avalanche and Alan M. MacPherson,
partuner in the law firm of Skjerven, Morrill, Jensen, MacTherson, & Druckers lre
MacPherson has 15 years experience as a patent coungel to major electronic
companies, and has extensive expertise in all aspects of domestic licensing of
softwares

Romon Zamora, software author, educator, and mansgement consultant will
present the dollars and cents aspects of consumer software development,
including sample profit and loss sbatements covering:

- Single projecltse

Multiple projectse
Documentation costs and returns.
System amortizabione
Maintensnce costss

IRR, ROI, and NPV,

T

For many independent software developers, lMre Zamora's session will prove
invaluable in exposing some of the myths promulgated by dinosaur softuare.

The cost for cach workshop is $195.00/person. Session notes and lunch are
includeds

For further informaticon contact:

For further information contact:

Barbara Barnes, Avalanche Productions, Ince, 636 Waverly Ste., Palo Alto, CA
943014 (415) 327-0541

Late Item: Christopher P. Morgan, &Sditor-inChief of Byte and Cn Computing
magazines? and Director of Byte Books will introduce and moderate the Fasth
Coast workshops,

FRRRRRRRURRH0H00% ANNOUNCING AN INFLATION FIGHTER SPECTAL FOR YOU! HMMssssidistdns

* TRS-80 USERS - TREAT YOUR COMPUTER TO THESE EXCITING PROGRAMS! *
* PRICED AS LOW AS 22¢ PER PROGRAM WHEN BUYING ALL 41 PROGRAMS! ®
* #
#* AT0S/1 = Combines NATURAL LANGUAGE with action verb programming. K & up *
NLOS/1 -« Give your TRS-80 the power to read and understand ENGLISH! Build
* conversational data bases - solve problems and answer questions relating *
* to information learned. 16K (NLOS/2 - 32K, enhanced, performs learned *
#* tasks, built-in vocabulary!) *
* MAZE/1 - Randomly generate and solve MAZES of selected complexity. 4K ¥
* CONSTELLATION = Unique graphics display the night sky, then travel to any star *
¥ and view the night sky of that ALIEN planet. 16K : ¥*
* YG/1 - Players may challenge the TRS~80 to a game of YAHTZEE, 16K *
% CARTOON ~ Create and run ANIMATED PICTURES on your screens 4K *
* CP/1 - Randomly generate and solve CROSSWORD PUZZLES - graphicse 16K #*
% BGSG/1 = Command Colonial or Cylon fleets in BATTLESTAR GALACTICA. 16K *®
* CHECKERS = Challenge your TRS-80 to a game of CHECKERS = graphics. 16K *
LND/1 = Buy and manage properties as you build your REAL ESTATE empire. But *
¥ beware, your tenants may give you trouble. 4K *
#* MNP/1 - Challenge your TRS-80 to a game of MONOPOLY, 16K ¢
* SWG/1 - Challenge your TRS-80 to a CROSSWORD-like game. 4K #
TRIVIA - Test your memory with this BRAIN TEASING game. 16K *
% POKER - Challenge your TRS=80 to a game of POKER, 4K #
BWL/1 = Challenge your TRS=80 to a BOWLING match, 4K *
#* CAL/1 = Turn your TRS-80 into a powerful CALCULATOR. 4K ®
* TMT/1 - Chase a madman forward and backward in TIME. 4K ®
¥ CLUE - Become a master DETECTIVE and solve murder mysteriese. 4K ®
* NB/1 = Hunt down the enemy's fleet in this exciting NAVAL BATTLE. 4K ®
AR/1 = Test your skill in a wrecked car in DEMOLITION DERBY, 4K *
* BB/1 = Challenge your TRS-80 to a BASEBALL game. 4K ¥
(S/1 = Manage a nuclear power plant in CHINA SYNDROME, 4K *
* LL/1 = Attempt to land an extraterrestrial SPACE CRAFT. 4K *
* ENV/1 ~ Test your knowledge of ECOLOGY., 4K *
* RBT/1 - Guide a series of bombs in an attempt to blow up a group of invading *
* ANDROIDS, 4K #
#* WT/1 - Lead a WAGON TRAIN safely across the prairies, 4K ®
* WAR/1 = Command airplanes, TANKS and ARMIES in a wars 4K *
¥ MS/1 = Test your MATH SKILLS at various levels of complexity. 4K #
¥ SHT/1 = Turn your TRS-80 into a SHOOTING GALLERY, 4K #
% PB/1 = Turn your TRS=-80 into a PINBALL MACHINE, 4K *
SW/1 - Engage in INTERSTELLAR CONFLICT against the Zetars, 16K *
BNG/1 = Play an exciting game of BINGO with your TRS-80. 4K *
#* GR/1 = Challenge your TRS-80 to a game of GIN RUMMY. /K ®
#* BJ/1 = Challenge your TRS~80 to a game of BLACKJACK. /4K *
PP/1 =~ Challenge your TRS-80 to a PING=PONG game. 4K *
POUR IN A ROW ~ Play the game of CONNECT FOUR - animated graphicse 16K *®
TWP/1 = Turn your TRS-80 into a powerful WORD PROCESSOR. 16K *
% TRG/1 = GENERATE REPORTS from tape data files with headings, control breaks, *
* record selection and totalse 16K *
TRS/1 = Multi~key field SORT UTILITY for tape data files. 16K *
TDB/1 =~ Createy, maintain and inquiry to TAPE DATA BASE files., 16K #*
% INVASION ~ Prevent an ALIEN INVADER from destroying the Earth, 16K i
x .
* LEVEL 2 BASIC! COMPLETE INSTRUCTIONS! CLOAD TESTED CASSEITES: $2,50! PROGRAM *

%

sk

LISTINGS: 90¢! ALL 41 PROGRAM LISTINGS: $9.00! OUTSIDE UsSeA. ADD $1e50 POSTAGE.
AT.S0: SUBSCRIBE TO THE 80 NOTEBOOK, THE UNUSUAL PROGRAM MAGAZINE - $11.00/YR
UeSe, $16400/TR CANADA, $23.00/YR FOREIGN AIR, 95¢ SAMPLE COPY,

CUSTOM PROGRAMMING=$11/HR-BUSINESS, EDUCATIONAL , SCTENTIFIC~DOCUMENTATION-DI SK~ASH
* SEND CHECK OR MONEY ORDER TO: *
}RRREOK CYBERMATE % 5967 SULLIVAN TRAIL % NAZARETH, PA 18064 ks

ek
Mok

sk

e

’00"'.0‘..0.0..‘."i......"'.ﬁ..'."i‘.'l......"."t.'.".l.'.‘.“‘li".’.l"‘CO‘.QI“*"OOO‘O.Ci&

THE 80 NOTEBOOK BULK RATE
5967 SULLIVAN TRAIL UsSe POSTAGH
NAZARETH, PA 18064 PAID
Stockertown, PA 18083
Permit lioe 8

¥

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf

