J

THE PR()(, AMMER$

(/b

HANDBOOK

' Andy juTanaird

THE PROGRAMMER’S
CP/M° HANDBOOK

THE PROGRAMMER’S
CP/M® HANDBOOK

Andy Johnson-Laird

Berkeley, California

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne/McGraw-Hill at the above address.

CP/M is a registered trademark of Digital Research, Inc.

CP/M-86, MP/M-86, and MP/M II are trademarks of
Digital Research, Inc.

Z80 is a registered trademark of Zilog, Inc.

’
THE PROGRAMMER'S CP/M® HANDBOOK
Copyright ©1983 by Osborne/McGraw-Hill. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 89876543

ISBN 0-88134-103-7 (Paperback Edition)
ISBN 0-88134-119-3 (Hardcover Edition)

Mary Borchers, Acquisitions Editor
Ralph Baumgartner, Technical Editor
Susan Schwartz, Copy Editor

Judy Wohlfrom, Text Design

Yashi Okita, Cover Design

Dedication

Several years ago I was told that “Perfection is an English education, an
American salary, and a Japanese wife.”

Accordingly, T wish to thank the members of Staff at Culford School in
England, who gave me the English education, the people who work with me at
Johnson-Laird Inc. and Control-C Software and our clients, who give me my
American salary, and Mr. and Mrs. Kitagawa, who gave me Kay Kitagawa (who
not only married me but took over where my English grammar left off).

AJ-L.

Acknowledgments

Although this book is not authorized or endorsed by Digital Research, I would
like to express my thanks to Gary Kildall and Kathy Strutynski of Digital
Research, and to Phil Nelson (formerly of Digital Research, now of Victor Tech-
nology) for their help in keeping me on the path to truth in this book. I would also
like to thank Denise Penrose, Marty McNiff, Mary Borchers, and Ralph Baum-
gartner at Osborne/ McGraw-Hill for their apparently inexhaustible patience.

AJ-L.

Contents

- i =
DO P>PN2A0O0VONOCTDEDEWN

Introduction 1

The Structure of CP/M 5

The CP/M File System 17

The Console Command Processor (CCP) 45
The BASIC Disk Operating System 67
The BASIC Input/Output System 147
Building a New CP/M System 183
Writing an Enhanced BIOS 209 |
Dealing with Hardware Errors 295
Debugging a New CP/M System 319
Additional Utility Programs 371

Error Messages 449

ASCII Character Set 465

CP/M Command Summary 469
Summary of BDOS Calls 479
Summary of BIOS Calls 485

Index 487

Outline of Contents
Notation
Example Programs on Diskette

Infroduction

This book is a sequel to the Osborne C P/ M® User Guide by Thom Hogan. It is
a technical book written mainly for programmers who require a thorough knowl-
edge of the internal structure of CP/M — how the various pieces of CP/M work,
how to use CP/M as an operating system, and finally, how to implement CP/M on
different computer systems. This book is written for people who

+ Have been working with microcomputers that run Digital Research’s CP/M
operating system.

+ Understand the internals of the microprocessor world — bits, bytes, ports,
RAM, ROM, and other jargon of the programmer.

* Know how to write in assembly language for the Intel 8080 or Zilog Z80
Central Processing Unit (CPU) chips.

If you don’t have this kind of background, start by getting practical experience
on a system running CP/M and by reading the following books from Osborne/
McGraw-Hill:

* An Introduction to Microcomputers: Volume 1— Basic Concepts
This book describes the fundamental concepts and facts that you need to

1

2 The CP/M Programmer’s Handbook

know about microprocessors in order to program them. If you really need
basics, there is a Volume 0 called The Beginner’s Book.

- 8080A/8085 Assembly Language Programming
This book covers all aspects of writing programs in 8080 assembly language,
giving many examples.

- Osborne CP/M® User Guide (2nd Edition)
This book introduces the CP/M operating system. It tells you how to use
CP/M as a tool to get things done on a computer.

The book you are reading now deals only with CP/M Version 2.2 for the 8080
or Z80 chips. At the time of writing, new versions of CP/M and MP/M (the
multi-user, multi-tasking successor to CP/M) were becoming available. CP/M-86
and MP/M-86 for the Intel 8086 CPU chip and MP/M-II for the 8080 or Z80 chips
had been released, with CP/M 3.0 (8080 or Z80) in the wings. The 8086, although
related architecturally to the 8080, is different enough to make it impossible to
cover in detail in this book; and while MP/M-II and MP/M-86 are similar to
CP/M, they have many aspects that cannot be adequately discussed within the
scope of this book.

Outline of Contents

This book explains topics as if you were starting from the top of a pyramid.
Successive “slices” down the pyramid cover the same material but give more detail.

The first chapter includes a brief outline of the notation used in this book for
example programs written in Intel 8080 assembly language and in the C pro-
gramming language.

Chapter 2 deals with the structure of CP/M, describing its major parts, their
positions in memory, and their functions.

Chapter 3 discusses CP/M’s file system in as much detail as possible, given its
proprietary nature. The directory entry, disk parameter block, and file organiza-
tion are described.

Chapter 4 covers the Console Command Processor (CCP), examining the way
in which you enter command lines, the CP/M commands built into the CCP, how
the CCP loads programs, and how it transfers control to these programs.

Chapter 5 begins the programming section. It deals with the system calls your
programs can make to the high-level part of CP/M, the Basic Disk Operating
System (BDOS).

Chapters 6 through 10 deal with the Basic Input/Output System (BIOS). Thisis
the part of CP/M that is unique to each computer system. Itis the part that youasa
programmer will write and implement for your own computer system.

Chapter 6 describes a standard implementation of the BIOS.

Chapter I: Introduction K]

Chapter 7 describes the mechanism for rebuilding CP/M for a different
configuration.

Chapter 8 tells you how to write an enhanced BIOS.

Chapter 9 takes a close look at how to handle hardware errors—how to detect
and deal with them, and how to make this task easier for the person using the
computer.

Chapter 10 discusses the problems you may face when you try to debug your
BIOS code. It includes debugging subroutines and describes techniques that will
save you time and suffering.

Chapter 11 describes several utility programs, some that work with the features
of the enhanced BIOS in Chapter 8 and some that will work with all CP/M 2
implementations.

Chapter 12 concerns error messages and some oddities that you will discover,
sometimes painfully, in CP/M. Messages are explained and some probable causes
for strange results are documented.

The appendixes contain “ready-reference” information and summaries of
information that you need at your side when designing, coding, and testing
programs to run under CP/M or your own BIOS routines.

Notation

When you program your computer, you will be sitting in front of your terminal
interacting with CP/M and the utility programs that run under it. The sections that
follow describe the notation used to represent the dialog that will appear on your
terminal and the output that will appear on your printer.

Console Dialog

This book follows the conventions used in the Osborne CPIM User Guide,
extended slightly to handle more complex dialogs. In this book

-+ <name> means the ASCII character named between the angle brackets, <
and>. For example,<<BEL>> is the ASCII Bell character, and << HT>>is the
ASCII Horizontal Tab Character. (Refer to Appendix A for the complete
ASCII character set.)

- <cr> means to press the CARRIAGE RETURN key.
123 or a number without a suffix means a decimal number.
100B or a number followed by B means a binary number.

* 0ASH or a number followed by H means a hexadecimal number. A hexa-
decimal number starting with a letter is usually shown with a leading 0 to
avoid confusion.

4 The CP/M Programmer’s Handbook

. Ax means to hold the CONTROL (CTRL) key down while pressing the x key.

- Underline is keyboard input you type. Output from the computer is shown
without underlining.

Assembly Language Program Examples

This book uses Intel 8080 mnemonics throughout as a “lowest common
denominator”—the Z80 CPU contains features absent in the 8080, but not vice
versa. Output from Digital Research’s ASM Assembler is shown so that you can
see the generated object code as well as the source.

High-Level Language Examples

The utility programs described in Chapter 11 are writtenin C,a programming
language which lends itself to describing algorithms clearly without becoming
entangled in linguistic bureaucracy. Cryptic expressions have been avoided in
favor of those that most clearly show how to solve the problem. Ample comments
explain the code.

An excellent book for those who do not know how to program in Cis The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall).
Appendix A of this book is the C Reference Manual.

Example Programs on Diskette

Example programs in this book have been assembled with ASM and tested
with DDT, Digital Research’s Dynamic Debugging Tool. C examples were com-
piled using Leor Zolman’s BDS C Compiler (Version 1.50) and tested using the
enhanced BIOS described in Chapter 8.

All of the source code shown in this book is available on a single-sided,
single-density, 8-inch diskette (IBM 3740 format). Please do not contact Osborne/
McGraw-Hill to order this diskette. Call or write

Johnson-Laird, Inc.
Attn: The CP/M Programmer’s Handbook Diskette
6441 SW Canyon Court
Portland, OR 97221
Tel: (503) 292-6330

The diskette is available for $50 plus shipping costs.

CP/M from Digital Research
The Pieces of CP/M
CP/M Diskette Format
Loading CP/M
Console Command Processor
Basic Disk Operating System
Basic Input/Output System
CCP, BDOS, and BIOS
Interactions

The Structure
of CP/M

This chapter introduces the pieces that make up CP/M — what they are and
what they do. This bird’s-eye view of CP/M will establish a framework to which
later chapters will add more detailed information.

You may have purchased the standard version of CP/M directly from Digital
Research, but it is more likely you received CP/M when you bought your micro-
processor system or its disk drive system. Or, you may have purchased CP/M
separately from a software distributor. In any case, this distributor or the com-
pany that made the system or disk drive will have already modified the standard
version of CP/M to work on your specific hardware. Most manufacturers’ ver-
sions of CP/M have more files on their system diskette than are described here for
the standard Digital Research release.

Some manufacturers have rewritten all the documentation so that you may not
have received any Digital Research CP/M manuals. If this is the case, you should
order the complete set from Digital Research, because as a programmer, you will
need to have them for reference.

5

6 The CP/M Programmer’s Handbook

CP/M from Digital Research

Digital Research provides a standard “vanilla-flavored” version of CP/M that
will run only on the Intel Microcomputer Development System (MDS). The
CP/M package from Digital Research contains seven manuals and an 8-inch,
single-sided, single-density standard IBM 3740 format diskette.

The following manuals come with this CP/M system:

+ An Introduction to CPIM Features and Facilities. This is a brief description
of CP/M and the utility programs you will find on the diskette. It describes
only CP/M version 1.4.

CP/M 2.0 User’s Guide. Digital Research wrote this manual to describe the
new features of CP/M 2.0 and the extensions made to existing CP/M 1.4
features.

« ED: A Context Editor for the CP/M Disk System. By today’s standards, ED
is a primitive line editor, but you can still use it to make changes to files
containing ASCII text, such as the BIOS source code.

« CPIM Assembler (ASM). ASM is a simple but fast assembler that can be
used to translate the BIOS source code on the diskette into machine code.
Since ASM is only a bare-bones assembler, many programmers now use its
successor, MAC (also from Digital Research).

- CP/M Dynamic Debugging Tool (DDT). DDT is an extremely useful pro-
gram that allows you to load programs in machine code form and then test
them, executing the program either one machine instruction at a time or
stopping only when the CPU reaches a specific point in the program.

- CP/M Alteration Guide. There are two manuals with this title, one for CP/M
version 1.4 and the other for 2.0. Both manuals describe, somewhat crypti-
cally, how to modify CP/M.

« CP/M Interface Guide. Again, there are two versions, 1.4 and 2.0. These
manuals tell you how to write programs that communicate directly with
CP/M.

The diskette supplied by Digital Research has the following files:

ASM.COM
The CP/M assembler.

BIOS.ASM
A source code file containing a sample BIOS for the Intel Microcomputer
Development System (MDS). Unless you have the MDS, this file is useful
only as an example of a BIOS.

Chapter 2: The Structure of CP/M 7

CBIOS.ASM
Another source code file for a BIOS. This one is skeletal: There are gaps so
that you can insert code for your computer.

DDT.COM
The Dynamic Debugging Tool program.

DEBLOCK.ASM
A source code file that you will need to use in the BIOS if your computer
uses sector sizes other than 128 bytes. It is an example of how to block and
deblock 128-byte sectors to and from the sector size you need.

DISKDEF.LIB
A library of source text that you will use if you have a copy of Digital
Research’s advanced assembler, MAC.

DUMPASM
The source for an example program. DUMP reads a CP/M disk file and
displays it in hexadecimal form on the console.

DUMP.COM
The actual executable program derived from DUMP.ASM.

ED.COM
The source file editor.

LOAD.COM
A program that takes the machine code file output by the assembler, ASM,
and creates another file with the data rearranged so that you can execute
the program by just typing its name on the keyboard.

MOVCPM.COM
A program that creates versions of CP/M for different memory sizes.

PIP.COM
A program for copying information from one place to another (PIP is
short for Peripheral Interchange Program).

STAT.COM
A program that displays statistics about the CP/M and other information
that you have stored on disks.

SUBMIT.COM
A program that you use to enter CP/M commands automatically. It helps
you avoid repeated typing of long command sequences.

SYSGEN.COM
A program that writes CP/M onto diskettes.

XSUB.COM
An extended version of the SUBMIT program. The files named previously

8 The CP/M Programmer’s Handbook

fall into two groups: One group is used only to rebuild CP/M, while the
other set is general-purpose programming tools.

The Pieces of CP/M

CP/M is composed of the Basic Disk Operating System (BDOS), the Console
Command Processor (CCP), and the Basic Input/Output System (BIOS).

On occasion you will see references in CP/M manuals to something called the
FDOS, which stands for “Floppy Disk Operating System.” This name is given to
the portion of CP/M consisting of both the BDOS and BIOS and is a relic passed
down from the original version. Since it is rarely necessary to refer to the BDOS
and the BIOS combined as a single entity, no further references to the FDOS will
be made in this book.

The BDOS and the CCP are the proprietary parts of CP/M. Unless you are
willing to pay several thousand dollars, you cannot get the source code for them.
You do not need to. CP/M is designed so that all of the code that varies from one
machine to another is contained in the BIOS, and you do get the BIOS source code
from Digital Research. Several companies make specialized BIOSs for different
computer systems. In many cases they, as well as some CP/M hardware manufac-
turers, do not make the source code for their BIOS available; they have put time
and effort into building their BIOS, and they wish to preserve the proprietary
nature of what they have done.

You may have to build a special configuration of CP/M for a specific computer.
This involves no more than the following four steps:

1. Make a version of the BDOS and CCP for the memory size of your
computer.

2. Write a modified version of the BIOS that matches the hardware in your
computer.

3. Write a small program to load CP/M into memory when you press the
RESET button on your computer.

4. Join all of the pieces together and write them out to a diskette.

These steps will be explained in Chapters 7, 8, and 9.

In the third step, you write a small program that loads CP/M into memory
when you press the RESET button on your computer. This program is normally
called the bootstrap loader. You may also see it called the “boot” or even the “cold
start”loader. “Bootstrap” refers to the idea that when the computer is first turned
on, there is no program to execute. The task of getting that very first program into
the computer is, conceptually, as difficult as attempting to pick yourself up off the
ground by pulling on your own bootstraps. In the early days of computing, this
operation was performed by entering instructions manually —setting large banks

Chapter 2: The Structure of CP/M 9

of switches (the computer was built to read the switches as soon as it was turned
on). Today, microcomputers contain some small fragment of a program in “non-
volatile” read-only memory (ROM)— memory that retains data when the com-
puter is turned off. This stored program, usually a Programmable Read Only
Memory (PROM) chip, can load your bootstrap program, which in turn loads
CP/M.

CP/M Diskette Format

The standard version of CP/M is formatted on an 8-inch, single-sided diskette.
Diskettes other than this type will probably have different layouts; hard disks

definitely will be different.
The physical format of the standard 8-inch diskette is shown in Figure 2-1. The

Index Hole
(Marks Sector 1)

Central Hole

Track 76

Floppy Medium

Track 0

Sector 26

Sector 1

Figure 2-1. Floppy disk layout

10 The CP/M Programmer’s Handbook

Sector Track 0 Track 1

1 Bootstrap Loader

2

3

4

S

6

7 Basic Disk
8 Console Operating
o | Gommant | s

g
(BDOS)

11 (CCP) (Last Part)
12

13

14

15

16

17 I

18 I

19 I
3(1) Basic Disk [
» Operating Basic

System Input/Output

;;31 (BDOS) pSystemp
Y (First Part) (BIOS)
26 l ‘

Figure 2-2.

Layout of CP/M on tracks 0 and 1 of floppy disk

diskette has a total of 77 concentric tracks numbered from zero (the outermost) to
76 (the innermost). Each of these tracks is divided radially into 26 sectors. These
physical sectors are numbered from 1 to 26; physical sector zero does not exist.
Each sector has enough space for 128 bytes of data.

Even when CP/M is implemented on a large hard disk with much larger sector
sizes, it still works with 128-byte sectors. The BIOS has extra instructions that
convert the real sectors into CP/M-style 128-byte sectors.

A final note on physical format: The soft-sectored, single-sided, single-density,
8-inch diskette (IBM 3740 format) is the only standard format. Any other formats
will be unique to the hardware manufacturer that uses them. It is unlikely that you
can read a diskette on one manufacturer’s computer if it was written on another’s,
even though the formats appear to be the same. For example, a single-sided,
double-density diskette written on an Intel Development System cannot be read
on a Digital Microsystems computer even though both use double-density format.
If you want to move data from one computer to another, use 8-inch, single-sided,
single-density format diskettes, and it should work.

Chapter 2: The Structure of CP/M 11

In order to see how CP/M is stored on a diskette, consider the first two tracks
on the diskette, track 0 and track 1. Figure 2-2 shows how the data is stored on
these tracks.

Loading CP/M

The events that occur after you first switch on your computer and put the
CP/M diskette into a disk drive are the same as those that occur when you press the
RESET button—the computer generates a RESET signal.

The RESET button stops the central processor unit (CPU). All of the internals
of the CPU are set to an initial state, and all the registers are cleared to zero. The
program counter is also cleared to zero so that when the RESET signal goes away
(it only lasts for a few milliseconds), the CPU starts executing instructions at
location 0000H in memory.

Memory chips, when they first receive power, cannot be relied upon to contain
any particular value. Therefore, hardware designers arrange for some initial
instructions to be forced into memory at location 0000H and onward. It is this feat
that is like pulling yourself up by your own bootstraps. How can you make the
computer obey a particular instruction when there is “nothing” (of any sensible
value) inside the machine?

There are two common techniques for placing preliminary instructions into
memory:

Force-feeding

With this approach, the hardware engineer assumes that when the RESET
signal is applied, some part of the computer system, typically the floppy
disk controller, can masquerade as memory. Just before the CPU is un-
leashed, the floppy disk controller will take control of the computer system
and copy a small program into memory at location 0000H and upward.
Then the CPU is allowed to start executing instructions at location 0000 H.
The disk controller preserves the instructions even when power is off
because they are stored in nonvolatile PROM-based firmware. These
instructions make the disk controller read the first sector of the first track
of the system diskette into memory and then transfer control to it.

Shadow ROM

This is a variation of the force-feeding technique. The hardware manu-
facturer arranges some ROM at location 0000H. There is also some
normal read/write memory at location 0000H, but this is electronically
disabled when the RESET signal has been activated. The CPU, unleashed
at location 0000 H, starts to execute the ROM instruction. The first act of
the ROM program is to copy itself into read/write memory at some
convenient location higher up in memory and transfer control of the
machine up to this copy. Then the real memory at location 0000H can be
turned on, the ROM turned off, and the first sector on the disk read in.

42 The CP/M Programmer’s Handbook

With either technique, the result is the same. The first sector of the disk is read
into memory and control is transferred to the first instruction contained in the
sector.

This first sector contains the main CP/M bootstrap program. This program
initializes some aspects of the hardware and then reads in the remainder of track 0
and most of the sectors on track 1 (the exact number depends on the overall length
of the BIOS itself). The CP/M bootstrap program will contain only the most
primitive diskette error handling, trying to read the disk over and over again if the
hardware indicates that it is having problems reading a sector.

The bootstrap program loads CP/M to the correct place in memory; the load
address is a constant in the bootstrap. If you need to build a version of CP/M that
uses more memory, you will need to change this load address inside the bootstrap
as well as the address to which the bootstrap will jump when all of CP/M has been
read in. This address too is a constant in the bootstrap program.

The bootstrap program transfers control to the first instruction in the BIOS,
the cold boot entry point. “Cold” implies that the operation is starting cold from
an empty computer.

The cold boot code in the BIOS will set up the hardware in your computer.
That is, it programs the various chips that control the speed at which serial ports
transmit and receive data. It initializes the serial port chips themselves and
generally readies the computer system. Its final act is to transfer control to the first
instruction in the BDOS in order to start up CP/M proper.

Once the BDOS receives control, it initializes itself, scans the file directory on
the system diskette, and hands over control to the CCP. The CCP then outputs the
“A>”prompt to the console and waits for you to enter acommand. CP/M is then
ready to do your bidding.

At this point, it is worthwhile to review which CP/M parts are in memory,
where in memory they are, and what functions they perform.

This overview will look at memory first. Figure 2-3 shows the positions in
memory of the Console Command Processor, the Basic Disk Operating System,
and the Basic Input/Output System.

By touching upon these major memory components —the CCP, BDOS, and
BIOS —this discussion will consider which modules interact with them, how
requests for action are passed to them, and what functions they can perform.

Console Command Processor

As you can see in Figure 2-3, the CCP is the first part of CP/M that is
encountered going “up” through memory addresses. This is significant when you
consider that the CCP is only necessary in between programs. When CP/Misidle,
it needs the CCP to interact with you, to accept your next command. Once CP/M
has started to execute the command, the CCP is redundant; any console interac-
tion will be handled by the program you are running rather than by the CCP.

Chapter 2: The Structure of CPM 43

Locations in Locations in
Hexadecimal Decimal
FFFFH~| ~65535

Basic Input/Output System
(BIOS)
FC80H>}t ——-— e — — <+ 64640
Basic Disk Operating System
(BDOS)
B0~ e Snsoie Command Processor | 00
(CCP
DESOH) 56960
~ Memory Available for A
Programs ~
0100H 256
PM
0000H~ CP/M Reserved Area 0

Figure 2-3. Memory layout with CP/M loaded

Therefore, the CCP leads a very jerky existence in memory. It is loaded when you

first start CP/M. When you ask CP/M, via the CCP, to execute a program, this

program can overwrite the CCP and use the memory occupied by the CCP for its

own purposes. When the program you asked for has finished, CP/M needs to
: reload the CCP, now ready for its interaction with you. This process of reloading
| the CCP is known as a warm boot. In contrast with the cold boot mentioned
before, the warm boot is not a complete “start from cold”; it’s just a reloading of
the CCP. The BDOS and BIOS are not touched.

How does a program tell CP/M that it has finished and that a warm boot must
be executed? By jumping to location 0000 H. While the BIOS was initializing itself
during the cold boot routine, it put an instruction at location 0000H to jump to the
warm boot routine, which is also in the BIOS. Once the BIOS warm boot routine

14 The CP/M Programmer’s Handbook

has reloaded the CCP from the disk, it will transfer control to the CCP. (The cold
and warm boot routines are discussed further in Chapter 6.)

This brief description indicates that every command you enter causes a pro-
gram to be loaded, the CCP to be overwritten, the program to run, and the CCP to
be reloaded when the program jumps to location 0000H on completing its task.
This is not completely true. Some frequently needed commands reside in the CCP.
Using one of these commands means that CP/M does not have to load anything
from a diskette; the programs are already in memory as part of the CCP. These
commands, known as “intrinsic” or “resident” commands, are listed here with a
brief description of what they do. (All of them are described more thoroughly in
Chapter 4.) The “resident” commands are

DIR Displays which files are on a diskette

ERA Erases files from a diskette

REN Changes the names of files on diskette

TYPE Displays the contents of text files on the console
SAVE Saves some of memory as a file on diskette

USER Changes User File Group.

Basic Disk Operating System

The BDOS is the heart of CP/M. The CCP and all of the programs that you run
under CP/M talk to the BDOS for all their outside contacts. The BDOS performs
such tasks as console input/ output, printer output, and file management (creating,
deleting, and renaming files and reading and writing sectors).

The BDOS performs all of these things in a rather detached way. It is con-
cerned only with the logical tasks at hand rather than the detailed action of getting
a sector from a diskette into memory, for example. These “low-level” operations
are done by the BDOS in conjunction with the BIOS.

But how does a program work with the BDOS? By another strategically placed
jump instruction in memory. Remember that the cold boot placed the jump to the
BIOS warm boot routine in location 0000H. At location 0005H, it puts a jump
instruction that transfers control up to the first instruction of the BDOS. Thus,
any program that transfers control to location 0005H will find its way into the
BDOS. Typically, programs make a CALL instruction to location 0005H so that
once the BDOS has performed the task at hand, it can return to the calling
program at the correct place. The program enlisting the BDOS’s help puts special
values into several of the CPU registers before it makes the call to location 0005H.
These values tell the BDOS what operation is required and the other values needed
for the specific operation.

Chapter 2: The Structure of CP/M 15

Basic Input/Output System

As mentioned before, the BDOS deals with the input and output of informa-
tion in a detached way, unencumbered by the physical details of the computer
hardware. It is the BIOS that communicates directly with the hardware, the ports,
and the peripheral devices wired to them.

This separation of logical input/output in the BDOS from the physical input/
output in the BIOS is one of the major reasons why CP/M is so popular. It means
that the same version of CP/M can be adapted for all types of computers,
regardless of the oddities of the hardware design. Digital Research will tell you
that there are over 200,000 computers in the world running CP/M. Just about all of
them are running identical copies of the CCP and BDOS. Only the BIOS is
different. If you write a program that plays by the rules and only interacts with the
BDOS to get things done, it will run on almost all of those 200,000 computers
without your having to change a single line of code.

You probably noticed the word “almost” in the last paragraph. Sometimes
programmers make demands of the BIOS directly rather than the BDOS. This
leads to trouble. The BIOS should be off limits to your program. You need to know
what it is and how it works in order to build a customized version of CP/M, but
you must never write programs that talk directly to the BIOS if you want them to
run on other versions of CP/M.

Now that you understand the perils of talking to the BIOS, it is safe to describe
how the BDOS communicates with the BIOS. Unlike the BDOS, which has a
single entry point and uses a value in a register to specify the function to be
performed, the BIOS has several entry points. The first few instructions in the
BIOS are all independent entry points, each taking up three bytes of memory. The
BDOS will enter the BIOS at the appropriate instruction, depending on the
function to be performed. This group of entry points is similar in function to a
railroad marshalling yard. It directs the BDOS to the correct destination in the
BIOS for the function it needs to have done. The entry point group consists of a
series of JUMP instructions, each one three bytes long. The group as a whole is
called the BIOS jump table, or jump vector. Each entry point has a predefined
meaning. These points are detailed and will be discussed in Chapter 6.

CCP, BDOS, and BIOS Interactions

Figure 2-4 summarizes the functions that the CCP, BDOS, and BIOS perform,
the ways in which these parts of CP/M communicate among themselves, and the
way in which one of your programs running under CP/M interacts with the
BDOS.

16 The CP/M Programmer’s Handbook

Basic
Input/Output
System
(BIOS)

Basic
Disk
Operating
System
(BDOS)

Console
Command
Processor
(CCP)

Handles all physical I/O to

console, printer, serial 1/O
and disks (customized by user)

Entry Points

in JMP Table [*

Handles all logical 1/O to
console, printer, serial 1/0
including file management on
disk system.

(Not changed by user)

Handles communication with console;

accepts command lines; has some
commands built-in, or loads them
from disk (Not changed by user)

Program running

under CP/M

CALL S to make CP/M
requests

— JMP 0 when finished
processing

Location
— 5 JMP BDOS

—0 JMP RESTART

Figure 2-4. CP/M’s functional breakdown

How CP/M Views the Disk
The Making of a File

Disk Definition Tables

File Organizations

The CP/M File
System

This chapter gives you a close look at the CP/M file system. The Basic Disk
Operating System (BDOS) is responsible for this file system: It keeps a directory
of the files on disk, noting where data are actually stored on the disk. Because the
file system automatically keeps track of this information, you can ignore the
details of which tracks and sectors on the disk have data for a given file.

How CP/M Views the Disk

To manage files on the disk, CP/M works with the disk in logical terms rather
than in physical terms of tracks and sectors. CP/M treats the disk as three major
areas.

These are the reserved area, which contains the bootstrap program and CP/M
itself; the file directory, containing one or more entries for each file stored on the
disk; and the data storage area, which occupies the remainder of the disk. You will

17

18 The CP/M Programmer’s Handbook

be looking at how CP/M allocates the storage to the files as your programs create
them.

The Basic Input/ Output System (BIOS) has built-in tables that tell CP/M the
respective sizes of the three areas. These are the disk definition tables, described
later in this chapter.

Allocation Blocks

Rather than work with individual 128-byte sectors, CP/M joins several of these
sectors logically to form an allocation block. Typically, an allocation block will
contain eight 128-byte sectors (which makes it 1024 or 1K bytes long). This makes
for easier disk manipulation because the magnitude of the numbers involved is
reduced. For example, a standard 8-inch, single-density, single-sided floppy disk
has 1950 128-byte sectors; hard disks may have 120,000 or more. By using
allocation blocks that view the disk eight sectors at a time, the number of storage
units to be managed is substantially reduced. The total number is important
because numeric information is handled as 16-bit integers on the 8080 and Z80
microprocessors, and therefore the largest unsigned number possible is OFFFFH
(65,535 or 64K decimal).

Whenever CP/M refers to a specific allocation block, all that is needed is a
simple number. The first allocation block is number 0, the next is number 1, and so
on, up to the total remaining capacity of the disk.

The typical allocation block contains 1024 (1K) bytes, or eight 128-byte
sectors. For the larger hard disks, the allocation block can be 16,384 (16K) bytes,
which is 128 128-byte sectors. CP/M is given the allocation via an entry in the disk
definition tables in the BIOS.

The size of the allocation block is not arbitrary, but it is a compromise. The
originator of the working BIOS for the system —either the manufacturer or the
operating system’s designer— chooses the size by considering the total storage
capacity of the disk. This choice s tempered by the fact that if a file s created with
only a single byte of data in it, that file would be given a complete allocation block.
Large allocation blocks can waste disk storage if there are many small files, but
they can be useful when a few very large files are called for.

This can be seen better by considering the case of a I K-byte allocation block. If
you create a very small file containing just a single byte of data, you will have
allocated an entire allocation block. The remaining 1023 bytes will not be used.
You can use them by adding to the file, but when you first create this one-byte file,
they will be just so much dead space. This is the problem: Each file on the disk will
normally have one partly filled allocation block. If these blocks are very large, the
amount of wasted (unused) space can be very large. With 16K-byte blocks, a
10-megabyte disk with only 3 megabytes of data on it could become logically full,
with all allocation blocks allocated.

On the other hand, when you use large allocation blocks, CP/M’s performance
is significantly improved because the BDOS refers to the file directory less

Chapter 3: The CP/M File System 19

frequently. For example, it can read a 16K-byte file with only a single directory
reference.

Therefore, when considering block allocation, keep the following questions in
mind:

How big is the logical disk?
With a larger disk, you can tolerate space wasted by incomplete allocation
blocks.

What is the mean file size?
If you anticipate many small files, use small allocation blocks so that you
have a larger “supply” of blocks. If you anticipate a smaller number of large
files, use larger allocation blocks to get faster file operations.

When a file is first created, it is assigned a single allocation block on the disk.
Which block is assigned depends on what other files you already have on the disk
and which blocks have already been allocated to them. CP/M maintains a table of
which blocks are allocated and which are available. As the file accumulates more
data, it will fill up the first allocation block. When this happens, CP/M will extend
the file and allocate another block to it. Thus, as the file grows, it occupies more
blocks. These blocks need not be adjacent to each other on the disk. The file can
exist as a series of allocation blocks scattered all over the disk. However, when you
need to see the entire file, CP/M presents the allocation blocks in the correct order.
Thus, application programs can ignore allocation blocks. CP/M keeps track of
which allocation blocks belong to each file through the file directory.

The File Directory

Extents

Thefile directory is sandwiched between the reserved area and the data storage
area on the disk. The actual size of the directory is defined in the BIOS’s disk
definition tables. The directory can have some binary multiple of entries in it, with
one or more entries for each file that exists on the disk. For a standard 8-inch
floppy diskette, there will be room for 64 directory entries; for a hard disk, 1024
entries would not be unusual. Each directory entry is 32 bytes long.

Simple arithmetic can be used to calculate how much space the directory
occupies on a standard floppy diskette. For example, for a floppy disk the formula
is 64 X 32 = 2048 bytes = 2 allocation blocks of 1024 bytes each.

The directory entry contains the name of the file along with a list of the
allocation blocks currently used by the file. Clearly, a single 32-byte directory entry
cannot contain all of the allocation blocks necessary for a 5-megabyte file,
especially since CP/M uses only 16 bytes of the 32-byte total for storage of
allocation block numbers.

Often CP/M will need to control files that need many allocation blocks. It does
this by creating more than one directory entry. Second and subsequent directory

20 The CP/M Programmer’s Handbook

entries have the same file name as the first. One of the other bytes of the directory
entry is used to indicate the directory entry sequence number. Each new directory
entry brings with it a new supply of bytes that can be used to hold more allocation
block numbers. In CP/M jargon, each directory entry is called an exzent. Because
the directory entry for each extent has 16 bytes for storing allocation block
numbers, it can store either 16 one-byte numbers or 8 two-byte numbers. There-
fore, the total number of allocation blocks possible in each extent is either 8 (for
disks with more than 255 allocation blocks) or 16 (for smaller disks).

File Control Blocks

Before CP/M can do anything with a file, it has to have some control informa-
tion in memory. This information is stored in a file control block, or FCB. The
FCB has been described as a motel for directory entries—a place for them to
reside when they are not at home on the disk. When operations on a file are
complete, CP/M transforms the FCB back into a directory entry and rewrites it
over the original entry. The FCB is discussed in detail at the end of this chapter.

As a summary, Figure 3-1 shows the relationships between disk sectors,
allocation blocks, directory entries, and file control blocks.

The Making of a File

To reinforce what you already know about the CP/M file system, this section
takes you on a “walk-through” of the events that occur when a program running
under CP/M creates a file, writes data to it, and then closes the file.

Assume that a program has been loaded in memory and the CPU is about to
start executingit. First, the program will declare space in memory foran FCBand
will place some preset values there, the most important of which is the file name.
The area in the FCB that will hold the allocation block numbers as they are
assigned is initially filled with binary 0’s. Because the first allocation block that is
available for file data is block 1, an allocation block number of 0 will mean that no
blocks have been allocated.

The program starts executing. It makes a call to the BDOS (via location
0005H) requesting that CP/M create a file. It transfers to the BDOS the address in
memory of the FCB. The BDOS then locates an available entry in the directory,
creates a new entry based on the FCB in the program, and returns to the program,
ready to write data to the file. Note that CP/M makes no attempt to see if there is
already a file of the same name on the disk. Therefore, most real-world programs
precede a request to make a file with a request to delete any existing file of the same
name.

The program now starts writing data to the file, 128-byte sector by 128-byte
sector. CP/ M does not have any provision for writing one byte at a time. It handles
data sector-by-sector only, flushing sectors to the disk as they become full.

Chapter 3: The CP/M File System 24

128 Bytes

BN
w
=)}
-
o0

Physical I 5 3

Sectors S
NG _ M
T ’
Allocation Blocks L
(From 1024 to 0 1 2 3
b
<

16,384 bytes)

Allocation Blocks Containing

Diskette
Reserved Area File Directory File Data and Unused Blocks
A -\ M
S N N A~
—{ ¢
Reserved Area
(Normally 2 Tracks)
)2
<
Directory entry “points”
Memory to blocks used in file

File Control Block created from
FCB directory entry in order to
process file in a program

Figure 3-4. The hierarchical relationship between sectors, allocation blocks,
directory entires, and FCBs

The first time a program asks CP/M (via a BDOS request) to write a sector
onto the file on the disk, the BDOS finds an unused allocation block and assigns it
to the file. The number of the allocation block is placed inside the FCB in memory.
As each allocation block is filled up, a new allocation block is found and assigned,
and its number is added to the list of allocation blocks inside the FCB. Finally,
when the FCB has no more room for allocation block numbers, the BDOS

Writes an updated directory entry out to the disk.

22 The CP/M Programmer’s Handbook

- Seeks out the next spare entry in the directory.

. Resets the FCB in memory to indicate that it is now working on the second
extent of the file.

. Clears out the allocation block area in the FCB and waits for the next sector
from the program.

Thus the process continues. New extents are automatically opened until the
program determines that it is time to finish, writes the last sector out to the disk,
and makes a BDOS request to close the file. The BDOS then converts the FCB
into a final directory entry and writes to the directory.

Directory Entry

The directory consists of a series of 32-byte entries with one or more entries for
each file on the disk. The total number of entries is a binary multiple. The actual
number depends on the disk format (it will be 64 for a standard floppy disk and
perhaps 2048 for a hard disk).

Figure 3-2 shows the detailed structure of a directory entry. Note that the
description is actually Intel 8080 source code for the data definitions you would
need in order to manipulate a directory entry. It shows a series of EQU instruc-
tions — equate instructions, used to assign values or expressions to a label, and in
this case used to access an entry. It also shows a series of DS or define storage
instructions used to declare storage for an entry. The comments on each line
describe the function of each of the fields. Where data elements are less thana byte
long, the comment identifies which bits are used.

As you study Figure 3-2, you will notice some terminology that as yet has not
been discussed. This is described in detail in the sections that follow.

File User Number (Byte 0) The least significant (low order) four bits of byte 0 in the
directory entry contain a number in the range 0 to 15. This is the user number in
which the file belongs. A better name for this field would have been file group
number. It works like this: Suppose several users are sharing a computer system
with a hard disk that cannot be removed from the system without a lot of trouble.
How can each user be sure not to tamper with other users’ files? One simple way
would be for each to use individual initials as the first characters of any file names.
Then each could tell at a glance whether a file was another’s and avoid doing
anything to anyone else’s files. A drawback of this scheme is that valuable
character positions would be used in the file name, not to mention the problems
resulting if several users had the same initials.

The file user number is prefixed to each file name and can be thought of as part
of the name itself, When CP/M is first brought up, User 0 is the default user — the
one that will be chosen unless another is designated. Any files created will go into
the directory bearing the user number of 0. These files are referred to as being in
user area 0. However, with a shared computer system, arrangements must be made

Chapter 3: The CP/M File System 23

for multiple user areas. The USER command makes this possible. User numbers
and areas can range from 0 through 15. For example, a user in area 7 would not be
able to get a directory of, access, or erase files in user area 5.

This user-number byte serves a second purpose. If this byte is set to a value of
0ESH, CP/M considers that the file directory entry has been deleted and com-
pletely ignores the remaining 31 bytes of data. The number 0OE5SH was not chosen
whimsically. When IBM first defined the standard for floppy diskettes, they chose
the binary pattern 11100101 (OESH) as a good test pattern. A new floppy diskette
formatted for use has nothing but bytes of OESH on it. Thus, the process of erasing
a file is a “logical” deletion, where only the first byte of the directory entry is
changed to OESH. If you accidentally delete a file (and provided that no other
directory activity has occurred) it can be resurrected by simply changing this first
byte back to a reasonable user number. This process will be explained in Chapter
11.

FileName andType (Bytes1-8and 9-11) Asyou can see from Figure 3-2, the file name
in a directory entry is eight bytes long; the file type is three. These two fields are
used to name a file unambiguously. A file name can be less than eight characters
and the file type less than three, but in these cases, the unused character positions
are filled with spaces.

Whenever file names and file types are written together, they are separated by a
period. You do not need the period if you are not using the file type (which is the
same as saying that the file type is all spaces). Some examples of file names are

READ. ME

LONGNAME.TYP

1

1.2
0000 = FDE$USER EQU [¢] ;File user number (LS 4 bits)
0001 = FDE$NAME EQU 1 ;File name (8 bytes)
0009 = FDE$TYP EQU 9 ;File type

;0ffsets for bits used in type
0009 = FDE$RQ EQU 9 ;Bit 7 = 1 - Read only
000A = FDE$SYS EQU 10 sBit 7 = 1 - System status
000B = FDE$CHANGE EQU 1 sBit 7 = 0 = File Written To
000C = FDESEXTENT EQU 12 sExtent number
313, 14 reserved for CP/M
000F = FDE$RECUSED EQU 15 sRecords used in this extent
0010 = FDE$ABUSED EQU 16 sAllocation blocks used
7
12

0000 FD$USER: DS sFile user number
0001 FD$NAME : DS 8 sFile name
0009 FD$TYP: DS 3 ;File type
000C FD$EXTENT: DS 1 ;Extent
000D FD$RESV: DS 2 sReserved for CFP/M
[elelel 3 FD$RECUSED: DS 1 sRecords used in this extent
0010 FD$ABUSED: Ds 16 sAllocation blocks used

Figure 3-2. Data declarations for CP/M’s file directory entries

24 The CP/M Programmer’s Handbook

A file name and type can contain the characters A through Z, 0 through 9, and
some of the so-called “mark” characters such as “/ ” and “—”. You can also use
lowercase letters, but be careful. When you enter commands into the system using
the CCP, it converts all lowercases to uppercases, so it will never be able to find
files that actually have lowercase letters in their directory entries. Avoid using the
“mark” characters excessively. Ones you can use are

'1@#8%()—t/

Characters that you must not use are

<> ,50=7%[]

These characters are used by CP/M in normal command lines, so using them in file
names will cause problems.

You can use odd characters in file names to your advantage. For example, if
you create files with nongraphic characters in their names or types, the only way
you can access these files will be from within programs. You cannot manipulate
these files from the keyboard except by using ambiguous file names (described in
the next section). This makes it more difficult to erase files accidentally since you
cannot specify their names directly from the console.

Ambiguous File Names CP/M has the capability to refer to one or more file names by

File Type

using special “wild card” characters in the file names. The “?” is the main wildcard
character. Whenever you ask CP/M to do something related to files, it will match a
“?” with any character it finds in the file name. In the extreme case, a file name and

As another example, all the chapters of this book were held in files called
“CHAP1.DOC,” “CHAP2.DOC,” and so on. They were frequently referred to,
however, as “CHAP??2.DOC.” Why two question marks? If only one had been
used, for example, “CHAP?2.DOC,” CP/M would not have been able to match this
with “CHAP10.DOC” nor any other chapter with two digits. The matching that
CP/M does is strictly character-by-character.

Because typing question marks can be tedious and special attention must be
paid to the exact number entered, a convenient shorthand is available. The asterisk
character “*” can be used to mean “as many ?’s as you need to fill out the name or

could also be rewritten “CHAP*.DOC.”

The use of “+” is allowed only when you are entering file names from the
console. The question mark notation, however, can be used for certain BDOS
operations, with the file name and type field in the FCB being set to the “?” as
needed.

Conventions Although you are at liberty to think up file names without
constraint, file types are subject to convention and, in one or two cases, to the
mandate of CP/M itself.

Chapter 3: The CP/M File System

The types that will cause problems if you do not use them correctly are

ASM
Assembly language source for the ASM program

.MAC
Macro assembly language

.HEX
Hexadecimal file output by assemblers

.REL
Relocatable file output by assemblers

.COM
Command file executed by entering its name alone

.PRN
Print file written to disk as a convenience

.LIB
Library file of programs

.SUB
Input for CP/M SUBMIT utility program

Examples of conventional file types are

.C
C source code

.PAS
Pascal source code

.COB
COBOL source code

.FTN

FORTRAN source code
APL

APL programs
ITXT

Text files

.DOC
Documentation files

UANT
Intermediate files

.DTA
Data files

25

26

The CP/M Programmer’s Handbook

ADX
Index files

388
Temporary files

The file type is also useful for keeping several copies of the same file, for
example, “TEST.001,” “TEST.002,” and so on.

File Status Each one of the states Read-Only, System, and File Changed requires only a
single bit in the directory entry. To avoid using unnecessary space, they have been
slotted into the three bytes used for the file type field. Since these bytes are stored
as characters in ASCII (which is a seven-bit code), the most significant bit is not
used for the file type and thus is available to show status.

Bit 7 of byte 9 shows Read-Only status. As its name implies, if a file is set to be
Read-Only, CP/M will not allow any data to be written to the file or the file to be
deleted.

If a file is declared to be System status (bit 7 of byte 10), it will not show up
when you display the file directory. Nor can the file be copied from one place to
another with standard CP/M utilities such as PIP unless you specifically ask the
utility to do so. In normal practice, you should set your standard software tools
and application programs to be both Read-Only and System status/ Read-Only, so
that you cannot accidentally delete them, and System status, so that they do not
clutter up the directory display.

The File Changed bit (bit 7 of byte 11) is always set to 0 when you close a file to
which you have been writing. This can be useful in conjunction with a file backup
utility program that sets this bit to 1 whenever it makes a backup copy. Just by
scanning the directory, this utility program can determine which files have changed
since it was last run. The utility can be made to back up only those files that have
changed. This is much easier than having to remember which files you have
changed since you last made backup copies.

With a floppy disk system, there is less need to worry about backing up ona
file-by-file basis — it is just as easy to copy the whole diskette. This system is useful,
however, with a hard disk system with hundreds of files stored on the disk.

File Extent (Byte 12) Each directory entry represents a file extent. Byte 12 in the directory
entry identified the extent number. If you have a file of less than 16,384 bytes, you
will need only one extent—number 0. If you write more information to thie file,
more extents will be needed. The extent number increases by 1 as each new extent
is created.

The extent number is stored in the file directory because the directory entries
are in random sequence. The BDOS must do a sequential search from the top of
the directory to be sure of finding any given extent of a file. If the directory is large,
as it could be on a hard disk system, this search can take several seconds.

Chapter 3: The CP/M File System 27

Reserved Bytes 13 and 14 These bytes are used by the proprietary parts of CP/M’s file
system. From your point of view, they will be set to 0.

Record Number (Byte 15) Byte 15 contains a count of the number of records (128-byte
sectors) that have been used in the last partially filled allocation block referenced
in this directory entry. Since CP/M creates a file sequentially, only the most recent-
ly allocated block is not completely full.

Disk Map (Bytes 16-31) Bytes 16-31 store the allocation block numbers used by each
extent. There are 16 bytes in this area. If the total number of allocation blocks (as
defined by you in the BIOS disk tables) is less than 256, this area can hold as many
as 16 allocation block numbers. If you have described the disk as having more than
255 allocation blocks, CP/M uses this area to store eight two-byte values. In this
case allocation blocks can take on much larger values.

A directory entry can store either 8 or 16 allocation block numbers. If the file
has not yet expanded to require this total number of allocation blocks, the unused
positions in the entry are filled with zeros. You may think this would create a
problem because it appears that several files will have been allocated block 0 over
and over. In fact, there is no problem because the file directory itself always
occupies block 0 (and depending on its size several of the blocks following). For all
practical purposes, block 0 “does not exist,” at least for the storage of file data.

Note that if, by accident, the relationship between files and their allocation
blocks is scrambled—that is, either the data in a given block is overwritten, or two
or more active directory entries contain the same block number—CP/M cannot
access information properly and the disk becomes worthless.

Several commercially available utility programs manipulate the directory. You
can use them to inspect and change a damaged directory, reviving accidentally
erased files if you need to. There are other utilities you can use to logically remove
bad sectors on the disk. These utilities find the bad areas, work backward from the
track and sector numbers, and compute the allocation block in which the error
occurs. Once the block numbers are known, they create a dummy file, either in
user area 15 or, in some cases, in an “impossible” user area (one greater than 15),
that appears to “own” all the bad allocation blocks.

A good utility program protects the integrity of the directory by verifying that
each allocation block is “owned” by only one directory entry.

Disk Definition Tables

As mentioned previously, the BIOS contains tables telling the BDOS how to
view the disk storage devices that are part of the computer system. These tables are
built by you. If you are using standard 8-inch, single-sided, single-density floppy

28 The CP/M Programmer’s Handbook

diskettes, you can use the examples in the Digital Research manual CP/M 2
Alteration Guide. But if you are using some other, more complex system, you must
make some careful judgments. Any mistakes in the disk definition tables can
create serious problems, especially when you try to correct diskettes created using
the erroneous tables. You, as a programmer, must ensure the correctness of the
tables by being careful.

One other point before looking at table structures: Because the tables exist and
define a particular disk “shape” does not mean that such a disk need necessarily be
connected to the system. The tables describe logical disks, and there is no way for
the physical hardware to check whether your disk tables are correct. You may have
a computer system with a single hard disk, yet describe the disk as though it were
divided into several logical disks. CP/M will view each such “disk” independently,
and they should be thought of as separate disks.

Disk Parameter Header Table

This table is the starting point in the disk definition tables. It is the topmost
structure and contains nothing but the addresses of other structures. There is one
entry in this table for each logical disk that you choose to describe. There is an
entry point in the BIOS that returns the address of the parameter header table fora
specific logical disk.

An example of the code needed to define a disk parameter header table is
shown in Figure 3-3.

Sector Skewing (Skewtable) To define sector skewing, also called sector interlacing,
picture a diskette spinning in a disk drive. The sectors in the track over which the
head is positioned are passing by the head one after another —sector 1, sector 2,
and so on—until the diskette has turned one complete revolution. Then the
sequence repeats. A standard 8-inch diskette has 26 sectors on each track, and the
disk spins at 360 rpm. One turn of the diskette takes 60/360 seconds, about 166
milliseconds per track, or 6 milliseconds per sector.

Now imagine CP/M loading a program from such a diskette. The BDOS takes
a finite amount of time to read and process each sector since it reads only a single
sector at a time. It has to make repeated reads to load a program. By the time the
BDOS has read and loaded sector n, it will be too late to read sector n +1. This
sector will have already passed by the head and will not come around for another
166 milliseconds. Proceeding in this fashion, almost 414 seconds are needed to read
one complete track.

This problem can be solved by simply numbering the sectors logically so that
there are several physical sectors between each logical sector. This procedure,
called sector skewing or interlace, is shown in Figure 3-4. Note that unlike physical
sectors, logical sectors are numbered from 0 to 25.

Figure 3-4 shows the standard CP/M sector interlace for 8-inch, single-sided,
single-density floppy diskettes. You see that logical sector 0 has six sectors between

Chapter 3: The CP/M File System

29

DPBASE: ;Base of the parameter header
; (used to access the headers)
0000 1000 DW SKEWTABLE ;Pointer to logical-to-physical
3 sector conversion table
0002 0000 DW o] ;Scratch pad areas used by CP/M
0004 0000 DW o]
0006 0000 DW o]
0008 2A00 DW DIRBUF ;Pointer to Directory Buffer
3 work area
000A AAOO DW DPBO ;Pointer to disk parameter block
000C B900O DW WACD sPointer to work area (used to
3 check for changed diskettes)
O000E C900 DW ALVECO sPointer to allocation vector
H
H
H The following equates would normally be derived from
H values found in the disk parameter Block.
H They are shown here only for the sake of completeness.
4
O03F = NODE EQU 63 sNumber of directery entries 1
O00F2 = NOAB EQU 242 sNumber of allocation blocks
7
H Example data definitions for those objects pointed
H to by the disk parameter header
;
SKEWTABLE: ;Sector skew table.
3 Indexed by logical sector
0010 01070D13 DB 01,07,13,19 sLogical sectors 0,1,2,3
0014 19050B11 DB 25,05,11,17 $4,5,6,7
0018 1703090F DB 23,03,09,15 38,9,10,11
001C 1502080E DB 21,02,08,14 $12,13,14,15
0020 141A060C DB 20,26,06,12 316,17,18,19
0024 1218040A DB 18,24,04,10 320,21,22,23
0028 1016 DB 16,22 324,25
;
002A DIRBUF: DS 128 sDirectory buffer
00AA DPBO: Ds 15 sDisk parameter block
sThis is normally a table of
;s constants.
3A dummy definition is shown
3 here
00B? WACD: DS (NODE+1)/4 sWork area to check directory
30nly used for removable media
00C9 ALVECO: DS (NOAB/8)+1 sAllocation vector #0
sNeeds 1 bit per allocation
;3 block

Figure 3-3.

Data declarations for a disk parameter header

itand logical sector 1. There is a similar gap between each of the logical sectors, so
that there are six “sector times” (about 38 milliseconds) between two adjacent
logical sectors. This gives ample time for the software to access each sector.
However, several revolutions of the disk are still necessary to read every sector in
turn. In Figure 3-4, the vertical columns of logical sectors show which sectors are
read on each successive revolution of the diskette.

The wrong interlace can strongly affect performance. It is not a gradual effect,
either; if you “miss” the interlace, the perceived performance will be very slow. In
the example given here, six turns of the diskette are needed to read the whole
track — this lasts one second as opposed to 4/ without any interlacing. But don’t
imagine that you can change the interlace with impunity; files written with one
interlace stay that way. You must be sure to read them back with the same interlace
with which they were written.

30 The CP/M Programmer’s Handbook

Some disk controllers can simplify this procedure. When you format the
diskette, they can write the sector addresses onto the diskette with the interlace
already built in. When CP/M requests sector n, the controller’s electronics wait
until they see the requested sector’s header fly by. They then initiate the read or
write operation. In this case you can embed the interlace right into the formatting
of the diskette.

Because the wrong interlace gives terrible performance, it is easy to know when
you have the right one. Some programmers use the time required to format a
diskette as the performance criterion to optimize the interlace. This is not good
practice because under normal circumstances you will spend very little time
formatting diskettes. The time spent loading a program would be a better arbiter,
since far more time is spent doing this. You might argue that doing a file update
would be even more representative, but most updates produce slow and sporadic
disk activity. This kind of disk usage is not suitable for setting the correct interlace.

Hard disks do not present any problem for sector skewing. They spin at 3600
rpm or faster, and at that speed there simply is no interlace that will help. Some

Physical Sector

Logical Sector

Pass Pass Pass Pass Pass Pass

1 2 3 4 5 6

[R . N N N

o

22

10
23

24

20

25

21

NoTtE: Additional sector between logical sectors 12 and 13

Figure 3-4. Physical to logical sector skewing

Chapter 3: The CP/M File System 31

tricks can be played to improve the performance of a hard disk —these will be
discussed in the section called “Special Considerations for Hard Disks,” later in
this chapter.

To better understand these theories, study an example of the standard inter-
lace table, or skewtable. Bear in mind that the code that will access this table will
first be given a logical sector. It will then have to return the appropriate physical
sector.

Figure 3-5 shows the code for the skew table and the code that can be used to
access the table. The table is indexed by a logical sector and the corresponding
table entry is the physical sector. You can see that the code assumes that the first
logical sector assigned by CP/M will be sector number 0. Hence there is no need to
subtract 1 from the sector number before using it as a table subscript.

Unused Areas in the Disk Parameter Header Table The three words shown as 0’s in

Figure 3-3 are used by CP/M as temporary variables during disk operations.

DirectoryBuffer (DIRBUF) The directory buffer is a 128-byte area used by CP/M to store a

sector from the directory while processing directory entries. You only need one
directory buffer; it can be shared by all of the logical disks in the system.

Disk Parameter Block (DPBO) The disk parameter block describes the particular charac-

teristics of each logical disk. In general, you will need a separate parameter block
foreach rype of logical disk. Logical disks can share a parameter block only if their

SKEWTABLE: ;Logical sector
0000 01070013 DB 01,07,13,19 30,1,2,3
0004 19050B11 DB 25,05,11,17 $4,5,6,7
0008 1703090F DB 23,03,09,15 :8,9,10,11
000C 1502080E DB 21,02,08,14 $12,13,14,15
0010 141A060C DB 20,26,06,12 $16,17,18,19
0014 1218040A DB 18,24,04,10 $20,21,22,23
0018 1016 DB 16,22 ;24,25
i
H The code to translate lcgical sectors to physical
B sectors is as follows:
;
H On entry, the logical sector will be transferred from
H CP/M as a 16-bit value in registers BC.
H CP/M also transfers the address of the skew table
H in registers DE (it finds the skew table by locking in
; the disk parameter header entry).
On return, the physical sector will be placed
in registers HL.
SECTRAN:
001A EB XCHG sHL -> skew table base address
001B 09 DAD B sHL -> physical sector
3 entry in skew table
001C &E Mav L,M ;L = physical sector
001D &0 MQV H, 0 sHL = Physical Sector
001E C9 RET sReturn to BDOS

Figure 3-5.

Data declarations for the standard skewtable for standard diskettes

32 The CP/M Programmer’s Handbook

characteristics are identical. You can, for example, use a single parameter block to
describe all of the single-sided, single-density diskette drives that you have in the
system. However, you would need another parameter block to describe double-
sided, double-density diskette drives. It is also rare to be able to share parameter
blocks when a physical hard disk is split up into several logical disks. You will
understand why after looking at the contents of a parameter block, described later
in this chapter.

Work Area to Check for Changed Diskettes (WACD) One of the major problems that
CP/M faces when working with removable media such as floppy diskettes is that
the computer operator, without any warning, can open the diskette drive and
substitute a different diskette. On early versions of CP/M, this resulted in the
newly inserted diskette being overwritten with data from the original diskette.

With the current version of CP/M, you can request that CP/M check if the
diskette has been changed. Given this request, CP/M examines the directory
entries whenever it has worked on the directory and, if it detects that the diskette
has been changed, declares the whole diskette to be Read-Only status and inhibits
any further writing to the diskette. This status will be in effect until the next warm
boot operation occurs. A warm boot occurs whenever a program terminates or a
CONTROL-C is entered to the CCP, resetting the operating system.

The value of WACD is the address of a buffer, or temporary storage area, that
CP/M can use to check the directory. The length of this buffer is defined (some-
what out of place) in the disk parameter block.

Allocation Vector (ALVEC0) CP/M views each disk as a set of allocation blocks, assign-
ing blocks to individual files as those files are created or expanded, and relinquish-
ing blocks as files are deleted.

CP/M needs some mechanism for keeping track of which blocks are used and
which are free. It uses the allocation vector to form a bit map, with each bit in the
map corresponding to a specific allocation block. The most significant bit (bit 7) in
the first byte corresponds to the first allocation block, number 0. Bit 6 corresponds
to block 1, and so on for the entire disk.

Whenever you request CP/M to use a logical disk, CP/M will log in the disk.
This consists of reading down the file directory and, for each active entry or extent,
interacting with the allocation blocks “owned” by that particular file extent. For
each block number in the extent, the corresponding bit in the allocation vector is
setto 1. At the end of this process, the allocation vector will accurately represent a
map of which blocks are in use and which are free.

When CP/M goes looking for an unused allocation block, it tries to find one
near the last one used, to keep the file from becoming too fragmented.

In order to reserve enough space for the allocation vector, you need to reserve
one bit for each allocation block. Computing the number of allocation blocks is
discussed in the section “Maximum Allocation Block Number,” later in this
chapter.

Chapter 3: The CP/M File System 33

Disk Parameter Block

The disk parameter block in early versions of CP/M was built into the BDOS
and was a closely guarded secret of the CP/M file system. To make CP/M
adaptable to hard disk systems, Digital Research decided to move the parameter
blocks out into the BIOS where everyone could adapt them. Because of the
proprietary nature of CP/M’s file system, you will still see several odd-looking
fields, and you may find the explanation given here somewhat superficial. How-
ever, the lack of explanation in no way detracts from your ability to use CP/M as a
tool.

Figure 3-6 shows the code necessary to define a parameter block for 8-inch,
single-sided diskettes. This table is pointed to by —that is, its address is given
in—an entry in the disk parameter header. Each of the entries shown in the disk
parameter block is explained in the following sections.

SectorsPerTrack Thisis the number of 128-byte sectors per track. The standard diskette

shown in the example has 26 sectors. As you can see, simply telling CP/M that
there are 26 sectors per track does not indicate whether the first sector is num-
bered 0 or 1. CP/M assumes that the first sector is 0; it is left to a sector translate
subroutine to decipher which physical sector this corresponds to.

Hard disks normally have sector sizes larger than 128 bytes. This is discussed in
the section on considerations for hard disks.

Block Shift, Block Mask, and Extent Mask These mysteriously named fields are used

internally by CP/M during disk file operations. The values that you specify for
them depend primarily on the size of the allocation block that you want.

Allocation block size can vary from 1024 bytes (1K) to 16,384 bytes (16K).
There is a distinct trade-off between these two extremes, as discussed in the section
on allocation blocks at the beginning of this chapter.

An allocation block size of 1024 (1K) bytes is suggested for floppy diskettes
with capacities up to 1 megabyte, and a block size of 4096 (4K) bytes for larger
floppy or hard disks.

DPBO:
0000 1A00 DW 26 ;Sectors per track
0002 03 DB 3 sBlogk shift
0003 07 DB 7 sBlock mask
0004 03 DB 3 sExtent mask

0005 F200 DW 242 sMax. allocation block number
0007 3F00 DW 63 sNumber of directory entries 1
0009 CO DB 1100$0000B ;Bit map for allocation blocks
000A 00 DB 0000$0000B ; used for directory

000B 1000 DW 16 ;No. of bytes in dir. check buffer
000D 0200 oW 2 iNo. of tracks before directory

Figure 3-6.

Data declarations for the disk parameter block for standard diskettes

34 The CP/M Programmer’s Handbook

If you can define which block size you wish to use, you can now select the
values for the block shift and the block mask from Table 3-1.

Table 3-4. Block Shift and Mask Value

Allocation Block Size Block Shift Block Mask
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

Select your required allocation block size from the left-hand column. This tells
you which values of block shift and mask to enter into the disk parameter block.

The last of these three variables, the extent mask, depends not only on the
block size but also on the total storage capacity of the logical disk. This latter
consideration is only important for computing whether or not there will be fewer
than 256 allocation blocks on the logical disk. Just divide the chosen allocation
block size into the capacity of the logical disk and check whether you will have
fewer than 256 blocks.

Keeping this answer and the allocation block size in mind, refer to Table 3-2
for the appropriate value for the extent mask field of the parameter block. Select
the appropriate line according to the allocation block size you have chosen. Then,
depending on the total number of allocation blocks in the logical disk, select the
extent mask from the appropriate column.

Table 3-2. Extent Mask Value

Number of Allocation Blocks
Allocation Block Size
1 to 255 256 and Above

1,024 0 (Impossible)
2,048 1

4,096 3 1

8,192 7 3
16,384 15 7

Maximum Allocation Block Number This value is the number of the last allocation
block in the logical disk. As the first block number is 0, this value is one less than
the total number of allocation blocks on the disk. Where only a partial allocation
block exists, the number of blocks is rounded down.

Chapter 3: The CP/M File System 35

Figure 3-7 has an example for standard 8-inch, single-sided, single-density
diskettes. Note that CP/M uses two reserved tracks on this diskette format.

Number of Directory EntriesMinus1 Do not confuse this entry with the number of files

that can be stored on the logical disk; it is only the number of entries (minus one).
Each extent of each file takes one directory entry, so very large files will consume
several entries. Also note that the value in the table is one less than the number of-
entries.

Ona standard 8-inch diskette, the value is 63 entries. On a hard disk, you may
want to use 1023 or even 2047. Remember that CP/M performs a sequential scan
down the directory and this takes a noticeable amount of time. Therefore, you
should balance the number of logical disks with your estimate of the largest file size
that you wish to support.

As a final note, make sure to choose a number of entries that fits evenly into
one or more allocation blocks. Each directory entry needs 32 bytes, so you can
compute the number of bytes required. Make sure this number can be divided by
your chosen allocation block size without a remainder.

Allocation Blocks for the Directory This is a strange value; it is not a number, but a bit

map. Looking at Figure 3-6, you see the example value written out in full as a
binary value to illustrate how this value is defined. This 16-bit value has a bit set to
I for each allocation block that is to be used for the file directory.

This value is derived from the number of directory entries you want to have on
the disk and the size of the allocation block you want to use. One given, or

Physical characteristics: Calculate:
77 Tracks/ Diskette 77 Tracks/Diskette
26 Sectors/ Track — 2 Tracks Reserved for CP/M
128 Bytes/Sector 75 Tracks for File Storage
2 Tracks Reserved for CP/M X26 Number of Sectors
1024 BytesfAllocation Block —

1950 Sectors for File Storage
X128 Bytes per Sector
249,600 Bytes for File Storage
+1024 Bytes/Allocation Block

243.75 Total Number of
Allocation Blocks

242 Number of the last
allocation block
(rounded and based on
first block being Block 0)

Figure 3-7. Computing the maximum allocation block number for standard diskettes

36 The CP/M Programmer’s Handbook

constant, in this derivation is that the size of each directory entry is 32 bytes.

In the example, 64 entries are required (remember the number shown is one
less than the required value). Each entry has 32 bytes. The total number of bytes
required for the directory thus is 64 times 32, or 2048 bytes. Dividing this by the
allocation block size of 1024 indicates that two allocation blocks must be reserved
for the directory. You can see that the example value shows this by setting the two
most significant bits of the 16-bit value.

As a word of warning, do not be tempted to declare this value using a DW
(define word) pseudo-operation. Doing so will store the value byte-reversed.

Size of Buffer for Directory Checking As mentioned before in the discussion of the disk
parameter header, CP/M can be requested to check directory entries whenever it is
working on the directory. In order to do this, CP/M needs a buffer area, called the
work area to check for changed diskettes, or WACD, in which it can hold working
variables that keep a compressed record of what is on the directory. The length of
this buffer area is kept in the disk parameter block; its address is specified in the
parameter header. Because CP/M keeps a compressed record of the directory, you
need only provide one byte for every four directory entries. You can see in Figure
3-6 that 16 bytes are specified to keep track of the 64 directory entries.

Number of Tracks Before the Directory Figure 3-8 shows the layout of CP/M on a
standard floppy diskette. You will see that the first two tracks are reserved,
containing the initial bootstrap code and CP/M itself. Hence the example in
Figure 3-6, giving the code for a standard floppy disk, shows two reserved tracks
(the number of tracks before the directory).

This track offset value, as it is sometimes called, provides a convenient method
of dividing a physical disk into several logical disks.

Special Considerations for Hard Disks

If you want to run CP/M on a hard disk, you must provide code and build
tables that make CP/M work as if it were running on a very large floppy disk. You
must even include 128-byte sectors. However, this is not difficult to do.

To adapt hard disks to the 128-byte sector size, you must provide code in the
disk driver in your BIOS that will present the illusion of reading and writing
128-byte sectors even though it is really working on sectors of 512 bytes. This code
is called the blocking/deblocking routine.

If hard disks have sector sizes other than 128 bytes, what of the number of
sectors per track, and the number of tracks?

Hard disks come in all sizes. The situation is further confused by the disk
controllers, the hardware that controls the disk. In many cases, you can think of
the hard disk as just a series of sectors without any tracks at all. The controller,
given a relative sector number by the BIOS, can translate this sector number into
which track, read/write head (if there is more than one platter), and sector are
actually being referenced.

Chapter 3: The CP/M File System 37

Logical Tracks),
Sector i
0 1 2 3 76
[} T
0 Bootstrap T Allocation
1 Allocation Block
2 Allocation Block #240
3 Block #3 _———
4 Basic N N
5 Disk || | |ecceoo___.
6 Console Operating | File l Allocation
7 Command System | _ ____ - Block
8 Processor (BDOS) . Allocation #241
9 (CCP) Directoty Block
10 Allocation #4
11 Block |\ N ___
12 #1
B0 1 0 4 Al N _____
14 { l Allocation
15 Block
16 A T Allocation #242
17 [} Block
18) Allocation #5
19 Block
20 Basic #2
21 Input/ L ________
22 Output
23 System e ____| Allocation g;::f)er(si
24 (BIOS) Block
25 #6
s
Figure 3-8. Layout of standard diskette

Furthermore, most hard disks rotate so rapidly that there is nothing to be
gained by using a sector-skewing algorithm. There is just no way to read more than
one physical sector per revolution; there is not enough time.

In many cases it is desirable to divide up a single, physical hard disk into
several smaller, logical disks. This is done mainly for performance reasons:
Several smaller disks, along with smaller directories, result in faster file operations.

The disk parameter header will have 0’s for the skewtable entry and the pointer
to the WACD buffer. In general, hard disks cannot be changed, at least not without
turning off the power and swapping the entire disk drive. If you are using one of
the new generation of removable hard disks, you will need to use the directory
checking feature of CP/M.

The disk parameter block for a hard disk will be quite different from that used
for a floppy diskette. The number of sectors per track needs careful consideration.
Remember, this is the number of 128-byte sectors. The conversion from the
physical sector size to 128-byte sectors will be done in the disk driver in the BIOS.

38 The CP/M Programmer’s Handbook

If you have a disk controller that works in terms of sectors and tracks, all you
need do is compute the number of 128-byte sectors on each track. Multiply the
number of physical sectors per track by their size in bytes and then divide the
product by 128 to give the result as the number of 128-byte sectors per physical
track.

But what of those controllers that view their hard disks as a series of sectors
without reference to tracks? They obscure the fact that the sectors are arranged on
concentric tracks on the disk’s surface. In this case, you can play a trick on CP/M.
You can set the “sectors per track” value to the number of 128-byte sectors that will
fit into one of the disk’s physical sectors. To do this, divide the physical sector size
by 128. For example, a 512-byte physical sector size will give an answer of four
128-byte sectors per “track.” You can now view the hard disk as having as many
“tracks” as there are physical sectors. By using this method, you avoid having to do
any kind of arithmetic on CP/M’s sector numbers; the “track” number to which
CP/M will ask your BIOS to move the disk heads will be the relative physical
sector. Once the controller has read this physical sector for you, you can look at the
128-byte sector number, which will be 0, 1, 2, or 3 (for a 512-byte physical sector) in
order to select which 128 bytes need to be moved in or out of the disk buffer.

The block shift, block mask, and extent mask will be computed as before. Use
a4096-byte allocation block size. This will yield a value of 5 for the block shift, 31
for the block mask, and given that you will have more than 256 allocation blocks
for each logical disk, an extent mask value of 1.

The maximum allocation block number will be computed as before. Keep
clear in your mind whether you are working with the number of physical sectors
(which will be larger than 128 bytes) or with 128-byte sectors when you are
computing the storage capacity of each logical disk.

The number of directory entries (less 1) is best set to 511 for logical disks of 1
megabyte and either 1023 or 2047 for larger disks. Remember that under CP/M
version 2 you cannot have a logical disk larger than 8 megabytes.

The allocation blocks for the directory are also computed as described for
floppy disks.

As a rule, the size of the directory check buffer (WADC) will be set to 0, since
there is no need to use this feature on hard disk systems with fixed media.

The number of tracks before the directory (track offset) can be used to divide
up the physical disk into smaller logical disks, as shown in Figure 3-9.

There is no rule that says the tracks before a logical disk’s directory cannot be
used to contain other complete logical disks. You can see this in Figure 3-9. CP/M
behaves as if each logical disk starts at track 0 (and indeed they do), but by
specifying increasingly larger numbers of tracks before each directory, the logical
disks can be staggered across the available space on the physical disk.

Figure 3-10 shows the calculations involved in the first phase of building disk
parameter blocks for the hard disk shown in Figure 3-9. The physical characteris-
tics are those imposed by the design of the hard disk. As a programmer, you donot
have any control over these; however, you can choose how much of the physical

Chapter 3: The CP/M File System 39

Track Track Track Track Track
0 10 58 211 363
']] |
Logical Disk A Logical Disk 3 Logical Disk C
A
=10 B
Reserved } _.4
Tracks 58
' 21 1 -

Figure 3-9. Dividing hard disks into logical disks

disk is assigned to each logical disk, the allocation block size, and the number of
directory entries. You can see that logical disk A is much smaller than disks B and
C, and that B and C are the same size. Disk A will be the systems disk from which
most programs will be loaded, so its smaller directory size will make program
loading much faster. The allocation block size for disk A is also smaller in order to
reduce the amount of space wasted in partially filled allocation blocks.

Figure 3-10 also shows the calculations involved in computing the maximum
allocation block number. Again, note that once the total number of allocation
blocks has been computed, it is necessary to round it down in the case of any
fractional components and then subtract 1 to get the maximum number (the first
block being 0).

Figure 3-11 shows the actual values that will be put into the parameter blocks.
It is assumed that the disk controller is one of those types that view the physical
disk as a series of contiguous sectors and make no reference to tracks; the internal
electronics and firmware in the controller take care of these details. For this
reason, CP/M is told that each physical sector is a “track” in CP/M’s terms. Each
“track”has 512 bytes and can therefore store four 128-byte sectors. You can see this
is the value that is in the sectors/“track” field.

The block shift and mask values are obtained from Table 3-1, using the
allocation block size previously chosen. Then, with both the allocation block size
and the maximum number of allocation blocks (see Figure 3-10), the extent mask
can be obtained from Table 3-2. You can see in Figure 3-11 that extent mask values
of 1 were obtained for all three logical disks even though two different allocation
block sizes have been chosen, and even though disk A has less than 256 blocks and
disks B and C have more.

40 The CP/M Programmer’s Handbook

Physical Characteristics: Calculate:
364 Tracks/Disk
20 Sectors/Track A: B:and C:
512 Bytes/Sector 48 153 Tracks assigned to Disk
10,240 Bytes/Track X10,240 X10,240 Bytes/ Track
491,520 1,566,720 Bytes/Disk
-+ 2048 + 4096 Bytes/Allocation Block
Chosen Logical Characteristics: 240 382.5 Number of Allocation Blocks
Allocation 239 381 Maximum Block Number
Tracks Block Size
Reserved Area 10 n/a
Disk A: 48 2048
Disk B: 153 4096
Disk C: 153 4096
Figure 3-10. Computing the maximum allocation block number for a hard disk

DPBA: DPBB: DPBC:
4 4

4 ;128-byte sectors/"track"
4 S S :Block shift
15 31 31 3Block mask
1 1 1 sExtent mask
239 381 381 sMax. all. block #
255 1023 1023 sNo. of directory entries
11110000B 11111111B 11111111B ;Bit Map for allocation blacks
00000000B 00000000B 00000000B ; used for directory
[o] o] (o] ;No. of bytes in dir.check buffer
10) (58) (211) jActual tracks before directory
200 1160 4220 s"Tracks" before directory

Figure 3-14.

Disk parameter tables for a hard disk

The bit map showing how many allocation blocks are required to hold the file
directory is computed by multiplying the number of directory entries by 32 and
dividing the product by the allocation block size. This yields results of 4 for disk A
and 8 for disks B and C. As you can see, the bit maps have the appropriate number
of bits set.

Since most of the hard disks on the market today do not have removable
media, the lengths of the directory checking buffer are set to 0.

The number of “tracks” before the directory requires a final touch of skull-
duggery. Having already indicated to CP/M that each “track™ has four sectors, you
need to continue in the same vein and express the number of real tracks before the
directories in units of 512-byte physical sectors.

As a final note, if you are specifying these parameter blocks for a disk
controller that requires you to communicate with it in terms of physical tracks and
128-byte sectors, then the number of sectors per track must be set to 80 (twenty

Chapter 3: The CP/M File System 44

512-byte sectors per physical track). You would also have to change the number of
tracks before the directory by stating the number of physical tracks (shown in
parentheses on Figure 3-11).

Adding Additional Information to the Parameter Block

Normally, some additional information must be associated with each logical
disk. For example, in a system that has several physical disks, you need to identify
where each logical disk resides. You may also want to identify some other physical
parameters, disk drive types, I/O port numbers, and addresses of driver sub-
routines.

You may be tempted to extend the disk parameter header entry because there is
a separate header entry for each logical disk. But the disk parameter header is
exactly 16 bytes long; adding more bytes makes the arithmetic that we need to use
in the BIOS awkward. The best place to put these kinds of information is to prefix
them to the front of each disk parameter block. The label at the front of the block
must be left in the same place lest CP/M become confused. Only special additional
code that you write will be “smart” enough to look in front of the block in order to
find the additional parameter information.

File Organizations

CP/M supports two types of files: sequential and random. CP/M views both
types as made up of a series of 128-byte records. Note that in CP/M’s terms, a
record is the same as a 128-byte sector. This terminology sometimes gets in the
way. It may help to think of 128-byte sectors as physical records. Applications
programs manipulate logical records that bear little or no relation to these
physical records. There is code in the applications programs to manipulate logical
records.

CP/M does not impose any restrictions on the contents of a file. In many cases,
though, certain conventions are used when textual data is stored. Each line of text
is terminated by ASCII CARRIAGE RETURN and LINE FEED. The last sector of a
text file is filled with ASCII SUB characters; in hexadecimal this is 1AH.

File Control Blocks

In order to get CP/M to work on a file, you need to provide a structure in which
both you and the BDOS can keep relevant details about the file, its name and type,
and so on. The file control block (FCB) is a derivative of the file directory entry, as
you can see in Figure 3-12. This figure shows both a series of equates that can be
used to access an entry and a series of DB (define byte) instructions to declare an
example.

The first difference you will see between the file directory entry and the FCB is
that the very first byte is serving a different purpose. In the FCB, it is used to

42 The CP/M Programmer’s Handbook

specify on which disk the file is to be found. You may recall that in the directory,
this byte indicates the user number for a given entry. When you are actually
processing files, the current user number is set either by the operator ina command
from the console or by a BDOS function call; this predefines which subset of files
in the directory will be processed. Therefore, the FCB does not need to keep track
of the user number.

The disk number in the FCB’s first byte is stored in an odd way. A value of 0
indicates to CP/M that it should look for the file on the current default disk. This
default disk is selected either by an entry from the console or by making a specific
BDOS call from within a program. In general, the default disk should be preset to
the disk that contains the set of programs with which you are working. This avoids
unnecessary typing on the keyboard when you want to load a program.

A disk number value other than 0 represents a letter of the alphabet based ona
simple codification scheme of A =1, B= 2, and so on.

As you can see from Figure 3-12, the file name and type must be set to the
required values, and for sequential file processing, the remainder of the FCB can
be set to zeros. Strictly speaking, the last three bytes of the FCB (the random
record number and the random record overflow byte) need not even be declared if
you are never going to process the file randomly.

This raises a subtle conceptual point. Random files are only random files
because you process them randomly. Though this sounds like a truism, what it
means is that CP/M’s files are not intrinsically random or sequential. What they
are depends on how you choose to process them at any given point. Therefore,

0000 = FCBE$DISK EQU 0 sDisk drive (0 = default, 1=A)
0001 = FCBE$NAME EQU 1 sFile name (8 bytes)
0009 = FCBES$TYP EQU 9 sFile type
;O0ffsets for bits used in type
0009 = FCBE$RQ EQU 9 sBit 7 = 1 - rvead only
000A = FCBES$SYS EQU 10 ;Bit 7 = 1 - system status
000B = FCBE$CHANGE EQU 11 ;Bit 7 = 0 - file written to
000C = FCBESEXTENT EQU 12 sExtent number
313, 14 reserved for CP/M

O00F = FCBE$RECUSED EQU 15 sRecords used in this extent
0010 = FCBE$ABUSED EQU 16 sAllocation blocks used
0020 = FCBES$SEQREC EQU 32 ;Sequential rec. to read/write
0021 = FCBES$RANREC EQU 33 sRandom rec. to read/write
0023 = FCBESRANRECO EQU 35 sRandom rec. overflow byte (MS)

i

H

;
0000 00 FCB$DISK: DB [o] ;Search on default disk drive
0001 44494CAS4EFCBSNAME: DB FILENAME” sFile name
0009 545950 FCB$TYP: DB ‘TYP” ;File type
000C 00 FCBS$EXTENT: DB o] ;Extent
000D 0000 FCBS$RESV: DB 0,0 sReserved for CP/M
O00F 00 FCB$RECUSED: DB (o] ;Records used in this extent
0010 0000000000F CB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB [o] sSequential rec. to read/write
0021 0000 FCB$RANREC: DW o sRandom rec. to read/write
0023 00 FCB$RANRECO: DB o ;Random rec. overflow byte (MS)

Figure 3-12. Data declarations for the FCB

Chapter 3: The CP/M File System 43

while the manner in which you process them will be different, there is nothing
special built into the file that predicates how it will be used.

Sequential Files

A sequential file begins at the beginning and ends at the end. You can view it as
a contiguous series of 128-byte “records.”

In order to create a sequential file, you must declare a file control block with
the required file name and type and request the BDOS to create the file. You can
then request the BDOS to write, “record” by “record” (really 128-byte sector by
128-byte sector) into the file. The BDOS will take care of opening up new extents
as it needs to. When you have written out all the data, you must make a BDOS
request to close the file.

To read an existing file, you also need an FCB with the required file name and
type declared. You then make a BDOS request to open the file for processing and a
series of Read Sequential requests, each one bringing in the next “record” until
either your program detects an end of file condition (by examining the data
coming in from the file) or the BDOS discovers that there are no more sectors in
the file to read. There is no need to close a file from which you have been reading
data —but do close it. This is not necessary if you are going to run the program
only under CP/M, but it is necessary if you want to run under MP/M (the
multiuser version of CP/M).

What if you need to append further information to an existing file? One option
is to create a new file, copy the existing file to the new one, and then start adding
data to the end of the new file. Fortunately, with CP/M this is not necessary. In the
FCB used to read a file, the name and the type were specified, but you can also
specify the extent number. If you do, the BDOS will proceed to open (if it can find
it) the extent number that you are asking for. If the BDOS opens the extent
successfully, all you need do is check if the number of records used in the extent
(held in the field FCBSRECUSED) is less than 128 (80H). This indicates the extent
is not full. By taking this record number and placing it into the FCBSSEQREC
(sequential record number) byte in the FCB, you can make CP/M jump ahead and
start writing from the effective end of the file.

Random Files

Random files use a simple variation of the technique described above. The
main difference is that the random record number must be set in the FCB. The
BDOS automatically keeps track of file extents during Read/Write Random
requests. (These requests are explained more fully in Chapter 5.)

Conceptually, random files need a small mind-twist. After creating a file as
described earlier, you must set the random record number in the FCB before each
Write Random request. This is the two-byte value called FCBSRANREC in
Figure 3-12. Then, when you give the Write Random request to the BDOS, it will

44 The CP/M Programmer’s Handbook

look at the record number; compute in which extent the record must exist; if
necessary, create the directory entry for the extent; and finally, write out the data
record. Using this scheme, you can dart backward and forward in the file putting
records at random throughout the file space, with CP/M creating the necessary
directory entries each time you venture into a part of the file that has not yet been
written to.

The same technique is used to read a file randomly. You set the random record
number in the FCB and then give a system call to the BDOS to open the correct
extent and read the data. The BDOS will return an error if it cannot find the
required extent or if the particular record is nonexistent.

Problems lie in wait for the unwary. Before starting to do any random reading
or writing, you must open up the file at extent 0 even though this extent may not
contain any data records. For a new file, this can be done with the Create File
request, and for an existing file with the normal Open File request. If you create a
sparse file, one that has gaps in between the data, you may have some problems
manipulating the file. It will appear to have several extents, each one being
partially full. This will fool some programs that normally process sequential files;
they don’t expect to see a partial extent except at the end of a file, and may treat the
wrong spot as the end.

Functions of the CCP
Editing the CCP Command Line
Built-In Commands
Program Loading
Base Page
Memory Dumps of the Base Page
Processing the Command Tail
Available Memory
Communicating with the BIOS
Returning to CP/M

The Console
Command Processor
(CCP)

The Console Command Processor processes commands that you enter from
the console. As you may recall from the brief overview in Chapter 2, the CCP is
loaded into memory immediately below the BDOS. In practice, many programs
deliberately overwrite the CCP in order to use the memory it normally occupies.
This gives these programs an additional 800H bytes (2K bytes).

When one of these “transient programs” terminates, it relinquishes control to
the BIOS, which in turn reloads a fresh copy of the CCP from the system tracks of
the disk back into memory and then transfers control to it. Consequently, the CCP
leads a sporadic existence—an endless series of being loaded into memory,
accepting a command from you at the console, being overwritten by the program

45

46 The CP/M Programmer’s Handbook

you requested to be loaded, and then being brought back into memory when the
program terminates.

This chapter discusses what the CCP does for you in those brief periods when it
is in memory.

Functions of the CCP

Simply put, once the CCP has control of the machine, so do you. The CCP
announces its presence by displaying a prompt of two characters: a letter of the
alphabet for the current default disk drive and a “greater than” sign. In the
example A>, the A tells you that the default disk drive is currently set to be logical
drive A, and the “>,” that the message was output by the CCP.

Once you see the prompt, the CCP is ready for you toentera command line. A
command line consists of two major parts: the name of the command and,
optionally, some values for the command. This last part is known as the command
tail.

The command itself can be one of two things: either the name of a file or the
name of one of the frequently used commands built into the CCP.

If you enter the name of one of the built-in commands, the CCP does not need
to go out to the disk system in order to load the command for execution. The
executable code is already inside the CCP.

If the name of the command you entered does not match any of the built-in
commands (the CCP has a table of their names), the CCP will search the
appropriate logical disk drive for a file with a matching name and a file type of
“COM?” (which is short for command). You do not enter “.COM” when invokinga
command —the CCP assumes a file type of “COM.”

If you do not precede the name of the COM file with a logical disk drive
specification, the CCP will search the current default drive. If you have prefixed
the COM file’s name with a specific logical drive, the CCP will look only on that
drive for the program. For example, the command MYPROG will cause the CCP
to look for a file called “MYPROG.COM” on the current default drive, whereas
C:MYPROG would make the CCP search only on drive C.

If you enter a command name that matches neither the CCP’s built-in com-
mand table nor the name of any COM file on the specified disk, the CCP will
output the command name followed by a question mark, indicating it is unable to
find the file.

Editing the CCP Command Line

The CCP uses a line buffer to store what you type until you strike either a
CARRIAGE RETURN or a LINE FEED. If you make an error or change your mind, you
can modify the incomplete command, even to the point of discarding it.

Chapter 4: The Console Command Processor (CCP) 47

You edit the command line by entering control characters from the console.
Control characters are designated either by the combination of keys required to
generate them from the keyboard or by their official name in the ASCII character
set. For example, CONTROL-J is also known as CARRIAGE RETURN or CR.

Whenever CP/M has to represent control characters, the convention is to
indicate the “control” aspect of a character with a caret (“*”). For example,
CONTROL-A willappear as “* A”, CONTROL-Z as “AZ”, and so on. But if you press the
CONTROL key with the normal shift key and the “6” key, this will produce a
CONTROL-" or “A~”. The representation of control keys with the caret is only
necessary when outputting to the console or the printer— internally, these charac-
ters are held as their appropriate binary values.

CONTROL-C: Warm Boot If you enter a CONTROL-C as the first character of a command
line, the CCP will initiate a warm boot operation. This operation resets CP/M
completely, including the disk system. A fresh copy of the CCP is loaded into
memory and the file directory of the current default disk drive is scanned,
rebuilding the allocation bit map held in the BIOS (as discussed in Chapter 3).

The only time you would initiate a warm boot operation is after you have
changed a diskette (or a disk, if you have removable media hard disks). Thus,
CP/M will reset the disk system.

Note that a CONTROL-C only initiates a warm boot if it is the first character on a
command line. If you enter it in any other position, the CCP will just echo it to the
screen as “~C”. If you have already entered several characters on a command line,
use CONTROL-U or CONTROL-X to cancel the line, and then use CONTROL-C to
initiate a warm boot. You can tell a warm boot has occurred because there will be a
noticeable pause after the CONTROL-C before the next prompt is displayed. The
system needs a finite length of time to scan the file directory and rebuild the
allocation bit map.

CONTROL-E: Physical End-of-Line The CONTROL-E command is a relic of the days of the
teletype and terminals that did not perform an automatic carriage return and line
feed when the cursor went off the screen to the right. When you type a CONTROL-E,
CP/M sends a CARRIAGE RETURN/LINE FEED command to the console, but does
not start to execute the command line you have typed thus far. CONTROL-E is, in
effect, a physical end-of-line, not a logical one.

As you can see, you will need to use this command only if your terminal either
overprints (if it is a hard copy device) or does not wrap around when the cursor
gets to the right-hand end of the line.

CONTROL-H: Backspace The CONTROL-H command is the ASCII backspace character.
When you type it, the CCP will “destructively” backspace the cursor. Use it to
correct typing errors you discover before you finish entering the command line.
The last character you typed will disappear from the screen. The CCP does this by
sending a three-character sequence of backspace, space, backspace to the console.

48 The CP/M Programmer’s Handbook

The CCP ignores attempts to backspace over its own prompt. It also takes care
of backspacing over control characters that take two character positions on the
line. The CCP sends the character sequence backspace, backspace, space, space,
backspace, backspace, erasing both characters.

CONTROL-J: Line Feed/CONTROL-M: Carriage Return The CONTROL-J command is
the ASCII LINE FEED character; CONTROL-M is the CARRIAGE RETURN. Both of
these characters terminate the command line. The CCP will then execute the
command.

CONTROL-P: Printer ECho The CONTROL-P command is used to turn on and off a feature
called printer echo. When it is turned on, every character sent to the console isalso
sent to CP/M’s list device. You can use this command to get a hard copy of
information that normally goes only to the console.

CONTROL-Pis a “toggle.” The first time you type CONTROL-P it turns on printer
echo; the next time you type CONTROL-P it turns off printer echo. Whenever
CP/M does a warm boot, printer echo is turned off.

There is no easy way to know whether printer echo is on or off. Try typing a few
CARRIAGE RETURNS, and see whether the printer responds; if it does not, type
CONTROL-P and try again.

One of the shortcomings in most CP/M implementations is that the printer
drivers (the software in the BIOS that controls or “drives” the printer) do not
behave very intelligently if the printer is switched off or not ready when you or your
program asks it to print. Under these circumstances, the software will wait forever
and the system will appear to be dead. So if you “hang” the system in this way
when you type a CONTROL-P, check that the printer is turned on and ready.
Otherwise, you may have to reset the entire system.

CONTROL-R: Repeat CommandLine The CONTROL-R command makes the CCP repeat
or retype the current input line. The CCP outputs a “#” character, a CARRIAGE
RETURN/LINE FEED, and then the entire contents of the command line buffer. This
is a useful feature if you are working on a teletype or other hard copy terminal and
have used the RUB or DEL characters. Since these characters do not destructively
delete a character, you can get a visually confusing line of text on the terminal. The
CONTROL-R character gives you a fresh copy of the line without any of the logically
deleted characters cluttering it up. In this way you can see exactly what you have
typed into the command line buffer.

See the discussion of the RUB and DEL characters for an example of CONTROL-
R in use.

CONTROL-S: Stop Screen Output The CONTROL-S command is the ASCII XOFF (also
called DC3) character; XOFF is an abbreviation for “Transmit Off.” Typing
CONTROL-S will temporarily stop output to the console. Ina standard version of

Chapter 4: The Console Command Processor (CCP) 49

CP/M, the CCP will resume output when any character is entered (including
another CONTROL-S) from the console. Thus, you can use CONTROL-S as a toggle
switch to turn console output on and off.

In some implementations of CP/M, the console driver itself (the low-level code
in the BIOS that controls the console) will be maintaining a communication
protocol with the console; therefore, a better way of resuming console output after
pausing with a CONTROL-S is to use CONTROL-Q, the ASCII XON or “Transmit On”
character. Entering a CONTROL-Q instead of relying on the fact that any character
may be used to continue the output is a fail-safe measure.

The commands CONTROL-S and CONTROL-Q are most useful when you have
large amounts of data on the screen. By “riding” the CONTROL-S and CONTROL-Q
keys, you can let the data come to the screen in small bursts that you can easily
scan.

CONTROL-U or CONTROL-X: Undo Command Line The commands CONTROL-U and
CONTROL-X perform the same function: They erase the current partially entered
command line so that you can undo any mistakes and start over. The CONTROL-U
command was originally intended for hard copy terminals. The CCP outputs a “#”
character, then a CARRIAGE RETURN/LINE FEED, and then some blanks to leave
the cursor lined up and ready for you to enter the next command line. It leaves
what you originally entered in the previous line on the screen. The CONTROL-X
command is more suited to screens; the CCP destructively backspaces to the
beginning of the command line so that you can reenter it.

RUB or DEL: Delete Last Character The rubout or delete function (keys marked RUB,
RUBOUT, DEL, or DELETE) nondestructively deletes the last character that you
typed. That is, it deletes the last character from the command line buffer and
echoes it back to the console.

Here is an example of a command line with the last few characters deleted
using the RUB key:

A>RUN FAYROLLLLORYAFSALES

AAAAAAA

DELeted

You can see that the command line very quickly becomes unreadable. If you
lose track of what are data characters and what has been deleted, you can use
CONTROL-R to get a fresh copy of what is in the command line buffer.

The example above would then appear as follows:

A>RUN FAYROLLLLORYAPSALES#
RUN SALES_

The “#” character is output by the CCP to indicate that the line has been

50 The CP/M Programmer’s Handbook

YSE 1)

repeated. The “_” represents the position of the cursor, which is now ready to
continue with the command line.

Built-ln Commands

When you enter a command line and press either CARRIAGE RETURN or LINE
FEED. the CCP will check if the command name is one of the set of built-in
commands. (It has a small table of command names embedded in it, against which
the entered command name is checked.) If the command name matches a built-in
one, the CCP executes the command immediately.

The next few sections describe the built-in commands that are available;
however, refer to Osborne CP/M User Guide, second edition by Thom Hogan
(Berkeley: Osborne/ McGraw-Hill, 1982) for a more comprehensive discussion
with examples of the various forms of each command.

X: — Changing Default Disk Drives The default drive is the currently active drive that
CP/M uses for all file access whenever you do not nominate a specific drive. If you
wish to change the default drive, simply enter the new default drive’s identifying
letter followed by a colon. The CCP responds by changing the name of the disk
that appears in the prompt line.

On hard disks, this simple operation may take a second or two to complete
because the BDOS, requested by the CCP to log in the drive, must read through
the disk directory and rebuild the allocation vector for the disk. If you have a
diskette or a disk that is removable, changing it and performing a warm boot has
the same effect of refreshing CP/M’s image of which allocation blocks are used and
which are available. It takes longer on a hard disk because, as a rule, the directories
are much larger.

DIR — Directory of Files In its simplest form, the DIR command displays a listing of the
files set to Directory status in the current user number (or file group) on the current
default drive. Therefore, when you do not ask for any files after the DIR command,
a file name of “*.%” is assumed. This is a total wildcard, so all files that have not
been given System status will be displayed. This is the only built-in command
where an omitted file name reference expands to “all file names, all file types.”

You can display the directory of a different drive by specifying the drive in the
same command line as the DIR command.

You can qualify the files you want displayed by entering a unique or ambiguous
file name or extension. Only those files that match the given file name specification
will be displayed, and even then, only those files that are not set to System status
will appear on the screen. (The standard CP/M utility program STAT can be used
to change files from SYS to DIR status.)

Chapter 4: The Console Command Processor (CCP) 51

Another side effect of the DIR command and files that are SYS status is best
illustrated by an example. Imagine that the current logical drive B has two files on it
called SYSFILE (which has SYS status) and NONSYS (which does not). Look at
the following console dialog, in which user input is underlined:

E>DIR<er>

B: NONSYS SYSFILE does not show
E>DIR JUNK<er:
NO FILE JUNK does not exist

Do you see the problem? If a file is not on the disk, the CCP will display NO
FILE (or NOT FOUND in earlier versions of CP/M). However, if the file does
exist but is a SYS file, the CCP does not display it because of its status; nor does
the CCP say NO FILE. Instead it quietly returns to the prompt. This can be
confusing if you are searching for a file that happens to be set to SYS status. The
only safe way to find out if the file does exist is to use the STAT utility.

ERA—Erase aFile The ERA command logically removes files from the disk (logically
because only the file directory is affected; the actual data blocks are not changed).

The logical delete changes the first byte of each directory entry belonging to a
file to a value of OESH. As you may recall from the discussion on the file directory
entry in Chapter 3, this first byte usually contains the file user number. If it is set to
OESH, it marks the entry as being deleted.

ER A makes a complete pass down the file directory to logically delete all of the
extents of the file.

Unlike DIR, the ERA command does not assume “all files, all types” if you
omit a file name. If it did, it would be all too easy to erase all of your files by
accident. You must enter “*.x” to erase all files, and even then, you must reassure
the CCP that you really want to erase all of them from the disk. The actual dialog
looks like the following:

ALL (Y/ND
A

If you change your mind at the last minute, you can press “n” and the CCP will
not erase any files.

One flaw in CP/M is that the ERA command only asks for confirmation when
you attempt to erase all of your files using a name such as “*.*” or “%.7??”. Consider
the impact of the following command:

AYERA #.C7%<cr>
Ax_

The CCP with no hesitation has wiped out all files that have a file type starting
with the letter “C™ in the current user number on logical disk A.

52 The CP/M Programmer’s Handbook

If you need to use an ambiguous file name in an ERA command, check which
files you will delete by first using a STAT command with exactly the same
ambiguous file name. STAT will show you all the files that match the ambiguous
name, even those with SYS status that would not be displayed by a DIR command.

There are several utility programs on the market with names like UNERA or
WHOOPS, which take an ambiguous file name and reinstate the files that you may
have accidentally erased. A design for a version of UNERASE is discussed in
Chapter 11.

If you attempt to erase a file that is not on the specified drive, the CCP will
respond with a NO FILE message.

REN —RenameaFile The REN command renames a file, changing the file name, the file
type, or both. In order to rename, you need to enter two file names, the new name
and the current file name.

To remember the correct name format, think of the phrase new = old. The
actual command syntax is

A>ren newfile.typ=cldfile.typdcr>
A>_

You can use a logical disk drive letter to specify on which drive the file exists. If
you specify the drive, you only need to enter it on one of the file names. If you enter
the drive with both file names, it must be the same letter for both.

Unlike the previous built-in command, REN cannot be used with ambiguous
file names. If you try, the CCP echoes back the ambiguous names and a question
mark, as in the following dialog:

.doc=chapter®.docdcrs
HAPTER®.DOC?

If the REN command cannot find the old file, it will respond NO FILE. If the
new file already exists, the message FILE EXISTS will be displayed. If you receive
a FILE EXISTS message and want to check that the new file does exist, remember
that it is better to use the STAT command than DIR. The extant file may be
declared to be SYS status and therefore will not appear if you use the DIR
command.

TYPE—Type aTextFile The TYPE command copies the specified file to the console. You
cannot use ambiguous file names, and you will need to press CONTROL-S if the file
has more data than can fill one screen. With the TYPE command, the data in the
file will fly past on the screen unless you stop the display by pressing CONTROL-S.
Be careful, because if you type any other character, the TYPE command will abort
and return control to the CCP.

Chapter 4: The Console Command Processor (CCP) 53

Once you have had time to see what is displayed on the screen, you can press
CONTROL-Q to resume the output of data to the console. With standard CP/M
implementations, you will discover that any character can be used to restart the
flow of data; however, use CONTROL-Q as a fail-safe measure. CONTROL-S (X-OFF)
and CONTROL-Q (X-ON) conform to the standard protocol which should be used.

If you need to get hard copy output of the contents of the file, you should typea
CONTROL-P command before you press the CARRIAGE RETURN at the end of the
TYPE command line.

As you may have inferred, the TY PE command should only be used to output
ASCII text files. If for some reason you use the TYPE command with a file that
contains binary information, strange characters will appear on the screen. In fact,
you may program your terminal into some state that can only be remedied by
turning the power off and then on again. The general rule therefore is only use the
TYPE command with ASCII text files.

SAVE — Save Memory Image on Disk The SAVE command is the hardest of the CCP’s
commands to explain. It is more useful to the programmer than to a typical end
user. The format of this command is

A>SAVE n FILENAME,TYP<cr>
A _

The SAVE command creates a file of the specified name and type (or over-
writes an existing file of this name and type), and writes into it the specified
number n of memory pages. A page in CP/M is 256 (100H) bytes. The SAVE
command starts writing out memory from location 100H, the start of the Transient
Program Area (TPA). Before you use this command, you will normally have
loaded a program into the TPA. The SAVE command does just what its name
implies: It saves an image of the program onto a disk file.

More often than not, when you use the SAVE command the file type will be
“.COM.” With the file saved in this way, the CCP will be able to load and execute
the file.

USER— Change User Numbers As mentioned before, the directory of each logical disk
consists of several directories that are physically interwoven but logically separated
by the user number. When you use a specific user number, those files that were
created when you were in another user number are logically not available to you.

The USER command provides a way for you to move from one user number to
another. The command format is

A>USER n<lcr>
A _

where n can be any number from 0 to 15. Any other number will provoke the CCP
to echoing back your entry, followed by a question mark.

54 The CP/M Programmer’s Handbook

But once you have switched back and forth between user numbers several
times, it is easy to become confused about which user number you are in. The
STAT command can be used to find the current user number. If you are in a user
number that does not make a copy of STAT available to you however, all you can
do is use the USER command to set yourself to another user number. You cannot
find out which user number you were in; you can only tell the system the user
number you want to go to.

In the custom BIOS systems discussed later, there is a way of displaying the
current user number each time a warm boot occurs. If you are building a system in
which you plan to utilize CP/M’s user number features, you should give this
display of the current user number serious thought. If you are in the wrong user
number and erase files, you can create serious problems.

Some implementations of CP/M have modified the CCP so that the prompt
shows the current user number as well as the default drive (similar to the prompt
used in MP/ M). However, this use of a nonstandard CCP is not a good practice.
As a rule, customization should be confined to the BIOS.

Program Loading

Base Page

The first area to consider when loading a program is the first 100H bytes of
memory, called the base page. Several fields — units in this area of memory—are
set to predetermined values before a program takes control.

To aid in this discussion, imagine a program called COPYFILE that copies one
file to another. This program expects you to specify the source and destination file
names on the command line. A typical command would read

Adcopyfile tofile.typ fromfile.typ display

Notice the word “display.” COPY FILE will, if you specify the “display” option,
output the contents of the source file (“fromfile.typ”) on the console as the transfer
takes place.

When you press the CARRIAGE RETURN key at the end of the command line,
the CCP will search the current default drive (“A” in the example) and load a file
called COPYFILE.COM into memory starting at location 100H. The CCP then
transfers control to location 100H —just past the base page —and COPYFILE
starts executing.

The base page normally starts from location 0000H in memory, but where
there is other material in low memory addresses, it may start at a higher address.
Figure 4-1 shows the assembly language code you will need to access the base page.
RAM is assumed to start at location 0000H in this example.

Chapter 4: The Console Command Processor (CCP)

55

0000 = RAM
0000 :
0000 WARMBOOT
H
0002 = BIOSPAGE
0003 10BYTE:
H
0004 CURUSER:
0004 = CURDISK
H
0005 BDOSE:
0007 = TOPRAM
H
0005C
005C FCB1:
006C FCB2:
H
0080
H
COMTAIL:
0080 COMTAIL $COUNT:
0081 COMTAIL$CHARS:
0080
v
0080 DMABUFFER:
B
0100
TPA:

EQU

ORG
ns

EQU

Ds
EQU

DS
EQU

ORG

DS

Ds

DS
DS

ORG

DS

ORG

o sStart of RAM (and the base page)
;You may need to change this to
; some other value (e.g. 4300H)
RAM ;Set location counter to RAM base
3 sContains a JMP to warm boot entry
3 in BIOS Jump vector table
RAM+2 sBIOS Jump vector page
1 s Input/output redirection byte

1 ;Current user (bits 7-4)
CURUSER ;Default logical disk (bits 3-0)

3 ;Contains a JMP to BDOS entry
BDOSE+2 ;Top page of usable RAM

RAM+5CH ;Bypass unused locations
16 sFile control block #1
sNote: if you use this FCB here
3 you will overwrite FCB2 below.
16 sFile control block #2
$You must move this to another
3 place before using it

RAM+80H ;Bypass unused locations

sComplete command tail

1 ;Count of the number of chars
3 in command tail (CR not incl.)
127 ;Characters in command tail

; converted to uppercase and
3 without trailing carriage ret.

RAM+80H ;Redefine command tail area

128 sDefault "DMA" address used
$ as a 128-byte record buffer

RAM+100H ;BRypass unused locations
;Start of transient program area
3 into which programs are loaded.

Figure 4-1. Base page data declarations

Warmboot

Some versions of CP/M, such as the early Heathkit/Zenith system, have ROM
from location 0000H to 42FFH. Digital Research, responding to market pressure,
produced a version of CP/M that assumed RAM starting at 4300H. If you have
one of these systems, you must add 4300H to all addresses in the following
paragraphs except for those that refer to addresses at the top of memory. These
will not be affected by the presence of ROM in low memory.

The individual values used in fields in the base page are described in the

following sections.

The three-byte warmboot field contains an instruction to jump up to the high
end of RAM. This JMP instruction transfers control into the BIOS and triggers a
warm boot operation. As mentioned before, a warm boot causes CP/M to reload
the CCP and rebuild the allocation vector for the current default disk. If you need

56 The CP/M Programmer’s Handbook

to cause a warm boot from within one of your assembly language programs, code

JMP O sWarm Boot

BIOSPAGE The BIOS has several different entry points; however, they are all clustered

IOBYTE

together at the beginning of the BIOS. The first few instructions of the BIOS look
like the following:

JMP ENTRY1
JMF ENTRYZ2
JMFP ENTRY3 sand so on

Because of the way CP/M is put together, the first jump instruction always
starts on a page boundary. Remember that a page is 256 (100H) bytes of memory,
so a page boundary is an address where the least significant eight bits are zero. For
example, the BIOS jump vector (as this set of JMPs is called) may start at an
address such as F200H or E600H. The exact address is determined by the size of
the BIOS.

By looking at the BIOSPAGE, the most significant byte of the address in the
warmboot JMP instruction, the page address of the BIOS jump vector can be
determined.

CP/M is based on a philosophy of separating the physical world from CP/M’s
own logical view of the world. This philosophy also applies to the character-
oriented devices that CP/M supports.

The IOBYTE consists of four two-bit fields that can be used to assign a physical
device to each of the logical ones. It is important to understand that the IOBYTE
itself is just a passive data structure. Actual assignment occurs only when the
physical device drivers examine the IOBY TE, interpreting its contents and select-
ing the correct physical drive for the cooperation of the BIOS. These device drivers
are the low-level (that is, close to machine language) code in the BIOS that actually
interfaces and controls the physical device.

The four logical devices that CP/M knows about are

1. The console. This is the device through which you communicate with
CP/M. Itis normally a terminal with a screen and a keyboard. The console
is a bidirectional device: It can be used as a source for information (input)
and a destination to which you can send information (output).

In CP/M terminology, the console is known by the symbolic name of
“CON:”. Note the “:”— this differentiates the device name from a disk file
that might be called “CON.”

2. The list device. This is normally a printer of some sort and is used to make
hard copy listings. CP/M views the printer as an output device only. This
creates problems for printers that need to tell CP/M they are busy, but this

Chapter 4: The Console Command Processor (CCP) 57

problem can be remedied by adding code to the low-level printer driver.
CP/M’s name for this logical device is “LST:”.

3. Thepaper tape reader. It is unusual to find a paper tape reader in use today.
Originally, CP/M ran on an Intel Microcomputer Development System
called the MDS-800, and this system had a paper tape reader. This device
can be used only as a source for information.

CP/M calls this logical device “RDR:”.

4. The paper tape punch. This, too, is a relic from CP/M’s early days and the
MDS-800. In this case, the punch can be used only for output.
The logical device name used by CP/M is “PUN:”.

The physical arrangement of the IOBYTE fields is shown in Figure 4-2.

Each two-bit field can take on one of four values: 00, 01, 10, and 11. The
particular value can be interpreted by the BIOS to mean a specific physical device,
as shown in Table 4-1.

Although the actual interpretation of the IOBYTE is performed by the BIOS,
the STAT utility can set the IOBYTE using the logical and physical device names,
and PIP (Peripheral Interchange Program) can be used to copy data from one
device to another. In addition, you can write a program that simply changes the

Bit Number 7 6 5 4 3 2 1 0

N, am— —et— — — —
Logical Device List Punch Reader Console

Figure 4-2. Arrangement of the IOBYTE

Table 4-1. IOBYTE Values

Physical Device
Logical Device

00 01 10 1
Console (CON:) TTY: CRT: BAT: UCI:
Reader (RDR:) TTY: PTR: URI: UR2:
Punch (PUN:) TTY: PTP: UPI: UP2:
List (LST:) TTY: CRT: LPT: ULIL:

58 The CP/M Programmer’s Handbook

contents of the IOBYTE. But be careful: Changes in the IOBYTE take effect
immediately.
The values in the IOBYTE have the following meanings:

Console (CON:)

00

01

10

11

Teletype driver (TTY:)
This driver is assumed to be connected to a hard copy device being used
as the main console.

CRT driver (CRT:)
The driver is assumed to be connected to a CRT terminal.

Batch mode (BAT:)

This is a rather special case. It is assumed that appropriate drivers will be
called so that console input comes from the logical reader (RDR:) and
console output is sent to the logical list device (LST:).

User defined console (UC1:)

Meaning depends on the individual BIOS implementation. If, for exam-
ple, you have a high-resolution graphics screen, you could arrange for
this setting of the IOBYTE to direct console output to it. You might
make console input come in from some graphic tablet, joystick, or other
device.

Reader (RDR:)

00

01

10
11

Teletype driver (TTY:)
This refers to the paper tape reader device that was often found on
teletype consoles.

Paper tape reader (PTR:)

This presumes some kind of high-speed input device connected to the
system. Modern systems rarely have such a device, so this setting is often
used to connect the logical reader to the input side of a communications
line.

User defined reader #1 (UR1:)

User defined reader #2 (UR2:)

Both of these settings can be used to direct the physical driver to some
other specialized devices. These values are included only because they
would otherwise have been unassigned. They are rarely used.

Punch (PUNy)

00

01

Teletype driver (TTY:)
This refers to the paper tape punch that was often found on teletype
consoles.

Paper tape punch (PTP:)

CURUSER

CURDISK

BDOSE

Chapter 4: The Console Command Processor (CCP) 59

This presumes that there is some kind of high-speed paper tape punch
connected to the system. Again, this is rarely the case, so this setting is
often used to connect the logical punch to the output side of a communi-
cations line.

10 User defined punch #1 (UPI:)

11 User defined punch #2 (UP2:)
These two settings correspond to the two user defined readers, but they
are practically never used.

List (LST:)

00 Teletype driver (TTY:)
Output will be printed on a teletype.

01 CRT driver (CRT:)
Output will be directed to the screen on a CRT terminal.

10 Line printer driver (LPT:)
Output will go to a high-speed printing device. Although the name /ine
printer implies a specific type of hardware, it can be any kind of printer.

11 User defined list device (UL1:)
Whoever writes the BIOS can arrange for this setting to cause logical list
device output to go to a device other than the main printer.

To repeat: The IOBYTE is not actually used by the main body of CP/M. It is
just a passive data structure that can be manipulated by the STAT utility. Whether
the IOBYTE has any effect depends entirely on the particular BIOS implementa-
tion.

The CURUSER field is the most significant four bits (high order nibble) of its
byte. It contains the currently selected user number set by the CCP USER
command, by a specific call to the BDOS, or by a program setting this nibble to the
required value. This last way of changing user numbers may cause compatibility
problems with future versions of CP/M, so use it only under controlled conditions.

The CURDISK field is the least significant four bits of the byte it shares with
CURUSER. It contains a value of 0 if the current disk is A:, 1 if it is B:,; and so on.

The CURDISK field can be set from the CCP, by a request to the BDOS, or by
aprogram altering this field. The caveat given for CURUSER regarding compatibility
also applies here.

This three-byte field contains an instruction to jump to the entry point of the
BDOS. Whenever you want the BDOS to do something, you can transfer the
request to the BDOS by placing the appropriate values in registers and making a
CALL to this JMP instruction. By using a CALL, the return address will be

60 The CP/M Programmer’s Handbook

TOPRAM

placed on the stack. The subsequent JMP to the BDOS does not put any
additional information onto the stack, which operates on a last-in, first-out basis;
so when the system returns from the BDOS, it will return directly to your
program.

Because the BDOS, like the BIOS, starts on a page boundary, the most
significant byte of the address of the BDOS entry tells you in which page the
BDOS starts. You must subtract 1 from the value in TOPRAM to get the highest
page number that you can use in your program. Note that when you use this
technique, you assume that the CCP will be overwritten since it resides in memory
just below the BDOS.

FCB1 and FCB2 As a convenience, the CCP takes the first two parameters that appear in

COMTAIL

the command tail (see next section), attempts to parse them as though they were
file names, and places the results in FCB1 and FCB2. The results, in this context,
mean that the logical disk letter is converted to its FCB representation, and the file
name and type, converted to uppercase, are placed in the FCB in the correct bytes.
In addition, any use of “*” in the file name is expanded to one or more question
marks. For example, a file name of “abc.*” will be converted to a name of

Notice that FCB2 starts only 16 bytes above FCBI, yet a normal FCB is at least
33 bytes long (36 bytes if you want to use random access). In many cases, programs
only require a single file name. Therefore, you can proceed to use FCBI straight
away, not caring that FCB2 will be overwritten.

In the case of the COPYFILE program example on previous pages, two file
names are required. Before FCBI can be used, the 16 bytes of FCB2 must be
moved into a skeleton FCB that is declared in the body of COPYFILE itself.

The command tail is everything on the command line other than the command
name itself. For example, the command tail in the COPYFILE command line is

shown here:

A>copyfile tofile.type fromfile.typ display

The CCP takes the command tail (converted to uppercase) and stores it in the
COMTAIL area.

COMTAILSCOUNT This is a single-byte binary count of the number of characters in the

command tail. The count does not include a trailing CARRIAGE RETURN or a blank
between the command name and the command tail. For example, if you enter the
command line

A>PRINT ABCH. =

Chapter 4: The Console Command Processor (CCP) 61

the COMTAILSCOUNT will be six, which is the number of characters in the
string “ABCsx.%”.

COMTAILSCHARS These are the actual characters in the command tail. This field is not
blank-filled, so you must use the COMTAIL$COUNT in order to detect the end of
the command tail.

DMASBUFFER In Figure 4-1, the DMASBUFFER is actually the same area of memory as
the COMTAIL. This is a space-saving trick that works because most programs
process the contents of the command tail before they do any disk input or output.

The DMASBUFFER is a sector buffer (hence it has a length of 128 bytes). The
use of the acronym DMA (direct memory access) refers back to the Intel MDS-
800. This system had hardware that could move data to and from diskettes by
going directly to memory, bypassing the CPU completely. The term is still used
even though you may have a computer system that does not use DMA for its disk
I/O. You can substitute the idea of “the address to/from which data is read/writ-
ten” in place of the DMA concept.

You can request CP/M to usea DM A address other than DMASBUFFER, but
whenever the CCP is in control, the DMA address will be set back here.

TPA This is the transient program area into which the CCP loads programs. The
TPA extends up to the base of the BDOS.
The TPA is also the starting address for the memory image that is saved on disk
whenever you use the CCP SAVE command.

Memory Dumps of the Base Page

The following are printouts showing the contents of the base page (the first
100H bytes of memory) as the COPYFILE program will see it.
This is an example of the first 16 bytes of memory:

0000: C3 03 F2 95 00 C3 00 C2 FF Fé FS FF F3 F2 FF FO
N N —_ _/

p——

N
|—Arbitrary data left

from system startup

JMP to BDOS Entry Point
(Note 0C200H is starting page of BDOS)

Current default disk (0= A, 1 = B)
Current User (User = 0)
Settings of the IOBYTE

JMP WARMBOOT
(Note that the BIOS Jump Vector is at 0F200H)

62 The CP/M Programmer’s Handbook

The command line, as you recall, was

Arcopyfile tofile.typ fromfile.typ display
The FCB1 and FCB2 areas will be set by the CCP as follows:

Logical Disk Logical Disk

.
00SC: 00 54 4F 46
. T O F —_
0060: 49 4C 45 20 20 54 5% S0 00 00 00 00 00 46
1 L E T YP « « « . . F
0070: 4D 46 4% 4C 45 54 59 50 00 00 00 00 00 F2
M F I L ETY P e

F R
Mo
T

swDWL
w

Since the logical disks were not specified in the file names in the command line,
the CCP has set the disk code in both FCB1 and FCB2 to 00H, meaning “use the
default disk.” The file name and type have been converted to uppercase, separated,
and put into the FCBs in their appointed places.

The complete command tail has been stored in COMTAIL as follows:

31 in decimal

Residue

0080: 1F 54 4F 46 49 4C
00%0: 46 49 4C 45 2E 54
00A0: 00 43 Tz 43 3B 20 20 20 20 43 4F 4D 00 00 00 0A
00BO: B 5C 00 00 00 00 00 00 00 00 00 0O 00 00 (O 0O
ooco: ES ES ES £S ES ES E5 ES 5 ES ES £5 ES €5 ES ES
00D0: ES ES €S ES ES ES ES ES ES E£5 ES ES £5 ES ES ES
00EO: ES ES ES ES ES ES ES E5 ES £5 ES ES ES £5 €5 ES
00F0: ES £S5 ES ES ES £S5 ES ES ES £5 ES E5 €5 ES E5 ES

0100: 01 F?
Program Start

You can see that the command tail length is 01 FH (31 decimal). This is followed
immediately by the command tail characters themselves. Note that the command
tail stops at location 9FH. The remainder of the data that you can see is the residue
of some previous directory operation by the CCP. You can see the file name
CRCK.COM in a directory entry, followed by several OESHs that are unused
directory space.

Finally, at location 0100H are the first two bytes of the program.

Chapter 4: The Console Command Processor (CCP) 63

Processing the Command Tail

One of the first problems facing you if you write a program that can accept
parameters from the command tail is to process the command tail itself, isolating
each of the parameters. You should use a standard subroutine to do this. This
subroutine splits the command line into individual parameters and returns a count
of the number of parameters, as well as a pointer to a table of addresses. Each
address in this table points in turn to a null-byte-terminated string. Each parame-
ter is placed in a separate string.

Figure 4-3 contains the listing of this subroutine, CTP (Command Tail Pro-

cessor).
0100 ORG 100H
0100 CD3601 START: CALL cTP ;Test bed for CTP
0103 00 NOP
3 Remainder of your program
H This subroutine breaks the command tail apart, placing
5 each value in a separate string area.
H Return parameters:
H A =0 - No error (Z flag set)
y B = Count of number of parameters
i HL -> Table of addresses
H Each address points to a null-byte-
H terminated parameter string.
H If too many parameters are specified, then A = TMP
H If a given parameter is too long, then A = PTL
H and D points to the first character of the
H offending parameter in the COMTAIL area.
0080 = COMTAIL EQU 80H sCommand tail in base page
0080 = COMTAIL$COUNT EQU COMTAIL ;Count of chars. in command tail
0001 = CTP$TMP EQU 1 3 Too many parameters error code
0002 = CTP$PTL EQU 2 jParameter too long error code
3
PTABLE: ;Table of pointers to parameters
0104 0CO1 DW P1 ;5 Parameter 1
0106 1A01 DW P2 3+ Parameter 2
0108 2801 DW P3 ;3 Parameter 3
3 <--— Add more parameter addresses here
010A 0000 oW o] ; Terminator
H Parameter strings.
H The first byte is O so that unused parameters appear
H to be null strings.
; The last byte of each is a 0 and is used to detect
5 a parameter that is too long.
010C 0001010101P1: DB 0,1,1,1,1,1,1,1,4,1,4,1,1,0 ;Param. 1 & terminator
011A 0001010101P2: DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 2 & terminator
0128 0001010101P3: DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 3 & terminator
7 <——=- Add more parameter strings here
3
CTP: sMain entry point <<<<<
0136 210401 LXI H, PTABLE ;HL -> table of addresses
0139 0OE00 MVI >, 0 ;Set parameter count
013B 3A8000 LDA COMTAIL$COUNT ;Character count
013E B7 ORA A ;Check if any params.
O13F C8 RZ sExit (return params. already set)
0140 ES PUSH H sSave on top of stack for later
0141 47 MOV B,A ;B = COMTAIL char. count
0142 218100 LXI H, COMTAIL+1 sHL -> Command tail chars.

Figure 4-3. Command Tail Processor (CTP)

64 The CP/M Programmer’s Handbook

CTPSNEXTP: ;Next parameter loop
0145 E3 XTHL sHL -> Table of addresses
sTop of stack = COMTAIL ptr.
0146 S5E MOV E,M ;Get LS byte of param. addr.
0147 23 INX H sUpdate address pointer
0148 Sé Mov D,M ;Get MS byte of param. addr.
sDE -> Parameter string (or is 0)
0149 7A MOV A, D 3Get copy of MS byte of addr.
014A B3 ORA E ;Combine MS and LS byte
014B CAB001 Jz CTP$TMPX :Too many parameters—-exit
O14E 23 INX H ;Update pointer to next address
014F E3 XTHL sHL -> comtail
sTop of stack--update addr. ptr.
At this point, we have
3 HL -> next byte in command tail
;s DE -> first byte of next parameter string
CTP$SKIPB:
0150 7€ MoV A M ;Get next parameter byte
0151 23 INX H sUpdate command tail ptr.
0152 05 DCR B ;Check if characters still remain
0153 FA7301 MB CTPX sNo, so exit
0156 FE20 CPI s ;Check if blank
0158 CAS001 JZ CTP$SKIPB ;Yes, so skip blanks
015B 0OC INR C s Increment parameter counter
CTP$NEXTC:
015C 12 STAX D ;Store in parameter string
015D 13 INX D sUpdate parameter string ptr.
O15E 1A LDAX D ;Check next byte
015F B7 ORA A ;Check if terminator
0160 CA7A01 Jz CTP$PTLX ;Parameter too long exit
0163 AF XRA A sFloat a 00-byte at end of param.
0164 12 STAX D ;Store in param. string
0165 7E Mov AM ;Get next character from tail
0166 23 INX H ;Update command tail pointer
0167 0S5 DCR B ;Check if characters still remain
0168 FA7301 JM CTPX sNo, so exit
016B FE20 CPI ‘7 sCheck if parameter terminator
014D CA4501 Jz CTPS$NEXTP ;Yes, so move to next parameter
0170 C35CO1 JMP CTPSNEXTC ;No, so store it in param. string
;
CTPX: sNormal exit
0173 AF XRA A sA = 0 & Z-flag set
CTPCX sCommon exit code
0174 E1 POP H ;Balance stack
0175 210401 LXI H,PTABLE sReturn ptr. to param. addr. table
0178 B7 ORA A sEnsure Z-flag set appropriately
0179 C9 RET
CTP$PTLX: sParameter too long exit
017A 3E02 MVI A, CTP$PTL ;Set error code
017C EB XCHG sDE -> offending parameter
017D C37401 JMP CTPCX sCaommon exit
CTP$TMPX: ;s Too many parameters exit
0180 3E01 MVI A,CTP$TMP ;Set error code
0182 C37401 JMP CTPCX s Caommon exit
;
0185 END START

Figure 4-3. Command Tail Processor (CTP) (continued)

Available Memory

Many programs need to use all of available memory, and so very early in the
program they need to set the stack pointer to the top end of the available RAM. As
mentioned before, the CCP can be overwritten as it will be reloaded on the next
warm boot.

Chapter 4: The Console Command Processor (CCpP) 65

Figure 4-4 shows the code used to set the stack pointer. This code determines
the amount of memory in the TPA and sets the stack pointer to the top of available
RAM.

Communicating with the BIOS

If you are writing a utility program to interact with a customized BIOS, there
will be occasions where you need to make a direct BIOS call. However, if your
program ends up on a system running Digital Research’s MP/M Operating
System, you will have serious problems if you try to call the BIOS directly. Among
other things, you will crash the operating system.

If you need to make such a call and you are aware of the dangers of using direct
BIOS calls, Figure 4-5 shows you one way to do it.

Remember that the first instructions in the BIOS are the jump vector —a
sequence of JMP instructions one after the other. Before you can make a direct
call, you need to know the relative page offset of the particular JMP instruction
you want to go to. The BIOS jump vector always starts on a page boundary, so all
you need to know is the least significant byte of its address.

0007 = TOPRAM EQU 7 ;Most significant byte of

H BDOS entry point
0000 3A0700 LDA TOPRAM ;Get MS byte of BDOS entry point
0003 3D DCR A iBack off one page
0004 2EFF MVI L,OFFH ;Set LS byte of final address
0006 67 MoV H. A sHL = XXFFH
0007 F9 SPHL ;Set stack pointer from HL

Figure 4-4. Setting stack pointer to top of available RAM

§ Use this technique only for CP/M utility programs.
H MP/M programs do not permit this.
0009 = CONIN EQU O%H ;Get console input character
7 (It’s the 4th jump in the vector)
0002 = BIQSPAGE EQU 2 sAddress of BIOS page
H At this point you make a direct CONIN
H CALL...
H
0000 2E09 MVI L,CONIN ;Get LS byte of CONIN entry point
0002 CDO500 CALL BIOS 3Go to BIOS entry subroutine
... the rest of your program...
7
BIOS:
0005 3A0200 LDA BIOSPAGE;Get BIOS jump vector page
0008 &7 MoV H, A sHL -> entry point
:(You set LS byte before coming here)
0009 E9 PCHL 3 "Jump" to BIOS

iYour return address is already
3 on the stack

Figure 4-5. Making a direct BIOS call

66 The CP/M Programmer’s Handbook

s Note: This example assumes you have not
3 overwritten the CCP.

0100 ORG 100H ;Start at TPA

START:
0100 210000 LXI H,0 ;Save CCP’s stack pointer
0103 39 DAD SP ;By adding it to O in HL
0104 220F01 SHLD CCP$STACK
0107 314101 LXI SP, LOCAL$STACK

The main body of your program is here

. and when you are ready to return

H to the CCP...
010A 2A0FO1 LHLD CCP$STACK ;Get CCP’s stack pointer
010D F9 SPHL sRestore SP
010E C9 RET sReturn to the CCP
010F CCP$STACK: Ds 2 ;Save area for CCP SP
0111 Ds 48 sLocal stack
LOCAL$STACK:
0141 END START

Figure 4-6.

Returning to CCP at program end

Returning to CP/M

Once your program has run, you will need to return control back to CP/M. If
your program has not overwritten the CCP and has left the stack pointer as it was
when your program was entered, you can return directly to the CCP usinga RET
instruction.

Figure 4-6 shows how a normal program would do this if you use a local stack,
one within the program. The CCP stack is too small; it has room for only 24 16-bit
values.

The advantage of returning directly to the CCP is speed. This is true especially
on a hard disk system, where the time needed to perform a warm boot is quite
noticeable.

If your program has overwritten the CCP, you have no option but to transfer
control to location 0000H and let the warm boot occur. To do this, all you need do
is execute

EXIT: JMP 0 sWarm Boot

(Asa hint, if you are testing a program and it suddenly exits back to CP/M, the
odds are that it has inadvertently blundered to location 0000H and executed a
warm boot.)

What the BDOS Does
BDOS Function Calls
Naming Conventions
Making a BDOS Function Request

The Basic Disk
Operating System

The Basic Disk Operating System is the real heart of CP/M. Unlike the
Console Command Processor, it must be in memory all the time. It provides all of
the input/output services to CP/M programs, including the CCP.

As a general rule, unless you are writing a system-dependent utility program,
you should use the BDOS for all of your program’s input/ output. If you circum-
vent the BDOS you will probably create problems for yourself later.

67

68 The CP/M Programmer’s Handbook

What the BDOS Does

The BDOS does all of the system input/ output for you. These services can be
grouped into two types of functions:

Simple Byte-by-Byte I/ O
This is sending and receiving data between the computer system and its
logical devices—the console, the “reader” and “punch” (or their substi-
tutes), and the printer.

Disk File I/ O
This covers such tasks as creating new files, deleting old files, opening
existing files, and reading and writing 128-byte long “records”to and from
these files.

The remainder of this chapter explains each of the BDOS functions, shows
how to make each operating system request, and gives additional information for
each function. You should also refer to Digital Research’s manual, CP/M 2
Interface Guide, for their standard description of these functions.

BDOS Function Calls

The BDOS function calls are described in the order of their function code
numbers. Figure 5-1 summarizes these calls.

Naming Conventions

In practice, whenever you write programs that make BDOS calls, you should
include a series of equates for the BDOS function code numbers. We shall be
making reference to these values in subsequent examples, so they are shown in
Figure 5-2 as they will appear in the programs.

The function names used to define the equates in Figure 5-2 are shorter than
those in Figure 5-1 to strike a balance between the abbreviated function names
used in Digital Research’s documentation and the need for clearer function
descriptions.

Making a BDOS Function Request

All BDOS functions are requested by issuing a CALL instruction to location
0005H. You can also request a function by transferring control to location 0005H
with the return address on the stack.

In order to tell the BDOS what you need it to do, you must arrange for the
internal registers of the CPU to contain the required information before the CALL
instruction is executed.

Chapter 5: The Basic Disk Operating System

69

Function
Code

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28%*
29
30
31
32%
33
34
35
36
37
40

Description

Simple Byte-by-Byte 1/0

Overall system and BDOS reset

Read a byte from the console keyboard
Write a byte to the console screen

Read a byte from the logical reader device
Write a byte to the logical punch device
Write a byte to the logical list device
Direct console I/ O (no CCP-style editing)
Read the current setting of the IOBYTE
Set a new value of the IOBYTE

Send a “$”-terminated string to the console
Read a string from the console into a buffer
Check if a console key is waiting to be read
Return the CP/M version number

Disk File I/0

Reset disk system

Select specified logical disk drive

Open specified file for reading/ writing

Close specified file after reading/ writing

Search file directory for first match with filename
Search file directory for next match with filename
Delete (erase) file

Read the next “record” sequentially

Write the next “record” sequentially

Create a new file with the specified name

Rename a file to a new name

Indicate which logical disks are active

Return the current default disk drive number

Set the DMA address (read/ write address)

Return the address of an allocation vector

Set specified logical disk drive to Read-Only status
Indicate which disks are currently Read-Only status
Set specified file to System or Read-Only status
Return address of disk parameter block (DPB)
Set/ Get the current user number

Read a “record” randomly

Write a “record” randomly

Return logical file size (even for random files)

Set record number for the next random read/ write
Reset specified drive

Write a “record” randomly with zero fill *These do not

work under MP/ M.

Figure 5-1.

BDOS function calls

70 The CP/M Programmer’s Handbook

0000
0001
0002
0002
0004
0005
0004
0007
0008
0009
QO0A
000R
000C
[oJele)n]
000E
000F
0010
0011
0012
0012
0014
0015
0016
0017
0012
00179
001A
[ee3R:]
oo1c
001D
001E
001F
0020
0021
o022
00232
0024
0025
0028

= B$SYSRESET EGL o] ;System Reset

= B$CONIN EOL 1 sRead Consaole EByte

= B$CONOUT Eqil 2 sWrite Console EByte

= B$READIN EQU 3 sRead "Reader" Byte

= B$PLUNOUT EQU 4 sWrite "Punch" Byte

= B$LISTOUT EQU S sWrite Printer Byte

= B$DIRCONIO EQU & sDirect Conscle 1/0

= E$GETIO EQu 7 sGet IOBYTE

= B$SETIO EQU] ;Set IOBYTE

= B$PRINTS EQU Ed ;Print Console String

= B$READCONS EQU 10 sRead Console String

= B&CONST EQu 11 ;Read Console Status

= B$GETVER EQU 12 ;Get CP/M Version Number

= B$DSKRESET EQU 12 ;Disk System Reset

= B$SELDSK EQU 14 sSelect Disk

= BSCOPEN EQU 15 ;Cpen File

= B$CLOSE EQU 1é ;Close File

= B$SEARCHF EQU 17 ;Search for First Name Match
= B$SEARCHN EQU 18 ;Search for Next Name Match

= B$ERASE EQL 19 ;Erase (delete) File

= B$READSER EQL 2 ;Read Sequential

= B$WRITESER EQU 21 sWrite Sequential

= B$CREATE EQU 22 sCreate File

= B$RENAME EQL 23 ;Rename File

= B$GETACTDSK EQU 24 ;Get Active (Logged-in) Disks
= E$GETCURDSK EQL 29 ;Get Current Default Disk

= B$SETDMA EQU 26 ;Set DMA (Read/Write) Address
= B$GETALVEC EQU 27 ;Get Allocation Vectcor Address
= B$SETDSKRO EQU 238 ;Set Disk to Read Only

= B$GETRODSKS EQU 29 ;Get Read Only Disks

= B$SETFAT EQU 20 ;Set File Attributes

= E$GETDPR EQU 31 ;Get Disk Parameter Block Address
= B$SETGETUN EQL 32 ;Set/Get User Number

= B$READRAN EQU a3 ;sRead Randam

= EB$WRITERAN EQU 34 sWrite Random

= B&GETFSIZ EQU 35 ;Get File Size

= B$SETRANREC EQU & ;Set Random Record Number

= EB$RESETD EQU 37 jReset Drive

= B$WRITERANZ EQU 40 sWrite Random with Zero-Fill

Figure 5-2. Equates for BDOS function code numbers

The function code number of the specific function call you want performed
must be in register C.

If you need to hand a single-byte value to the BDOS, suchas a character to be
sent to the console, then you must arrange for this value to be in register E. If the
value you wish to pass to the BDOS is a 16-bit value, such as the address of a buffer
or a file control block (FCB), this value must be in register pair DE.

When the BDOS hands back a single-byte value, such as a keyboard character
or a return code indicating the success or failure of the function you requested, it
will be returned in register A. When the BDOS returns a 16-bit value, it will be in
register pair HL.

On return from the BDOS, registers A and L will contain the same value, as
will registers B and H. This odd convention stems from CP/M’s origins in PL/M
(Programming Language/ Microprocessor), a language used by Intel on their
MDS system. Thus, PL/M laid the foundations for what are known as “register
calling conventions.”

Chapter 5: The Basic Disk Operating System 74

The BDOS makes no guarantee about the contents of the other registers. If you
need to preserve a value that is in a register, either store the value in memory or
push it onto the stack. The BDOS uses its own stack space, so there is no need to
worry about it consuming your stack.

To sum up, when you make a function request to the BDOS that requires a byte
value, the code and the required entry and exit parameters will be as follows:

MVI C, FUNCTION$CQODE 3C = function code
MVI E, SINGLE$RYTE ;E = single byte value
caLL BDOS sLocation S

tA = return code or value
sor HL = return value

For those function requests that need to have an address passed to the BDOS,
the calling sequence is

MVI C, FUNCTIONS$CQDE - 3C = function code

LXI D, ADDRESS sDE = address

CALL BDOS sLocation S
3A = return code or value
sor HL = return value

If a function request involves disk files, you will have to tell the BDOS the
address of the FCB that you have created for the file. (Refer back to Chapter 3 for
descriptions of the FCB.)

Many file processing functions return a value in register A that is either OFFH,
indicating that the file named in the FCB could not be found, or equal to a value of
0, 1,2, or 3. In the latter case, the BDOS is returning what is called a “directory
code.” The number is the directory entry number that the BDOS matched to the
file name in your FCB. At any given moment, the BDOS has a 128-byte sector
from the directory in memory. Each file directory entry is 32 bytes, so four of them
(numbered 0, 1, 2, and 3) can be processed at a time. The directory code indicates
which one has been matched to your FCB.

References to CP/M “records” in the following descriptions mean 128-byte
sectors. Do not confuse them with the logical records used by applications
programs. Think of CP/M records as 128-byte sectors throughout.

Function 0: System Reset

Example

Function Code: C = 00H
Entry Parameters: None
Exit Parameters: Does not return

0000 = B$SYSRESET EQU [¢] ;System Reset

0005 = BDOS EQU S sBDOS entry point

0000 OE00 MVI C,B$SYSRESET ;Set function code

0002 C30500 JMP BDOS ;Note: you can use a JMP since

5 you don‘t get control back

72 The CP/M Programmer’s Handbook

Purpose

Notes

The system reset function makes CP/M do a complete reset, exactly the same
as the warm boot function invoked when you transfer control to the WARM-
BOOT point (refer to Figure 4-1).

In addition to resetting the BDOS, this function reloads the CCP, rebuilds the
allocation vectors for the currently logged disks, sets the DMA address (used by
CP/M to address the disk read/write buffer) to 80H, marks all disks as being
Read/ Write status, and transfers control to the CCP. The CCP then outputs its
prompt to the console.

This function is most useful when you are working in a high-level language that
does not permit a jump instruction to an absolute address in memory. Use it when
your program has finished and you need to return control back to CP/M.

Function 1: Read Console Byte

Example

Purpose

Notes

Function Code: C = 01H
Entry Parameters: None
Exit Parameters: A = Data byte from console

0001 = B$CONIN EQU 1 :Console input
0005 = BDOS EQU 5 :BDOS entry
0000 OEO1 MVI C, B$SCONIN 3Get function code
0002 CDOS00 CALL BDOS
This function reads the next byte of data from the console keyboard and puts it

into register A. If the character input is a graphic character, it will be echoed back
to the console. The only control characters that are echoed are CARRIAGE RETURN,
LINE FEED, BACKSPACE, and TAB. In the case of a TAB character, the BDOS outputs
as many spaces as are required to move the cursor to the next multiple of eight
columns. All of the other control characters, including CONTROL-C, are input but
are not echoed.

This function also checks for CONTROL-S (XOFF) to see if console output should
be suspended, and for CONTROL-P (printer echo toggle) to see if console output
should also be sent to the list device. If CONTROL-S is found, further output will be
suspended until you type another character. CONTROL-P will enable the echoing of
console output the first time it is pressed and disable it the second time.

If there is no incoming data character, this function will wait until there is one.

This function ofteh hinders rather than helps, because it echoes the input.
Whenever you need console input at the byte-by-byte level, you will usually want
to suppress this echo back to the console. For instance, you may know that the
“console” is actually a communications line such as a modem. You may be trying
to accept a password that should not be echoed back. Or you may need to read a

Chapter 5: The Basic Disk Operating System 73

cursor control character that would cause an undesirable side effect on the
terminal if echoed there.

In addition, if you need more than a single character from the console, your
program will be easier to use if the person at the console can take full advantage of
the CCP-style line editing. This can best be done by using the Read Console String
function (code 10, 0AH).

Read Console String also is more useful for single character input, especially
when you are expecting a “Y” or “N” (yes or no) response. If you use the Read
Console Byte function, the operator will have only one chance to enter the data.
When you use Read Console String, however, users have the chance to type one
character, change their minds, backspace, and type another character.

Function 2: Write Console Byte

Example

Purpose

Notes

Function Code: C = 02H
Entry Parameters: E = Data byte to be output
Exit Parameters: None

0002 = B$CONOUT EQU 2 ;Write Console Byte
0005 = BDOS EQU s ;BDOS entry
0000 OEO2 MVI C, BSCONOUT sFunction code
0002 1E2A MVI E, "%/ sE = data byte to be output
0004 CDOS00 CALL BDOS
This function outputs the data byte in register E to the console. As with

function 1, if the data byte is a TAB character, it will be expanded by the BDOS to
the next column that is a multiple of eight. The BDOS also checks to see if there is
an incoming character, and if there is, checks to see if it is a CONTROL-S (in which
case console output is suspended) or CONTROL-P (in which case echoing of console
output to the printer is toggled on or off).

You may have problems using this function to output cursor-addressing
control sequences to the console. If you try to output a true binary cursor address
to position 9, the BDOS will interpret this as a TAB character (ASCII code 9) and
dutifully replace it with zero to eight blanks. If you need to output binary values,
you must set the most significant bit of the character (use an ORI 80H, for
example) so that it will not be taken as the ASCII TAB.

Here are two general-purpose subroutines that you will need for outputting
messages. The first one, shown in Figure 5-3, outputs a null-byte-terminated
message from a specified address. The second, in Figure 5-4, does essentially the
same thing except that the message string follows immediately after the call to the
subroutine.

74 The CP/M Programmer’s Handbook

3 MSGOUT (message out)

sOutput nul

1-byte—terminated message.

3;Calling sequence

H MESSAGE: DB “Message”, 0
H H

H LXI H, MESSAGE

H CALL MSGOUT

sExit Parameters

H HL
0002 = B$CONOUT
0005 = BDOS

MSGOUT:
0000 7E MOV
0001 B7 ORA
0002 C8 RZ
0003 23 INX
0004 ES FUSH
0005 SF MoV
0006 OEOZ MVI
0008 CDOS00 CAL
O00R E1 PaP
000C C30000 JIMP

=> Null byte terminator

EQU 2 sWrite Conscle Byte
EQU S ;BDOS entry point
A M ;Get next byte for cutput
A
sReturn when null-byte
H ‘sUpdate message pointer
H H ;Save updated pointer
E,A sReady for BDOS
C, B$CONOUT
L BDOS
H ;Recover message pointer
MSGOUT ;Go back for next character

Figure 5-3. Write console byte example, output null-byte terminated message from
specified address
sMSGOUTI (message cut in-line)
sOutput null-byte-terminated message that
sfollows the CALL to MSGOUTI.
;Calling sequence
H CALL MSGOUTI
H DB “Message”, 0
H ..+ next instruction
sExit Parameters
5 HL -> instruction following message
0002 = B$CONOUT EQU 2 tWrite Conscle Byte
0005 = BOOS EQU S s BDOS entry point
MSGOUTI:
0000 E1 POF H tHL -> message
0001 7E MOV AM ;Get next data byte
0002 23 INX H ;Update message poainter
0003 B7 ORA A sCheck if null byte
0004 C20800 JNZ MSGQUTIC ;No, continue
0007 E% PCHL ;Yes, return to next instruction
3 after in-line message
MSGOUTIC:
0008 ES PUSH H ;Save message pointer
0009 SF MoV E,A sReady for BDOZ
000A OEO2 MYI C, B$CONOUIT sFunction code
000C CDOS00 CALL BDOS
000F C30000 JIMP MSGOUTI ;Go back for next char.
Figure 5-4. Write console byte example, output null-byte terminated message

following call to subroutine

Chapter 5: The Basic Disk Operating System 75

Function 3: Read “Reader” Byte

Example

Purpose

Notes

Function Code: C = 03H
Entry Parameters: None
Exit Parameters: A = Character input

0003 = B$SREADIN EQU i sRead "Reader" Byte
0005 = BDOS EQU S sBOOS entry

0000 OEO3 MVI C, B$READIN sFunction code
0002 CDOS00 CALL BDQOS sA = reader byte

This function reads the next character from the logical “reader” device into
register A. In practice, the physical device that is accessed depends entirely on how
your BIOS is configured. In some systems, there is no reader at all; this function
will return some arbitrary value such as 1AH (the ASCII CONTROL-Z character,
used by CP/M to denote “End of File”).

Controlis not returned to the calling program until a character has been read.

Since the physical device (if any) used when you issue this request depends
entirely on your particular BIOS, there can be no default standard for all CP/M
implementations. This is one of the weaker parts of the BDOS.

You should “connect” the reader device by means of BIOS software to a serial
port that can be used for communication with another system. This is only a
partial solution to the problem, however, because this function call does not return
control to your program until an incoming character has been received. There is
no direct way that you can “poll” the reader device to see if an incoming character
has been received. Once you make this function call, you lose control until the next
character arrives; there is no function corresponding to the Read Console Status
(function code 11, 0BH) that will simply read status and return to your program.

One possible solution is to build a timer into the BIOS reader driver that
returns control to your program with a dummy value in A if a specified period of
time goes by with no incoming character. But this brings up the problem of what
dummy value to use. If you ever intend to send and receive files containing pure
binary information, there is no character in ASCII that you might not encounter in
a legitimate context. Therefore, any dummy character you might choose could
also be true data.

The most cunning solution is to arrange for one setting of the IOBYTE (which
controls logical-device-to-physical-device mapping) to connect the console to the
serial communication line. This done, you can make use of the Read Console
Status function, which will return not the physical console status but the serial line
status. Your program can then act appropriately if no characters are received
within a specified time. Figure 5-11 shows a subroutine that uses this technique in
the Set IOBYTE function (code 8, 08H).

76 The CP/M Programmer’s Handbook

Figure 5-5 shows an example subroutine to read lines of data from the reader
device. It reads characters from the reader, stacking them in memory until eithera
LINE FEED or a specified number of characters has been received. Note that
CARRIAGE RETURNs are ignored, and the input line is terminated by a byte of 00H.
The convention of 00H-byte terminated strings and no CARRIAGE RETURNs is used
because it makes for much easier program logic. It also conforms to the conven-
tions of the C language.

3 RL$RDR

sRead line from reader device.

;Carriage returns are ignored, and input terminates
swhen specified number of characters have been read
jor a line feed is input.

sNote: Potential weakness is that there is no
stimeout in this subroutine. It will wait forever
;if no more characters arrive at the reader device.

sCalling sequence

LXI H, BUFFER
LXI B, MAXCOUNT
CALL RL$RDR

Exit Parameters
HL -> OOH byte terminating string
BC = residual count (0 if max. chars.read)

E = last character read
0003 = B$READIN EQU 3 sReader input
0005 = BDOS EQU S sBOOS entry point
Q00D = CR EQU OoDH s;Carriage return
000A = LF EQU OAH sLine feed (terminator)
RL$RDR:
0000 77 Mov A, C sCheck if count O
0001 BO ORA B sIf count O on entry, fake
0002 SF MOV E,A s last char. read (OOH)
0003 CA2000 Jz RL$RDRX ;Yes, exit
000& CS PUSH B ;Save max. chars. count
0007 ES PUSH H sSave buffer pointer
RL$RDRI: sLoop back here to ignore
0008 OEO3 MVI C, B$READIN
000A CDOS00 CALL BDOS sA = character input
000D SF Moy E,A ;Preserve copy of chars.
00Q0E FEOD CPI CR ;Check if carriage return
0010 CA0200 Jz RL$RDRI sYes, ignore it
0013 El POP H sRecover buffer pointer
0014 C1 POP B sRecover max. Count
0015 FEOA CPI LF sCheck if line feed
0017 CAZ2000 Jz RL$RDRX sYes, exit
001A 77 MoV M, A ;No, store char. in buffer
Q01R 23 INX H sUpdate buffer pointer
001C OB DCX B sDowndate count
0010 CI0000 JMP RL$RDR sLocp back for next char.
RL$RDRX:
0020 3600 MVI M, 0 sNull-byte-terminate buffer
0022 .9 RET ’

Figure 5-5. Read line from reader device

Chapter 5: The Basic Disk Operating System 77

Function 4: Write “Punch” Byte

Example

Purpose

Notes

Function Code: C= 04H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0004 = B$PUNOUT EQU a iWrite "Punch" Byte
0005 = BDOS EQU 5
0000 OEO4 MVI C, B$PUNOUT sFunction code
0002 1E2A MVI E, "% ;Data byte to output
0004 CDOSO0 CALL BDOS
This function is a counterpart to the Read “Reader” Byte described above. It

outputs the specified character from register E to the logical punch device. Again,
the actual physical device used, if any, is determined by the BIOS. There is no set
standard for this device; in some systems the punch device is a “bit bucket,” so
called because it absorbs all data that you output to it.

The problems and possible solutions discussed under the Read “Reader” Byte
function call also apply here. One difference, of course, is that this function
outputs data, so the problem of an indefinite loop waiting for the next character is
less likely to occur. However, if your punch device is connected to a communica-
tions line, and if the output hardware is not ready, the BIOS line driver will wait
forever. Unfortunately, there is no legitimate way to deal with this problem since
the BDOS does not have a function call that checks whether a logical device is
ready for output.

Figure 5-6 shows a useful subroutine that outputs a 00 H-byte terminated string
to the punch. Wherever it encounters a LINE FEED, it inserts a CARRIAGE RETURN
into the output data.

Function 5: Write List Byte

Example

Purpose

Function Code: C= 05H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0005 = B$LSTOUT EQU S sWrite List Byte
0005 = BDOS EQU S
0000 OEOS MVI C,B$LSTOUT sFunction code
0002 1E2A MVI E, "% sData byte to output
0004 CDOS00 CALL BDOS
This function outputs the specified byte in register E to the logical list device.

As with the reader and the punch, the physical device used depends entirely on the
BIOS.

78 The CP/M Programmer’s Handbook

s WLSPUN

sWrite line ta punch device.
;when a OOH byte is encountered.

Output terminates

;A carriage return is output when a line feed is

sencountered.

;Calling sequence

H LXI H, BUFFER
; CALL WL$FUN
sExit parameters
H HL —> OOH byte terminator
0004 = B$PUNQUT EQU 4
0005 = BDOS EQU S
000D = CR EQU QDH jCarriage return
000A = LF EQU 0AH sLine feed
WLS$PUN:
0000 ES PUSH H ;Save buffer pointer
0001 7E MOV AM sGet next character
0002 B7 ORA A sCheck if OOH
0003 CAZ000 Jz WLS$PUNX ;Yes, exit
00046 FEOA CPI LF ;Check if line feed
0008 CC1600 cz WL$PUNLF sYes, Q/P CR
000B SF Mav E,A sCharacter to be cutput
000C OEO04 MVI C, BSPUNOUT sFunction code
000E CDOS00 CALL BDOS sOutput character
0011 E1 POP H, sRecaver buffer pointer
0012 23 INX H s Increment to next char.
0013 C30000 JMP WL$PUN sQutput next char
WLEPUNLF: sLine feed encountered
0016 0EO4 MV C, B$PUNQUT sFunction code
0018 1EOD MVI E,CR sOutput a CR
001A CDOS00 CALL BDOS
001D 3EO0A MVI A, LF sRecreate line feed
001F C9 RET sOutput LF
WLEPUNX: sExit
0020 E1 POF H ;Balance the stack
0021 C9 RET

Figure 5-6.

Notes

Write line to punch device

One of the major problems associated with this function is that it does not deal
with error conditions very intelligently. You cannot be sure which physical device
will be used as the logical list device, and most standard BIOS implementations
will cause your program to wait forever if the printer is not ready or has run out of
paper. The BDOS has no provision to return any kind of error status to indicate
that there is a problem with the list device. Therefore, the BIOS will have to be
changed in order to handle this situation.

Figure 5-7 is a subroutine which outputs data to the list device. As you can see,
this is essentially a repeat of Figure 5-6, which performs the same function for the

logical punch device.

Chapter 5: The Basic Disk Operating System

79

sWLSLST

;Write line to list device.

Output terminates
swhen a OOH byte is encountered.

$A carriage return is output when a line feed is

sencountered.

;Calling sequence

LXI
CALL

;Exit parameters
H

H, BLUFFER
WLSLST

HL -> OOH byte terminator

0005 = BSLSTOUT EQU S
000S = BDOS EQU S
000D = CR EQU ODH ;Carriage return
000A = LF EQU OAH iLine feed
WLSLST:
0000 ES PUSH H ;Save buffer pointer
0001 7E MoV AM ;Get next character
0002 B7 ORA A iCheck if OOH
0003 CA2000 Jz WLELSTX sYes, exit
0006 FEOA CPI LF 7Check if line feed
0008 CC1&800 cz WLSLSTLF iYes, G/P CR
Q00B SF Mav E, A sCharacter to be output
000C OEQS MVI C, B$LSTOUT sFunction code
000E CDOSO0 CALL BDOS sO0utput character
0011 El POP H ;Recover buffer pointer
0012 23 INX H sUpdate to next char.
0013 C30000 JMP WLSLST sO0utput next char.
WLSLSTLF: ;Line feed encountered
0016 OEOS MVI C, B$LSTOUT sFunction code
0018 1EOD MVI E,CR ;Output a CR
001A CDOS00 CALL BDOS
001D 3EQA MVI A, LF sRecreate line feed
001F C% RET ;Output LF
WLSLSTX: sExit
0020 E1 POP H ;Balance the stack
0021 C9 RET
Figure 5-7. Write line to list device
Function 6: Direct Console I/O
Function Code: C = 06H

Example

0006
0005

0000
0002

0004* CDOS00

Entry Parameters: E = OFFH for Input
E = Other than OFFH for output

Exit Parameters:

OEO06
1EFF

B$DIRCONIO
BDOS
MVI
MVI
CALL

A = Input byte or status

EQU tDirect (raw) Console 1/0
EQU sBDOS entry point

;Example of console input
C,B$DIRCONIO ;Function code
E, OFFH ;OFFH means input
BDOS) 00 if no char. waiting

A = NZ if character input

80 The CP/M Programmer’s Handbook

Purpose

Notes

sExample of console output

0007 OEO06 MVI C,B$DIRCONIO sFunction code
0009 1E2A MVI E, "% sNot OFFH means output char.
000B CDOS00 CALL BDOS

This function serves double duty: it both inputs and outputs characters from
the console. However, it bypasses the normal control characters and line editing
features (such as CONTROL-P and CONTROL-S) normally associated with console
1/O. Hence the name “direct” (or “unadorned” as Digital Research describes it). If
the value in register E is not OFFH, then E contains a valid ASCII character thatis
output to the console. The logic used is most easily understood when written in

pseudo-code:
if this is an input request (E = OFFH)
{

if console status indicates a character is waiting
{
read the char from the console and
return to caller with char in A
3

else (no input character waiting) and
return to caller with A = 00

3

else (output request)

output the char in E to the conscle and
return to caller

This function works well provided you never have to send a value of OFFH or
expect to receive a value of 00H. If you do need to send or receive pure binary data,
you cannot use this function, since these values are likely to be part of the data
stream.

To understand why you might want to send and receive binary data, remember
that the logical “reader” does not have any method for you to check its status to see
if an incoming character has arrived. All you can do is attempt to read a character
(Read Reader Byte, function code 3). However, the BDOS will not give control
back to you until a character arrives (which could be a very long time). One
possibility is to logically assign the console to a communications line by the use of
the IOBYTE (or some similar means) and then use this Direct I/ O call to send and
receive data to and from the line. Then you could indeed “poll” the communica-
tions line and avoid having your program go into an indefinite wait for an
incoming character. An example subroutine using this technique is shown in
Figure 5-11 under Set IOBYTE (function code 8).

Figure 5-8 shows a subroutine that uses the Direct Console Input and Output.
Because this example is more complex than any shown so far, the code used to
check the subroutine has also been included.

Function 7: Get IOBYTE Setting

Function Code: C=07H
Entry Parameters: None
Exit Parameters: A = IOBYTE current value

Chapter 5: The Basic Disk Operating System

81

s TESTBED CODE

sBecause of the complexity of this subroutine, the

; actual testbed code has been left in this example.

; It assumes that DDT or ZSID

7 will be used for checkcut.

IF 1 ;Change to IF 0 to disable testbed

0100 ORG 100H
0100 C31101 JMP START ;Bypass "variables" setup by DDT
0103 00 OPTIONS: DB o ;Option flags
0104 41454900 TERMS: DB “ATL,CET, 7T, 0 sTerminators
0108 05 BUFFER DE S ;Max. characters in buffer
0109 00 DB (o] ;Actual count
010A 6363836363 DB 99,99,99,99,99 ;Data bytes
O10F 6343 DE 99,99

START:
0111 210801 LXI H, BUFFER ;Get address of buffer
0114 110401 LXI D0, TERMS sAddress of terminator table
0117 3A0301 LDA OPTIONS ;Get opticns set by DOT
011A 47 MoV B, A sPut in correct register
011B CD2BO1 CALL RCS ;Enter subroutine
011E CD3800 CALL 38H sForce DDT breakpoint
0121 C31101 JMP START ;Test again

ENDIF sEnd of testbed

sRCS: Read conscle string (using raw input)

sReads a string of characters into a memcry

i buffer using raw input.

;Supports options:

H o to echo characters or not (when echaing,

H a carriage return will be echoed followed

H by line feed)

i o warm boot on input of cantral-C or nat

H o terminating input either an:

i a max. no of chars input

H 2 matching terminator character

7 Calling Sequence

H LXI H, BUFFER

H Buffer has structure:

[BUFFER: DE 10 Max. size

3 DE [d] Actual Read

[Ds 10+1 Buffer area

$ MVI B, OPTIONS Options required

3 (see equates)

H LXI D, TERMZ Pointer to OOH-byte

H terminated Chars,

H any one of which is a

H terminator.

H CALL RCS

3 Exit Parameters

; BUFFER: Updated with data bytes and actual

H character count input.

3 (Does not include the terminator).

H A = Terminating Code

H [Maximum number of characters input.

H NZ = Terminator character found.
0001 = RCS$ECHO EQU 0000$0001E i Input characters to be echoed
0002 = RCS$ARORT EQU 0000$0010F ;Abort on Control-C
0004 = RCS$FOLD EQU 0000$0100E ;Faold lowercase to uppercase
0008 = RCS$TERM EQU 0000%$1 000 ;DE -> term. char. set
0006 = B$DIRCONIOQ EQU é ;Direct console I/0
0005 = EBDOS EQU S sBDOS entry point
0003 = CTL$C EGQU O3H ;Control-C
ooon = CR EQU ODH s;Carriage return

Figure 5-8. Read/write string from/to console using raw 1/ O

82 The CP/M Programmer’s Handbook

000A = LF EQU OAH sLine feed
0008 = BS EQU 0gH ;Backspace
RCS$ST: sInternal standard terminator table
0124 0D 0B ODH sCarriage return
0125 0A DE OAH sLine feed
0126 00 DB o sEnd of table
RCS$BSS: sDestructive backspace sequence
0127 08200800 DR BS,” 7,BS,0
RCS: 3 {<<<< Main entry
012E 23 INX H sHL => actual count
0120 3600 MVI M, 0 ;Reset to initial state
012E 2B nex H sHL —> max. count
RCS$L:
012F ES PUSH H ;Save buffer pointer
0130 CD9201 CALL RCS$GC sGet character and execute:
3 ECHO, ABORT, and FOLD opticns
;C = character input
0133 E1 POP H ;Recover buffer pointer
0134 3E08 MVI A, RCS$TERM sCheck if user-specified terminator
0136 AQ ANA B 3B = options
0137 C23D01 JINZ RCS$UST sUser specified terminatars
013A 112401 LXI D, RCS$ST ;Standard terminatcors
RCE$UST:
013D CDD401 CALL RCE$CT sCheck for terminator
0140 CA4CO1L Jz RCSENOTT ;Not terminator
0143 47 Mov B, A ;Preserve terminating char.
RCS$MCI: s (Max. char. input shares this ccde)
0144 QEQO MVI c,0 ;Terminate buffer
0144 CD7FO1 CALL RCS$SC ;Save character
0149 78 MOV A B sRecover terminating char.
014A B7 '0RA A ;Set flags
014B C9 RET
RCS$NOTT: ;Not a terminator
014C 3E08 MVI A, RS ;Check for backspace
O14E B9 CMP [
014F CA&001 Jz RCS$BS ;Backspace entered
0152 CD7F01 cAaLL RCS$SC ;Save character in buffer
0155 CD2RO1 cAaLL RCS$UC sUpdate count
0158 C22F01 JINZ RCS$L sNot max. so get another char.
01SE 0600 MVI B, 0 ;Fake terminating char.
0150 C34401 JMP RCS$MCI 3A = 0 for max. chars. input
RCS$BS: ;Backspace entered
0160 ES PUSH H ;Save buffer pointer
0161 23 INX H sHL -» actual count
0162 35 DCR M ;Back up one
0162 FA7AO1 JM RCS$NES ;Check if count negative
0166 212701 LXI H, RCS$ESS sHL -» backspacing sequence
016% 3EO01 MVI A, RCS$ECHO 3N, check if echcing
016B AQ ANA B 3BS will have been echoed if so
014C CA7001 4z RCS$BSNE ;No, input BS not echoed
016F 23 INX H ;Bypass initial backspace
RCS$BENE:
0170 CS PUSH B ;Save options and character
0171 DS PUSH o ;Save terminator table painter
0172 CDF&01 CALL wcs sWrite console string
0175 D1 FOP D ;Recover terminator table pointer
017¢& C1 POP B ;Recover options and character
0177 C37B0O1 JMP RCS$BSX ;Exit from backspace logic
RCSENES:
017A 34 INR M ;Reset count to O
RCS$BSX:
017k E1 PQF H sRecover buffer pointer
017C C32F01 JMP RCS$L ;Get next character
Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System

83

RCS$5C: ;Save character in C in buffer
sHL —> buffer pointer
017F DS PUSH D ;Save terminator table pocinter
0180 ES PUSH H ;Save buffer pointer
0181 23 INX H fHL -> actual count in buffer
0182 SE Mav E,M ;Get actual count
0182 1C INR E ;Count of O points to first data byte
0124 1800 MVI D,0 tMake word value of actual count
01848 19 DAD D sHL ~> next free data byte
0187 71 MOV M, C ;Save data byte away
0188 E1l PQOP H ;Recover buffer paointer
0189 D1 POF o sRecaver terminator table
;7 Pointer
018A C9 RET
RCS$UC: sUpdate buffer count and check for max.
sReturn Z set if = to max., NZ
s if not HL -> buffer on entry
O18B ES PUSH H ;Save buffer pointer
018C 7E MOV A M ;Get max. count
018D 23 INX H sHL -> actual count
O18E 34 INR M ;Increase actual count
018F BE CMP M ;Compare max. to actual
0190 E1l POP H sReccaver buffer pointer
0191 C9 RET iZ-flag set
RCS$GC: ;Get character and execute
7 ECHO, ABORT and FOLD options
0192 DS PUSH D iSave terminator table pointer
0193 ES PUSH H :Save buffer pointer
0194 CS PUSH B sSave option flags
RCS$WT:
0195 0E06 MVI C, B$DIRCONIO sFunction code
0197 1EFF MVI E,OFFH iSpecify input
0199 CDOS00 CALL BDOS
019C B7 ORA A sCheck if data waiting
019D CA9S01 Jz RCS$WT ;Go back and wait
01A0 C1 POP B sRecover option flags
O1A1 4F Mav C,A ;Save data byte
01A2 3E02 MVI A, RCS$ABRORT sCheck if abort option enabled
01A4 AO ANA B
01AS5 CAAEO1 Jz RCS$NA $No abort
01A8 3EO03 MVI A, CTLS$C sCheck for control-C
01AA B? CMP (o
01AR CA0000 Jz o iWarm boot
RCS$NA:
01AE 3E04 MVI A, RCS$FOLD ;Check if folding enabled
01BO A0 ANA B
O1B1 C4ESO1 CNZ TOUPPER :Convert to uppercase
01B4 3E01 MVI A, RCS$ECHO sCheck if echca required
01R& AO ANA B
01B7 CAD101 Jz RCS$NE iNo echo required
O1BA CS PUSH B ;Save options and character
O1BB 59 MoV E,C tMove character for ocutput
01BC OEQé& MVI C, B$DIRCONIO iFunction code
O1BE CDOS00 CALL BDROS sEcho character
01C1 C1t POP B sRecover options and character
01C2 3EOD MVI A,CR $Check if carriage return
01C4 B9 CMP c
01CS C2p101 JINZ RCS$NE 3No
o1c8 Ccs PUSH B $Save options and character
01C9 OE04 MVI C,B$DIRCONIQ sFunction code
O1CB 1EOQA MVI E,LF ;0utput line feed
01CD CDOS00 CALL BDOS
01D0 C1 POP B tRecover options and character
RCS$NE @
01D1 E1 POP H iRecover buffer pointer
01D2 D1 POP D sRecover terminator table
01D3 C9 RET sCharacter in C
Figure 5-8. (Continued)

84 The CP/M Programmer’s Handbook

RCS$CT: ;Check for terminator
3C = character just input
sDE -> 00-byte character
string of term. chars.
Returns Z status if no
match found, NZ if found
(with A = C = terminating
character)

4
B
7
H
H
H

01D4 DS PUSH D Save table pointer
RCS$CTL:
01DS 1A LDAX D ;Get next terminator character
01D6 B7 ORA. A ;Check for end of table
01D7 CAE201 JZ RCS$CTX ;No terminator matched
01DA BY CMP [sCompare to input character
01DB CAE201 Jz RCS$CTX sTerminator matched
O1DE 13 INX D ;Move to next terminator
01DF C3D501 JMP RCS$CTL s loop to try next character in table
RCS$CTX: ;Check terminator exit
01E2 B7 ORA A At this point, A will either

; be O if the end of the

3 table has been reached, or
5 NZ if a match has been

3 found. The Z-flag will be
;s set.

01E3 D1 POP D Recover table pointer
O1E4 C9 RET
;s TOUPPER - Fold lowercase letters to upper
H C = Character on entry and exit
TOUPPER:
01ES 3E&0 MVI A, 7a’-1 ;Check if folding needed
O1E7 B9 CMP c ;Compare to input char.
01E8 D2FS01 JNC TOUPX 3No, char. is < or = "
01EB 3E7A MVI A, 7z7 ;Maybe, char. is = or > "a"
O1ED B? CMP C
O1EE DAFS01 JC TOUPX sNa, char. is > "z"
01F1 3EDF MVI A, ODFH ;Fold character
01F3 Al ANA Cc
O1F4 4F MoV c,A sReturn folded character
TOUPX:
01FS C9 RET

+WCS — Write console string (using raw I/C)
sOutput terminates when a QOH byte is encountered.
+A carriage return is output when a line feed is
sencountered.

;Calling sequence
H, BUFFER
CALL wes

sExit parameters

H HL -> OOH byte terminator
WCS:
O1F6 ES PUSH H sSave buffer pointer
O01F7 7E MOV AM ;Get next character
01F8 B7 ORA A sCheck if OOH
01F9 .CA1602 Jz WCsX sYes, exit
O1FC FEOA CPI LF sCheck if line feed
O1FE CCOCO2 cz WCSLF sYes, output a carriage return
0201 SF MoV E,A ;jCharacter to be cutput
0202 OE06 MVI C, E$DIRCONIO sFunction code
0204 CDOS00 CALL BDOS ;Output character
0207 E1 POP H sRecover buffer pointer
0208 23 INX H ;Update to next char.
0209 C3F601 JMP wcs sOutput next char.
WCSLF: sLine feed encountered
020C QEO6 MVI C, B$DIRCONIC sFunction code

Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System 85

020E 1EOD
0210 CDOS00
0213 3EO0A
0215 C9

0216 Et
0217 C9

MVI E,CR 7O0utput a CR
CALL BDOS
MVI A,LF sRecreate line feed
RET ;Output LF

WCSX: sExit
POP H ;Balance the stack
RET

Figure 5-8. (Continued)

Example

0007 =
0005 =

0000 OEO7
0002 CDOS00
Purpose

Notes

BS$GETIO EQU 7 sGet IOBYTE

BDOS EQuU S sBDOS entry point
MVI C,B$GETIO sFunction code
CALL BDOS sA = I0OBYTE

This function places the current value of the IOBYTE in register A.

As we saw in Chapter 4, the IOBYTE is a means of associating CP/M’s logical
devices (console, reader, punch, and list) with the physical devices supported by a
particular BIOS. Use of the IOBYTE is completely optional. CP/M, to quote from
the Digital Research CP/M 2.0 Alteration Guide, “...tolerate[s] the existence of the
IOBYTE at location 0003H.”

In practice, the STAT utility provided by Digital Research does have some
features that set the IOBYTE to different values from the system console.

Figure 5-9 summarizes the IOBYTE structure. A more detailed description
was given in Chapter 4.

Each two-bit field can take on one of four values: 00,01, 10, and 11. The value
can be interpreted by the BIOS to mean a specific physical device, as shown in
Table 4-1.

Figure 5-10 has equates that are used to refer to the IOBYTE. You can see that
the values shown are declared using the SHL (shift left) operator in the Digital
Research Assembler. This is just a reminder that the values are structured this way
in the IOBYTE itself,

Bit No. 7:615:413:21!11:0

-+
+ == 4

Logical Device List Punch Reader Console

Figure 5-9. The IOBYTE structure

86 The CP/M Programmer’s Handbook

; IOBYTE equates
:These are for accessing the IOBYTE.
sMask values to isalate specific devices.
: (These can alsc be inverted to preserve all BUT the
; specific device)
0003 = 10%CONM EQU 0000%001 1B ;Console mask
ooC = 10$RDRM EQU 0000%$1100B sReader mask
0030 = I0$PUNM EQU 0011%0000B ;FPunch mask
00CoO = 10$LSTM EQU 1100$0000B sList mask
;Console values
0000 = 10$CTTY EQU o] ;Console —-> TTY:
0001 = I0$CCRT EQU 1 ;Console -> CRT:
0002 = I10$CBAT EQU 2 ;Console input <- RDR:
;Console output -> LE&T:
0003 = 10$CUC1 EQU 3 :Console -> UC1: (user consocle 1)
;Reader values
0000 = I0$RTTY EQU O SHL 2 sReader <- TTY:
0004 = I0$RRDR EQU 1 SHL 2 ;Reader <- RDR:
0008 = I0%$RUR1 EQU 2 SHL 2 sReader <- UR1: (user reader 1)
000C = 10$RUR2 EQU 3 SHL 2 sReader <- UR2: (user reader 2)
sPunch values
0000 = 10$PTTY EQU 0 SHL 4 sFunch -> TTY:
0010 = 10$PPUN EGQU 1 SHL 4 sPunch -> PUN:
0020 = 10¢PUP1 EQU 2 SHL 4 sPunch —> UP1: (user punch 1)
0030 = 10$PUP2 EQU 3 SHL 4 ;Punch —-» UP2: (user punch 2)
sList values
0000 = I0$LTTY EQU 0 SHL é sList —-> TTY:
0040 = I0$LCRT EQU 1 SHL 6 sList -> CRT:
0080 = I0$LLPT EQU 2 SHL & ;List —-> LPT: (physical line printer)
QOCO = 10$LULY EQU 3 SHL é sList —» UL1: (user list 1)

Figure 5-10. IOBYTE equates

Function 8: Set IOBYTE

Function Code: C= 08H
Entry Parameters: E = New IOBYTE value
Exit Parameters: None

Example This listing shows you how to assign the logical reader device to the BIOS’s
console driver. It makes use of some equates from Figure 5-10.

0007 = B$GETIO EQU 7 ;Get IOBYTE

0008 = B$SETIO EQU 8 ;Set IOBYTE

0005 = BDOS EQU S s BDOS entry point

000C = I0$RDRM EQU 0000%$1100B sReader bit mask

0008 = I0$RUR1 EQU 2 SHL 2 ;User reader select
sThis example shows how to assign the logical
sreader to the user-defined reader #1 (UR1:)

0100 ORG 100H

0100 OEO7 MVI C,B$GETIO sFirst, get current IOBYTE

Chapter 5: The Basic Disk Operating System 87

0102 CDOS00 CALL BDOS A
0105 E&F3 ANI (NOT IO$RDRM) AND OFFH :Preserve all but
3 reader bits
0107 F608 ORI 10$RUR1 ;0R in new setting
0109 SF MOV E,A ;Ready for set IOBYTE
010A OEO8 MVI C,B$SETIO ;Set new value
010C CDO500 CALL BDOS
Purpose This function sets the IOBYTE to a new value which is given in register E.

Notes

Because of the individual bit fields in the IOBYTE, you will normally use the Get
IOBYTE function, change some bits in the current value, and then call the Set
IOBYTE function.

You can use the Set IOBYTE, Get IOBY TE, and Direct Console I/ O functions
together to create a small program that transforms your computer system into a
“smart” terminal. Any data that you type on your keyboard can be sent out of a
serial communications line to another computer, and any data received on the line
can be sent to the screen.

Figure 5-11 shows this program and illustrates the use of all of these functions.

For this program to function correctly, your BIOS must check the IOBYTE
and detect whether the logical console is connected to the physical console (with
the IOBYTE set to TTY:) or to the input side of the serial communications line
(with the IOBYTE set to RDR:).

Figure 5-11 shows how to use the Get and Set IOBYTE functions to make a
simple terminal emulator. For this example to work, the BIOS must detect the
Console Value as 3 (I0$CUCI) and connect Console Status, Input, and Output
functions to the communications line.

0006 = B$DIRCONIO EQU é ;Direct console input/output

0007 = B$GETIOQ EQU 7 ;Get IORYTE

0008 = B$SETIO EQU] sSet IOBYTE

000B = B$CONST EQU 11 ;Get console status (sneak preview)

0005 = BDOS EQU S sBDOS entry point

0003 = I0O$CONM EQU 0000400118 ;Conscle mask for IOBYTE

0001 = I0$CCRT EQU 1 ;Console - CRT:

0003 = I0s$CUC1 EQU 3 ;Console - user console #1
TERM:

0000 CD2A00 CALL SETCRT ;Connect consale —> CRT:
TERM$CKS:

Q003 CDS200 CALL CONST ;Get CRT status

0006 CA2400 JZ TERM$NOK I ;No console input

0009 CD4BOO CALL CONIN ;Get keyboard character

000C CD2000 CALL SETCOMM sConnect console -> comm. line

000F CD4500 CALL CaNQuUT sOutput to comm. line
TERM$CCS: ;Check comm. status

0012 CDS200 CALL CONST ;Get "console" status

0015 CA0000 Jz TERM iNo incoming comm. character

0012 CD4ROO CALL CONIN ;Get incoming comm. character

Figure 5-14.

Simple terminal emulator

88 The CP/M Programmer’s Handbook

001B CD2A00 CALL SETCRT ;Connect console => CRT:
001E CD4S00 CALL CONQUT sOutput to CRT
0021 C30300 JMP TERM$CKS sLoop back to check keyboard status
TERMSNOKI :
0024 CD3I000 CALL SETCOMM ;Connect conscle —> comm. line
0027 C31200 JMP TERM$CCS s;Loop back. to check comm. status
SETCRT: s;Connect conscle -> CRT:
002A FS PUSH PSW ;Save possible data character
002 0401 MVI B, IO$CCRT ;Connect conscle -> CRT:
0020 C333I00 JMP SETCON s Common code
SETCOMM: ;Connect console —> comm. line
0030 FS PUSH PSW ;Save possible data character
0031 0803 MVI B, I0sCUC1 ;Connect console —-> comm. line
sDrop into SETCON
SETCON: ;Set console device
;New code in B (in bits 1,0)
0033 CS PUSH B ;Save code
0034 QEQ7 MVI C,B$GETIO ;Get current IOBYTE
0036 CDOS00 CALL BDOS
0039 E&FC ANI (NOT IQ$CONM) AND OFFH j;Freserve all but canscle
003B C1 POF B sRecover required code
003C BO ORA B sO0R in new bits
003D SF MQy E,A ;Ready for setting
003E OEOS8 MVI C,B$SETIO sFunction code
0040 CDOS00 CALL BDCS
0043 F1 POP PSW sRecover possible data character
0044 C9 RET
CONQUT :
0045 SF Mav E,A ;Get data byte for output
0044 QEOE MVI C,B$DIRCONIC sFunction code
00423 C30500 JMP BDOS ;BDOS returns to CONOUT’ s caller
CONIN:
004R QE0& MVI C, B$DIRCONICO sFunction code
Q04D 1EFF MVI E, OFFH ;Indicate conscle input
004F C30500 JMP BDOS ;BDOS returns to CONIN“s caller
CONST:
0052 OEOB MVI C, B$CONST sFunction code
0054 CDOS00 CALL BDOS
0057 B7 ORA A ;Set Z-flag to result
0058 C% RET
Figure 5-11. (Continued)

Function 9: Display “$"-Terminated String

Function Code: C=09H
Entry Parameters: DE = Address of first byte of string

Exit Parameters: None
Example
0009 = B$PRINTS EQU 9 ;Print $-Terminated String
0005 = BDOS EQU S ;BDOS entry point
000D = CR EQU ODH sCarriage return
Q00A = LF EQU 0AH sLine feed
0009 = TAR EQU 09H sHorizontal tab

Chapter 5: The Basic Disk Operating System 89

0000 ODOAOPSASBMESSAGE: DB CR,LF,TAB, “This is a message”,CR,LF, "$~
0017 OEO09 MVI C, B$PRINTS sFunction code
0019 110000 LXI D, MESSAGE ;Pointer to message
001C CDOS00 CALL BDOS
Purpose This function outputs a string of characters to the console device. The address

of this string is in registers DE. You must make sure that the last character of the
string is “$”; the BDOS uses this character as a marker for the end of the string.
The “$” itself does not get output to the console.

While the BDOS is outputting the string, it expands tabs as previously de-
scribed, checks to see if there is an incoming character, and checks for CONTROL-S
(XOFF, which stops the output until another character is entered) or CONTROL-P
(which turns on or off echoing of console characters to the printer).

Notes One of the biggest drawbacks of this function is its use of “$” as a terminating
character. As a result, you cannot output a string with a “$” in it. To be truly
general-purpose, it would be better to use a subroutine that used an ASCII NUL
(00H) character as a terminator, and simply make repetitive calls to the BDOS
CONOUT function (code 2). Figure 5-3 is an example of such a subroutine.

Figure 5-12 shows an example of a subroutine that outputs one of several
messages. It selects the message based on a message code that you give it as a
parameter. Therefore, it is useful for handling error messages; the calling code can
passitan 8-bit error code. You may find it more flexible to convert this subroutine
to using 00H-byte-terminated messages using the techniques shown in Figure 5-3.

30M (Output message)

This subroutine selects one of several messages based on

3 the contents of the A register on entry. It then displays
s this message on the console.

;Each message is declared with a "$" as its last character.
;s If the A register contains a value larger than the number
3 of messages declared, OM will output "Unknown Message".

3As an option, OM can ocutput carriage return / line feed
$ Prior to outputting the message text.

:Entry parameters

H HL -> message table

H This has the form :

i DB 3 sNumber of messages in table
H DW MSGO sAddress of text (A = 0)

H DW MSG1 (A = 1)

H DW MSG2 (A = 2)

H MSGO: DB ‘Message text$”

; ...etc.

3 A = Message code (from O on up)

; B = Output CR/LF if non-zero

Figure 5-42. Display $-terminated message on console

90 The CP/M Programmer’s

Handbook

Calling sequence

H
H LXI H, MSG$TABLE
H LDA MSGCODE
H MVI E, 0 sSuppress CR/LF
H CALL oM
0009 = B$PRINTS EQU 7 ;sPrint $-terminated string
0005 = RDOS EQU S ;BDOS entry point
ooon = CR EQU ODH sCarriage return
000A = LF EQU 0AH sLine feed
0000 QDOA24 OM$CRLF: DE CR,LF, "%~
0003 SSEEARAESFOMSLM: DE “Unknown Message$”’
aM:
0013 FS PUSH PSW ;Save message code
0014 ES PUSH H ;Save message table pointer
0015 78 Mav A E ;Check if CR/LF required
0014 B7 ORA A
0017 CA2200 Jz OM&ENOCR sNo
001A 110000 LXI D, OM$CRLF sOutput CR/LF
0010 OEQ9 MVI C,B$PRINTS
001F CDOS00 CALL BOOE
OM$NQCR:
0022 E1 POP H ;Recover message table pointer
00232 F1 POF PSW sRecover message cade
0024 BE CMP M sCompare message to max. value
0025 D23700 JNC OM$ERR sErrar—code not <= max.
0028 23 INX H sBypass max. value in table
0029 87 ADD A sMessage code ® 2
002A SF Mav E,A ;Make (code ® 2Z) a word value
002B 1600 MVI oo
0020 19 DAD D sHL -» address of message text
002E SE MoV E.,M ;Get LS byte
002F 23 INX H sHL —> MS byte
0020 S6 Moy o,M sGet MS byte
sDE —> message text itself
OM$FS: sPrint string entry point
0031 OE0% MVI C, B$PRINTS sFunction code
Q0 COOS00 cAaLL BDOS
ce RET sReturn to caller
OM$ERR: sError
0037 110300 LXI D, OM$UM ;Point to "Unknown Message"
003A C3Z100 JMP OM$PS sPrint string
Figure 5-12. (Continued)

Function 10: Read Console String

Example

000A
0005

Function Code:
Entry Parameters:
Exit Parameters:

B$READCONS
BDOS

C=0AH

DE = Address of string buffer
String buffer with console bytes in it

EQU 10
EQU S

sRead Console String
;BDOS entry point

Q050 =

Chapter 5: The Basic Disk Operating System 94

BUFLEN EQU 80 ;Buffer length

BUFFER: ;Console input buffer

0000 S0 BUFMAXCH: DB BUFLEN ;Max. no. of characters in

s buffer

0001 00 BUFACTCH: DB [¢] ;Actual no. of characters input

0002

BUFCH: DS BUFLEN ;Buffer characters

0052 OEOA MVI C, B$READCONS ;Function ccde
0054 110000 LXI D, BUFFER sPointer to buffer
0057 CDOS00 CALL BDOS

Purpose

Notes

This function reads a string of characters from the console device and stores
them in a buffer (address in DE) that you define. Full line editing is possible: the
operator can backspace, cancel the line and start over, and use all the normal
control functions. What you will ultimately see in the buffer is the final version of
the character string entered, without any of the errors or control characters used to
do the line editing.

The buffer that you define has a special format. The first byte in the buffer tells
the BDOS the maximum number of characters to be accepted. The second byte is
reserved for the BDOS to tell you how many characters were actually placed in the
buffer. The following bytes contain the characters of the string.

Character input will cease either when a CARRIAGE RETURN is entered or when
the maximum number of characters, as specified in the buffer, has been received.
‘The CARRIAGE RETURN is not stored in the buffer as a character—it just serves as a
terminator.

If the first character entered is a CARRIAGE RETURN, then the BDOS sets the
“characters input” byte to 0. If you attempt to input more than the maximum
number of characters, the “characters input” count will be the same as the
maximum value allowed.

This function is useful for accepting console input, especially because of the
line editing that it allows. It should be used even for single-character responses,
such as “Y/N” (yes or no), because the operator can type “Y”, backspace, and
overtype with “N”. This makes for more “forgiving” programs, tolerant of humans
who change their minds.

Figure 5-13 shows an example subroutine that uses this function. It accepts
console input, matches the input against a table, and transfers control to the
appropriate subroutine. Many interactive programs need to do this; they accept an
operator command and then transfer control to the appropriate command proces-
sor to deal with that command.

This example also includes two other subroutines that are useful in their own
right. One compares null-byte-terminated strings (FSCMP), and the other con-
verts, or “folds,” lowercase letters to uppercase (FOLD).

92 The CP/M Programmer’s Handbook

000A
0005

0050
0000
0001
0002
0052

0053
0054
0055
0056
0058
005B

00SE
0061
0062
0064
0065
0066

0068
0069
006A
006E

nu

S0
00

00

2B

2B

ES
OEOA
110000
CDOS00

210100
SE
1600
23

19
3600

El
23

SE

3 RSA

sReturn subprocessor address
3This subroutine returns one of several addresses selected

strings.

that is,

strings,
cleared.

Entry parameters

from a table by matching keybocard input against specified
It is normally used to switch control to a
particular subprocessor according to an cption entered

by the operator from the keyboard.

Character string comparisons are performed with case-folding;
lowercase letters are converted to uppercase.

If the operator input fails to match any of the specified
then the carry flag is set.

Qtherwise, it is

HL -> Subprocessor select table
This has the form :

oW TEXTO, SUBPROCO

oW TEXT1, SUBRPROC1

oW [¢] sTerminator
TEXTO: DB “add’,0 ;00H-byte terminated
TEXT1: DR “subtract’,0
SUBPRQCO:

Code for processing ADD function.
SUBPROC1 :
Code for processing SUBRTRACT function.

Exit parameters

DE -> operator input string (OOH-terminated

Carry Clear,

input string).

Carry Set, HL = O000H.
sCalling sequence
; LXI H, SUBPROCTAR
H CALL RSA
H JC ERROR
H LXI D, RETURN
H PUSH D
; PCHL
3 RETURN:
BSREADCONS EQU 10
BDOS EQU S
RSASBL EQU 80
RSASBUF : DB RSASBL
RSASACTC: DB g
RSASBUFC: DS REASEL

DR [e]

RSA:

DCX H

DCX H

PUSH H

MVI C, B$READCONS

LXI D, REASBUF

CALL BDOS

LXT H, REASACTC

MOV E.M

MVI D,0

INX H

DAD D

MVI M, 0
RSASML:

POP H

INX H

INX H

Mav E/M

HL -> subprocessor.

s Subprocessor table

sCarry set only on errar
sFake CALL instruction

sPush return address on stack
s "CALL" to subprocessor

;Read console string into buffer

sBOOS entry point

sBuffer length

;Max. no. of characters
sActual no. of characters
sBuffer characters
;Safety terminator

3Adjust Subprocessor pointer
5 for code below
3Top of stack (TOS)
sFunction code

sDE -> buffer

;Read operator input and

3 Convert to OOH-terminated
sHL -> actual nco. of chars.
;Get actual nc. of chars.
sMake into word value
sHL -> first data character

sHL -> first UNUSED character in buffer
sMake input buffer OOH terminated

-> subproc. table - 2

input
input

sCompare input to specified values
;3 Main loop

sRecover subprocessor table pointer
sMave to top of next entry

sHL -> text address

;Get text address

Figure 5-13.

Read console string for keyboard options

Chapter 5: The Basic Disk Operating System

93

006C 23 INX H
006D Sé MOV o.M sDE ~> text
006E 7A MoV A, D sCheck if at end of subprocessor table
004F B3 ORA E
0070 CA8500 Jdz RSASNFND ;Match not found
0073 23 INX H sHL -> subprocessor address
0074 ES PUSH H ;Save ptr. to subprocessor table
0075 210200 LXI H, RSA$BUFC sHL -> input characters
0078 CD8AOO CALL FSCMP ;Folded string compare
007B C26800 JNZ RSASML ;No match, move to next entry
007E E1 POP H iMatch found, recover subprocessor ptr.
O007F SE MoV E,M ;Get actual subprocessor address
0080 23 INX H
0081 Sé MoV DM sDE ~> Subprocessor code
0082 EB XCHG sHL -> Subprocessor code
0083 R7 ORA A ;Clear carry (match found)
0084 C9 RET

RSASNFND:
0085 210000 LXI H,0 sIndicate no match found
0088 37 sTC ;Set carry
0089 C9 RET

s FSCMP

;Compare folded (lowercase to upper) string.

;This subroutine compares two OOH-byte terminated

sstrings and returns with the condition flags set

;to indicate their relationship.

;Entry parameters

i DE -> string 1

H HL -> string 2

sExit parameters

H Flags set (based on string 1 - string 2, on a

H character-by-character basis)

FSCMP:
008A 1A LDAX D ;Get string 1 character
008B CDPEO0O CALL FOLD ;Fold to uppercase
008E FS PUSH PSW ;Save string 1 character
Q08F 7E MOV AM ;Get string 2 character
0090 CDYEOO CALL FOLD ;Fold to uppercase
0093 47 MoV B,A ;Save string 2 character
0094 F1 POF PSW ;Recover string 1 character
0095 B8 CMF B 3String 1 - string 2
0096 CO RNZ jReturn if not equal
0097 B7 ORA A ;Equal, so check if end of strings
0098 C8 RZ sYes
0099 13 INX D sNo, update string 1 pointer
009A 23 INX H 3 and string 2 painter
009E C38A00 JMP FSCMP sCheck next character

sFOLD

;Folds a lowercase letter (a—-z) to uppercase (A-7)

sThe character to be folded is in A on entry and on exit.

FOLD:
009E 4F MoV C,A ;Preserve input character
009F BE&O MVI A,7a’-1 3sCheck if folding needed
O0A1 B9 CMP C ;Compare to input character
00A2 D2AF0O0 JNC FOLDX $sNo, char. is <= "a"
Q0AS 3E7A MVI A, 7z ;Check if < "z"
00A7 B? CMP o
00A8 DAAF OO0 JC FOLDX :No, char. is > "z"
Q0AR 3EDF MVI A, ODFH ;Fold character
00AD Al ANA o
00AE C9 RET

FOLDX:
00AF 79 Mav A,C sRecover original input char.
Q00RO C9 RET

Figure 5-13. (Continued)

94 The CP/M Programmer’s Handbook

Function 11: Read Console Status

Function Code: C= 0BH

Entry Parameters: None

Exit Parameters: A = 00H if no incoming data byte
A = OFFH if incoming data byte

Example
O00B = B$CONST EQU 11 sGet Conscle Status
0005 = BDOS EQU S sBDOS entry point
0000 OEOB Mv1 C, B$CONST ;Function code
0002 CDOS00 CALL BDOS sA = 00 if no character waiting
sA = OFFH if character waiting
Purpose This function tells you whether a console input character is waiting to be
processed. Unlike the Console Input functions, which will wait until there is input,
this function simply checks and returns immediately.
Notes Use this function wherever you want to interrupt an executing program if a

console keyboard character is entered. Just put a Console Status call in the main
loop of the program. Then, if the program detects that keyboard data is waiting, it
can take the appropriate action. Normally this would be to jump to location
0000H, thereby aborting the current program and initiating a warm boot.
Figure 5-11 is an example subroutine that shows how to use this function.

Function 12: Get CP/M Number

Function Code: C= 0CH
Entry Parameters: None
Exit Parameters: HL = Version number code

Example
000C = B$GETVER EQU 12 ;Get CP/M Versian Number
0005 = BDOS EQU 5 ;BOOS entry point
0000 OEOC Mv1 C, B$GETVER ;Function code
0002 CDOSO0 CALL BDOS tH = 00 for CP/M
sL = version (e.g. 22H for 2.2)
Purpose This function tells you which version of CP/M you are currently running. A

two-byte value is returned:

H = 00H for CP/M, H = 01H for MP/M
L = 00H for all releases before CP/M 2.0

L=20H for CP/M 2.0, 21 H for 2.1,22H for 2.2, and so on for any subsequent
releases.

Chapter 5: The Basic Disk Operating System 95

This information is of interest only if your program has some version-specific
logic built into it. For example, CP/M version 1.4 does not support the same
Random File Input/Output operations that CP/M 2.2 does. Therefore, if your
program uses Random 1/O, put this check at the beginning to ensure that it is
indeed running under the appropriate version of CP/M.

Notes Figure 5-14 is a subroutine that checks the current CP/M version number, and,
if it is not CP/M 2.2, displays an explanatory message on the console and does a
warm boot by jumping to location 0000 H.

Function 13: Reset Disk System

Function Code: C= 0DH
Entry Parameters: None
Exit Parameters: None

eck if CP/M
iThis subroutine determines the version number of the
;operating system and, if not CP/M version 2, displays
$an 2rror message and executes a warm boot.
;Entry and exit parameters
H None
;Calling sequence
H CALL CCPM iWarm boots if not CP/M 2
0007 = B$PRINTS EGU v ;Display $-terminated string
000C = B$GETVER EQuU 12 sGet version number
0005 = BDOS EQL S sBOOS entry point
oo0Dn = CR EQU ODH ;Carriage return
000A = LF EQU OAH sLine feed
0000 ODOA CCPMM: DB CR,LF
0002 S4&3897320 DE “This program can only run under CP/M version 2.~
0021 0D0A24 DR CR,LF, "%~
CCPM:
0034 OEOQC MVI C, B§GETVER ;Get version number
0034 CDOS00 CALL BDOS
003% 7C MOV AH #H must be O fcr CF/M
003A B7 ORA A
003B C24700 JINZ CCPME sMust be MF/M
Q03E 7D MOV AL sL = version number of CF/M
Q03F E6FO ANI OFOH ;Version number in M3 nibble
0041 FE20 CPI 20H ;Check if version 2
0043 C24700 JNZ CCPME sMust be an earlier version
004¢& C? RET sYes, CP/M version 2
CCPME: ;Error
0047 QEO® MVI C, B$PRINTS sDisplay error message
0049 110000 LXI 0, CCPMM
004C CDOS00 CALL BLOOS
004F CR0000 JIMP (¢ ;Warm boot

Figure 5-14. Determine the CP/M version number

96 The CP/M Programmer’s Handbook

Example

Purpose

Notes

000D = B$DSKRESET EQU 13 sReset Disk System
0005 = BDOS EQU S sBDOS entry point
0000 OEOD MVI C, B$DSKRESET sFunction code
0002 CDOS00 CALL BDOS

This function requests CP/M to completely reset the disk file system. CP/M
then resets its internal tables, selects logical disk A as the default disk, resets the
DMA address back to 0080H (the address of the buffer used by the BDOS to read
and write to the disk), and marks all logical disks as having Read/ Write status.

The BDOS will then have to log in each logical disk as each disk is accessed.
This involves reading the entire file directory for the disk and rebuilding the
allocation vectors (which keep track of which allocation blocks are free and which
are used for file storage).

This function lets you change the diskettes under program control. If the
operator were to simply change diskettes, without CP/M knowing about it, the
next access to the (now different) diskette would force CP/M to declare the disk
Read-Only, thwarting any further attempts to write on the diskette. If youneed to
reset one or two disks, rather than the entire disk system, look ahead to the Reset
Disk function (code 37) described at the end of this chapter.

Figure 5-15 shows a simple subroutine that outputs a message on the console,
requesting that the diskette in a specified drive be changed. It then issues a Reset
Disk function call to make sure that CP/M will log in the diskette on the next
access to the drive.

sCDISK

sChange disk

;This subroutine displays a message requesting the
suser to change the specified logical disk, then waits
:for a carriage return to be pressed. It then issues
sa Disk Reset and returns to the caller.

sEntry parameters
H A = Logical disk to be changed (A =0, B = 1)

sExit parameters
i None

;Calling sequence

MVI A, 0 ;Change drive A:
; caLL CDISK
000D = B$DSKRESET EQU 13 ;Disk Reset function code
0009 = B$PRINTS EQU 9 sPrint $-terminated string
0001 = B$CONIN EQU 1 ;Get conscle input
00035 = BDOS EQU S ;BDOS entry point

Figure 5-15.

Reset requested disk drive

Chapter 5: The Basic Disk Operating System

97

[elelel]
000A

0000

0D0OA43EB61

0016 00

0017

003F
0041
0044
0044
0049

004C
004E
0051
0053
0056
0038
005B

3A20616E64

Cé40
321800
0E09
110000
CDOS00

OEO1
CDOS00
FEOD
C24C00
OEOD
CDO500
ce

CR
LF

CDISKM:
CDISKD:

CDISK:

CDISKW:

ADI
STA
MVI
LXI
CALL

MVI
CALL
CPI
JNZ
MVI
CALL
RET

EQU ODH
EQU OAH

DB

DB CR,LF,“Change logical disk ~
(¢}

DB “: and press Carriage Return to continues$”

A =1
CDISKD

C, B$PRINTS
D, CDISKM
BDOS

C, B$CONIN
BDROS

CR

CDISKW

C, B$DSKRESET
BDOS

sConvert to letter
;Store in message
sDisplay message

;Get keyboard character

;Now reset disk system

Figure 5-15.

Reset requested disk drive (continued)

Function 14: Select Logical Disk

Function

Entry Parameters:

Exit Parameters:

Example
000E =
0005 =
0000 OEOE
0002 1EOO
0004 CDOS00
Purpose

Notes

Code: C =0EH
E = Logical Disk Code
00H = Drive A
0lIH = Drive B and so on
None
B$SELDSK EQU 14 ;Select Logical Disk
BDOS EQU s ;BDOS entry point
MVI C, B$SELDSK sFunction code
MVI E,O sE = 0 for A:, 1 for B: etc.

CALL BDOS

This function makes the logical disk named in register E the default disk. All
subsequent references to disk files that do not specify the disk will use this default.
When you reference a disk file that does have an explicit logical disk in its name
you do not have to issue another Select Disk function; the BDOS will take care of
that for you.

Notice the way in which the logical disk is specified in register E. It is not the
same as the disk drive specification in the first byte of the file control block. In the
FCB, a value of 00H is used to mean “use the current default disk” (as specified in
the last Select Disk call or by the operator on the console). With this function, a

98 The CP/M Programmer’s Handbook

Function 15:

Example

value of 00H in register A means that A is the selected drive, a value of 01 H means
drive B, and so on to OFH for drive P, allowing 16 drives in the system.

If you select a logical disk that does not exist in your computer system, the
BDOS will display the following message:

BDOS Err on J: Select

If you type a CARRIAGE RETURN in order to proceed, the BDOS will do a warm
boot and transfer control back to the CCP. To avoid this, you must rely on the
computer operator not to specify nonexistent disks or build into your program the
knowledge of how many logical disk drives are on the system.

Another problem with this function is that you cannot distinguish a logical
disk for which the appropriate tables have been built into the BIOS, but for which
there is no physical disk drive. The BDOS does not check to see if the drive is
physically present when you make the Select Disk call. It merely sets up some
internal values ready to access the logical disk. If you then attempt to access this
nonexistent drive, the BIOS will detect the error. What happens next is completely
up to the BIOS. The standard BIOS will return control to the BDOS, indicating an
error condition. The BDOS will output the message

BDOS Err on C: Bad Sector

You then have a choice. You can press CARRIAGERETURN, in which case the BDOS
will ignore the error and attempt to continue with whatever appears to have been
read in. Or you can enter a CONTROL-C, causing the program to abortand CP/M to
perform a warm boot.

Note that the Select Disk function does not return any values. If your program
gets control back, you can assume that the logical disk you asked for at least has
tables declared for it.

Open File

Function Code: C = 0FH

Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
O00F = B$OPEN EQU 15 ;Open File
0005 = BDOS EQU S sBDOS entry point

FCB: sFile control block

0000 00 FCB$DISK: DB [\] sSearch on default disk drive
0001 46494CA4S4EFCRSNAME: DB FILENAME” ;File name
0009 545950 FCB$TYP: DB ‘TYP”’ sFile type
000C 00 FCB$EXTENT: DB (o] sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
Q00F 00 FCB$RECUSED: DB (o] sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
Q020 00 FCB$SEQREC: DB] :Sequential rec. to read/write

Purpose

Notes

Chapter 5: The Basic Disk Operating System 99

0021 Q000 FCB$RANREC: DW [¢] ;Random rec. to read/write

0023 00 FCB$RANRECO: DB (o] sRandom rec. overflow byte (MS)
0024 OEOF MVI C, R$OPEN sFunction code

0026 110000 LXI D,FCB sDE -> File control block

0029 CDOS00 CALL BDOS A = OFFH if file not found

This function opens a specified file for reading or writing. The FCB, whose
address must be in register DE, tells CP/M the user number, the logical disk, the
file name, and the file type. All other bytes of the FCB will normally be set to 0.

The code returned by the BDOS in register A indicates whether the file has
been opened successfully. If A contains OFFH, then the BDOS was unable to find
the correct entry in the directory. If A=0, 1, 2, or 3, then the file has been opened.

The Open File function searches the entire file directory on the specified
logical disk looking for the file name, type, and extent specified in the FCB; that s,
it is looking for an exact match for bytes 1 through 14 of the FCB. The file name
and type may be ambiguous; that is, they may contain “?” characters. In this case,
the BDOS will open the first file in the directory that matches the ambiguous name
in the FCB. If the file name or type is shorter than eight or three characters
respectively, then the remaining characters must be filled with blanks.

When the BDOS searches the file directory, it expects to find an exact match
with each character of the file name and type, including lowercase letters or
nongraphic characters. However, the BDOS uses only the least significant seven
bits of each character—the most significant bit is used to indicate special file status
characteristics, or attributes.

By matching the file extent as well as the name and type, you can, if you wish,
open the file at some point other than its beginning. For normal sequential access,
you would not usually want to do this, but if your program can predict which file
extent is required, this is a method of moving directly to it.

Itis also possible to open the same file more than once. Each instance requires
aseparate FCB. The BDOS is not aware that this is happening. It is really only safe
to do this when you are reading the file. Each FCB can be used to read the file
independently.

Once the file has been found in the directory, the number of records and the
allocation blocks used are copied from the directory entry into the FCB (bytes 16
through 31). If the file is to be accessed sequentially from the beginning of the file,
the current record (byte 32) must be set to zero by your program.

The value returned in register A is the relative directory entry number of the
entry that matched the FCB. As previously explained, the buffer that CP/M uses
holds a 128-byte record from the directory with four directory entries numbered 0,
1,2, and 3. This directory code is returned by almost all of the file-related BDOS
functions, but under normal circumstances you will be concerned only with
whether the value returned in A is OFFH or not.

Figure 5-16 shows a subroutine that takes a 00H-byte terminated character

400 The CP/M Programmer’s Handbook

string, creates a valid FCB, and then opens the specified file. Shown as part of this
example is the subroutine BF (Build FCB). It performs the brunt of the work of
converting a string of ASCII characters into an FCB-style disk, file name, and

type.
s OPENF
s0pen File
;Given a pointer to a OOH-byte—terminated file name,
;and an area that can be used for a file cantrol
sblock, this subroutine builds a valid file control
sblock and attempts to open the file.
sI1f the file is opened, it returns with the carry flag clear.
;If the file cannot be opened, this subroutine returns
swith the carry flag set.
sEntry parameters
3 DE -> 3é-byte area for file control block
; HL -> OOH-byte terminated file name of the
H form {disk:} Name {.typ}
H (disk and typ are optional)
sExit parameters
i Carry clear : File opened correctly.
3 Carry set : File not opened.
;Calling Sequence
; LXI D,FCB
H LXI H, FNAME
H CALL OPENF
3 Jdc ERROR
swhere
s FCB: DS 38 sSpace for file control black
sFNAME: DB “As TESTFILE.DAT”,0
000F = B$OPEN EQU 15 sFile Open function code
0005 = BDOS EQU S ;BDOS entry point
QPENF:
0000 DS PUSH D sPreserve pointer to FCB
0001 CDOECOO CALL BF sBuild file control blaock
0004 OEOF MVI C, B$OPEN
0004 D1 POP D ;Recover pointer to FCB
0007 CDOS00 CALL BDOS
000A 17 RAL ;1f A=OFFH, carry set
sotherwise carry clear
000R C9 RET
3 BF
sBuild file control block
sThis subroutine formats a OOH-byte-terminated string
s (presumed to be a file name) into an FCB, setting
sthe disk and file name and type and clearing the
sremainder of the FCB to 0’s.
sEntry parameters
H DE -> file control block (36 Eytes)
3 HL -> file name string (OOH-byte-terminated)
sExit parameters
3 The built file control block
sCalling sequence
H LXI D,FCB
H LXI H, FILENAME
H CALL BF
BF:

Figure 5-16. Open file request

Chapter 5: The Basic Disk Operating System 404

000C 23 INX H ;Check if 2nd char. is ":"
000D 7€ MOV AM 3Get character from file name
Q00E 2B nex H sHL -> now back at 1st char.
000F FERA CPI ‘e sIf ":", then disk specified
0011 C21C00 JNZ BF$ND ;No disk
0014 7€ MoV A M ;Get disk letter
0015 E&1IF ANI 0001$1111R A (41H) -> 1, B (42H) -> 2 ..,
0017 23 INX H ;Bypass disk letter
0018 23 INX H ;Bypass ":"
0019 C231D00 JIMP BF&3D ;Store disk in FCB
BF$ND: iNo disk present
001C AF XRA A ;Indicate default disk
BF$SD:
001D 12 STAX D ;Store disk in FCB
001E 13 INX D sDE -> 1st char. of name in FCR
001F OEO8 MVI c,8 ;File name length
0021 CD3700 CALL BFS$GT ;Get token
;Note -- at this point, BF$GT
3will have advanced the string
spointer to either a "." ar
s00H byte
0024 FE2E CPI1 ‘e’ ;Check terminating character
00286 C22A00 JINZ BFSNT iNo file type specified
0029 23 INX H sBypass "." in file name
RFSNT:
002A OEOQ3 MVI c,3 ;File type length
002C CD3700 CALL BF$GT ;Get token
sNote —- if no file type is
iPresent BF$GT will merely
;spacefill the FCB
002F 0400 MVI R, 0 30-fill the remainder of the FCB
0031 QOE18 MVI C,24 736 - 12 (disk, name, type = 12 chars.)
0033 CD&400 CALL BF$FT ;Re—use fill token S/R
0036 €9 RET
;BF$GT
;Build FCB -- get token
7This subroutine scans a file name string,
sPlacing characters into a file control block.
30n encountering a terminator character ("." ar O0H),
ithe remainder of the token is space filled.
;If an "=" is encountered, the remainder of the taoken
sis filled with "7".
;Entry parameters
H DE -> Into file control black
H HL => Into file name string
3 C = Maximum no. of characters in token
sExit parameters
H File control block contains next taken
H A = Terminating character
. BF$GT:
0037 7E MoV AM ;Get next string character
0038 B7 ORA A ;Check if end of string
0039 CAS5700 Jz BF$SFT ;Yes, space fill token
003C FE2A CPI . ;Check if ?-fill required
003E CASCO0 Jz BF$QFT sYes, fill with ?
0041 FE2E CPI e sAssume current tcoken is file
sname
;Check if file type coming up
s (If current token is file
stype this check is
;benignly redundant)
0043 CAS700 Jz BF$SFT :Yes, space fill taken
0046 12 STAX D iNone of the above, so stare
;in FCB
0047 13 INX D sUpdate FCB pointer
0048 23 INX H ;Update string pointer
Figure 5-46. (Continued)

102 The CP/M Programmer’s Handbook

0049 OD DCR (= ;Countdown on token length
004A C23700 JINZ BF$GT 3Still more characters to go
BF$SKIP: ;Skip chars. until "." or OOH
004D 7E MoV A M ;Get next string character
Q04E B7 ORA A sCheck if OOH
004F C8 RZ sYes
0050 FEZ2E CPI .7 sCheck if "."
0052 c8 RZ ;Yes
0053 23 INX H sUpdate string peointer (only)
0054 C24D00 JMP BF$SKIP ;Try next character
BF$SFT: ;Space fill token
0057 0820 MVI B,” ~
0059 CR8400 IMP BF&FT sCaommon fill token code
;BF$FT returns to caller
BF$QFT: ;Question mark fill token
QOSC Q&3F MVI B, "7
00SE CDé4A00 CALL BF$FT sCommon fill token code
0041 C34D00 JMP BF$SKIP ;Bypass multiple "x®" etc.
BF$FT: 3Fill token
0064 FS PUSH PSW ;Save terminating character
0065 78 Mov AR ;Get fill characer
BF$FTL: ;s Inner loop
0066 12 STAX D ;Store in FCB
0067 13 INX D jllpdate FCE Pointer
0068 Q0D DCR c sDowndate residual count
0067 C26600 JINZ BFSFTL ;Keep going
006C F1 POP PSW sRecover terminating character
006D C9 RET
Figure 5-16. (Continued)
Function 16: Close File
Function Code: C=10H

Example

Purpose

Entry Parameters: DE = Address of file control block
A = Directory code

Exit Parameters:

0010
0005

0000
0024

0024
0029

This function terminates the processing of a file to which you have written
information. Under CP/M you do not need to close a file that you have been
reading. However, if you ever intend for your program to function correctly under
MP/M (the multi-user version of CP/M) you should close all files regardless of

= RDOS
FCR:

0E10

110000

CDOS00

their use.

B$CLOSE

MVI
LXI
CALL

EQU 16
EQU S
ns 36
C, B$CLOSE
D,FCB
BDOS

;Close File
;BDOS entry point

sFile control block

sFunction code
sDE -> File control black
A 0,1,2,3 if successful
A OFFH if file name not
directory

in

Notes

Chapter 5: The Basic Disk Operating System 103

The Close File function, like Open File, returns a directory code in the A
register. Register A will contain OFFH if the BDOS could not close the file
successfully. If A is 0, 1, 2, or 3, then the file has been closed.

When the BDOS closes a file to which data has been written, it writes the
current contents of the FCB out to the disk directory, updating an existing
directory entry by matching the disk, name, type, and extent number in the same
manner that the Open File function does.

Note that the BDOS does not transfer the last record of the file to the disk
during the close operation. It merely updates the file directory. You must arrange
to flush any partly filled record to the disk. If the file that you have created is a
standard CP/M ASCII text file, you must arrange to fill the unused portion of the
record with the standard 1AH end-of-file characters as CP/M expects, as
explained in the section on the Write Sequential function (code 21).

Function 17: Search for First Name Match

Example

Purpose

Function Code: C=11H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code
0011 = B$SEARCHF EQU 17 s Search First
0005 = BDOS EQU S sBDOS entry point
FCB: ;File control block
0000 00 FCR$DISK: DR [¢] sSearch on default disk drive
0001 46494CAS3FFCBSNAME: DB ‘FILE???7?” sAmbiguous file name
0009 S43FS0 FCR$TYP: DR TP sAmbiguous file type
000C 00 FCB$EXTENT: DB 0 sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F Q0 FCB$RECUSED: DR (o] sRecords used in this extent
0010 0000000000FCR$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB [sSequential rec. to read/write
0021 0000 FCB$RANREC: DW (o] sRandom rec. to read/write
0023 00 FCB$RANRECO: DE o] sRandom rec. overflow byte (MS)
0024 QE11 MVI C, BE$SEARCHF ;Function code
0026 110000 LXI D,FCE sDE -> File control block
0029 CDOS00 CALL BDOS A = 0,1,2,3.
: (A % 32) + DMA -> directory
3 entry
sA = OFFH if file name not
3 found
This function scans down the file directory for the first entry that matches the

file name, type, and extent in the FCB addressed by DE. The file name, type, and
extent may containa “?” (ASCII 3FH) in one or more character positions. Where
a *“?” occurs, the BDOS will match any character in the corresponding position in
the file directory. This is known as ambiguous file name matching.

The first byte of an FCB normally contains the logical disk number code. A
value of 0 indicates the default disk, while I meansdisk A,2is B,andsoonuptoa

404 The CP/M Programmer’s Handbook

Notes

possible maximum of 16 for disk P. However, if this byte contains a “?”, the BDOS
will search the default logical disk and will match the file name and type regardless
of the user number. This function is normally used in conjunction with the Search
Next function (which is described immediately after this function). Search First, in
the process of n‘ihtching afile, leaves certain variables in the BDOS set, ready fora
subsequent Search Next.

Both Search First and Search Next return a directory code in the A register.
With Search First, A = OFFH when no files match the FCB; if a file match is
found, A will have a value of 0, 1, 2, or 3.

To locate the particular directory entry that either the Search First or Search
Next function matched, multiply the directory code returned in A by the length of
adirectory entry (32 bytes). This is easily done by adding the A register to itself five
times (see the code in Figure 5-17 near the label GNFC). Then add the DMA
address to get the actual address where the matched directory entry is stored.

There are many occasions when you may need to write a program that will
accept an ambiguous file name and operate on all of the file names that match it.
(The DIR and ERA commands built into the CCP are examples that use ambigu-
ous file names.) To do this, yott must use several BDOS functions: the Set DMA
Address function (code 26, described later in this chapter), this function (Search
First), and Search Next (code 18). All of this is shown in the subroutine given in
Figure 5-17.

s GNF

;This subroutine returns an FCB setup with either the
sfirst file matched by an ambiguous file name, or (if
sspecified by entry parameter) the next file name.

;Note : this subroutine is context sensitive. You must
; not have more than one ambiguous file name
sequence in process at any given time.

323> Warning : This subroutine changes the DMA address
33> inside the BDOS.

sEntry parameters
H DE -> Possibly ambiguous file name
(00-byte terminated)
(Only needed for FIRST request)
; HL -> File control block
B A QO : Return FIRST file name that matches
H NZ : Return NEXT file name that matches

nu

sExit parameters
;Carry set : A = FF, no file name matches
H A not = OFFH, error in input file name
sCarry clear : FCB setup with next name
H HL -> Directory entry returned
by Search First/Next

;Calling sequence
$ LXI D, FILENAME
LXI H,FCB

Figure 5-17.

Search first/next calls for ambiguous file name

Chapter 5: The Basic Disk Operating System

105

H MVI A, 0 sor MVI A,1 for NEXT
H CALL GNF
0011 = B$SEARCHF EQU 17 sSearch for first file name
0012 = B$SEARCHN EQU 18 ;Search for next file name
001A = B$SETDMA EQU 26 ;Set up DMA address
0005 = BDOS EQU S sBDOS entry point
0080 = GNFDMA EQU 80H sDefault DMA address
000D = GNFSVL EQU 13 ;Save length (no. of chars to move)
0024 = GNFFCL EQU 36 sFile control block length
0000 GNFSV: DS GNF3VL ;Save area for file name/type
GNF 2
000D ES PUSH H ;Save FCB pointer
QO0E DS PUSH D ;Save file name pointer
000F FS PUSH PSW sSave first/next flag
0010 118000 LXI D, GNFDMA ;Set DMA to known address
0013 OE1A MVI C, B$SETDMA sFunction code
0015 CDOS00 CALL BDOS
0018 F1 POP PSW sRecover first/next flag
0019 E1 POP H sRecover file name pointer
001A D1 POP D sRecover FCB pointer
OO01B DS PUSH D sResave FCB pointer
001C B7 ORA A ;Check if FIRST or NEXT
001D C23E00 JNZ GNFN sNEXT
0020 CD9300 CALL BF 3Build file control block
0023 E1 POP H ;Recover FCB pointer (to balance stack)
0024 D2 RC sReturn if errvor in file name
0025 ES PUSH H sResave FCB pointer
sMove ambiguous file name to
;save area
sHL -> FCB
0026 110000 LXI D, GNFSV sDE -> save area
0029 OEOD MVI C, GNFSVL ;Get save lenath
002B CD8AOO CALL MOVE
002E D1 POP D sRecover FCB pointer
002F DS PUSH D sand resave
0030 OE11 MVI C, B$SEARCHF sSearch FIRST
0032 CDOS00 CALL BDOS
0035 E1 POP H ;Recover FCB pointer
0036 FEFF CPI OFFH ;Check for error
0038 CA7DO0O Jz GNFEX sError exit
003B C3SDO0 JMP GNFC s Common code
GNFN: sExecute search FIRST to re-
sestablish contact with
sprevious file
sUser’s FCB still has
sname/type in it
003E CD7F00 CALL GNFZF sZero-fill all but file name/type
0041 D1 POP D sRecover FCB address
0042 DS PUSH D sand resave
0043 OE11 MVI C, B$SEARCHF sRe—-find the file
0045 CDOS00 CALL BDOS
0048 Di POP D sRecover FCB pointer
0049 DS PUSH D sand resave
004A 210000 LXI H, GNF3V sMove file name from save area
sinto FCB
004D OEOD MVI C, GNFSVL ;Save area length
004F CDB8AOO CALL MOVE
0052 OE12 MVI C, B$SEARCHN ; Search NEXT
0054 CDOS00 CALL RDOS
0057 E1 POP H ;Recover FCB address
0058 FEFF CPI OFFH ;Check for error
005A CA7D00 Jz GNFEX s;Error exit
GNFC:
005D ES PUSH H ;Save FCB address
00SE 87 ADD A sMultiply BDOS return code % 32
Figure 5-47. (Continued)

106 The CP/M Programmer’s Handbook

005F 87 ADL A 3% 4
0060 87 ADD A 3% 3
0061 87 ADD A ¥ 16
0062 87 ADD A PE 32
0063 218000 LXI H, GNFDMA sHL -> DMA address
0066 SF Mav E,A ;Make (code ® 32) a word value
jin DE
0067 1600 MVI 0,0
0069 19 DAD D sHL -> file“s directory entry
sMove file name into FCB
006A D1 POP D ;Recover FCB address
006B ES PUSH H ;Save directory entry pointer
006C DS PUSH D sand resave
006D QEOD MVI C, GNFSVL sLength of save area
Q06F CDEAOO CALL MOVE
0072 3A0000 LDA GNFSV sGet disk from save area
0075 D1 POP D sRecover FCB address
0076 12 STAX D sOverwrite user number in FCB
sSet up to zero-fill tail end
sof FCB
0077 CD7F00 CALL GNF ZF sZero—-fill
007A E1 POP H sRecover directory entry
jpointer
007B AF XRA A sClear carry
007C C9 RET
GNFEX:
007D 37 sTC ;Set carry to indicate error
007E C9 RET
s GNFZF
;Get next file —— zero fill
$This subroutine zero-fills the bytes that follow the
;file name and type in an FCB.
sEntry parameters
H DE -> file control block
GNF ZF 2
007F 210D00 LXI H, GNFSVL ;Bypass area that holds file name
0082 19 DAD D sHL -> FCB + GNFSVL
0083 54 MOV D,H sDE => FCB + GNFSVL
0084 SD MOV E, L
0085 13 INX D sDE -> FCB + GNFSVL + 1
0086 3600 MVI M, 0 sFCB + GNFSVL = 0
0088 Q0E17 MVI C, GNFFCL-GNFSVL ;Remainder of file control block
sDrop into MOVE
sSpread 0°s through remainder
sof FCB
s MOVE
3This subroutine moves C bytes from HL to DE.
MOVE:
008A 7E MoV AM ;Get scurce byte
008B 12 STAX D ;Save destination byte
008C 13 INX D s Increment destination pointer
008D 23 INX H s Increment source pointer
008E 0D DCR C ;Decrement count
008F C28A00 JINZ MOVE 3Go back for more
0092 C? RET
s BF
sBuild file control block
sThis subroutine formats a OOH-byte terminated string
; (presumed to be a file name) into an FCB, setting the
sdisk and file name and type, and clearing the
sremainder of the FCB to 0’s.
Figure 5-17. (Continued)

Chapter 5: The Basic Disk Operating System 107

0093 C9 BF: RET sDummy subroutine for this example

sEntry parameters
H DE -> File control block (3& bytes)
H HL -> File name string (OOH-byte-terminated)

sExit parameters
H The built file control block

1 This subroutine is shown in full in Figure S-1é

Figure 5-17.

(Continued)

Function 18: Search for Next Name Matich

Example

Purpose

Notes

Function Code: C= 12H
Entry Parameters: None (assumes previous Search First call)
Exit Parameters: A = Directory code

0012 = B$SEARCHN EQL 18 ;Search Next
0005 = BDOS EQU S sBDOS entry point
0000 OE12 MVI C, B$SEARCHN sFunction code
sNote: No FCB pointer
sYou must precede this call
3 with a call to Search First
0002 CDOS00 CALL BDOS sA =0,1,2,3
s (A % 32) + DMA -> directory
;3 entry
3A = OFFH if file name not
;3 found

This function searches down the file directory for the next file name, type, and
extent that match the FCB specified in a previous Search First function call.

Search First and Search Next are the only BDOS functions that must be used
together. As you can see, the Search Next function does not require an FCB
address as an input parameter—all the necessary information will have been left in
the BDOS on the Search First call.

Like Search First, Search Next returns a directory code in the A register; in
this case, if A = O0FFH, it means that there are no more files that match the file
control block. If A is not 0OFFH, it will be a value of 0, 1, 2, or 3, indicating the
relative directory entry number.

There are two ways of using the Search First/ Next calls. Consider a simple file
copying program that takes as input an ambiguous file name. You could scan the
file directory, matching all of the possible file names, possibly displaying them on
the console, and storing the names of the files to be copied in a table inside your
program. This would have the advantage of enabling you to present the file names

108 The CP/M Programmer’s Handbook

to the operator before any copying occurred. You could even arrange for the
operator to select which files to copy on a file-by-file basis. One disadvantage
would be that you could not accurately predict how many files might be selected.
On some hard disk systems you might have to accommodate several thousand file
names.

The alternative way of handling the problem would be to match one file name,
copy it, then match the next file name, copy it, and so on. If you gave the operator
the choice of selecting which files to copy, this person would have to wait at the
terminal as each file was being copied, but the program would not need to have
large table areas set aside to hold file names. This solution to the problem is
slightly more complicated, as you can see from the logic in Figure 5-17.

The subroutine in Figure 5-17, Get Next File (GNF), contains all of the
necessary logic to search down a directory for both alternatives described. It does
require that you indicate on entry whether it should search for the first or next file
match, by setting A to zero or some nonzero value respectively.

You can see from Figure 5-17 that whenever the subroutine is called to get the
next file, you must execute a Search First function to re-find the previous file. Only
then can a Search Next be issued.

As with all functions that return a directory code in A, if this value is not
OFFH, it will be the relative directory entry number in the directory record
currently in memory. This directory record will have been read into memory at
whatever address was specified at the last Set DMA Address function call (code
26, l AH). Notwithstanding its odd name, the DM A Address is simply the address
into which any record input from disk will be placed. If the Set DM A Address
function has not been used to change the value, then the CP/M default DMA
address, location 0080H, will be used to hold the directory record.

The actual code for locating the address of the particular directory entry
matched by the Search First/ Next functions is shown in Figure 5-17 near the label
GNFC. The method involves multiplying the directory code by 32 and then adding
this product to the current DM A address.

Function 419: Erase (Delete) File

Example

Function Code: C=13H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0013 = B$ERASE EQU 19 sErase File
0005 = BRDOS EQU S sBDOS entry point
FCB: ;File control block
0000 00 FCR$DISK: DB o] ;Search on default disk drive
0001 3F3F4CA4SAEFCB$NAME: DB “??LENAME“ sAmbiguous file name
0009 JFTPSO FCR$TYP: DB “?YP” sAmbiguous file type

000C 00 FCB$EXTENT: DB (o] ;Extent

Purpose

Notes

Chapter 5: The Basic Disk Operating System 109

Q0D 0000 FCB$RESV: DB 0,0 sReserved for CP/M

00Q0F 00 FCBR$RECUSED: DB o] sRecords used in this extent
0010 0000000000FCR$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0

0020 00 FCEB$SEQREC: DR o ;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW [sRandom rec. to read/write

0023 00 FCB$RANRECQO: DB o sRandom rec. overflow byte (MS)
0024 0E13 MVI C, B$ERASE sFunction code

0026 110000 LXI D,FCR sDE -> file control block

0029 CDOS00 CALL BDOS sA = OFFH if file not found

This function logically deletes from the file directory files that match the FCB
addressed by DE. It does so by replacing the first byte of each relevant directory
entry (remember, a single file can have several entries, one for each extent) by the
value OESH. This flags the directory entry as being available for use.

Like the previous two functions, Search First and Search Next, this function
can take an ambiguous file name and type as part of the file control block, but
unlike those functions, the logical disk select code cannot be a “?”.

This function returns a directory code in A in the same way as the previous file
operations.

Function 20: Read Sequential

Example

Purpose

Function Code: C=14H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0014 = B$READSEQ EQU 20 ;Read Sequential
0005 = BDOS EQU S sBDOS entry point
FCB: ;File control block

0000 00 FCB$DISK: DE [¢] ;Search on default disk drive.

Q001 44474C454EFCRSNAME: DB “FILENAME s file name

0009 545950 FCR$TYP: DR ‘TYP? sFile type

000C Ds 24 ;Set by file open
sRecord will be read into
;5 address set by prior SETDMA
3 call

0024 0E14 MVI C, B$READSEQR sFunction code

0024 110000 LXI D,FCB sDE -> File control block

0029 CDOSO00 CALL BDOS A = 00 if operation successful
A nonzero if no data in

s file

This function reads the next record (128-byte sector) from the designated file
into memory at the address set by the last Set DM A function call (code 26, 1 AH).
The record read is specified by the FCB’s sequential record field (FCB$SEQREC
in the example listing for the Open File function, code 15). This field is incre-
mented by 1 so that a subsequent call to Read Sequential will get the next record
from the file. If the end of the current extent is reached, then the BDOS will

410 The CP/M Programmer’s Handbook

s GETC
3This subroutine gets the next character from a
ssequential disk file. It assumes that the file has
salready been cpened.
33> Note : this subroutine changes CP/M“s DMA address.
sEntry parameters
] DE -> file control block
;Exit parameters
H A = next character from file
H (= OFFH on physical end of file)
: Note : 1AH is narmal EOF character for
: ASCII Files.
;Calling sequence
H DE,FCB
3 CALL GETC
H CPI 1AH
H Jz EOFCHAR
H CPI OFFH
H Jz ACTUALEQF
0014 = B$READSEQ EGU 20 sRead sequential
001A = B$SETDMA EQU 26 ;Set DMA address
0005 = BDOS EQU S sBDOS entry point
0080 = GETCBS ERU 128 sBuffer size
0000 GETCBF: DS GETCRS sDeclare buffer
0080 00 GETCCC: DB [¢] ;Char. count (initially
s"empty")
GETC:
0081 3AR000 LDA GETCCC sCheck if buffer is empty
0084 B7 ORA A
0085 CA9900 Jz GETCFE sYes, fill buffer
GETCRE: sRe—entry point after buffer filled
0088 2D DCR A 3No, downdate count
0089 328000 STA GETCCC ;Save downdated count
008C 47 MoV B, A ;Compute offset of next
scharacter
008D 3E7F MVI A, GETCBS-1 sBy subtracting
008F %0 SUB B ; (buffer size —- downdated count)
0090 SF MOV E,A sMake result into word value
0021 1800 MVI 0,0
0093 210000 LXI H, GETCBF sHL -> base of buffer
0096 19 DAD D sHL —-> next character in buffer
0097 7€ MoV AM ;Get next character
0098 C9 RET
GETCFR: sFill buffer
0099 DS PUSH o ;Save FCR pointer
009A 110000 LXI D, GETCRF ;Set DMA address to buffer
0090 OE1A MVI C, B$SETDMA s function code
009F CDOS00 CALL EDOS
00AZ D1 POP D ;Recaver FCE pointer
00A2 OE14 MVI C, B$READSER ;Read sequential "record" (sector)
00AS CDOS00 CALL EBDOS
00AS R7 ORA A ;Check if read unsuccessful (A = NZ)
00A% C2R400 JINZ GETCX sYes
00AC 3E80 MV A, GETCBS sReset count
00AE 328000 STA GETCCC
00B1 C38200 JIMP GETCRE ;Re—enter subroutine
GETCX: sPhysical end of file
OOR4 3EFF MVI A, OFFH s Indicate such
O0BR& C9 RET

Figure 5-18. Read next character from sequential disk file

Notes

Chapter 5: The Basic Disk Operating System 444

automatically open the next extent and reset the sequential record field to 0, ready
for the next Read function call.

The file specified in the FCB must have been readied for input by issuing an
Open File (code 15, 0FH) or a Create File (code 22, 16H) BDOS call.

The value 00H is returned in A to indicate a successful Read Sequential
operation, while a nonzero value shows that the Read could not be completed
because there was no data in the next record, as at the end of file.

Although it is not immediately obvious, you can change the sequential record
number, FCB$SEQREC, and within a given extent, read a record at random. If
you want to access any given record within a file, you must compute which extent
that record would be in and set the extent field in the file control block (FCBSEX-
TENT) before you open the file. Thus, although the function name implies
sequential access, in practice you can use it to perform a simple type of random
access. If you need to do true random access, look ahead to the Random Read
function (code 33), which takes care of opening the correct extent automatically.

Figure 5-18 shows an example of a subroutine that returns the data from a
sequential file byte-by-byte, reading in records from the file as necessary. This
subroutine, GETC, is useful as a low-level “primitive” on which you can build
more sophisticated functions, such as those that read a fixed number of characters
or read characters up to a CARRIAGE RETURN/ LINE FEED combination.

When you read data from a CP/M text file, the normal convention is to fill the
last record of the file with 1AH characters (CONTROL-Z). Therefore, two possible
conditions can indicate end-of-file: either encountering a 1AH, or receiving a
return code from the BDOS function (in the A register) of OFFH. However, if the
file that you are reading is not an ASCII text file, then a 1AH character has no
special meaning—it is just a normal data byte in the body of the file.

function 241: Write Sequential

Example

Function Code: C=15H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code
0015 = B$WRITESEQ EQU 21 sWrite Sequential
0005 = BDOS EQU S ;BDOS entry point
FCB: sFile control block
0000 00 FCB$DISK: DR [¢] ;Search on default disk drive
0001 44494C4S4EFCRENAME: DR “FILENAME~ ;s file name
0009 545950 FCR$TYP: DB ‘TYP” ;File type
QooC Ds 24 ;Set by Open or Create File
;Record must be in address
5 set by prior SETDMA call
0024 OE1S MVI C, B$WRITESEQ sFunction code
0028 110000 LXI D,FCR sDE -> File control block
0029 CDOSQO0 CALL BDOS A = O0OH if operation

; successful
;A = nonzero if disk full

442 The CP/M Programmer’s Handbook

Purpose

Notes

This function writes a record from the address specified in the last Set DMA
(code 26, 1 AH) function call to the file defined in the FCB. The sequential record
number in the FCB (FCB$SSEQREC) is updated by | so that the next call to Write
Sequential will write to the next record position in the file. If necessary, a new
extent will be opened to receive the new record.

This function is directly analogous to the Read Sequential function, writing
instead of reading. The file specified in the FCB must first be activated by an Open
File (code 15, 0FH) or create File call (code 22, 16H).

A directory code of 00H is returned in A to indicate that the Write was
successful; a nonzero value is returned if the Write could not be completed be-
cause the disk was full.

As with the Read Sequential function (code 20, 14H), you can achieve a simple
form of random writing to the file by manipulating the sequential record number
(FCB$SEQREC). However, you can only overwrite existing records in the file,
and if you want to move to another extent, you must close the file and reopen it
with the FCBSEXTENT field set to the correct value. For true random writing to
the file, look ahead to the Write Random function (code 34, 22H). This takes care
of opening or creating the correct extent of the file automatically.

The only logical error condition that can occur when writing to a file is
insufficient room on the disk to accommodate the next extent of the file. Any
hardware errors detected will be handled by the disk driver built into the BIOS or
BDOS.

Figure 5-19 shows a subroutine, PUTC, to which you can pass dataabyteata
time. It assembles this data into a buffer, making a call to Write Sequential
whenever the buffer becomes full. You can see that provision is made in the entry
parameters (by setting register B to a nonzero value) for the subroutine to fill the
remaining unused characters of the buffer with 1 AH characters. You must do this
to denote the end of an ASCII text file.

Function 22: Create (Make) File

Example

Function Code: C= 16H

Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0016 = B$CREATE EQU 22 ;File Create
0005 = BDOS EQU S. sBDOS entry point

FCB: sFile control block

0000 00 FCR$DISK: DB o ;sSearch on default disk drive
0001 46494C4SAEFCB$NAME: DB *FILENAME * ; file name
0009 S45950 FCB$TYP: DB ‘TYP ;File type

000C 00 FCB$EXTENT: DB (4] ;Extent

Chapter 5: The Basic Disk Operating System 113

000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F 00 FCB$RECUSED: DB o sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allacation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB 0 ;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW o} sRandom rec. to read/write
0023 00 FCB$RANRECOQ: DB o sRandom rec. overflow byte (MS)
sNote : file to be created
smust not already exist....
0024 OE16 MVI C, B$CREATE sFunction code
0026 110000 LXI D,FCB sDE -> file control block
0029 CDOS00 CALL BDOS A = 0,1,2,3 if operation
3 successful
A = OFFH if directory full

s PUTC

This subroutine either puts the next chararacter cut
sto a sequential file, writing out completed "records"

3 (128-by
sremaind

te sectors) or, if requested to, will fill the
er of the current "record" with 1AH"s ta

7indicate end of file to CP/M.

sEntry p

sExit pa
;Calling
H or
001S = BSWRITES
001A = B$SETDMA
0008 = BDOS
Q030 = PUTCRS
0000 PUTCRF:
0080 00 PUTCCC:
PUTC:
0081 DS
0082 FS
0083 78
0084 R7

0085 C29900
0088 CDCR00O

O08R F1
008C 77
008D 7B
008E 3C
008F FER0
0091 CAARQO
0094 328000
0097 D1
0098 C9

arameters

DE -> File control block

B = 0, A = next data character to be cutput
B /= 0, fill the current "record" with 1AH"s

rameters
none.
sequence

LXI D,FCB

MVI B, 0 sNot end of file

LDA CHAR

CALL PUTC

LXI D, FCR

MVI B, 1 ;Indicate end of file

CALL PUTC

EQ EQU 21 sWrite sequential

EQuU 28 ;Set DMA address
EQU k] sBDOS entry point

EQU 128 sBuffer size

ns PUTCRS sDeclare buffer

DR o ;Char. count (initially “"empty")

PUSH D ;Save FCR address

PUSH PSW ;Save data character

MoV A B ;Check if end of file requested

ORA A

JINZ PUTCEF sYes

CALL PUTCGA ;No, get address of next free byte
sHL -> next free byte
sE = Current char. count (as
swell as A)

POFP PSW sRecover data character

MoV M, A ;Save in buffer

MoV A E ;Get current character count

INR A ;Urdate character count

CP1 PUTCES ;Check if buffer full

Jz FUTCWE sYes, write buffer

sTA PUTCCC ;No, save updated count

PQOP D ;Dump FCE address for return

RET

Figure 5-19.

Write next character

to sequential disk file

444 The CP/M Programmer’s Handbook

0099
009A

ooon
QO9F
Q0AZ
00A4
00AS
00AS

00A9
Q0AA
00ALD
00BO
00BZ2
Q0BT
O0BRé
QOBS
OOBB
0OBC
O0BF

00CO
oocz2

00C3
00Cé
00C7
Q0CY
oocc
oocD

PUTCEF: sEnd of file
F1 POP PSW sDump data character
CDC300 calL FUTCGA sHL -> next free byte
A = current character count
PUTCCE: sCopy EOF character
FE20 CP1 PUTCES ;Check for end of buffer
CAAZ00 JZ PUTCWE sYes, write out the buffer
261A MVI M, 1AH 3sNo, store EOF in buffer
3C INR A sUpdate count
23 INX H sUpdate buffer painter
C39000 JMP PUTCCE ;Continue until end of buffer
PUTCWE: sWrite buffer
AF XRA A ;Reset character count to O
222000 STA FUTCCC
110000 LXI 0, FUTCEF sDE -> buffer
OE1A MVI C, B$SETDMA ;Set DMA address —»> buffer
CDOS00 CALL EBOOS
D1 POP o sRecover FCR address
QE1S MVI C, BSWRITESER sWrite sequential record
CDOS00 CALL BOOS
B7 ORA A sCheck if error
Cc2C000 JNZ PUTCX 1Yes if A = NZ
co RET ;No, return to caller
PUTCX: sErrar exit
ZEFF MVI A, OFFH sIndicate such
ce RET
PUTCGA: sReturn with HL -> next free char.
sand A = current char. count
3AR000 LDA PUTCCC ;Get current character count
SF Mav E,A sMake word value in DE
1600 MVI 0,0
210000 LXI H, PUTCBF sHL -> Base of buffer
19 DAD D sHL -> next free character
ce RET

Figure 5-19.

Write next character to sequential disk file (continued)

Purpose

Notes

This function creates a new file of the specified name and type. You must first
ensure that no file of the same name and type already exists on the same logical
disk, either by trying to open the file (if this succeeds, the file already exists) or by
unconditionally erasing the file.

In addition to creating the file and its associated file directory entry, this
function also effectively opens the file so that it is ready for records to be written
to it.

This function returns a normal directory code if the file creation has completed
successfully or a value of OFFH if there is insufficient disk or directory space.

Under some circumstances, you may want to create a file that is slightly more
“secure” than normal CP/M files. You can do this by using either lowercase letters
or nongraphic ASCII characters such as ASCII NUL (00H) in the file name or
type. Neither of these classes of characters can be generated from the keyboard; in
the first case, the CCP changes all lowercase characters to uppercase, and in the
second, it rejects names with odd characters in them. Thus, computer operators

cannot erase such a file because there is no way that they can create the same file

Chapter

name from the CCP.

The converse is also true; the only way that you can erase these files is by using
aprogram that can set the exact file name into an FCB and then issue an Erase File

function call.
Note that this function cannot accept an ambiguous file name in the FCB.

Figure 5-20 shows a subroutine that creates a file only after it has erased any

existing files of the same name.

Function 23: Rename File

Function Code: C=17H
Entry Parameters: DE = Address of file control block

Exit Parameters:

5: The Basic Disk Operating System 1415

A = Directory code

Example
0017 = B$RENAME EQU 23 ;Rename file
0005 = BDOS EQU S ;BDOS entry point
FCB: ;File control block
0000 00 DB [¢] ;Search on default disk drive
0001 4F4C444E41 DB “OLDNAME ~ sFile name
0009 545950 DB “TYP” sFile type
000C 00000000 DR 0,0,0,0
3 CF
;Create file
3This subroutine creates a file. It erases any
sPrevious file before creating the new cne.
sEntry parameters
3 DE -> File control block for new file
sExit parameters
H Carry clear if operation successful
; (A =0,1,2,3)
H Carry set if error (A = OFFH)
sCalling sequence
H LXI D,FCB
H CALL CF
H Jc ERRCOR
0012 = B$ERASE EQU 19 sErase file
001& = R$CREATE EQU 22 ;Create file
0005 = BDOS EQU S sBDOS entry point
CF:
0000 DS PUSH D ;Preserve FCE pointer
0001 OE13R MVI C, BSERASE ;Erase any existing file
0003 CDROS00 CALL BLOS
0004 D1 POP D ;Recover FCB pointer
0007 QE1é MVI C, B$CREATE ;Create (and open new file)
000% CDOS00 CALL BDOS
000C FEFF CPI OFFH sCarry set if OK, clear if error
000E 3F CMC ;Complete to use Carry set if Error
Q0OF C9 RET

Figure 5-20. Create file request

446 The CP/M Programmer’s Handbook

Purpose

Notes

0010 00 DB [d] sFCB + 16

0011 4E4SS74E41 DB “NEWNAME ~ - 3File name

0019 545950 DB “TYP* ' ;File type

001C 00000000 DB 0,0,0,0

0020 QE17 MVI C, B$RENAME sFunction code

0022 110000 LXI D,FCB sDE -> file control black

0025 CDOS00 CALL BDOS A O0H if operation succesful

A OFFH if file not found

This function renames an existing file name and type to a new name and type.
It is unusual in that it uses a single FCB to store both the old file name and type (in
the first 16 bytes) and the new file name and type (in the second 16 bytes).

This function returns a normal directory code if the file rename was completed
successfully or a value of OFFH if the old file name could not be found.

The Rename File function only checks that the old file name and type exist; it
makes no check to ensure that the new name and type combination does not
already exist. Therefore, you should try to open the new file name and type. If you
succeed, do not attempt the rename operation. CP/M will create more than one file
of the same name and type, and you stand to lose the information in both files as
you attempt to sort out the problem.

For security, you can also use lowercase letters and nongraphic characters in
the file name and type, as described under the File Create function (code 22, 16H)
above.

Never use ambiguous file names in a rename operation; it produces strange
effects and may result in files being irreparably damaged. This function will
change all occurrences of the old file name to the new name.

Figure 5-21 shows a subroutine that will accept an existing file name and type
and a new name and type and rename the old to the new. It checks to make sure
that the new file name does not already exist, returning an error code if it does.

Function 24: Get Active Disks (Login Vector)

Example

Purpose

Function Code: C=18H
Entry Parameters: None
Exit Parameters: HL = Active disk map (login vector)

0018 = B$GETACTDSK EQU 24 ;Get Active Disks
0005 = BDOS EQU S sBDOS entry point
sExample of getting active
0000 OE18 MVI C, B$SGETACTDSK s disk function code
0002 CDOS00 CALL BDOS sHL = active disk bit map

sBits are = 1 if disk active
;Bits 15 14 13 ... 21 0
;Disk P 0O N ... CBA
This function returns a bit map, called the login vector, in register pair HL,

indicating which logical disk drives have been selected since the last warm boot or

Chapter 5: The Basic Disk Operating System 447

A OFFH old file name does not exist
sCalling sequence
H LXI H, OLDNAME sHL -> old name
H LXI D, NEWNAME ;DE -> new name
H CALL RF
H Jc ERROR
000F = B$OPEN EQU 15 ;0pen file
0017 = B$RENAME EQU 23 ;Rename file
0005 = BDOS EQU S sBDOS entry paint
0000 0000000000RFFCB: DW 0,0,0,0,0,0,0,0 ;1 1/2 FCB’s long
0010 0000000000 DW 0,0,0,0,0,0,0,0
0020 0000000000 DW 0,0,0,0,0,0,0,0
0030 000000 oW 0,0,0
RF:
0036 DS PUSH D ;Save new name pointer
0037 110000 LXI D, RFFCR 3Build old name FCB
sHL already -> old name
003A CDSDOO CALL BF
003D E1 POP H ;Recover new name pointer
003E 111000 LXI D, RFFCB+16 sBuild new name in second part of file
0041 CDSDOO CALL BF scontrol block
0044 111000 LXI D, RFFCB+18 sExperimentally try
0047 OEOF MVI C, B$OPEN stao open the new file
0049 CDOS00, CALL BDOS sto englire it does
004C FEFF CPI OFFH snot already exist
004E 3EFE MVI A, OFEH ;Assume errvor (flags unchanged)
0050 D8 RC ;Carry set if A was 0,1,2,3
0051 110000 LXI D, RFFCB ;Rename the file
0054 OE17 MVI C, B$RENAME
0056 CDOS00 CALL BDOS
0059 FEFF CPI OFFH ;Carry set if OK, clear if error
Q05B 3F CcMC sInvert to use carry, set if error
00SC C9 RET
s BF
;Build file control block
$This subroutine formats a OOH-byte terminated string
s (presumed tc be a file name) into an FCB, setting the
;disk and the file name and type, and clearing the
;remainder of the FCB to 0°s.
sEntry parameters
H DE -> file cantral block (36 bytes)
H HL -> file name string (OOH-byte terminated)
sExit parameters
H The built file control block.
;Calling sequence
; LXI D,FCB
H LXI H, FILENAME
H CALL BF
BF:
005D C9 RET ;Dummy subroutine : see Figure 5.16.

;RF

;Rename file

:This subroutine renames a file.

71t uses the BF (build FCB) subroutine shown in Figure 5.16

sEntry parameters

*%® No case-folding of file names occurs sxx
HL -> old file name (0O-byte terminated)

DE -> new file name (0O-byte terminated)

Exit parameters
Carry clear if operation successful
(A =0,1,2,3)
Carry set if error
A OFEH '; new file name already exists

NN Ne e v

Figure 5-24.

Rename

file request

448 The CP/M Programmer’s Handbook

Notes

Function 25:

Example

Purpose

Notes

Function 26:

Example

Reset Disk function (code 13, 0DH). The least significant bit of L corresponds to
disk A, while the highest order bit in H maps disk P. The bit corresponding to the
specific logical disk is set to 1 if the disk has been selected or to 0 if the disk is not
currently on-line.

Logical disks can be selected programmatically through any file operation
that sets the drive field to a nonzero value, through the Select Disk function (code
14, 0EH), or by the operator entering an “X:” command where “X” is equal to A,
B,..P

This function is intended for programs that need to know which logical disks
are currently active in the system—that is, those logical disks which have been
selected.

Get Current Default Disk

Function Code: C = 19H

Entry Parameters: None

Exit Parameters: A = Current disk
(0=A,1=8B,.., F=P)

0019 = B$GETCURDSK EQU 25 ;Get Current Disk
0005 = BDOS EQU 5 ;BDOS entry point
0000 OE19 MVI C,B$GETCURDSK ;Function code
0002 CDOS00 CALL BDOS 1A =0 if Az, 1 if Br ...
This function returns the current default disk set by the last Select Disk

function call (code 14, 0EH) or by the operator entering the “X:” command (where
“X”is A, B, ..., P) to the CCP.

This function returns the current default disk in coded form. Register A= 0 if
drive A is the current drive, 1 if drive B, and so on. If you need to convert this to the
corresponding ASCII character, simply add 41H to register A.

Use this function when you convert a file name and type in an FCB to an
ASCII string in order to display it. If the first byte of the FCB is 00H, the current
default drive is to be used. You must therefore use this function to determine the
logical disk letter for the default drive.

Set DMA (Read/Write) Address

Function Code: C=1AH
Entry Parameters: DE = DMA (read/write) address
Exit Parameters: None

B$SETDMA EQU
BDQOS EQU

001A
0005

& ;Set DMA Address
;BDOS entry point

an

Purpose

Notes

Chapter 5: The Basic Disk Operating System 119

0000 SECRUFF: DS 128 ;Sector buffer
0080 OE1A MVI C, B$SETDMA sFunction code
0082 110000 LXI D, SECRUFF ;Pointer to buffer
0085 CDOS00 CALL BDOS

This function sets the BDOS’s direct memory access (DMA) address to a new
value. The name is an historic relic dating back to the Intel Development System
on which CP/M was originally developed. This machine, by virtue of its hardware,
could read data from a diskette directly into memory or write data to a diskette
directly from memory. The name DM A address now applies to the address of the
buffer to and from which data is transferred whenever a diskette Read, Write, or
directory operation is performed.

Whenever CP/M first starts up (cold boot) or a warm boot or Reset Disk
operation occurs, the DMA address is reset to its default value of 0080H.

No function call can tell you the current value of the DM A address. All you can
do is make a Set DMA function call to ensure that it is where you want it.

Once you have set the DM A address to the correct place for your program, it
will remain set there until another Set DMA call, Reset Disk, or warm boot
occurs.

The Read and Write Sequential and Random operations use the current
setting of the DMA address, as do the directory operations Search First and
Search Next.

Function 27: Get Allocation Vector

Example

Purpose

Notes

Function Code: C = 1BH
Entry Parameters: None
Exit Parameters: HL = Address of allocation vector

001R = BR$GETALVEC EQU 27 sGet Allocation Vector Address
0005 = BDOS EQU s :BDOS entry point
0000 OE1B MV1 C, B$GETALVEC iFunction code
0002 CDOSO0 CALL BDOS tHL -> Base address of
H allocation vector
This function returns the base, or starting, address of the allocation vector for

the currently selected logical disk. This information, indicating which parts of the
disk are assigned, is used by utility programs and the BDOS itself to determine
how much unused space is on the logical disk, to locate an unused allocation block
in order to extend a file, or to relinquish an allocation block when a file is deleted.

Digital Research considers the actual layout of the allocation vector to be
proprietary information.

120 The CP/M Programmer’s Handbook

Function 28: Set Logical Disk to Read-Only Status

Example

Purpose

Notes

Function Code: C= ICH
Entry Parameters: None
Exit Parameters: None

001C = B$SETDSKRO EQU 28 1Set disk to Read Only
function code
0005 = BDOS EQU S :BDOS entrvy point
:1Sets disk selected by prior
:1Select disk function call
0000 OE1IC MVI C.B$SETDSKRO tFunction code
0002 CDOS00 CALL BDOS

This function logically sets the currently selected disk to a Read-Only state.
Any attempts to execute a Write Sequential or Write Random function to the
selected disk will be intercepted by the BDOS, and the following message will
appear on the console:

BDOS Err on X: R/O

where X: is the selected disk.

Once you have requested Read-Only status for the currently selected logical
disk, this status will persist even if you proceed to select other logical disks. In fact,
it will remain in force until the next warm boot or Reset Disk System function call.

Digital Research documentation refers to this function code as Disk Write
Protect. The Read-Only description is used here because it corresponds to the
error message produced if your program attempts to write on the disk.

Function 29: Get Read-Only Disks

Example

Purpose

Function Code: C= 1DH
Entry Parameters: None
Exit Parameters: HL = Read-Only disk map

001D = B$GETRODSKS EQU 29 :Get Read Onlv disks

0003 = BDOS EQU S 3sBDOS entry point

0000 OEL® MVI C, B$GETRODSKS sFunction code

0002 CDOS00 CALL BDOS JHL = Read Only disk bit map
yBits are = | if disk Read Only
}Bits 15 14 13 ... 21 0
}Disk P O N ... CBA

This function returns a bit map in registers H and L showing which logical

disks in the system have been set to Read-Only status, either by the Set Logical

Chapter 5: The Basic Disk Operating System 121

Disk to Read-Only function call (code 28, ICH), or by the BDOS itself, because it
detected that a diskette had been changed.

The least significant bit of L corresponds to logical disk A, while the most
significant bit of H corresponds to disk P. The bit corresponding to the specific
logical disk is set to 1 if the disk has been set to Read-Only status.

Function 30: Set File Attributes

Example

Purpose

Function Code: C=1EH
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Directory code

O01E = B$SETFAT EQU 30 3Set File Attribute
0005 = BDOS EQU S ;BDOS entry point

FCB: sFile control block
0000 00 FCBS$DISK: DB (o] 3;Search on default disk drive
0001 46494C4S4EFCBSNAME: DB “FILENAME~ sFile name
0009 D4 FCBS$TYP: DB “T*+80H s Type with R/0

s attribute
000A 5950 DB “YP
000C 0000000000 DW 0,0,0,0,0,0,0,0,0,0,0
0022 OELE MVI C, B$SETFAT sFunction code
0024 110000 LXI D,FCB 3DE -> file control block
3MS bits set in file name/type

0027 CDOS00 CALL BDOS tA = OFFH if file not found

This function sets the bits that describe attributes of a file in the relevant
directory entries for the specified file. Each file can be assigned up to 11 file
attributes. Of these 11, two have predefined meanings, four others are available for
you to use, and the remaining five are reserved for future use by CP/M.

Each attribute consists of a single bit. The most significant bit of each byte of
the file name and type is used to store the attributes. The file attributes are known
by a code consisting of the letter “f” (for file name) or “t” (for file type), followed by
the number of the character position and a single quotation mark. For example,
the Read-Only attribute is t1’.

The significance of the attributes is as follows:

fl’ to {4’ Available for you to use
5’ to 8’ Reserved for future CP/M use

tl’ Read-Only File attribute
t2’ System File attribute
t3’ Reserved for future CP/M use

Attributes are set by presenting this function with an FCB in which the
unambiguous file name has been preset with the most significant bits set appro-
priately. This function then searches the directory for a match and changes the
matched entries to contain the attributes which have been set in the FCB.

122 The CP/M Programmer’s Handbook

Notes

The BDOS will intercept any attempt to write on a file that has the Read-Only
attribute set. The DIR command in the CCP does not display any file with System
status.

You can use the four attributes available to you to set up a file security system,
or perhaps to flag certain files that must be backed up to other disks. The Search
First and Search Next functions allow you to view the complete file directory
entry, so your programs can test the attributes easily.

The example subroutines in Figures 5-22 and 5-23 show how to set file
attributes (SFA) and get file attributes (GFA), respectively. They both use a bit
map in which the most significant 11 bits of the HL register pair are used to
indicate the corresponding high bits of the 11 characters of the file name/type
combination. You will also see some equates that have been declared to make it
easier to manipulate the attributes in this bit map.

1SFA

;Set file attributes

3 This subroutine takes a compressed bit map of all the
;file attribute bits, expands them into an existing
;file contral block and then requests CP/M to set

sthe attributes in the file directory.

sEntry parameters

DE -> file control block

HL = bit map. Only the most significant 11
bits are used. These correspond directly

3 with the possible attribute bytes.

sExit parameters
H Carry clear if operation successful (A = 0,1,2,3)
; Carry set if error (A = OFFH)

sCalling sequence

;

; LXI D, FCE

3 LXI H, 0000%$0000%$1100$0000B ;Rit Map

3 CALL SFA

JC ERROR
sFile Attribute Equates

8000 = FAS$F1 EGQU 1000$0000$0000$0000E sF17 - F4°
4000 = FA$F2 EQU 0100%$0000$0000$0000R sAvailable for use by
2000 = FA$F2 EQU 0010%$0000$0000$0000B 3 application programs
1000 = FA$F4 EQU 0001$0000$0000$0000R
0800 = FASFS EQu 0000%1000%$0000$0000E sFS” - F8~
0400 = FA$F& EQU 0000%0100$0000$0000E ;Reserved far CP/M
0200 = FASF7 EQU 0000%0010$0000$0000R
0100 = FA$F3 EQU 000040001 $0000$0000B
0080 = FA$T1 EQU 0000$0000%1000$0000B 3T1” -- read/only file
0080 = FASRQ EQU FA$T1
0040 = FAST2 EQU 0000$0000$0100$0000R 3T2” —- system files
0040 = FA$SYS EQU FA$TZ :
0020 = FA$T3 EQU 0000%$0000$0010$0000B s T3” -- reserved for CP/M
001E = B$SETFAT EQU 30 ;Set file attributes
0005 = BDOS EQU S sBDOS entry point

Figure 5-22. Set file attributes

Chapter 5: The Basic Disk Operating System

123

0000 DS
0001 13

0002 OEOR

0004 AF
0005 29

0006 CEOQ

0008 OF
0009 47
000A EB
000B 7E

000C E&7F

000E BO
000F 77
0010 EB
0011 13
0012 0D

0013 C20400
0016 OELE

0018 D1

0019 CDOSO0
001C FEFF

001E 3F
001F C%

SFA:

PUSH D ;Save FCB pointer

INX D sHL -> 1st character of file name

MVI C,8+3 iLoop count for file name and type
SFAL: sMain processing locp

XRA A ;Clear carry and A

DAD H $Shift next MS bit into carry

ACI (o] sA = 0 or 1 depending on carry

RRC sRotate LS bit of A into MS bit

Mav B, A ;Save result (OOH or 80H)

XCHG tHL -> FCB character

MoV A M sGet FCB character

ANI 7FH ;Isolate all but attribute bit

ORA B ;Set attribute with result

MoV M. A sand store back into FCB

XCHG $DE -> FCB, HL = remaining bit map

INX D sDE -> next character in FCE

DCR c sDowndate character count

JINZ SFAL ;Loop back for next character

MVI C,B$SETFAT ;Set file attribute function cade

POP D sRecover FCB painter

CALL BDOS

CPI OFFH ;Carry set if OK, clear if error

CMC ;Invert to use carry set if errar

RET

Figure 5-22.

Set file attributes (continued)

001A
o011
0005
0080

8000
4000

nonowou

s GFA

sGet file attributes .

3This subroutine finds the appropriate file using a

isearch for First Name Match functicon rather than cpening
sthe file. It then builds a bit map of the file attribute
sbits in the file name and type. This bit map is then ANDed
;jwith the input bit map, and the result is returned in the
szero flag. The actual bit map built is also returned in case
imore complex checlk is required.

[l Note: This subroutine changes the CP/M DMA address.

sEntry parameters

DE -> File control block

HL = Bit map mask to be ANDed with attribute
results

Exit parameters
Carry clear, operation successful
Nonzerco status set to result of AND between
input mask and attribute bits set.
HL = Unmasked attribute bytes set.
Carry set, file cculd not be found

B$SETDOMA EQU 2é ;Set DMA address
B$SEARCHF EQU 17 ;Search faor first entry to match
BLOOS EQU S ;BDOS entry point
GFADMA EQU 80H sDefault DMA address
;Calling sequence
; LXI D,FCB
; LXI H, 0000$0000%$1 100$0000B ;Rit map
; CALL GFA
5 JC ERROR
;File attribute equates
FASF1 EQU 1000$0000$0000$0000B sF17 - FS”
FASF2 EQU 0100%$0000%$0000$0000B sAvailable for use by

Figure 5-23.

Get file attributes

124 The CPM Programmer’s Handbook

2000
1000

0800
0400
0200
0100

nononou

0080
0080
0040
0040
0020

L I I T 1]

0000 ES
0001 D3
0002 OE1A
0004 118000

0007 CDOS00

000A D1
000B OE11
000D CDOS00
0010 FEFF
0012 3F
0013 DA4100

0016 87
0017 87
0018 87
0019 87
001A 87
O01B SF
001C 1600
O01E 218000
0021 19
0022 23
0023 EB

0024 OEOB
0026 210000

0029 1A
002A E&80
002C 07
0020 BS
O02E 6&F
002F 29
0030 13
0031 OD
0032 C22900

0035 29
0036 29
0037 29
0038 29

003% D1
003A 7A
O03B A4
003C 47
003D 7B
O03E AS
003F EO

0040 C9

0041 E1
0042 C9

FASF3
FA$F4

FASFS
FASF&
FASF7
FASF8

FAS$T1
FA$RO
FA$T2
FA$SYS
FA$T3

GFA:

GFAL:

GFAX:

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

PUSH
PUSH
MVI
LXI

CALL

POP
MVI
CALL
CP1
CcMC
JC

ADD
ADD
ADD
ADD
ADD
MoV
MVI
LXI
DAD
INX
XCHG

MVI
LXI

LDAX
ANI
RLC
ORA
MoV
DAD
INX
DCR
JINZ

DAD
DAD
DAD
DAD

POP
MoV
ANA
Mav
MOV
ANA
ORA

RET

POP
RET

0010$0000$0000$0000B sApplication programs
0001$0000$0000$0000B

0000%$1000$0000$0000B sF6° - F8°
0000$0100$0000$0000E sReserved for CP/M
0000$0010$0000$0000R

0000$0001$0000$0000B

0000$0000%1000$0000B 3T1” —-- read/only file
FAS$T1

0000$0000$0100$0000R 372 —— system files
FAST2

0000$0000$0010$0000R 3 T3 —- reserved for CP/M
H 3 Save AND-mask

D ;Save FCB pointer

C, B$SETDMA ;Set DMA to default address

0, GFADMA sDE >

BDOS

D
C, B$SEARCHF
BDOS

OFFH sCarry

DMA address

sRecover FCEB pointer
;Search for match with name

set if OK, clear if error

;Invert to use set carry if error

GFAX

sReturn if error

sMultiply by 32 to get offset into DMA buffer

3= 2
% 4
3% 8
¥ 16
e 32

FADMA sHL =>
sHL ->
sHL =5
sDE >

IOIOM>»>2>>D>

sCount
Y ;Clear

sMake into a word value

DMA address

Directory entry in DMA buffer
1st character of file name
1st character of file name

of characters in file name and type
bit map

sMain loop

[+ =]
(=]
I

;Get next character of file name
sIsolate attribute bit

sMove MS bit intc LS bit

sOR in

>

;Shift
sDE >

QOooIrr

n
>
2

wWr>wWIP»D IITT
m>» o

any previously set bits

sSave result

HL left one bit for next time

next character in file name, type

;Downdate count
31Go back for next character

sLeft justify attribute bits in HL
sMS attribute bit will already be in
sbit 11 of HL,
snecessary

so only 4 shifts are

sRecover AND-mask

;Get MS byte of mask

;AND with MS byte of result

;Save interim result

;Get LS byte of mask

;AND with LS byte of result
sCombine two results to set Z flag

sError exit
H ;Balance stack

Figure 5-23.

Get file attributes (continued)

Chapter 5: The Basic Disk Operating System 125

Function 31: Get Disk Parameter Block Address

Example

Purpose

Notes

Function Code: C=1FH
Entry Parameters: None
Exit Parameters: HL = Address of DPB

QO01F = B$GETDPB EQU 31 sGet Disk Parameter Block
s Address
0005 = BDOS EQU S ;BDOS entry point

;Returns .DPB address of
3 logical disk previously
3 selected with a Select
s Disk function.
0000 OELF MVI C,B$GETDPB sFunction code
0002 CDOS00 CALL BDOS sHL -> Base address of current
3 disk’s parameter block

This function returns the address of the disk parameter block (DPB) for the
last selected logical disk. The DPB, explained in Chapter 3, describes the physical
characteristics of a specific logical disk—information mainly of interest for system
utility programs.

The subroutines shown in Figure 5-24 deal with two major problems. First,
given a track and sector number, what allocation block will they fall into? Con-
verseley, given an allocation block, what is its starting track and sector?

These subroutines are normally used by system utilities. They first get the DPB
address using this BDOS function. Then they switch to using direct BIOS calls to
perform their other functions, such as selecting disks, tracks, and sectors and
reading and writing the disk.

The first subroutine, GTAS (Get Track and Sector), in Figure 5-24, takes an
allocation block number and converts it to give you the starting track and sector
number. GMTAS (Get Maximum Track and Sector) returns the maximum track
and sector number for the specified disk. GDTAS (Get Directory Track and
Sector) tells you not only the starting track and sector for the file directory, but
also the number of 128-byte sectors in the directory.

Note that whenever a track number is used as an entry or an exit parameter, it is
an absolute track number. That is, the number of reserved tracks on the disk before
the directory has already been added to it.

GNTAS (Get Next Track and Sector) helps you read sectors sequentially. It
adds 1 to the sector number, and when you reach the end of a track, updates the
track number by 1 and resets the sector number to 1.

GAB (Get Allocation Block) is the converse of GTAS (Get Track and Sector).
It returns the allocation block number, given a track and sector.

Finally, Figure 5-24 includes several useful 16-bit subroutines to divide the HL
register pair by DE (DIVHL), to multiply HL by DE (MULHL), to subtract DE
from HL (SUBHL —this can also be used as a 16-bit compare), and to shift HL
right one bit (SHLR). The divide and multiply subroutines are somewhat
primitive, using iterative subtraction and addition, respectively. Nevertheless, they
do perform their role as supporting subroutines.

126 The

CP/M Programmer’s Handbook

000E
001F
0005

0000
0002
0003
0004
0005
0007
0009
000B
000D

000F

000F
0010
0012
0015
0017
001A
001C

001F
0020
0021
0022
0023
0024
0027

0000
00
00
00
0000
0000
0000
0000
0000

n

SF
QEOE
CDOS00
OE1LF
CnoSo00
OEOF
110000

7€
12
13
23
oD
C21F00Q
[

sUseful subroutines for accessing the data in the
sdisk parameter block

B$SELDSK EQU 14 ;Select Disk function code
B$GETOPB EQU 21 ;Get DPB address
BDOS EQu S sBDOS entry point

sIt makes for easier, more compact code to copy the
sspecific disk parameter block into local variables
swhile manipulating the information.

sHere are those variables --

DPE: sDisk parameter block

DPBSPT: DW o] 3128-byte sectors per track
DPBBS: DB ¢} ;Block shift

DPBEM: DB (] ;Block mask

DPBEM: DB [¢] sExtent mask

DPBMAR: DW] sMaximum allocation block number
DPBNOD: DW o] :Number of directory entries
DPBDAR: DW (o] ;Directory allocation blacks
DPBCBS: DW [¢] ;Check buffer size

DPBTBD: DW [¢] ;Tracks before directory (reserved tracks)
DPBSZ EQU $-DPEB ;Disk parameter block size

;s GETDPE

;Gets disk parameter block
;This subroutine copies the DPB for the specified
slogical disk into the local DPB variables above.

sEntry parameters

H A = Logical disk number (A: = 0, B: = 1...)
sExit parameters
H Lacal variables contain DPE
GETDPB:
Mav E,A ;Get disk code for select disk
MVI C, B$SELDSK ;Select the disk
CALL BDO3
MVI C, B$GETDPE ;Get the disk parameter base address
CALL BDOS sHL -> DFB
MVI C, DPRSZ ;Set count
LXI D, DFB ;Get base address of local variables
GDPBL: ;Copy DPB into local variables
Mav AM sGet byte from DFRB
STAX n ;Store into local variable
INX D ;Update local variable pointer
INX H sUpdate DPB pointer
DCR C sDowndate count
JINZ GDPBL sLocp back for next byte
RET
3 GTAS
:Get track and sector (given allocaticn block number)
sThis subroutine converts an allocation block into a
strack and sector number —- note that this is based on
$128-byte sectors.
:$>>>>> Note: You must call GETDPB before
[R you call this subroutine
sEntry parameters
H HL = allocation block number
sExit parameters
3 HL = track number
H DE = sector number
sMethod :
;In mathematical terms, the track can be derived from:
:Trk = ((allocation block * sec. per all. block) / sec. per trk)

H + tracks before directory

-1

Figure 5-24.

Accessing disk parameter block data

Chapter 5: The Basic Disk Operating System 427

;The sector is derived from:
;Sec = ((allocation block % sec. per all. block) modula/

H sec. per trk) + 1
GTAS:
0028 3A0200 LDA DPBBS sGet block shift —- this will be 3 to
37 depending on allocation block size
It will be used as a count for shifting
GTASS:
002B 29 DAD H ;Shift allocation block left one place
002C 3D DCR A ;Decrement block shift count
0020 C22B00 JNZ GTASS sMore shifts required
0030 EB XCHG sDE = all. black % sec. per block
7ji.e. DE = total number of sectors
0031 2A0000 LHLD DPBSPT ;Get sectors per track
0034 EB XCHG tHL = sec. per trk, DE = tot. no. of sec.
0035 CDSFOO CALL DIVHL sBC = HL/DE, HL = remainder
sBC = track, HL = sector
0038 23 INX H ;Sector numbering starts from 1
0039 ER XCHG ;DE = sector, HL = track
003A 2A0DO0 LHLD DFRTBD i Tracks before directory
003D 09 DAD E sDE = sector, HL = absclute track
Q03E C9 RET
3 GMTAS
;Get maximum track and sector
3This is just a call toc GTAS with the maximum
sallocation block as the input parameter
32>>>> Note: You must call GETDFR before
3O you call this subroutine
;Entry parameters: none
sExit parameters:
H HL = maximum track number
H DE = maximum sectaor
GMTAS:
003F 2A0500 LHLD DFEMAE ;Get maximum allocation black
0042 C32800 JMP GTAS sReturn from GTAS with parameters in HL and DE
; GDTAS
;Get directory track and sector
:This returns the START track and sector for the
sfile directory, along with the number of sectors
3in the directory.
3>>>>> Note: You must call GETDFR before
R0 you call this subroutine
sEntry parameters: nane
sExit parameters:
i BC = number of sectors in directory
H DE = directory start sector
H HL = directory start track
GDTAS:
0045 2A0700 LHLD DPBRNOD sGet number of directory entries - 1
0048 23 INX H ;Make true number of entries
sEach entry is 32 bytes long, so to
sconvert to 128 byte sectors, divide by 4
0049 CDDOOO CALL SHLR #/ 2 (by shifting HL right one bit)
004C CDDOOO CALL SHLR 3/ 4
004F ES PUSH H ;Save number of sectors
0050 210000 LXI H,0 sDirectary starts in allocation black O
0053 CD2800 CALL GTAS sHL = track, DE = sector
0056 C1 POP B ;Recover number of sectors
0057 €9 RET
Figure 5-24. (Continued)

428 The CP/M Programmer’s Handbook

; GNTAS
sGet NEXT track and sector
sThis subroutine updates the input track and sector
:by one, incrementing the track and resetting the
ssector number as required.
$3>3>> Note: You must call GETDPR before
R4 you call this subroutine
: Note: you must check for end of disk by comparing
i the track number returned by this subroutine
H to that returned by by GMTAS + 1. When
H equality occurs, the end of disk has been reached.
sEntry parameters
H HL = current track number
§ DE = current sector number
;Exit parameters
' HL = updated track number
3 DE = updated sector number
GNTAS:
0058 ES PUSH H ;Save track
0059 13 INX D ;Update sector
005A 2A0000 LHLD DPBSPT ;Get sectors per track
005D CDC00 CALL SUBHL sHL = HL - DE
0060 El POP H ;Recover current track
0061 DO RNC sReturn if updated sector <= sec. per trk
0062 23 INX H ;Update track if upd. sec > sec. per trk.
0063 110100 LXI D,1 sReset sector to 1
0066 C9 RET
s GAB
;Get allocation block
;This subroutine returns an allocation block number
:given a specific track and sector. It also returns
sthe offset down the allocation block at which the
ssector will be found. This offset is in units of
;128-byte sectors.
[RaEasd Note: You must call GETDPB before
RS2 24 you call this subroutine
sEntry parameters
H HL = track number
H DE = sector number
sExit parameters
i HL = allocation block number
sMethod
;The allocation black is formed from:
:AB = (sector + ((track - tracks before directary)
H % sectors per track)) / log2 (sectors per all. block)
;The sector offset within allocaticn block is formed fram:
:0ffset = (sector + ((track - tracks before directory)
H % sectors per track)) / AND (sectors per all. block - 1)
GAB:
0067 DS PUSH D ;Save sectar
0068 EB XCHG sDE = track
0049 2A0DO0O LHLD DPBTRD ;Get no. of tracks before directory
00&C EB XCHG sDE = no. of tracks before dir. HL = track
006D CDCYO0 CALL SUBHL sHL = HL - DE
sHL = relative track within logical disk
0070 EB XCHG ;DE = relative track
0071 2A0000 LHLD DPRSFT ;Get sectors per track
0074 CDA400 CALL MULHL sHL = HL ®* DE
sHL = number of sectors
0077 EB XCHG ;DE = number of sectors
Figure 5-24. (Continued)

Chapter 5: The Basic Disk Operating System

129

0078 E1 POP H ;Recover sector
0079 2B DCx H ;Make relative to O
007A 19 DAD D ;HL = relative sector
007R 3A0300 LDA DPBBM ;Get block mask
OQ7E 47 MoV B, A sReady for AND operaticn
QO7F 7D MoV AL ;Get LS byte of relative sector
0080 AQ ANA B AND with block mask
0081 FS PUSH PSW ;A = sector displacement
0082 3A0200 LDA DPBBS ;Get block shift
0085 4F Mav C,A ;Make into counter
GABS: 3Shift loop
0086 CDDOOO CALL SHLR sHL shifted right (divided by 2)
0089 0D DCR [sCount down
008A C28400 JINZ GABS sShift again if necessary
008D F1 POFP PSW ;Recover offset
O08E C9 RET
sUtility subroutines
:These perform 16-bit arithmetic on the HL register pair.
s DIVHL
;Divides HL by DE using an iterative subtract.
;In practice, it uses an iterative ADD of the complemented divisar.
sEntry paramaters
3 HL = dividend
H DE = divisar
FExit parameters
H BC = quotient
H HL = remainder
DIVHL:
Q08F DS PUSH D sSave divisor
iNote : 275 complement is farmed by
sinverting all bits and adding 1.
0090 7R Mav AE sComplement divisor (for iterative
0091 2F CMA sADD later on)
0092 SF -MOV E, A
0093 7A MOV A, D ;Get MS byte
0094 2F CMA ;Complement it
0095 57 MOV n,A
0096 12 INX D iMake 2“s complement
;Now, subtract negative divisar until
sdividend goes negative, counting the number
jof times the subtract occcurs
0097 010000 LXI B,0 ;Initialize quotient
DIVHLS: sSubtract loop
009A 03 INX B ;Add 1 to quotient
009B 19 DAD D s"Subtract" divisor
009C DAYAOO Jc DIVHLS ;Dividend not yet negative
;Dividend now negative, quotient 1 tco large
009F OB DeXx B ;Correct quotient
;Compute correct remainder
00A0 EB XCHG sDE = remainder - divisor
00A1 E1l POP H ;Recover positive divisor
00A2 19 DAD D sHL = remainder
00A3 C% RET sBC = quotient, HL = remainder
s MULHL
sMultiply HL ®* DE using iterative ADD.
sEntry parameters
H HL = multiplicand
H DE = multiplier
sExit parameters
H HL = product
: DE = multiplier
MULHL :
00A4 CS PUSH B ;Save user register
iCheck if either multiplicand
3 or multiplier is O
Figure 5-24. (Continued)

430 The CP/M Programmer’s Handbook

Q0AS 7C Mav A H
00Aé BS ORA L
00A7 CACA00 JZ MULHLZ ;Yes, fake product
00AA 7A MOV A, D
00AR B3 ORA E
00AC CAC400 Jz MULHLZ sYes, fake praduct
:This routine will be faster if
; the smaller value is in DE
QOAF 7A Mov A, D :Get MS byte of current DE value
QOBRO BC CMP H ;Check which is smaller
OOR1 DABSQO JC MULHLN :C set if D < H, so no exchange
0OR4 EB XCHG
MULHLN:
00BS 42 MOV B,D sBC = multiplier
Q0B& 4R Mav C,E
QOB7 54 MOV D,H ;DE = HL = multiplicand
00B8 SD Mav E, L
00BY OB ncx B sAdjust count as
;1 =% multiplicand = multiplicand
MULHLA: ;ADD loop
Q0BA 78 Mav A,B ;Check if all iterations completed
Q0BRB B1 ORA c
00BC CAC700 Jdz MULHLX ;Yes, exit
Q0BF 19 DAD D sHL = multiplicand + multiplicand
00CO OB ncx B sCountdown on multiplier - 1
00C1 C3RAOO JIMFP MULHLA :Loop back until all ADDs done
MULHLZ:
00C4 210000 LXI H, 0 ;Fake product as either multiplicand
; or multiplier is O
MULHLX:
00C7 C1 POP B sRecover user register
00Ccg C¥ RET
3 SUBHL
;Subtract HL - DE
;Entry paramaters
H HL = subtrahend
H DE = subtractor
;Exit parameters
H HL = difference
SUBHL:
00cy 7D MoV AL ;Get LS byte
00CA 93 SUB E sSubtract without regard to carry
QOCE &F MOV L,A sPut back into difference
oocc 7C MOV AH ;Get MS byte
ooch 9A SEE n sSubtract including carry
00CE &7 Mav H, A ;Move back into difference
00OCF C%9 RET
; SHLR
:Shift HL right cne place (dividing HL by 2)
sEntry parameters .
H HL = value to be shifted
sExit parameters
; HL = value/2
SHLR:
o0no B7 ORA A sClear carry
oont 7C MQV AH ;Get MS byte
oon2 1F RAR sBit 7 set from previous carry,
;s bit O goes into carry
0oD3 67 MoV H, A ;Put shift MS byte back
ooD4 7D MOV AL ;Get LS byte
oons 1F RAR sBit 7 = bit 0 of MS byte
o0Ds &F MQV L, A sPut back into result
oon7 €9 RET
Figure 5-24. (Continued)

Function 32:

Example

Purpose

Notes

Function 33:

Example

Chapter 5: The Basic Disk Operating System 131

Set/Get User Number

Function Code: C = 20H
Entry Parameters: E = OFFH to get user number, or
E = 0 to 15 to set user number
Exit Parameters: A = Current user number if E was OFFH

0020 = B$SETGETUN EQU 32 sSet/Get User Number
0005 = BDOS EQU S sBDOS entry point
;To set user number
0000 QE20 MVI C, B$SETGETUN sFunction code
0002 1EOF MVI E, 15 sRequired user number
0004 CDOS00 CALL BDOS 3To get user number
0007 OE20 MVI C, B$SETGETUN sFunction code
0009 1EFF MVI E, OFFH sIndicate request to GET
Q00B CDOS00 CALL BDOS 3A = Current user no. (0 —— 15)

This subroutine either sets or gets the current user number. The current user
number determines which file directory entries are matched during all disk file
operations.

When you call this function, the contents of the E register specify what action is
to be taken. If E= 0FFH, then the function will return the current user number in
the A register. If you set E to a number in the range 0 to 15 (that is, a valid user
number), the function will set the current user number to this value.

You can use this function to share files with other users. You can locate a file by
attempting to open a file and switching through all of the user numbers. Or you can
share afile in another user number by setting to that number, operating on the file,
and then reverting back to the original usetr number.

If you do change the current user number, make provisions in your program to
return to the original number before your program terminates. It is disconcerting
for computer operators to find that they are in a different user number after a
program. Files can easily be damaged or accidentally erased this way.

Read Random

Function Code: C=2lH
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Return code
0021 = B$READRAN EQU 33 s Read Random
Q005 = BDOS EQU S sBDOS entry point
FCB: sFile control block
Q000 00 FCBR$DISK: DR] sSearch on default disk drive
0001 44494CAS4EFCBSNAME:: DB “FILENAME~ ;File name

0009 545950 FCR$TYP: DB “TYP” sFile type

432 The CP/M Programmer’s Handbook

000C
000D
000F
0010
0018
0020
0021
0023

0024

0026
0029
002C
Q02E
0031

Purpose

Q0 FCR$EXTENT: DB V] sExtent
0000 FCB$RESV: DR 0,0 sReserved for CP/M
00 FCR$RECUSED: DB 0 sRecords used in this extent
0000000Q00FCBSARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
Q000000000 DB 0,0,0,0,0,0,0,0
00 FCB$SEQREC: DR o ;Sequential rec. to read/write
0000 FCB$RANREC: oW] sRandom rec. to read/write
00 FCB$RANRECO: DB o] sRandom rec. overflow byte (MS)
D204 RANRECNQ: DW 1234 sExample random record number
sRecord will be read into
; address set by prior
; SETDMA call
2A2400 LHLD RANRECNC ;Get random record number
222100 SHLD FCR$RANREC ;Set up file control block
OE21 MVI C, BSREADRAN sFunction code
110000 LXI D,FCRB sDE -> .file control block
CDOSO00 CALL BDOS sA = 00 if operation successful
sA = nonzero if no data in
s file specifically:
:A = 01 —— attempt to read
H unwritten record
3 03 -- CP/M could not
H close current extent
H 04 -- attempt to read
H unwritten extent
H 06 -- attempt to read
H beyond end of disk
This function reads a specific CP/M record (128 bytes) from a random file—

that is, a file in which records can be accessed directly. It assumes that you have
already opened the file, set the DM A address using the BDOS Set DMA function,
and set the specific record to be read into the random record number in the FCB.
This function computes the extent of the specified record number and attempts to
open it and read the correct CP/M record into the DMA address.

The random record number in the FCB is three bytes long (at relative bytes 33,
34, and 35). Byte 33 is the least significant byte, 34 is the middle byte, and 35 the
most significant. CP/M uses only the most significant byte (35) for computing the
overall file size (function 35). You must set this byte to 0 when setting up the FCB.
Bytes 33 and 34 are used together for the Read Random, so you can access from
record 0 to 65535 (a maximum file size of 8,388,480 bytes).

This function returns with A set to 0 to indicate that the operation has been
completed successfully, or A set to a nonzero value if an error has occurred. The
error codes are as follows:

A = 01 (attempt to read unwritten record)

A = 03 (CP/M could not close current extent)

A = 04 (attempt to read unwritten extent)

A = 06 (attempt to read beyond end of disk)

Unlike the Read Sequential BDOS function (code 20, 14H), which updates the
current (sequential) record number in the FCB, the Read Random function leaves
the record number unchanged, so that a subsequent Write Random will replace

the record just read.
You can follow a Read Random with a Write Sequential (code 21, 15H). This

Notes

Function 34:

Example

Chapter 5: The Basic Disk Operating System 133

will rewrite the record just read, but will then update the sequential record number.
Or you may choose to use a Read Sequential after the Read Random. In this case,
the same record will be reread and the sequential record number will be incre-
mented. In short, the file can be sequentially read or written once the Read
Random has been used to position to the required place in the file.

To use the Read Random function, you must first open the base extent of the
file, that is, extent 0. Even though there may be no actual data records in this
extent, opening permits the file to be processed correctly.

One problem that is not immediately obvious with random files is that they can
easily be created with gaps in the file. If you were to create the file with record
number 0 and record number 5000, there would be no intervening file extents.
Should you attempt to read or copy the file sequentially, even using CP/M’s file
copy utility, only the first extent (and in this case, record 0) would get copied. A
Read Sequential function would return an “end of file” error after reading record
0. You must therefore be conscious of the type of the file that you try and read.

See Figure 5-26 for an example subroutine that performs Random File Reads
and Writes. It reads or writes records of sizes other than 128 bytes, where necessary
reading or writing several CP/M records, prereading them into its own buffer
when the record being written occupies only part of a CP/M record. It also
contains subroutines to produce a 32-bit product from multiplying HL by DE
(MLDL—Multiply double length) and a right bit shift for DE, HL (SDLR— Shift
double length right).

Write Random

Function Code: C =22H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Return code

0022 = B$SWRITERAN EQU 24 ;Write Random
0005 = BDQS EQU S ;BDOS entry point

FCB: sFile control block
0000 00 FCR$DISK: DB 0 ;Search on default disk drive
0001 46494CAS4EFCBR$NAME: DR “FILENAME " sFile name
Q009 545950 FCR$TYP: DB “TYP” sFile type
000C 00 FCBSEXTENT: DR Q sExtent
000D 0000 FCB$RESV: DR Q0,0 sReserved for CP/M
000F Q0 FCB$RECUSED: DR [d] sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCR$SEQREC: DB o sSequential rec. to read/write
0021 0000 FCR$RANREC: DW o sRandom rec. to read/write
0023 00 FCB$RANRECQ: DR o sRandom rec. overflow byte (MS)
0024 D204 RANRECNQ: oW 1234 ;Example random record number

:ﬁecord will be written from
3 address set by priaor
3 SETDMA call

434 The CP/M Programmer’s Handbook

Purpose

Notes

0026 2A2400 LHLD RANRECNO ;Get random record number
0029 222100 SHLD FCBR$RANREC ;Set up file control block
002C OE22 MVI C, B$WRITERAN sFunction code

Q02E 110000 LXI D,FCB ;DE -> file control block

0031 CDOS00 CALL BDOS A = 00 if operation successful
;A = nonzero if no data in file
;3 specifically:
3A = 03 —— CP/M could not
H close current extent
05 —-- directory full
? 06 ——- attempt to write
H beyond end of disk

This function writes a specific CP/M record (128 bytes) into a random file. It is
initiated in much the same way as the companion function, Read Random (code
33, 21 H). It assumes that you have already opened the file, set the DM A address to
the address in memory containing the record to be written to disk, and set the
random record number in the FCB to the specified record being written. This
function also computes the extent in which the specified record number lies and
opens the extent (creating it if it does not already exist). The error codes returned in
A by this call are the same as those for Read Random, with the addition of error
code 05, which indicates a full directory.

Like the Read Random (but unlike the Write Sequential), this function does
not update the logical extent and sequential (current) record number in the FCB.
Therefore, any subsequent sequential operation will access the record just written
by the Read Random call, but these functions will update the sequential record
number. The Write Random can therefore be used to position to the required
place in the file, which can then be accessed sequentially.

In order to use the Write Random, you must first open the base extent (extent
0) of the file. Even though there may be no data records in this extent, opening
permits the file to be processed correctly.

As explained in the notes for the Read Random function, you can easily create
arandom file with gaps in it. If you were to create a file with record number 0 and
record number 5000, there would be no intervening file extents.

Figure 5-25 shows an example subroutine that creates a random file (CRF) but
avoids this problem. You specify the number of 128-byte CP/M records in the file.
The subroutine creates the file and then writes zero-filled records throughout. This
makes it easier to process the file and permits standard CP/M utility programs to
copy the file because there is a data record in every logical record position in the
file. It is no longer a “sparse” file.

Figure 5-26 shows a subroutine that ties the Read and Write Random func-
tions together. It performs Random Operations (RO). Unlike the standard BDOS
functions that operate on 128-byte CP/M records, RO can handle arbitrary record
size from one to several thousand bytes. You specify the relative record number of
your record, not the CP/M record number (RO computes this). RO also prereads a
CP/M record when your logical record occupies part of a 128-byte record, either
because your record is less than 128 bytes or because it spans more than one

Chapter 5: The Basic Disk Operating System

135

0013
0016
001A
0015
00035

0000
0032
0064

0080

0082
0085
0084
0088
Q08B
008C
Q08D
Q08F
0092
0094
0095
0026
0097

0098
00%A
009D
00A0

00A1
00A4
00AS
00A&
00A7
00A8
00AB
00AC
00AE

00B1
00B2

0000000000
0000000000

0000000000

0000

228000
DS
OE13
CDOS00
D1

ns
QE16
CDOS00
FEFF
3F

D1

ng

DS

OE1A
110000
CDOS00
D1

2A8000
7D

B4

ce

2B
228000
DS
0E1S
CDOS00

D1
C3A100

s CRF

sCreate random file

:This subroutine creates a random file. It erases any previous
sfile before creating the new cne, and then writes O-filled
srecords throughout the entire file.

;Entry parameters

B DE -> file control block faor new file

3 HL = Number of 128-byte CP/M records to be
3 zerc-filled.

sExit parameters
H Carry clear if operation successful (A = 0,1,2,3)
H Carry set if errar (A = OFFH)

;Calling sequence
LXI

;
H D,FCB
; CALL CRF
H Jc ERROR
B$ERASE EQU 19 sErase file
B$CREATE EQU 22 ;Create file
B$SETDMA EQU 2é ;Set DMA address
ESWRITESEQ EQU 21 ;Write sequential record
BDOS EQU S ;BDOS entry point
CRFBUF: sZero—filled buffer
oW ¢,9,0,
0,0,0
DW 0,
0,0,0
oW 0,0,0,0,0,0,0,0,0,0,0,0,0,0
CRFRC: DW (o] sRecord count
CRF:
SHLD CRFRC sSave record count
PUSH D ;Preserve FCR pointer
MVI C, B$ERASE ;Erase any existing file
CALL BDOS
POP D ;sRecover FCB pointer
PUSH D s and resave
MVI C, B$CREATE sCreate (and cpen new file)
CALL BDOS .
CPI OFFH sCarry set if OK, clear if error
CcMC sComplete to use carry set if errar
POP j sRecaver FCB address
RC sReturn if ervor
PUSH' D sResave FCB pointer
MVI C, B$SETDMA ;Set DMA address to O-buffer
LXI D, CRFELUF
CALL BDOS
PQOP D ;Recaver FCB pointer
CRFL:
LHLD CRFRC ;Get record count
MOV AL
ORA H ;Check if count now zerco
RZ iYes, exit
DCX H sDowndate count
SHLD CRFRC sSave count
PUSH o sResave FCB address
MVI C, B$WRITESER ;Write sequentially
CALL BDOS
POP D sRecover FCE
JMP CRFL ;Write next record

Figure 5-25. Create random file

436 The CP/M Programmer’s ﬁandbook

128-byte sector. The subroutine suppresses this preread if you happen to use a
record size that is some multiple of 128 bytes. In this case, your records will fit
exactly onto a 128-byte record, so there will never be some partially occupied
128-byte sector.

This example also contains subroutines to produce a 32-bit product from
multiplying HL by DE (MLDL—Multiply double length) and a right bit shift for
DE, HL (SDLR—Shift double length right).

RO
sRandom operation (read or write)

3This subroutine reads or writes a random record from a file.

s The record length can be other than 128-bytes. This

ssubroutine computes the start CF/M record (which

;is 128 bytes), and, if reading, performs a random read

sand moves the user-specified record into a user buffer.

3 I1f necessary, more CP/M records will be read until the complete
suser—-specified record has been input.

;For writing, if the size of the user-specified record is not an exact
smultiple of CP/M records, the appropriate sectors will be preread.
;It is not necessary to preread when the user-specified record

sis an exact CP/M record, nor when subroutine is processing

sCP/M recards entirely spanned by a user-specified reccord.

sEntry parameters
HL -> parameter block of the form:
D (o] s OFFH when reading, OO0H for write

DW FCB sPointer to FCB

DW RECNO sUser recaord number
DW RECSZ sUser record size

oW BUFFER jPointer to buffer of

;3 RECSZ bytes in lenath

Exit parameters
A = 0 if operation completed (and user record
copied into user buffer)

H 1 if attempt to read unwritten CP/M record
H 3 if CP/M cculd not close an extent
; 4 if attempt to read unwritten extent
§ S if CP/M could not create a new extent
H 6 if attempt to read beyond end of disk
;Calling sequence
H LXI H, PARAMS sHL -> parameter block
; CALL RO
H ORA A sCheck if error
H JINZ ERROR
0021 = FCBE$RANREC EQU 33 ;0ffset of random record no. in FCB
001A = B$SETOMA EQU 26 ;Set the DMA address
0021 = B$READRAN EQU 33 ;Read random record
0028 = B$WRITERANZ EQU 40 ;Write random record with zerc-fill
; Ppreviously unallocated allocation
; blocks
0005 = BDOS EQU S sBDOS entry point
ROPB: ;Parameter block image
0000 00 ROREAD: DB (o] 3NZ when reading, Z when writing
0001 0000 ROFCB: DW o sPointer to FCB
0003 0000 ROURN: DW] sUser record number
0005 0000 ROURL: DW o] sUser record lenath
0007 0000 ROUB: DW (o] sPointer to user buffer
0009 = ROPBL EQU $-ROPE ;Parameter block lenath
0009 0000 ROFRP: DW o sPointer to start of user record fraagment
3 in first CP/M-record read in
Figure 5-26. Read/ Write variable length records randomly

Chapter 5: The Basic Disk Operating System

137

Q00E 00 ROFRL: DB 0o sFragment length
000C 0000 RORNP: DW [¢] ;Record number pointer (in user FCE)
Q00E 00 ROWECR: DB 0 sNZ when writing user records that are an
; exact super-multiple of CP/M-record (and
3 therefore no preread is required)
000F ROBUF: DS 12g ;Buffer for CP/M recaord
RO:
008F 110000 LXI D, ROPE sDE -> local parameter block
0092 0E09 MVI C, ROPBL sParameter block length
0094 CDFEO1 CALL MQVE sMove C bytes from HL to DE
;T compute offset of user record in CP/M record,
;3 compute the relative BYTE offset of the start
3 of the user record within the file (i.e.
3 user record number * record size). The least
3 significant 7 bits of this product give the
; byte offset of the start of the user record.
i The product / 128 (shifted left 7 bits) gives the
;CP/M record number of the start of the user record.
0097 2A0500 LHLD ROURL ;Get user record length
00%9A 7D MoV AL ;Get LS bytes of user rec. length
Q09R E&7F ANI 7FH ;Check if exact multiple of 128
009D B7 ORA A s(i.e. exact CP/M records)
009E RIEQO MVI A0 $A = 0, flags unchanged
00A0 C2A400 JNZ RONE sNot exact CP/M records
00A3 3D DCR A A =FF
RONE: .
00A4 320E00 STA ROWECR ;Set write-exact-CP/M-records flag
00A7 EB XCHG sDE = user record length
00A8 2A0300 LHLD ROURN ;Get user record number
O00AB CDB801 CALL MLDL sDE,HL = HL * DE
sDE,HL = user-record byte offset in file
Q0AE DS PUSH D sSave user-record byte offset
00AF ES PUSH H
00BO 7D MoV AL sGet LS byte of product
00B1 E&7F ANI 7FH sIsolate byte offset within
00B3 4F Mov C,A sCP/M record
00B4 0600 MVI B, 0 ;Make into word value
00Bé 210F00 LXI H, ROBUF ;Get base address of lacal buffer
00B% 09 DAD B sHL —> Start of fragment in buffer
00BA 220900 SHLD ROFRP s;Save fragment pointer
;Compute maximum fragment length that could reside in
sremainder of CP/M record, based on the offset in the
sCP/M record where the fragment starts.
OOBD 47 Mav B,A ;Take copy of offset in CP/M record
O0BE 3E80 MVI A, 128 ‘P/M record size
00CO 90 SUB B ‘ompute 128 - offset
00C1 320B0O STA ROFRL sAssume this is the fragment length
sIf the user record length is less than the assumed
3 fragment length, use it in place of the result above
00C4 47 MOV B, A ;Get copy of assume frag. length
00CS 3A0600 LDA ROURL +1 ;Get MS byte of user record length
ooce B7 ORA A s If NZ, rec. len. must be > 128
00C9 C2D600 JNZ ROFLOK ;S0 fragment length is OK
00CC 3A0500 LDA ROURL ;Still a chance that rec. len.
O0CF B8 CMP B + less than fragment len.
00D0 D2D&00 JINC ROFLOK ;NC if user rec. len. => frag. len.
00D3 320R00 STA ROFRL ;User rec. len. < frag. len. so
; reset fragment length to smaller
ROFLOK:
00D& 3A0EQQ LDA ROWECR ;Get exact CP/M record flag
o0DY 47 MOV B,A ;for ANDing with READ flag
00DA 3A0000 LDA ROREAD 3Get read operation flag
ooDD 2F CcMA sInvert so NZ when writing
Figure 5-26. (Continued)

438 The CPM Programmer’s Handbook

sForm lagical AND
;Save back in flag

;Recover the double length byte offset within the file
sof the start of the user record. Shift 7 places right
sto divide by 128 and get the CP/M record number far

sRecover user rec. byte offset

;Count for shift right

sDE,HL = DE,HL /7 2

Error if DE still NZ after
division by 128.

;Set CP/M record number in FCR

sDE = CP/M record number

sGet pointer to FCB

;0ffset of random record no. in FCB
sHL -> ran. rec. no. in FCB

;Save record number pointer

;Store LS byte

;Store MS byte

;Set DMA address to local buffer
;Bypass preread if exact sector write

;Get pointer to FCB
sDE -> FCB
sRead random functicn

sCheck if error code < 5

sYes, check if ignorable error

(i.e. error reading unwritten part
of file for write operation preread)
heck if error

es

C
Y

sMove next fragment

;Get pointer to user buffer

sDE -> user buffer

sHL => start of user rec. in local buffer
;Get fragment lenagth

sReady far MOVE

;Check if reading

sYes, so leave DE, HL unchanged

sWriting, so swap scurce and destination
sDE -> start of user rec. in local buffer
sHL -> user buffer

> user buffer
local buffer

;Reading - fragment local
sWriting - fragment user -3
;Check if writing

sWriting, so leave HL -»> user buffer
sHL => next byte in user buffer

;Save updated user buffer pcinter
sCheck if reading

Q0DE AOQO ANA B
Q0DF 320EQ0 STA ROWECR
;the start of the user record.

00E2 E1l POP H
00E3 D1 POP D
00E4 QEQ7 MVI c,7

ROS:
00Eé CDF101 CALL SDLR
Q0E? OD DCR Cc
00EA C2E&00 JNZ ROS
Q0ED 7A MoV A, D
OOEE B3 ORA E
O0EF C2ACO1 JINZ ROERO
00F2 ER XCHG
00F3 2A0100 LHLD ROFCB
O0F6 012100 LXI R, FCBE$SRANREC
00F9 09 DAD B
Q0FA 220C00 SHLD RORNP
Q0FD 73 Mav M, E
OOFE 23 INX H
O00FF 72 Mov M, D
0100 OE1A MVI C, B$SETDMA
0102 110F00 LXI D, ROBUF
0105 CDOS00 CALL BDOS
0108 3A0EQQ LDA 'ROWECR
010B B7 ORA A
010C C21F01 JNZ ROMNF
010F 2A0100 LHLD ROFCB
0112 EB XCHG
0113 OE21 MVI C, B$READRAN
011S CDOS00 CALL BDOS
0118 FEOS CPI S
011A DCAFO1 cc ROCIE
011D B7 ORA A
011E CO RNZ

ROMNF =
011F 2A0700 LHLD ROUE
0122 EB XCHG
0123 2A0900 LHLD ROFRP
012& 3A0BOO LDA ROFRL
0129 4F MoV C,A
012A 3A0000 LDA ROREAD
012D B7 ORA A
012E C23201 JNZ RORD1
0131 EB XCHG

RORD1:
0132 CDFEO1 CALL MQVE
0135 3A0000 LDA ROREAD
0138 B7 ORA A
0139 CA3DO1 Jz ROWR1
013C EB XCHG

ROWR1 =
0130 220700 SHLD ROUE
0140 3A0000 LDA ROREAD

Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System

139

0143 B7 ORA A
0144 C25001 JINZ RORD3 ;Yes, bypass write code
0147 QE28 MVI C, B$WRITERANZ sWrite random
0149 2A0100 LHLD ROFCB ;Get address of FCB
014C EBR XCHG ;DE -> FCB
014D CDOS00 CALL BDOS
RORD3: ;Compute residual length of user record as yet unmaved.
;3 If necessary (because more data needs to be transferred)
smore CP/M records will be read. In this case
sthe start of the fragment will be offset 0. The fragment
;length depends on whether the user record finishes within
sthe next sector or spans it. If the residual length of the
suser record is > 128, the fragment length will be set to
3128,
0150 2A0500 LHLD ROURL ;Get residual user rec. length
0153 3A0BOO LDA ROFRL ;Get fragment length just moved
0156 SF MOV E,A sMake into a word value
0157 1600 MVI 0,0
0159 CDEAO1L CALL SUBHL ;Compute ROURL - ROFRL
015C 7C Mav AH sCheck if result O
015D BS ORA L
015E C8 RZ jReturn when complete USER
3 record has been transferred
015F 220500 SHLD ROURL sSave downdated residual rec. length
0162 4D MOV c,L sAssume residual length < 128
0163 118000 LXI D, 128 ;Check if residual length is < 128
0166 CDEAO1L CALL SUBHL ;HL = HL - DE
0169 FAGEOL JM ROLT128 ;negative if < 128
016C OE80 MVI c,128 3=> 128, so set frag.length to 128
ROLT128:
016E 79 MOV A C
016F 320B0OO STA ROFRL sFragment length now is either 128
s if more than 128 bytes left to input
3 in user record, or just the right
s number of bytes (< 128) to complete
3 the user record.
0172 210F00 LXI H, ROBUF A1l subsequent CP/M records will start
0175 220900 SHLD ROFRP ; at beginning of buffer
sUpdate random record number in FCB
0178 2A0C00 LHLD RORNP sHL -=> random record number in user FCB
017B SE May E,M ; Increment the random record number
017C 23 INX H sHL -> MS byte of record number
017D Sé MOV o.M ;Get MS byte
017E 13 INX D sUpdate record number itself
017F 7A MoV A, D sCheck if record now O
0180 B3 ORA E
0181 C28701 JNZ ROSRN sNo, so save record number
0184 3E06 MVI A b ;Indicate "seek past end of disk"
0186 C9 RET ;Return to user
ROSRN:
0187 72 Mov M, D sSave recaord number
0188 2B ncx H sHL -> LS byte
018% 73 MOV M, E
3If writing, check if preread required
018A 3A0E0O LDA ROWECR 3sCheck if exact CP/M record write
018D B7 ORA A
018E C21F01 JNZ ROMNF sYes, go move next fragment
0191 3A0000 LDA ROREAD 3If reading, perform read unconditionally
0194 B7 ORA A
0195 C2A001 JINZ RORD2
0198 3A0BOO LDA ROFRL sFor writes, bypass preread if
019B FE80 CPI 128 3 whole CP/M-record is to be overwritten
019D CA1FO1 Jz ROMNF 3 (fragment length = 128)
RORDZ2:
01A0 OE21 MVI C, B$READRAN sRead the next CP/M record
01A2 2A0100 LHLD ROFCR ; in sequence
Figure 5-26. (Continued)

440 The CP/M Programmer’s Handbook

01A5 EB XCHG
01Aé CDOS00 CALL BDOS
01A9 C31FO1 JMP ROMNF
ROEROQ:
01AC 3E04 MVI)
01AE C% RET
ROCIE:
O1AF 47 MoV B, A
01BO 3A0000 LDA ROREAD
01B3 B7 ORA A
01B4 78 MoV A B
01BS CO RNZ
01Bé AF XRA A
01B7 C9 RET
sMLDL

sreturned in DE,HL.

;Entry parameters
H HL

H DE = multiplier
Exit parameters
DE,HL = product
DE = multiplier

MLDL:
01B8 010000 LXI B,0
O1BB CS PUSH B
01BC 7C MoV AH
01BD BS ORA L
O1BE CAESO01 JZ MLDLZ
01C1 7A MoV A, D
01C2 B3 ORA E
01C3 CAESO01 Jz MLDLZ
01Cé 7A MOV A, D
01C7 BC CMF H
01C8 DACCO1 Jdc MLDLNX
01CB EB XCHG

MLDLNX:
01CC 42 MOV B,D
01CD 4B Mov C,E
01CE 54 MQV D, H
O1CF SD MOV E,L
01D0 OB DCX B

MLDLA:
01Dl 78 MOV A/B
01D2 B1 ORA Cc
01D3 CAES8O01 Jz MLDLX
01Ds 19 DAD D
01D7 E3 XTHL
oip8 7D MOV AL
01D9 CEOO ACI o
O1DB 6&F MoV L. A
01DC 7C MOV AH
01DD CEOO ACI (o]
01DF 67 MOV H, A
O1EO E3 XTHL
O1E1 OB DCX B
01E2 C3D101 JMP MLDLA

multiplicand

sDE -> FCB
;Go back to move next fragment

s;Error because user record number

3 % User record length / 128 gives

;s a CP/M record number > 65535.
sIndicate "attempt to read unwritten
s extent"

;Check ignorable errcor (preread
; for write operation)

;Save original error code
;Check if read operation

sRestore original error code but
3 leave flags unchanged

sReturn if reading

;Fake "no error" indicator

sMultiply HL ®* DE using iterative ADD with product

sPut 0 on top of stack

3 to act as MS byte of product
sCheck if either multiplicand
3 or multiplier is O

sYes, fake product

sYes, fake product

3This routine will be faster if
3 the smaller value is in DE
;Get MS byte of current DE value
;Check which is smaller

sC set if D < H, so no exchange

sBC = multiplier
;DE = HL = multiplicand

sAdjust count as

3 1 % multiplicand = multiplicand
sADD lcop

sCheck if all iterations completed

sYes, exit

sHL = multiplicand + multiplicand

sHL = MS bytes of result, TOS = part prod.
;Get LS byte of top half of product

;Add one if carry set

jReplace

;Repeat for MS byte

sCountdown on multiplier - 1
sLoop back until all ADDs done

Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System

144

MLDLZ:
01ES 210000 LXI H,0 ;Fake product as either multiplicand
5 or multiplier is O
MLDLX:
O1ES D1 POP D ;Recaver MS part of product
O1E9 C9% RET
3 SUBHL
sSubtract HL - DE.
sEntry parameters
H HL = subtrahend
; DE = subtractor
sExit parameters
H HL = difference
SUBHL :
O1EA 7D MOV AL ;Get LS byte
O1EB 93 SUR E ;Subtract without regard to carry
O1EC &F MoV L,A sPut back into difference
O1ED 7C MOV A H ;Get MS byte
O1EE 9A SBB D ;Subtract including carry
O1EF &7 MoV H, A ;Move back into difference
01F0 C9% RET
s SDLR
3Shift DE,HL right one place (dividing DE,HL by 2)
sEntry parameters
H DE,HL = value to be shifted
sExit parameters
s DE,HL "= value / 2
SDLR:
O1Fi B7 ORA A sClear carry
01F2 EB XCHG 3Shift DE first
01F3 CDF701 CALL SDLR2
01Fé EB XCHG sNow shift HL
sDrop into SDLR2 with carry
;3 set correctly from LS bit
3 of DE
SDLR2: sShift HL right one place
01F7 7C MoV A H ;Get MS byte
O1F8 1F RAR ;Bit 7 set from previous carry,
sBit 0 goes into carry
O1F9 67 MOV H, A sPut shift MS byte back
O1FA 7D MOV AL ;Get LS byte
O1FB 1F RAR sBit 7 = bit 0 of MS byte
O1FC 6&F Mav L,A sPut back into result
01FD C9 RET
s MOVE
;Moves C bytes from HL tc DE
MOVE:
OIFE 7E Mov AM ;Get source byte
O1FF 12 STAX D ;Store in destination
0200 13 INX D sUpdate destination pointer
0201 23 INX H sUpdate source pointer
0202 oD DCR C sDowndate count
0203 C2FEO01 JNZ MOVE ;Get next byte
0206 C9 RET
Figure 5-26. (Continued)

142 The CP/M Programmer’s Handbook

Function 35: Get File Size

Function Code:

C=23H

Entry Parameters: DE = Address of FCB

Exit Parameters: Random record field set in FCB

Example
0023 = B$GETFSIZ EQU 3s ;Get Random File LOGICAL size
0005 = BDOS EQU s :BDOS entry point
FCB: ;File control block
0000 00 FCB$DISK: DR 0 sSearch on default disk drive
0001 45494CAS4EFCBSNAME: DB “FILENAME~ ;File name
0009 545950 FCBS$TYP: DB “TYP’ 3File type
000C 00 FCBSEXTENT: DB o ;Extent
000D 0000 FCR$RESV: DB 0,0 ;Reserved for CP/M
Q00F 00 FCBS$RECUSED: DB o sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB o} sSequential rec. to read/write
0021 0000 FCB$RANREC: DW 0 sRandom rec. to read/write
0023 00 FCB$RANRECO: DB o sRandom rec. overflow byte (MS)
0024 0E23 MVI €, B$GETFSIZ ;Function code
0026 110000 LXI D,FCB :DE -> file control block
0029 CDOSQ0 CALL BDOS
002C 2A2100 LHLD FCB$RANREC ;Get random record number
sHL = LOGICAL file size
s i.e. the record number of the
s last record
Purpose This function returns the virtual size of the specified file. It does so by setting
the random record number (bytes 33-35) in the specified FCB to the maximum
128-byte record number in the file. The virtual file size is calculated from the
record address of the record following the end of the file. Bytes 33 and 34 form a
16-bit value that contains the record number, with overflow indicated in byte 35. If
byte 35 is 01, this means that the file has the maximum record count of 65,536.

If the function cannot find the file specified by the FCB, it returns with the
random record field set to 0.

You can use this function when you want to add data to the end of an existing
file. By calling this function first, the random record bytes will be set to the end of
file. Subsequent Write Random calls will write out records to this preset address.

Notes Do not confuse the virtual file size with the actual file size. In a random file, if

you write just a single CP/M record to record number 1000 and then call this
function, it will return with the random record number field set in the FCB to
1000—even though only a single record exists in'the file.

For sequential files, this function returns the number of records in the file. In
this case, the virtual and actual file sizes coincide.

Function 36: Set Random Record Number

Function Code: C=24H
Entry Parameters: DE = Address of FCB
Exit Parameters: Random record field set in FCB

Example

Purpose

Notes

Chapter 5: The Basic Disk Operating System 443

0024 = B$SETRANREC EQU 36 ;Set Random Record Number
0005 = BDOS EQU S sBDOS entry point

FCB: sFile control block
0000 00 FCB$DISK: DB (o] sSearch on default disk drive
0001 46494C454EFCBSNAME: DB “FILENAME~ sFile name
0009 545950 FCBR$TYP: DB “TYP” sFile type
Q00C 00 FCBSEXTENT: DB [o] sExtent
Q00D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
00QOF 00 FCB$RECUSED: DB 0 sRecords used in this extent
0010 0000000000FCB$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
Q020 00 FCR$SEQREC: DB [} 3;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW] sRandom rec. to read/write
0023 00 FCB$RANRECO: DB (o] ;Random rec. overflow byte (MS)

... file opened and read
3 or written sequentially...

0024 OE24 MVI C, B$SETRANREC sFunction code
0024 110000 LXI D,FCR sDE -> file control block
0029 CDOSQO CALL BDOS
Q02C 2A2100 LHLD FCB$RANREC sGet random record number

;HL = random record number
that corresponds to the
sequential progress down
the file.

This function sets the random record number in the FCB to the correct value
for the last record read or written sequentially to the file.

This function provides you with a convenient way to build an index file so that
you can randomly access a sequential file. Open the sequential file, and as you read
each record, extract the appropriate key field from the data record. Make the
BDOS Set Random Record request and create a new data record with just the key
field and the random record number. Write the new data record out to the index
file.

Once you have done this for each record in the file, your index file provides a
convenient method, given a search key value, of finding the appropriate CP/M
record in which the data lies.

You can also use this function as a means of finding out where you are currently
positioned in a sequential file—either to relate a CP/M record number to the
position, or simply as a place-marker to allow a repositioning to the same place
later.

Function 37: Reset Logical Disk Drive

Example

Function Code: C=25H
Entry Parameters: DE = Logical drive bit map
Exit Parameters: A = 00H

0025
Q005

B$RESETD EQU 37 tReset Logical Disks
BDOS EQU S sBDOS entry point

444 The CP/M Programmer’s Handbook

Purpose

Notes

sDE = Bit map of disks to be
;s reset

:Bits are = 1 if disk to be
;s reset

;Bits 15 14 13 ... 210
;Disk P O N ... CBA

0000 110200 LXI D, 0000$0000$0000$0010B ;Reset drive B:
0003 OE25 MVI C, B$RESETD sFunction code
0005 CDOS00 CALL BDOS

This function resets individual disk drives. It is a more precise version of the
Reset Disk System function (code 13,0DH), in that you can set specific logical
disks rather than all of them.

The bit map in DE shows which disks are to be reset. The least significant bit of
E represents disk A, and the most significant bit of D, disk P. The bits set to |
indicate the disks to be reset.

Note that this function returns a zero value in A in order to maintain compati-
bility with MP/M.

Use this function when only specific diskettes need to be changed. Changinga
diskette without requesting CP/M to log it in will cause the BDOS to assume that
an error has occurred and to set the new diskette to Read-Only status as a
protective measure.

Function 40: Write Random with Zero-fill

Example

Function Code: C=28H
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Return Code
0028 = B$WRITERANZ EQU 40 sWrite Random with Zerc-Fill
Q005 = BDOS EQU S s BDOS entry point
FCB: sFile control block
0000 00 FCB$DISK: DB (o] ;Gearch on default disk drive
0001 46494CASAEFCBSNAME: DB “FILENAME~ sFile name
0009 545950 FCB$TYP: DB “TYP’ ;File type
000C 00 FCB$EXTENT: DB [d] sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
Q00F 00 FCB$RECUSED: DR Q sRecords used in this extent
0010 0000000000FCB$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB 0 :Sequential rec. to read/write
0021 0000 FCR$RANREC: DW (o] sRandom rec. to read/write
0023 00 FCB$RANRECO: DB [sRandom rec. overflow byte (MS)
0024 D204 RANRECNO: DW 1234 sExample random record number
sRecord will be written from
;s address set by prior
3 SETDMA call
0026 2A2400 LHLD RANRECNOQ ;Get random record number
0029 222100 SHLD FCB$RANREC :Set up file control block
002C 0EZ8 MVI C, B$WRITERANZ sFunction code
Q02E 110000 LX1 D,FCB sDE -> file control block

0031 CDOS00 CALL RDOS sA = 00 if operation successful

Chapter 5: The Basic Disk Operating System 445

A = nonzero if no data in file
specifically @
= 03 —- CP/M could not
close current extent
05 -- directory full
Vé -- attempt to write
beyond end of disk

A

Purpose This function is an extension to the Write Random function described pre-
viously. In addition to performing the Write Random, it will also fill each new
allocation block with 00H’s. Digital Research added this function to assist Micro-
soft with the production of its COBOL compiler—it makes the logic of the file
handling code easier. It also is an economical way to completely fill a random file
with 00H’s. You need only write one record per allocation block; the BDOS will
clear the rest of the block for you.

Notes Refer to the description of the Write Random function (code 34).

The BIOS Components

The BIOS Entry Points

Bootstrap Functions

Character Input/ Output Functions
Disk Functions

Calling the BIOS Functions Directly
Example BIOS

The Basic
Input/Output System

This chapter takes a closer look at the Basic Input/ Output System (BIOS). The
BIOS provides the software link between the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS), and the physical hardware of
your computer system. The CCP and BDOS interact with the parts of your
computer system only as logical devices. They can therefore remain unchanged
from one computer system to the next. The BIOS, however, is customized for your
particular type of computer and disk drives. The only predictable part of the BIOS
is the way in which it interfaces to the CCP and BDOS. This must remain the same
no matter what special features are built into the BIOS.

147

448 The CP/M Programmer’s Handbook

The BIOS Components

A standard BIOS consists of low-level subroutines that drive four types of
physical devices:
- Console: CP/M communicates with the outside world via the console.
Normally this will be a video terminal or a hard-copy terminal.

. “Reader” and “punch”: These devices are normally used to communicate
between computer systems—the names “reader” and “punch” are just his-
torical relics from the early days of CP/M.

- List: This is a hard-copy printer, either letter-quality or dot-matrix.

. Disk drives: These can be anything from the industry standard single-sided,
single-density, 8-inch floppy diskette drives to hard disk drives with capaci-
ties of several hundred megabytes.

The BIOS Entry Points

The first few instructions of the BIOS are all jump (JMP) instructions. They
transfer control to the 17 different subroutines in the BIOS. The CCP and the
BDOS, when making a specific request of the BIOS, do so by transferring control
to the appropriate JMP instruction in this BIOS jump table or jump vector. The
BIOS jump vector always starts at the beginning of a 256-byte page, so the address
of the first jump instruction is always of the form xx00H, where “xx” is the page
address. Location 0000H to 0002H has a jump instruction to the second entry of
the BIOS jump vector—so you can always find the page address of the jump
vector by looking in location 0002H.

Figure 6-1 shows the contents of the BIOS jump vector along with the
page-relative address of each jump. The labels used in the jump instructions have
been adopted by convention.

The following sections describe the functions of each of the BIOS’s main
subroutines. You should also refer to Digital Research’s manual CP/M 2.0 Altera-
tion Guide for their description of the BIOS routines.

Bootstrap Functions

There are two bootstrap functions. The cold bootstrap loads the entire CP/M
operating system when the system is either first turned on or reset. The warm
bootstrap reloads the CCP whenever a program branches to location 0000H.

Chapter 6: The Basic Input/Output System 149

xx00H JMP BOOT s "Cold" (first time) bootstrap
xxO03H JMP WBOOT s "Warm" bootstrap

xX0&H JMP CONST sConscole input status

xx09H JMP CONIN sConsole input

xXOCH JMP CONOUT sConsole output

XXOFH JMP LIST sList output

xx12H JMP PUNCH : "Punch" output

xx 15H JMP READER s "Reader" input

xx18H JMP HOME sHome disk heads (to track 0)
xx1BH JMP SELDSK ;Select logical disk

XX1EH JMP SETTRK ;Set track number

*xx21H JMP SETSEC ;Set sector number

Xx24H JMP SETDMA ;Set DMA address

Xx27H JMP READ sRead (128-byte) sector

xX2AH JMP WRITE sWrite (128-byte) sector
xx20H JMP LISTST sList device output status
Xx%30H JMP SECTRAN ;Sector translate

Figure 6-1.

Layout of the standard BIOS jump vector

BOOT: “Cold” Bootstrap

The BOOT jump instruction is the first instruction executed in CP/M. The
bootstrap sequence must transfer control to the BOOT entry point in order to
bring up CP/M. In general, a PROM receives control either when power is first
applied or after you press the RESET button on the computer. This reads in the
CP/M loader on the first sector of the physical disk drive chosen to be logical disk
A. This CP/M loader program reads the binary image of the CCP, BDOS, and
BIOS into memory at some predetermined address. Then it transfers control to the
BOOT entry point in the BIOS jump vector.

This BOOT routine must initialize all of the required computer hardware. It
sets up the baud rates for the physical console (if this has not already been done
during the bootstrap sequence), the “reader,” “punch,” and list devices, and the
disk controller. It must also set up the base page of memory so that there is ajump
at location 0000H to the warm boot entry point in the BIOS Jjump vector (at
xx03H) and a jump at location 0005H to'the BDOS entry point.

Most BOOT routines sign on by displaying a short message on the console,
indicating the current version of CP/M and the computer hardware that this BIOS
can support. '

The BOOT routine terminates by transferring control to the start of the CCP
+6 bytes (the CCP has its own small jump vector at the beginning). Just before the
BOOT routine jumps into the CCP, it sets the C register to 0 to indicate that logical
disk A is to be the default disk drive. This is what causes “A>” to be the CCP’s
initial prompt.

The actual CCP entry point is derived from tke base address of the BIOS. The
CCP and BDOS together require 1EO0H bytes of code, so the first instruction of
the CCP starts at BIOS —1E00H.

450 The CP/M Programmer’s Handbook

WBOOT: “Warm” Bootstrap

Unlike the “cold” bootstrap entry point, which executes only once, the WBOOT
or warm boot routine will be executed every time a program terminates by
jumping to location 0000H, or whenever you type a CONTROL-C on the console as
the first character of an input line.

The WBOOT routine is responsible for reloading the CCP into memory.
Programs often use all of memory up to the starting point of the BDOS, overwrit-
ing the CCP in the process. The underlying philosophy is that while a program is
executing, the CCP is not needed, so the program can use the memory previously
occupied by the CCP. The CCP occupies 800H (2048) bytes of memory —and this
is frequently just enough to make the difference between a program that cannot
run and one that can.

A few programs that are self-contained and do not require the BDOS’s
facilities will also overwrite the BDOS to get another 1600H (5632) bytes of
memory. Therefore, to be really safe, the WBOOT routine should read in both the
CCP and the BDOS. It also needs to set up the two JMPs at location 0000H (to
WBOOT itself) and at location 0005H (to the BDOS). Location 0003H should be
set to the initial value of the IOBYTE if this is implemented in the BIOS.

Asits last act, the WBOOT routine sets register C to indicate which logical disk
is to be selected (C= 0 for A, | for B, and so on). It then transfers control into the
CCP at the first instruction in order to restart the CCP. Again, the actual address
is computed based on the knowledge that the CCP starts 1EOOH bytes lower in
memory than the base address of the BIOS.

Character Input/Output Functions

Character input/output functions deal with logical devices: the console,
“reader,”“punch,”and list devices. Because these logical devices can in practice be
connected by software to one of several physical character 1/O devices, many
BIOS’s use CP/M’s IOBYTE features to assign logical devices to physical ones.

In this case, each of the BIOS functions must check the appropriate bit fields of
the IOBYTE (see Figure 4-2 and Table 4-1) to transfer control to the correct
physical device driver (program that controls a physical device).

CONST: Console Input Status

CONST simply returns an indicator showing whether there is an incoming
character from the console device. The convention is that A= OFFH if a character
is waiting to be processed, A = 0 if one is not. Note that the zero flag need not be set
to reflect the contents of the A register —it is the contents that are important.

CONST is called by the CCP whenever the CCP is in the middle of an
operation that can be interrupted by pressing a keyboard character.

Chapter 6: The Basic Input/Output System 151

The BDOS will call CONST if a program makes a Read Console Status
function call (BSCONST, code 11, 0BH). It is also called by the console input BIOS
routine, CONIN (described next).

CONIN: Console Input

CONIN reads the next character from the console to the A register and sets the
most significant (parity) bit to 0.

Normally, CONIN will call the CONST routine until it detects A = OFFH.
Only then will it input the data character and mask off the parity bit.

CONIN is called by the CCP and by the BDOS when a program executes a
Read Console Byte function (BSCONIN, code 1).

CONOUT: Console Output

CONOUT outputs the character (in ASCII) in register C to the console. The
most significant (parity) bit of the character will always be 0.

CONOUT must first check that the console device is ready to receive more
data, delaying if necessary until it is, and only then sending the character to the
device. :

CONOUT is called by the CCP and by the BDOS when a program executes a
Write Console Byte function (BSCONOUT, code 2).

LIST: List Output

LIST is similar to CONOUT except that it sends the character in register C to
the list device. It too checks first that the list device is ready to receive the character.

LIST is called by the CCP in response to the CONTROL-P toggle for printer echo
of console output, and by the BDOS when a program makes a Write Printer Byte
or Display String call (BSLISTOUT and BSPRINTS, codes 5 and 9).

PUNCH: “Punch” Output

PUNCH sends the character in register C to the “punch”device. As mentioned
earlier, the “punch”is rarely a real paper tape punch. In most BIOS’s, the PUNCH
entry point either returns immediately and is effectively a null routine, or it outputs
the character to a communications device, such as a modem, on your computer.

PUNCH must check that the “punch”device is indeed ready to accept another
character for output, and must wait if it is not.

Digital Research’s documentation states that the character to be output will
always have its most significant bit set to 0. This is not true. The BDOS simply
transfers control over to the PUNCH entry point in the BIOS; the setting of the
most significant bit will be determined by the program making the BDOS function
request (BSPUNOUT, code 4). This is important because the requirement of a zero

152 The CP/M Programmer’s Handbook

would preclude being able to send pure binary data via the BIOS PUNCH
function.

READER: “Reader” Input

As with the PUNCH entry point, the READER entry point rarely connects to
a real paper tape reader.

The READER function must return the next character from the reader device
in the A register, waiting, if need be, until there is a character.

Digital Research’s documentation again says that the most significant bit of
the A register must be 0, but this is not the case if you wish to receive pure binary
information via this function.

READER is called whenever a program makes a Read “Reader” Byte function
request (BSREADIN, code 3).

Disk Functions

All of the disk functions that follow were originally designed to operate on the
128-byte sectors used on single-sided, single-density, 8-inch floppy diskettes that
were standard in the industry at the time. Now that CP/M runs on many different
types of disks, some of the BIOS disk functions seem strange because most of the
new disk drives use sector sizes other than 128 bytes.

To handle larger sector sizes, the BIOS has some additional code that makes
the BDOS respond as if it were still handling 128-byte sectors. This code is referred
to as the blocking/deblocking code. As its name implies, it blocks together several
128-byte “sectors”and only writes to the disk when a complete physical sector has
been assembled. When reading, it reads in a physical sector and then deblocks it,
handing back several 128-byte “sectors” to the BDOS.

To do all of this, the blocking/deblocking code uses a special buffer area of the
same size as the physical sectors on the disk. This is known as the host disk buffer
or HSTBUF. Physical sectors are read into this buffer and written to the disk
from it.

In order to optimize this blocking/deblocking routine, the BIOS has code in it
to reduce the number of times that an actual disk read or write occurs. A side effect
is that at any given moment, several 128-byte “sectors” may be stored in the
HSTBUF, waiting to be written out to the disk when HSTBUF becomes full. This
sometimes complicates the logic of the BIOS disk functions. You cannot simply
select a new disk drive, for example, when the HSTBUF contains data destined for
another disk drive. You will see this complication in the BIOS only in the form of
added logical operations; the BIOS disk functions rarely trigger immediate physi-
cal operations. It is easier to understand these BIOS functions if you consider that

Chapter 6: The Basic Input/Output System 153

they make requests—and that these requests are satisfied only when it makes
sense to do so, taking into account the blocking/deblocking logic.

HOME: Home Disk

HOME sets the requested track and sector to 0.

SELDSK: Select Disk

SELDSK does not do what its name implies. It does not (and must not)
physically select a logical disk. Instead, it returns a pointer in the HL register pair
to the disk parameter header for the logical disk specified in register C on entry.
C=0fordrive A, 1 for drive B, and so on. SELDSK also stores this code for the
requested disk to be used later in the READ and WRITE functions.

If the logical disk code in register C refers to a nonexistent disk or to one for
which no disk parameter header exists, then SELDSK must return with HL set to
0000H. Then the BDOS will output a message of the form

"BDOS Err on X: Select"

Note that SELDSK not only does not select the disk, but also does not indicate
whether or not the requested disk is physically present —merely whether or not
there are disk tables present for the disk.

SELDSK is called by the BDOS either during disk file operations or by a
program issuing a Select Disk request (BSSELDSK, code 14).

SETTRK: Set Track

SETTRK saves the requested disk track that is in the BC register pair when
SETTRK gets control. Note that this is an absolute track number; that is, the
number of reserved tracks before the file directory will have been added to the
track number relative to the start of the logical disk.

The number of the requested track will be used in the next BIOS READ or
WRITE function (described later in this chapter).

SETTRK is called by the BDOS when it needs to read or write a 128-byte
sector. Legitimate track numbers are from 0 to OFFFFH (65,535).

SETSEC: Set Sector

SETSEC is similar to SETTRK in that it stores the requested sector number
for later use in BIOS READ or WRITE functions. The requested sector number is
handed to SETSEC in the A register; legitimate values are from 0 to 0OFFH (255).

The sector number is a logical sector number. It does not take into account any
sector skewing that might be used to improve disk performance.

SETSEC is called by the BDOS when it needs to read or write a 128-byte
sector.

154 TheCPM Programmer’s Handbook

SETDMA: Set DMA Address

SETDMA saves the address in the BC register pair in the requested DMA
address. The next BIOS READ or WRITE function will use the DM A address as
a pointer to the 128-byte sector buffer into which data will be read or from which
data will be written.

The default DM A address is 0080H. SETDMA is called by the BDOS when it
needs to READ or WRITE a 128-byte sector.

READ: Read Sector

READ reads ina 128-byte sector provided that there have been previous BIOS
function calls to

SELDSK —“select” the disk
SETDMA —set the DMA address
SETTRK —set the track number
SETSEC —set the sector number.

Because of the blocking/deblocking code in the BIOS, there are frequent
occasions when the requested sector will already be in the host buffer (HSTBUF),
so that a physical disk read is not required. All that is then required is for the BIOS
to move the appropriate 128 bytes from the HSTBUF into the buffer pointed at by
the DMA address.

Only during the READ function will the BIOS normally communicate with
the physical disk drive, selecting it and seeking to read the requested track and
sector. During this process, the READ function must also handle any hardware
errors that occur, trying an operation again if a “soft,” or recoverable, error occurs.

The READ function must return with the A register set to 00H if the read
operation is completed successfully. If the READ function returns with the A
register set to 01 H, the BDOS will display an error message of the form

BDOS Err on X: Bad Sector

Under these circumstances, you have only two choices. You can enter a
CARRIAGE RETURN, ignore the fact that there was an error, and attempt to make
sense of the data in the DMA buffer. Or you can type a CONTROL-C to abort the
operation, perform a warm boot, and return control to the CCP.

As you can see, CP/M’s error handling is not particularly helpful, so most
BIOS writers add more sophisticated error recovery right in the disk driver. This
can include some interaction with the console so that a more determined effort can
be made to correct errors or, if nothing else, give you more information as to what
has gone wrong. Such error handling is discussed in Chapter 9.

If you are working with a hard disk system, the BIOS driver must also handle
the management of bad sectors. You cannot simply replace a hard disk drive if one
or two sectors become unreadable. This bad sector management normally requires

Chapter 6: The Basic Input/Output System 155

that a directory of “spare”sectors be put on the hard disk before it is used to store
data. Then, when a sector is found to be bad, one of the spare sectors is substituted
in its place. This is also discussed in Chapter 9.

WRITE: Write Sector

WRITE is similar to READ but with the obvious difference that data is
transferred from the DMA buffer to the specified 128-byte sector. Like READ,
this function requires that the following function calls have already been made:

SELDSK —“select” the disk
SETDMA ——set the DMA address
SETTRK —set the track number
SETSEC —set the sector number.

Again, it is only in the WRITE routine that the driver will start to talk directly
to the physical hardware, selecting the disk unit, track, and sector, and transferring
the data to the disk. A

With the blocking/deblocking code, the BDOS optimizes the number of disk
writes that are needed by indicating in register C the type of disk write that is to be
performed:

0 = normal sector write
1 = write to file directory sector
2 = write to sector of previously unused allocation block.

Type 0 occurs whenever the BDOS is writing to a data sector in an already used
allocation block. Under these circumstances, the disk driver must preread the
appropriate host sector because there may be previously stored information oniit.

Type I occurs whenever the BDOS is writing to a file directory sector — in this
case, the BIOS must not defer writing the sector to the disk, as the information is
too valuable to hold in memory until the HSTBUF is full. The longer the
information resides in the HSTBUF, the greater the chance of a power failure or
glitch, making file data already physically written to the disk inaccessible because
the file directory is out of date.

Type 2 occurs whenever the BDOS needs to write to the first sector of a
previously unused allocation block. Unused, in this context, includes an allocation
block that has become available as a result of a file being erased. In this case, there
is no need for the disk driver to preread an entire host-sized sector into the
HSTBUEF, as there is no data of value in the physical sector.

As with the READ routine, the WRITE function returns with A set to 00H if
the operation has been completed successfully. If the WRITE function returns
with A set to 01 H, then the BDOS will display the same message as for READ:

BDOS Err on X: Bad Sector

456 The CP/M Programmer’s Handbook

You can see now why most BIOS writers add extensive error-recovery and
user-interaction routines to their disk drivers.

For hard disk systems, some disk drivers are written so that they automatically
“spare out”a failing sector, writing the data to one of the spare sectors on the disk.

LISTST: List Status

As you can tell from its position in the list of BIOS functions, the LISTST
function was a latecomer. It was added when CP/M was upgraded from version 1.4
to version 2.0.

This function returns the current status of the list device, using the IOBYTE if
necessary to select the correct physical device. It sets the A register to OFFH if the
list device can accept another character for output or to 00H if it is not ready.

Digital Research’s documentation states that this function is used by the
DESPOOL utility program (which allows you to print a file “simultaneously” with
other operations) to improve console response during its operation, and that it is
acceptable for the routine always to return 00H if you choose not to implement it
fully.

Unfortunately, this statement is wrong. Many other programs use the LISTST
function to “poll” the list device to make sure it is ready, and if it fails to come
ready after a predetermined time, to output a message to the console indicating
that the printer is not ready. If you ever make a call to the BDOS list output
functions, Write Printer Byte and Print String (codes 5 and 9), and the printer is
not ready, then CP/M will wait forever —and your program will have lost control
so it cannot even detect that the problem has occurred. If LISTST always returns a
00H, then the printer will always appear not to be ready. Not only does this make
nonsense out of the LISTST function, but it also causes a stream of false “Printer
not Ready” error messages to appear on the console.

SECTRAN: Sector Translate

SECTRAN, given a logical sector number, locates the correct physical sector
number in the sector translate table for the previously selected (via SELDSK)
logical disk drive.

Note that both logical and physical sector numbers are 128-byte sectors, so if
you are working with a hard disk system, it is not too efficient to impose a sector
interlace at the 128-byte sector level. It is better to impose the sector interlace right
inside the hard disk driver, if at all; in general, hard disks spin so rapidly that CP/M
simply cannot take advantage of sector interlace.

The BDOS hands over the logical sector number in the BC register pair, with
the address of the sector translate table in the DE register pair. SECTRAN must
return the physical sector number in HL.

If SECTRAN is to be a null routine, it must move the contents of BC to HL
and return.

Chapter 6: The Basic Input/Output System

157

Calling the BIOS Functions Directly

As a general rule, you should not make direct calls to the BIOS. To do so makes
your programs less transportable from one CP/M system to the next. It precludes
being able to run these programs under MP/M, which has a different form of BIOS
called an extended 1/O system, or XIOS.

There are one or two problems, however, that can only be solved by making
direct BIOS calls. These occur in utility programs that, for example, need to make
direct access to the CP/M file directory, or need to access some “private” jump
instructions which have been added to the standard BIOS jump vector.

If you really do need direct access to the BIOS, Figure 6-2 shows an example
subroutine that does this. It requires that the A register contain a BIOS function
code indicating the offset in the jump vector of the jump instruction to which
control is to be passed.

Q003
Q008
QOO%
Q00C
QOQOF
0012
Q015
[WIe §53
QOLE
Q01E
0021
0024
Q027
Q02A
Q02D
Q030

WROOT
CONST
CONIN
CONQUT
LIST
PUNCH
READER
HOME
SELDSE
SETTRK
SETSREC
SETOMA
READ
WRITE
LISTST
SECTRAN

L L T T (T 1 A 1 A 1 R U (I

Equates for use with BIOS subroutine

EQU 03H sWarm boot

EQu O&H sConsole status

EQU O%H ;Consale input

EQL! QCH sCaonsale output

EQU OFH ;Qutput to list device
EQu 12H sOutput to punch device
EQU 15H s Input from reader

EQU 18H sHome selected disk to track O
EQL 1RH sSelect disk

EQU 1EH Set track

EQU 21H 3Set sector

EQU 24H ;Set DMA address

EQU 27H sRead 128-byte sector
EQu 2AH sWrite 128-byte sector
EQU 2DH sReturn list status

EQU 30H sSector translate

sAdd further "private" RIQS codes here

RIOS

This subroutine transfers control to the appropriate
entry in the BIQS Jump Vector, based on a code number
handed to it in the L register.

Entry parameters

L = Code number (which is in fact the page-relative
address of the correct JMF instruction within
the jump vector)

All other registers are prese2rved and handed aver to
the BIOS routine intact.

Exit parameters

Figure 6-2.

BIOS equates

158 The CP/M Programmer’s Handbook

This routine does not CALL the RIOS routine, therefore
when the BIQS routine RETurns, it will do so directly
to this routine’s caller.

Calling sequence

TR we ws v we s owm we we v

MVI L, Code$Number
CALL RIOS
10%:
0000 FS PUSH PSW ;Save user’s A register
Q001 3A0200 LDA 0002H ;Get BIOS JMP vector page fraom
3 warm boot JMP

Q004 &7 MoV H, A sHL —-> RIOS JMP vector entry
0005 F1 POF PSW sRecover user”s A register
Q004 E? PCHL sTransfer control into the BIOS voutine

Figure 6-2. BIOS equates (continued)

Line Numbers Functional Component or Routine
0072-011& EIOS Jump Vector

0120-0270 Initialization Code

0275-0286 Display Message

0289-0310 Enter CP/M

1 0333-0364 CONST - Consocle Status
Q249-03293 CONIN - Console Input

0397-0410 CONCUT - Console Output
0414-0451 LISTST - List Status

0456-0471 LIST - List Output

0476-0492 FUNCH - Punch Output

0494-0511 READER - Reader Input

0516-0536& IOBYTE Driver Select

0540-0524 Device Control Tables

0589-0744 Low-level Drivers for Console, List,etc.
0769-0824 Disk Parameter Header Tables
0221-0878 Disk Parameter Elocks

0881-0907 Other Disk data areas

0710-0955 SELDSK - Select Disk

0958-0%64 SETTRK - Set Track

0967-0973 SETSEC - Set Sector

09723-0984 SETDOMA - Set DMA Address
0987-1025 Sector Skew Tables

1028-1037 SECTRAN - Logical to Physical Sector translation
1041-1056 HOME - Home to Track O
1059-1154 Deblocking Algorithm data areas
1157-1183 READl - Read 128-byte sectaor
1185-1204 WRITE — Write 128-byte sector
1206-1378 Deblocking Algorithm

1381-1432 Buffer Move

1435-1478 Deblocking subroutines
1481-1590 &" Floppy Physical Read/Write
1595-14681 S 1/4" Floppy Physical Read/Write
1485-17&4 WEOOT - Warm Boot

Figure 6-3. Functional Index to Figure 6-4

Chapter 6: The Basic Input/Output System 159

Example BIOS

The remainder of this chapter is devoted to an example BIOS listing. This
actual working BIOS shows the overall structure and interface to the individual
BIOS subroutines.

Unlike most BIOS’s, this one has been written specifically to be understood
easily. The variable names are uncharacteristically long and descriptive, and each
block of code has commentary to put it into context.

Each source line has been sequentially numbered (an infrequently used option
that Digital Research’s Assembler, ASM, permits). Figure 6-3 contains a func-
tional index to the BIOS as a whole so that you can find particular functions in the
listing in Figure 6-4 by line number.

0001 <-- Line Number ; Figure &4-4.

0002 H

0003 H %

0004 (A 4

Q005 3% Simple BIOS Listing ®

0006 3 ® ®

0007 3

0008 s

0009 3

0010 3030 = VERSION EQU 007 sEquates used in the sign on message
0011 3730 = MONTH EQU 1077

0012 3531 = DAY EQU 157

0013 3238 = YEAR Equ 82

0014 H

0015 H »* *

0018 ER] ®
0017 #* This BIOS is for a computer system with the following *
0018 ;% hardware configuration : #*
0019 3w *
0020 3% - 8080 CPU *
0021 3% ~ &4KBytes of RAM *
0022 PR = CRT/keyboard controller that transfers data *
0023 3R as though it were a serial port (but requires 3*
0024 g no baud rate generator or USART programming) #*
0025 3% = A serial port, used for both list and "reader"/ *
0028 3R "punch" devices. The serial port chip is an *
0027 3 Intel 8251A with an 8253 baud rate generator. *
0028 3% - Two S 1/4" mini—-floppy, double-sided, double- *
0029 PR density drives. These drives use S12-byte sectors. *
0020 3% These are used as logical disks A: and B:. *
0031 3% - Two 8" standard diskette drives (128-byte sectors). *
0032 3® These are used as logical disks C: and D:. *
0033 3% *
0034 3 * Two intelligent disk controllers are used, one for *
0035 3% each diskette type. These controllers access memory *
0036 3 directly, both to read the details of the *
0037 3% operations they are to perform and also to read *
0038 3% and write data from and to the diskettes. *
Q039 33 *
0040 P® *
0041 H

0042

0043 H

0044 3 Equates for defining memory size and the base address and

0045 ;7 length of the system components.

Figure 6-4. Simple BIOS listing

160 The CP/M Programmer’s Handbook

0046 4
0047 0040 = Memor y$Size EQU 64 sNumber of Kbytes of RAM
0048 3
0049 s+ ‘The BIOS Length must be determined by inspection.
Q050 + Comment out the ORG BIOS$Entry line below by changing the first
0051 s+ character to a semicolon. (This will make the Assembler start
0052 s the BIOS at location 0.) Then assemble the BIOS and round up to
0053 3 the nearest 100H the address displayed on the console at the end
00354 ; of the assembly.
0055 ;
0056 0900 = BIOS$Length EQU 0900H
0057 3
0058 0800 = CCPsLength EQU 0800H sConstant
0059 OEO00 = BDOS$Length EQU OEOOH ;Constant
0060 $
0061 0008 = Overalls$Lenagth EQU ((CCP$Length + BDOS$Length + BIOS$Length) / 1024) + 1
0062 H
0043 EO0Q0 = CCP$Entry EQU (Memory$Size - QOverallslLength) x 1024
0084 EB06 = BDOS$Entry EQU CCP$Entry + CCP$Length + é
00465 F&00 = BIOSS$Entry EQU CCP$Entry + CCP$Length + BDOS$Length
0066 H
0067 3
0048 H
00469
0070 F&600 ORG BIOSSEntry 3Assemble code at BIOS address
0071 H
0072 3 BIOS jump vector
0073 7 Control will be transferred to the appropriate entry point
0074 s+ from the CCP or the BDOS, both of which compute the relative
0073 3 address of the BIOS jump vector in order to locate it.
00746 3+ Transient programs can also make direct BIOS calls transferring
0077 3 control to location xxOOH, where xx is the value in location
0078 3 OO002H.
0079 3
0080 F&00 C3F9F6 JMP BOOT ;Cold boot —- entered from CP/M bootstrap loader
0081 Warm$Boot$Entry: ;3 Labelled so that the initialization code can
0082 ; put the warm boot entry address down in location
0083 3 OO0O1H and 0002H of the base page
0084 F403 C329FE JMP WBOOT sWarm boot —- entered by jumping to locaticn 00OCH.
0085 ;s Reloads the CCP which could have been
0086 ;3 overwritten by previous program in transient
0087 3 Program area
0088 F604 C342F8 JMP CONST ;Console status —- returns A = OFFH if there is a
0089 ;3 console keyboard character waiting
0090 F&09 C378F8 JMP CONIN sConsole input —— returns the next console keyboard
0091 ;3 character in A
0092 F&0OC C386F8 JMP CONOUT j;Console output —- outputs the character in C to
Q093 3 the console device
0094 F&OF C3ACFS8 JMP LIST sList output —- outputs the character in C to the
0095 3 list device
0096 F&é12 C3BCF8 JMP PUNCH sPunch output -~ outputs the character in C to the
0097 3 logical punch device
0098 F615 CICDF8 JMP READER ;Reader input -- returns the next input character from
0099 3 the logical reader device in A
0100 F&é18 C3D3FB JMP HOME sHomes the currently selected disk to track O
0101 Fé1B C32BFB JMP SELDSK jSelects the disk drive specified in register C and
0102 s returns the address of the disk parameter header
0103 F61E C358FB JMP SETTRK ;Sets the track for the next read or write cperaticn
0104 ;3 from the BC register pair
0105 Fé621 C3SEFB JMP SETSEC ;Sets the sector for the next read or write operation
0106 3 from the A register
0107 Fé24 C345FB JMP SETDMA ;Sets the direct memory address (disk read/write)
0108 ; address for the next read or write operation
0109 3y from the DE register pair
0110 Fé27 C3FBFB JMP READ sReads the previously specified track and sector from
o111 ;3 the selected disk into the DMA address
0112 Fé2A C315FC JMP WRITE iWrites the previously specified track and sector onto
0113 :; the selected disk from the DMA address
0114 Fé2D C394F8 JMP LISTST ;Returns A = OFFH if the list device can accept
0115 ;3 another cutput character
0116 Fé30 C3CDFB JMP SECTRAN jTranslates a logical sector into a physical cne
0117 3
0118 H
0119 3
0120 + The cold boot initialization code is only needed cnce.

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 164

o121 3 It can be overwritten once it has been executed.

0122 ¢ Therefore, it is "hidden" inside the main disk buffer.

0123 7 When control is transferred to the BOOT entry point, this

0124 3 code will be executed, only being overwritten by data from

0125 i the disk once the initialization procedure is complete.

01248 H

0127 3 To hide code in the buffer, the buffer is first declared

o128 ? normally. Then the value of the location counter following

0129 ? the buffer is noted. Then, using an ORG (ORiGin) statement, the

0130 3 location counter is “"wound back"” to the start of the buffer

0131 ? again and the initialization code written normally.

0132 ? At the end of this code, another ORG statement is used to

0133 } set the location counter back as it was after the buffer had

0134 3 been declared.

0135 H

0136 ;

0137 0200 = Physical$Sectors$Size EQU S12 3This is the actual sector size
0138 sfor the S 1/4" mini~floppy diskettes.
0139 sThe 8" diskettes use 128-byte sectors.
0140 sDeclare the physical disk buffer for the
0141 35 1/4" diskettes

0142 F&33 Disksbuffer: Ds Physical$Sector$Size

0143 3

0144 sSave the location counter

0145 F833 = AftersDisk$Buffer EQU $;% = Current value of location counter
0144 H

0:47 Fé33 ORG Disk$Buffer ;Wind the location counter back
0148 4

0149 Initialize$Stream: ;This stream of data is used by the

0150 sinitialize subroutine. It has the following

0151 s format:

0152 H

0153 3 DB Port number to be initialized

0154 H DB Number of bytes to be cutput

0155 H DB XX, XX, X%, xx data to be output

0156 s H

0157 H :

0158 3 DB Port number of OOH terminator

0159 ¥

0160 tNote : On this machine, the conscole port does

0161 3 not need to be initialized. This has

0162 H already been done by the PROM bootstrap code.
0163 H

0144 sInitialize the 8251A USART used for

0145 3 the list and communications devices.

0166 Fé33 ED DB Communication$Status$Port ;Port number

01467 Fé34 06 DB é sNumber of bytes

0168 F635 00 DB [d] ;Get chip ready to be programmed by

0169 Fé&36 00 DR [o] 3 sending dummy data out to it

0170 F&37 00 DB [e]

0171 F&438 42 DR 0100%0010B sReset and raise data terminal ready

0172 Fé39 6E DB 01$10$11$10B #1 stop bit, no parity, 8 bits per character
0173 ;7 baud rate divide factor of 1¢.

0174 F63A 25 DB 0010%40101B ;Raise request to send, and enable

0175 3 transmit and receive.

0176 H

0177 ;Initialize the 8253 programmable interval
0178 3 timer used to generate the baud rate for
0179 3 the 8251A USART

0180 Fé&3B DF DB Communication$Baud$Mode ;Port number

0181 F&2C 01 DB 1 sNumber of bytes

0182 F&3D Ré DB 10$11$011$0B ;Select counter 2, load LS byte first,

0183 3 Mode 3 (for baud rates), binary count.
0184 H

0185 F63E DE DB Communication$Baud$Rate sPort number

0186 F&63F 02 DB 2 sNumber of bytes

0187 F&40 3800 oW 0038H 31200 baud (based on 16X divide-down selected
o188 3 in the 8251A USART)

0189 H

0190 Fé&42 00 DB] ;Port number of O terminates

0191 H

0192 H

0193 3 Equates for the sign-on message

0194 3

0195 Q00D = CR EQU ODH s;Carriage return

Figure 6-4. (Continued)

462 The CP/M Programmer’s Handbook

0196 000A

0199 F643
0200 Fé4C
0201 Fé4E
0202 Fé4F
0203 Fé51
0204 Fé52
0205 Fé54
0206 F&55
0207 F&57
0208 Fé&5A
0209 F668
0210 F6&7F
0211 Fé9D
0212 FéBC
0213 F6DA

0215 F6F8
0217 0004

0229 F&F9

0231 F6FA

0234 F6FD
0235 F6FE
02386 F6FF
0237 F702
0238 F705
0239 F706&

0242 F707
0243 F708
0244 F709

0245 F70A
0247 F70B
02438 F70C
0249 F70F
0250 F710

0255 F713
0256 F715

0258 F718
0259 F71B

0262 F71E
0263 F71F
0264 F722

Q266 F723

43502F4D20
3030

20

3037

2F

3135

2F

3832
ODOAOA
S2696D706C
4469736B20
2020202020
2020202020
2020202020
2020202020

00

F3

2133F6

7€
B7
CA13F7
320AF7
23
4E

23
7€E
D2

00
oD
C207F7
23
C3FDFé

3E01
320300

2143F6
CD33F8

AF
320400
FR

CR40F8

LF EQU 0AH sLine feed
¥
Signon$Message: jMain sign-on message
DB “CP/M 2.2.7
DW VERSION sCurrent version number
DB P
oW MONTH sCurrent date
DR A
ju] DAY
DB At
DW YEAR
DB CR,LF,LF
DB “Simple BIOS”,CR,LF,LF
DB “Disk configuration :“,CR,LF,LF
DB N 0.35 Mbyte 5" Floppy”,CR,LF
DB ‘ 0.3S Mbyte 5" Floppy’,CR,LF,LF
DB ’ 0.24 Mbyte 8" Floppy’,CR,LF
DB < : 0.24 Mbyte 8" Floppy’,CR,LF
DB [¢]
Default$Disk EQU 0004H sDefault disk in base page
BOOT: ;Entered directly from the BIOS JMP vector.

;Control will be transferred here by the CP/M

3 bootstrap lcader.

3The initialization state of the computer system
3 will be determined by the

3 PROM bootstrap and the CP/M loader setup .

sInitialize system.
sThis routine uses the Initialize$Stream
;s declared above.

DI ;Disable interrupts to prevent any
; side effects during initialization.
LXI H,Initialize$Stream sHL -> Data stream

InitializeslLoop:
MoV AM ;Get port number
A

ORA ;I1f OOH, then initialization complete

JzZ Initialize$Complete

STA Initialize$Port ;Set up OUT instruction

INX H 3HL -> Count of number of bytes to output

MOV c/M ;Get byte count
Initialize$Next$Byte:

INX H sHL -> Next data byte

MOV AM s;Get next data byte

DB ouTt sOutput to correct port ~
Initialize$Port:

DB 0 3<{- Set above

DCR C ;Count down

JNZ Initialize$Next$Byte ;6o back if more bytes

INX H sHL -> Next port number

JMP InitializesLoop ;Go back for next port initialization

InitializesComplete:

MVI A, 00$00%$00%01B sSet IOBYTE to indicate terminal
STA I0BYTE 3 is to act as conscle
LXI H,Signon$Message sDisplay sign—on message on conscle
CALL Display$Message
H
XRA A ;Set default disk drive to A:
STA Default$Disk
El s Interrupts can now be enabled
JMP Enter$CPM ;Complete initialization and enter

;3 CP/M by going to the Conscle Command
3 Processor.

End of cold boot initialization code

Figure 6-4.

(Continued)

Chapter 6: The Basic Input/Output System

163

0272 F833 ORG AftersDisk$Buffer sReset location counter

0273 5

0274 3

0275 Display$Message: ;Displays the specified message on the console.

0276 ;0n entry, HL points to a stream of bytes to be

0277 ; output. A OOH-byte terminates the message.

0278 F833 7E Mav A, M ;Get next message byte

0279 F834 B7 ORA A ;Check if terminator

0280 F835 C8 RZ ;Yes, return to caller

0281 F836 4F MoV C,A ;Prepare for output

0282 F837 ES PUSH H ;Save message pointer

0283 F8&38 CD84F8 CALL CONQUT 3Go to main console output routine

0284 F83B El POP H sRecover message pointer

0285 F83C 23 INX H jMove to next byte of message

0286 F83D C3I33F8 JMP Display$Message ;Loop until complete message output

0287 5

0288 3

0289 Enter$CPM: ;This routine is entered either from the cold or warm

0290 3 boot code. It sets up the JMP instructions in the

0291 3 base page, and alsc sets the high-level disk driver’s

0292 3 input/output address (also known as the DMA address).

0293 H E

0294 F840 IECI MVI A, JMP sGet machine code faor JMP

0295 F&42 320000 STA 0000H ;Set up JMP at location 000OH

0296 F845 320500 STA 0005H 3 and at location 000SH

0297 H

0298 F848 2103F& LXI H,Warm$Boot$Entry sGet BIOS vector address

0299 F84B 220100 SHLD Q001H ;Put address at location 0001H

0300

Q301 FB84E 2106E8 LXI H, BDOS$Entry ;Get BDOS entry point address

0302 F851 220400 SHLD é ;Put address at location 00Q0SH

0303 H

0304 F854 018000 LXI B, 80H ;Set disk I/0 address to default

Q305 F857 CDESFBR CALL SETDMA sUse normal BIOS routine

0306 s

0307 F8SA FR EI sEnsure interrupts are enabled

0308 F8SBR 3A0400 LDA Defaults$Disk sTransfer current default disk to

0209 FS8SE 4F MoV C,A 3 Console Command Processor

0310 F8SF CR00E0 JMP CCP$Entry ;Transfer to CCP

0311 i

0312 3

0313 3 Serial input/output drivers

0314 H

0315 3 These drivers all look at the IOBYTE at location

0316 3 OO003H, which will have been set by the cold boot routine.

0317 3 The IOBYTE can be modified by the STAT utility, by

0318 3 BDOS calls, or by a program that puts a value directly

0319 3 into location OO03H.

0320 H

0321 3 All of the routines make use of a subroutine, Select$Routine,

0322 3 that takes the least significant two bits of the A register

0323 3 and uses them to transfer control to one of the routines whose

0324 3 address immediately follows the call to Select$Routine.

0325 3 A second entry point, Select$Routine$2l, uses bits

03248 35 2 and 1 to do the same job -- this saves some space

0327 3 by aveoiding an unnecessary instruction.

0328 3

0329 0003 = I0BYTE EQU 0003H 31/0 redirection byte

0330 i

0331 H

0332 1

0333 CONST: ;Get console status

0334 ;Entered directly from the BIOS JUMP vector

Q3335 3 and returns a parameter that reflects whether

0336 3 there is incoming data from the console.

0337 H

0338 sA = O0H (zero flag set) if no data

0339 3A = OFFH (zero flag clear) if data

0340 H

0341 ;CONST will be called by programs that

0342 ;3 make periodic checks to see if the computer

0343 7+ operator has pressed any keys —- for example,

0344 7 to interrupt an executing program.

0345 3

0346 FB862 CDGAFS8 CALL Get$Console$Status ;Return A = zero or nonzerco

0347 sAccording to status, then convert
Figure 6-4. (Continued)

464 The CP/M Programmer’s Handbook

0348 5 to return parameter convention.

0349 F865 B7 ORA A 1Set flags to reflect status

0350 F866 C8 RZ 3If O, no incoming data

0351 F847 3EFF MVI A, OFFH sOtherwise return A = OFFH to

0352 F869 C9 RET 3 indicate incoming data

0353 3

0354 Gets$Consoles$Status:

0355 F8&A 3A0300 LDA I0BYTE ;Get I/0 redirection byte

0356 sConsole is selected according to

0357 3 bits 1,0 of IOBYTE

0358 F86D CDDCF8 CALL Select$Routine j;Select appropriate routine

0359 ;These routines return to the caller
0360 s of Get$Console$Status.

0361 F870 F6&F8 DW TeletypeInStatus 300 <- IOBYTE bits 1,0

0362 F872 FCF8 DW TerminalInStatus 101

0363 F874 O02F9 DW CommunicationsIn$Status ;10

0364 FB876 O8F9 DW DummyInStatus 311

0365 H

0366 H

0387 H

0368 3

0369 CONIN: sGet console input character

0370 sEntered directly from the BIOS JUMP vector;
0371 5 returns the next data character from the
0372 3 Console in the A register. The most significant
0373 ;3 bit of the data character will be 0, except
0374 ;3 when "reader" (communication port) input has
Q375 3 been selected. In.this case, the full eight bits
0376 3 of data are returned to permit binary data to be
0377 3 received.

0378 H

0379 tNormally, this routine will be called after
0380 s a call to CONST has indicated that a data character
0381 3+ is ready, but whenever the CCP or the BDOS can
0382 3+ proceed no further until console input occurs,
0383 3 then CONIN will be called without a preceding
0384 3 CONST call.

0385 H

03846 F878 3A0300 LDA I0BRYTE ;Get 1/0 redirection byte

0387 F87B CDDCF8 CALL Select$Routine ;Select correct CONIN routine

o388 ;These routines return directly
0389 ;3 to CONIN“s caller.

0390 F87E 20F9 DW Teletype$Input 300 <- IOBYTE bits 1,0

0391 F880 26F9 oW Terminal$Input 301

0392 F882 2FF9 oW Communication$Input 310

0393 F884 35F9 oW Dummy$Input 311

0394 H

0395 i

0396 H

0397 CONQUT: ;Console output

0398 sEntered directly from BIOS JMP vector;

0399 s outputs the data character in the C register
0400 ;3 to the appropriate device according to bits
0401 3 1,0 of IOBYTE

0402 f

0403 F886 3IA0300 LDA I0BYTE 3Get 1/0 redirection byte

0404 F889 CDDCF8 CALL Select$Routine ;Select correct CONOUT routine

0405 ;These routines return directly
0406 ; to CONOUT’s caller.

0407 F88C 38F9 DW TeletypesOutput 300 <- IOBYTE bits 1,0

0408 F88E 3EF? DW Terminal$Output 301

0409 F890 44F% DW Communication$Output ;10

0410 FB892 4AF9 oW Dummy $0utput st

0411 H

0412 i

0413 3

0414 LISTST: sList device (output) status

0415 3;Entered directly from the BIOS JUMP vector;
0416 3 returns in A list device status that

0417 ; indicates whether the list device can accept
0418 3 another output character. The IOBYTE’s bits
0419 3 7,6 determine the physical device used.

0420 H

0421 3A = OOH (zero flag set): cannot accept data
0422 3sA = OFFH (zero flag clear): can accept data
0423 H

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 165

0424 sDigital Research’s documentation indicates

0425 7 that you can always return with A = OOH

0424 s ("Cannot accept data") if you do not wish to
0427 3 implement the LISTST routine. This is NOT TRUE.
0428 ;If you do not wish to implement the LISTST routine
0429 3 always return with A = OFFH ("Can accept data").
0430 3The LIST driver will then take care of things rather
0431 3 than potentially hanging the system.

0432 H

0433 F8%4 CD9CF8 CALL Get$List$Status ;Return A = zero or nonzero

0434 3 according to status, then convert

0435S 3 to return parameter conventicon

0436 F897 B7 ORA A sSet flags to reflect status

0437 F898 C8 RZ $If 0, cannot accept data for cutput
0438 Fg99 3EFF MVI A, OFFH sO0therwise return A = OFFH ta

0439 F89B C9 RET 3 indicate can accept data for output
0440 i

0441 GetsList$Status:

0442 F89C 3IA0R00 LDA I0RYTE sGet I/0 redirection byte

0443 F89F 07 RLC sMove bits 7,6 to 1,0

0444 FQAO 07 RLC

0445 F8A1 CDDCF8 CALL Select$Routine ;Select appropriate routine

04434 3 These routines return directly
0447 7 to GetsList$Status’s caller.
0448 F8A4 OBF9? DW TeletypeQutStatus 300 <- IORYTE bits 1,0
0449 F8AS 11IF9 ju] TerminalOutStatus ;01

0450 F8A8 17F9 DW CommunicationOutStatus 510

0451 F8AA 1DF9 DwW Dummy$0ut$Status 311

0452

0453 H

0454 H

0455 ;

0456 LIST: sList ocutput

0457 ;Entered directly from BIOS JMF vector;

0458 7 outputs the data character in the C register
0459 ;3 to the appropriate device according to bits
0440 s 7,6 of I0BYTE

0441 H

0452 FBAC 3A0300 LDA I0BYTE ;Get 1/0 redirection byte

0463 FB8AF 07 RLC iMove bits 7,6 to 1,0

0454 F8BO 07 RLC

0465 F8BR1 CDDCFS CALL Select$Routine ;Select correct LIST routine
0446 ;These routines return directly
0447 7 to LIST’s caller.

0468 F8B4 38F9 DW Teletypes$Qutput 500 <- IOBYTE bits 1,0

0469 F8BR& JEF9 DW Terminal$OQutput 301

0470 FS8BS 44F9 DW Communication$Output ;10

0471 F8BA 4AF9 DW Dummy$Qutput 311

0472

0473 H

0474 ;

0475 ;

0478 PUNCH: sPunch output

0477 ;Entered directly from BIOS UMP vectar;

0478 3 outputs the data character in the C register
0479 # to the appropriate device according to bits
0480 7 5,4 of IOBYTE

0481 :

0482 F8BC 3A0300 LDA I0BYTE ;Get I/0 redirection byte

04323 F8BF OF RRC ;Move bits 5,4 to 2,1

0484 F8CO OF RRC

0485 F8C1 OF RRC

0486 F8C2 CDDDFS8 CALL Select$Routines21 ;Select correct PUNCH routine
0487 s These routines return directly
0428 3 to PUNCH’s caller.

0439 F8CS 38F9 oW TeletypesQutput 300 <- IOBYTE bits 1,0

0490 F8C7 4AF9 DW Dummy$Qutput ;01

0491 F8CY 44F9% DW Communication$Output ;10

0492 F8CB 3EF9 oW Terminal$Qutput ;11

0493 H

0494 H

0495 3

0496 READER: ;Reader input

0497 ;Entered directly from BIOS JMP vector;

0498 # inputs the next data character from the
0499 3 reader device into the A register

Figure 6-4. (Continued)

166

The CP/M Programmer’s Handbook

0500 ;The appropriate device is selected according
0501 3 to bits 3,2 of IOBYTE.
0502 H
0503 F8CD 3A0200 LDA IOBYTE 3Get I/0 redirection byte
0504 F8DO OF RRC sMove bits 3,2 to 2,1
0505 F8D1 CDDDF8 CALL Select$Routine$21’ ;Select correct READER routine
0506 ;These routines return directly
0507 5 to READER‘s caller.
0508 F8D4 38F9 oW Teletype$Output 300 <- IOBYTE bits 1,0
0509 F8Dé 4AF9 oW Dummy$Output 301
0510 F8D8 44F9 oW Communication$Qutput ;10
0511 F8DA 3EFY oW TerminalsOutput 311
0512
0513 H
0514 H
0515 3
0516 Select$Routine: sTransfers control to a specified address
0517 ; following its calling address according to
0518 ;3 the value of bits 1,0 in A.
0519 F8DC 07 RLC 3Shift select values into bits 2,1
0520 3 in order to do word arithmetic
0521 3
0522 Select$Routines$21: sEntry point to select routine selection bits
0523 3 are already in bits 2,1
0524 FSDD E&06 ANI 0000%0110R sIsolate just bits 2,1
0525 F8DF E3 XTHL sHL -> first word of addresses after
0526 3 CALL instruction
0527 FS8EO SF MoV E,A 3Add on selection value to address table
0528 F8E1 1400 MVI D,0 ; base
0529 F8E3 19 DAD D sHL -> selected routine address
0530 ;Get routine address into HL
0531 FB8E4 7E MoV AM ;LS byte
0532 F8ES 23 INX H sHL —> MS byte
0533 F8ES &6 MOV H.M 3MS byte
0534 FB8E7 &F MOV L,A sHL -> routine
0535 FSES E3 XTHL ;Top of stack -» routine
0536 F8E? C9 RET sTransfer to selected routine
0537 ;
0538 3
0539 ;
0540 3 Input/Output Equates
0541 ¥
0542 OOED = Teletype$StatussPort EQU OEDH
0543 OCEC = Teletype$DatasPort EQU OECH
0544 Q001 = Teletype$Output$Ready EQU 0000$0001B ;Status mask
0545 0002 = Teletype$Input$Ready EQU 0000$0010B ;Status mask
0544 3
0547 0001 = Terminal$Status$Port EQU O1H
0548 0002 = Terminal$Data$Port EQU 02H
0549 0001 = Terminal$Qutput$Ready EQU 000040001 R ;Status mask
0550 0002 = Terminal$Input$Ready EQU 0000%$0010R ;Status mask
0551 3
0552 QOED = Communication$Status$Port EQU OEDH
0553 OQQEC = Communication$DatasPort EQU QECH
0554 0001 = Communication$Output$Ready EQU 0000%0001R ;Status mask
Q555 0002 = Communication$Input$Ready EQU 0000%$0010R ;Status mask
0556 i
0557 O0ODF = Communication$Baud$Mode EQU ODFH sMode Select
Q558 OCDE = Communication$Baud$Rate EQU ODEH ;Rate Select
0559 H
0560 ;
0561 3 Serial device control tables
0562 3
0543 3 In order to reduce the amount of executable code,
0564 3 the same low-level driver code is used for all serial ports.
05635 3 On entry to the low-level driver, HL points to the
0566 3 appropriate control table.
0567 3
0568 TeletypesTable:
0569 FBEA ED D Teletype$Status$Port
0570 FS8EB EC DB Teletypes$Data$Port
0571 F8EC 01 DB Teletypes$Output $Ready
0572 F8ED 02 DB Teletype$Input$Ready
0573 3
0574 Terminals$Table:
0575 F8EE 01 DB Terminal$Status$Port
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

167

0576 FBEF 02 DB Terminal$Data$Port

0577 FBFO 01 DB Terminal$Output$Ready

0578 F8F1 02 DB Terminal$Input$Ready

0579 3

0580 Communications$Table:

0581 F8F2 ED Communication$Statuss$Port

0582 F8F3 EC DB Communication$DatasPort

0583 F8F4 01 DB Communication$Output$Ready

0584 F8FS5S 02 DB Communication$Input$Ready

0585 |

0586 H

0587 H

0588 ;

0589 3 The following routines are "called" by Select$Routine

0590 3 to perform the low-level input/output

0591 i

0592 TeletypeInsStatus:

0593 F8Fé 21EAFS LXI H,Teletype$Table 3HL -> control table

0594 F8F9 C34BF9 JMP Input¢Status ;Note use of JMP. Input$Status

Q595 3 will execute the RETurn.

0596 3

0597 TerminalInStatus:

0598 F8FC 21EEF8 LXI H, Terminal$Table sHL => control table

0599 F8FF C34BF9 JMP Inputs$Status ;Note use of JMP. Inputs$Status

0400 3 will execute the RETurn.

0601 1

0602 CommunicationInStatus:

04603 F902 21F2F8 LXI H,Communication$Table sHL -> control table

0404 F905 C34BF9 JMP Inputs$Status sNote use of JUMP. Input$Status

0605 5 will execute the RETurn.

0606 ¥

0607 DummyInStatus: sDummy status, always returns

0608 F908 3EFF MVI A, OFFH ; indicafing incoming data is ready

08609 F90A C9 RET

0610 H

0611 3

0612 TeletypesOut$Status:

0413 F90B 21EAFS LXI H,Teletypes$Table sHL => control table

0614 F9P0E C356F9 JMP Qutputs$Status ;Note use of JMP. Output$Status

0615 3 will execute the RETurn.

0616 3

0817 Terminal$QutsStatus:

0618 F911 21EEFS LXI H, Terminal$Table sHL -> control table

0619 F914 CI356F9 JMP Qutput$Status ;Note use of JMP. Output$Status

0620 3 will execute the RETurn.

0621 1

0622 Communication$QutéStatus:

04623 F917 21F2F8 LXI H,Communication$Table sHL => control table

0624 F91A C356F9 JMP Output$Status sNote use of JMP. Output$Status

0625 3 will execute the RETurn.

0626 3

0627 Dummy$Qut $Status: ;Dummy status, always returns

0628 F91D 3EFF MVI A, OFFH 3 indicating ready for output

0629 F91F C9 RET

0630 H

0631 3

0632 Teletype$lInput:

0633 F920 21EAF8 LXI H,Teletype$Table $HL -> control table

0434 F923 CI8OF9 JMP Input$Data ;Note use of JMP. Input$Data

0435 3 will execute the RETurn.

0636 i

0637 Terminal$Input:

0638 F926 21EEFS8 LXI H, Terminal$Table sHL => control table

0639 5 will execute the RETurn.

0640 F929 CD60OF9 CALL InputsData ;#% Special case ¥

0641 s Input$Data will return here

0642 F92C E67F ANI 7FH 3 50 that parity bit can be set 0

0643 F92E C9 RET

0644 3

0645 Communication$Input:

0646 F92F 21F2F8 LXI H,Communication$Table sHL => control table

0647 F932 C360F9 JMP Input$Data sNote use of JUMP. Inputs$Data

0648 3 will execute the RETurn.

0649 3

0650 Dummy$Input: sDummy input, always returns

0651 F935 3E1A MVI A, 1AH 3 indicating CP/M end of file
Figure 6-4. (Continued)

168 The CP/M Programmer’s Handbook
0652 F937 C9 RET
0653 i
0454 3
0655 ;
0656 5
0457 Teletype$Output:
0658 F938 21EAFS8 LXI H,Teletypes$Table sHL => control table
0859 F93B CI70F9 JMP Outputs$Data sNote use of JUMP. Output$Data
0640 5 will execute the RETurn.
06861 3
0662 Terminal$Output:
0663 F93E 21EEFS LXI H,Terminal$Table sHL => control table
0484 3 will execute the RETurn.
0665 F941 C370F9 JMP QutputsData sNote use of JUMP. Outputs$Data
0666 3 will execute the RETurn.
0667 3
0648 Communication$Output:
0669 F944 21F2F8 LXI H,Communication$Table sHL -> control table
04670 F947 CI70F9 JMP Output$Data sNote use of JUMP. OQutput$Data
0671 3 will execute the RETurn.
0672 :
0673 Dummy$Output: sDummy output, always discards
0674 F94A C9 RET ;3 the output character
0875 H
0676 H
0677 ;
0678 H
0679 3 These are the general purpose low-level drivers.
0680 3 On entry, HL points to the appropriate control table.
0481 3 For output, the C register contains the data to be output.
0682 H
0683 Inputs$Status: ;Return with A = OOH if no incoming data,
0484 3 otherwise A = nonzero.
0685 F94B 7E MOV AM ;Get status port
0686 F94C 3250F9 STA InputéStatussPart s#xx Self-modifying code #sx
0687 F94F DB DB IN sInput to A from correct status port
0688 i
0689 Input$StatussPort:
0690 F950 00 DB 00 ;<- Set above
0691 F951 23 INX H iMove HL to point to input data mask
0692 F952 23 INX H
0693 F933 23 INX H
0694 F954 A& ANA M sMask with input status
0695 F955 C9 RET
0696 H
0697 3
0698 OutputsStatus: sReturn with A = 00H if not ready for cutput
0699 ; otherwise A = nonzero.
0700 F95é 7E MoV AM ;Get status port
0701 F957 32S5BF9 STA OutputeStatussPort %% Self-modifying code x=x
0702 F95A DB DB IN s Input to A from correct status port
0703 3
0704 OQutput$StatussPort:
0705 F9SB 00 DB 00 <~ Set abave
0704 F95C 23 INX H sMove HL to point to output data mask
0707 F9SD 23 INX H
0708 F9SE Aé ANA M sMask with output status
0709 F9SF C9 RET
0710 :
0711 3
0712 InputsData: sReturn with next data character in A.
0713 sWait for status routine to indicate
0714 3 incoming data.
0715 F940 ES PUSH H ;Save control table pointer
0716 F961 CDABF9 CALL Inputs$Status 3Get input status in zerc flag
0717 F9644 EL POP H sRecover control table pointer
0718 F945 CALQOF9 Jz InputsData sWait until incoming data
0719 F968 23 INX H sHL -> data port
0720 F949 7E MOV , ;Get data port
0721 F96A 326EF9 STA Input$DatasPort ;xxx Self-modifying code *x*
0722 F94D DB DB IN tInput to A from correct data port
0723 3
0724 Input$DatasPort:
0725 F94E 00 DB o 3<{- Set above
0726 F94F C9 RET
0727 i
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

169

0728 3

0729 QutputsData: ;Output the data character in the C register.

0730 sWait for status routine to indicate device

0731 3 ready to accept another character

0732 F970 ES PUSH H 3Save control table pointer

0733 F971 CDS&F® CALL OutputsStatus 3Get output status in zero flag

0734 F974 E1N POP H sRecover control table pointer

0735 F97S5 CA70F9 Jz OutputsData sWait until ready for output

07386 F978 23 INX H sHL -> output port

0737 F979 7€ MOV AM ;Get output port

0738 F97A 327FF9 STA Qutput$DatasPort suxx Self-modifying code xxx

0739 F97D 79 MOV A,C sGet data character to be output

0740 F97E D3 DB ourt ;0utput data to correct port

0741 3

0742 Output$DatasPort:

0743 F97F 00 DB o 3<- Set above

0744 F980 C9 RET

0745 H

0746 H

0747 3 High level diskette drivers

0748 H

0749 3 These drivers perform the following functions:

0750 H

0751 3 SELDSK Select a specified disk and return the address of

07352 H the appropriate disk parameter header

0753 ¢ SETTRK Set the track number for the next read or write

0754 ¢ SETSEC Set the sector number for the next read or write

0755 ¢ SETDMA Set the DMA (read/write) address for the next read or write.

0756 ; SECTRAN Translate a logical sector number into a physical

0757 5 HOME Set the track to 0 so that the next read or write will

0758 H be on Track 0

0759 ?

0760 3 In addition, the high-level drivers are responsible for making

0761 ? the 5 1/4" floppy diskettes that use a S512-byte sector appear

0782 5 to CP/M as though they used a 128-byte sector. They do this

0763 3 by using what is called blocking/deblocking code,

0764 ; described in more detail later in this listing,

0765 3 Just prior to the code itself.

0766 H

0767 H

0768 3

0769 3 Disk parameter tables

Q0770 H

0771 3 As discussed in Chapter 3, these describe the physical

0772 3 characteristics of the disk drives® In this example BIOS,

0773 3 there are two types of disk drives; standard single-sided,

0774 ¢ single-density 8", and double-sided, double-density S 1/4"

0775 3 diskettes.

0776 i

0777 3 The standard 8" diskettes do not need to use the blocking/

0778 3 deblocking code, but the S 1/4" drives do. Therefore an additicnal

0779 3 byte has been prefixed to the disk parameter black to

0780 3 tell the disk drivers each logical disk’s physical

0781 ;3 diskette type, and whether or not it needs deblocking.

0782 H

0783 H

0784 3 Disk definition tables

0785 H

0786 3 These consist of disk parameter headers, with one entry

0787 ¢ pPer logical disk driver, and disk parameter blocks, with

0788 3 either one parameter block per logical disk or the same

0789 5 pParameter block for several logical disks.

0790 H

0791 3

0792 Disk$Parameters$Headers: sDescribed in Chapter 3

0793 H

0794 sLogical Disk A: (5 1/4" Diskette)

0795 F981 &BFB oW Floppy$SeSkewtable 35 1/4" skew table

0796 F983 0000000000 DW 0,0,0 sReserved for CFP/M

0797 F989 CIF9 DW Directorys$Buffer

0798 F98B 42FA DW FloppySParameters$Block

0799 F98D 61FA DW Disk$AsWorkarea

0800 F98F CIFA bW DiskAAllocation$Vector

0801 H

0802 sLogical Disk B: (5 1/4" Diskette)

0803 F991 &BFB oW FloppySSkewtable ;Shares same skew table as A:
Figure 6-4. (Continued)

170 The CP/M Programmer’s Handbook

0804 F993 0000000000 DW 0,0,0 sReserved for CP/M
0805 F999 CIF? DW Directory$Buffer ;Share same buffer as A:
0806 F99B 42FA bW FloppySParameter$Block ;Same DPB as A:
0807 F99D B1FA DW DiskBWorkarea ;Private work area
0808 F99F D7FA oW DiskBAllocationsVector ;Private allocation vector
0809 H
0810 sLogical Disk C: (8" Floppy)
0811 F9A1 B3FB DW Floppy$8¢Skewtable ;8" skew table
0812 F9?A3 0000000000 DW 0,0,0 ;Reserved for CP/M
0813 F9A9 CIF9 DW Directory$Buffer ;Share same buffer as A:
0814 F9AB S2FA oW Floppy8Parameter$Block
0815 F9AD A1FA DW Disk$CsWorkarea sPrivate work area
0816 F9AF EDFA DW DiskCAllocation$Vector sPrivate allocation vector
0817 ;
0818 sLogical Disk D: (8" Floppy)
0819 F9B1 &BFB oW FloppySSkewtable sShares same skew table as A:
0820 F9B3 0000000000 DW 0,0,0 ;Reserved for CP/M
0821 F9B9 CIF9 W Directory$Buffer ;Share same buffer as A:
0822 F9BB S2FA W Floppy$8¢Parameter$Block ;Same DPB as C:
0823 F9BD BIFA oW DiskDWorkarea sPrivate work area
0824 F9BF OCFB DW DiskDAllocation$Vector sPrivate allocation vector
0825
0826 H
0827 §
0828 F9C1 Directory$Buffer: DS 128
0829 H
0830 H
0832 i
0833 s Disk Types
0834 H
0835 0001 = Floppy$d EQU 1 3S 1/4" mini floppy
0836 0002 = Floppy$8 EQU 2 ;8" floppy (S3 SIN
0837 3
0838 3 Blocking/deblocking indicator
0839 3
0840 0080 = Need$Deblocking EQU 1000$0000R ;Sector size > 128 bytes
0841 5
0842 ;
0843 3 Disk parameter blocks
0844 i
0845 3 5 1/4" mini floepy
0844 ;
0847 sExtra byte prefixed to indicate
0848 ; disk type and blocking required
0849 FA41 81 DB Floppy$S + Need$Deblocking
0850 FloppySParameter$Block:
0851 FA42 4800 7] 72 ;128-byte sectors per track
0852 FA44 04 DB 4 ;Block shift
0853 FA4S OF DB 15 ;Block mask
0854 FA46 01 DB 1 sExtent mask
0855 FA47 AEQQ oW 174 sMaximum allocation block number
0856 FA49 7FQ0 ju] 127 ;Number of directory entries -1
Q0857 FA4R CO DB 1100$0000B ;Bit map for reserving 1 alloc. block
0858 FA4C 00 DB 0000$0000B 3 for file directory
0859 FA4D 2000 W 32 sDisk changed work area size
0860 FA4F 0100 DW 1 sNumber of tracks before directory
0841 3
0862 H
0843 3 Standard 8" Floppy
0864 ;Extra byte prefixed to DPR for
0845 3 this version of the BIOS
0846 FAS1 02 DB Floppy$8 sIndicates disk type and the fact
0847 ; that no deblocking is required
0848 Floppy$8¢Parameter$Block:
08469 FAS2 1A00 W 26 ;Sectors per track
0870 FAS4 03 DB 3 ;Block shift
0871 FASS 07 DB 7 sBlock mask
Q872 FASé 00 DB (o] sExtent mask
0873 FAS7 F200 DW 242 sMaximum allocation block number
0874 FAS9 3F00 oW &3 sNumber of directory entries - 1
0875 FASB CO DB 1100$0000B 3;Bit map for reserving 2 alloc. blocks
0876 FASC 00 DB 0000%$0000R 3 for file directory
0877 FASD 1000) 16 ;Disk changed work area size
0878 FASF 0200 oW 2 3sNumber of tracks before directeory
0879 H
0880 3
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

174

0881 3 Disk work areas
0882 H
0883 5 These are used by the BDOS to detect any unexpected
osgsq 3 change of diskettes. The BDOS will automatically set
0885 3 such a changed diskette to read-only status.
0884 3
0887 FASL Disk$AsWorkarea: ns 32 s A:
0888 FA81 DiskBWorkarea: DS 32 3 B:
0889 FAAL DiskCsWorkarea: DS 146 s C:
0890 FAB1 DiskDWorkarea: Ds 1é s Dz
0891 3
0892 H
0893 5 Disk allocation vectors
0894 5
089S 3 These are used by the BDOS to maintain a bit map of
0896 3 which allocation blocks are used and which are free.
0897 5 One byte is used for eight allocation blocks, hence the
0898 3 expression of the form (allocation blocks/8)+1.
0899 H
0900 FAC1 DiskAsAllocation$Vector DS (174/8)+1 3 A
0901 FAD7 DiskBRAllocation$Vector ns (174/8)+1 3 B:
0902 i
0903 FAED DiskCAllocation$Vector ns (242/8)+1 5 C:
0904 FBOC DiskDAllocationsVector DS (242/8)+1 y D:
09035 H
0906 5
0907 0004 = NumberofslLogical$Disks EQU 4
0908 H
0909 3
0910 SELDSK: ;Select disk in C
0911 sC = 0 for drive A, 1 for B, etc.
0912 sReturn the address of the appropriate
0913 3 disk parameter header in HL, or 0000H
0914 ;3 if the selected disk does not exist.
0915 H
0916 FB2B 210000 LXI H,0 jAssume an errvor
0917 FB2E 79 MQV A, C sCheck if requested disk valid
0918 FB2F FEO4 CPI Numbers$ofélLogical$Disks
0919 FB31 DO RNC sReturn if > maximum number of disks
0920 H
0921 FB32 32EAFB STA Selecteds$Disk ;Save selected disk number
o922 3Set up to return DPH address
0923 FB3S &F MOV L,A sMake disk into word value
0924 FB3& 2600 MVI H, 0
0925 sCompute offset down disk parameter
0926 ; header table by multiplying by
0927 3 parameter header length (16 bytes)
0928 FB38 29 DAD H 7 %2
0929 FB39 29 DAD H 3 ®4
0930 FB3A 29 DAD H 3 ®8
0931 FB3B 29 DAD H 3 %16
0932 FR3IC 1181F9 LXI D,Disk$Parameters$Headers ;Get base address
0933 FB3F 19 DAD D sDE -> Appropriate DPH
0934 FBA4O ES PUSH H ;Save DPH address
0935 H
0936 sAccess disk parameter block
0937 3 to extract special prefix byte that
0938 3 identifies disk type and whether
0939 3 deblocking is required
0940 H
0941 FB41 110A00 LXI D, 10 3Get DPB pointer offset in DPH
0942 FB44 19 DAD D sDE ~> DPB address in DFH
0943 FBAS SE MoV E,M ;Get DPB address in DE
0944 FB46 23 INX H
0945 FB47 Sé Mav D,M
0944 FB48 EB XCHG sDE -> DFR
0947 FB49 2B DCX H sDE ~-> prefix byte
0948 FB4A 7E MoV AM ;Get prefix byte
0949 FB4B E&OF ANI OFH slsolate disk type
0950 FB4D 32FAFB STA Disk$Type ;Save for use in low-level driver
0951 FBSO 7E MoV A M ;Get anocther copy of prefix byte
0952 FBS1 Eé80 ANI NeedsDeblocking sIsolate deblocking flag
0953 FBS3 32F9FB STA Deblocking$Required ;Save for use in low-level driver
0954 FBS6 E1l POP H sRecaver DPH pointer
0955 FBS7 C9 RET
0956 B
Figure 6-4. (Continued)

172 The CP/M Programmer’s Handbook

0957 H

0958 3 Set logical track for next read or write

0959 [

0960 SETTRK:

0961 FBS8 60 MOV H,B ;Selected track in BC on entry
0962 FBS9 69 MoV L,C

0963 FBSA 22EBFB SHLD Selected$Track ;Save for low-level driver

09464 FBSD C9 RET

0965 H

0966 H

0967 ;3 Set logical sector for next read or write

0948 H

0969 3

0970 SETSEC: sLogical sector in C on entry
0971 FBSE 79 MoV A, C

0972 FBSF 32EDFB STA Selected$Sector ;Save for low-level driver

0973 FBé2 C9 RET

0974 H

0975 H

0976 s Set disk DMA (input/output) address for next read or write
0977 3

0978 FB&3 0000 DMA$Address: oW o sDMA address

0979 3

0980 SETDMA: sAddress in BC on entry

0981 FB&S 69 MoV L,c sMove to HL to save

0982 FB&6 60 MOV H,B

0983 FB&7 2263FR SHLD DMAs$Address sSave for low-level driver

0984 FB&A C9 RET

0985 H

0986 H

0987 3 Translate logical sector number to physical

0988 H

0989 3 Sector translation tables

0990 3 These tables are indexed using the logical sector number,
0991 3 and contain the corresponding physical sector number.
0992 3

0993 FloppySSkewtable: sEach physical sector contains four
0994 ;3 128-byte sectors.

0995 3 Physical 128b Logiral 128b Physical S12-byte
0996 FB&B 00010203 DB 00,01,02,03 100,01,02,03 o)

0997 FB6F 10111213 DB 16,17,18,19 104,05, 06,07 4)

0998 FB73 20212223 DB 32,33,34,35 308,09,10,11 8)

0999 FB77 OCODOEOF DB 12,13,14,15 $12,13,14,15 3) Head
1000 FB7B 1CIDIEIF DB 28,29, 30,31 316,17,18,19 7) o
1001 FB7F 08090A0B DB 08,09,10, 11 $20,21,22,23 2)

1002 FB83 18191A1B DB 24,25,26,27 $24,295,26,27 &)

1003 FB87 04050607 DB 04,05, 06,07 328,29,30,31 1)

1004 FBSB 14151617 DB 20,21,22,23 $32,33,34,35 S)

1005 $

1006 FBS8F 24252627 DB 36,37,38, 39 3 36,37,38,39 o 1

1007 FB93 34353437 DB 52,53,54,55 0,41,42,43 4]

1008 FB97 44454447 DB é8,69,70,71 144,45,46,47 8 1

1009 FB9B 30313233 DB 48, 49,50, 51 148, 49,50,51 3 1 Head
1010 FBYF 40414243 DB 64,65,66,67 352,53, 54,55 7 11
1011 FBA3 2C2D2E2F DB 44,45,46,47 356,57,58,59 2 1

1012 FBA7 3C3D3E3F DB 60,61,62,63 360,61,62,63 é& 1

1013 FBAB 28292A2B DB 40,41,42,43 364,65,66,67 1 1

1014 FBAF 38393A3B DB 56,57,58,59 368,69,70,71 S 1

1015 3

1016 3

1017 Floppy8Skewtable: sStandard 8" Driver

1018 3 01,02, 03, 04, 05, 06,07,08,09, 10 Logical sectors
1019 FBB3 01070D1319 DB 01,07,13,19,25,05,11,17,23,03 ;Physical sectors
1020 H

1021 3 11,12,13,14,15,16,17,18,19, 20 Logical sectors
1022 FBBD 090F150208 DB 09,15,21,02,08, 14,20,26,06,12 sPhysical sectors
1023 H

1024 3 21,22, 23,24,25,26 Logical sectors

1025 FBC7 1218040A10 DB 18, 24,04,10,16,22 sPhysical sectors

1026

1027 3

1028 SECTRAN: ;Translate logical sector into physical
1029 30n entry, BC = logical sector number
1020 3 DE -> appropriate skew table
1031 :

1032 son exit, HL = physical sector number

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

1033 FBCD ER XCHG sHL —> skew table base

1034 FBCE 09 DAD B 3Add on logical sector number

1035 FRCF &E MoV LM ;Get physical sector number

10346 FBDO 2800 MVI H,0 sMake into a 16-bit value

1037 FBD2 C9 RET

1038 ;

1039 H

1040 H

1041 HOME : sHome the selected logical disk to track 0.

1042 sBefore doing this, a check must be made to see

1043 s if the physical disk buffer has informaticn

1044 s that must be written out. This is indicated by

1045 3 a flag, Must$WritesBuffer, set in the

1046 ; deblocking code.

1047 s)

1048 FRD3I 3AE9FR LDA Must$WritesBuffer ;Check if physical buffer must

1049 FBD& B7 ORA A 3 be written out to disk

1050 FBD7 C2DDFB JINZ HOMENoWrite

1051 FRDA 32ES8FR STA DatasIn$Disk$Buffer sNo, so indicate that buffer

1052 3 is now unocccupied.

1053 HOME$NosWrite:

1054 FBDD QEOO MVI c,0 ;Set to track 0 (logically --

1055 FBDF CDS8FB CALL SETTRK 3 no actual disk operation occurs)

1056 FBE2 C9 RET

1057

1058 H

1059 ;s Data written to or read from the mini-floppy drive is transferred

1060 ;s via a physical buffer that is actually 512 bytes long (it was

1061 ;s declared at the fro