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PREFACE

This book has been designed as a complete self-contained text for

learning programming, using the Z80. It can be used by a person who
has never programmed before, and should also be of value to anyone
using the Z80.

For the person who has already programmed, this book will teach

specific programming techniques using (or working around) the speci-

fic characteristics of the Z80. This text covers the elementary to inter-

mediate techniques required to start programming effectively.

This text aims at providing a true level of competence to the person

who wishes to program using this microprocessor. Naturally, no book
will effectively teach how to program, unless one actually practices.

However, it is hoped that this book will take the reader to the point

where he feels that he can start programming by himself and can solve

simple or even moderately complex problems using a microcomputer.

This book is based on the author's experience in teaching more than

1000 persons how to program microcomputers. As a result, it is strongly

structured. Chapters normally go from the simple to the complex. For
readers who have already learned elementary programming, the intro-

ductory chapter may be skipped. For others who have never program-

med, the final sections of some chapters may require a second reading.

The book has been designed to take the reader systematically through

all the basic concepts and techniques required to build increasingly

complex programs. It is, therefore, strongly suggested that the ordering

of the chapters be followed. In addition, for effective results, it is

important that the reader attempt to solve as many exercises as possible.

The difficulty within the exercises has been carefully graduated. They
are designed to verify that the material which has been presented is

really understood. Without doing the programming exercises, it will

not be possible to realize the full value of this book as an educational

medium. Several of the exercises may require time, such as the multi-

plication exercise. However, by doing them, you will actually program
and learn by doing. This is indispensable.

For those who have acquired a taste for programming when reaching

the end of this volume, a companion volume is planned: the Z80 Ap-
plications Book.

13



Other books in this series cover programming for other popular

microprocessors.

For those who wish to develop their hardware knowledge, it is sug-

gested that the reference books From Chips to Systems: an Introduction

to Microprocessors (ref. C20iA) and Microprocessor Interfacing

Techniques (ref. C207) be consulted.

The contents of this book have been checked carefully and are

believed to be reliable. However, inevitably, some typographical or

other errors will be found. The author will be grateful for any comments

by alert readers so that future editions may benefit from their experience.

Any other suggestions for improvements, such as other programs

desired, developed, or found of value by readers, will be appreciated.

14



INTRODUCTION

This chapter will introduce the basic concepts and definitions re-

lating to computer programming. The reader already familiar with

these concepts may want to glance quickly at the contents of this

chapter and then move on to Chapter 2. It is suggested, however,

that even the experienced reader look at the contents of this intro-

ductory chapter. Many significant concepts are presented here in-

cluding, for example, two's complement, BCD, and other represen-

tations. Some of these concepts may be new to the reader; others

may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,

expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given

problem. It must terminate in a finite number of steps. This

algorithm may be expressed in any language or symbolism. A sim-

ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left

3—seize doorknob

4—turn doorknob left and push the door

15



PROGRAMMING THE Z80

At this point, if the algorithm is correct for the type of lock in-

volved, the door will open. This four-step procedure qualifies as an

algorithm for door opening.

Once a solution to a problem has been expressed in the form of

an algorithm, the algorithm must be executed by the computer.

Unfortunately, it is now a well-established fact that computers

cannot understand or execute ordinary spoken English (or any

other human language). The reason lies in the syntactic ambiguity
of ail common human languages. Only a well-defined subset of

natural language can be "understood" by the computer. This is

called a programming language.

Converting an algorittmi into a sequence of instructions in a pro-

gramming language is called programming. To be more specific,

the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
"data structures" which will implement the algorithm.

Effective programming requires not only understanding the

possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, such as
internal registers, memory, and peripheral devices, plus a creative

use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the

author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. It is called a flowchart. A flowchart is

simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or "executabie
statements." Diamonds are used for tests such as: If information

16



BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal

definition of flowcharts at this point, we will introduce and discuss

flowcharts later on in the book when we present programs.

Flowcharting is a iiighly recommended intermediate step be-

tween the algorithm specification and the actual coding of the solu-

tion. Remarkably, it has been observed that perhaps 10% of the

programming population can write a program successfully with-

out having to flowchart. Unfortunately, it has also been observed

that 90% of the population believes it belongs to this 10%! The

result: 80% of these programs, on the average, will fail the first

time they are run on a computer. {These percentages are naturally

not meant to be accurate.) In short, most novice programmers sel-

dom see the necessity of drawing a flowchart. This usually results

in "unclean" or erroneous programs. They must then spend a long

time testing and correcting their program (this is called the

START

READ TEMPERATURE SETTING 'T'

ON THERMOSTAT BOX

READ ACTUAL ROOM TEMPERATURE 'R

'

FROM THERMOMETER OR OTHER SENSOR

(ROOM
TOO COLDS

HEATER ON HEATER OFF

(OPTIONAL DELAY) [OPTIONAL DELAY)

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant
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PROGRAMMING THE 280

debugging phase). The discipline of flowcharting is therefore

highly recommended in all cases. It will require a small amount of

additional time prior to the coding, but will usually result in a clear

program which executes correctly and quickly. Once flowcharting

is well understood, a small percentage of programmers will be able

to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-

ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

Ail computers manipulate information in the form of numbers or

in the form of characters. Let us examine here the external and
mternal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit

stands for a binary digUC'O" or "1")- Because of the limitations

of conventional electronics, the only practical representation of infor-

mation uses two-state logic (the representation of the state "0" and
"I"). The two states of the circuits used in digital electronics

are generally "on" or "off", and these are represented logi-

cally by the symbols "0" or "!". Because these circuits are

used to implement "logical" functions, they are called "binary
logic." As a result, virtually all information-processing today is

performed in binary format. In the case of microprocessors in

general, and of the Z80 in particular, these bits are structured in

groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in

this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will

operate, which may include numbers or alphanumeric text. We will

discuss below three representations: program, numbers, and alpha-
numerics.

18



BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple

bytes. A so-called "short instruction" is represented by a single

byte. A longer instruction will be represented by two or more

bytes. Because the Z80 is an eight-bit microprocessor, tt fetches

bytes successively from its memory. Therefore, a single-byte

instruction always has a potential for executing faster than a two-

or three-byte instruction. It will be seen later that this is an impor-

tant feature of the instruction set of any microprocessor and in

particular the Z80, where a special effort has been made to pro-

vide as many single-byte instructions as possible in order to im-

prove the efficiency of the program execution. However, the limita-

tion to 8 bits in length has resulted in important restrictions which

will be outlined. This is a classic example of the compromise be-

tween speed and flexibility in programming. The binary code used

to represent instructions is dictated by the manufacturer. The

Z80, like any other microprocessor, comes equipped with a- fixed

instruction set. These instructions are defined by the manufac-

turer and are listed at the end of this book, with their code. Any
program will be expressed as a sequence of these binary instruc-

tions. The Z80 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several

cases must be distinguished. We must first represent integers, then

signed numbers, i.e., positive and negative numbers, and finally we

must be able to represent decimal numbers. Let us now address

these requirements and possible solutions.

Representing integers may be performed by using a direct

binary representation. The direct binary representation is simply

the representation of the decimal value of a number in the binary

system. In the binary system, the right-most bit represents 2 to

the power 0. The next one to the left represents 2 to the power 1,

the next represents 2 to the power 2, and the left-most bit

represents 2 to the power 7 = 128.

b,b6b5b4b:,b-,b,bo

represents

b,2' 4- b,2' + b,2' + b,2^ + b,2^ + b,2^ + b,2' + bo2°

19



PROGRAMMING THE Z80

The powers of 2 are:

T = 128. 2^ = 64, 2" = 32. 2* = 16, 2' = 8, 2' = 4. 2^ = 2, 2° = 1

The binary representation is analogous to the decimal representa-

tion of numbers, where "123" represents:

1 X 100 = 100

+ 2 X 10 = 20

+ 3 X 1 = 3

= 123

Note that 100 = 10^ 10 = 10'. 1 = lO**

In this "positional notation," each digit represents a power of 10.

In the binary system, each binary digit or "bit" represents a power
of 2, instead of a power of 10 in the decimal system.

Exampie: "00001001" in binary represents:

IX 1 = 1

OX 2 =
OX 4 =
IX 8 = 8

OX 16 =
OX 32 =
OX 64 =
X 128 =

in decimal: = 9

Let us examine some more examples:

"10000001" represents:

IX 1

OX 2 =
OX 4 =
OX 8 =
X 16 =
X 32 =
X 64 =

1 X 128 = 128

= 129

"10000001" represents, therefore, the decimal number 129.

{2°)

f2')

(2^

(2*)

(21

20



BASIC CONCEPTS

By examining the binary representation of numbers, you will

understand why bits are numbered from to 7, going from right to

left. Bit is "bo" and corresponds to 2^ Bit 1 is "b," and cor-

responds to 2', and so on.

Decimal Binary Decimal Binary

00000000 32 00100000
1 00000001 33 00100001

2 00000010 *

3 00000011

4 00000100 t

5 00000101 63 00111111

6 00000110 64 01000000

7 00000111 65 01000001
8 00001000
9 00001001 •

10 00001010 127 01111111
11 00001011 128 10000000

12 00001100 129 10000001

13 00001101

14 00001110 •

15 00001111

16 00010000
17
•

00010001

*

254 11111110
31 00011111 255 11111111

Fig. 1.2: Decimai-Binary Table

The binary equivalents of the numbers from to 255 are shown

in Fig. 1-2.

Exercise LI: What is the decimal value of "UllUOO"?

21



PROGRAMMING THE Z80

Decimal to Binary

Conversely, let us compute the binary equivalent of ."11"

decimal: y

11 ^ 2 5 remains 1 1 (LSB)

5 -r- 2 = 2 remains 1
—* 1

2-^2=1 remams —
1^2 = remains 1 —* 1 (MSB)

The binary equivalent is 1011 {read right-most column from bot-

tom to top).

The binary equivalent of a decimal number may be obtained by
dividing successively by 2 until a quotient of is obtained.

Exercise 1.2: What is the binary for 257?
^

.Exercise 1,3: Convert 19 to binary, then back to decimal

Operating on Binary Data
^

The arithmetic rules for binary numbers are straightforward.

The rules for addition are:
0+0= .0

0+1= 1

1+0=. 1

1 + I=(1)

where (1) denotes a "carry" of 1 (note that "10" is the binary
equivalent of "2" decimal). Binary subtraction will be performed
by "adding the complement" and will be explained once we learn
how to represent negative numbers.

Example:

(2) 10

+(1) +01

"Hij" IT
Addition is performed just like in decimal, by adding columns,
from right to left:

Adding the right-most column;

io

-i-Ol

(0 4- 1 = 1. Ko carry.j

22



BASiC CONCEPTS

Adding the next column:

10

+01

11 (1+0 =1. No carry.)

Exercise L4: Compute 5 + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition: ['^
^

0010 (2) 0011 (3)

+0001 {1} +0001 (1)

=0011 (3) =0100 (4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1)

A carry of 1 is generated, which must be added to the next bits:

001 — column has Just been added

+000 -
+ 1 (carry)

= (1)0 — where (1) indicates a new
carry into column 2.

The final result is: 0100

Another example;

0111 (7}

+0011 + (3)

1010 =(10)

In chis example, a carry is again generated, up to the left-most co-

lumn.

Exercise 1.5: Compute the result of:

nil
+0001

23
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Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the

numbers "00000000" to "llllliil," i.e., "0" to "255", Two
obstacies should be visible immediately. First, we are only

representing positive numbers. Second, the magnitude of these

numbers is limited to 255 if we use only eight bits. Let us address

each of these problems in turn.

Signed Binary

In a signed bmary representation, the left-most bit is used to in-

dicate the sign of the number. Traditionally, "0" is used to denote

a positive number while "1" is used to denote a negative number.
Now "11111111" will represent -127, while "01111111" will

represent -1-127. We can now represent positive and negative

numbers, but we have reduced the maximum magnitude of these

numbers to 127.

Example; "0000 0001" represents +1 (the leading "0" is "+
followed by "000 0001" = 1).

"1000 0001" is -1 {the leading "1" is "~").

Exercise 1.6: What is the representation of "—5" in signed binary?

Let us now address the magnitude problem: in order to represent
larger numbers, it will 'be necessary to use a larger number of bits.

For example, if we use sixteen bits (two bytes) to represent

numbers, we will be able to represent numbers from —32K to

-I-32K in signed binary (IK in computer jargon represents 1,024).

Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit

0} are used for the magnitude: 2'^ = 32K. If this magnitude is still

too small, we will use 3 bytes or more. If we wish to represent large

integers, it will be necessary to use a larger number of bytes inter-

nally to represent them. This is why most simple BASICs, and
other languages, provide only a hmited precision for mtegers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.
Now let us solve another problem, the one of speed efficiency.

We are going to attempt performing an addition in the signed

24



BASIC CONCEPTS

binary representation which we have introduced. Let us add "--5"

and "+7",

+7 is represented by 00000111
-5 is represented by 10000101

The binary sum is: 10001100, or -12

This is not the correct result. The correct result should be +2. In

order to use this representation, special actions must be taken, de-

pending on the sign. This results in increased complexity and re-

duced performance. In other words, the binary addition of signed

numbers does not "work correctly." This is annoying. Clearly, the

computer must not only represent information, but also perform

arithmetic on it.

The solution to this problem is called the two's complement

representation, which will be used instead of the signed binary

representation. In order to introduce two's complement let us first

introduce an intermediate step: one's complement.

One's Complement

In the one's complement representation, all positive integers are

represented in their correct binary format. For example "+3" is

represented as usual by 00000011. However, its complement "—3"

is obtained by complementing every bit in the original representa-

tion. Each is transformed into a 1 and each 1 is transformed into

aO. In our example, the one's complement representation of "—3"

will be 11111100.

Another example:

+ 2 is 00000010
-2 is 11111101

Note that, in this representation, positive numbers start with a

"0" on the left, and negative ones with a "1" on the left.

Exercise 1.7: The representation of is "00000110" What is

the representation of "—6" in one's complement?

\\\\ i'^'^'

As a test, let us add minus 4 and plus 6:

25



PROGRAMMING THE Z80

-4 is union
-f-6 is 00000110

the sum is: {1) 00000001 where (1) indicates a

carry

The "correct result" should be "2", or "00000010".

Let us try again:

-3is 11111100

~2is llilUOi

The sum is: (1) 11111,001

or "-6," plus a carry. The correct result should be The
representation of "-5" is UIUOIO. It did not work.

This representation does represent positive and negative

numbers. However the result of an ordinary addition does not
always come out "correctly." We will use still another representa-
tion. It is evolved from the one's complement and is called the
two's complement representation.

Two's Complement Representation

In the two's complement representation, positive numbers are
stili represented, as usual, in signed binary, just like in one's com-
plement. The difference lies in the representation of negative
numbers. A negative number represented in two's complement is

obtained by first computing the one's complement, and then ad-
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one's com-
plement representation is 11111100. The two's complement is ob-
tained by adding one. It is UllllOl.

Let us try an addition:

(3) 00000011

+00000101

=(8) =00001000

The result is correct.

26



BASIC CONCEPTS

Let us try a subtraction:

(3) OOOOOOil

(-5} +11111011

=11111110

Let us identify the result by computing the two's complement:

the one^s complement of 11111110 is 00000001

Adding 1 + 1

therefore the two's complement is 00000010 or +2

Our result above, "11111110" represents "—2", It is correct.

We have now tried addition and subtraction, and the results were correct

(ignormg the carry). It seems that two's complement works!

Exercise 1.8: What is the two's complement representation of

01 u ni\

Exercise 1.9: What is the two's complement representation of

Let us now add +4 and —3 (the subtraction is performed by add-

ing the two's complement):

+4 is 00000100
-3 is 11111101

The result is: (1) 00000001

If we ignore the carry, the result is 00000001, i.e., "1" in decimal.

This is the correct result. Without giving the complete mathe-

matical proof, let us simply state that this representation does

work. In two's complement, it is possible to add or subtract signed

numbers regardless of the sign. Using the usual rules of binary addi-

tion, the result comes out correctly, including the sign. The carry

is Ignored. This is a very significant advantage. If it were not the

case, one would have to correct the result for sign every time, caus-

ing a much slower addition or subtraction time.

For the sake of completeness, let us state that two s complement

IS simply the most convenient representation to use for simpler

processors such as microprocessors. On complex processors, other

representations may be used. For example, one's complement may
be used, but it requires special circuitry to "correct the result."

27



PROGRAMMING THE Z80

From this point on, all signed integers will implicitly be represented

internally in two's complement notation. See Fig. i.3 for a table of
two's complement numbers.

Exercise 1.10: What are the smallest and the largest numbers
which one may represent in two 's complement notatioji, using only
one byte? ^z%-i-izl

Exercise I.Il: Compute the two's complement of 20. Then com-
pute the two's complement of your result. Do you find 20 again?

The following examples will 'serve to demonstrate the rules of two's

complement. In particular, C denotes a possible carry {or borrow)
condition. (It is bit 8 of the result.)

V denotes a two's complement overflow, i.e., when the sign of the

result is changed "accidentally" because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 (the

sign bit). This will be clarified below.

Let us now demonstrate the role of the carry "C" and the overflow
"V".

The Carry C

Here is an example of a carry:

where (I) indicates a carry.

The result requires a ninth bit (bit "8", since the right-most bit is

"0"). It is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.
However, the carry must be recognized and handled with care.

Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide.When storing the result, only bits to

7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
cany means either storing it somewhere (with a special instruc-
tion), or ignoring it, or deciding that it is an error (if the largest
authorized result is "11111111").

(128) 10000000
-i-(129) +10000001

(257) = (1) 00000001
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+
2 s complement 2's complement

code code

+ 127 0111 Jill - 128 10000000

ni 1 1 1 1 in mnnnoni

-4- 1 7^ mill ini — 1 7fi I nnnno i

n

-125 1 00000

n

+ DJ n 1 nnnnn

i

U iUUUUU

1

— OJ tni 1 11 1

1

lUl I III 1

-T OH n 1 nnnnnnU 1uuuuuu — UH- 1 1 nnnnnni 1uuuuuu

+ 63 001 1 11 11 -63 11000001

(in 1 nnoo i i 101 1 11

1

nni nnnnn — 17 1 ! 1 nnooo

nnni i i i

i

_ 1
1 1 100001

-1- 17 onnrnnni — 17 1 1 101 1 1

1

fsnn 1 nnnn — Ifi— i u 111! onnn1111

-1- I ^ uuuu 1 1 1

1

— 1 S 1 1 1 mom
-J- lA nnnfil 1 1 nuuuu I 1 1

u

11 1 mnm
T i J nnnni iniUUUUi 1 U

1

1 1 1 1 00 1 1ill! WVf i t

-1- 1 1T 1 Z nnnoi innUUUUl iUU 1 1 1 1 nmn1 1 1 1 W 1 \J\f

! 1v \ \ uuuu 1 U 1

1

1 \ I mini
-1- inT iU nnnnmmUUUU i U 1

u

— in— 1 u 1 1 1 ini

m

-i- Q nnnnmo 1uuuu i UU

1

— Q 1 II mil 1iitii-'iii

nnnn i onouuuu 1 UUU 11111 noo1111

4- 7 nnnnn 1 i

i

UUUUU j E 1
„ 7 1111 1001

-1-T U nnnnn i s n — 6 1111 1010

^ J nnnnnini 1 1 1 1 101

1

+ 4 00000100 -4 1 1 1 i 1 100

+ 3 0000001

1

-3 1 1 1 1 1 101

+ 2 00000010 — 11 illllO

+ 1 00000001 - 1 11111111

+ 00000000

Fig. 1.3: 2's Complemenl Table
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Overflow V

Here is an example of overflow:

bite
1

bit 7 ^1

01000000 (64)

+ 01000001 +(65)

= 10000001 =(-127)

An internal carry has been generated from bit 6 into bit 7. This is

called an overflow.

The result is now negative, "by accident." This situation must
be detected, so that it can be corrected.

Let us examine another situation:

inuiu (-1)

+11111111 +(-1)

=(1) IIUUIO =(-2)

carry

In this case, an internal carry has been generated from bit 6 mto
bit 7, and also from bit 7 into bit 8 (the formal "Carry" C we have
examined in the preceding section). The rules of two s complement
arithmetic specify that this carry should be ignored. The result is

then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.

Let us examine one more example.

11000000 (-64)

+ 10111111 (-65}

=(1) OllllUl (+ 127)

y
carry

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7

has been changed. An overflow condition should be indicated.
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Overflow will occur in four situations;

1—adding large positive numbers
2—adding large negative numbers
3—subtracting a large positive number from a large negative

number
4—subtracting a large negative number from a iarge positive

number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this

purpose, and^called a "flag," will be set when there is a carry from

bit 6 into bit 7 and no external carry, or else when there is no carry

from bit 6 into bit 7 but there is an external carry. This indicates

that bit 7, i.e., the sign of the result, has been accidentally

changed. For the technically-minded reader, the overflow flag is

set by Exclusive GRing the carry-in and carry-out of bit 7 (the sign

bit). Practically every microprocessor is supplied with a special

overflow flag to automatically detect this condition, wiiich re-

quires corrective action.

Overflow indicates that the result of an addition or a subtraction

requires more bits than are available in the standard eight-bit

register used to contain the result.

The Carry and the Overflow

The carry and the overflow bits are called "flags." They are pro-

vided in every microprocessor, and in the next chapter we will

learn to use them for effective programming. These two indicators

are located in a special register called the flags or "status"

register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow

in actual examples. In each example, the symbol V denotes the

overflow, and C the carry.

If there has been no overflow. V = 0. If there has been an

overflow, V = 1 (same for the carry C). Remember that the rules of

two's complement specify that the carry be ignored. (The

mathematical proof is not supplied here.)
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Positive-Positive

00000110 (+6)

-f 00001000 (+8)

= 00001110 (+ 14) V:0 C:0

{CORRECT)

Positive-Positive with Overflow

01111111 (+ 127)

+ 00000001 (+ 1)

= 10000000 (--128) V:l C:0

The above is invalid because an overflow has occurred.

(ERROR)

Positive-Negative (result positive)

00000100 (+4)

+ 11111110 (-2)

=(1)00000010 (+ 2) V:0 C:l (disregard)

(CORRECT)

Positive-Negative (result negative)

00000010 (+2)

+ 11111100 (-4)

= 11111110 (-2) V:0 C:0

(CORRECT)

Nega tive-Negative

11111110 (-2)

+ 11111100 (~4)

={1)11111010 (-6) V:0 C:l (disregard)

(CORRECT)

Negative-Negative with Overflow

10000001 (-127)

+ 11000010 (-62)

=(1)01000011 (67) V:l C:l

(ERROR)
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This time an "underflow" has occurred, by adding two large

negative numbers. The result would be —189, which is too large to

reside m eight bits.

Exercise 1.12: Complete the following additions. Indicate the

result, the carry C, the overflow V, and whether the result is correct

or not:

10111111 ( }

4-11000001 ( )

= V: C:

CORRECT D ERROR

11111010 { )

+ 11111001 { }

= V: C;

CORRECT ERROR

00010000 ( )

-hOlOOOOOO { )

= V: C:

D CORRECT ERROR

OlllillO { I

+00101010 ( )

= V; C:

CORRECT ERROR

Exercise 1.13: Can you show an example of overflow when adding a

positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to

represent larger integers, we will need several bytes. In order to

perform arithmetic operations efficiently, it is necessary to use a

fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the

number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers
which may be represented in two bytes usmg two's complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits

because the processor we will use operates internally on eight bits

at a time. However, this restricts us to the numbers in the range
— 128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits

which can be represented. A two-, three-, or N-byte format may
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then be used. For example, let us examine a 16-bit, "double-pre-

cision" format:

00000000 00000000 is
"0"

00000000 00000001 is
"1"

Ollllill llllllli is "32767"

UUllll lUUlU is "-I"
llllllli 11111110 is

"-2"

Exercise LIS: What is the largest negative integer which can be

represented in a two's complement triple-precision format?

However, this method will result in disadvantages. When adding

two numbers, for example, we will generally have to add them

eight bits at a time. This will be explained in Chapter 3 (Basic Pro-

gramming Techniques). It results in slower processing. Also, this

representation uses 16 bits for any number, even if it could be

represented with only eight bits. It is, therefore, common to use 16

or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the

number of bits N chosen for the two's complement representation,

it is fixed. If any result or intermediate computation should

generate a number requiring more than N bits, some bits will be

lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating

the result.

Here is an example in the decimal system, using a six digit

representation:

123456

X 1.2

246912

123456

= 148147.2

The result requires 7 digits! The "2" after the decimal point will be

dropped and the final result will be 148147. It has been truncated.

Usually, as long as the position of the decimal point is not lost, this

method is used to extend the range of the operations which may be

performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-
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plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,

but it may be sufficient for usual computations or mathematical

operations.

Unfortunately, in the case of accounting, no loss of precision is

tolerable. For example, If a customer rings up a large total on a

cash register, it would not be acceptable to have a five figure

amount to pay, which would be approximated to the dollar.

Another representation must be used wherever precision in the

result is essential. The solution normally used is BCD, or

binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode

each decimal digit separately, and to use as many bits as necessary

to represent the complete number exactly. In order to encode each

of the digits from through 9, four bits are necessary. Three bits

would only supply eight combinations, and can therefore not en-

code the ten digits. Four bits allow sixteen combinations and are

therefore sufficient to encode the digits "0" through "9". It can

also be noted that six of the possible codes will not be used in the

BCD representation (see Fig. 1-4). This will result later on in a potential

problem during additions and subtractions, which we will have to solve.

BCD BCD
CODE SYMBOL CODE SYMBOL

0000 1000 8

0001 1 1001 9

0010 2 lOIO unused

OOU 3 1011 unused

0100 4 1100 unused

0101 5 1101 unused

0110 6 UIO unused

oiii 7 1111 unused

Fig. 1.4: BCD Table
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Since only four bits are needed to encode a BCD digit, two BCD digits

may be encoded in every byte. This is called "packed BCD.

"

As an example, "00000000" will be "00" in BCD. "10011001"

will be "99",

A BCD code is read as follows:

0010 0001

BCD digit "2"

BCD digit "1"

BCD number "21"

Exercise 1.16: What is the BCD representation for "29"'^ "91 "?

Exercise 1.17: Is "10100000" a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning

of the representation to indicate the total number of nibbles, i.e.,

the total number of BCD digits used. Another nibble or byte will

be used to denote the position of the decimal point. However, con-

ventions may vary.

Here is an example of a representation for muitibyte BCD in-

tegers:

i
I

(3 bytes)

number
of digits

(up to 255) sign

number "221"

This represents -1-221

(The sign may be represented by 0000 for +, and 0001 for — , for

example.)

Exercise 1. 18: Using the same convention, represent "—23123'",

Show it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD for "222'' and "111 then for the re-

sult of222 X 111. (Compute the result by hand, then show it in the

above representation.)

The BCD representation can easily accommodate decimal

numbers.
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For example, +2.21 may be represented by:

digit 3 digit 2 digit i

3 2 + 2 1

I i r 221 ^"
^

3 digits "." is on the +
left of digit 2

The advantage of BCD is that it yields absolutely correct

results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode ''9999" in

BCD? And in two's complement?

We have now solved the problems associated with the represen-

tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing

decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for-

mat.

Floating-Pomt Representation

The basic principle is that decimal numbers must be represented
with a fixed format. In order not to waste bits, the representation
will normalize all the numbers.
For example, "0.000123" wastes three zeros on the left of the

number, which have no meaning except to indicate the position of

the decimal point. Normalizing this number results in .123 X 10-^
".123" is called a normalized mantissa, "—3" is called the expo-

nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent.

Let us consider another example:

22. 1 is normalized as .221 x 10-

or M X 10^ where M is the mantissa, and E is the exponent.
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It can be readily seen that a normaUzed number is characterized

by a mantissa less than 1 and greater or equal to .1 in all cases

where the number is not zero. In other words, this can be repre-

sented mathematically by:

.1 < M < 1 or 10-' < M < 10^

Similarly, in the binary representation:

2-'^M<2° {or.5<M<l)

Where M is the absolute value of the mantissa {disregarding the

sign!.

For example:

111.01 is normaUzed as: .11101 X 2^

The mantissa is 1 1 101

.

The exponent is 3.

Now that we have defined the principle of the representation,

let us examine the actual format. Atypical floating-point represen-

tation appears below.

31 24 23 56 15

EXP WANT S S A

Fig. 1.5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used

for a total of 32 bits. The first byte on the left of the illustration is

used to represent the exponent. Both the exponent and the man-

tissa will be represented in two's complement. As a result, the

maximum exponent will be - !2S. "S" m Fig. 1-5 denotes the sign

bit.

Three bytes are used to represent the mantissa. Since the first

bit in the two's complement representation indicates the sign, this

leaves 23 bits for the representation of the magnitude of the man-

tissa.
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Exercise 1.21: How many decimal digits can the mantissa repre-

sent with the 23 bits?

This is oniy one example of a floating point representation. It is

possible to use oniy three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,

magnitude of numbers, storage utilization, and efficiency in

arithmetic operation.

We have now explored the problems associated with the rep-

resentation of numbers and we know how to represent them in in-

teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit

code. Only two codes are m general use in the computer world, the

ASCII Code, and the EBCDIC Code. ASCII stands for "American
Standard Code for Information Interchange," and is universaiiy

used in the world of microprocessors. EBCDIC is a variation of

ASCII used by IBM, and therefore not used m the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26

letters of the alphabet for both upper and lower case, plus 10

numeric symbols, plus perhaps 20 additional special symbols. This

can be easily accomplished with 7 bits, which allow 128 possible

codes. (See Fig. 1-6.) All characters are therefore encoded in 7 bits.

The eighth bit, when it is used, is the parity bit Parity is a tech-

nique for verifying that the contents of a byte have not been ac-

cidentally changed. The number of I's In the byte is counted and
the eighth bit is set to one if the count was odd, thus making the

total even. This is called even parity. One can also use odd parity,

i.e. writing the eighth bit {the left-most) so that the total number of

I's in the byte is odd.

Example: letus compute the parity bit for "0010011" using even

parity. The number of I's is 3. The parity bit must therefore be a 1

so that the total number of bits is 4, i.e. even. The result is

10010011, where the leading 1 is the parity bit and 0010011 iden-

tifies the character.
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The table of 7-bit ASCO codes is shown in Fig. 1-6. In practice, it

IS used "as is," i.e. without parity, by adding a in the left-most

position, or else with parity, by adding the appropriate extra bit on

the left.

Exercise 1.22: Compute the 8-bit representation of the digits "0"

through "9", using even parity. (This code will be used in applica-

tion examples of Chapter 8.1

Exercise 1.23: Same for the letters "/i" through "F"-

Exercise 1.24: Using a non-parity ASCII code (where the left-most

bit is "0"), indicate the binary contents of the 4 characters below:

"A"
"9"

"3"

"b"

HEX MSD 1

001

2

010

3

011

4

100

5

101

6

110

7

111
LSD BITS 000

0000 NUL DLE SPACE @ P P

1 0001 SOH DC1 [ 1 A Q a q

2 0010 STX DC2 2 B R b r

3 0011 ETX DC3 # 3 C S c s

4 0100 EOT DC4 s 4 D T d t

5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f V

7 0111 BEL ETB 7 G w g w

8 1000 BS CAN {
8 H X h X

9 1001 HT EM 1
9 Y V

A 1010 LF SUB J z
i

z

B 1011 VT ESC J- K [ k
[

C 1100 FF FS < L \ 1

D 1101 CR GS M m I

\

E 1110 SO RS > N A n

F 1111 SI US n DEL

Fig. 1.6: ASCI! Conversion Table

(see Appendix B for nbbrevtatlonst

In specialized situations such as telecommunications, other

codings may be used such as error-correcting codes. However they

are beyond the scope of this book.
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We have examined the usual representations for both program
and data inside the computer. Let us now examme the possible ex-

ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre-

sented to the user, i.e. generally to the programmer. Information
may be presented externally in essentially three formats: binary,

octal or hexadecimal and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,

which are sequences of eight bits {O's or Ts). It is sometimes
desirable to display this internal information directly in its binary

format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes (LEDs) which are essen-

tially miniature lights, on the front panel of the microcomputer. In

the case of an eight-bit microprocessor, a front panel will typically

be equipped with eight LEDs to display the contents of any inter-

nal register. (A register is used to hold eight bits of information

and will be described in Chapter 2). A lighted LED indicates a one.

A zero is indicated by an LED which is not lighted. Such a binary

representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally

impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus "9" is much
easier to understand or remember than "1001", More convenient

representations have been devised, which improve the person-

machine interface.

2. Octal and Hexadecimal

"Octal" and "hexadecimal" encode respectively three and four

binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be-

tween and 7.

"Octal" is a format using three bits, where each combination of

three bits is represented by a symbol between and 7:
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binary octal

n
\J

1i.

9

Oil 3

100 4

101 5

110 6

111

Fig. 1.7: Octal Symbols

For example, "00 100 100" binary is represented by:

Y Y V
4 4

or "044" in octal.

Another example: 11 111 111 is:

T T Y

3 7 7

or "377" in octal

Conversely, the octal "211" represents:

010 001 001

or "10001001" binary.

Octal has traditionally been used on older computers which were

employing various numbers of bits ranging from 8 to perhaps 64.

More recently, with the dominance of eight-bit microprocessors,

the eight-bit format has become the standard, and another more
practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en-

coded as one hexadecimal digit. Hexadecimal digits are

represented by the symbols from to 9, and by the letters A. B, C,

D, E, F. For example, "0000" is represented by "0", "0001" is

represented by "1" and "1111" is represented by the letter "F"
(see Fig. 1-8).
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DECIMAL BINARY HEX OCTAL

nnnn nu nu

l nnni
i

1
1

2 o

3 001

1

J

4 nmn A A
*t

5 mm D -J

g mm cD RO

7 mil 7 7

5 innn o in

q mm 1

1

10 1010 A 12

11 1011 B 13

12 1100 C 14

13 1101 D 15

14 1110 E 16

15 1111 F 17

Fig. 1.8: Hexadecimal Codes

43



PROGRAMMING THE Z80

Example: 1010 0001 in binary is represented by

A 1 In hexadecimal.

Exercise 1.25: What is the hexadecimal representation of

''10101010?'

Exercise 1.26: Conversely, what is the binary equivalent of ''FA''

hexadecimal?

Exercise 1.27: What is the octal of "01000001 "?

Hexadecimal offers the advantage of encoding eight bits into on-

ly two digits. This is easier to visualize or memorize and faster to

type into a computer than its binary equivalent. Therefore, on

most new microcomputers, hexadecimal is the preferred method of

representation for groups of bits.

Naturally, whenever the information present in the memory has

a meaning, such as representing text or numbers, hexadecimal is

not convenient for representing the meanmg of this information

when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of

information in actual symbolic form. For example, decimal num-

bers are represented as decimal numbers, and not as sequences of

hexadecimal symbols or bits. Similarly, text is represented as

such. Naturally, symbolic representation is most practical to the

user. It is used whenever an appropriate display device is

available, such as a CRT display or a prmter. (A CRT display is a

television-type screen used to display text or graphics.) Unfortu-

nately, in smaller systems such as one-board microcomputers, it is

uneconomical to provide such displays, and the user is restricted

to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable

since it is the most natural for a human user. However, it requires

an expensive interface in the form of an alphanumeric keyboard,

plus a prmter or a CRT display. For this reason, it may not be
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available on the less expensive systems. An alternative type of rep-

resentation is then used, and in this case hexadecimal is the domi-
nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

(The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter-

nally. We will now examine the actual microprocessor which will

manipulate this information.

Additionai Exercises

Exercise 1.28: What is the advantage of two's complement over
other representations used to represent signed numbers?

Exercise 1.29: How would you represent "1024" in direct binary?

Signed binary? Two's complement?

Exercise 1.30: What is the V-bit? Should the programmer test it

after an addition or subtraction?

Exercise LSI: Compute the two's complement of ""-^16", "+i7",
•'+28'\ "-16", "~~17'\ "-iS",

Exercise 1.32: Show the hexadecimal representation of the follow-

ing text, which has been stored internally in ASCII format, with

no parity: = "MESSAGE",
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Z80 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary to

understand in detail the internal structure of the processor that one is

using. However, in order to do efficient programming, such an

understanding is required. The purpose of this chapter is to present the

basic hardware concepts necessary for understanding the operation of

the Z80 system. The complete microcomputer system includes not only

the microprocessor unit (here the Z80), but also other components.

This chapter presents the Z80 proper, while the other devices (mainly

mput/output) will be presented in a separate chapter (Chapter 7).

We wilt review here the basic architecture of the microcomputer

system, then study more closely the internal organization of the Z80.

We will examine, in particular, the various registers. We will then study

the program execution and sequencing mechanism. From a hardware

standpoint, this chapter is only a simplified presentation. The reader in-

terested in gaming detailed understanding is referred to our book ref.

C20! ("Microprocessors," by the same author).

The Z80 was designed as a replacement for the Intel 8080, and to of-

fer additional capabilities. A number of references will be made in this

chapter to the 8080 design.

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure 2.1.

The microprocessor unit (MPU), which will be a Z80 here, appears on

the left of the illustration. It implements the functions of a central-

processing unil (CPU) withm one chip: it includes an arithmelic-logical

unit (ALU), plus its internal registers, and a control unit (CU), in
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charge of sequencing the system. Its operation will be explained m this
chapter.

2B0

RST

K2
ROM RAM P(0

=0

Fig. 2.1: Standard 280 System

The MPU creates three buses: an 8-bit bidirectional dala bus, which
appears at the top of the illustration, a 16-bit unidirectional address
bus, and a control bus, which appears at the bottom of the illustration.
Let us describe the function of each of the buses.

The data bus carries the data being exchanged by the various ele-

ments of the system. Typically, it will carry data from the memory to
the MPU or from the MPU to the memory or from the MPU to an in-
put/output chip. (An input/output chip is a component m charge of
communicating with an external device.)

The address bus carries an address generated by the MPU, which will
select one internal register within one of the chips attached to the
system. This address specifies the source, or the destination, of the data
which will transit along the data bus.

The control bus carries the various synchronization signals required
by the system.

Having described the purpose of buses, let us now connect the addi-
tional components required for a complete system.
Every MPU requires a precise timing reference, which is supplied by

a clock and a crystal. In most "older" microprocessors, the clock-oscil-
lator IS external to the MPU and requires an extra chip. In most recent
microprocessors, the clock-osciilator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always exter-
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nal to the system. The crystal and the clock appear on the left of the

MPU box in Figure 2.1.

Let us now turn our attention to the other elements of the system.

Going from left to right on the illustration, we distinguish:

The ROM is the read-only memory and contains the program for the

system. The advantage of the ROM memory is that its contents are per-

manent and do not disappear whenever the system is turned off. The

ROM, therefore, always contains a bootstrap or a monitor program

(their function will be explained later) to permit initial system opera-

tion. In a process-control environment, nearly all the programs will

reside in ROM, as they will probably never be changed. In such a case,

the industrial user has to protect the system against power failures; pro-

grams must not be volatile. They must be in ROM.
However, in a hobbyist environment, or in a program-development

environment (when the programmer tests his program), most of the

programs will reside in RAM so that they can be easily changed. Later,

they may remain in RAM, or be transferred into ROM, if desired.

RAM, however, is volatile. Its contents are lost when power is turned

off.

TheRAM (random-access memory) is the read/write memory for the

system. In the case of a control system, the amount of RAM will

typically be small (for data only). On the other hand, in a program-

development environment, the amount of RAM will be large, as it will

contain programs plus development software. All RAM contents must

be loaded prior to use from an external device.

Finally the system will contain one or more interface chips so that it

may communicate with the external world. The most frequently used

interface chip is the PIO or parallel tnput/output chip. It is the one

shown on the illustration. This PIO, like all other chips in the system,

connects to ail three buses and provides at least two 8-bit ports for

communication with the outside world. For more details on how an ac-

tual PIO works, refer to book C201 or, for specifics of the Z80 system,

refer to Chapter 7 (Input/Output Devices).

Ail the chips are connected to all three buses, including the control

bus.

The functional modules which have been described need not

necessarily reside on a single LSI chip. In fact, we could use combina-

tion chips, which may include both PIO and a limited amount of ROM
or RAM.

Still more components will be required to build a real system. In par-
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ticular, the buses usually need to be buffered. Also, decoding logic may
be used for the memory RAM chips, and, finally, some signals may
need to be amplified by drivers. These auxiliary circuits will not be
described here as they are not relevant to programming. The reader m-
terested in specific assembly and mterfacing techniques Is referred to

book C207 "Microprocessor Interfacing Techniques."

INSIDE A MICROPROCESSOR

The large majority of all microprocessor chips on the market today
implement the same architecture. This "standard" architecture will be
described here. It is shown in Figure 2.2. The modules of this standard
microprocessor will now be detailed, from right to left.

SP PC

H L

EXTERNAL DATA BUS

INTERNAL BUS^ (8 B!TS)

EXTiRNAl
ADDRESS 8US

(16 BITS)

Fig. 2.2: "Standard" Microprocessor Architeclure

The corurol box on the right represents the control unit which syn-
chronizes the entire system, its role will be clarified within the re-

mainder of this chapter.
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The ALU performs arithmetic and logic operations. A special

register equips one of the inputs of the ALU, the left mput here. It is

called the accumulator. (Several accumulators may be provided.) The

accumulator may be referenced both as input and output (source and

destination) within the same instruction.

The ALU must also provide shift and rotate facilities.

A shift operation consists of moving the contents of a byte by one or

more positions to the left or to the right. This is illustrated in Figure

2.3. Each bit has been moved to the left by one position. The details of

shifts and rotations will be presented in the next chapter.

SHiFTLEFT

^ r -\ r \ r \ r

CARRYa
ROTATE LEFT

r^ r\ r\ r\ r% r^
CARRY

Note: Some Shift and Rotate instructions do not include the Carry.

Fig. 2.3: Shift and Rotate

The shifter may be on the ALU output, as illustrated in Figure 2.2, or

may be on the accumulator input.

To the left of the ALU, the jflags or status register appear. Their role

is to store exceptional conditions within the microprocessor. The con-

tents of the flags register may be tested by specialized instructions, or

may be read on the internal data bus. A conditional instruction will

cause the execution of a new program, depending on the value of one of

these bits.

The role of the status bits in the Z80 will be examined later in this

chapter.
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Setting Flags

Most of the instructions executed by the processor will modify some
or all of the flags. It is important to always refer to the chart provided
by the manufacturer listing which bits will be modified by the instruc-

tions. This is essential in understanding the way a program is being ex-
ecuted. Such a chart for the Z80 is shown m Figure 4-17.

The Registers

Let us look now at Figure 2.2. On the left of the illustration, the reg-
isters of the microprocessor appear. Conceptually, one can distinguish
the general purpose registers and the address registers.

The General-Purpose Registers

General-purpose registers must be provided m order for the ALU to
manipulate data at high speed. Because of restrictions on the number of
bits which it is reasonable to provide within an instruction, the number
of (directly addressable) registers is usually limited to fewer than eight.
Each of these registers is a set of eight flip-flops, connected to the
bidirectional internal data bus. These eight bits can be transferred
simultaneously to or from the data bus. The implementation of these
registers in MOS flip-nops provides the fastest level of memory
available, and their contents can be accessed within tens of
nanoseconds.

Internal registers are usually labelled from to n. The role of these
registers is not defined in advance: they are said to be "general
purpose." They may contain any data used by the program.
These general-purpose registers will normally be used to store eight-

bit data. On some microprocessors, facilities exist to manipulate two of
these registers at a time. They are then called "register pairs." This ar-
rangement facilitates the storage of 16-bit quantities, whether data or
addresses.

The Address Registers

Address registers are 16-bit registers intended for the storage of ad-
dresses..They are also often called data counters or pointers. They are
double registers, i.e.. two eight-bit registers. Their essential

characteristic is to be connected to the address bus. The address
registers create the address bus. The address bus appears on the left and
the bottom part of the illustration in Figure 2.4.
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The oniy way to load the contents of these 16-bit registers is via the

data bus. Two transfers will be necessary along the data bus m order to

transfer 16 bits. In order to differentiate between the lower half and the

higher half of each register, they are usually labelled as L (low) or H
(high), denoting bits through 7, and 8 through 15 respectively. This

label is used whenever it is necessary to differentiate the halves of these

registers. At least two address registers are present withm most

microprocessors. "MUX" in Fig. 2.4 stands for multiplexer.

ADDRESS BUS {16}

>

Fig. 2.4: The 16-bit Address Registers Create the Address Bus

Program Counter (PC)

The program counter must be present in any processor. It contams

the address of the next instruction to be executed. The presence of the

program counter is mdispensable and fundamental to program execu-

tion. The mechanism of program execution and the automatic sequenc-

ing implemented with the program counter will be described in the next

section. Briefly, execution of a program is normally sequential. In

order to access the next instruction, it is necessary to bring it from the

memory into the microprocessor. The contents of the PC will be

deposited on the address bus, and transmitted towards the memory.

The memory will then read the contents specified by this address and

send back the corresponding word to the MPU. This is the instruction.
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In a few exceptional microprocessors, such as the two-chip F8, there is

no PC on the microprocessor. This does not mean that the system does
not have a program counter. The PC happens to be implemented direct-

ly on the memory chip, for reasons of efficiency.

Stack Pointer (SP)

The stack has not been introduced yet and will be described in the
next section. In most powerful, general-purpose microprocessors, the
stack is implemented in "software," i.e., within the memory. In order
to keep track of the top of this stack within the memory, a 16-bit
register is dedicated to the stack pointer or SP. The SP contains the ad-
dress of the top of the stack within the memory. It will be shown that
the stack is indispensable for interrupts and for subroutines.

Index Register (IX)

Indexing is a memory-addressing facility which is not always pro-
vided in microprocessors. The various memory-addressing techniques
will be described in Chapter 5. Indexing is a facility for accessing blocks
of data m the memory with a single instruction. An index register will
typically contam a displacement which will be automatically added to a
base (or it might contain a base which would be added to a displace-
ment). In short, indexing is used to access any word withm a block of
data.

The Stack

A stack is formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this data
structure. The essential characteristic of this structure is that it is a
chronological structure. The first element introduced into the stack is

always at the bottom of the stack. The element most recently deposited
in the stack is on the top of the stack. The analogy can be drawn with a
stack of plates on a restaurant counter. There is a hole in the counter
with a spring in the bottom. Plates are piled up in the hole. With this
organization, it is guaranteed that the plate which has been put first in
the stack (the oldest) is always at the bottom. The one that has been
placed most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In normal
use,^a stack is only accessible via two instructions: "push" and "pop"
(or "pull"). The push operation results in depositing one element on
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top of the stack (two m the case of the Z80). The pull operation consists

of removing one element from the stack. In the case of a

microprocessor, it is the accumulator that will be deposited on top of

the stack. The pop will result m a transfer of the top element of the

stack into the accumulator. Other specialized instructions may exist to

transfer the top of the stack between other specialized registers, such as

the status register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three program-

ming facihties within the computer system: subroutines, interrupts, and

temporary data storage. The role of the stack during subroutines will be

explained in Chapter 3 (Basic Programming Techniques). The role of

the stack during interrupts will be explained m Chapter 6 (Input/Out-

put Techniques). Finally, the role of the stack m saving data at high

speed will be explained during specific application programs.

We will simply assume at this point that the stack is a required facility

m every computer system. A stack may be implemented in two ways:

1. A fixed number of registers may be provided within the micro-

processor itself. This is a "hardware stack." It has the advantage of

high speed. However, it has the disadvantage of a limited number of

registers.

2. Most general-purpose microprocessors choose another approach,

the software stack, m order not to restrict the stack to a very small

number of registers. This is the approach chosen m the Z80. In the soft-

ware approach, a dedicated register within the microprocessor, here

register SP, stores the stack pointer, i.e., the address of the top element

of the stack (or, sometimes, the address of the top element of the stack

plus one). The stack is then implemented as an area of memory. The

stack pointer will therefore require 16 bits to point anywhere in the

memory.

MICROPROCESSOR

REGISTER

7 MEMORY
r

i ^ 1
DATA

[ PUSH

i 15
i

'5
[ ADDRESS POP.

STACK

BASE

Fig. 2.5: The Two-Stack Manipulation Instructions
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The Instruction Execution Cycle

Let us refer now to Figure 2.6. The microprocessor unit appears on
the left, and the memory appears on the right. The memory chip may be
a ROM or a RAM, or any other chip which happens to contain
memory. The memory is used to store instructions and data. Here, we
will fetch one mstruction from the memory to illustrate the role of the
program counter. We assume that the program counter has vaUd con-
tents. It now holds a 16-bit address which is the address of the next in-

struction to fetch m the memory. Every processor proceeds in three
cycles:

1—fetch the next mstruction

2—decode the instruction

3—execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of the
program counter are deposited on the address bus and gated to the
nemory (on the address bus). Simultaneously, a read signal may be
issued on the control bus of the system, if required. The memory will

receive the address. This address is used to specify one location within
the memory. Upon receiving the read signal, the memory will decode
the address it has received, through internal decoders, and will select

the location specified by the address. A few hundred nanoseconds later,

the memory will deposit the eight-bit data corresponding to the
specified address on its data bus. This eight-bit word is the instruction

that we want to fetch. In our illustration, this instruction will be
deposited the data bus on top of the MPU box.

Let us briefly summarize the sequencing; the contents of the program
counter are output on the address bus. A read signal is generated. The
memory cycles, and perhaps 300 nanoseconds later, the instruction at

the specified address is deposited on the data bus (assuming a single

byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR register.

The IR is the mstruction register: it is eight-bits wide and is used to con-

tain the instruction just fetched from the memory. The fetch cycle is

now completed. The 8 bits of the instruction are now physically in the

special internal register of the MPU, the IR register. The IR appears on
the left of Figure 2.7. it is not accessible to the programmer.
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MPU ROM/RAW

Fig. 2.6: Fetching an Instruction from the Memory

Decoding and Execution

Once the instruction is contained in IR, the control unit of the

microprocessor will decode the contents and wilt be able to generate the

correct sequence of internal and external signals for the execution of the

specified instruction. There is, therefore, a short decoding delay fol-

lowed by an execution phase, the length of which depends on the nature

of the instruction specified. Some instructions will execute entirely

within the MPU. Other instructions will fetch or deposit data from or

into the memory. This is why the various instructions of the MPU re-

quire various lengths of time to execute. This duration is expressed as a

number of (clock) cycles. Refer to Chapter 4 for the number of

Fig. 2.7: Automatic Sequencing
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cycles required by each instruction. Since various clock rates may be
used, speed of execution is normally expressed in number of cycles
rather than in number of nanoseconds.

EXTERNAL

BUS

Rl

REGISTERS

RESULT (DESTINATION) BUS

Fig, 2.8: Single-Bus ArchUecture

Fetching the Next Instruction

We have described how, using the program counter, an mstruction
can be fetched from the memory. During the execution of a program,
instructions are fetched in sequence from the memory. An automatic
mechanism must therefore be provided to fetch mstructions in se-

quence. This task is performed by a simple incrementer attached to the
program counter. This is illustrated m Figure 2.7. Every time that the
contents of the program counter (at the bottom of the illustration) are
placed on the address bus, its contents will be incremented and written
back into the program counter. As an example, if the program counter
contained the value "0", the value "0" would be output on the address
bus. Then the contents of the program counter would be incremented
and the value "1" would be written back into the program counter. In

this way, the next time that the program counter is used, it is the in-

struction at address 1 that will be fetched. We have just implemented an
autoinalic mechanism for sequencmg instructions.

It must be stressed that the above descriptions are simplified. In reali-

ty, some mstructions may be two- or even three-bytes long, so that suc-

cessive bytes will be fetched in this manner from the memory. However,
the mechanism is identical. The program counter is used to fetch
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successive bytes of an instruction as well as to fetch successive instruc-

tions themselves. The program counter, together with its incrementer,

provides an automatic mechanism for pointmg to successive memory

locations.

INTERNAL DATA BUS

RKISTERS
I

—

;

Fig. 2.9: Execution of an Addition—RO into ACC

V

Fig. 2.10: Addition—Second Register Rl into ALU
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We will now execute an instruction within the MPU (see Figure 2.8).

A typical instruction will be. for example: RO = RO + R 1 . This means:
"ADD the contents of ROand RI, and store the results m RO." To per-

form this operation, the contents of RO will be read from register RO,

earned via the single bus to the left input of the ALU, and stored in the

buffer register there. Rl will then be selected and its contents will be

read onto the bus, then transferred to the right input of the ALU. This
sequence is illustrated in Figures 2.9 and 2.10. At this point,

the right input of the ALU is conditioned by RI, and the left

input of the ALU is conditioned by the buffer register, containing the

previous value of RO. The operation can be performed. The addition is

performed by the ALU, and the results appear on the ALU output, in

the lower right-hand corner of Fig. 2.1 1. The results will be deposited

on the single bus, and will be propagated back to RO. This means, in

practice, that the input iatch of RO will be enabled, so that data can be
written into it. Execution of the mstruclion is now complete. The
results of the addition are m RO. It should be noted that the contents of
RI have not Iseen modified by this operation. This is a general prin-

ciple: the contents of a register, or of any read/wnte memory, are not

modified by a read operation.

The buffer register on the left input of the ALU was necessary in

order to memorize the contents of RO, so that the single bus could be

used again for another transfer. However, a problem remains.

Fig. 2.11: Result Is Generated and Goes into RO
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The Critical Race Problem

The simple organization shown in Figure 2.8 will not function cor-

rectly.

Question: What is the timingproblem?

Answer: The problem is that the result which will be propagated out

of the ALU will be deposited back on the smgle bus. It will not pro-

pagate just in the direction of RO, but along all of the bus. In particular,

it will recondition the right mput of the ALU, changing the result coming

out of it a few nanoseconds later. This is a critical race. The output of

the ALU must be isolated from its input (see Figure 2.12).

Several solutions are possible which will isolate the input of the ALU
from the output. A buffer register must be used. The buffer register

could be placed on the output of the ALU, or on its mput. It is usually

placed on the input of the ALU. Here it would be placed on its right in-

put. The buffering of the system is now sufficient for a correct opera-

tion. It will be shown later in this chapter that if the left register which

appears in this illustration is to be used as an accumulator (permitting

the use of one-byte long instructions), then the accumulator will require

a buffer too, as shown m Figure 2.13.

Fig. 2.12: The Critical Race Problem
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Fig. 2.13: Two Buffers Are Required (Temp Registers)

INTERNAL ORGANIZATION OF THE Z80

The terms necessary in order to understand the internal elements of

the microprocessor have been defined. We will now examine in more

detail the Z80 itself, and describe its capabilities. The internal organiza-

tion of the Z80 is shown in Figure 2.14. This diagram presents a logical

description of the device. Additional interconnections may exist but are

not shown. Let us examine the diagram from right to left.

On the right part of the Illustration, the arithmetic-logical unit (the

ALU) may be recognized by its characteristic "V" shape. The accumu-

lator register, which has been described in the previous section, is iden-

tified as A on the right input path of the ALU. It has been shown in the

previous section that the accumulator should be equipped with a buffer

register. This is the register labeled ACT (temporary accumulator).

Here, the left input of the ALU is also equipped with a temporary

register, called TMP. The operation of the ALU will become clear in the

next section, where we will describe the execution of actual instructions.

Theflags register is.called"¥" in the ZBO.and is shown on the right of the

accumulator register. The contents of the flags register are essentially

conditioned by the ALU, but it will be shown that some of its bits may
also be conditioned by other modules or events.

The accumulator and the flags registers are shown as double registers

labelled respectively A, A' and F, F\ This is because the Z80 is
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equipped internally wUh two sets of registers: A + F, and A' + F'-

However, only one set of these registers may be used at any one time. A
special instruction is provided to exchange the contents of A and F with

A' and F', in order to simplify the explanations, only A and F will be

shown on most of the diagrams which follow. The reader should

remember that he has the option of switching to the alternate register

set A' and F' if desired.

The role of each flag in the flags register will be described m Chapter

3 (Basic Programming Techniques).

A large block of registers is shown at the center of the illustration. On
top of the block of registers, two identical groups can be recognized.

Each one includes six registers labeled B, C, D, E, H, L. These are the

general-purpose eight-bit registers of the Z80. There are two peculiari-

ties of the Z80 with respect to the standard microprocessor which has

been described at the beginning of this chapter.

First, the Z80 is equipped with two banks of registers, i.e., two iden-

tical groups of 6 registers. Only six registers may be used at any one
time. However, special mstructions are provided to switch between the

two banks of registers. One bank, therefore, behaves as an internal

memory, while the other one behaves as a working set of internal

registers. The possible uses of this special facility will be described in

the next chapter.

Conceptually, it will be assumed, for the time being, that there are

only six working registers, B, C, D, E, H, and L, and the second
register bank will temporarily be ignored, m order to avoid confusion.

The MUX symbol which appears above the memory bank is an ab-
breviation for multiplexer. The data coming from the internal data bus
will be gated through the multiplexer to the selected register. However,
only one of these registers can be connected to the internal data bus at

any one time.

A second characteristic of these six registers, m addition to being
general-purpose eight-bit registers, is that they are equipped with a con-
nection to the address bus. This is why they have been grouped in

pairs. For example, the contents of B and C can be gated simultaneous-
ly onto the 1 6-bit address bus which appears at the bottom of the illustra-

tion. As a result, this group of 6 registers may be used to store either

eight-bit data or else 16-bit pointers for memory addressing.

The third group of registers, which appears below the two previous
ones m the middle of Figure 2.14, contains four "pure" address
registers. As m any microprocessor, we find the program counter (PC)
and the stack pointer (SP). Recall that the program counter contains
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the address of the next instruction to be executed.

The stack pointer points to the top of the stack in the memory. In the

case of the Z80, the stack pointer points to the last actual entry m the

stack. (In other microprocessors, the stack pointer pomts just above the

last entry.) Also, the stack grows "downwards, "i.e. towards the lower

addresses.

This means that the stack pomter must be decremented any time a

new word is pushed on the stack. Conversely, whenever a word is

removed (popped) from the stack, the stack pomter must be m-

cremented by one. In the case of the Z80, the "push" and "pop"

always involve two words at the same time, so that the contents of the

stack pomter will be decremented or mcremented by two.

Lookmg at the remaining two registers of this group of four registers,

we find a new type of register which has not been described yet: two

index-registers, labeled iX (Index Register X) and lY (Index Register

Y). These two registers are equipped with a special adder shown as a

miniature V-shaped ALU on the right of these registers in Figure 2.14.

A byte brought along the internal data bus may be added to the con-

tents of IX or lY. This byte is called the displacement, when using an in-

dexed instruction. Special instructions are provided which will

automatically add this displacement to the contents of IX or lY and

generate an address. This is called indexing. It allows convenient access

to any sequential block of data. This important facility will be des-

cribed in Chapter 5 on addressing techniques.

Finally, a special box labeled " ± i " appears below and to the left of the

block of registers. This is an increment/decrement. The contents of any

of the register pairs SP, PC, BC, DE, HL (the "pure address" registers)

may be automatically incremented or decremented every time they depos-

it an address on the internal address bus. This is an essential facility for

implementing automated program loops which will be described in the

next section. Using this feature it will be possible to access successive

memory locations conveniently.

Let us move now to the left of the illustration. One register pair is

shown, isolated on the left: i and R. The ! register is called the interrupl-

page address register. Its role will be described in the section on inter-

rupts of Chapter 6 (Input/Output Techniques). It is used only m a

special mode where an indirect call to a memory location is generated in

response to an interrupt. The I register is used to store the high-order

part of the indirect address. The lower part of the address is supplied by

the device which generated the interrupt.
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The R register is the memory-refresh register. It is provided to refresh

dynamic memories automatically. Such a register has traditionally been

located outside the microprocessor, since it is associated with the

dynamic memory. It is a convenient feature which minimizes the

amount of external hardware for some types of dynamic memories. It will

not be used here for any programming purposes, as it is essentially a

hardware feature (see reference C207 "Microprocessor Interfacing

Techniques" for a detailed description of memory refresh techniques).

However, it is possible to use it as a software clock, for example.

Let us move now to the far left of the illustration. There the control

section of the microprocessor is located. From top to bottom, we find

first the instruclion register IR, which will contain the instruction to be

executed. The IR register is totally distinct from the "I, R" register pair

described above. The instruction is received from the memory via the

data bus, is transmitted along the internal data bus and is finally

deposited into the instruction register. Below the instruction register ap-

pears the decoder which will send signals to the controller-sequencer

and cause the execution of the instruction within the microprocessor

and outside it. The control section generates and manages the control

bus which appears at the bottom part of the illustration.

The three buses managed or generated by the system, i.e., the data

bus, the address bus, and the control bus, propagate outside the

microprocessor through its pins. The external connections are shown
on the right-most part of the illustration. The buses are isolated from
the outside through buffers shown in Figure 2. 14.

All the logical elements of the Z80 have now been described, it is not
essential to understand the detailed operation of the Z80 in order to

start writing programs. However, for the programmer who wishes to

write efficient codes, the speed of a program and its size will depend
upon the correct choice of registers as well as the correct choice of
techniques. To make a correct choice, it is necessary to understand how
instructions are executed within the microprocessor. We will therefore
examine here the execution of typical instructions inside the Z80 to

demonstrate the role and use of the internal registers and buses.
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INSTRUCTION FORMATS

The Z80 instructions are listed in Chapter 4. Z80 instructions may
be formated in one, two, three or four bytes. An instruction specifies

the operation to be performed by the microprocessor. From a

simplified standpoint, every instruction may be represented as an op-

code followed by an optionaJ Hteral or address field, comprising one or

two words. The opcode field specifies the operation to be carried out.

In strict computer terminology, the opcode represents only those bits

which specify the operation to be performed, exclusive of the register

pointers that might be necessary. In the microprocessor world, it is con-

venient to call opcode the operation code itself, as well as any register

pointers which it might incorporate. This "generalized opcode" must
reside in an eight-bit word for efficiency (this is the limiting factor on
the number of instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, three, bytes long

(see Figure 2.15). However, theZSO is equipped with additional indexed

instructions, which require one more byte. In the case of the Z80, op-

codes are, in general, one byte long, except for special instructions

which require a two-byte opcode.

Some instructions require that one byte of data follow the opcode. In

such a case, the instruction will be a two-byte mstruction, the second

byte of which is data (except for indexing, which adds an extra byte).

In other cases, the instruction might require the specification of an

address. An address requires 16 bits and, therefore, two bytes. In that

case, the instruction will be a three-byte or a four-byte mstruction.

For each byte of the instruction, the control unit will have to perform

a memory fetch, which will require four clock cycles. The shorter the

instruction, the faster the execution.

A One-Word Instruction

One-word instructions are, m principle, fastest and are favored by
the programmer. A typical such instruction for the Z80 is:

LD r, r'

This instruction means: "Transfer the contents of register r' into r."

This IS a typical "register-to-register" operation. Every microprocessor
must be equipped with such instructions, which allow the programmer
to transfer information from any of the machine's registers into

another one. Instructions referencing special registers of the machine,
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2-WORD

UlSTR"

GENERALIZED OPCODE
1-mm
IfiSTR"

OPTIONAL DATA OR

ADDRESS

OPTIONAL ADDRESS

3 -WORD

IKSTR*^

Fig. 2.15 Typical Instruction Formats

such as the accumulator or other special-purpose registers, may have a

special opcode.

After execution of the above instruction, the contents of r will be

equal to the contents of r'. The contents of r' will no( have been

modified by the read operation.

Every mstruction must be represented internally in a binary format.

The above representation "LD r,r' " is symbolic or mnemonic. It is

called the assembly-language representation of an instruction. It is

simply meant as a convenient symbolic representation of the actual

bmary encoding for that instruction. The binary code which will repre-

sent this instruction inside the memory is: I D D D S S S (bits to 7).

This representation is still partially symbolic. Each of the letters S

and D stands for a binary bit. The three D's, "D D D", represent the

three bits pointing to the destination register. Three bits allow selection

of one out of eight possible registers. The codes for these registers ap-

pear in Figure 2.16. For example, the code for register B is "0 0", the

code for register C is "0 I", and so on.

Similarly, "S S S" represents the three bits pointing to the source

register. The convention here is that register r' is the source, and that

register r is the destination. The placement of the bits in the binary

representation of an instruction is not meant for the convenience of the

programmer, but for the convenience of the control section of the

microprocessor, which must decode and execute the instruction. The

assembly-language representation, however, is meant for the conve-

nience of the programmer. It could be argued that LD r.r* should really

mean: "Transfer contents of r into r\" However, the convention has
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been chosen in order to maintain compatibility with the binary
representation m this case. It is naturally arbitrary.

Exercise 2,1: Write below tiie binary code w/iich will transfer the con-
tents of register C into register B. Consult Fig. 2.16 for the codes cor-
responding to C and B.

Another simple example of a one-word mstruction is:

ADD A, r

This instruction will result m adding the contents of a specified
register (r) to the accumulator (A). Symbolically, this operation may be
represented by: A = A + r. It can be verified m Chapter 4 that the

binary representation of this instruction is:

1 S S S

where S S S specifies the register to be added to the accumulator. Again,
the register codes appear in Figure 2.16.

Exercise 2,2: What is the binary code of the instruction which will add
the contents of register D to the accumulator?

CODE REGISTER

B

i C

i D

1 I E

1 H

J 1 I

1 i - (MEMORY)

III A

Fig. 2.16: The Register Codes

A Two-Word Instrucfion

ADD A. n

This simple two-word instruction will add the contents of the second
byte of the instruction to the accumulator. The contents of the second
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word of the instruction are said to be a "literal." They are data and are

treated as eight bits without any particular significance. They could

happen to be a character or numerical data. This is irrelevant to the

operation. The code for this instruction is:

1 i 1 i followed by the 8-bit byte "n"

This IS an immediate operation. "Immediate," in most programming
languages, means that the next word, or words, within the instruction

contains a piece of data which should not be interpreted (the way an op-
code is). It means that the next one or two words are to be treated as a

literal.

The control unit is programmed to "know" how many words each

instruction has. It will, therefore, always fetch and execute the right

number of words for each instruction. However, the longer the possible

number of words for the instruction, the more complex it is for the con-

trol unit to decode.

A Three-Word Instruction

LD A, (nn)

The instruction requires three words. It means: "Load the ac-

cumulator from the memory address specified m the next two bytes of
the instruction." Since addresses are 16-bits long, they require two
words. In binary, this instruction is represented by:

1 1 i 1 0:

Low address:

High address:

8 bits for the opcode

8 bits for the lower part of the address

8 bits for the upper part of the address

EXECUTION OF INSTRUCTIONS WITHIN THE Z80

We have seen that all instructions are executed in three phases;

FETCH, DECODE, EXECUTE. We now need to introduce some
definitions. Each of these phases will require several clock cycles. The
Z80 executes each phase in one or more logical cycles, called a

"machine cycle." The shortest machine cycle lasts three clock cycles.

Accessing the memory requires three cycles for any operands, four

clock cycles for the initial fetch. Since each instruction must be fetched

first from the memory, the fastest instruction will require four clock

cycles. Most instructions will require more.

Each machine cycle is labeled as MI. M2, etc., and will require three

or more clock cycles, or "states." labeled Tl, T2, etc.
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The FETCH Phase

The FETCH phase of an instruction is implemented during the first

three states of machine cycle Ml; they are called TI, T2, and T3. These

three states are common to all instructions of the microprocessor, as all

instructions must be fetched prior to execution. The FETCH
mechanism is the following:

T! : PC OUT

The first step is to present the address of the next instruction to the

memory. This address is contained m the program counter (PC). As the -

first step of any instruction fetch, the contents of the PC are placed on

the address bus (see Figure 2,17). At this point, an address is presented

to the memory, and the memory address decoders will decode this ad-

dress in order to select the appropriate location within the memory.
Several hundred ns (a nanosecond is 10'' second) will elapse before the

contents of the selected memory location become available on the out-

IHST . REG .

DECODER

COHTROLLER

SEOUEHCER

!
rm

ini
TV

SATA BUS

^y/wyy/y/yy/^^^^^^ ^address bus

TO HEHORY

5
COKTROL

SIGKALS

Fig. 2.17: Instruction Fetch—(PC) Is Sent to the Memory
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put pins of the memory, which are connected to the data bus. It is standard

computer design to use the memory read time to perform an operation

withm the microprocessor. This operation is the incrementation of the

program counter:

T2 : PC = PC + 1

While the memory is reading, the contents of the PC are mcremented

by i (see Figure 2.18). At the end of state T2, the contents of the

memory are available and can be transferred withm the micro-

processor:

T3 : INST mto IR

Fig 2.18: PC Is Incremented

The DECODE and EXECUTE Phases

During state T3, the instruction which has been read out of the

memory is deposited on the data bus and transferred into the instruc-

tion register of the Z80, from which point it is decoded.
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r^zn

CONISOLLEa

SEOUEHCEfi

H

D i

D

SP

FUGS

m
FROM

ADBRESS BUS

Fig. 2.19: The Instruction Arrives from the Memory into IR

It should be noted that state T4 of MI will always be required. Once
the instruction has been deposited into IR during T3, it is necessary to

decode and execute it. This will require at least one machine state, T4.
A few instructions require an extra state of Ml (state T5). It will be

skipped by the processor for most instructions. Whenever the execution
of an instruction requires more than M 1 , i.e. , M 1 . M2 or more cycles,

the transition will be directly from state T4 of MI into state TI of M2.
Let us examine an example. The detailed internal sequencing for each

example is shown m the tables of Figure 2.27. As these tables have not been
released for the Z80, the 8080 tables are used Instead. They provide an in-

depth understanding of instruction execution.

LDD,C

This corresponds to MOV rl, r2 for the 8080. Refer to line 1 of Fig. 2.27.

By coincidence, the destination register in this example happens to be
named "D", The transfer is illustrated in Figure 2.20.

This instruction has been described in the previous section. It

transfers the contents of register C, denoted by "C", into register D.
The first three states of cycle Ml are used to fetch the instruction

from the memory. At the end of T3, the instruction is in IR, the In-
struction Register, from which point it can be decoded (see Figure 2. 19),

During T4: (S S S) > TMP-

The contents of C are deposited into TMP (See Figure 2.21).
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During T5: (TMP) DDD.

The contents of TMP are deposited into D. This is shown in Figure 2.22.

D C

QOGiOOOi
i

IQQOIOOQ
BEFORE—

'

c

1 iOOOIOOO iOflOIOOO
AFTER

Fig. 2.M: Transferring C into D

Fig. 2.21: The Contents of C Are Deposited into TMP
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Fig. 2.22: The Contents of TMP are Deposited into D

Execution of the instruction is now complete. The contents of

register C have been transferred into the specified destination register

D. This terminates execution of the instruction. The other machine

cycles M2, M3, M4, and M5 will not be necessary and execution slops

with Ml.

It is possible to compute the duration of this instruction easily. The

duration of every state for the standard Z80 is the duration of the clock:

500 ns. The duration of this mstruction is the duration of five states, or

5 X 500 = 2500 ns = 2.5 us. With a 400 ns clock. 5 x 400 = 2000 ns

= 2.0 us.

Question: Why does this mstruction require two states, T4 and T5,

in order to transfer the contents C into D, rather than just one? It

transfers the contents ofC into TMP. and then the contents of TMP in-

to D. Wouldn 'r it be simpler to transfer the contents of C into D direct-

ly within a single stale?

Answer: This is not possible because of the implementation chosen

for the internal registers. Ail the internal registers are, in fact, part of a

74



Z80 HARDWARE ORGANIZATION

single RAM, a read/write memory internal to the microprocessor chip.

Only one word may be addressed or selected at a time withm an RAM
(smgle-portj. For this reason, it is not possible to both read and write

mto, or from, an RAM at two different locations. Two RAM cycles are

required. It becomes necessary first to read the data out of the register

RAM. and store it in a temporary register, TMP, then, to write it back

into the final destination register, here D. This is a design inadequacy.

However, this limitation is common to virtually all monolithic

microprocessors. A dual-port RAM would be required to solve the

problem. This limitation is not mtrinsic to microprocessors and it normally

does not exist m the case of bit-slice devices. U is a result of the constant

search for logic density on the chip and may be eliminated in the future.

Important Exercise:

At this point, it is highly recommended that the user review by him-

self the sequencing of this simple instruction before we proceed to more

complex ones. For this purpose, go back to Figure 2.14. Assemble a few

small-sized "symbols" such as matches, paperclips, etc. Then move the

symbols on Figure 2.14 to simulate the flow of data from the registers

into the buses. For example, deposit a symbol into PC. Tl will move

the symbol contained in PC out on the address bus towards the

memory. Continue simulated execution in this fashion until you feel

comfortable with the transfers along the buses and between the

registers. At this point, you should be ready to proceed.

Progressively more complex instructions will now be studied:

ADD A, r

This instruction means: "Add the contents of register r (specified by

a binary code S S S) to the accumulator (A), and deposit the result in

the accumulator." This is an implicK instruction. It is called implicit as

it does not explicitly reference a second register. The instruction expli-

citly refers only to register r. It implies that the other register involved

in the operation is the accumulator. The accumulator, when used in

such an implicit instruction, is referenced both as source and destina-

tion. Data will be deposited in the accumulator as a result of this addi-

tion. The advantage of such an implicit instruction is that its complete

opcode is only eight bits m length. It requires only a three-bit register

field for the specification of r. This is a fast way to perform an addition

operation.

Other implicit instructions exist in the system which will reference
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other specialized registers. More complex examples of such implicit m-
structions are, for example, the PUSH and POP operations, which will

transfer information between the lop of the stack and the accumulator,

and will at the same time update the slack pointer (SP), decrementing it

or incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, r instruction will now be examined in

detail. This instruction will require two machme cycles, Ml and M2. As
usual, during the first three states of M 1 , the instruction is fetched from
the memory and deposited in the IR register. At the beginning of T4, it

is decoded and can be executed. It will be assumed here that register B is

added to the accumulator. The code for the instruction will then be:

I (the code for register B is 0). The 8080 equivalent is

ADD r.

T4: (S S S) TMP, (A) > ACT

KC03ES

CONTROLLER

SEQUENCER

I

C

D E

H L

SP

PC

m
y

E S DATA BUS

'ASDRESS BUS

Fig. 2.23: Two Transfers Occur Simultaneously

COHTROL

SIG'ISLS

Two transfers will be executed simultaneously. First, the contents of
the specified source register (here B) are transferred into TMP, i.e., to
the right input of the ALU (see Fig. 2.23). At the same time, the con-
tents of the accumulator are transferred to the temporary accumulator
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers
can occur in parallel. They use different paths within the system. The
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transfer from B to TMP uses the internal data bus. The transfer from
ACT uses a short internal path independent of this data bus. In order to

gain time, both transfers are done simultaneously. At this point, both

the left and the right input of the ALU are correctly conditioned. The
left input of the ALU is now conditioned by the accumulator contents,

and the right input of the ALU is conditioned by the contents of register

B. We are ready to perform the addition. We would normally expect to

see the addition take place during state T5 ofM I . However, this state is

simply not used. The addition is not performed! We will enter machine

cycle M2. During state Tl, nothing happens! It is only in state T2 of M2
that the addition takes place (refer to ADD r m Figure 2.27):

T2 of M2: (ACT) + (TMP) > A

The contents of ACT are added to the contents of TMP, and the

result is finally deposited in the accumulator. See Figure 2.24. The
operation is now complete.

Fig. 2.24: End of ADD r

Question: ^hy was the completion of the addition deferred until

state T2 ofmachine cycle M2, rather than taking place during state T5

ofMl? (This is a difficult question, which requires an understanding of

CPU design. However, the technique involved is fundamental to clock-

synchronous CPU design. Try to see what happens.)
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Answer: This is a standard design "trick" used in most CPU's. It is

called "fetch/execute overlap. " The basic idea is the following: looking

back at Figure 2.23 it can be seen that the actual execution of the addi-
tion will only require the use of the ALU and of the data bus. In parti-

cular, it will not access the register RAM (register block). We (or the

control unit) know that the next three states which will be executed after

completion of any instruction will be Tl, T2, T3 of machine cycle MI
of the next instruction. Looking back at the execution of these three
states, it can be seen that their execution will only require access to the

program counter (PC) and use of the address bus. Access to the pro-
gram counter will require access to the register RAM. (This explains
why the same trick could not be used in the instruction LD r.r'.j It is

therefore possible to use simultaneously the shaded area in Figure 2.17
and the shaded area in Figure 2.24.

The data bus is used during state T! of Ml to carry status informa-
tion out. It cannot be used for the addition that we wish to perform.
For that reason, it becomes necessary to wait until state T2 before the

addition can be effectively carried out. This is what occurred in the
chart: the addition is completed during state T2 of M2. The mechanism
has now been explained. The advantage of this approach should now be
clear. Let us assume that we had implemented a straightforward
scheme, and performed the addition during state T5 of machine cycle

I REAL

INSTRuaiON N: I

I I

^3
I

Til i
,

; Tl
,

T2 EHD

h. FETCH i-EXECUTE~H
I i

INSTRUaiON N + i: I !
Tl

I
T2

I
T5

j
Tij

fETCH T EXECUTE
-

1^ QVEfiUP I

Fig. 2.25: FETCH-EXECUTE Overlap during T1-T2

Ml. The duration of the ADD instruction would have been 5 x 500 =^

2500 ns. With the overlap approach which has been implemented, once
state T4 has been executed, the next instruction is initiated. In a manner
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that is invisible to this next instruction, the "clever" control unit will

use state T2 to carry out the end of the addition. On the chart T2 is

shown as part of M2. Conceptually, M2 will be the second machine cy-

cle of the addition. In fact, this M2 will be overlapped, i.e., be identical

to machine cycle Ml of the next instruction. For the programmer, the

delay introduced by ADD will be only four states, i.e., 4 X 500 = 2000

ns, instead of 2500 ns using the "straightforward" approach. The

speed improvement is 500 ns. or 20%!

The overlap technique is illustrated on Figure 2.25. It is used when-

ever possible to increase the apparent execution speed of the micropro-

cessor. Naturally, it it not possible to overlap in all cases. Required

buses or facilities must be available without conflict. The control unit

"knows" whether an overlap is possible.

NOTES;

1. The firn memory cydt {Mil iiaiwivi an iniHucttDn

(dch: Iht fifil (or oniy) byte, comainlng the op code, ii

lelchtd during ihii cycle,

2. if Ihe HEADY input fiom memorv iinol high during

T2 ot tsch mtmary cycif, Ihe promwr will (Met a wait

ilale (TWl unlil READY it umpled ai high.

X Slalei T4 and T5 are preienl, ai required, loi opera-

liom which are completely inTernal tn ihe CPU. The con-

tenti ol Ihe internal bus during T4 >nd T5 are availible at

the data bui; thii ii deitgned fo' icilina pur|x»ei only. An

"X" denotei that the iiate a pteHrii. but rt only uied lor

luch inlernai opeiaiiani ai milruction decoding,

4. Only regmer pain ip ' S (rejliteri B and CI nr rp - D
fregiileti D ar^ E] may he ipedfied,

5, Theie itilei ire ikipped,

G. MerDory read lub-cyclei; an Lnitruclion or data word

will be read.

7, Mertary write sub-cycle.

Q. The READY ligna! ii not required dufing iMe lecond

md ihiid lub-cydei (M2ind M31.ThE HOLD iignal it

accepted during M2 and M3, The SYNC iignal ii nol gene-

rated during MZ and M3, During Ihe eiecution of DAD.
M2 and M3 are lettusred lof an inltrnti leginet-pair jdd;

memofy ii no) rt'eitnctd.

9. The leiulti ol Ihsie arithmeiic. iogicai or tome in-

F?ruclion( are noi moved into the accumulator |A} until

itil« T!pI the next iniiruction cycle. That ii. A ii leaded

while ihe ntjit instruction Ii being fetched; thti overlapping

ol operationi ailowi lor tatter procettmg,

10. II the yalue ol Ihe lean HQnillcanl 4-bili ot Ihe aciiumu-

lator ii greater than 9 pr^ it the luiilitiy cjny bit ii let. G

ii added to the accumulator, il the value of the moit iigniti-

anl 4-bilI a( Iht accumulltot ii now greater than 9. or tl

the oriy bit il 6 il adtied to the man iignilicant

4-biti of the accumulator,

11. Thii tepreiinti the tint lub-cyde (the inilruclion

fetch! pf the not inittuclico cycle.

1 2. It the condition was met, the mnienti ol the regiiter

pair WZ are output on the addreii linei |Aq.ij| initeid ol

the cantcnii of the prDgram counter (PCI.

13, II the condition wai not mel. lub-cyclei M4 anil M5
are skipped; the processor instead proceed! immediately to

the initiuclion teich IMl 1 ol the ne«t initiuclion cycle,

!4. II the condilicn wai not met, lub-cyciei M2and M3
are Ikipped: the processor iniiead peomedi immedialeiy to

Iht rniituction (etch (Ml) ol the next instruciron cycl!.

15. Stack read sub-cvcle.

16. Stack write sub- cycle.

CONDITION CCC

NZ - not leto (Z 01 000

Z - tero IZ 11 001

tiC - no carry ICV 01 010

C - carry (CY-n Oil

PO - parity odd (P - DJ 100

PE - parity even (P = 11 101

P ~ Clui!S-OJ no
M - minus (S- 11 111

IB, I/O iub-cyi:le: the I/O port'i B-bil idect code ii dupli-

cated on addieii lines 0-7 lAj.?! and B-lSIAa.isi,

19, Output lub-cycle,

20, 1>ie processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a hold re-

queil II accepted, ihe CPU enteri the hpid rruide; alier the

hold mode n terminsied, the proceiior relurni id the halt

Hate. Alter > reset ii iccepied, the pcocciwr begmi execu-

tion al memory location f era. After an interrupt is accepted,

Ihe proceitor execute! the iniiiuction (oicid onto Ihe data

bui (uiuallv 1 leilari miituctioni.

SSS or ODD
1
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Fig. 2.26: Intel Abbreviations
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Fig. 2.27': Intel Instruction Formats (continued)
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Question: Would it be possible to go further using (his scheme, and

to also use state T3ofM2 if we have to execute a longer instruction ?

In order to clarify the internal sequencing mechanism, it is suggested

that you examine Figure 2.27, which shows the detailed instruction

execution for the 8080. The Z80 includes all 8080 instructions, and

more. The information presented in Figure 2.27 is not available for the

Z80. It is shown here for its educational value in understanding the in-

ternal operation of this microprocessor. The equivalence between Z80 and

8080 instructions is shown in Appendices F and G.

A more complex instruction will now be examined:

ADD A, (HL)

The opcode for this instruction is 100001 10. This instruction means

"add to the accumulator the contents of memory location (HL)." The

memory location is specified through a rather strange system. It is the

memory location whose address is contained in registers H and L. This

instruction assumes that these two special registers (HL) have been

loaded with contents prior to executing the instruction. The i 6-bit con-

tents of these registers will now specify the address in the memory
where data resides. This data will be added to the accumulator, and the

result will be left in the accumulator.

This instruction has a history. It has been supplied m order to pro-

vide compatibility between the early 8008, and its successor, the 8080.

The early 8008 was not equipped with a direct-memory addressing

capability! The procedure used to access the contents of the memory
was to load the two registers H and L, and then execute an instruction

referencing H and L. ADD A. (HL) is just such an instruction, it must

be stressed that the 8080 and the Z80 are not limited in the same way as

the 8008 in memory-addressing capability. They do have direct-memory
addressing. The facility for using the H and L registers becomes an

added advantage, not a drawback, as was the case with the 8008.

Let us now follow the execution of this instruction (it is called

ADD M for the 8080 and is the 16th instruction on Figure 2.27). States

Tl, T2, and T3 of Ml will be used, as usual, to fetch the instruction.

During state T4, the contents of the accumulator are transferred to its

buffer register, ACT, and the left input of the ALU is conditioned.

Memory must be accessed in order to provide the second byte of data

which will be added to the accumulator. The address of this byte of
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data is contained in H and L. The contents of H and L will therefore

have to be transferred onto the address bus, where they will be gated to

the memory. Let us do it.

INST. REG-

DECODER

IZ
CONTROUEB

SEQUENCER

1

:**:--

K

1

3ftTA m

TO MEHORY

5
CKiTSOL

SIGri*LS

Fig. 2.28: Transfer Contents of HL to Address Bus

During machine cycle M2,we read:HL OUT.H and L are deposited on

the address bus, in the same way PC used to be deposited there m
previous instructions. As a remark, it has already been indicated

that during state Ti status is output on the data bus, but no use of

this will be made here. From a simplified standpoint, it will require two

states: one for the memory to read its data, and one for the data to

become available and transferred onto the right input of the ALU.
TMP,

Both mputs of the ALU are now conditioned. The situation is analo-

gous to the one we were in with the previous instruction ADDA, r: both

inputs of the ALU are conditioned. We simply have to ADD as before.

A fetch/execute overlap technique will be used, and, instead of exe-

cuting the addition within state T4 of M2, final execution is postponed

until state T2 of M3. It can be seen in Figure 2.27 that during T2 we In-

deed have: ACT + TMP—*-A. The addition is finally performed, the

contents of ACT are added to TMP, and the result deposited into the

accumulator A.
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Question: What is the apparent execution time (to theprogrammer)for

this instruction? Using a 2.5 Mhz clock, is it 3,6 us? 2.8 us?

Another more complex instruction will now be exammed which is a

direct-memory addressing instruction using two invisible W and Z
registers:

LD A,(nii)

The opcode is 001 1 1010. The 8080 equivalent is LDA addr. As usual,

states Tl, T2, T3 of Ml will be used to fetch the instruction from the

memory. T4 is used, but no visible result can be described. During state

T4, the instruction is in fact decoded. The control unit then finds out

that it has to fetch the next two bytes of this instruction in order to ob-

tain the address from which the accumulator will be loaded. The effect

of this instruction is to load the accumulator from the memory contents

whose address is specified in bytes 2 and 3 of the instruction. Note that

state T4 is necessary to decode the instruction. It could be considered a

waste of time since only part of the state is necessary to do the

decoding. It is. However, this is the philosophy of clock-synchonous

logic. Because microinstructions are used internally to perform the

decoding and execution, this is the penalty that has to be paid in return

for the advantages of microprogramming. The structure of this instruc-

tion appears in Figure 2.29.

h: i
LDA

N+1:
ADDRESS—

H+2;

(Bi) :OPCODE

(B2) he-BiT

(B3) ADDRESS

Fig. 2.29: LD A, (ADDRESS) Is a 3-Word Instruction

The next two bytes of instruction will now be fetched. They will

specify an address (see Figure 2.30).
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(HEX)

100:

0000000 ijoooooooq̂
''''

1 1 1 1 Q

1 Q

i

U) A

11002

(Ha)

REGISTERS MEMORY

Fig. 2.30: Before Execution of LD A

100:

101:

102;

|o 1 1 Til

to 000000 ijOQOOOOill
PC

10D7

REGISTERS

1 1 1 1

10
10

1 1 1 i

MEMORY

Fig. 2.3i: After Execution of LD A

The effect of the instruction is shown m Figures 2.30 and 2.31 above.

Two special registers are available to the control unit withm the Z80

(but not to the programmer). They are "W" and "Z", and are shown

in Figure 2.28.
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Second Machine Cycle M2: As usual, the first 2 states, T! and T2, are

used to fetch the contents of memory location PC. During T2, the pro-

gram counter, PC, is incremented. Sometime by the end of T2, data be-

comes available from the memory, and appears on the data bus. By the

end of T3, the word which has been fetched from memory address PC
(B2, second byte of the instruction} is available on the data bus. It must

now be stored in a temporary register. It is deposited into Z: B2 > Z

(see Figure 2.32).

B2

MRU

PC

DATA BUS

i

ADDRESS

B3

ADDRESS DECODER

Z80—^Z80 MEMORY

Fig. 2.32: Second Byte of Instruction Goes into Z

Machine Cycle M3: Again, PC is deposited on the address bus, incre-

mented, and finally the third byte, B3, is read from the memory and de-

posited into register W of the microprocessor. At this point, i.e., by the

end of state T3 of M3, registers W and Z inside the microprocessor con-

tain B2 and B3, i.e., the complete 16-bit address which was originally

contamed in the two words following the instruction in the memory.
Execution can now be completed. W and Z contain an address. This ad-

dress will have to be sent to the memory, in order to extract the data.

This IS done m the next memory cycle:

Machine Cycle M4: This time, W and Z are output on the address bus.

The i6-bii address is sent to the memory, and by the end of state T2,

data corresponding to the contents of the specified memory location

becomes available. It is finally deposited in A at the end of state T3.

This terminates execution of this instruction.
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This illustrates the use of an immediate instruction. This instruction

required three bytes in order to store a two-byte explicit address. This

instruction also required four memory cycles, as it needed to go to the

memory three times in order to extract the three bytes of this three-

word instruction, plus one more memory access in order to fetch the

data specified by the address. It is a long instruction. However, it is also

a basic one for loading the accumulator with specified contents residing

at a known memory location. It can be noted that this instruction re-

quires the use of W and Z registers.

Question: Could this instruction have used other registers than W. Z
within the system?

Answer: No. If this instruction had used other registers, for example
the H and L registers, it would have modified their contents. After ex-

ecution of this instruction, the contents of H and L would have been

lost. It is always assumed in a program that an instruction will not

modify any registers other than those it is explicitly using. An instruc-

tion loading the accumulator should not destroy the contents of any

other register. For this reason, it becomes necessary to supply the extra

two registers, W and Z, for the internal use of the control unit.

Question: Would it be possible to usePC instead of WandZ?

Answer: Positively not. This would be suicidal. The reader should ana-

lyze this.

One more type of instruction will be studied now: a branch or jump
instruction, which modifies the sequence in which instructions are

executed within the program. So far, we have assumed that instructions

were executed sequentially. Instructions exist which allow the pro-

grammer to jump out of sequence to another instruction within the

program, or in practical terms, to jump to another area of the memory
containing the program, or to another address. One such instruction is:

JP nn

This instruction appears on Line 18 of Figure 2.27' as "JMP addr."

Its execution will be described by following the horizontal line

of the Table. This is again a three-word instruction. The first word
is the opcode, and contains 11000011. The next two words contain the
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i6-bit address, to which the jump will be made. Conceptually, the ef-

fect of this instruction is to replace the contents of the program counter

with the 16 bits following the "JUMP" opcode. In practice, a some-

what different approach will be implemented, for reasons of efficiency.

As before, the first three states of Ml correspond to the mstruction-

fetch. During state T4 the instruction is decoded and no other event is

recorded {X). The next two machine cycles are used to fetch bytes B2

and B3 of the instruction. During M2, B2 is fetched and deposited into

internal register Z. The next two steps will be implemented by the pro-

cessor during the next instruction-fetch, as was the case already with the

addition. They will be executed instead of the usual steps for Tl and T2

of the next instruction. Let us look at them.

The next two steps will be: WZ OUT and (WZ) + i PC. In other

words, the contents of WZ will be used instead of the contents of PC
during the next instruction-fetch. The control unit will have recorded

the fact that a jump was being executed and will execute the beginning

of the next instruction differently.

The effect of these two extra states is the following:

The address placed on the address bus of the system will be the ad-

dress contained in W and Z. In other words, the next instruction will be

fetched from the address that was contained m W and Z. This is effec-

tively ajump. In addition, the contents of WZ will be incremented by i

and deposited in the program counter, so that the next instruction will

be fetched correctly by using PC as usual. The effect is therefore cor-

rect.

Question: Why have we not loaded the contents of PC directly? Why
use the intermediate W and Z registers?

Answer: It is not possible to use PC. If we had loaded the lower part

of PC (PCL) with B2, instead of using Z, we would have destroyed PC!

It would then have become impossible to fetch B3.

Question: Would it be possible to usejust Z, mstead ofW and Z?

Answer: Yes, but it would be slower. We could have loaded Z with

B2, then fetched B3, and deposited it into the high order half of PC
(PCH). However, it would then have become necessary to transfer Z in-

to PCL, before using the contents of PC. This would slow down the

process. For this reason, both W and Z should be used. Further, and in

order to save time, W and Z are not transferred into PC. They are

directly gated to the address bus in order to fetch the next instruction.
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Understanding this point is crucial to the understanding of efficient ex-

ecution of instructions within the microprocessor.

Question: (For the alert and informed reader only). What happens
in the case ofan interrupt at the end ofM3? (If instruction execution is

suspended at this point, the program counter points to the instruction

following the jump, and the jump address, contained in W and Z, will

be lost.}

The answer is left as an interesting exercise for the alert reader.

The detailed descriptions we have presented for the execution of
typical instructions should clarify the role of the registers and of
the internal buses. A second reading of the preceding section may
help in gaining a detailed understanding of the internal operation

of the Z80.

CLOCK $

BUS (buSRQ—
CONTROL ^mjSAK-*-

MPU
CONTROL

MEMORY
AND i/0

CONTROL

6

AO
30 lo 40

and25

23 1 to 5
AI5

i7

16

24

18

26 7 lo 15 DO
(except 1 1

)

D7

19

20

21

22

28
29 1

1

> ADDRESS

BUS

DATA

BUS

GND +5V
POWER

Fig. 2.33: Z80 MPU Pinout

The Z80 Chip

For completeness, the signals of the Z80 microprocessor chip will be

examined here. It is not indispensable to understand the functions of
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the Z80 signals in order to be able to program it. The reader who is not

interested in the details of hardware may therefore skip this section.

The pinout of the Z80 appears on Fig. 2.33. On the right side of the

illustration, the address bus and the data bus perform their usual role,

as described at the begmnmg of this chapter. We will describe here the

function of the signals on the control bus. They are shown on the left of

Figure 2.33.

The control signals have been partitioned in four groups. They will

be described, going from the top of Figure 2.33 towards the bottom.

The clock input is The Z80 incorporates the clock oscillator withm

the microprocessor chip. Only a 330-ohm pull-up resistor is necessary

externally. It is connected to the input and to 5 volts. However, at 4

MHz, an external clock driver is required.

The two bus-control signals, BUSRQ and BUSAK, are used to dis-

connect the Z80 from its busses. They are mamly used by the DMA, but

could also be used by another processor in the system. BUSRQ is the

bus-request signal. It is issued to the Z80. In response, the Z80 will place

its address bus, data bus, and tristate output control signals in the high-

impedance state, at the end of the current machine cycle. BUSAK is the

acknowledge signal issued by the Z80 once the busses have been placed

m the high-impedance state.

Six Z80 control signals are related to its internal status or to its se-

quencing:

INT and NMI are the two interrupt signals. INT is the usual interrupt

request. Interrupts will be described in Chapter 6. A number of in-

put/output devices may be connected to the INT interrupt line. When-

ever an interrupt request is present on this line, and when the internal

interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter-

rupt (provided the BUSRQ is not active). It will then generate an

acknowledge signal: lORQ (issued during the Ml state). The rest of the

sequence of events is described in Chapter 6.

NMI is the non-maskable interrupt. It is always accepted by the Z80,

and it forces the Z80 to jump to location 0066 hexadecimal. It too is

described in Chapter 6. (It also assumes that BUSRQ is not active.)

WAIT is a signal used to synchronize the Z80 with slow memory or

input/output devices. When active, this signal indicates that the

memory or the device is not yet ready for the data transfer. The Z80

CPU will then enter a special wait state until the WAIT signal becomes
inactive. It will then resume normal sequencing.

HALT is the acknowledge signal supplied by the Z80 after it has ex-
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ecuted the HALT instruction. In this state, the Z80 waits for an exter-

nal interrupt and keeps executing NOPs to continually refresh memory.
RESET is the signal which usually initializes the MPU. It sets the

program counter, register I and R to "0". It disables the interrupt

enable flip-flop and sets the interrupt mode to "0"= it is normally used
after power is applied to the board.

Memory and I/O Controi

Six memory and I/O control signals are generated by the Z80. They are:

MREQ is the memory request signal. It indicates that the address pres-

ent on the address bus is valid. A read or write operation can then be
performed on the memory.
M 1 is machme cycle 1 . This cycle corresponds to the fetch cycle of an

instruction.

lORQ IS the mput/output request. It indicates that the I/O address
present on bits 0-7 of the address bus is valid. An I/O read or write

operation can then be carried out. lORQ is also generated together with
Ml when the Z80 acknowledges an interrupt. This information may be
used by external chips to place the interrupt response vector on the data
bus. (Normal I/O operations never occur during the Ml state. The
combination lORQ plus Ml indicates an interrupt-acknowledge situa-

tion.)

RD is the read signal.* It indicates the Z80 is ready to read the con-
tents of the data bus into an internal register. It can be used by any ex-

ternal chip, whether memory or I/O, to deposit data onto the data bus.

WR is the write signal.* It indicates that the data bus holds valid

data, ready to be written into the specified device.

RFSH is the refresh signal. When RFSH is active, the lower seven
bits of the address bus contain a refresh address for dynamic memories.
The MREQ signal is then used to perform the refresh by reading the

memory.

HARDWARE SUMMARY

This completes our description of the internal organization of the

Z80. The exact hardware details of the Z80 are not important here.

However, the role of each of the registers is important and should be
fully understood before proceeding to the next chapters. The actual in-

structions available on the Z80 will now be introduced, and basic pro-

gramming techniques for the Z80 will be presented.

*used in conjunction with MREQ or lOREQ,
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The purpose of this chapter is to present the basic techniques neces-

sary in order to write a program using the Z80. This chapter will intro-

duce new concepts such as register management, loops, and sub-

routines. It will focus on programming techniques using only the Imer-

nal Z80 resources, i.e., the registers. Actual programs will be de-

veloped, such as arithmetic programs. These programs will serve to il-

lustrate the various concepts presented so far and will use actual in-

structions. Thus, it will be seen how instructions may be used to

manipulate the information between the memory and the MPU, as well

as to manipulate information within the MPU itself. The next chapter

will then discuss in complete detail the instructions available on the Z80.

Chapter 5 will present Addressing Techniques, and Chapter 6 will pre-

sent the techniques available for manipulating information oulside the

Z80; the input/Output Techniques.

In this chapter, we will essentially learn by "doing." By examining

programs of increasing complexity, we will learn the role of the various

instructions, of the registers, and we will apply the concepts developed

so far. However, one important concept will not be presented here; it is

the concept of addressing techniques. Because of its apparent complexi-

ty, It will be presented separately in Chapter 5.

Let us immediately start writing some programs for the Z80. We will

start with arithmetic programs. The "programmer's model" of the Z80

registers is shown in Figure 3.0.
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MAIN SET ALTERNATE SET

(III)
A

(ccumu^Qlor)
F

ffloas! A-

(000) B c [oon B' c-

(010) E (Oil) D- E'

(!00) H L (101) H' L'

[inlerrupf ueclor}

R

{mem refresh)

5P
(stack poinler)

PC
(program counferj

INDEX

REGISTERS

GENERAL-
PURPOSE
REGISTERS

Fig. 3.0: The Z80 Registers

ARITHMETIC PROGRAMS

Arithmetic programs include addition, subtraction, muitipiication.

and division. The programs presented here will operate on integers.

These integers may be positive binary integers or may be expressed in

two's complement notation, in which case the left-most bit is the sign

bit (see Chapter 1 for a description of the two's complement notation}.

8-Bit AddUion

We will add two 8-bit operands called OPl and OP2, respectively

stored at memory address ADRl, and ADR2. The sum will be called

RES and will be stored at memory address ADR3. This is illustrated in

Figure 3.1. The program which will perform this addition is the follow-
ing:

Instructions Comments

LD A, (ADRl) LOADOPIINTOA
LD HL, (ADR 2) LOAD ADDRESS OF OP2 INTO HL
ADD A, (HL) ADD 0P2 TO OPI
LD (ADR 3), A SAVE RESULT RES AT ADR3
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MEMORY

ADR1

ADR2

ADR3

ADDRESSES

OPi

0P2

RES

(FIRST OPERAND)

(SECOND OPERAND)

(RESULT)

Fig. 3.1: Eight-Bit Addition RES = OPI + 0P2

This is our first program. The instructions are listed on the left and

comments appear on the right. Let us now examine the program. It is a

four-instruction program. Each line is called an instruction and is ex-

pressed here in symbolic form. Each such instruction will be translated

by the assembler program mto one, two. three or four binary bytes. We
will not concern ourselves here with the translation and will only look at

the symbolic representation.

The first line specifies loading the contents of ADRl into the accu-

mulator A. Referring to Figure 3.1, the contents of ADRl are the first

operand. "OPI "- This first instruction therefore results in transferring

OPI from the memory into the accumulator. This is shown in Figure

3.2. "ADRl" is a symbolic representation for the actual 16-bit address

in the memory. Somewhere else in the program, the ADRl symbol will

be defined. It could, for example, be defined as being equal to the ad-

dress "100"
=

This ioad instruction will result in a read operation from address 100

(see Figure 3.2), the contents of which will be transferred along the data
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(ADRl)

Fig, 3.2: LD A, (ADRl): OPl is I oaded from Memory

bus and deposited inside the accumulator. You wili recall from the pre-

vious chapter that arithmetic and logrcal operations operate on the
accumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values OPI and
0P2 together, we must first load OPl into the accumulator. Then, we
will be able to add the contents of the accumulator, i.e., add OPl to

OP2. The right-most field of this instruction is called a coniineni field.

It IS ignored by the assembler program at translation time, but is pro-
vided for program readability, in order to understand what the pro-
gram does. It is of paramount importance to use good comment.s. This
IS called doaimenling a program.

Here the comment is self-explanatory: the value of OPl, which is

located at address ADRI, is loaded into the accumulator A.
The result of this first instruction is illustrated by Figure 3.2. The

second instruction of our program is:

LD HL,{ADR2)

It specifies: "Load from (ADR2) into registers H and L." In order
to read the second operand, OP2, from the memory, we must first place

its address into a register pair of the Z80, such as H and L. Then, we
can add the contents of the memory location whose address is in H and
L to the accumulator.

ADDA, (HL)

Referring to Figure 3.1, the contents of memory location ADR2 are

OP2, our second operand. The contents of the accumulator are now
OPl, our first operand. As a result of the execution of this instruction,

OP2 will be fetched from the memory and added to OPI. This is il-

lustrated in Figure 3.3
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Fig. 3.3: ADD A, (HL)

The sum will be deposited in the accumulator. The reader will

remember that, in the case of the Z80, the results of the arithmetic oper-

ation are deposited back into the accumulator. In other processors, it

may be possible to deposit these results in other registers, or back into

the memory.

The sum of OPl and OP2 is now contained in the accumulator. To

complete our program, we simply have to transfer the contents of the

accumulator mto memory location ADR3, in order to store the results

at the specified location. This is performed by the fourth instruction of

our program:

LD (ADR3), A

This instruction loads the contents of A into the specified address

ADR3. The effect of this final instruction is illustrated by Figure 3.4.

ADDBESS DUb

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory)
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Before execution of the ADD operation, the accumulator contained
OPI (see Figure 3.3). After the addition, a new result has been written
into the accumulator. It is "OPI + OP2", Recall that the contents of
any register within the microprocessor, as well as any memory location,
remain the same after a read operation has been performed on this

register. In other words, reading the contents of a register or memory
location does not change its contents. It is only, and exciusiveiy, a write
operation into this register location that will change its contents. In this
example, the contents of memory locations ADRI and ADR2 remam
unchanged throughout the program. However, after the ADD instruc-
tion, the contents of the accumulator will have been modified, because
the output of the ALU has been written into the accumulator. The
previous contents of A are then lost.

Actual numerical addresses may be used mstead of ADRI, ADR2,
and ADR3. In order to keep symbolic addresses, it will be necessary to
use so-called "pseudo-instructions" which specify the value of these
symbolic addresses, so that the assembly program may, during transla-
tion, substitute the actual physical addresses. Such pseudo-instructions
could be, for example:

ADRI = lOOH
ADR2 = I20H
ADR3 = 200H

Exercise 3.1: Now close this book. Refer only lo the list of inslructio/is
ai the end of t/ie book. Write a program which will add two numbers
stored at memory locations LOCI and LOC2. Deposit the results at
memory location LOC3. Then, compare your program to the one
above.

16-Bit AddHion

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,

numbers between and 255, if absolute binary is used. For most prac-
tical applications it is necessary to add numbers having 16 bits or more,
i.e., to use multiple precision. We will here present examples of arith-
metic on 16-bit numbers. They can be readily extended to 24, 32 bits or
more (always multiples of 8 bits). We will assume that the first operand
IS stored at memory locations ADRI and ADRI-i. Since OPI is a 16-bit
number this time, it will require two 8-bit memory locations. Similarly,
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0P2 will be siorcd at ADR2 and ADR2-1 . The result is to be deposited

at memory addresses ADR3 and ADR.Vl. This is ilkisirated in l igiirc

3.5. H indicates the high hall" (hits 8 ihrouuh 15), while 1, indicates ihe

low hail (bits through 7).

AMI - 1

ADD I

ADB3- 1

ACR!

AM3- I

AOej

|OPl)H

(OPI H

!0P2)H

(0P2)L

Fig. 3.5: 16-Bit Addition—The Operands

The logic of the program is exactly like the previous one. First, the

lower half of the two operands will be added, since the microprocessor

can only add on 8 bus at a time. Any carry generated by the addition of

these low order bytes will automatically be stored m the internal carry

bit ("C"). Then, the high order half of the two operands will be added

together along with any carry, and the result will be saved m the

memory. The program appears below:

LD A,(ADRI)
LD HL, ADR2
ADD A. (HL),

LD (ADR3), A
LD A. (ADRM)
DEC HL
ADC A, (HL)

LD (ADR3-1), A

LOAD LOW HALF OF OPI
ADDRESS OF LOW HALF OF OP2
ADD OPI AND OP2 LOW
STORE RESULT, LOW
LOAD HIGH HALF OF OPI
ADDRESS OF HIGH HALF OF OP2
(OPI + 0P2) HIGH -f CARRY
STORE RESULT, HIGH
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The first four instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They result in adding
the least significant halves (bits 0-7) of OPl and OP2. The sum, called

"RES" IS stored at memory location ADR3 {see Figure 3.5).

Automatically, whenever an addition is performed, any resulting

carry (whether "0" or "I") is saved in the carry bit C of the flags

register (register F). If the two numbers do generate a carry, then the C
bit will be equal to "I" (it will be set). If the two 8-bit numbers do not
generate any carry, the value of the carry bit will be "0".

The next four instructions of the program are essentially like those

used in the previous 8-bit addition program. This time they add
together the most significant half (or high half, i.e., bits 8-15) of OPI
and 0P2, plus any carry, and store the result at address ADR3-1.

After execution of this 8-mstrucfion program, the 16-bil result is

stored at memory locations ADR3 and ADR3-i, as specified. Note,

however, that there is one difference between the second half of this

program and the first half. The "ADD" mstruciion which has been
used is not the same as in the first half. In the first half of this program
(the 3rd instruction), we had used the "ADD" instruction. This instruc-

tion adds the two operands, regardless of the carry. In the second half,

we use the "ADC" instruction, which adds the two operands together,

plus any carry that may have been generated. This is necessary in order
to obtain the correct result. The addition initially performed on the low
operands may resuh in a carry. Such a possible carry must be taken into

account in the second half of the addition.

The question which comes naturally then is: what if the addition of
the high half of the operands also results in a carry? There are two pos-

sibilities: the first one is to assume that this is an error. This program is

then designed to work for results of only up to 16 bits, but not 17. The
other one is to include additional instructions to test explicitly for the

possibility of a carry at the end of this program. This is a choice which
the programmer must make, the first of many choices.

Note: we have assumed here that the high part of the operand is

stored "on top of" the lower part, i.e., at the lower memory address.

This need not necessarily be the case. In fact, addresses are stored by
the ZSO in the reverse manner: the low part is first saved in the memory,
and the high part is saved in the next memory location, in order to use a

common convention for both addresses and data, it is recommended
that data also be kept with the low part on top of the high part. This is

illustrated m Figure 3.6.
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(OPUL

(OPliH

(OP2)l

!0P2!H

1RES)H

Fig. 3.6: Storing Operands in Reverse Order

When operating on multibyte operand, it is important to keep in mind

two essential conventions:

—the order in which data is stored in the memory.

—where data pointers are pointing: low byte or high byte.

Exercises 3.2 and 3.3 are designed to clarify this point.

Exercise 3.2: Rewrite the 16-bil addiiion program above wilh (he

memory layout indicated in Figure 3.6.

Exercise 3.3: Assume now that ADR! does no! point to the lower half

ofOPl (as in Figures 3.5 or 3. 6h butpointsto the higher part ofOP1.

This is illustrated in Figure 3. 7. Again, write the corresponding pro-

gram.

ADS I

Aoei -f I

ADS 3

ADBS-I

ADH3

ADHJ+l
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Afini (0P1)H

{OP2)H

Fig. 3.7: Pointing lo Ihe High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit

numbers (i.e., low part or high part first) and also whether your address

referefii^.s point to the lower or toihe higher halfof sueh numbers. This

is anolher ehorce which you wfll learn to m^ake when designing

algorithms or data structures.

The programs presented above are traditional programs, using the

accumulator. We will now present an alternative program lor the 16-bit

addition that does not use the accumulator, but instead uses some of

the special insiructions available on the Z80. Operands will be

assumed in be U'me4m indicated m FIgureU. The program ist

LB HL, (ADRl) LOAD HL WITH Om
LD BC, (ADR2) LOAD BC WITH 0P2
ADD HL. BC ADD 16 BITS

LD (APR3), HI STORE RES INTO ADR3

Note hrow much shorter this program is, compared t© cmr pKeviisaisver^

sion. It is more "elegant." //; a liniiied manner, ihe ZHOalhws regisiers

H and L (o be used as a 16-bit accunmlatop\
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Exercise 3.4: Using the 16-bit instructions wiiich have just been intro-

duced, write an addition program for 32-bil operands, assuming that

operands are stored as shown in Figure J4. (J^e answ0 eii^m^rs

below.)

Answer:

LD HL, (ADRl)
LD BC, (ADR2)
ADD HL, BC
LD (ADR3)
LD HL, (ADRl + 2)

LD BC, (ADR2 + 2)

ADC HL, BC
LD (ADR3 + 2)

ADR1+?

ADRl

AM2

,HlGH

OPR2

LOW

HIGH

RES

Fig. ^.8: A 32-Bit Addition
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Now thgt we have learned to pertorm a binary addition, let us turn to

subtraction.

Subtracting U-BH Numbers

Doing an 8-bit subtract would be loo simple. Let us keep it as an ex-

ercise and directly pertern a 16-bit subtract. As usual, our two num-
bers, OPl and 0P2, are stored at addresses ADR I and ADR2. The
memory layout will be assumed to be that of Figure 3.6. In order to

subtract, we will use a subtract Operation (SBC) itlste;ad of aft add

Operation (ADD).

Exercise 3^5:Now Writea subtractionprogram.

The program appears below. The data paths are stiQwn in Figure 3,9.

LD HL, (ADRl) OPl INTO HL
LD DE, (ADR2) OPl INTO DE
AND A CLEAR CARRY
SBC HL, DE OPl — OP2
LD CADR3), HL RES INTO AX)R3

The program is essentially like the one developed for 16-bit addition.

However, the Z80 instruction-set has two types of additions on double

registers: ADD and ADC, but only one type of safeat^ni

As a result* two changes can be noted.
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MEMORY

(OPHH iOPijL

lOPI il

lOPI jH

Fig. 3.9: I6-BU Load — LD HL, (ADRl)

A first change is the use of SBC instead ofADD.
The other change is the "AND A" instruction, used to clear the carry

flag prior to the subtraction. This instruction does not modify the value
of A.

This precaution is necessary because the Z80 is equipped with two
modes of addition, with and without carry on the H and L register, but
with only one mode of subtraction, the SBC instruction of "subtract
with carry" when operating on the HL register pair. Because SBC auto-
matically takes into account the value of the carry bit, it must be set ioO
prior to starting the subtraction. This is the role of the "AND A" in-

struction.

lixercise 3.6: Renrifc ilie subiraciion pro^raui wiihoia usiiiii ihe

specialized I6~bii i/isiruaion.

l-lxercise 3. 7: H 'nie ilw subiracl program for 8-hu operands.

It must be remembered that in the case of two's compiemeni arithnic-

[ic, the final value of the carry flag has no meaning. If an overflow con-
dition has occurred as a result of the subtraction, then the overllow bit

{bit V) of the nags register will have been set. It can then be tested.
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The examples just presented are simple bmary additions or subtrac-
tions. However, another type of arithmetic may be necessary; it is BCD
arithmetic.

BCD ARITHMETIC

8-Bi( BCD Addition

The concept of BCD arithmetic has been presented m Chapter 1. Let

us recall its features. It is essentially used for business applications

where it is imperative to retain every significant digit in a result, in the

BCD notation, a 4-bit nibble is used to store one decimal digit (0
through 9). As a result, every 8-bit byte may store two BCD digits.

(This IS called packed BCD). Let us now add two bytes each containing

two BCD digits.

In order to identify the problems, let us try some numeric examples
first.

Let us add "01" and "02":

"01 " is represented by: 0000 0001
"02" is represented by: 0000 0010

The result is: 00000011

This !s the BCD representation for "03'V (If you fee! unsure of the

BCD equivalent, refer to the conversion table at the end of the book.)
Everything worked very simply m this case. Let us now try another ex-

ample.

"08" IS represented by 0000 1000
"03" is represented by 0000 001 i

Exercise 3.8: Compute the sum of Ihe iwo numbers above m (he BCD
represenlatton. Whal do you obtain? (answer follows)

if you obtain "0000 iOU", you have computed the bmary sum of 8

and 3, You have mdeed obtained U in binary. Unfortunately, "1011"
is an illegal code in BCD. You should obtain the BCD representation of
"11", i.e., 0001 OOOn
The problem stems from the fact that the BCD representation uses

only the first ten combinations of 4 digits in order to encode the decimal
symbols through 9. The remaining six possible combinations of 4
digits are unused, and the illegal "iOIl" is one such combination, in

other words, whenever the sum of two BCD digits is greater than 9,
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then one must add 6 to the result in order to skip over the 6 unused

codes.

Add [he binary representation of "6" to 101 1:

1011 (illegal binary resuh)

+ 0110 ( + 6)

The result is: 0001 0001

This IS, indeed, "H" in the BCD notation! We now have the correct

result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. A special in-

struction, "DAA", called "decimal adjust," must be used to adjust the

result of the binary addition. (Add 6 if the result is greater than 9.)

The next problem is illustrated by the same example. In our example,

the carry will be generated from the iower BCD digit (the right-most

onel into the left-most one. This internal carry must be taken into ac-

count and added to the second BCD digit. The addition instruction

takes care of this automatically. However, u is often convenient to

detect this internal carry from bit 3 to bit 4 (the "half-carry"). The H
tlag is provided for this purpose.

As an example, here is a program to add the BCD numbers 'MI" and

In this program, we are using a new symbol "H", The "H" sign

withm the operand field of the mstruction specifies that the data it

follows IS expressed in hexadecimal notation. The hexadecimal and the

BCD representations for digits "0" through "9" are identical. Here we
wish to add the literals (or constants) "II" and "22". The result is

stored at the address ADR. When the operand is specified as part of the

mstruction, as it is in the above example, this is called immediate ad-

dressing. (The various addressing modes will be discussed in detail m
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A
IS called absolute addressing when ADR represents a 16-bit address.

"22":

LD A, IIH

ADD A,22H
DAA
LD (ADR), A

LOAD LITERAL BCD '11'

ADD LITERAL BCD '22'

DECIMAL ADJUST RESULT
STORE RESULT
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(HBULTj CADH)

Fig. 3.10: Storing BCD Digits

This program is analogous to the 8-bit binary addition, but uses a

new instruction: "DAA", Let us illustrate its role in. an example. We
will first add "11" and "22" in BCD:

00010001

+ 001 000 iO

(in

(22)

= OOilOOil (33)

3 3

The result is correct, usmg the rules of binary addition.

Let us now add "22" and "39", by using the rules of binary addi-

00100010 (22)

+ OOIUOOI (39)

= '0I0U0II

"ion" is an illegal BCD code. This i.s because BCD uses only the

first 10 bmary codes, and "skips over" the next 6. We must do the

same, i.e. add 6 to the result:

OlOllOU

0110

01100001

(binary result;

(6)

(61)

1

This is the correct BCD result.
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Iixercise 3. 9: Could we move (he DAA insiruction in (he program after

Ihe insfruciion LD (ADR), A?

BCD Subtraction

BCD subtraction is, m appearance, complex. In order to perform a

BCD subtraction, one must add the ten's complement of the number,

ju.st as one adds the two's complement of a number to perform a bmary

subiraci. The ten's complement is obtamed by computing the comple-

meni io 9, then adding "1". This requires typically three to four opera-

uons on a standard microprocessor. However, the Z80 is equipped with

a powerful DAA instruction which simplifies the program.

The DAA instruction automatically adjusts the value of the result m
the accumulator, depending on the value of the C, H and N flags before

DAA, 10 the correct value. (See the next chapter for more details on

DAA.)

16-Bit BCD Addition

!6-bit addition is performed just as simply as in the binary case. The

program for such an addition appears below:

LD {ADR3 + 1), A STORE (RESULT) HIGH

Packed BCD Subtract

Elementary BCD addition and subtraction have been described.

However, in actual practice, BCD numbers include any number of

bytes. As a simplified example of a packed BCD subtract, we will

assume that the two numbers Nl and N2 include the same number of

BCD bytes. The number of bytes is called COUNT. The register and

LD A, (ADRl)
LD HL, ^ADR2)
ADD A, (ML)

DAA
LD (ADR3), A
LD A, {ADRi + !)

INC HL
ADC A, (HL)

DAA

LOAD (OPD L INTO A
LOAD ADR2 INTO HL
(OPl + 0P2) LOW
DECIMAL ADJUST
STORE (RESULT) LOW
LD (OPl) H INTO A
POINT TO ADR2 + j

(OPl + 0P2) HIGH + CARRY
DECIMAL ADJUST
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memory allocation is shown m Figure 3.il. The program appears

below:

BCDPAK

MINUS

LD B, COUNT
LD DE, N2
LD HL, Nl

AND A
LD A, (DE)

SBC A,(HL)
DAA
LD (HL), A
INC DE
INC HL
DJNZ MINUS

CLEAR CARRY
N2 BYTE
N2 - Nl

STORE RESULT

DEC B, LOOP UNTIL B = 0.

N2

COUNT

Ni

Fig. 3.11: Packed BCD Subtract: Nl-*— N 2 - Nl

Nl and N2 represent the addresses where the BCD numbers are stored.

These addresses wii! be loaded m register pairs DE and HL:

BCDPAK LD B, COUNT
LD DE, N2
LD HL, Nl
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Then, in aniicipation of the First subtraction, the carry bit must be

cleared. It has been pointed out that the carry bit can be cleared m a

number of equivalent ways. Here, for exampie. we use:

AND A
The first byte of N2 is loaded into the accumulator, then the first byte

of Ni is subtracted from it. The DAA instruction is then used, to obtain

the correct BCD value:

MINUS LD A, (DE)

SBC A, {HD
DAA

The result is then stored into Nl:

LD (HL), A

Finally, the pointers to the current byte are mcremenled:

INC DE
iNC HL

The counter is decremented and the subtraction loop is executed until it

reaches the value "0":

DJNZ MINUS

The DJNZ instruction is a special Z80 instruction which decrements

register B and jumps if it is not zero, m a single mstruciion.

Exercise 3./0: Compare (he program above to flw one for ihe !6-hii

binary acidiiion. Wlial is ihe difference?

Exercise 3J I: Can you excliange ihe roles of DE and HL? (Hint: Be
careful mill SBCJ

Exercise 3.!2: Wrile (he subiraciion program for a !6-bii BCD.

BCD Flagi

In BCD mode, the carry flag set as the result of an addition indicates

the fact that the result is larger than 99. This is not like the two's com-
plement situation, since BCD digits are represented in true binary. Con-
versely, the presence of the carry flag after a subtraction indicates a

borrow.

Instruction Types

We have now used two types of microprocessor instructions. We
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have used LD, whjch loads the accumulator from the memory address,

or siorcs its conicnts at the specified address. This is a daia transfer \n-

sirucuon.

Next, \vc have used anthnieiic instrucuons, such as ADD, SUB,

ADC and SBC. They perform addition and subtraction operations.

More ALU instructions will be introduced soon in this chapter.

Still other types of instructions are available withm the micropro-

cessor which we have not used yet. They are m parucular "jump" in-

structions, which will modify the order m which ihe program is being

executed. This new type of instruction will be miroduced in our next ex-

ample. Note that jump instructions are often called "branch" for con-

ditional situations, i.e. mstances where there is a logical choice m the

program. The "branch" derives its name from the analogy to a tree,

and implies a fork in the representation of the program.

MULTIPLICATION

Let us now examine a more complex arithmetic problem: the multi-

plication of binary numbers. In order to introduce the algorithm for a

binary multiplication, let us start by exammmg a usual decimal multi-

plication: We will multiply 12 by 23.

12 (Multiplicand)

X 23 (Multiplier)

36 (Partial Product)

+ 24

= 276 (Final Result)

The multiplication is performed by multiplying the right-most digit of

the multiplier by the multiplicand, i.e., "3" x "12"= The partial prod-

uct is "36". Then one multiplies the next digit of the multiplier, i.e.,

"2", by "12". "24" is then added to the partial product.

But there is one more operation: 24 is offset lo the left by one posi-

tion. We will say that 24 is shifted left by one position. Equivalently, we

could have said that the partial product (36) had been shifted one post-

lion to the right before adding.

The two numbers, correctly shifted, are then added and the sum is

276. This is simple. The binary multiplication is performed in exactly

the same way.
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Let us look at an example. We wiil- multiply 5x3;

(5) lOI (MPD)
(3) X Oil (MPR)

101 (PP)

101

000

(15) Oil II (RES)

In order to perform the multiplication, we operate exactly as we did
above. The formal representation of this algorithm appears in Figure

3-12. It is-a flowchart for the algorithm, our first flowchart. Let us ex-

amine It more closely.

SET RESULT TO ZERO

RESULT =
RESULT +MFD

i r~
LEFTSHIFTSUMFD

OH RIGHT SHIFTflJRES

NEXT LSa (MPRJ

DONE

Fig. 3.12: The Basic MultipiicaUon AlgorUhm—Flowchart

This flowchart is a symbolic representation of the algorithm we have
just presented. Every rectangle represents an order to be carried out. It

will be translated mto one or more program instructions. Every
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diamond-shaped symbol represents a test bemg performed. This will be

a branching point in the program. If the test succeeds, we will branch to

a specified location. If the test does not succeed, we will branch to

another iocation. The concept of branching wil! be explained later, in

the program itself. The reader should now examine this flowchart and

ascertam that it does indeed exactly represent the aigonthm which has

been presented. Note that there is an arrow coming out of the last dia-

mond at the bottom of the flowchart, back to the first diamond on top.

This is because the same portion of the flowchart will be executed eight

times, once for every bit of the multiplier. Such a situation, where ex-

ecution will restart at the same point, is called a program loop for ob-

vious reasons.

Exercise 3.13: Mulliply "4" by "7" in binary, using ihe/lowchari, and

verify lhal you obtain "28" Ifyou do not, fry again. It is only ifyou

obtain the correct result that you are ready to translate this flowchart

into a program.

8-By-8 Muitipiication

Let us now translate this flowchart into a program for the Z80. The

complete program appears m Figure 3.13. We are going to study it in

detail. As you will recall from Chapter i , programming consists here of

translating the flowchart of Figure 3.i2 mto the program of Figure

3.13. Each of the boxes m the flowchart will be translated by one or

more instructions.

it is assumed that MPR and MPD already have a value.

MPY88 LD BC, (MPRAD) LOAD MULTIPLIER INTO C
LD B, 8 B IS BIT COUNTER
LD DE, (MPDAD) LOAD MULTIPLICAND INTO E

LD D,0 CLEAR D
LD HL,0 SET RESULT TOO

MULT SRL C SHIFT MULTIPLIER BIT INTO
CARRY

JR NC, NOADD TEST CARRY
ADD HL, DE ADD MPD TO RESULT

NOADD SLA E SHIFT MPD LEFT
RL D SAVE BIT IN D
DEC B DECREMENT SHIFT COUNTER
JP NZ, MULT DO iT AGAIN IF COUNTER ^

LD (RESAD), HL STORE RESULT

Fig. 3.13: 8x8 MuftipHcation Program
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The first box of the flowchari is an initializalion box. Ii is necessary
to set a number of registers or memory locations to "0", as this pro-

jimm ^yi t^Uife tJieir u^. The registers whkh will be used by the

ihultilia^tion program appear in Figure 3.14.

(COUNTER)

(MPRAD)

(MPOAO)

(RESAO)

Fig 3.14: 8x8 MuHiplication—The Registers

Three register pairs of ihe Z80 are used for the muhiplication pro-
gram. The 8-bit multiplier is assumed to reside at memory address
MPRAD. The multiplicand MPD is assuitied tc> *^Me at memory ad-
dress MPDAD. The multiplier and the multiplicand respectively will be
loaded into registers C and E (see Figure 3.14). Register B will be used
as a counter.

Registers D and E will hold the multiplicand as it is shifted left one
bit at a time.

Note that, even though only C and E need to be loaded initially, a 16-

bit load must bifused, sdthit $ Jpfwill al^be loaded from memory,
and will have to be reset respectively to **8" and to "0".
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Finally, the results of an 8-bit by 8-bil multiplication may require up

to 16 bits. This is because 2" x 2" = 2". Two registers must therefore

be reserved for the result. They are registers H and L, as indicated on

Figure 3. 14.

The First step is to load registers B, C, and E with the appropriate

contents, and to initialize the result (the partial product) to the value

"0" as specified by the flowchart of Figure 3.12. This is accomplished

by the following instructions:

MPY88 LD BC, (MPRAD)
LD B, 8

LD DE, (MPDAD)
LD D,

LD HL,

The first three instructions respectively load MPR into the register pair

BC, the value "8" into register B, and MPD into the register pair DE.

Since MPR and MPD are 8-bit words, they are, in fact, loaded into

registers C and E respectively, while the next words in the memory after

MPR and MPD get loaded into B and D. This is shown m Figure 3.15

and 3.16. The next instruction will zero the contents of D.

In this muUiplicaiion program, the multiplicand will be shifted left

before being added to the result (remember that, optionally, it is pos-

sible to shift the result right instead, as indicated in the fourth box of

the flowchart of Figure 3.12). The multiplicand MPD will be shifted in-

to register D at each step. This register D must therefore be initialized to

the value "0". This is accomplished by the fourth instruction. Finally,

the fifth instruction sets the contents of registers H and L to m a single

instruction.

MEMORY

7^

Fig. 3.15: LD BC, (MPRAD)
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MEMORY

Fig. 3. 16: LD DE, (MPDAD)

Referring back to Ehe fiowchart of Figure 3.12, Ehe nexl step is to test

the least significant bit (the right-most biDof the multiplier MPR. If this

bit IS a "i", then the value of MPD must be added to the partial result,

otherwise it will not be added. This is accomplished by the next three in-

structions:

MULT SRL C
JR NC, NOADD
ADD HL, DE

The first problem we must solve is how to test the least significant bit of
the muUiplier, contained in register C. We could here use the BIT in-

struction of the Z80, which allows testing any bit in any register. How-
ever, in this case, we would like to construct a program as simple as

possible, using a loop. If we were using the BIT instruction here, we
would first test bit 0. then later test bit I , and so on until we reached bit

7. This would require a different instruction every time, and a simple
loop could not be used. In order to shorten the length of the program,
we must use a different instruction. Here we are using a shift instruc-
tion.

Note; There is a way to use the BIT instruction and a loop, but this

would require the program to modify itself, a practice we will avoid.
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SRL is a new type of operation within the arithemetic and logical

unit. It stands for "shift right logical." A logical shift to the right is

characterized by the fact tnat a"0" comes into bit position 7. This can

be contrasted to an arithemtic shift to the rights where the bit coming

into position 7 is identical to the previous value of bit 7. The different

types of shift operations will be described in the next chapter. The

effect of the SRL C instruction is illustrated in Figure 3.14 by an arrow

coming out of register C and into the square used to designate the carry

bit (also called "C"). At this point, the right-most bit of theMPR will

be in the carry bit C, where it can be tested.

The next instruction, "JR NC, NOADD", is di jump operation. It

means "jump on no carry" (NC) to the address (the label) NOADD. If

the contents of the carry bit are "0" (no carry), then the program will

jump to the address NOADD. If the contents of C are "1" (the carry

bic is set), then no branch will occur, and the next sequential instruction

will be executed, i.e., the instruction "ADD HL, DE" will be executed.

This instruction specifies that the contents of D and E be added to H
and L, with the resuh in H and L. Since E contains the multiplicand

MPD (see Figure 3.14), this adds the multiplicand to the partial result.

At this point, regardless of whether MPD has been added to the

result or not, the multiplicand must be shifted left (this is the fourth box

in the flowchart of Figure 3.12). This is accomplished by:

NOADD SLA E

SLA stands for "shift left arithmetic." It has just been explained above

that there are two types of shift operations, a logical shift and an arith-

metic shift. This is the arithmetic one. In the case of a left shift, an SLA
specifies that the bit coming into the right part of the register (the least

significant bit) be a "0" Oust as in the case of an SRL before).

As an example, let us assume that the initial contents of register E

were (XXX)100l. After the SLA instruction, the contents of E will be

(XX)1(X)10. And the contents of the carry bit will be 0.

However, looking back at Figure 3.14, we really want to shift the

most .significant bit (called the MSB) of E directly into D (this is il-

lustrated by the arrow on the illustration coming from E into D).

However, there is no instruction which will shift a double register such

as D and E in one operation. Once the contents of E have been shifted,

the left-most bit has "fallen into" the carry bit. We must collect this bit

from the carry bit and shift it into register D. This is accomplished by

the next instruction:

RL D
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RL is still another type of shift operation, it stands for "rotate iefc."
In a rolation operation, as opposed to a shif( operation, chis bit coming
into the register is the contents of the carry bit C (see Figure 3.17). This
is exactly what we want. The contents of the carry bit C are loaded into
the right-most part of D, and we have effectively transferred the left-

most bit of E.

This sequence of two instructions is illustrated in Figure 3.18. It can

be seen that the bit marked by an X in the most significant position of E
will first be transferred into the carry bit, then into the least significant

position of D. Effectively, it will have been shifted from E into D.
At this point, referring back to the flowchart of Figure 3.!2, we must

point to the next bit of MPR and check for the eighth bit. This is ac-

complished by decrementing the byte counter, contained in register B
(see Figure 3.14). The register is decremented by:

DEC B

This is a decrement instruction, which has the obvious effect.

Finally, we must check whether the counter has decremented to the

value zero. This is accomplished by checking the value of the Z bit. The
reader will recall that the Z (zero) Hag indicates whether the previous
arithmetic operation (such as a DEC operation) has produced a zero
result. However, note that DEC HL, DEC BC. DEC DE, DEC IX,
DEC SP do not affect the Z flag. If the counter is not "0". the opera-
tion !s not finished, and we must execute this program loop again. This
IS accomplished by the next instruction:

JP NZ MULT
SHIFT LEFT

\ r \ r \ r \ r \ r \ r \

CARRY

ROTATE LEFf

^ r ^ r^ r ^ r ^ f

RLC instruction

Fig. 3.17: Shift and Rotate
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C

D E

4 X

Fig. 3.18: Shifting from E into D

This is a jump instruction which specifies that whenever the Z bit is

not set (NZ stands for non-zero), a jump occurs to location MULT. This

is the program loop, which will be executed repeatedly until B decre-

ments to the value 0. Whenever B decrements to the value 0, the Z bit

will be set, and the JP NZ instruction will fail. This will result in the

next sequential instruction being executed, namely:

LD (RESAD), HL

This instruction merely saves the contents of H and L, i.e., the result of

the multiplication, at address RESAD, the address specified for the

result. Note that this instruction will transfer the contents of both regis-

ters H and L into two consecutive memory locations, corresponding to

addresses RESAD and RESAD + i . It saves 16 bits at a time.

Exercise 3.14: Could you write the same multiplication program using

the BIT instruction (described in the next chapter) instead of the SRL C
instruction? What would be the disadvantage?

Let us now improve the program, if possible:

Exercise 3.15: Can JR be substitutedfor JP at the end of the program?

If so, what IS the advantage?

Exercise 3.16: Can you use DJNZ to shorten the end of the program?
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Exercise 3. 1 7: Examine (he ( wo inslruclions: LD D, and LD ML, at

(he beginning of (he program. Can you si(bs(((u(e:

XOR A
LD D, A
LD H, A
LD L. A

If so. what IS (he impact on size (number of bytes) and speed?

Note that, in most cases, the program that we have jusl developed

wil! be a subroutme and the final mstructton in the subroutine will be

RET (return). The subroutme mechanism wil! be explained later in this

chapter.

Important Self-TesI

This is the first significant program we have encountered so far. It in-

cludes many different types of instructions, mciuding transfer instruc-

tions (LD), arithmetic operations (ADD), logical operations (SRL,

SLA, RL), and jump operations (JR, JP). !t also implements a pro-

gram loop, m which the lower seven mstructions, starting at address

MULT, are executed repeatedly. In order to understand programming,

it IS essential to understand the operation of such a program in com-
plete detail. The program is much longer than the previous simple arith-

metic programs we have developed so far, and it should be studied in

detail. An important exercise will now be proposed. The reader is

strongly urged to do this exercise completely and correctly before pro-

ceeding. This will be the only real proof that the concepts presented so

far have been understood. If a correct result is obtamed, it will mean
that you have really understood the mechanism by which instructions

manipulate information in the microprocessor, transfer it between the

memory and the registers, and process it. If you do not obtain the cor-

rect result, or if you do not do this exercse, it is likely that you will ex-

perience difficulties later m wntmg programs yourself. Learning to pro-

gram requires personal practice. Please pause now, take a piece of

paper, or use the illustration of Figure 3.19, and do the foilowmg exer-

cise;

Exercise 3. 18: Every time (hat a program is written, it should be verified

by hand, in order to ascertain (hat its results will be correct. We are go-
ing to do just that: (he goal of (his exercise is (o fill in the (able ofFigure
3. 19 completely and accurately.
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LABEL INSTRUCTION 8 C
iCARRYl

D E H L

Fig. 3.19: Form for Multiplicaiion Exercise

You may want to write directiy on Figure 3.19 or make a copy of it.

You must determine the contents of every relevant register in the Z80

after the execution of each instruction m the program, from beginnmg

to end. All the registers used by the program of Figure 3.13 are shown

in Figure 3.19. From left to right, they are registers B and C. the carry

C. registers D and E, and, finally, registers H and L. On the left pan of

this illustration, fill in the label, if applicable, and then the mstructions
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being executed. On ihe right of the instruction, fill in the contents of
each register after execution of the instruction. Whenever the contents
of a register are not known {indefinite), you may use dashes to repre-

sent its contents. Let us start fiiling m this table together. You will then

have to fill it out by yourself until the end. The first line appears below:

LABEL INSTRUCTION B C C D E H L

MPY88 ID BC,(0200} 00 03

Fig. 3.20: Multiplication: After One Instruction

We will assume here that we are multiplying "3" (MPR) by "5"

(MPD).
The first instruction to be executed is "LD BC, (MPRAD)'V The

contents of memory location MPRAD is loaded into registers B and C.
U has been assumed that MPR is equal to 3, i.e., "0000001 1 After ex-

ecution of this instruction, the contents of register C have been set to
"3". Note that this instruction will also result in loading register B with
whatever followed MPR in the memory. However, the next instruction

in the program will take care of this by loading register B with "8", as
shown In Figure 3.21. Note that, at this point, the contents of D and E
and H and L are still undefined, and this is indicated by dashes. The LD
instruction does not condition the carry bit, so that the contents of the

carry bit C are undefined. This is also indicated by a dash.

L^BEl

,

INSTRUCTION B C C D E H L

MPY88 LD BC,(0200)

LD B, 08

00

08

03

03

Fig. 3.21: Multiplication: After Two Instructions

The Situation after the execution of the first five instructions of the
program Oust before the MULT) is shown in Figure 3.22.
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LABEL INSTRUCTION B C C D E H L

MPY88 LD BC,(0200) 00 03 _

LD B, 08 08 03 -

LD DE,{0202) 08 03 00 05

LD 0,00 08 03 00 05

LD HL,0000 08 03 00 05 00 00

Fig. 3.22: Multiplication: After Five Instructions

The SRL instruction will perform a logical shift right, and the right-

most bit of MPR will fall into the carry bit. You can see in Figure 3.23

that the contents ofMPR after the shift is ' *0000 0001 ". The carry bit C
is now set to "i". The other registers are unchanged by this operation.

Please continue to fill out the chart by yourself.

A second iteration is shown at the end of this chapter in Fig. 3 .41

.

LABEL INSTRUCTION B C c D E H L

MPY88 LD BC,(0200)

LD B, 08

00

08

03

03

LD DE,C0202) 08 03 00 05

LD D,00 08 03 00 05

LD HL.OOOO 08 03 00 05 00 00

MULT SRLC 08 01 1 00 05 00 00

JR NCOIM 08 01 1 00 05 00 00

ADD HLDE 08 01 00 05 00 05

NOADD SLAE 08 01 00 OA 00 05

RLD 08 01 00 OA 00 05

DECB 07 01 00 OA 00 05

JPNZ.OIOF 07 01 00 OA 00 05

Fig. 3.23: One Pass Through The Loop.
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A complete listing showing the contents of all the Z80 registers and
the flags is shown in Fig. 3.39 at the end of this chapter for the compiete

multiplication. A hex or decimal listmg is shown in Fig, 3.40.

Programming Alternatives

The program that we have just developed could have been written. in

many other ways. As a general rule, every programmer can usually find

ways to modify, and often improve, a program. For example, we have

shifted the multiplicand left before adding. It would have been mathe-

matically equivalent to shift the resuh one position to the right before

adding it to the multiplicand. As a matter of fact, this is an interesting

exercise!

Exercise 3,19: Write an 8 x 8 multiplication program using the same

algorithm, but shifting the result one position to the right instead of
shifting the multiplicand by one position to the left. Compare it .to the

previous program, and determme whether this different approach

would befaster or slower than the preceding one. The speeds of the Z80

instructions are given in the next chapter.

Improved Multiplication Program

The program that we have just developed is a straightforward trans-

lation of the algorithm to code. However, effective programming re-

quires close attention to detail, and the length of the program can often

be reduced or Us execution speed can be improved. We are now going to

study alternatives designed to improve this basic program.

Step I

A first possible improvement lies m the better utilization of the Z80
instruction set. The second-to-last instruction as well as the preceding

one can be replaced by a single instruction:

DJNZ LOOP

This is a special Z80 "automated jump" which decrements the B register

and branches to a specified location if it is not "0", To be absolutely
correct, the instruction is not completely identical to the previous pair

DEC B
JP NZ, MULT
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ffOr it specifies a displacement, and one can only jump within the range

of - 126 to + 129. However, we must here jump to a location which is

only a few bytes away, and this improvement is legitimate. The
resulting program is shown in Figure 3.24 below:

MPY88B

MULT

NOADD

LD
LD
LD
LD
SRL
JR
ADD
SLA
RL
DJNZ
LD
RET

DE. (MPDAD)
BC, (MPRAD)
B,8
HL.

C
NC, NOADD
HL, DE
E
D
MULT
(RESAD), HL

BIT COUNTER

Fig. 3.24: Improved Multiply, Step I

Step 2

in order to improve this muUipiication program further, we will

observe that three different shift operations are used m the initial pro-

gram of Figure 3.13. The multiplier is shifted right, then the muhipli-

cand MFD is shifted left, in two operations, by first shifting register E
left, then rotating register D to the left. This is time-consuming. A stan-

dard programming "trick" used in the case of muItipHcation is based

on the following observation: every time that the multiplier is shifted by

one bit position, another bit position becomes available in the multi-

plier register. For example, assuming that the multiplier shifts right (in

the previous example), a bit position becomes available on the left.

Simultaneously, it can be observed that the first partial product (or

"result") will use, at most, 9 bits. If a single register had been allocated

to the result in the beginning of the program, we could then use the bit

position that has been vacated by the multiplier to store the ninth bit of

the result.

After the next shift of the MPR, the size of the partial product will be

increased by just one bit again. In other words, a single register can be

reserved intially for the partial product, and the bit positions which are

being freed by the multiplier can then be used as the MPR is being

shifted. In order to improve the program, we are therefore going to
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assign MPR and RES to a register pair. Ideally, they should be shifted

together in a single operation. Unfortunately, the Z80 shifts only 8-bit

registers at a time. Like most other 8-bit microprocessors, it has no in-

struction that allows shifting 16 bits at a time.

However, another trick can be used. The Z80 {like the 8080) is

equipped with special 16-bit add instructions that we have already used.

Provided that the multiplier and the result are stored in the register pair

H and L, we can use the instruction:

ADD HL, HL

which adds the contents of H and L to itself. Adding a number to

Itself is doubHng it. Doubling a number in the binary system is equiva-

lent to a left shift. We have just obtained a 16-bit shift in a single in-

struction. Unfortunately, the shift occurs to the left when we would like

it to occur to the right. This is not a problem.

Conceptually, the MPR can be shifted either left or right. We have
used a right shift algorithm because this is the one which is used in or-

dinary addition. However, it does not necessarily need to be so. The
addition operation is commutative, and the order can be reversed: shif-

tmg the MPR to the left is just as valid.

In order to take advantage of this simulated 16-bit shift, we will have
to shift the MPR to the left. Therefore, the MPR will reside in register

H and the result m register L. The resulting register configuration is

shown in Figure 3,25.
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The rest of the program is essentially identical to the previous one.

The resulting program appears below:

MUL88C LD HL. (MPRAD-n
LD L,

LD DE, (MPDAD)
LD D,

LD B. 8

MULT ADD HL, HL
JR NC, NOADD
ADD HL, DE

NOADD DJNZ MULT
LD (RESAD), HL
RET

COUNTER
SHIFT LEFT

Fig. 3.26: Improved Multiply, Slep 2

When comparmg this program to the previous one, it can be seen that

the length of the multiplication loop {the number of mstructions be-

tween MULT and the jump) has been reduced. This program has been

written in fewer instructions and this wiil usually result m faster execu-

tion. This shows the advantage of selecting the correct registers to con-

tain the information.

A straightforward design will generally result m a program that

works. U wiil not result in a program that is opiiiiiized. li is therefore

important to understand and use the available registers and instructions

m the best possible way. These examples illustrate a rational approach

to register selection and instruction selection for maximum efficiency.

Exercise 3.20: Compute (he speed of a /fiulliplicaiion operaiion using

(his [as( program. Assume (hal a branch will occur in 50% of the cases.

Look up (he number of cycles required by every instruction in the index

section. Assume a clock rate of 2 MHz (one cycle = 2 us).

Exercise 3.21: Note that here we have used the register pair D and E to

contain the multiplicand. How would the above program be changed ij

we had used the register pair B and C instead? (Hint: this would re-

quire a modification at the end.)

E.xercise 3.22: Why did we have to bother zeroing register D when

loading MPD into E?

Finally, let us address a detail which may look irntaimg to the pro-

grammer who is not yet familiar with the Z80. The reader will have
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noticed that, in order to load MPD into E from the memory, we had to

load both registers D and E at the same time from a memory address.

This is because, unless the address is contained in registers H and L.

there is no way to fetch a single byte directly and load it into register E.

This is a feature carried over from the early 8008, which had no direct

addressing mode. The feature was carried forward into the 8080, with

some improvements, and improved still further in the Z80, where it is

possible to fetch 16 bits directly from a given memory address (but not

8 bits - except toward register A).

Now. having solved this possible mystery, let us execute a more

complex multiplication.

A 16 X 16 Multiplication

In order to put our newly acquired skills to a test, we \Vill multiply

two 16-bit numbers. However, we will assume that the result requires

only 16 bits, so that it can be contained in one of the register pairs.

The result, as in our first multiplication example, is contained in

registers H and L (see Figure 3.27). The multiplicand MPD is contained

in registers D and E.

COUNTER MPR. HIGH

MPR, tow —i

MPD

1

RESULT
1

Fig. 3.27: 16 X 16 Multiply—The Registers
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lE would be tempting to depo.su a multipiier inio register B and C.
However, if we want lo lake advantage of the DJNZ in.slruciion,

register B must be allocated to Ehe counter. As a result, half of the
multiplier will be m register C, and the other half m register A (see

Figure 3.27). The multiplication program appears below:

MULi6

MULT

LD
LD
LD
LD
LD
LD
SRL

RRA

JR
ADD

NOADD EX
ADD

EX
DJNZ
RET

A, (MPRAD -f 1)

C, A
A, (MPRAD)
B, 16

DE,(MPDAD)
HL,

C

NC, NOADD
HL, DE
DE, HL
HL, HL

DE. HL
MULT

MPR. HIGH

MPR, LOW
COUNTER
MPD

RIGHT SHIFT MPR,
HIGH
ROTATE RIGHT MPR,
LOW
TEST CARRY
ADD MPD TO RESULT

DOUBLE - SHIFT MPD
LEFT

Fig. 3.28: 16 X 16 Multiplication Program

The program is analogous to those we have developed before. The
first six instructions (from label MULI6 to label MULT) perform the
initialization of registers with the appropriate contents. One complica-
tion is introduced here by the fact that the two halves of MPR must be
loaded in separate operations. It is assumed that MPRAD points to the

low part of the MPR in the memory, followed in the next sequential
memory location by the high part. (Note that the reverse convention
can be used.) Once the high part of MPR has been read into A, it must
be transferred into C;

LD A, (MPRAD -f- 1)

LD C, A

Finally, the low part of MPR can be read directly into the accumulator:

LD A, (MPRAD)
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The rest of the registers, B, D, E, H, and L are initialized as usual:

LD B, 16

LD DE, (MPDAD)
LD HL,

A 16-bit shift must be performed on the multiplier, it requires two

separate shift or rotate operations on registers C and A:

MULT SRL C
RRA

After the 16-bit shift, the right-most bit of the MPR. i.e., the LSB, is

contained m the carry bit C where it can be tested:

JR NC, NOADD

As usual, the multiplicand is not added to the result if the carry bit is

"0", and is added to the result if the carry bit is "1":

ADD HL, DE

Next, the multiplicand MPD must be shifted by one position to the left.

However, the Z80 does not have an instruction which will shift the

contents of register D and E simultaneously to the left by one bit posi-

tion, and It can also not add the contents of D and E to itself. The con-

tents of D and E will therefore first be transferred into H and L, then

doubled, and transferred back to D and E. This is accomplished by the

next three instructions:

NOADD EX DE, HL
ADD HL, HL
EX DE, HL

Finally, the counter B is decremented and a jump occurs to the begin-

ning of the loop as long as it does not decrement to "0":

DJNZ MULT

As usual, it is possible to consider other register allocations which may
(or may not) result in shorter codes;

Exercise 3.23: Load the multiplier info registers B and C. Place (he

counter in A. Write the corresponding multiplication program and

discuss the advantages or disadvantages of (his register allocation.
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Exercise 3.24: Referring to ihe original 16-bil niuliipHcatwn program

of Figure 3.28, can you propose a way lo shift (he MPD, coniaiiied in

registers D and E, without transferring it into registers H and L?

I-xercise 3.25: Write a l6-by-l6 niuliiplicalion progruin which deiecis

thefact that the result has more than 16 bits. This is a simple miprave-

nient of our basic program.

Exercise 3.26: Wnie a l6-by-I6 multiplication program wiih a 32-bii

result. The suggested register allocation appears in l igure 3.29.

Remember that the initial result after ihe first addition in ihe loop will

require only 16 bus, and that ihe multiplier will free one bit for each

subsequent iteration.

MPD

RE5

RESULT

AFTER

WlULTlPUCATiON

Fig. 3.29: !6 x 16 Multiply wilh 32-Bil Resuil

Let us now examine the last usual arithmetic operation, ihe division.

BINARY DIVISION

The algorithm for binary division is analogous to the one which has

been used for the multiplication. The divisor is successively subtracted

from the high order bits of the dividend. After each subtraction, the

result is used instead of the initial dividend. The value of the quoiieni is

simultaneously increased by 1 every time. Eventually, the result of Ehe

subtraction is negative. This is called an overdraw. One must ihen

restore the partial result by adding the divisor back to it. Naturally, the

quotient must be simultaneously decremented by i. Quotient and divi-

dend are then shifted by one bit position to the left and the algorithm is

repeated. The flow-chart is shown in Figure 3.30.

The method just described is called the restoring method. A variation

of this method which yields an improved speed of execution is called the

non-reslonng method.
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fNITIAUZE
QUOTiENT =

SHiFTCOUNTEB = 4

SHIFT L£R
DlVrOEND

(WiTH B lEADiNG O'l)

AND QUOTIENT

TRIAL SUBTRACT:
lECT (DiViDEND)-DIVISOR

QUOTIENT = QU0T!ENT + 1

1
1—

COUNTEfi = COUNTER- 1

RESTORE:
ADD DIVISOR

COUNTER = 0?

END (REWAiNDER IN LEFT (DIVIDEND)

Fig. 3.30: 8-Bit Binary Division Flowchart

Fig. 3.31: 16/8 Division—The Registers
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16-by-8 Division

As an example, lei us here examine a l6-by-8 division, which will

yield an 8-bit quotient and an 8-bit remainder dividend. The register

allocation is shown m Figure 3.31.

The program appears below:

DIVI68 LD A. (DVSAD) LOAD DIViSOR
LD D, A INTO D
LD E,

LD HL. (DVDAD) LOAD 16-BIT DIVIDEND
LD B. 8 INITIALIZE COUNTER

DIV XOR A CLEAR C BIT

SBC HL, DE DIVIDEND - DIVISOR
iNC HL QUOTIENT = QUOTIENT -f- i

JP P, NOADD TEST IF REMAINDER
POSITIVE

ADD HL, DE RESTORE IF NECESSARY
DEC HL QUOTIENT = QUOTIENT ~ 1

NOADD ADD HL, HL SHIFT DIVIDEND LEFT
DJNZ DIV LOOP UNTIL 8=0
RET

Fig. 3.32: 16/8 Division Program

The first five instructions in the program load the divisor and the divi^

dend respectively into the appropriate registers. They also initialize the

counter, in register B, to the value 8. Note again that register B is a pre-

ferred location for a counter if the specialized Z80 instruction DJNZ is

to be used:

DIV 168 LD A. (DVSAD)
LD D, A
LD E,

LD HL, (DVDAD)
LD B, 8

Next, the divisor is subtracted from the dividend. Since an SBC in-

struction must be used (there is no 16-bit subtract without carry), the

carry must be set to the value "0" before subtracting. This can be ac-

complished in a number of ways. The carry can be cleared by perform-
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ing instructions such as:

XOR A
AND A
OR A

Here, an XOR is used:

DIV XOR A

The subtraction can then be performed:

SBC HL, DE

It is anticipated that the subtraction will be successful, i.e., that the re-

mainder wil! be positive. This is called the "trial subtract" step (refer to

the flowchart of Figure 3.30). The quotient is therefore incremented by

one. If the subtraction has in fact failed (i.e., if the remainder is

negative), the quotient will have to be decremented by one later on:

INC HL

The result of the subtraction is then tested;

JP P. NOADD

if the remainder is positive or zero, the subtraction has been successful,

and It is not necessary to store it. The program jumps to address

NOADD. Otherwise, the current dividend must be restored to its

previous value, by adding the divisor back to it, and the quotient must

be decremented by one. This is performed by the next instructions:

ADD HL, DE
DEC HL

Finally, the resulting dividend is shifted left, in anticipation of the

next trial subtract operation. Finally, the B counter is decremented and

tested for the value "0". As long as B is not zero, this loop is executed;

NOADD ADD HL, HL
DJNZ DIV
RET

Exercise 3.27: Verify (he operation of ihis division program by hand,

by filling out the table of Figure 3.33, as In Exercise 3.18for the muld-

plication. Note that the contents ofD need not be entered on theform

of Figure 3.33, since they are never modified.
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lABEl INSIHUCnON 5 H i

Fig. 3.33: Form for Division Program

8-Bit Division

The following program uses a restoring method, and leaves a com-
plemented quotient in A. It divides 8 bits by 8 bits (unsigned).

E IS DIVIDEND
C IS DIVISOR
A IS QUOTIENT
B IS REMAINDER

D1V88 XOR A
LD B.8

LOOP88 RL E

RLA
SUB C
JR NC, $ + 3

ADD A, C
DJNZ LOOP88
LD B, A
LD A, E
RLA
CPL
RET

CLEAR ACCUMULATOR
LOOP COUNTER
ROTATE CY INTO ACC-
DIVIDEND
CY WILL BE OFF
TRIAL SUBTRACT DiViSOR
SUBTRACT OK
RESTORE ACCUM, SET CY

PUT REMAINDER IN B
GET QUOTIENT
SHIFT !N LAST RESULT BIT

COMPLEMENT BITS

NoEc: ihe "$" symbol m the sixth instruction represents the value of the

program counter.

137



PROGRAMMING THE Z80

Non Restoring Division

The rollowtng program performs a 16-bit by !5-b!i mteger division,

usmg a non-reslonng technique. IX points to the dividend, lY to the

divisor (not zero), (see Figure 3.34.).

A DVD, HI

B COUNTER DVD,LO C

D DiVISOR

H
I

REM

PVD ADDRESS

iy! DVS ADDR

Fig. 3.34: Non-Restoring Division—The Registers

Register B is used as a counter, initially set to 16.

A and C contain the dividend.

D and E contain the divisor.

H and L contain the result.

The 16-bit dividend is shifted left by:

RL C
RLA

The remainder is shifted left by:

ADC HL, HL.

The final quotient is left in B, C, with the remainder in HL. The

program follows.
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D!V16 LD B, (IX + !)

LD C. (IX)

LD D,(iY + I)

LD E. (lY)

LD A, D
OR E (DiVISOR) HIGH OR

(DIVISOR) LOW
JR Z, ERROR CHECK FOR DIVISOR =

ZERO
LD A, B GET (DVD) HI
LD HL.O CLEAR RESULT
LD B, 16 COUNTER

TRiALSB RL <^ ROTATE RESULT + ACC
LEFT

RLA
ADC HL, HL LEFT SHIFT. NEVER SETS

CARRY.
SBC HL, DE MINUS DIVISOR

NULL CCF RESULT BIT
IR NC, NGV ACCUMULATOR

NEGATIVE?
DJNZ TRIALSB COUNTER ZERO?
JP DONE

RESTOR RL C ROTATE RESULT + ACC
LEFT

RLA
ADC HL,HL AS ABOVE
AND A
ADC HL, DE RESTORE BY ADDING DVS
JR C, PTV RESULT POSITIVE
JR Z. NULL RESULT ZERO

NOV DJNZ RESTOR COUNTER ZERO?
DONE RL C SHIFT IN RESUIT BiT

RLA
ADD HL, DE CORRECT REMAINDER
LD B, A QUOTIENT IS IN B, C
RET
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Exercise 3.28: Compare !he previous program to ihefollowmg one, us-

ing a restoring (echnique:

DIVIDEND IN AC
DiViSOR IN DE
QUOTIENT IN AC
REMAINDER IN HL

LD HL.O CLEAR ACCUMULATOR
LD B, 16 SET COUNTER
RL C ROT ACC-RESULT LEFT

RLA
ADC HL, HL LEFT SHIFT

SBC HL, DE TRIAL SUBTRACT DIVISOR

JR NC, S + 3 SUB WAS OK
ADD HL, DE RESTORE ACCUM
CCF CALC RESULT BIT

DJNZ LOOP 16 COUNTER NOT ZERO
RL C SHIFT IN LAST RESULT BIT

RLA
RET

Note: The symbol "S" means "current location" (eighth mstruction).

LOGICAL OPERATIONS

The other class of instructions which can be executed by the ALU in-

side the microprocessor is the set of logical instructions. They include:

AND, OR and exclusive OR (XOR). In addition, one can also include

here the shift and rotate operations which have already been utilized,

and the comparison instruction, called CP for the Z80. The individual

use of AND, OR, XOR, will be described in Chapter 4 on the mstruc-

tion set.

Let us now develop a brief program which will check whether a given

memory location called LOC contains the value "0", the value "1", or

something else.

The program will introduce the comparison instruction, and perform

a series of logical tests. Depending on the result of the comparison, one

program segment or another will be executed.
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The program appears below:

LD A, (LOC) READ CHARACTER iN
LOC

CP OOH COMPARE TO ZERO
JP Z, ZERO iS IT A 0?

CP OIH COMPARE TO ONE
JP Z, ONE

NONEFOUND ...

ZERO

ONE

The first instruction: "LD A, (LOC)" reads the contents of memory
location LOC. and loads u into the accumulator. This is the character
we want to test. It is compared to the value by the following instruc-
tion:

CP OOH

This instruction compares the contents of the accumulator to the hex-
adecimal value "00". i.e., the bit pattern "0000 0000". This compari-
son instruction will set the Z bit in the flags register to the value "i", if

it succeeds. This bit can then be tested by the next instruction:

JP Z, ZERO

The jump instruction tests the value of the Z bit . If the comparison suc-
ceeds, the Z bit has been set to one, and the jump will succeed. The pro-
gram will then jump to the address ZERO. If the test fails, then the next
sequential instruction will be executed:

CP OIH

Similarly, the following jump instruction will branch to location ONE
if the comparison succeeds. If none of the comparisons succeed, then
the instruction at location NONEFOUND will be executed.

JP Z, ONE
NONEFOUND ..
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This program was introduced to dcmonsfraie the value of the com-

parison mslruction foliowed by a jump. This combmation will be used

in many of the rollowing programs.

Exercise 3.29: Refer lo the dej'iniiion oj {he IDA, (LOO instruciion in

ihe ne.\-( cliapier. Examine (he effect of this insiniciion on (he flags, if

any. Is the second instruction of thisprogram necessary (CP OOH)?

Exercise 3.30: Wnie ilw program which will read the contents of

memory location "24" and branch to an address cailed"STA ir'iftiiere

was a in memory location 24. The hit pattern for a in binary

natation will be assumed to be represented by "001 010JO".

INSTRUCTION SUMMARY

\Vc have now studied most of ihc nnponant inslruclions of the Z80

by usmg them. We have transferred values between the memory and the

reuisicrs. We have performed arithmetic and logical operations on such

data. We have tested u, and depending on Ihe results of these tests,

have executed various portions of the program, in particular, special

"automated" Z80 instructions such as DJNZ have been used to shorten

programs. Other automated instructions: LDDR. CPiR, INIR will be

introduced throughout the remainder of this book.

Full use has been made of special Z80 features, such as I6-bil register

instructions to simplify the programs, and the reader should be careful

not 10 use these programs on an 8080: ihey have been optimized for the

Z80.

We have also introduced a structure called a loop. Another impor-

tant programming structure will be introduced now: ihe subroutine.

SUBROUTINKS

In concept, a subroutine is simply a block of instructions which has

been given a name by the programmer. From a practical standpoint, a

subrouiine must start with a special instruction called a subroutine

declaration, which identifies it as such for the assembler. It is also ter-

minated by another special instruction called a return. Let us first il-

lusiraic the use of a subroutine m a program in order to demonstrate its

value. Then, we will examine how it is actually implemented.
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«»lfj PBCXlliAM

C4U SUB

DilUEfd

B

Fi}^. 3.35: Stihroulinc Calls

The use of a subrouiine i.s iilustraleci m Figure 3.35. The mam pro-
gram appears on the icf! ol" ihe illusiralion. The subroutmc is shown
symboljcaHy on jhe right. Lei us examine the subrouiine mechanism.
The lines of (he main program arc executed successively until a new in-

struction "CALL SUB" IS mei. This special insiruciion is the

subrouiine call and resuUs m a transfer to the subroutine. This means
that the next instruction to be executed after the CALL SUB is the first

insiruciion within the subrouime. This i.s illustrated by arrow 1 on the

iliustralion.

Then, the subprogram withm the subroutine executes jusi like any
other program. We will a.ssume thai the subrouime docs not contain
any other calls. The last insiruciion of this subroutine is a RETURN.
This IS a special instruction which will cause a return to the main pro-
gram. The next insiruciion io be executed after the RETURN is the one
following the CALL SUB in the main program. This is iliuslraicd by ar-

row 3 on the illustration. Program execution eontmues then, as il-

liisiraied by arrow 4.

in ihc body of ihe main program a second CALL SUB appears. A
new iraiisfcr occurs, shown by arrow 5. This means thai the body of the

subruuiinc is again executed following ihe CALL SUB instruction.

Whenever the RETURN within the subroutine ls encountered, a
return occurs to the insiruciion following the CALL SUB m question.
This IS illusiraied by arrow 7. Following the return to the mam pro-
gram, program execution proceeds normaliy, as illustrated by arrow 8.

The effect of the iwo special instructions CALL SUB and RETURN
should now be clear. What is the value of (he subroutine mechanism?

The essential value of the subroutine is that ii can be called from any
number of points in the mam program, and used repeatedly wiilioul
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re\vnim}> ii. A first advantage is thai this approach saves memory

space, -since there is no need lo rewrite the subroutine every (ime. A se-

cond advantage is that the programmer can design a .specific subroutine

only once and then use il repeatedly. This is a signiHcani simplification

m program design.

Exercise 3.3/: Wha! is (he mam disaclvaniage of a sithroiume? (An.swer

foliows.)

The disadvantage of the subrout me should be clear just by examining

ihc flow of execution between the mam program and the subroutine. A

subroutine results m a slower exeaifion, since extra mstruciions must

be executed: the CALL SUB and the RETURN.

Implementation of the Subroutine Mechanism

Wc will examine here how the two special mstruciions, CALL SUB

and RETURN, are implemented mternally wilhm the proce.ssor. The

effect of the CALL SUB instruction is lo cause the next mstruction to

be fetched at a new address. You will remember (or else read Chapter

! agam) that the addre.s.s of the next instruction to be executed in a

computer is contamed m the program counter (PC). This means ihat

the effect of the CALL SUB i.s to substitute new contents m register PC.

lis effect IS to load the start address of the subroutine m ihe program

counter. Is lhai really suffiaeni?

To an.swer this question, let us consider the other instruction which

has 10 be implemented: the RETURN. The RETURN must cause, as its

name mdicaies, a return to the instruction that follows the CALL SUB.

This is po.ssibleonly if the address of this instruction has been preserved

somewhere. This address happens to be the value of the program

counter at the time that the CALL SUB was encountered. This is

because the program counter i.s aulonialically incremented every imic \\

IS used {read Chapter I agam). This is precisely Ihe address lhai wcwani

lo preserve, so that we can later perform the RETURN.

The next problem is: where can we save this return address? This ad-

dress must be .saved in a location where it is guaranteed that it wili not

be erased.

However, let us now consider the following situation, illustrated by

Figure 3.36. In this example, subroutine i contams a call to SUB2. Our

mechanism should work in this ca.se as well. Naturally, there might even

be more than two subroutines, say N "nested" calls. Whenever a new
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CALL i.s ciicouniereci, the mechanism must iheret'orc again store the
program counter. This implies that we need at least 2N memory loca-
tions lor this mechanism. Additionaily, we will need to return lYom
SUB2 first and SUBi next. In other words, we need a structure which
can preserve the chronological ordering in which addresses have been
saved.

The structure has a name and has already been introduced, it is ihe
Slack. Figure 3.38 shows the actual contents of the stack durmg suc-
cessive subroutme calls. Let us look at the main program first. At ad-
dress 100, the first call is encountered: CALL SUBI. We will assume
that, in this microprocessor, the subroutine call uses 3 bytes (RST is an
exception). The next sequential address is therefore not "101". but
"103". The CALL instruction uses addresses "100", "10r\ "102"-
Because the control unit of the Z80 "knows" that it is a 3-byte instruc-
tion, the value of the program counter, when the call has been com-
pletely decoded, will be "103". The effect of the call will be to load the
value "280" m the program counter. "280" is the starting address of
SUBI.

mil

In Blul..

Fig. 3.36: Nested Cails

We are now ready to demonstrate the effect of the RETURN instruc-
tion and the correct operation of our stack mechanism. Execution pro-
ceeds within SUB2 until the RETURN instruction is encountered at
time 3. The effect of the RETURN instruction is simply to pop the top
of the Slack into the program counter. In other words, the program
counter is restored to its value prior to the entry into the subroutine.
The lop of the stack in our example is "303". Figure 3.38 shows that, at
time 3, value "303" has been removed from the slack and has been put
back into the program counter. As a result, instruction execution pro-
ceeds from address "303". At time 4. the RETURN of SUBI is encoun-
tered. The value on top of the stack is "103"- It is popped and is in-

stalled m the program counter. As a result, program execution will pro-
ceed from location "103" on within the main program. This is, indeed.
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[he effect that we wanted. Figure 3.38 shows that at time 4 the stack is

again empty. The mechanism works.

The subroutine cail mechanism works up to the maximum dimension

of the stack. This is why early microprocessors which had a 4- or

8-regi5ter stack were essentially limited to 4 or 8 levels of subroutine

calls.

Note that, on Figures 3.36 and 3.37, the subroutines have been

shown to the right of the main program. This is only for the clarity of

the diagram, in reality, the subroutines are typed by the user as regular

instructions of the program. On a sheet of paper, when producing the

listing of the complete program, the subroutines may be at the begin-

ning of the text, in its middle, or at the end. This is why they are pre-

ceded by a subroutine declaration: they must be identified. The special

mstructions tell the assembler that what follows should be treated as a

subroutine. Such assembler directives will be discussed m Chapter 10.

ADD K£55 IWiNj

(SUB 1 (

Fig. 3.37: The Subroutine Calls

STACK: T!ME (T) TIME@ TIME (3) TIME

103 103 103

303

Fig. 3.38: Stack vs. Time
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Z80 Subroutines

The basic concepts relating to subroutines have now been presented.
It has been shown that the stack is required in order to implement this
mechanism. The Z80 is equipped with a i6-bit stack-pomter register.
The stack can therefore reside anywhere within the memory and may
have up to 64K (IK = 1024) bytes, assuming they are available for that
purpose. In practice, the start address for the stack, as well as its max-
imum dimension, will be defined by the programmer before writing his
program. A memory area will then be reserved for the stack.

^
The subroutine-call instruction, in the case of the Z80, is called

CALL, and comes in two versions; the dircci or uncondiiionai call,
such as CALL ADDRESS, is the one we have already described. In ad-
dition, the Z80 is equipped with a conditional call instruction which will
call a subroutine if a condition is met. For example: CALL NZ SUBl
will result in a call to subroutine I if the Z flag is zero at the time of the
test. This is a powerful facility, since many subroutine calls are
conditional, i.e.. occur only if some specific condition is met.
CALL CC, NN IS executed only if the condiuon specified by "CC"

IS true. CC is a set of three bits (bits 3. 4, and 5 of the opcode) which
may specify up to eight conditions. They correspond respectively to the
four nags "Z", "C", "P/V". "S" being either zero or non-zero.

ni?i"li^^'''^'
^^P^^ instructions are provided: RET andKt 1 CC.

RET IS the basic return instruction. It occupies one byte, and causes
the top two bytes of the stack to be re-installed m the program counter
it IS unconditional.

RET CC has the same effect except that it is executed only if the con-
diuons specified by CC arc true. The condition bus are the same as for
the CALL instruction just described.

Additionally, two specialized types of return are available which are
used to terminate interrupt routines: RETI, RETN. They are described
in the section on the Z80 instructions as well as in the section on inter-
rupts.

Finally, one more specialized instruction is provided which is analo-
gous to a subroutine call, but allows the program to branch to only one
of eight starting locations located m page zero. This is the RST P in-
struction. This IS a one-byte instruction which automatically preserves
the program counter In the stack, and causes a branch to the address
specified by the three-bit P field. The P field corresponds to bits 3, 4
and 5 of the insrtuction, multiplied by eight.
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In other words, if bits 3, 4. 5 are "000", the jump will occur to loca-

tion OOH. if these bits are "001". the branch will occur to 08H, etc. up

to 1 II, which will cause a branch to location 38H. The RST instruction

IS very efficient m terms of speed since it is a single-byte instruction.

However, it can jump to only eight locations, in page 0. Additionally,

these addresses m page are only eight bytes apart. This instruction is a

carry-over from the 8080 and was extensively used for interrupts. This

will be described m the interrupt section. However, this instruction may

be used for any other purpose by the programmer, and should be con-

sidered as a possible specialized subroutine call.

Subroutine Examples

Most of the programs that we have developed and are going to

develop would usually be written as subroutines. For example, the

multiplication program is Hkely to be used by many areas of the pro-

gram, in order to facilitate and clarify program development, it is

therefore convenient to define a subroutine whose name would be, for

example. MULT. At the end of this subroutine we would simply add

the instruction RET.

Exercise 3.32: If MULT is used as a subrouline, would it "damage"

any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is caOing itself.

If you have understood the implementation mechanism, you should

now be able to answer the following question:

Exercise 3.33: Is it legal to let a subroutine call itself? (In other words,

will everything work even if a subroutine calls itself?) If you are not

sure, draw the stack andfill It with the successive addresses. Then, look

at the registers and memory (see Exercise 3.18} and determine if a pro-

blem exists.

interrupts will be discussed in the input/output chapter (Chapter 6).

All returns except returns from interrupts are one-byte instructions; all

calls are 3-byte instructions (except RST).

Exercise 3.34: Look at the execution times of the CALL and the RET
instructions in the next chapter. Why is the returnfrom a subroutine so

much faster than the CALL? (Hint: if the answer is not obvious, look

again at the stack implementation of the subroutine mechanism, and

analyze the internal operations that must be performed.)
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Sttbrouline parameters

When calling a subroutine, one normally expects the subroutine to

work on some data. For example, in the case of multiplication, one

wants to transmit two numbers to the subroutine which will perfbnn

the multipUcaU^nv We saw in the case of the multiplication routine that

this subroutine expected to find the multiplier and the multiplicand in

given memory locations. This illustrates one method of passing para-

meters; through memory. Two other techniiques are used, so that we

have three ways of passing parameters.

1—through registers

Registers can be used to pass parameters. This is an advantageous

solution, provided that registers are available, since one does not need

(0 us^ a flxea themdry loeatibit: tfii Subfdtitine fema;im fhtitiori^intfe-

pendent. If a fixed memory location is used, any other user of the sub-

routine must be very careful that he uses the same convention and that

the memory location is indeed availabfe (loole at BxerGfee-Svl^, afee'k^)-.

This is why, in many cases, a block of memory locations is re^rved

simply to pass parameters among various subroutines.

Using memory has the advantage of greater flexibility <tnore data),

but results in poorer performance and also in tying the subroutine to a

given memory area.

Tteposlting parameters in the shck has tfre same advantage as using

registers: it is memory-independent. The subroutine simply knows that

it is supposed to receive, say, two parameters which are stored on top of

the stack. Natura:ily, if fiasijis^d^miges* It elutt^s the^staek withdata

and, therefore, reduces the number of possible levels of subroutine

calls. It also significantly complicates the use of the slack, and may re-

quire multipfe staeks-.

The choice is up to the programmer. In general, one wishes to remain

independent from actual memory locations as long as possible.

If fegisters^ Mm mm avtikfetei a pi3ssiMe iserftitrtyii ietfife sitatfe. Ifew-

ever, if a large quantity of information should be passed to a sub-

routine, this information may have to reside directly in the memory. An
dfegant way around tHe prbfetem of passing a Bldt^k oifd^ata is Mritply

transmit a pointer to the information. A pointer is the address of the

beginning of the block. A pointer can be transmitted in a register, or in

the sta^fk (two-sctct l«i^onr^ be tlSBd t»storea 16-bit address), or

in a given meffrory loGatitinfs).
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Finally, if neither of ihe two solutions is appiicabie, then an agree-

itimi 'tMf fee. iti0tp ^itft. fM iWteiJljS^ thH the data will be at some
flK^ oii^inory locatian Jthe

Bxerdse $*Mi Which of the three methods ahovje is bestfor recursion ?

Subroiitine Librani'

Tft^^e a stfiOttf aavSntal© %1*lieluHrit potttdtis ofb pi-ffgraift Jiild

identifiable subroutines: they can be debugged independently and can

have a mnemonic name. Provided that they will be used in other areas

x>1 the ptrcjgram, they feie^me shareabfe* and oue< can thm MM a.

library of useful subroutines. However, there is no general panacea in

computer programming. Using subroutines systematically for any

poor efficiency. The alert programmer will have 10 weigh the advan-

tages against the disadvantages.

SUMMARY

This chapter has presented the way information is manipulated inside

the Z80 by instructions. Increasingly complex algorithms have been in-

troduced and translated into programs. The main types of instructions

have been used and explained.

Important structures such as loops, stacks and subroutines, have

been defined.

You should now have acquired a basic understanding of program-

ming, and of the major techniques used in standard applications. Let

US study the instnietions available.

150



BASIC PROGRAMMING TECHNIQUES

A'=00 BC=0000 BE^=0000 HL:=0000 B-=0300 P:=0100 0100 ' LB BCt ( 0200)
A':=00 B' =0000 Li'-=0000 =0000 X-=0000 Y:=0000 1=00 t0200'

)

ft'=00 BC =0003 BE-=0000 HL'=0000 =0300 P-=0104 0104 ' LB B.oa
ft ' =^00 B ' =0000 B ' :=0000 H'-=0000 X:=0000 Y==0000 1=00

fl:=00 BC=0803 BE-=0000 HL:=0000 S:=0300 =0106 0106' LB BE f< 0202)
ft' =00 B

'

=0000 D'-=0000 H':=0000 X-=0000 Y-=0000 I '=00 ( 0202'

>

ft'=00 BC =0803 BE-=0005 HL:=0000 S'=0300 P-=010A OlOA' LB Bf 00
A

'

=00 B

'

=0000 B ' =0000 H'-=0000 X:=0000 =0000 1=00
A BC=0803 BE^=0005 HL-=0000 S:=0300 P-=01 oc OlOC ' LD HL f 0000
—An-Uu D =0000 B

'

=0000 H '

'

"0000 X:=0000 Y-=0000 1=00 (0000'

>

A'=00 —VOWJ ric-ut-—nnn=^"UUU J =0000 S-=^0300 P:=01 OF OlOF

'

SRL C
A

'

=00 B

'

=0000 n ' -u -AAA A
ri

—nnAn-UUUU A-=0000 Y-=0000 1=00
c A-=00 BC;=0801 BE:=0005 ni_--AAA A-UUUU 3-—ATnA O-

r^-
—A 1 i *-Ul I 1 0111' JR NC 1 01 1

4

A ' =00 II ' =0000 D

'

-AAAA n --AAnn-UUUU A--AAA A-UUUU Y:=0000 1=00 < 01 1
4

' )

c A-=00 BC=0801 DE:=0005 -AAA A-UUUU -ATA A (3-=0113 0113

'

ABB HL I BE
A ' =00 B '

-=0000 ~AAAA-UUUU ri --nnAn-UuuU A-=0000 Y==0000 1=00
A- -AHA 1 "UUUa HL'=0005 S-=0300 P:=0114 0114

'

SLA E
H ~ —nnnA B '

'

=0000 H ' -=0000 X'=0000 Y:=0000 1=00
A-=00 EiC-=OS0i BE:=0O0A HL-"0005 =0300 P:=0116 0116' RL B

A ' =00 B'-=0000 B''=0000 H'

'

=0000 X'=0000 Y:=0000 1=00
z u A-=00 BC-=0801 BE:=000A HL'=0005 S-=0300 P-=0118 0110' EEC B

A ' =00 B' =0000 0''=0000 H'-=0000 X'=0000 Y'=0000 1=00
N A-=00 BC-=0701 DE'=0O0A HL==0005 S'=0300 P==0119 0119' JP N2.010F

A ' ==00 D' =^0000 D' :=0000 H'-=0000 x==0000 Y==0000 1=00 <010F'

)

rt A--An =0701 DE'=00OA HL==0005 S'=0300 P==010F OlOF ' SRL C
A ' -=00 B ' =0000 B '

'

=0000 H '

'

=0000 =0000 Y'=0000 1 =00
7 y rV I* H-'-nn- W\J t'U--n"?An Ut-=000A HL'=0005 s==0300 P'=0111 0111' JR ^fC^0114

A ' '-An D --nnAA-UUUU ' :=0000 H ' ==0000 x==0000 Y:=0000 1 =00 <0114 '

)

2 \j ^ A-=00 BC-=0700 uc.--AAAA-UUUH HL'=0005 S'=0300 P==0113 0113' ADD ]-!L r DE
A '

:

=00 D '

:

-^>AAA -AnnA-UUUU ri --AnnA-uUUu x==0000 Y'=0000 I =00
Z y A--00 BC==0700 -Ann A-VUUH nL_--AA Al^ C-b--n-7AA- UJUU F'==0114 0114' SLA E

A '

"

-00 ' -

£' -"AAA A -AAnn-UUUU H ' ==0000 X'=0000 Y-"=0000 1 =00
y H- - U / U t/ Lib-=0014 HL'=000F S'=0300 P ==0J.16 0116' RL U

[1 - k/U =0000 B ' ==0000 H ' ==0000 x==0000 y==0000 1 =00
L V A-=00 !'C-=0700 BE'=001

4

HL==000F s==0300 p==01 18 0118' BEC II

A ' ^00 B ' =0000 W-=0000 H' ==0000 X'=0000 Y'=0000 1 =00
N A-^00 BC==0600 BE-=0014 HL== 000]- S'=0300 F':=0119 0119' JP N2.010F

A '
-"00 }>'-=0000 B' ==0000 H'-=0000 X'=0000 Y==0000 1=00 (OlOF )

N A-=00 BC-=0600 BE==0014 HL==O0OF s==0300 P==010F OlOF SRL C
A ' -=00 E!

' :=0000 B ' ==0000 H ' ==0000 x==0000 Y'=0000 1=00
IIV A--nn fL.-=0600 BE==001

4

HL=:000F 3-=0300 P==0111 0111' JR NC rOl 14
A ' -

I.'
-=0000 B ' ==0000 H ' ==0000 x==0000 Y ==0000 T =00 (0) 14 ' 1

\} A-=00 BC ==0600 j-'ii-
-AA i A-UU i '1 ML-'OOOF s==0300 P ='Oil"! 0114' SLA E-~

A ' ==00 B ' -=0000 Tl' --AAnn-UUUk/ ri 'Ann A-UUUU x==0000 Y ='0000 1 =00
\} A-=00 -AAAA -Ama-Uu*Ja ML-=000F 5='0300 P ==0116 0116' r<L I(

A ' -=00 B ' -=0000 Ir ' =-AAA A W -n --AnAA-UUUU A-=0000 Y ==0000 1 =00
z A-=00 PC-=0600 BE==0028 HL = Q--A"?AA-U Jk/U 1

--n 1 I n'V I Its U i 1 tJ BEC B
A '

"

=00 B ' :~n Afi- V U u --Ann A-UUUU H' -=0000 X-=0000 Y ==0000 1=00
N A-=00 BC =-Ai^AA -AA'-'O

=000F B-'0300 F' ==0119 0119' JP NZ I OlOF
A ' -

=OCj B ' ==0000 B ' ==0000 H ' ='0000 '0000 Y ==0000 1=00 f OlOF

>

N A-=00 8C-=0500 EC''0028 HL==0OOF S==0300 P ==010F OlOF SRL C
A ' --nn t> ' „D -=0000 B '

='0000 H '
==0000 X==0000 V ==0000 1=00

L U A-=00 BC'=0500 BE ==0028 HL==000F S-=0300 P==0111 Oil! JR NC.0114
A ' -=00 B '

'

=0000 ri ' ==0000 H' -'0000 X-=0000 Y='OOOO 1 =00 (On 4 1
_^

IIV A--nA =0500 BE'=0028 HL==000F 5-'0300 pr'0114 0114' Si.

A

A ' --nA ' ='0000 H ' ='0000 X-'0000 Y ==0000 1=00
ij A--AA '0050 NL='OOOF s='0300 F' ==0116 0116' RL

A '-=00 Ei ' ==0000 n ' ='0000 n --nAnn-yuuu Y-A --AAA A Y-
I --AAAA T —nn

z M A==00 BC==0500 rc='0050 HL==000F s='0300 P ='Oils 0118' DEC B
A ' ='00 B'^=0000 B' ='0000 w-=0000 x=-0000 Y ==0000 T =00

N A ='00 BC'=0400 BE='0050 HL ==000F s==0300 =0119 0119 JP :-J7.010F
A -=00 B' ==0000 B'-'0000 H' ='0000 x==0000 Y='0000 1 =00 OlOF'

!

N A^^00 BC ==0100 BE==0050 HL=:OO0F s='0300 P==01 OF 01 OF' SRL r
ft';=00 B' ==0000 D' =0000 H' =-0000 x==0000 Y ='0000 1 =00

Fig, 3.39: Multiplication: A Compiete Trace
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Fig. 3.39: Multiplication: A Complete Trace (continued)
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ANSWERSTO EXERCISE 3.18 (MULTIPLICATION):

J Ul<3 .ISStHiiLCf: 02 , ; V.

OOOO' 000! DRn 1 OOH
(0200) O002 PL 0200H
(0202) 0003 DL 0202H
co:;o4) OOO^l

ooon
REiSAII ML 020411

0100 EP'inooo? OOOi MP 4 00 Lli E^ijiiji J! J. fill' ifiiir 1.

I' 1 ' 1< FE HIT t:r}UIJTEE<:

0106 ED5B020t 0000 Ll! nn. (HPiiAi!) iLOftn HiniFLicnNii ihtq e
OJOd 1600 OOD? LB UiO iCLEnn LI

OlOC 210000 0010 (11. -0 IHET T'EtSUIJ rij

OIOF C!'39 0011 MULT GRL c i^HIFl «lIt_TTrLIER l<n IllTO
01 11 3001 0012 Jil JICrllDf.UlJ ;TEST ZiViH-i
0113 19 0Q13 nm HL.DE ;Aiiri itpn TO RESUi.i
011^ CB23 0014 tiOADD 5LA F_ JSHIFl MF-[i LEFT
0116 CBi^ 0015 «L D ;sAVE BIT HI V
01 JO on 0016 ntz b T'lICfiEMEfn iSHIFT Clil/NIGft
0117 C20F01 0017 JR ffZfMULT ;.nQ !i fio.-iiu ',r cofiKTER .-

OliC 220-102 ooia LU (RESfiDi-ltL ;Gri!iiE Fif.auLp
OUF 10000) 001?

Error

Fig. 3.40: The Multiplication Program (Hex)

1 ARFI p.o c Q
iCARRY)

nu t: M L

00 00 00 00 00 00

MP488 LD BC,(0200) 00 03 00 00 00 00

LD B, 08 08 03 00 00 00 00

LD DE,C0202) 08 03 00 05 00 00

LU u, uu Uo AO /-I

00 05 00 00

LD HL.OOOO 08 03 00 05 00 00

MULT SRLC 08 01 1 00 05 00 00

JR NC,01I4 08 01 1 00 05 00 00

ADD Hl,DE 08 01 00 05 00 05

NOADD SLAE 08 01 00 OA 00 05

RLD 08 01 00 OA 00 05

DECS 07 01 00 OA 00 05

JPNZ.OIOF 07 01 00 OA 00 05

MULT SRLC 07 00 1 00 OA 00 05

JR NCOlU 07 00 1 00 OA 00 05

ADD HL.DE 07 00 00 OA 00 OF

NOADD SLA E 07 00 GO 14 00 OF

RL D 07 00 00 14 00 OF

DECS 06 00 00 14 00 OF

JPNZ.OIOF 06 00 00 14 00 OF

Fig. 3.41: Two Iterations Through the Loop
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4

THE Z80 INSTRUCTION SET

INTRODUCTION

This chapter will first analyze the various classes of instructions

which should be available in a general-purpose computer. It will then

analyze one by one all of the instructions available for the Z80, and ex-

plain m detail their purpose and the manner in which they affect flags

or can be used in conjunction with various addressing modes. A de-

tailed discussion of addressing techniques will be presented in Chapter

5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no stan-

dard. We win here distinguish five main categories of instructions:

1—data transfers

2—data processing

3—test and branch

4—input/output

5—control

Let us now examine each of these classes of instructions in turn.

Data Transfers

Data transfer instructions will transfer data between registers, or be-

tween a register and memory, or between a register and an input/output

device. Specialized transfer instructions may exist for registers which

piay a specific role. For example, push and pop operations

are provided for efficient stack operation. They will move a word of
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data between the top of the stack and the accumulator m a single in-

struction, while automatically updatmg the stack-pointer register.

Data Processing

Data processing instructions fall mto five general categories:

1—arithmetic operations (such as plus/minus)

2—bit manipulation (set and reset)

3—increment and decrement
4—logical operations (such as AND, OR, exclusive OR)
5—skew and shift operations (such as shift, rotate)

U should be noted that, for efficient data processing, it is desirable to

have powerful arithmetic instructions, such as multiply and divide.

Unfortunately, they are not available on most microprocessors. !t is

also desirable to have powerful shift and skew instructions, such as

shift n bits, or a nibble exchange, where the right half and the left half

of the byte are exchanged. These are also usually unavailable on most

microprocessors.

Before examining the actual Z80 instructions, let us recall the dif-

ference between a shift and a rotadon. The shift will move the contents

of a register or a memory location by one bit location to the left or to

the right. The bit falling out of the register will go into the carry bit.

The bit coming m on the other side will be a "0" except m the case of an

"arithmetic shift right," where the MSB will be duplicated.

In the case of a rotation, the bit coming out still goes in the carry.

However, the bit coming in is the previous value which was m the carry

bit. This corresponds to a 9-bil rotation. !t is often desirable to have a

true 8-bit rotation where the bit coming in on one side is the one falling

from the other side. This is not provided on most microprocessors

but is available on the Z80 (see Figure 4. 1).

Finally, when shifting a word to the right, it is convenient to have one
more type of shift, called a sign extension or an "arithmetic shift

right." When doing operations on two's complement numbers, parti-

cularly when implementing floating-point routines, it is often necessary

to shift a negative number to the right. When shifting a two's comple-

ment number to the right, the bit which must come in on the left side

should be a "1" (the sign should get repeated as many limes as needed

by the successive shifts). This is the arithmetic shift right.
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SHIFT LEFT

\ r ^ f \ r

CARRY

ROTATE LEFT

f \ r\ r\ r\ r\ r\ r\

CARRY

Fig. 4.1: Shift and Rotate

Test and Jump

The test instructions will test bits in the specified register for "0" or
"1", or combinations. At a minimum, it must be possible to test the

flags register. \x is, therefore, desirable to have as many flags as pos-

sible in this register. In addition, it is convenient to be able to test for

combinations of such bits with a single instruction. Finally, it is

desirable to be able to test any bil position in any register, and to test

the value of a register compared to the value of any other register

(greater than, less than, equal). Microprocessor test instructions are

usually limited to testing single bits of the flags register. The Z80, how-
ever, offers better facilities than most.

The jump instructions that may be available generally fall into

three categories:

1—the jump, which specifies a full 16-bii address

2—the relative jump, which often is restricted to an 8-bit displace-

ment field

3—-the call, which is used with subroutines
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it is convenient to have two- or even three-way jumps, depending, for

example, on whether the result of a comparison is "greater than," "less

than," or "equal." !t is also convenient to have skip operations, which

will jump forward or backwards by a few instructions. However, a

"skip" is equivalent to a "jump." Finally, in most loops, there is

usually a decrement or increment operation at the end, followed by a

test-and-branch. The availability of a single-instruction increment/

decrement plus test-and-branch is, therefore, a significant advan-

tage for efficient loop implementation. This is not available in most

microprocessors. Only simple branches, combined with simple tests,are

available. This, naturally, complicates programming and reduces effi-

ciency. In the case of the Z80, a "decrement and jump" instruction is

available. However, it only tests a specific register (B> for zero.

Input/Output

Input/output instructions are specialized instructions for the hand-

ling of input/output devices. In practice, a majority of the 8-bit micro-

processors use memory-mapped I/O: input/output devices are con-

nected to the address bus just like memory chips, and addressed as

such. They appear to the programmer as memory locations. All

memory-type operations normally require 3 bytes and are, therefore,

slow. For efficient input/output handling in such an environment, it is

desirable to have a short addressing mechanism available so that i/O

devices whose handling speed is crucial may reside in page 0. However,

if page addressing is available, it is usually used for RAM memory,

which prevents its effective use for input/output devices. The

Z80, like the 8080, is equipped v^-ith specialized I/O instructions. As a

result, m the case of the Z80, the designer may use either method: in-

put/output devices may be addressed as memory devices, or else as in-

put/output devices, using the I/O instructions.

They will be described later in this chapter.

Control instructions

Control instructions supply synchronization signals and may suspend

or interrupt a program. They can also function as a break or a simu-

lated interrupt. (Interrupts will be described in Chapter 6 on In-

put/Output Techniques.)
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THE Z80 INSTRUCTION SET

Introduction

The Z80 microprocessor was designed to be a replacement for the

8080, and to offer additional capabilities. As a result of this design

philosophy, the Z80 offers all the instructions of the 8080, plus addi-

tional instructions. In view of the limited number of bits available in an

8-bit opcode, one may wonder how the designers of the Z80 succeeded

m implementing many additional ones. They did so by using a few

unused 8080 opcodes and by adding an additional byte to the opcode

for mdexed operations. This is why some of the Z80 instructions oc-

cupy up to five bytes m the memory.

It is important to remember that any program can be written m many
different ways. A thorough knowledge and understanding of the in-

struction set IS indispensable for achieving efficient programming.

However, when learning how to program, it is not essential to write op-

timized programs. During a first reading of this chapter, it is therefore

unimportant to remember all the various mstructions. U is important to

remember the categories of instructions and to study typical examples.

Then, when writing programs, the reader should consult the Z80
mstruction-set description, and select the instructions best suited to his

needs. The various instructions of the Z80 will therefore be reviewed in

this section with the intent of simplifying them and grouping them in

logical categories. The reader interested m exploring the capabilities of

the various instructions is referred to the individual descriptions of the

instructions.

We will now examine the capabilities provided by the Z80 in terms of

the five classes of instructions which have been defined at the beginning

of this chapter.

Data Transfer Instructions

Data transfer instructions on the Z80 may be classified m four

categories: 8-bit transfers, i6-bit transfers, stack operations, and
block transfers. Let us examine them.

Eigiit-Bit Data Transfers

All eight-bit data transfers are accomplished by load instructions.

The format is:

LD destination, source
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For example, the accumulator A may be loaded from register B by

using the instructions:

LD A.B

Direct transfers may be accomplished between any two of the

working registers (ABCDEHL).
In order to load any of the working registers, except for the accu-

mulator, from a memory location, the address of this memory loca-

tion must first be loaded into the H-L register pair.

For example, m order to load register C from memory location 1234,

register H and L will first have to be loaded with the value "1234", (A

load instruction operating on 16 bits will be used. This is described in

the following section.)

Then, the mstruction LD C, (HL) will be used and will accompHsh

the desired result.

The accumulator is an exception. It can be loaded directly from any

specified memory location. This is called the extended addressing

mode. For example, m order to load the accumulator with the contents

of memory location 1234, the followmg instruction will be used:

LD A, (1234H) (Note the use of "( )" to denote "contents of.")

The mstruction will be stored in the memory as follows:

address PC :3A (opcode)

PC -f 1:34 (low order half of the address)

PC + 2:12 (high order half of the address)

Note that the address is stored in "reverse order" m the instruction

itself:

3A low addr high addr

All the working registers may also be loaded with any specified eight-bit

value, or "literal," contained in the second byte of the mstruction (this

IS called immediate addressmg). An example is:

LD E. i2H

which loads register E with the value 12 hexadecimal.

In the memory, the instruction appears as:

PC; IE (opcode)

PC + 1; 12 (literal operand)
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As a result of this instruction, tiie immediate operand, or literal value

will be contained in register E.

The indexed addressing mode is also available for loading register

contents, and will be fully described m the next chapter on addressmg
techniques. Other miscellaneous possibilities exist for loading specific

registers, and a table listing all the possibilities is shown in Figure 4.2

(tables supplied by Zilog, Inc.). The grey areas show instructions

common with the 8080A.
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E .W: U !» £e H
DD
!E

FD
SE 11

H 'e §t w ;».
D
M

FD
»

I. :a « - m- u
no
6E

FD
It
»

ma
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3S

fD
Jl

10
10

FO
11

fD
J?

fD FO —rti-

I XI, KIHK (ml

! ED
1!

n EB
IF

Fig. 4.2: Eight-Bit Load Group—*LD'

16-Bit Data Transfers

Basically, any of the 16-bit register pairs. BC, DE, HL, SP, IX, lY,

may be loaded with a literal 16-bit operand, or from a specified

memory address (extended addressing), or from the top of the stack,

i.e., from the address contained in SP. Conversely, the contents of these
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register pairs may be stored in the same manner at a specified memory
address or on top of the stack. Additionally, the SP register may be

loaded from HL, IX, and lY. This facilitates creating multiple stacks.

The register pair AF may also be pushed on top of the stack.

The table listing all the possibilities is shown m Figure 4.3. The stack

push and pop operations are included as parts of the 16-bit data

transfers. All stack operations transfer the contents of a register pair to

or from the stack. Note that there are no single push and pop instruc-

tions for saving individual eight-bit registers.

SOURCE

DESTtNATiON

PUSH _
iNSTRUCTIONS^*"

REGISTER
1MM.
EXT.

EXT.
ADDH.

REG.
INQER.

AF BC DE HL SP fX IV «:p1

AF F1

BC
01
n
n

E
4 CI

R
E
G

DE
n
n
n

FCl
SB Dl

(

S
T

HL SI
n
n

:a
n
n

E)

R
SP F9 DO

F9
FD
F9

3!
11

n

7B

iX
DD
21

DO
2A

n

DD
E1

!V
FD FD

2A FD
El

EXT.
AODH.

Imi

ED
43
n

ED
S3

33
It

n

ED
73
n

DO
22

FD
22

HEa
mo.

(SFI F5 CS D5 E! DD
E5

FD
E5

NOTE: Th« Puth & Pop Injtruniooi Kljuii T
Kii SP <ft)r iifrv titeutlon POP

iNSTRUCTiONS

Fig. 4.3: 16-Bit Load Group—'LD'. 'PUSH' and 'POP'

A double-byte push or pop is always executed on a register pair: AF,

BC, DE, HL, IX, IY(see the bottom row and right-most column in

Figure: 4,3).

When operating on AF, BC, DE, HL, a smgle-byte is required for the

instruction, resulting in good efficiency. For example, assume that the*
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stack pointer SP contains the value "0100", The foilowmg instruc-

tion is executed:

PUSH AF

When pushing the contents of the register pair on the stack, the stack

pointer SP is first decremented, then the contents of register A are de-

posited on top of the stack. Then the SP is decremented again, and the

contents of F are deposited on the stack. At the end of the stack trans-

fer, SP points to the top element of the stack, which in our example

is the value of F.

It is important to remember that, m the case of the Z80, the SP
points to the top of the stack and the SP is decremented whenever a

register pair is pushed. Other conventions are often used in other pro-

cessors, and this may be a source of confusion.

IMPLIED ADDRESSING

af' BC.DE & HL HL IX lY

IMPLIED

AF 08

BC,

DE
&
HL

09

DE EB

REG.
INDIR.

iSP} E3 DD
E3

FD
£3

Fig. 4.4: Exchanges 'EX' and 'EXX'

Exchange Instructions

Additionally, a specialized mnemonic EX has been reserved for ex-

change operations. EX is not a simple data transfer, but a dual data

transfer. It actually changes the contents of (wo specified locations. EX
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may be used to exchange the top of the stack with HL, IX, lY and also

to swap the contents of DE and HL and AF and AF' (remember that

AF' stands for the other AF register pair available in the Z80).

Finally, a special EXX instruction is available to exchange the con-

tents of BC, DE, HL with the contents of the corresponding registers m
the second register bank of the Z80.

The possible exchanges are summarized in Figure 4.4.

SOURCE

REG.
INDIR.

fHLl

DESTiNATiON

ED
AO

LDi' - Load IDE)-* IHL}
incHt&DE.Dec BC

REG.
IDE)

ED
BQ

'LOIR,' - Load (DEI-*— (HL)
inc HL & DE. Dec BC. Repeat until BC =

!ND!R.
ED
A8

'LDD- - Load {DB)-m— (HLf

DecHLaOE. Dec BC

ED
BS

'LDDR' Load (DEI-«—(HLI

Dec HL& DE. Dec BC, Repeat until BC =

Reg KL poinU to source

Reg DE pointi to destination

Reg BC is byte counter

Fig. 4.5: Block Transfer Group

Block Transfer Instructions

Block transfer instructions are instructions which will result in the

transfer of a block of data rather than a single or double byte. Block

transfer instructions are more complex for the manufacturer to imple-

ment than most instructions and are usually not provided on micropro-

cessors. They are convenient for programming, and may improve the
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performance of a program, especially during input/output operation.

Their use and advantages will be demonstrated throughout this book.

Some automatic block transfer instructions are available in the case of

the Z80. They use specific conventions.

All block transfer instructions require the use of three pairs of

registers: BC, DE, HL:

BC is used as a 16-bit counter. This means that up to 2'* = 64K bytes

may be moved automatically. HL is used as the source pointer. It may
point anywhere m the memory. DE is used as the destination pointer

and may point anywhere in the memory.

Four block transfer instructions are provided:

LDD, LDDR. LDI, LDIR

All of them decrement the counter register BC with each transfer. Two
of them decrement the pointer registers DE and HL, LDD and LDDR,
while the two others increment DE and HL, LDi and LDIR. For each

of these two groups of instructions, the letter R at the end of the

mnemonic indicates an automatic repeat. Let us examine these instruc-

tions.

LDi stands for "load and increment." It transfers one byte from the

memory location pointed to by H and L to the destination in the

memory pointed to by D and E. It also decrements BC. It will automati-

cally increment H and L and D and E so that all register pairs are pro-

perly conditioned to perform the next byte transfer whenever required.

LDIR stands for "load increment and repeat," i.e., execute LDI
repeatedly until the counter registers BC reach the value "0", It is used

to move a continuous block of data automatically from one memory
area to another.

LDD and LDDR operate in the same way except that the address

pointer is decremented rather than incremented. The transfer therefore

starts at the highest address in the block instead of the lowest. The ef-

fect of the four instructions is summarized in Figure 4;5.

Similar automated instructions are available for CP (compare) and
are summarized in Figure 4.6.

Data Processing Instructions

Arithmetic

Two mam arithmetic operations are provided: addition and subtrac-

tion. They have been used extensively m the previous chapter. There are

two types of addition, with and without carry, ADC and ADD respec-
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5EARCH
LOCATION

REG.
IND! R.

iHL)

ED
M i

CPf
iMf- HP Hnririt. nLi. i-'tL

£D
81

CPIR', Inc HL. Dec 5C
ri^^t^tit until SC find uisich

ED CPD- Dec HL 6. BC

ED-
BS

CPDR' D=c HL f. aC
R'ifjoa; until 3C = oi find insich

HL puiiils In fDcfliion in memory
to be campateci with sccumulstor

conjents

BC is tiyle cauntBf

Fig. 4.6: Block Search Group

lively. Similarly, two types of subtraction are provided with and

without carry. They are SBC and SUB,
Additionally, three special instructions are provided: DAA, GPL,

and NEC. The Decimal^djust Accumulator instruction DAA has been

used to implement BCD operations. It is normally used for each BCD
add or subtract. Two complementation instructions also are available.

CPL will compute the one's complement of the accumulator, and NEC
will negate the accumulator into its complement format(two's comple-

ment).

All the previous instructions operate on eight-bit data. I6-bit opera-

tions are more restricted. ADD, ADC, and SBC are available on

specific registers, as described in Figure 4.8.

Finally, increment and decrement instructions are available which

operate on all the registers, both in an eight-bit and a 16-bit format.

They are listed in Figure 4.7 (eight-bit operations) and 4.8 (16-bit opera-

tions).
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SOURCE

REGiS'reR ADDRESSING
REG.
INDIR. INDEXED fMMED,

A B C E H L (HL) (iX+d! (tY+df n

ADD' 87 SI 81 82 83 84 m 88
DD
86
d

FD
SG
d

C8
n

ADD w CARRY
'ADC

SF 88 BA SB BC ma 8E
DD
8E
d

FD
BE
d

CE
K

SUBTRACT
'SUB'

07 .00 81 92- 03 S4 SB
DO
96
d

FD
96
d

DS
n.

SUB w CARRY
•SBC

SF S8 6A » K so ^' DD
9E

d

FD
9E

d

m
n

AND' M AS Al AZ A3 A4 KB AS
D
A6
d

FD
A6
d

ES
n

XOR' AF AS fW AA AS AC AD A£
DD
AE
d

FD
AE
d

EE
n

'OR' S7 BO Bt B2 B3 -
B4 BS as

DD
BG
d

FD
B6
d

F6
n

COMPARE
•CP-

BP B8 B9 BA SB BC
...

BO BE
DD
BE
d

FD
BE
d n '

INCREMENT
INC

3C M OC 14 1C 24 X «
DD
3^
d

FD
3A
d

DECREMENT
'DEC

ss OG m IB ID ZS

mm
2D 33

DD
35
d

FD
35
d

Fig. 4.7: £ight-BU ArithmeUc and Logic

Note that, m general, ail arithmetic operations modify some of the
flags. Their effect is fully described in the instruction descriptions later

in this chapter. However, it is important to note that the INC and DEC
instructions which operate on register pairs do not modify any of the flags.

This detail is important to keep m mind. This means that if you incre-

ment or decrement one of the register pairs to the value "0", the Z-bit

m the flags register F will not be set. The value of the register must be
explicitly tested for the value "0" in the program.

Also, it is important to remember that the mstructions ADC and SBC
always affect all the flags. This does not mean that all the flags will

necessarily be different after their execution. However, they might.
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SOURCE

BC DE HL SP IX lY

09 19 29 39

'ADD' IX DO DD DD DD
09 19 39 29

iV FD FD FD FD
09 19 39 29

ADDWiTH CARRY AND HL ED ED ED ED
SET FLAGS 'ADC 4A 5A 6A 7A

SUBWiTH CARRY AND HL ED ED ED ED
SET FLAGS 'SBC 42 52 62 72

INCREMENT 'iNC 03 13 23 33 D FD
23 23

DECREMENT 'DEC OB IB 2B 3B DD FD
ZB 2B

Fig, 4.8: Sixteen-Bit Arithmetic and Logic

Logicai

Three logical operations are provided: AND, OR (inclusive) and

XOR (exclusive), plus a comparison instruction CP. They all operate

exclusively on eight-bit data. Let us examine them in turn. (A table list-

ing all the possibilities and operation codes for these instructions is part

of Figure4.7.)

AND

Each logical operation is characterized by a irulh (able, which ex-

presses the logical value of the result in function of the inputs. The

truth table for AND appears below:
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AND =0
OAND i =
1 AND 0=0
I AND 1 = i

or

AND 1

I i

The AND operation is characterized by the fact that the output is

"I" only if both inputs are "I". In other words, if one of the inputs is

"0", it is guaranteed that the result is "0". This feature is used to zero

a bit position in a word. This is called "masking."
One of the important uses of the AND instruction is to clear or

"mask out" one or more specified bit positions m a word. Assume for

example that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LD A, WORD WORD CONTAINS 'lOlOIOiO'

AND UHOOOOB '11 110000' IS MASK

Let us assume that WORD is equal to 'lOIOiOlO'. The result of this

program is to leave the value '10100000' in the accumulator. "B" is

used to indicate a binary value. »

Exercise 4. 1: Write a three-line program which will zero bits 1 and 6 of
WORD.

Exercise 4.2: What happens with a MASK = ' II I U 1 ! 1'?

OR

This instruction is the inclusive OR operation. It is characterized by
the following truth table:

OORO =0
OR 1 = 1

1 OR = 1

1 OR i = 1

or

OR
1

!

1 1 1

The logical OR is characterized by the fact that if one of the operands
IS "I", then the result is always "I". The obvious use of OR is to set

any bit m a word to "1".

Let us set the right-most four bits of WORD to I's. The program is:

LD A, WORD
OR A,00001I11B
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Let us assume that WORD did contain '10101010'. The final value of

the accumulator will be 'lOlOHUV

Exercise 4.3: What would happen if we were to use (he instruction

OR lOIOIlIl B?

Exercise 4.4: What is the effect of ORing with "FF" hexadecimal?

XOR

XOR stands for "exclusive OR." The exclusive OR differs from the

inclusive OR that we have just described in one respect: the result is

"I" only if one. and only one, of the operands is equal to "1". If both

operands are equal to "1", the normal OR would give a "1" result.

The exclusive OR gives a "0" result. The truth table is:

XOR =0
XOR 1 = I

1 XOR = I

1 XOR 1 =

or

XOR I

1

1 1

The exclusive OR is used for comparisons. If any bit is different, the

exclusive OR of two words will be non-zero. In addition. In the case of

the Z80, the exclusive OR may be used to complement a word, since

there is no complement instruction on anything but the accumulator.

This is done by performing the XOR of a word with all ones. The pro-

gram appears below:

LD r, WORD
XOR. 11111111 B
LD r, A

where "r" designates the register.

Let us assume that WORD contained "lOIOiOlO". The final value of

the register will be "01010101", You can verify that this is the comple-

ment of the original value.

XOR can be used to advantage as a "bit toggle."

Exercise 4.5: What is the effect ofXOR using a register with "00" hex-

adecimal?

Skew Operations (Shift and Rotate)

Let us first differentiate between the shift and the rotate operations,

which are illustrated in Figure 4.9. In a shift operation, the contents of
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the register are shifted to the left or to the right by one bit position. The
bit which falls out of the register goes into the carry bit C, and the bit

which comes in is zero. This was explained in the previous section.

^ r \ r ^ r \ r ^ r \ r

CAR HY

E lER

^ E
HOIA

^ r ^ r r^ r^ r

CARRY

Fig. 4.9: Shift and Rotate

One exception exists; it is the shift-right-arithmetic. When perform-

ing operations on negative numbers in the two's complement format,

the left-most bit is the sign bit. In the case of negative numbers it is

"I", When dividing a negative number by "2" by shifting it to the

right, it should remain negative, i.e., the left-most bit should remain a

"I", This IS performed automatically by the SRA instruction or Shift

Right Arithmetic. In this arithmetic shift right, the bit which comes in

on the left is identical to the sign bit. It is "0" if the left-most bit was a
"0", and "1" if the left-most bit was a "1". This is illustrated on the

right of Figure 4. 10, which shows all the possible shift and rotate opera-
tions.

Rotations

A rotation differs from a shift by the fact that the bit coming into the
register is the one which will fall from either the other end of the

register or the carry bit. Two types of rotations are supplied in the case
of the Z80: an eight-bit rotation and a nme-bit rotation.

The nme-bit rotation is illustrated in Figure 4.11. For example, in the

case of a right rotation, the eight bits of the register are shifted right by
one bit position. The bit which falls off the right part of the register

goes, as usual, into the carry bit. At this time the bit which comes in on
the left end of the register is the previous value of the carry bit (before it

is overwritten with the bit falling out.) in mathematics this is called a
nine-bit rotation since the eight bits of the register plus the ninth bit (the

170



THE Z80 INSTRUCTION SET

carry bit) are rotated to the rsght by one bit position. Conversely, the

left rotation accompiishes the same result in the opposite direction.

::::

em: J—

^^^^

JZZL

Fig. 4.10: Rotates and Shifts

y REGISTER C

RiGHT f

LEFT

7 REGISTER C

Fig. 4.11: Nine-Bit Rotation

The eight-bit rotation operates in a similar way. Bit is copied into

bit seven, or else bit seven is copied into bit 0, depending on the direc-

tion of the rotation. In addition, the bit coming out of the register is

also copied in the carry bit. This is illustrated by Figure 4.12.

RIGHT

LEFT

C
7

Fig. 4.12: Eight-Bit Rotation
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Special Digit Instructions

Two special digit-rotate instructions are provided to facilitate BCD
arithmetic. The result is a four-bit rotation between two digits con-

tained in the memory location pointed to by the HL registers and one

digit in the lower half of the accumulator. This is illustrated by Figure

4.13.

MEMORY

RIGHT:

ADDRESS

MEMORY

LEFT:

Fig. 4.13: Digit Rotate Instructions (Rotate Decimal)

Bit Manipulation

It has been shown above how the logical operations may be used to

set or reset bits or groups of bits in specific registers. However, it is con-

venient to set or reset any bit in any register or memory location with a

single instruction. This facility requires a considerable number of op-

codes and is therefore usually not provided on most microprocessors.

However, the Z80 is equipped with extensive bit-manipulation

facilities. They are shown in Figure 4.14. This table also includes the

test instructions which will be described only in the next section.

.Two special instructions are also available for operating on the carry

flag. They are CCF {Complement Carry Flag) and SCF (Set Carry

Flag). They are shown in Figure 4.15.

Test and Jump

Since testing operations rely heavily on the use of the flags register,

we will here describe in detail the role of each of the flags. The contents
of the flags register appear in Figure 4.16.
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Fig. 4.14: Bit Manipulation Group
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Decimal Adjust Acc. 'DAA' 27

Complement Acc, 'CPL' 2F

Negate Acc, 'NEC
(2's complemetitl

ED
41

CompiemEnt Carry Flag, 'CCF' 3F

Sot Carrv Flag, 'SCF' 37

Fig. 4.15: General-Purpose AF Operations

7 6 5 4 3 2 1

s Z H P/V N C

{^) (T) in

Fig. 4.16: The Flags Register

C IS the carry, N is add or subtract, P/V is parity or overflow, H is half

carry, Z is zero, S is sign. Bits 3 and 5 of the flags register are not used

(" - The two flags H and N are used for BCD arithmetic and cannot

be tested. The other four flags (C, P/V, Z, S) can be tested in conjunc-

tion with conditional jump or call instructions.

The role of each flag will now be described.

Carry (C)

In the case of nearly all microprocessors, and of the Z80 m par-

ticular, the carry bit assumes a dual role. First, it is used to indicate

whether an addition or subtraction operation has resulted in a carry (or

borrow). Secondly, it is used as a ninth bit in the case of shift and rotate

operations. Using a single bit to perform both roles facilitates some
operations, such as a multiplication operation. This should be clear

from the explanation of the multiplication which has been presented in

the previous chapter.
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When learning to use the carry bit, it is important to remember that

all arithmetic operations will either set it or reset it. depending on the

result of the instructions. Similarly, all shift and rotation operations use

the carry bit and will either set it or reset it, depending on the value of

the bit which comes out of the register.

In the case of logical instructions (AND, OR, XOR), the carry bit

will always be reset. They may be used to zero the carry explicitly.

instructions which affect the carry bit are: ADD A.s; ADC A,s;

SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; ADD DD.ss; ADC
HL.ss; SBC HL.ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m;

RRC m; SLA m; SRA m; SRL m; DDA; SCF; CCF; NEG s;

Subtract (N)

This flag is normally not used by the programmer, and is used by the

Z80 itself during BCD operations. The reader will remember from the

previous chapter that, following a BCD add or subtract, a DAA
(Decimal Adjust Accumulator) instruction is executed to obtain the

valid BCD results. However, the "adjustment" operation is different

after an addition and after a subtraction. The DAA therefore executes

differently depending on the value of the N flag. The N flag is set to

"0" after an addition and is set to a "I" after a subtraction.

The symbol used for this flag, "N". may be confusing to program-

mers who have used other processors, since it may be mistaken for the

sign bit. It is an internal operation sign bit.

N is set to "0" by: ADD A,s; ADC A,s;ANDs;ORs; XORs; INCs;

ADD DD.ss; ADC HL.ss; RLA; RLCA; RRA; RRCA; RL m; RLC m;

RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; IN r,

(C); LDI; LDD; LDIR; LDDR; LD A. I; LD A, R; BIT b. s.

N is set to " 1" by: SUB s; SBC A.s; CP s; NEG; DEC m; SBC HL, ss;

CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPi;

CPIR; CPD; CPDR.

Parity/Overflow (P/ V)

The parity/overflow flag performs two different functions. Specific

instructions will set or reset this flag depending on the parity of the

result; parity is determined by counting the total number of ones in the

result. If this number is odd. the parity bit will be set to "0" (odd pari-

ty). If it IS even, the parity bit will be set to "1" (even parity). Parity is

most frequently used on blocks of characters (usually in the ASCII for-

mat). The parity bit is an additional bit which is added to the seven-bit

code representing the character, in order to verify the integrity of data

which has been stored in a memory device. For example, if one bit in

the code representing the character has been changed by accident, due
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to a malfunction in the memory device (such as a disk or RAM
memory), or durmg transmission, then the total number of ones in the

seven-bit code will have been changed. By checking the parity bit, the

discrepancy will be detected, and an error will be flagged. In particular,

the flag is used with logical and rotate instructions. Also, naturally,

during an input operation from an I/O device, the parity flag will m-
dicate the parity of the data being read.

For the reader familiar with the Intel 8080, note that the parity flag in

the 8080 is used exclusively as such. In the case of the Z80, it is used for

several additional functions. This flag should therefore be handled with

care when going from one of the microprocessors to the other.

In the case of the Z80, the second essential use of this flag is as an
overflow flag (not available in the 8080). The overflow flag has been de-
scribed in Chapter i, when the two*s complement notation was intro-

duced. It detects the fact that, during an addition or subtraction, the

sign of the result is"accidentally"changed due to the overflow of the
result into the sign bit. (Recall that, using an eight-bit representation,

the largest positive number is + 127, and the smallest negative number
is - 128 in two's complement.)

Finally, this bit is also used, in the case of the Z80, for two unrelated
functions.

During the block transfer instructions (LDD, LDDR, LDI, LDIR),
and during the search instructions (CPD, CPDR, CPI, CPIR), this flag
is used to detect whether the counter register B has attained the value
"0", With decrementing instructions, this flag is reset to "0" if the
byte counter register pair is "0" . When incrementing, it is reset if BC -
I = at the beginning of the instruction, i.e., if BC will be decremented
to "0" by the instruction.

Finally, when executing the two special instructions LD A.I and LD
A.R, the P/V flag reflects the value of the interrupt enable flip-flop
(IFF2). This feature can be used to preserve or test this value.

The P flag is affected by: AND s; OR s; XOR s; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C).
The V nag is affected by: ADD A,s; ADC A.s; SUB s; SBC A.s; CP s"

NEC; INCs; DEC m; ADC HL,ss; SBC HL,ss.

It is also used by: LDIR; LDDR (set to "0"); LDi; LDD- CPL
CPIR; CPD; CPDR.

The Half-Carry Flag (H)

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur-
ing an arithmetic operation. In other words, it represents the carry from
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the low-order nibble (group of 4 bits) into the high order one. Clearly, it

is primarily used for BCD operations. In particular, it is used internaUy

within the microprocessor by the Decimal Adjust Accumulator (DAA)
instruction in order to adjust the result to its correct value.

This flag will be set during an addition when there is a carry from bit

3 to bit 4 and reset when there is no carry. Conversely, during a subtract

operation, it will be set if there is a borrow from bit 4 to bit 3, and reset

if there is no borrow.

The flag will be conditioned by addition, subtraction, increment,

decrement, comparisons, and logical operations.

Instructions which affect the H bit are: ADD A,r ; ADD A,s; SUB s;

SBC A.s; CP s; NEC; AND s; OR s; XOR s; INC s; DEC m; RLA;
RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SR m;
SRL m; RLD; RRD; DAA; CPL, SCF; IN r.CC) ; LDI; LLD; LDIR;
LDDR: LD A; LD A.r; BIT b.r.

Note that the H bit is randomly affected by the i6-bit add and sub-

tract instructions, and by block input and output instructions.

Zero (Z)

The Z flag is used to mdicate whether the value of a byte which has

been computed, or is being transferred, is zero. It is also used with com-
parison instructions to indicate a match, and for other miscellaneous

functions.

In the case of an operation resulting in a zero result, or of a data

transfer, the Z bit is set to "1" whenever the byte is zero. Z is reset to
"0" otherwise.

In the case of comparison instructions, the Z bit is set to " 1" when-
ever the comparison succeeds and to "0" otherwise.

Additionally, in the case of the Z80, it is used for three more functions;

It is used with the BIT instruction to indicate the value of a bit being

tested. It is set to "1" if the specified bit is "0" and reset otherwise.

With the special "block input-output instructions" (INI, IND,
OUTI, OUTD), the Z flag is set if D - i = 0, and reset otherwise; it is

set if the byte counter will decrement to "0" (INIR, INDR, OTIR,
OTDR).

Finally, with the special instructions IN r,(C), the Z flag is set to "1"

to indicate that the input byte has the value "0",

In summary, the following instructions condition the value of the Z
bit: ADD A,s; ADC A,s:SUB s; SBC A,s; CP s; NEC; AND s; OR s;

XOR s; INC s; DEC m; ADC HL, ss; SBC HL.ss; RL m; RLC m;
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RR m: RRC m; SLA ra; SRA m; SRL m; RLD; RRD; DAA; IN r,(C);

INI; IND; OUTI: OUTD; INIR; INDR; OTiR; OTDR; CPl; CPiR;

CPD; CPDR; LD A, I; LD A, R; BIT b.s; NEC s.

Usual instructions which do not affect the Z bit are: ADD DD.ss;

RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR;
LDDR: INC DD; DEC DD.

Sign (S)

This flag reflects the value of the most significant bit of a result or of

a byte being transferred (bit seven). In two's complement notation, the

most significant bit is used to represent the sign. "0" indicates a posi-

tive number and a "1" indicates a negative number. As a result, bit

seven is called the sign bit.

In the case of most microprocessors, the sign bit plays an important

roie when communicating with input/output devices. Most micropro-

cessors are not equipped with a BIT instruction for testing the contents

of any bits in a register or the memory. As a result, the sign bit is usual-

ly the most convenient bit to test. When examining the status of an in-

put/output device, reading the status register will automatically condi-

tion the sign bit, which will be set to the value of bit seven of the status

register. It can then be tested conveniently by the program. This is why
the status register of most input/output chips connected to micropro-

cessor systems have their most important indicator (usually ready/not

ready) in bit position seven.

A special BIT instruction is provided in the case of the Z80.

However, in order to test a memory location (which may be the address

of an I/O status register), the address must first be loaded into registers

IX, lY or HL. There is no bit instruction provided to test a specified

memory address directly (i.e.. no direct addressing mode for this in-

struction). The value of positioning an input/output ready flag in bit

position seven, therefore, remains intact, even in the case of the Z80.

Finally, the sign flag is used by the special instruction IN, (C) to in-

dicate the sign of the data being read.

Instructions which affect the sign bit are: ADD A,s; SUB s; SBC A,s;

CP s; NEC; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC
HL, ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD ;

RRD; DAA: IN r,(C); CPR; CPIR; CPD; CPDR; LD A,I;LDA,r:
NEC.
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Summary of the Flags

The flag bits are used to automatically detect special conditions with-

in the ALU of the microprocessor. They can be conveniently tested by
specialized instructions, so that specific action can be taken m response
to the condition detected. It is important to understand the role of the

various indicators available, since most decisions taken within the pro-

gram will be taken m function of these flag bits. Ail jumps executed
within a program will jump to specified locations depending on the

status of these flags. The only exception involves the interrupt

mechanism, which will be described in the chapter on input/output and
may cause jumping to specific locations whenever a hardware signal is

received on specialized pms of the Z80.

At this point, it is only necessary to remember the main function of
each of these bits. When programming, the reader can refer to the de-

scription of the instruction later in this chapter to verify the effect of
every instruction of the various flags. Most flags can be ignored most of
the time, and the reader who is not yet familiar with them should not
feel intimidated by their apparent complexity. Their use will become
clearer as we examine more application programs.
A summary of the six flags and the way they are set or reset by the

various instructions is shown m Figure 4.17.

The Jump Instructions

A branch instruction is an instruction which causes a forced bran-
ching to a specified program address. It changes the normal flow of
execution of the program from a sequential mode into one where a dif-
ferent segment of the program is suddenly executed. Jumps may be
conditional or unconditional. An unconditional jump is one in which
the branching occurs to a specific address, regardless of any other con-
dition.

A conditional jump is one which occurs to a specific address only if

one or more conditions are met. This is the type of jump instruction
used to make decisions based upon data or computed results.

In order to explain the conditional jump instructions, it is necessary
to understand the role of the flags register, since all branching decisions
are based upon these flags. This was the purpose of the preceding sec-

tion. We can now examine in more detail the jump instructions pro-
vided by the Z80.

Two main types of jump instructions are provided: jump instructions
withm the mam program (they are called "jumps"), and the special
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type of branch instructions used to jump to a subroutine and to return
from it {"call" and "return"). As a result of any jump instruction, the
program counter PC will be reloaded with a new address, and the usual
program execution will resume from this point on. The full power of
the various jump instructions can be understood only in the context of
the various addressing modes provided fay the microprocessor. This
part of the discussion will be deferred until the next chapter, where the
addressmg modes are discussed. We will only consider here the other
aspects of these instructions.

Jumps may be unconditional (branching to a specified memory ad-
dress) or else conditional, in the case of a conditional jump, one of four
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of
them may be tested for the value "0" or "1".

The corresponding abbreviations are:

Z = zero (Z = 1)

NZ = non zero (Z = 0)

C = carry (C = 1)

NC= no carry (C = )

PO= odd parity

PE == even parity

P = positive (S = 0)

M = minus (S = 1)

In addition, a special combination instruction is available in the Z80
which will decrement the B register and jump to a specified memory ad-
dress as long as it is not zero. This is a powerful instruction used to ter-

minate a loop, and it has already been used several times in the previous
chapter: it is the DJNZ instruction.

Similarly, the CALL and the RET (return) instructions may be condi-
tional or unconditional. They test the same flags as the branch instruc-
tion which we have already described.

The availability of conditional branches is a powerful resource in a
computer and is generally not provided on other eight-bit micropro-
cessors. It improves the efficiency of programs by implementing in a
single instruction what requires two instructions otherwise.

Finally, two special return instructions have been provided in the case
of interrupt routines. They are RETI and RETN. They will be described
m the section of Chapter 6 on interrupts.

The addressing modes and the opcodes for the various branches
available are shown m Figure 4.18.
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UN-
CQHO. cunnr
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ISPl

(SP'll
ED
45

Fig. 4.18: Jump instructions

A detailed discussion of the various addressing modes is presented

m Chapters.

By examining Figure 4.18, it becomes apparent that many ad-

dressing modes are restricted. For example, the absolute jump JPnn

can test four flags, while JR can only test two flags.

Note an important observation: JR tends to be used whenever

possible as it is shorter than JP (one less byte) and facilitates program

relocation. However, JR and JP are not interchangeable: JR cannot

test the parity or the sign flags.
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One more type of specialized branch is available; this is the restart or
RST instruction, it is a one-byte instruction which allows jumping to
any one of eight starting addresses at the low end of the memory. Its

starting addresses are, in decimal, 0. 8, 16, 24, 32, 40, 48 and 56. It is a
powerful instruction because it is implemented in a single byte. It pro-
vides a fast branch, and for this reason is used essentially to respond to
interrupts. However, it is also available to the programmer for other
uses. A summary of the opcodes for this instruction is shown in Figure
4.19.

OP
CODE=

C7 'RST 0'

0008, CF 'RST 8'

c
A
L

D7 'RST 16'

L

A
D

0018^ DF 'RST 24'

D
R
E
S

0020,, E7 'RST 32'

S

0028,

.

EF 'RST 40'

0030,^ r/ 'RST 48'

0038^ 'RST 56'

H indicates a hoxldecimal number.

Fig. 4.19: Restart Group

Input/Output Instructions

Input/output techniques will be described in detail m Chapter 6.

Simply, input/output devices may be addressed in two ways: as

memory locations, using any one of the instructions that have already
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been described, or using specific mput/output instructions. Usual

memory addressing instructions use three bytes; one byte for the op-

code and two bytes for the address. As a result, they are slow to ex-

ecute, since they require three memory accesses. The mam purpose of

specialized input/output mstructions is to provide shorter and,

therefore faster, instructions. However, input/output mstructions have

two disadvantages.

First, they "waste" several of the precious few opcodes available

(since usually only 8 bits are used to supply all opcodes necessary for a

microprocessor). Secondly, they require the generation of one or more

speciaHzed input/output signals, and therefore "waste" one or more of

the few pins available in the microprocessor. The number of pins is

usually limited to 40. Because of these possible disadvantages, specific

mput/output instructions are not provided on most microprocessors.

They are, however, provided on the original 8080 (the first powerful

eight-bit general-purpose microprocessor introduced) and on the Z80,

which we know is compatible with the 8080.

The advantage of input/output instructions is to execute faster by re-

quiring only two bytes. However, a similar result can be obtained by

supplying a special addressing mode called "page 0" addressing, where

the address is limited to a field of eight bits. This solution is often

chosen m other microprocessors.

The two basic mput/output instructions are IN and OUT. They

transfer either the contents of the specified I/O locations into any of

the working registers or the contents of the register into the I/O device.

They are naturally two bytes long. The first byte is reserved for the op-

code, the second byte of the instruction forms the low part of the ad-

dress. The accumulator is used to supply the upper part of the address.

U is therefore possible to select one of the 64K devices. However, this

requires that the accumulator be loaded with the appropriate contents

every time, and this may slow the execution.

In the register-input mode, whose format is IN r, (C), the register

pair B and C is used as a pointer to the I/O device. The contents of B
are placed on the high-order part of the address bus. The contents of

the specified I/O device are then loaded into the register designated by

r.

The same appHes to the OUT instruction.

Additionally, the Z80 provides a register-indirect mode, plus four

specialized block-transfer instructions for input and output.

The four block-transfer instructions on input are: INI, INIR

(repeated INI), IND and INDR (repeated IND). Similarly, on output.
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they are: OUTi, OTIR, OUTD, and OTDR.
In this automated block transfer, the register pair H and L is used as

a destination pointer. Register C is used as the I/O device selector (one
out of 256 devices). In the case of the output instruction, H and L point
to the source. Register B is used as a counter and can be incremented
or decremented. The corresponding instructions on input are INI
when incrementing and IND when decrementing.

EG an autom&ted emg/e-byte transfer. Register C selects the mput
device. A byte is read from the device and is transferred to the memory
address pomted to by H and L. H and L are then incremented by I , and
the counter B is decremented by I.

INIR IS the same instruction, automated. It is executed repeatedly
until the counter decrements to "0", Thus, up to 256 bytes may be
transferred automatically. Note that to achieve a total transfer of exact-
ly 256, register B should be set to the value "0" prior to executing this

instruction. »

The opcodes for the input and output instructions are summarized in

Figures 4.20 and 4.21.

Control Instructions

Control instructions are instructions which modify the operating
mode of the CPU or manipulate its internal status information. Seven
such instructions are provided.

The NOP instruction is a no-operation instruction which does
nothing for one cycle, it is typically used either to introduce a deliberate
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps
created in a program during the debugging phase. In order to facilitate

program debugging, the opcode for the NOP is traditionally all O's.

This IS because, at execution time, the memory is often cleared, i.e., all

O's. Executing NOP's is guaranteed to cause no damage and will not
stop the program execution.

The HALT instruction is used in conjunction with interrupts or a
reset. It actually suspends the operation of the CPU. The CPU will then
resume operation whenever either an interrupt or a reset signal is re-

ceived. In this mode, the CPU keeps executing NOP's. A halt is often
placed at the end of programs during the debugging phase, as there is

usually nothing else to be done by the main program. The program
must then be explicitly restarted.

Two specialized instructions are used to disable and enable the inter-

nal interrupt flag. They are EI and DI. Interrupts will be described in
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SOURCE

I^EGISTER

REG.
IND.

A B C D E H L (HU

OUT

IMMED. (n) D3

DEO.
\m.

ICI ED
79

ED
41

£ EO
SI

ED ED
61

ED
63

QUTV ~ OUTPUT
jnc HL. Dtc b

REG.
INO.

(CI
EO
A3

-OTIR' - OUTPUT, Ins HL.

Dtc B,BEPEAT1FB«
REG.
IND.

<C)
ED
S3

OUTO'-OUn'UT REG.
IND.

ICl EO
AB

OTDR' - OUTPUT. Dtc Hi.

i 8, REPEAT IF B«
REa
IND.

(C) ED
6a

SLOCK
>ouTPin-
COMMANDS

ADDRESS

Fig. 4.20: Output Group
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Fig. 4.21: input Group
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Chapter 6. The interrupt flag is used to authorize or not authorize the

interruption of a program. To prevent interrupts from occurring during

any specific portion of a program, the interrupt flip-flop (flag) may be

disabled by this instruction. It will be used in Chapter 6. These in-

structions are shown in Figure 4.22.

'NOP'

'HALT' TC

DISABLE INT '{Dl)' n

ENABLE INT 'fEll'

SET INT MODE
'IMff

ED
46

SET INT MODE 1

'IMI'

ED
56

SET iNT MODE 2
'IM2'

ED
5E

80aOA MODE

CALL TO LOCATiON 0038^^

INDIRECT CALL USING REGISTER
t AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

Fig. 4.22: Miscellaneous CPU Control

Finally, three interrupt modes are provided in the Z80. (Only one is

available on the 8080). Interrupt mode is the 8080 mode, interrupt 1 is

a call to location 038H, and interrupt mode 2 is an indirect call which
uses the contents of the special register I, plus 8 bits provided by the in-

terrupting device as a pointer to the memory location whose contents

are the address of the interrupt routine. These modes will be explained

in Chapter 6.

which will also be explained in Chapter 6. They are the IRQ and the

NMI pins.
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SUMMARY

The five categories of instructions available on the Z80 have now

been described. The details on individual instructions are supplied in

the foilowing section of the booit. It is not necessary to understand the

role of each instruction in order to start to program. The knowledge of

a few essential instructions of each type is sufficient at the beginning.

However, as you begin to write programs by yourself, you should learn

about all the instructions of the Z80 if you want to write good pro-

grams. Naturally, at the beginning, efficiency is not important, and this

is why most instructions can be ignored.

One important aspect has not yet been described. This is the set of

addressing techniques implemented on the Z80 to facilitate the retrieval

of data within the memory space. These addressing techniques will be

studied in the next chapter.
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THE Z80 INSTRUCTIONS: INDIVIDUAL DESCRBPTION

ABBREVIATIONS

FLAG ON OFF
Carry C (carry) NO (no carry)

Sign M (minus) P(plus)
Zero Z (zero) NZ (non zero)

Parity PE (even) PO(odd)

• changed functionally according to operation

flag is set to zero

1 flag is set to one

; flag is set randomly by operation

X special case, see accompanying note on that page

bit positions 3 and 5 are always random
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ADCA, s

Function:

Formal:

Add accumulator and specified operand with

carry.

A ^ A -I- s + C

s: may be r, n,(HL),(IX + d),or(IY + d)

(HL)

(iX + d)

(lY -i- d)

!
1

(
1

t„, .1

—

1 1
1 ! 1

T 1 ! 1 r

1 ' I
I I 1 L

1
I 1 1

1
1 1 1 1

j 1 !

-T
1 1 1 \

1 r
d

J \ L

1 1 ] 1 1 1 1

1 y 1 i

-I
1 1 1 ' r

J 1 L

byte !: CE

byte 2: immediate

data

8E

byte I: DD

byte 2: 8E

byte 3: offset value

byte i: FD

byte 2: 8E

byte 3: offset value

r may be any one of:

A - Hi E - on
B - 000 H " 100

C ~ 00! L - 101

D ~ 010
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Description:

Data Flo w:

Timing:

The operand s and the carry flag C from the status

register are added to the accumulator, and the

result is stored m the accumuiator. s is defined in

the description of the similar ADD instructions.

5; M cycles: T states:

usee

@ 2 MHz:

r i 4 2

n 2 7 3.5

(HL) 2 7 3.5

(iX + d) 5 19 9.5

(lY + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX ^-

d), (lY + d): indexed.

Byte Codes: ADC A,r r: A s c

aF 88 89 SA 8B 8C 8D

Flags:

Example:

5 Z H P/® N C

• • • •

ADC A, lA

Before: After:

CE

OBJECT CODE

A[ 06 13 m
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ADC HL, SS Add with carry HL and register pair ss.

Function: HL HL + ss + C

Formal:

Description:

Data Flow:

1 'I'
1 1 !

1

1

S 5
1

1 i

byte I: ED

byte 2

The contents of the HL register pair are added to

the contents of the specified register pair, and then

the contents of the carry flag are added. The final

result is stored back m HL. ss may be any one of:

BC - 00

DE ~ 0!

HL - 10

SP - ii

SP

Timing: 4 M cycles; 15 T states: 75 usee

Addressing Mode: Implicit.

2 MHz

Byte Codes: ss:
BC OE HL SP

ED- 4A 5A 6A 7A
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Flags:

Example:

5 Z H c

• • ? • o •

H is set if there is a carry from bit il

.

ADC HL, DE

Before: After:

ED

SA

OBJECT
CODE

41

3291

0F18

329!
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ADD A, (HL) Add accumulator with indirectly addressed

memory location (HL).

Fimciion: A A + (HL)

Formal:
1 1 86

Description: The contents of the accumulator are added to the

contents of the memory location addressed by the

HL register pair. The result is stored in the ac-

cumulator.

Timing: 2 M cycles; 7 T states: 3.5 usee @ 2 MHz

Addressing Mode: indirect.

5 z H P/© N c

9 • m m o m
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Example:

OBJEa CODE

ADD A, (HL)

Before:

02

9620

After:

AMil
9620
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ADD A, (IX + d) Add accumulator with indexed addressed

memory location (IX + d)

Function:

Format:

Description:

A - A + (IX + d)

r 1 D 1 1 1 i

1
1 i

-1 1 ! 1 1 T
d

I I i L

byte 1 : DD

byte 2; 86

byte 3: offset value

The contents of the accumulator are added to the

contents of the memory location addressed by the

contents of the IX register plus the immediate off-

set value. The result is stored m the accumulator.

Data Flow:

Timing:

DATA

)

ADD

d

5 M cycles; 19 T states: 9.5 usee @ 2 MHz

Addressing Mode: Indexed.

Flags: s 1 H N C

m m o •
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Example: ADD A. (IX + 3)

Before: After:

0B61 0B61

DD 0861 04 0861 04

86 0B62 B2 0B62 B2

03 0B63 36 0B63 36

0S6'1 91 0B64 91

OBJECT CODE
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ADD A, (lY -I- d) Add accumulator with indexed addressed

memory location (lY -f d)

Function:

Format:

Description:

Data Flow:

A A + (lY + d)

I I

1
i

-T
1 1 1 ! r

I
I

I I i 1 L

byte 1 : FD

byte 2: 86

byte 3: offset value

The contents of the accumulator are added to the

contents of the memory location addressed by the

contents of the lY register plus the given offset

value. The result is stored in the accumulator.

DATA

1

LD

d
ADD

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed.

Flags: s 1 H c

m m m o m
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THE Z80 INSTRUCTION SET

Example: ADD A, (IY + 1)

Before: After:

31

iX 002B 003B

FD

86

01

002B

002C

06

9A
002B

002C

06

9A
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ADD A, n Add accumulator with immediate data n.

Function:

Format:

Description:

Data Flow:

Timing:

A ^ A + n

1 i i

J I 1 L

byte i: C6

byte 2: immediate

data

The contents of the accumulator are added to the

contents of the memory location immediately

foiiowmg the op code. The result is stored m the

accumulator.

MEMORY

2 M cycles; 7 T states: 3.5 usee @ 2 MHz

Addressing Mode: immediate.

Flags: s z H P/® N C

\m 9 • • O •

Example:

C6

E2

ADD A. E2

Before: After:

OBJEa CODE
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ADD A, r Add accumuiator with register r.

Function:

Format:

A 4- r

1 r

I

'
[

Description: The contents of the accumulator are added with

the contents of the specified register. The result is

placed in the accumulator, r may be any one of:

A - HI
B - 000

C - 001

D ~ 010

E - Oil

H - 100

L - 101

Data Flow:

Timing: 1 M cycle; 4 T states: 2 usee @ 2 MHz.

Addressing Mode: Implicit.

A B C D E H L

87 80 B! 32 83 84 85

Flags: S Z H P/® N C

• • • • o •
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Example: ADD A, B

Before: After:

80

3D

B 02

OBJEa CODE

02

202



THEZBOiNSTRUCTiON SET

ADD HL, SS Add HL and register pair ss.

Function: HL HL + ss

Format: „
s . s I

Description: The contents of the specified register pair are

added to the contents of the HL register pair and

the result is stored in HL. ss may be any one of:

BC - 00

DE - 01

HL ~ 10

SP - 11

Data flow:

mmmmmmmm

SP

Timing: 3 M cycles; II T states: 5.5 usee @ 2 MHz

Addressmg Mode: Implicit.

Byte Codes: ss: BC DE HL SP

09 19 29 39

Flags: 5 Z H P/V N c
o o •

C is set by carry from bit 15, reset otherwise.

His set by a carry from bit 11
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Example: ADD HL, HL

Before: After:

29

06Bt L H

OBJECT
CODE
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ADD IX, rr Add iX with register pair rr.

Function:

Format:

IX ^ IX -I- rr

i i 1 ! 1 1

1

1

1 1

byte I : DD

byte 2

Description: The contents of the IX register are added to the

contents of the specified register pair and the

result is stored back in IX. rr may be anyone of:

BC - 00

DE - 0!

IX - \Q

SP - n

Data Flow:

SP

Timing: 4 M cycles; 15 T states: 7.5 usee @ 2 MHz

Addressing Mode: implicit.

sc DE IX SP

09 19 29 39
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s z H N C

O •
H is set by carry out of bit 1 1

.

C is set by carry from bit 15.

Example: ADD IX, SP

Before: After:

OBJECT
CODE
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ADD lY, rr Add lY and register pair rr.

Function:

Formal:

lY - lY + rr

1 1
1

1 1 1 1

J

—

r i' 1 1 byte 2

Descnpdon: The contents of the lY register are added to the

contents of the specified register pair and the

result is stored back in lY. rr may be any one of:

BC - 00

DE - 0!

lY - 10

SP - 11

Dalg Flow:

D

H

:iYt

SPf

Timing: 4 M cycles; 15 T states; 7.5 usee @ 2 MHz

Addressing Mode: impiicit.

Byte Codes: rr: BC DE lY SP

FD- 09 19 29 39
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s z H P/V N c

O ®
H is set by carry out of bit 1 1

.

C is set by carry out of bit 15.

Example: ADD lY, DE

Before: After:

OBJEa
CODE
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AND s Logical AND accumulator with operand s.

Function:

Format:

(HL)

(IX + d)

(lY + d)

A ^ A As

s: may be r, n, (HL), (IX + d), or (lY + d)

1 1

) 1

i
^

1

1 I 1 i

J 1 I I I I L

r i i i

1 ! 1 1 i 1

1 1 1 1

n 1 r
d

I i I

byte 1 : E6

byte 2: immediate

data

A6

byte 1: DD

byte 2: A6

byte 3: offset value

1 1 1 i 1 i byte J : FD

1 i ( i byte 2: A6

J. i 1 L,
byte 3: offset value

r may be any one of:

A - 111

B - 000

C - 001

D - 010

E - on
H - 100

L - 101

Description: The accumulator and the specified operand are

logically 'and'ed and the result is stored in the ac-

cumulator, s is defined in the description of the

similar ADD instructions.
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Data Flow:

Timing:

s: M cydes: T states:

usee

@ 2 MHz:

r i 4 2

n 2 7 3.5

(HL)
-1

d. 7 3.5

(IX + d) 5 19 9.5

(lY + d) 5 19 9.5

Addressing Mode: r: impHcU; n: immediate; (HL): indirect; (IX +
d), (lY + d): indexed.

Byte Codes: AND r r A a c D E H L

A7 AO A! A2 A3 A4 A5

Flags: 5 z H Qyv N c

• • 1 9 o o

Example: AND 4B

Before: After:

A 36

E6

-IB
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BIT b,(HL)

Function:

Test bit b of indirectly addressed memory location

(HL)

(HL)b

Formal:

Description:

1 1 1 t 1

1

1 )

1 !

! i

byte 1: CB

byte 2

The specified bit of the memory location address-

ed by the contents of the HL register pair is tested

and the Z flag is set according to the result, b may

be any one of:

0-000
1 - 001

2 - 010

3 - Oi!

4 - iOO

5 - 10!

6-110
7 111

Data Flow:

A 11

Timing: 3 M cycles; 12 T states; 6 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: s z P/V N C

?
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Byte Codes: b-. o 12 3 4 5 6 7

CB- 46 4E 56 5E 66 6E 76 7E

Example: BIT 3, (HL)

Before: After:

I
00

|

f

H
j

6A42 L h|

CS 6A42 05 6A42 05

OBJECT CODE
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BIT b, (IX + d) Test bit b of indexed addressed memory location

(IX + d)

Function:

Formal:

Z - (iX + d)b

1 1 1 1 1 s

1 1 1 i

-1
i

1 1 1
i r

J I 1 1 I L

1

1 !

1 1

byte 1: DD

byte 2: CB

byte 3: offset value

byte 4

Descnption: The specified bit of the memory location address-

ed by the contents of the IX register plus the given

offset value is tested and the Z flag is set according

to the result, b may be any one of:

- 000 5 - 101

1- 001 6 - no
2- 010 7 - in
3 - on
4 - 100
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Timing: 5 M cycles; 20 T states: 10 usee @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b: 01 234567
DD-CB-d-

Flags:

46 56 5E 66 6E 76 7E

s z P/V N C

a

Example: BIT 6, (iX + 0)

Before;

I
ci

After:

AA11 IX AA11
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BIT b, (lY + d) Test bit b of the indexed addressed memory loca-

tion (lY + d)

Function:

Format:

Z - (lY + d)b

i 1 i 1
i

1 1 !

T—

r

-d-
J I 1 1 1 L

1

i
^

1

1 1

byte i; FD

byte 2: CB

byte 3: offset value

byte 4

Description: The specified bit of the memory location ad-

dressed by the contents of the lY register plus the

given offset value is tested and the Z flag is set ac-

cording to the result, b may be any one of:

- 000 4 ~ iOO

1- 001 5 - 101

2- 010 6 - ilO

3- 011 7-111
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Timing: 5 M cycles; 20 T states: 10 usee @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: bl: i 2 3 A 5 6 7

46 -IE 56 5E 66 6E 76 7E

S Z H P/V N r

m 1

Example: BIT 0, (lY + 1)

Before: After:

OBJECT CODE
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BIT b,r Test bit b of register r.

Function: "b

Format:
1 \ 1 1

1

1 i

) 1

1 (

byte I : CB

byte 2

Description: The specified bit of the given register is tested and

the zero flag is set according to the results, b and r

may be any one of:

b:

r:

- 000 4 „ 100

1 " OOi 5 - 101

2 - 010 6 - no
3 - on 7 - in

A - in E - on
B - 000 H - 100

C - OOI L - lOI

D - 010

Data Flow:

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressing Mode: Implicit.
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Byte Codes:

CB-

b: : A B c D E H L

47 40 41 42 43 44 45

1 4F 48 49 4A 4B 4C 4D

2 57 50 51 52 53 54 55

5F 58 59 5A 5B 5C 5D

4 67 60 6\ 62 63 64 65

5 6F 68 69 6A 6B 6C 6D

6 77 70 7! 72 73 74 75

7 7F 78 79 7A 7B 7C 7D

Flags: s z P/V N C

• 1

Example: BIT 4. B

CB

60

OBJEa CODE

Before:

B 61

After:

F B 61
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CALL cc, pq Call subroutine on condition.

Function: if cc true: (SP - 1) - PChigh- (SP - 2)

PCjo^vi SP SP - 2; PC *- pq

I fee false: PC - PC + 3

Formal:
i 1 1

byte 1

byte 2: address,

low order

byte 3: address,

high order

Description: If the condition is met, the contents of the pro-

gram counter are pushed onto the stack as de-

scribed for the PUSH instructions. Then, the con-

tents of the memory location immediately follow-

mg the opcode are loaded into the low order of the

PC and the contents of the second memory loca-

tion after the the opcode are loaded into the high

order half of the PC. The next instruction fetched

will be from this new address. If the condition is

not met, the address pq is ignored and the follow-

ing instruction is executed, cc may be any one of:

NZ - 000 PO - 100

Z - 001 PE - 101

NC - 0!0 P - 100

C ~ Oil M - iii

An RET instruction can be used at the end of the

subroutine being called to restore the PC.
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Dala Flo w:

M cycles: T slates:

usee

@ 2 MHz
condition

true: 5 17 8.5

condition

not true: 3 10 5

Addressing Mode: immediate.

Byle Codes: cc nz z nc c po pe p m

Flags:

C4 CC D4 DC EC F4 FC

S z H P/V N C

220



THE Z80 INSTRUCTION SET

Example: CALL Z, B042

Before: After:

85

OBOJ

BB12

PC

SP

85

BBi2

CC

A2

BO

OBJEa CODE

BBIO

BS11

BB12

8F

04

32

BB!0

BB11

BB12

8F

04

32
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CALL pq Call subroutine al location pq.

Function:

Formal:

csp - 1) - PChigh; (SP - 2) - pCio,v; sp
- 2; PC ^ pq

SP

1 1 i ! 1

. 1 1 1 L

byte I: CD

byte 2: address, low order

byte 3; address, high order

Descripiion: The contents of the program counter are pushed

onto the stack as described for the PUSH instruc-

tions. The contents of the memory location im-

mediately following the opcode are then loaded in-

to the low order half of the PC and the contents of

the second memory location after the opcode are

loaded in the high order half of the PC. The next

instruction will be fetched from this new address.

Data Flow:

Timing: 5 M cycles; 17 T states: 8.5 usee @ 2 MHz

Addressing Mode: Immediate.
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Flags: S Z H P/V N C

(no effect)

Example: CALL 40BI

Before: After:

OBJECT CODE

PC AAAO

5P
1

CD 0Bi2 9A

B1 0Bi3 01

40 0B14

0B!2

OB! 3

0B!4

mn-.

F4
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CCF Complement carry flag.

Function: C *- C

1 1 1 i i I

Description: The carry flag is complemented.

Data Flow:

Timing: i M cycle; 4 T states: 2 usee @ 2 MHz

Addressing Mode: Implicit. ,

Flags: z H P/V N C

o •
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Compare operand s to accumulator.

Function:

Format:

(HL)

(IX + d)

(lY + d)

A - s

s: may be r, n, (HL), (IX 4- d), or (lY + d).

i i

1 r 1 ! 1 \ i

T 1 r

,
I

,
I 1 1 1 I L.

1 1 i r

) 1 1

1 1 i 1 1

n 1 r

-1 1 1 1 1 ' r

FE

byte 2: immediate
data

byte i: BE

byte i: DD

byte 2: BE

byte 3: offset value

i 1 i i i 1 byte i : FD

j i 1 1 i byte 2: BE

byte 3: offset value

r may be any one of:

A - 111

B - 000

C - 001

D - 010

E - Oil

H ~ 100

L - 101

Description: The specified operand is subtracted from the ac-

cumulator, and the result is discarded, s is defined

m the description of the similar ADD instructions.
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Data Flow:

mmm,.

Timing: usee

s: M cycles: T states: @ 2 MHz:

r i 4 2

n 2 7 3.5

(HL)
•>

7 3.5

(IX + d) 5 19 9.5

(lY + d) 5 19 9.5

Addressing Modes: r: implicit; n: immediate; (HL): indirect;

(IX -f d), (lY + d): mdexed

Byie Codes:

Flags:

CP r:

5 Z

A B C D E H L

BF BS B9 BA BB BC BD

N C

Example: CP (HL)

Before:

96

8203

36

After:

B203

BE B203 42 8203 42
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CPD Compare with decrement.

Funcdon:

Format:

A - [HL]; HL—HL- i; BC —BC - 1

1 i i 1 \
i

1 !
\

byte i; ED

byte 2: A9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.

Then both the HL register pair and the BC register

pair are decremented.

Data Flow:

Timing: 4 M cycles; 16 T states: 8 usee @ 2 MHz

Addressing Mode: mdirect.

Flags:

S Z H P/V N C

i

Reset i/BC = after execution; set otherwise

fSetifA = [HL]
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Example: CPD

Before: After:

2A 06 F A

C B

2A

86B5 L H

ED

A9

B6B5 2A 86B5 2A

OSJEa CODE

228



THE Z80 INSTRUaiON SET

CPDR Block compare with decrement.

Function:

Format:

A- [HL]; HL*~ HL— 1; BC— BC- 1;

Repeat until BC = orA = [HL]

1 i ) i 1 1

1
I ( 1 i

byte 1: ED

byte 2: B9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discard-

ed. Then both the BC register pair and the HL
register pair are decremented. If BC and A ?i

[HL], the program counter is decremented by two
and the instruction is re-executed.

Data Flow:

Timing:

Flags:

BC = or A = [HLJ: 4 M cycles; 16 T states:

8 usee @ 2 MHz
BC and A # [HL]: 5 M cycles; 21 T states:

10.5 usee @ 2 MHz

s z PA/ N C

~teen/BC = after

execution; set otherwise

Set ifA - [HL]
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CPI

Function:

Format:

Description:

Compare wUh increment.

A-[HL];HL^HL + i; BC — BC

1 1 1 1 1 1

1 1

byte i : ED

r] byte 2: A

1

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
The HL register pair is incremented and the BC
register pair is decremented.

Data Flow:

Timing: 4 M cycles; 1 6 T states; 8 usee @ 2 MHz

Addressing Mode: indirect.

Flags:

S Z H P/V N C
•|xl |«l ixl I

'

X
j

I

[ [ I

— ^e^e/ ifBC = after execution set otherwise

f i—-_J r Set if A = [HL]
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Example: CP!

Before: After:

OBJEa CODE
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CP!R Block compare with increment.

Function: A— [HL];HL— HL + l;BC— BC — 1;

Repeat until BC = or A = [HL]

i i
I 1 i

1 1 t D !

byte 1:ED

byte 2: Hi

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then the HL register pair is incremented and the
BC register pair is decremented. If BC ?^ and A
^ [HL], then the program counter is decremented
by 2 and the instruction is re-executed.

Data Flow:

data""""

4;

Timing: BC = or A = [HL] ; 4 M cycles; 16 T states:

8 usee @ 2 MHz
BC 7^ and A 5^ [HL] : 5 M cycles; 21 T states:

10.5 usee @ 2 MHz

Addressing Mode: indirect.
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Flags:

n^i^i ^ Reset i/BC = after execution; set otherwise

1*7 'i''' FfSetifA = [HL]

Example: CPIR

Before: After:
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CPL Complement accumulator.

Fundion:

Formal:

Description:

Data Flow:

A ^ A

1 1 1 1 1

The contents of the accumulator are com-
plemented, or mverted, and the result is stored

back in the accumulator {one's complement).

Timing: i M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: s z h pa' n c

Example: CPL

Before: After:

2F

A 3D

OBJECT
CODE
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Decimal adjust accumuiator.

Function: See beiow.

Format:
i i 1 1 27

Description: The instruction conditionally adds "6" to the right

and/or left nibble of the accumulator, based on the

status register, for BCD conversion after arithmetic

operations.

value of VliiUt: VJ C after

N C high nibble H low nibble to A execution

0-9 0-9 00

(ADD, 0-8 A-F 06

ADC, 0-9 1 0-3 06

INC) A-F 0-9 60

9-F A-F 66

A-F i 0-3 66

i 0-2 0-9 60

1 0-2 A-F 66

1 0-3 1 0-3 66

1 0-9 0-9 00

(SUB, 0-8 1 6-F FA
SBC, 1 7-F 0-9 AO 1

DEC. X 6-F 1 6-F 9A I

NEG)

Data Flow:
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Timing: i M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 Z H N C

• • • • •

Example: DAA

27

OBJECT
CODE

Before: After:

A 82 94 FA
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DEC m Decrement operand m.

Function:

Format:

m*-m- i

m: may ber. (HL), (IX-i-d), (lY+d )

r

1
i

r
— •

I 1

(HL) i i
"!

1

(IX + d) i i i f f 1

i ( 1 i

-1 1 1 1 1 F"

d

(lY + d) 1 1 i f i 1 i

1 ) i

—I 1 1 r
d

35

byte 1: DD

byte 2: 35

byte 3: offset value

byte 1: FD

byte 2: 35

byte 3: offset vaiue

Description:

r may be any one of:

A -111 E-Oli
B - 000 H - 100

C - OOi L - 101

D-OiO

The contents of the location addressed by the

specific operand are decremented and stored back

at that location. mis defined in the description of

the similar INC instructions.

Data Flow:
A

B

D

H
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\

Timing: usee

M cycles: T siaies: @ 2 MHz:

r 1 4 2

(HL) 3 11 5.5

(IX + d) 6 23 U.5
(lY 4- d) 6 23 11.5

Addressing Mode: r: impiicit; (HL): indirect; (IX + d), (lY + d): in-

dexed.

Byie Codes: DEC rr r; A B C D £ H L

3D 05 OD 15 ID 25 20

Flags: s z H P/® N c

Example: DEC C

Before; After:

OD
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DEC rr Decrement register pair rr.

Fundton:

Formal:

rr *~ rr - I

1

f r

1

i i 1

Description:. The contents of the specified register pair are

decremented and the result is stored back in the

register pair, rr may be any one of:

BC - 00 HL - 10

DE "01 SP - U

Data Flow:

Timing: 1 M cycle; 6 T states; 3 usee @ 2 MHz

Addressing Mode: Implicit.

rr

:

BC DE HL SP

OB !B 2B 3B
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Flags: s z h 9/v n c

(no effect).

Example: DEC BC

Before: After:

OBJECT CODE
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DEC IX Decrement IX.

Function:

Formal:

Description:

Daia Flow:

IX - IX - 1

i 1
1 1 1

1

1 i f 1 byte 2: 2B

The contents of the iX register are decremented

and the result is stored back in IX.

Timing: 2 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Modes: Implicit.

5 Z H PA' N C
Flags:

Example:

(no effect).

DEC !X

Before; After:

DD

2B

6U4

OBJECT CODE
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DEC IY

Funcfion:

Format:

Decrement IY,

lY - IY - i

1 i i i 1 I 1

1

1
i 1

Descnpiion: The contents of the IY ret

byte I: FD

byte 2; 2B

and the result is stored back in IY.

Data Flo w:

Timing: 1 M cycles; 10 T stales; 5 usee @ 2 MHz

Addressing Mode: ImpHcit.

Flags: S Z H PA* N C

(no effect).

Example: DEC IY

Before: After:

FD

28

IY 900F iY 900E

OBJECT CODE

243



PROGRAMMING THE Z80

Disable interrupts.

Function:

Format:

Description:

IFF ^0

1 1 i \ ! F3

The interrupt flip-flops are reset, thereby disabling

all maskable interrupts. It is reenabled by an EI

instruction.

Timing: i M cycle; 4 T states; 2 usee @ 2 MHz

Addressmg Mode: Implicit.

Flags: S Z H P/V N C

(no effect).
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DJNZ e Decrement B and jump e relative on no zero.

Fundton:

Format:

B *-B ~ I : if B ¥^ 0: PC PC -f-

1

-e-2- byte 2: offset value

Description: The B register is decremented. If the result is not

zero, the immediate offset value is added to the

program counter using two's complement
arithmetic so as to enable both forward and

backward jumps. The offset value is added to the

value of PC -f 2 (after the jump). As a result, the

effective offset is -126 to +129 bytes. The as-

sembler automatically subtracts from the source

offset value to generate the hex code.

Data Flow:

Timing: B ^ 0: 3 M cycles; 13 T states; 6.5 usee @ 2 MHz.
B ^ 0: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressing Modes: Immediate.
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Flags: S Z H P/V N C

(no effect)

Example: DJNZ $-5 (S = current PC)

Before: After:

F9

PC OOEl PC

OBJECT CODE
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EI

Function:

Format:

Description:

Enable interrupts.

IFF - i

1 1 1 \

'

1

° 1 1 FB

The interrupt flip-flops are set, thereby enabling

maskable interrupts after the execution of the in-

struction following the EI instruction. In the mean-
time masicable interrupts are disabled.

Timing: l M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: implicit.

Flags: s z P/V N C

(no effect).

Example: A usual sequence at the end of an interrupt routine is:

EI

RET!
The maskable interrupt is re-enabled foUowmg
completion of RETI.
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EX AF, AF' Exchange accumulator and flags with alternate

registers.

Function:

Format:
1

Description:

Data Flow:

Timing:

The contents of the accumulator and status

register are exchanged with the contents of the

alternate accumulator and status register.

i M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit,

Flags: S Z H P/V N C

Example: EX AF, AF'

Before: After:

oa

OBJECT CODE

aI 04
!

81
1

^ 90 3A
j

90 3A Aij 04 81
i
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EX DE, HE Exchange the HL and DE registers.

Function: DE -

—

" HL

Format:
I I I I I I EB

Description: The contents of the register pairs DE and HL are

exchanged.

Data Flow:

Timing: i M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 2 H PA/ N C

(no effect).

Example: EX DE. HL

Before: After:

EB

A4E6

9604

9604

A'1E6

OBJECT CODE
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EX (SP), HL Exchange HL with top of stack.

Function:

Format:

(SP) *-L; (SP + i) * H

1 i i 1 1 E3

Description: The contents of the L register are exchanged wuh

the contents of the memory location addressed by

the stack pointer. The contents of the H register

are exchanged with the contents of the memory

location immediately following the one addressed

by the stack pomter.

Data Flow:

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: 5 Z H PA' N C

{no effect).
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Before: After

S290

B409 SP B409

E3

OBJECT CODE

B409

B-lOA

3F

OE 840A
mm
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EX (SP), IX Exchange IX with top of stack.

Function: (SP) ^-^IXjo^; (SP + H ^IX^igh

Formal:

Descriplion:

Data Flow:

1 1 1 1 1 1

i 1 1
1 1 byte 2: E3

The contents of the low order of the iX register

are exchanged with the contents of the memory

location addressed by the stack pointer. The con-

tents of the high order of the IX register are ex-

changed with the contents of the memory location

immediately following the one addressed by the

stack pointer.

SP

DATA

Timing: 6 M cycles; 23 T states; 1 1.5 usee @ 2 MHz

Addressing Mode: indirect.

Flags: S Z H PA/ N C

(no effect).
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Example: EX (SP), IX

Before: After:
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EX (SP), lY Exchange IY with top of stack.

(SP) -lYiowi (SP + 1) ^iVhighFunction:

Format:

Description:

Data Flow:

Timing:

1 i 1 1 \ i 1 byte !: FD

1 i 1 1 1 byte 2: E3

The contents of the low order of the lY register

are exchanged with the contents of the memory

iocation addressed by the stack pointer. The con-

tents of the high order of the iY register are ex-

changed with the contents of the memory location

immediately following the one addressed by the

stack pointer.

7^
DATA

6 M cycles; 23 T states; 11.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags:
S 2 H P/V N C

(no effect).
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Example: EX (SP), lY

Before: After:
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EXX Exchange alternate registers.

Function: BC *-BC'; DE **DE'' HL -*HL'

Formal:

Descnplion:

Data Flo \\>:

1 1 1 1 1

The contents of the general purpose registers are

exchanged with the contents of the corresponding

alternate registers.

Timing: 1 M cycle; 4 T states; 2 usee @ 2 MHz

Addressmg Mode: Implicit.

Flags:

Example:

5 Z H PA/ N C

EXX

Before:

(no effect).

After:

D9

OBJECT
CODE

A 04 2B F A 04 28 F

8 39 26 C B 8C 00 C

D 54 02 E D 93 DO E

H Fl 00 L H 4F E3 L

A' 3F 2A Fi A' 3F 2A P

B' 8C 00 C B' 39 26 O
Di 93 DO D' 54 02 e
HI Af E3 V H' Fl DO V
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HALT Halt CPU.

Function:

Format:

Description:

Timing:

CPU suspended.

1 i i 76

CPU suspends operation and executes NOP's so

as to continue memory refresh cycles, until in-

terrupt or reset is received.

1 M cycle; 4 T states; 2 usee

finite Nop's.

2 MHz + inde-

Addressing Mode: implicit.

Flags: 5 Z H P/V N C

(no effect).
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IMO

Function:

Format:

Description:

Timing:

Set interrupt mode condition.

Internal interrupt control.

i i i \ 1 1

1 1 1

byte i : ED

Sets interrupt mode 0. In this condition, the in-

terrupting device may insert one instruction onto

the data bus for execution, the first byte of which

must occur during the interrupt acknowledge cycle.

2 M cycle; 8 T states; 4 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: s z P/V N C

(no effect).
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Set interrupt mode 1 condition.

Function:

Format:

Description:

Internal interrupt control.

{ 1 1 i !

1 byte 2: 56

Sets interrupt mode 1. A RST 0038H instruction

will be executed when an interrupt occurs.

Data Flow: 00 38

(at time of interrupt)

0038 iNT

ROUTINE

PCH
PCI

STACK

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: S Z H p/V N C

(no effect).
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Set interrupt mode 2 condition.

Function: Internal interrupt control.

Format:
1

I

1
1

1 1 1 r

1 i 1

byte 1 : ED

byte 2: 5E

Description: Set interrupt mode 2. When an interrupt occurs,

one byte of data must be provided by the peripheral

which IS used as the low order of an address. The
high order of this vector address iS taken from the

contents of the I register. This points to a second

address stored m memory,which is loaded into the

program counter and begins execution.

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: SI h pa/ n c

(no effect]
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IN r,(C) Load register r from port(C)

Fundion:

Formal:

(C)

i i i 1 i i

1

t 1

f byte 2

Descripiion: The peripheral device addressed by the contents of

the C register is read and the resuk is loaded mto

the specified register.

C provides bits AO to A7 of the address bus.

B provides bits A8 to A15.

Daia Flow:

r may be any one of:

A - ill

B - 000

C - 001

D - 010

E - Oil

H - 100

L ~ 101

PORT

Timing: 3 M cycles; 12 T states; 6 usee @ 2 MHz

Addressing Mode: External.

Bvie Codes: r: A B C E Hi.
76 ^0 48 50 58 60 68
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Flags: s z ©^VN_C
' ©To

It is important to note that INA,(N) does not have

any effect on the flags, while IN r. (C) does.

Example: IN D, (C)

Before: After:

ED

50

OBJECT CODE

09

A5

6A

A5

PORT

A5

A5

6A PORT
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IN A, (N) Load accumulator from input port N.

Fundion:

Formal:

A - (N)

1 1 1 1 1 \

T—T
\ I I L

byte 1: DB

byte 2: port address

Description:

Dala Flow:

Timing:

The peripheral device N. is read and tiie result is

loaded into the accumulator.

The literal N is placed on lines AO to A7 of the

address bus. A supplies bits A8 to A15.

A

B c

D E

H L PORT

fN

3 M cycles; 11 T states; 5.5 usee @ 2 MHz

Addressing Mode: External.

Flags: 5 z H PA/ N c

Example: IN A, (B2)

(no effect).

Before:

DB

B2

A 84

B2

OBJECT CODE

After:

Fi
I

PORT A^^P!^ F1 PORT

B2
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INC r Increment register r.

Function: r - r + 1

Format:
I 1

1

Description: The contents of the specified register are in-

cremented, r may be any one of:

A - Ul
B - 000

C - 001

D - 010

E - on
H - 100

L - 101

Data Flow:

Timing: 1 M cycle; 4 T states: 2 usee @ 2 MHz

Addressing Mode: Implicit.

Example: mc D

Before:

06

Byte Codes: r: A B C D E H L

3C 04 oc 1^ 1C 24 2C

Flags: s Z H P/® N C

o

After:

f5
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INC rr Increment register pair rr.

Function:

Formal:

Description:

rr rr -h i

Da(a Flo w:

i

r ^"

1

1

The contents of the specified register pair are in-

cremented and the result is stored back m the

register pair, rr may be any one of:

BC - 00

DE - 01

HL - 10

SP - n

Timing: i M cycle; 6 T states; 3 usee @ 2 MHz

Addressing Mode: Implicit.

Byie Codes: rr: bc de Ht sp

I
03 i3 23 33
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Flags: S Z H PA/ N C

(no effect).

Example: INC HL

Before: After:

23

H 0B14 L H

OBJECT
CODE
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INC (HL) Increment indirectly addressed memory location

(HL).

Fundion:

Formal:

(HL) (HL) + 1

i I 1

Description: The contents of the memory location addressed by

the HL register pair are incremented and stored

back at that location.

Daia Flow:

A
~

Timing: 3 M cycles; II T states; 5.5 usee @ 2 MHz

Addressing Mode: indirect.

Flags: s z H p/g) N

9 9 e m o

Example: INC (HL)

Before: After:

06B1 L H 06B1

34

OBJECT
CODE

06B! 3B 068

1

'fMEWm
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INC (IX 4- d) Increment indexed addressed memory location

(iX + d).

Function: {IX + d) ^ (IX + d) + i

Format:
,

1 1 1 1 f

1 (

byte 3: offset value

Description: The contents of the memory location addressed by
the contents of the IX register plus the given offset

value are incremented and stored back at that

location.

Timing: 6 M cycles; 23 T states; ! 1 .5 usee @ 2 MHz

Addressing Mode: Indexed.

^^"Ss: s z H p/g) N c

o

268



Example:

OBJECT
CODE
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INC (IX + 2)

Before: After:

IX 03B1 iX 03B!

03B1 B1 03B1 B1

03B2 85 03B2 85

03B3 B9 03B3
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INC (lY + d) Increment indexed addressed memory location (lY

4- d).

Function:

Formal:

(lY +d) ^ (lY + d) + 1

'I'
f t i

1 1 1

_i 1 L.

byte 1 : FD

byte 2: 34

byte 3: offset vaiue

Description:

Data Flow:

A

The contents of the memory location addressed by

the contents of the lY register plus the given offset

value are incremented and stored back at that

location.

Timing: 6 M cycles; 23 T states; 11.5 usee @ 2 MHz

Addressing Mode: Indexed.

Flags: N C

• • • • o
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Example: INC (lY + 0)

Before:

__
After:

0601

FO

3d

00

0601

0602 BO

OBJECT
CODE
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INC IX Increment IX.

Function:

Format:

Description:

Data Flow:

IX ^ IX + 1

1 1 1 1 1 1

1 1 1

I

!
byte i: DD

byte 2: 23

The contents of the IX register are incremented

and the result is stored back in IX.

Timing: 2 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

DD

23

OBJECT CODE

S Z H P/V N C

INC IX

Before;

B!BO

(no effect).

After:

IX

I
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INC lY

Function:

Format:

Description:

Data Flow:

Increment lY

lY ^ lY + 1

1 1 1 1 i ! 1 byte 1 : FD

1
1 1 byte 2: 23

The contents of the lY register are incremented

and the result is stored back in lY.

Timing: 2 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 1 H PA' N C

(no effect).

Example:

FD

23

OBJECT CODE

INC lY

Before:

36BI

After:

iY ;36B2:
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Function:

Format:

Description:

Data Flow:

Timing:

Input with decrement.

(HL) *~ CO; B *- B - i; HL ^ HL

i i i i 1 1 byte i: ED

byte 2: AA'}

1 1 1

The peripheral device addressed by the C register

is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register and the HL register pair are then each

decremented.

4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: External.

Flags: s z H PA' N C

X 1
r Set if B = after execution

Reset otherwise
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Example: IND

Before; After;

B Al B5

068A

26

S5

L hM

PORT

05

26 PORT

B5

ED

AA

OBJECT CODE

06BA 00 06BA 'mm
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Function:

Block input with decrement.

(HL)-(C);B-B - 1; HL
Repeat until B =

HL - i

Formal:
I i 1 1 1 !

i

1 1
1 1 1 1

I byte i : ED

Description: The peripheral device addressed by the C register

is read and the result is loaded into the memory

location addressed by the HL register pair. Then

the B register and the HL register pair are

decremented. If B is not zero, the program

counter is decremented by 2 and the instruction is

re-executed.

Data Flow:

PORT

DATA
^

a

\

^^

Timing: B = 0:4 M cycles; 16 T states; 8 usee @ 2 MHz.
B ?^ 0:5 M cycles; 21 T states: 10.5 usee @ 2 MHz.

Addressing Mode: External

Flags: s z h p/v n c
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Example: INDR

Before: After:
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INI Input with increment.

Function: (HL) ^ (C); B - B - 1; HL ^ HL + i

Format:
\ 1 i 1 i i

I 1 1 !

byte i: ED

byte 2: A2

Description: The peripheral device addressed by the C register

IS read and the result is loaded into the memory
location addressed by the HL register pair. The B

register is decremented and the HL register pair is

incremented.

The contents of C are placed on the low half of the

address bus. The contents of B are placed on the

high half. I/O selection is generally made by C,

i.e., by AO to A7. B is a byte counter.

Data Flow:

PORT

DATA

Timing: 4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: External

Flags: P/V N

Z IS set if B = after execution,

Reset otherwise
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Block inpui with increment.

Fundion: (HLi (C); B ^ B - i: HL ^ HL + 1; Repeat

until B =

Formal:
1 1 1 1 t !

! i 1 i

byie i: ED

Descripiion: The peripheral device addressed by the C register

IS read and the result is loaded mto the memory

location addressed by the HL register pair. The B

register is decremented and the HL register pair is

incremented. If B is not zero, the program counter

IS decremented by 2 and the instruction is re-

executed.

Data Flow:

Tinting: B = 0: 4 M cycles; 16 T states; 8 used @ 2 MHz.

B 0: 5 M cycles; 21 T stales; 10.5 usee @ 2 MHz.

Addressing Mode: External.

Flags: S Z H PA' N C
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Example: iNIR

Before: After:
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JP CC, pq Jump on condition to location pq.

Funclion:

Formal:

if cc true: PC *~ pq

~i r
-p

I byte 1

byte 2: address,

low order

byte 3: address,

high order

Descnpiion: If the specified condition is true, the two-byte ad-

dress immediately following the opcode will be

loaded into the program counter with the first byte

foliowmg the opcode being loaded into the low

order of the PC. If the condition is not met, the

address is ignored, cc may be any one of;

NZ - 000 no zero

z - OOi zero

NC - 010 no carry

C - on carry

PO - 100 parity odd

PE - 101 parity even

P ~ no plus

M - Ill minus

Dala Flo w:

A

8

D

H

282



Timing:
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3 M cycles; 10 T slates; 5 usee @ 2 MHz

Addressing Mode: immediate.

Byle Codes:

Flags:

c c NZ Z NC C PO P£ P M
C2 CA D3 DA £2 EA F2

1
FA

s z H p/y N C

(no effect)

Example: JP C, 3B24

DA

24

3B

OBJECT CODE

Before:

PC 0032

After;
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JP pq

Function:

Formal:

Descriplion:

Dala Flow:

Jump to location pq.

PC pq

i
1 1 byte i: C3 ?

byte 2: address,

low order

byte 3: address,

high order

The contents of the memory location immediately

following the opcode are loaded into the low order

half of the program counter and the contents of

the second memory location immediately follow-

ing the opcode are loaded into the high order of

the program counter. The next instruction will be

fetched from this new address.

JP

Timing: 3 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Immediate.

Flags: ^ ^ ^ p/v N c

(No effect)

Example: JP 3025

Before:

C3

25

30

PC 5520 PC

After:

mmm m

OBJECT CODE
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JP (HL)

Function:

Format:

Jump to HL.

PC - HL

i r ! 1
I

! !
I

E9

Description: The conienis of the HL register pair are loaded in-

lo (he program counter. The next m.slrucEion is

feichcd from ihi.s new address.

Ti/nin^:
\ M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: ImpUcit.

Flags: s z h p/v n c

i . I I j I I i i (no effect).

Example: JP (HL)

Before: After;

OBJECT CODE
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JP (IX) Jump to iX.

Fundion:

Format:

Description:

Data Flow:

PC *- IX

1 1 i 1 1 i

i 1 f i 1

byte I: DD

byte 2: E9

The contents of the iX register are ioaded into the

program counter. The next instruction is fetched

from this new address.

IX

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 z h _ p/v n c

Example:

DD

E9

OBJECT CODE

JP (IX)

Before:

IX

PC

80F1

3B4A

(no effect).

After:

IX 80FI
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JP (lY)

Fuiwlion:

Format:

Descnpiion:

Daia Flow:

Jump lo lY-

PC *~ lY

! \ i 1 1 1 1

1 ! i 1
1 1

byle 1: FD

bylc 2: E9

The conicni.s of ihc {Y regisier arc moved iino fhc

program counter. The nexi inslruciion will be Tei-

ched from ihis new address.

Tinun^: 2 M cycles; 8 T stales; 4 u.sec @ 2 MHz
Addressing Mode: impiicii.

F/ags: ^ ^ " P/v N c

(no effect).

Example: JP (lY)

Before; After:

FD

E9

1Y[

PCI

AAdB

E410

AA4B

OBJECT CODE
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cc, e Jump e relative on condition.

Fundion:

Formal:

if cc true, PC PC + e

Descnpiton:

Data Flo\\

A

Timing:

1 c c

1 I !
!'

I

--e-2

byte !

byte 2: offset value

If the specified condition is met, the given offset

value is added to the program counter using two's

complement arithmetic so as to enable both for-

ward and backward jumps. The offset value is

added to the value of PC + 2 (after the jump). As

a result, the effective offset is -126 to 4- 129 bytes.

The assembler automatically subtracts 2 from the

source offset value to generate the hex code. If the

condition is not met, the offset value is ignored

and instruction execution continues in sequence,

cc may any one of:

NZ - 00 NC - 10

Z - 01 C - 11

M cycles: T stales:

usee

@ 2 MHz:

condition

met: 3 12 6

condition

not met: 7 3.5
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Addressing Mode: Relative.

Byte Codes:

Flags:

Example:

30

FB

OBJECT CODE

NZ 2 NC C

20 28 30 38

S Z H P/V N C

(no effect).

JR NC, % -- 3 S = current PC

Before: After:

00 F 00 F

PC
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e

Function:

Formal:

Jump e relative.

PC ^ PC + e

1 1

-i
1 1 r
e-2

J I 1 L
byte 2: offset value

Description:
The given offset value is added to the program

counter using two's complement arithmetic so as to

enable both forward and backward jumps. The off-

set value is added to the value of PC + 2 (after the

jump). As a result, the effective offset is -126 to

+ 129 bytes. The assembler automatically subtracts

2 from the source offset value to generate the hex

code.

Data Flow

A

Timing: 3 M cycles; 12 T states; 6 usee @ 2 MHz

Addressing Mode: Relative.

Flags: s 2 h p/v n c...

(no effect)

Example: JR D4

Before: After:

D2

PC B100

(This is a backwards jump.)

OBJECT CODE
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LD dd, (nn) Load register pairdd from memory locations ad-

dressed by nn.

Funcnon: ddiow ^ (nn); ddhjgh *~ (nn + i

)

Format:

Description:

i 1 i i 1

i d
^
d , |0 i

byle i: ED

byte 2

byte 3: address,
low order

byte 4: address,

high order

The contents of the memory location addressed by
the memory locations immediately following the

opcode are loaded into the low order of the

specified register pair. The contents of the

memory location immediately following the one
previously loaded are then loaded into the

high order of the register pair. The low order byte

of the nn address immediately follows the opcode,
dd may be any one of;

BC - 00

DE - 01

HL -

SP -
10

11
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Timing: 6 M cycles; 20 T states: !0 usee @ 2 MHz

Addressing Mode: Direct.

OBJEa CODE

dB 5B 6B 7B

Flags: S Z H PA/ N C

(no effect)

Example: LD DE, (5021)

Before: After:

DBE2 1 e D^MIfr^ME

ED

SB

50

5021

5022

F4

30

5021

5022

F4

30
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LD dd, nn

Function:

Formal:

Description:

Data Flow:

Timing:

Load register pair dd with immediate data nn.

dd *- nn

d d

J L ! L

byte I

byte 2: immediate
data, iow order

byte 3: immediate
data, high order

The contents of the two memory locations im-

mediately following the opcode are loaded into the

specified register pair. The lower order byte of the

data occurs immediately after the opcode, dd may
be any one of:

BC - 00

DE - 01

HL - 10

SP ~ il

SP

•1

LD

-)

n

n

3 M cycles; iO T states; 5 usee @ 2 MHz

Addressing Mode: Immediate.

Byte Codes: BC OE HL SP

0! U 21 31

Flags: PA' N C

(no effect)
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Example: LD DE. 4131

Before:

31

0394

OBJECT CODE

294
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THE Z80 INSTRUCTION SET

Load register r with immediate data n.

Function:

Formal:

Descripdon:

Dala Flow:

f •

1 1

1 byte 1

byle 2: immediate data

The contents of the memory location immediately
foilowing the opcode location are loaded into the

specified register, r may be any one of:

A - HI
B - 000

C - 001

D - 010

E - on
H - 100

L - 101

LD

n

Timing: 1 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Immediate.

Byle Codes: A a C D E H L

3E 06 OE i6 iE 26 2E

Flags: S Z H P/V N C

(no effect).
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Example: LD C, 3B

Before: After:

OE

3B

C 01

OBJECT CODE
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r, r Load register r from register r'.

Function:

Format:

Description:

r

1 i

1 1

1 ^ i

The contents of the specified source register are

loaded into the specified destination register, r and

r' may be any one of:

A - HI
B - 000

C - 001

D - 010

E - Oil

H - 100

L - 101

Data Flow:

Timing: I M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Byte Codes:

Flags:

c

D

E

H

1.

(dest.

)

A 8 C D E H L

7F 78 79 7A 7B 7C 7D

47 40 41 42 43 44 45

4F 48 49 4A 4B 4C 4D

57 50 51 52 53 54 55

5F 58 59 5A 5B 5C 5D

67 60 6! 62 63 64 65

6F 68 69 6A 6B 6C 6D

P/V N C

(no effect).
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Example: LD H. A

OBJECT CODE

Before: After:

A

67

H

8C

H 8D

A ec
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LD (BC), A Load indirectly addressed memory location (BC)

from the accumulator.

Function:

Formal:

(BO ^ A

Q
\

o oto i 02

Descnpiion:

DaIa Flow:

The contents of the accumulator are loaded into

the memory location addressed by the contents of

the BC register pair.

DATA

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags:

Example:

5 Z H P/V N C

11 "T J^l TU effect).

LD (BC), A

Before: After:

3F 3F

4109 4109

02 4109 4109

OBJECT CODE
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, A Load indirectly addressed memory bcation (DE)

from the accumulator.

Function:

Formal:

Description:

Data Flow:

(DE) A

i (

The contents of the accumulator are loaded into

the memory location addressed by the contents of

the DE register pair.

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: S Z H P/V N C

(no effect)

Example: LD (DE), A

Before:

i
B I

After:

0392

Aj ED

0392

12

08JEa CODE

0392 F7 0392
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LD (HL), n Load immediate data n into the indirectly ad-

dressed memory location (HL).

Fundion: (HL) *- n

Format: __

[ .[_! rii°i ' IlH ^^^^ ^

r "
~| i I 71 byte 2: immediate

i ! J I—I—{ L 1 i data

Description: The contents of the memory location immediately

following the opcode are loaded into the memory
location indirectly addressed by the HL data

pointer

Data Flo w:
A

Timing: 3 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Immediate/indirect.

Flags: 5 z h p/v n c

(no effect).
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Example: LD (HL), 5A

Before: After:

_ .

A342

OBJECT CODE
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LD{HL), r Load indirectly addressed memory location (HL)

from register r.

Fundion: (HL) - r

Format:
! 1 1

i
^

1

1 1

Description: The contents of the specified register are loaded

into the memory location addressed by the HL
register pair, r may be any one of:

A ~ HI
B - 000

C - 001

D - 010

E - Oil

H - 100

L - 101

Data Flow:

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: A 8 C D E H L

77 70 71 72 73 7A 75
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Flags: S Z H PA/ H C

(no effect).

Example: LD (HL), B

Before: After:

B
[

81

H
I C501 L H C501 L

OBJECT CODE
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r, (IX + d) Load register r indirect from indexed memory
location {IX + d)

Fundion:

Format:

Description:

r ^ {iX + d)

1 i ! 1 1 1

i ! i

-I
1 1 r

i r
,

I L.

byte i: DD

byte 2

byte 3: offset value

The contents of the memory location addressed by

the IX index register pius the given offset value,

are loaded into the specified register, r may be any

one of:

A - 111

B - 000

C - 001

D - GiO

E - Oil

H - 100

L - 101

Data Flo w:

DATA

) LO

d

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: A B C D E H L

7E 46 4E 56 5E 66 6E
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Flags:
5 Z H P/V N C

(no effect).

Example: LD E, (iX + 5)

Before: After:

IX r 3020
I

iX I 3020

DD

5E

05

OBJECT CODE

3020

3025

2A

15

3020

3025

2A

15
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LD r, (lY + d) Load register r indirect from indexed memory
location {lY + d)

Funclion: r — (lY + d)

Format:
i 1 1 1 1 i 1

1

1
1

I 1

i

byte i: FD
'

byte 2

byte 3: offset value

Descriplion: The contents of the memory location addressed by

the lY index register plus the given offset value,

are loaded into the specified register, r may be any

one of:

A - 111

B - 000

C - 001

D ~ 010

E - Oil

H - 100

L - 101

Data Flow:
DATA

) LO

d

Timing: 5 M cycles, 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed.
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Byte Codes:

Flags:

A B C E HI
7E ^6 4E 56 56 66 6E

S Z H P/V N

(no effect).

Example: LD A. (lY + 2)

Before:

E3

BOOS

After:

BOOS

FD

76

02

OBJECT CODE

BOOS

B007

61

F9

BOOS

B007

6i

F9
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LD (IX + d), n Load indexed addressed memory location (IX +
d) with immediate data n.

Fundion:

Formal:

Description:

Data Flow:

(IX + d) ^ n

1 1 1 1 1 i

1 1 1 1

1 1
i

1 r

byte 2: 36

byte 3: offset vaiue

byte 4: immediate

data

The contents of the memory location immediately

following the offset are transferred into the

memory location addressed by the contents of the

index register plus the given offset vaiue.

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed/immediate.

Flags: 5 z h p/v n c

(no effect).

309



PROGRAAAMING THE Z80

Emt^^ L0 (IX + 4), FF

Before: After:

'Xj I
ix

|

OBJECT CODE
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LD (lY + d), n Load indexed addressed memory location (lY' +
d) with immediate data n

.

Function:

Format:

Description:

Dma Flow:

(lY + d) ^ n

1 1 1 1 1 1 1

1 1 1 1

I 1 t 1 -1- I

\ I
"

I 1 f

byte 2: 36

byte 3: offset value

byte 4: immediate

The contents of the memory location immediately

f0ik)Wing the offset are transferred into the me-

mory location addressed by the contents of the

index register plus the given offset value.

lY

LD

d

n

)

Tirnim- 5 M cycles; 19 T Mates; 9.5 usee @ 2 MHz

Addressing Mode' Indexed/immediate.

S Z H PA' N C

;(no effect).
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Example: LD (iY + 3), BA

Before: After:

iY
j

0100 1 iY 0100

OBJECT CODE
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LD(IX ¥ d),r Load indexed addressed memory location (IX +
d) from register r.

Function:

Formal:

(IX + d)^r

1 1 1 1 1 1

! 1 !

1 s

1

'
i

1
i i

! ! 1 r

_i I I I I i_

byte i:DD

byte 2

byte 3: offset value

Descriplion: The contents of specified register are loaded into

the memory location addressed by the contents of

the mdex register plus the given offset value, r may
be any one of:

A - III

B - 000

C - 001

D - 010

E - on
H - 100

L - lOi

Dala Flow:

tx

DATA

i

LD

d

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz
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Addressing Mode: Indexed.

Byle Codes: r: A B c D e H L

DD- 77 70 71 72 73 74 75

Flags: S Z H P/V N C

(no effect).

Example: LD (IX + I), C

Before;

6B

IX 4462

After:

6B

IX 4462

DD

OBJECT CODE

4462

4463

9D

OF

4462

4463

9D
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LD (lY + d), r Load indexed addressed memory location (lY +
d) from register r.

Function:

Format:

(lY + d)

1 ! 1 1 1 1 1

1 1 1

1 I

1 1 1 1 1 i >

byte !: FD

byte 2

byte 3: offset value

Description:

Data Flow:

The contents of the specified register are loaded

into the memory location addressed by the con-

tents of the index register plus the given offset

value, r may be any one of:

A - III

B - 000

C - 001

D - 010

E - Oil

H - 100

L - lOi

77 70 71 72 73 74 75

) LD

d

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: r; a b c d e h l
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Flags: S Z H PA^ N C

(no effect).

Example: LD (iY + 3), A

Before: After:

A 3E A 3£

!Y 5AB4 !Y 5AB4

FD

77

03

5AB4

5AB7

2i

5A

5AB4

5AB7

21

OBJEa CODE
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LD A, (nn) Load accumulator from the memory location

(nn).

Function: A (nn)

Format:
1 i 1 i byte 1: 3A

^ ' i ' I i I I

I

byte 2: address, low—I

—

I—1—I—I—I—I—
I order byte

- ' ' '

r—I—
i^yjg 3. adclress, high

I—1

—

I—L.^_i—,—^^_J Q^^g^ ^y^g

Description: The contents of the memory location addressed by

the contents of the 2 memory locations immediate-

ly following the opcode are loaded mto the ac-

cumulator. The low byte of the address occurs im-

mediately after the opcode.

Data Flow:

Timing: 4 M cycles; 13 T states; 6.5 usee @ 2 MHz

Addressing Mode: Direct.
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Flags: s Z H P/V N c

(no effect).

Example: LD A, (3301)

Before:

OA

318
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LD (nn),A Load directly addressed memory location (nn)

from accumulator.

Function: (nn) A

Formal:

! 1
!

J L
1—

r

J i L

I i

byte 1: 32

byte 2: address, low
order

byte 3: address, high

order

Descnplton: The contents of the accumulator are loaded into

the memory location addressed by the contents of

the memory locations immediately following the

opcode. The low byte of the address immediately

follows the opcode.

Dafa Flo w:

c

E

I

DATA

LD

q

P

Timing: 4 M cycles; 13 T stales; 6.5 usee @ 2 MHz

Addressing Mode: Direct.
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Flags: s z h p/v n c

(no effect)

Example: LD (032 i), A

Before: After:

OBJECT CODE
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LD (nn), dd Load memory locations addressed by nn from
register pair rr.

Function:

Format:

(nn) ^cid|ow; (nn + 1) -^ddhigh

1 1 i !
1 1 1

i d d [ 1 1 1

T— r"

I i I l_

byte 3: address,

low order

byte 4: address,

high order

Descriptions: The contents of the low order of the specified

register pair are loaded into the memory location

addressed by the memory locations immediately

foHowmg the opcode. The contents of the high

order of the register pair are loaded into the

memory iocation immediately followmg the one

loaded from the low order. The low order of the

nn address occurs immediately after the opcode.dd

may be anyone of:

BC - 00 HL ~ 10

DE - 01 SP - U
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Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.

BC DE HL SP

43 53 63 73

flags: 5 Z H P/V N C

(no effect).

Example: LD (040B), BC

Before: After:

0221 0221

ED

43

OB

04

OBJEa
CODE

040B

OdOC

06

AB

0408

040C
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LD (nn),HL Load the memory locations addressed by nnfrom
HL.

Function:

Format:

(nn) — L, (nn -f 1) — H

Description:

Data Flow:

s !

1 r 1

""!
i

——t—T——1
1

-1 i 1_ .._!___L_

byte 2: address,

low order

byte 3: address,

high order

The contents of the L register are loaded into the

memory location addressed by the memory loca-

tions immediately followmg the opcode. The con-
tents of the H register are loaded into the memory
location immediately following the location

loaded from the L register. The low order of the

n'n address occurs immediately after the opcode.

Timing: 5 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: Direct.
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Flags: 5 Z H P/V N C

(no effect).

Example: LD (40B9), HL

OBJECT
CODE

Before: After:

304A

22

B9

4089

40BA

20

9F

40S9

dOBA
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LD (nn), IX Load memory locations addressed by nn from IX.

Funaion: (nn) - IXjowi (nn 4- I) - IX^^gh

Format:
i t 1 1 1 1

1
1

byte I: DD

byte 2: 22

~ ^ ' ' ^ ' ' !
I byte 3: address,—L_j—L— 1 1 I ! !ow order

"~
' ' '

;^ ' _SIZm ^y^^ at^tiress,—1—I—I—.—1—I—1—1 high order

Description: The contents of the low order of the IX register

are loaded into the memory location addressed by
the contents of the memory location immediately
following the opcode. The contents of the high
order of the IX register are loaded into the

memory location immediately following the one
loaded from the low order. The low order of the

nn address occurs immediately after the op code.

Data Flow:

Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.
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Flags: 5 z H p/y N c

(no effect).

Example: LD (0128), IX

Before: After:

0406 iX 0406

DD

22

28

01

OBJECT
CODE

0I2B

0!2C

D3

9A

Oi2B

0?2C

06

'/>'..'/////
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LD (nn), lY Load memory localions addressed by nn from lY,

Function:

Format:

Descripiion:

(nn^ - lYiow; (nn + 1) - lY^jg^

1 1 1 1

1

1

i

byte i \ FD

byte 2: 22

byte 3: address,

low order

byte 4: address,

high order

The contents of the low order of the 1 Y register are

loaded into the memory location addressed by the

contents of the memory locations immediately

followmg the opcode. The contents of the high

order of the lY register are loaded mto the

memory location immediately following the one
loaded from the low order. The low order of the

nn address occurs immediately after the opcode.

Data Flow:

Timing:

LD

n

n

DATA

6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.
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Flags: S Z H P/V hi C

(no effect)

Example: LD (BD04), lY

OBJECT CODE

Before: After:

lY D204 D204

FD

22

04

BD

8D04

BD05

A5

96

BD04

BOOS
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LD A, (BC) Load accumulator from the memory location in-

directly addressed by the BC register pair.

Funciion: A *~ (BC)

Formal: _____
i i OA

Descnpiion: The contents of the memory iocation addressed

by the contents of the BC register pair are loaded

mto the accumulator.

Dala Flow: _____ ^

DATA

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: s z h p/v n c

(no effect).

Example: LD A, (BC)

Before: After:

A AB

32D1 32D1
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LD A, (DE) Load the accumulator from the memory location

mdirectly addressed by the DE register pair.

Funclion:

Format:

A - (DE)

i ( i

Description:

Data Flow:

The contents of the memory location addressed by

the contents of the DE register pair are loaded into

the accumulator.

^1
c DATA^^--

j

E ^

L

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indirect.

S Z H P/V N C
Flags:

Example: LD A, (DE)

Before:

D2

6051

(No effect).

After:

E D 6051

OBJECT CODE

6051 09 6051 09
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THE Z80 INSTRUCTION SET

Load accumulator from interrupl vector register 1.

Function:

Format:

Descnpiion:

Daia Flow:

Timing:

A *-
i

i , I I

byte 1: ED

[Z[ ' ]_° F' [ °T Jj £J ^y^^ 2: 57

The contents of the interrupt vector register are

loaded into the accumulator.

c

E

c

2 M cycles; 9 T states; 4.5 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 Z H P/V N C

• • 1

1
o X o Set to the contents

of IFF2

Example: LD A, I

Before: After:

30 I -JB

ED

57

as

OBJECT CODE
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LD I, A

Function:

Formal:

Load Interrupt Vector register 1 from the ac-

cumulator.

I
*- A

1 1 i ! 1

j
r i i

byte i : ED

byte 2: 47

Description: The contents of the accumulator are ioaded into

the Interrupt Vector register.

Tuning: 2 M cycles; 9 T states; 4.5 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 z h pa^ ^ . ^

,

(no effect)

Example: LD I, A

Before; After;

ED

47

Ai 06 D2
1
a

|
06 1 I fMM^^WM

OBJECT CODE
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LD A, R Load accumulator from Memory Refresh register

R.

Function:

Formal:

A R

! 1 1 1 1 1

r
1

1
1 1 1 byte 2: 5F

Description: The cements of the Memory Refresh register are

loaded into the accumulator.

Data Flow:
A

B

D

H

Timing: 2 M cycles; 9 T states; 4.5 usee @ 1 MHz

Addressing Mode: Implicit.

F/ags:

Example:

s z H P/V N c

• • O X o

LD A, R

Before;

k set to contents of IFF2

After:

ED

5F

62 . R 4A ^^^^

OBJECT CODE
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LD HL, (nn) Load HL register from memory locations addres-

sed by nn.

Function: L-(nn); H - (nn + H

format:
1 1 1 byte 1 : 2A

byte 2: address, low

order

byte 3: address, high

order

Description: The contents of the memory location addressed by

the memory locations immediately after the op-

code are loaded into the L register. The contents

of the memory location after the one loaded into

the L register are loaded into the H register. The

low byte of the nn address occurs immediately

after the opcode.

Data Flo w:

Timing: 5 M cycles, 16 T states; 8 usee @ 2 MHz

Addressing Mode: Direct.

Flags: s z h p/v n c

^ (no effect)
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Example: LD HL, (0024)

Before: After:

08BF

2A

00

0024

0025 4D

0024

0025

69

4D
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LD IX, nn

Function:

Format:

Description:

Load IX register with immediate data nn.

IX *- nn

1 1 1 1 1 1

1
[

1 ! I r

J i ! I L

\ r

byte 2: 21

byte 3: immediate

data, low order

byte 4: immediate

data, high order

The contents of the memory locations immediate-

ly following the opcode are loaded into the IX

register. The low order byte occurs immediately

after the opcode.

Data Flow:

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz

Addressing Mode: immediate.

Flags: s z P/V N C

(no effect)

336



THE Z80 INSTRUCTION SET

Example: LD IX, BOB 1

Before: After:

OBJECT CODE
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LD IX, (nn) Load IX register from memory locations ad-

dressed by nn.

Function:

Formal:

IXiow *-(nn); IXhigh ^(nn + H

era; 1
1

i I

byte I: DD

byte 2: 2A

J i—.1 1..

T~T 1

^i__..L_— I—

i

byte 3: address,

low order

byte 4: address,

high order

Descriptions: The contents of the memory location addressed by

the memory locations immediately following the

opcode are loaded mto the low order of the iX

register. The contents of the memory location im-

mediately foilowmg the one loaded into the low

order are loaded into the high order of the IX reg-

ister. The low order of the nn address immediately

follows the opcode.

Data Flo w:

Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.
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Flags: 5 z h pa^ n c

(no effect).

Example: LD IX, (01 OB)

Before: After:

OBJECT CODE
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L0 lY, nn Load lY register with immediate data nn.

Fimciion: lY *~ nn

Formal:
1 i 1 1 ! \ 1 byte !: FD

i
1 byte 2: 21

byte 3: immediate

data, low order

byte 4: immediate

data, high order

Descripiion: The contents of the memory iocations immediate-

ly foilowmg the opcode are loaded into the lY

register. The low order byte occurs immediately

after the opcode.

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz

Addressing Mode: Immediate.
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Flags: S Z H P/V N C

(no effect)

Example: LD lY, 21

Before: After:

FD

2!

00

lY 069B
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LD lY, (nn) Load register lY from memory locations addressed

by nn.

Function: lYjow ^ (nn); lYhigh ^ (nn + D

i 1 i i i 1

i !

byte 1: FD

byte 2: 2A

,—,

—

,
—!

—

1 i 1 1 byte 3: address,
"

, i "..L 1 ! i—! low order

—r—

T

"
I 1 !

'

*
"~\ byte 4: address,—

1 high order

Description: The contents of the memory location addressed by

the memory locations immediately following the

opcode are loaded into the low order of the lY

register. The contents of the memory location im-

mediately following the one loaded into the low

order are loaded into the high order of the iY

register. The low order of the nn address im-

mediately follows the opcode.

Data Flow:
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Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz

Addressing Mode: Direct.

Flags: 5 2 H P/V N C

(no effect).

Example: LD iY, (500D)

Before:

IY 6002

After:

2A

OD

50

OBJECT
CODE

500D

500E

03 500D

500E

03
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LD R,A

Func[ion:

Formal:

Load Memory Refresh register R from the ac-

cumulator.

R ^ A

i 1 1 1 1 1

i ! 1 i 1

byle !: ED

Description:

Dala Flow:

The contents of the accumulator are loaded mto

the Memory Refresh register.

Timing: 2 M cycles; 9 T slates; 4.5 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: SI H PA/ N C

(no effect)

Example: LD R. A

ED

4F

Before:

OF R

After:

40 A OF 1
R MiOF'f#;

OBJECT CODE
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Load stack pointer from HL.

Function: SP *- HL

Format:

Description: The contents of the HL register pair are loaded in-

to the stack pointer.

Data Flo w:

Timing: [ M cycles; 6 T states; 3 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: s z h p/v n c

„ Tl effect)

Example: LD SP, HL

Before: After:

OBJECT
CODE
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SP, IX Load stack pointer from IX register.

Function:

Formal:

Description:

Data Flow:

Timing:

SP *~ IX

! I 1

-7]V
1 1 1 1

1

byte 1: DD

byte 2: F9

The contents of the IX register are loaded into the

stack pointer.

2 M cycles; !0 T states; 5 usee @ 2 MHz

Addressing Mode: implicit.

Flags: s 2 H p/v N c

^
|--|- -|--

-j-^
I

^jjo effect)

Example: LD SP, IX

Before: After;

OD

F9

OBJECT
CODE

09D2

54AO

09D2
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SP, lY Load stack pointer from lY register.

Funclion:

Formal:

Descripiion:

Data Flow:

SP - lY

s i ! i i

i ! ! !

byte 1: FD

byte 2: F9

The contents of the lY register are loaded into the

stack pointer.

Timing: 2 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

S Z H PA/ N C

(no effect)

LD SP, lY

Before: After:

FD

F9

lY

SP

09AB 09AB

OBJECT CODE
6004
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Block load with decrement.

Function: (DE) (HL); DE - DE - UHL-'HL - 1;

BC BC - 1

Format:

Description:

\ 1 1 1 1 1

i i 1

byte I: ED

byte 2: A8

The contents of the memory location addressed by

HL are loaded into the memory location address-

ed by DE. Then BC, DE, and HL are all

decremented.

Data Flow:

Timing: 4 M cycles; 16 T slates; 8 usee @ 2 MHz

Addressing Modes: Indirect.

Flags:
PA/ N

o X o
Reset if BC = after

execution, set otherwise.
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Example:

oBjea CODE

LDD

Before: After:

OB04

621'

843S

TTm—m
TTTTZ

:B4

6211

843B 62

6211

6433 62
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Repeating block load with decremeni.

Fundton:

Formal:

Descriplion:

Daia Flo w:

(DE) - (HL); DE - DE - 1; HL - HL - !:

BC ^ BC - i; Repeat until BC =

\ 1 ! ! 1 !

1 1 1 1

byte 1: ED

The contents of the memory location addressed by

HL are loaded into the memory location address-

ed by DE. Then DE, HL, and BC arc al!

decremented. If BC ^0, (hen the program counter

IS decremented by 2 and the instruction re-

executed.

fA

Timing: BC ^ 0: 5 M cycles; 21 T states; 10.5 usee @ 2

MHz.
BC = 0: 4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: indirect.

Flags: 5 Z H PA' N c

o o o
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Example:

OBJECT CODE

LDDR

Before: After;

ocra3

06B2

9035
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LDI Block load with increment.

Function:

Formal:

Description:

^(HL)M>fe^BE + 1;HL-^HL + I;

BC BC - 1

1, t 1 f i 1.

1 1 byte 2: AO

The contents of the memory location addressed by
HL.are loaM into the itien^r^^ loeat^oli a^t^id
by DE. Then both DE and HL are incremented,
and the register pair BC is decremented.

Data Flow:

1
t^«^DESTINATIi I E

Timing: 4 M cydes; 16 T states; 8 usee @ 2 MHz

Addressing Mode: Indirect

.

Flags: s z H PA/ N C

o X o
Reset if BC = after

execution, set otherwise.
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LDIR Repeating block load with increment.

Function: (DE) *- (HL); DE ^ DE + 1 ; HL - HL -f i

;

BC *" BC - i
;
Repeat until EC =

Format:
1 i 1 1 1

! i i

byte i : ED

byte 2: BO

Description: The contents of the memory location addressed by

HL are loaded into the memory location ad-

dressed by DE. Then both DE and HL are in-

cremented. EC is decremented. If BC =5^ then

the program counter is decremented by 2 and the

instruction is re-executed.

Timing: For EC ^ 0: 5M cycles; 21 T states; 10.5 usee @ 2

MHz.
For BC - 0: 4 M cycles; 16 T states: 8 usee @ 2

MHz

Addressing Mode: Indirect.

354



THE Z80 INSTRUCTION SET

Flags: P/V N C

o o o

Example: LDIR

Before: After:

0002

4A03

962A

ED

BO

4A03

dA05

OBJECT CODE

12

F4

AA

962A

962B

962C

38

90

6H

962A

962B

962C

3B

9Q

6E
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LD r, (HL) Load register r indirect from memory location

(HL).

Function:

Format:

r <HL)

Q 1

1 1

1 1"*
> 1

"

Description: The contents of the memory location addressed by
HL are loaded into the specified register, r

may be any one of:

A - 111

B - 000

C - 001

- 010

K - oil

H - 100

L - 101

Data Flow:

DATA _^

Timing: 1 M cyclsss; 7 T states; 3.5 usee @ 2 MHz

Addressing Mode: Indireet.

r: H L

5* 5E 66 6E
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s z ^ m H t

(no effa^).

LD D, (HL)

After;

D

H

3A D

OC ?2. 1 L H OG 32

0C32 0C3256 24 24

OBJECT CODE
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«

NEG Hegate aecumulator.

Fmctlon;

Format:

Description:

Data Flow:

A^O - A

1 1 1 1 1 1

1 1

byte 1: ED

byte 2; 44

The contents of the accumulator are subtracted

from zero (two's complement) and the result is

stored back in the accuinulator.

Timing: 2 M cycles; 8 T states; 4 usee @ 2 MHz

Addfessing Mod&: Implicit.

Flags: s z SA/ N C

C will be set if A was before the instruction.

P will be? set ifA was 80H.

Example: NEG

Before:

ED

44

After:

32

OBJECT
CODE

3^
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NOP

Function:

formal:

Descriplion:

Bam Phw:

No operation.

Delay.

,0 00

Nothing is done for 1 M cycle.

No action

c

E

L

1 M cycle; 4 T states; 2 usee .@ 2 MHz

Addressing Mode: Implicit

Fhgs:
S Z H PA^ N C

~1 (no effect).
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OR S Logical or accumulator and operand s.

Function:

Format:

A ^ A Vs

s: may be r, n, (HL), (IX+ d), or (IY+ d)

(HL)

(iX + d)

(lY + d)

1 i i

\ 1

1 1

1 1 1 1 i i

-l ^
p. "1

i r

1 1 1
j i i

1 1 1 1 1 1

i i 1

~i 1 1 r-

d

1 1 1 1 1 i

1 1 1 i !

T I i
1"

d

r may be any one of:

byte 1 : F6

byte 2: immediate
data

byte i: B6

byte i: DD

byte 2: B6

byte 3: offset value

byte 1: FD

byte 2: B6

byte 3: offset value

A ~ Ul
B - 000

C ~ 001

D - 010

E - Oil

H - 100

L - 101

Description: The accumulator and the specified operand are

logically 'or'ed, and the result is stored in the ac-
cumulator, s is defined in the description of the

similar ADD instructions.
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Data Flow:

Timing: usee

s: M cycles: T stales: @ 2 MHz:

r I 4 4

n 2 7 3.5

(HL) ~i 7 3.5

(IX + d) 5 19 9.5

(lY + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (iX +
d), (lY 4- d): mdexed.

Byie Codes:

Flags:

Example:

OR r

s z H N c

• o m o O

A B C E H L

B7 BO B\ B2 B3 Bd B5

OR B

BO

OBJECT
CODE

Before:

06

B9

After:

IBM
B9
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Block output with decrement

Function:

Format:

{C)^(HL);B«-B - i;HL^HL - 1;

Repeat until B 0.

[ 1 1 1 1 1

( 1 1 1 i 1

byte 1: ED

byte 2: BB

Description: The contents of the memory location addressed by

the HL register pair are output to the peripheral

device addressed by the contents of the C register.

Both the B register and the HL register pair are

then decremented. If B =^ 0. the program counter

is decremented by 2 and the instruction is re-

executed. C supplies bits AO toA7 of the address

bus. B supplies (after decrementation) bits AS to

A15.

Data Flow:

A

B ICOUNTERf c

D E

H 'WMm L

PORT

DATA

(

1 1 r
2

Timing: B = 0: 4 M cycles; 16 T states; 8 usee @ 2 MHz.
B ?^ 0: 5 M cycles; 21 T states; 10.5 usee @ 2 MHz

Addressing Mode: External.

Flags: P/V N C

362



THE Z80 INSTRUCTION SET

Example: OTDR

Before:

02 E5

005!

32

E5

After:

ED OOdF 02 OO'lF 02

BB OO50 6B 0050 6B

005 i 9A 0051 9A

OBJECT CODE

c

I

L

I

PORT

WMmWM E5
1
c

L

PORT

E5
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Block output With increment.

Fiinclion: (C)^(HL);B
until B =

i; HL HL + 1; Repeat

Forma!:
i } i

1 i i
1 1 1

byte i: ED

byte 2: B3

Descnplion: The contents of the memory location addressed by
the HL register pair are output to the peripheral

device addressed by the contents of the C register.

The B register is decremented and the HL register

pair IS incremented. I f B # 0, the program counter

is decremented by 2 and the instruction is re-

executed. C supplies bits AO to A7 of the address

bus. B supplies (after decrementation) bits A8 to

AI5.

Dala Flo w:

A

B

D

H

PORT
I

2

—13

Timing: B = 0: 4 M cycles; 16 T states; 8 usee @ 2 MHz.
B # 0: 5 M cycles; 21 T states; 10.5 usee @ 2 MHz

Addressing Mode: External.

Flags: p/v N c
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Example: OTIR

Before: After:

ED 5550 6B 5550 6B

B3 5551 02 555! 02

5552 9A 5552 9A

DBJEOCODE 5553 65 5553 65
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OUT (C), r Output register r to port C.

Function:

Formal:

Description:

Data Flow:

(C)

! 1 1 1 1 s

!

> 1

1

byte 1 : ED

byte 2

The contents of the specified register are output to

the peripheral device addressed by the contents of

the C register, r may be any one of:

A - 111

B - 000

C - 001

D - 010

E - Oil

H - 100

L - 101

Register C supplies bits AO to A7 of the address

bus. Register B supplies bits AS to A15.

PORT

Timing: 3 M cycles; 12 T states; 6 usee @ 2 MHz

Addressing Mode: External.

Flags:

Byte Codes:

ED-

s Z H PA/ N C

A B C D E H L

79 41 49 5i 59 61 69

(no effect).
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Example: OUT (C), B

Before:

£D

8 09

OBJECT CODE

After:

Jc

IPORT

8 09 C

PORT
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OUT (N), A Output accumulator to peripheral port N.

Function:

Format:

Description:

(N) *~ A

1 1 \ 1 1

byte 2: port address

The contents of the accumulator are output to the

peripheral device addressed by the contents of the

memory location immediately followmg the op-

code.

Data Flow:

PORT

OUT

N

Timing: 3 M cycles, 11 T states; 5.5 usee @ 2 MHz

Addressmg Mode: External.

Flags: 5 Z H P/V N C

{no effect).

Example: OUT (OA), A

Before: After:

D3

OA

A 51 PORT A Si

OA OA

OBJECT CODE
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OUTD Output with decrement.

Function:

Formal:

(C) *- (HL); BC ^ B - i; HL ^ HL - 1

1 1 1 1 1 1

1 i 1 1 1 byte 2: AB

Description: The contents of the memory location addressed by

the HL register pair are output to the peripheral

device addressed by the contents of the C register.

Then both the B register and the HL register pair

are decremented. C supplies bits AO toA7of the

address bus. B supplies (after decrementation) A8
toAi5.

Data Flo w:

COUNTER
PORT

DATA

Timing: 4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: External.

Flags:

s z P/V N C

Set if B =^ after execution,

reset otherwise.
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Example: OUTD

Before: After:

30 9A

22BF

2F 9A

06

9A

PORT

ED

AB

OBJECT CODE

226F 4A 22BF dA
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OUTI Output with increment.

Function:

Formal:

Description:

Data Flow:

(C) *- (HL); B - 1 , HL - HL + 1

1 ! 1 ! i i

i i 1 1

byte 1: ED

byte 2: A3

The contents of the memory location addressed by

the HL register pair are output to the peripheral

device addressed by the C register. The B register

!s decremented and the HL register pair is incre-

mented.

C supplies bits AO to A7 of the address bus.

B (after decrementation) supplies bits A8 to AI5.

PORT

DATA

Timing: 4 M cycles; 16 T states; 8 usee @ 2 MHz

Addressing Mode: External.

Flags:

s z PA/ N C

Set if B = after execution,

reset otherwise.
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Example: OUT!

Before: After:

B 9A C B BB

0F9A

02 PORT

ED

A3

OBJECT CODE

0F9A 6A 0F9A 6A
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POP qq Pop register pairqq from stack.

Fimclion:

Format:

qq iow *- (SP); q^high^ (SP + i); SP- SP + 2

1 1 q q !

Descripnon: The contents of the memory jocation addressed by
the stack pomter are loaded into the low order of
the specified register pair and then the stack

pointer is incremented. The contents of the

memory location now addressed by the slack

pointer are loaded into the high order of the

register pair, and the stack pomter is again in-

cremented, qqmay be any one of:

BC - 00

DE - 01

HL -

AF -
10

li

Dala Flow:

r DATA

Timing: 3 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Indirect.

Byle Codes: qq: BC DE HL AF

Cl Dl El F!
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Flags: s 2 h f/y n c

r[.i___LXJ IJ3

Example: POP BC
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POP IX POP IX register from slack.

Fundion:

Formal:

iX low^(SP);IX,^^^-{SP + i);SP^SP + 2

1 i

j

! ! i 1 i

1

j

i

1

i

byte 1: DD

Description: The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the iX register, and the stack pointer is in-

cremented. The contents of the memory location

now addressed by the stack pomier are loaded in-

to the high order of the IX register, and the stack

pointer is again mcremenled.

Daiu Flow:

IX

DATA

Tinting: 4 M cycles; 14 T states; 7 usee @ 2 MHz

Addressing Mode: Indirect.
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Flags: S 2 H P/V N C

(no effect).

Example: POP iX

Before: After:

000!

0903

DD

OBJECT CODE

090B

090C

090D

_36_

04

B2

090B

090C

090D

36

B2
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POPIY POP lY register from stack.

Function:

Formal:

lY low*-«SP); lY, ,-(SP^!):SP-SP+2

1 1 i 1 i i i byte 1: FD

1 1 1 i byie 2: El

Descnpiion: The contents of the memory location addressed by

the stack pomter are loaded into the low order of
the (Y register, and then the stack pomter is mcre-
menied. The contents of the memory location now
addressed by the stack pomter are loaded mto the

high order of the iY register, and the stack pointer

IS again incremented.

Timing: 4 M cycles; 14 T stales; 2 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: s z h p/v n c

I

(no effect).
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Example: POP lY

Before: After:
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PUSH qq Push register pair onto stack.

Fundton:

Format:

Descnpiion:

(SP - l)-qqhigh'{SP
SP^SP - 2

2)-qqiow-

The slack pointer is decremented and the contents

of the high order of the specified register pair are

then loaded inio the memory location addressed

by the stack pointer. The stack pomter is agam
decremented and the contents of the low order of

the register pair are loaded into the memory loca-

tion currently addressed by the slack pomter. qq
may be any one of;

BC - 00

DE - 01

HL
AF

!0

n

Dala Flow.

Timing: 3 M cycles; U T states; 6.5 usee @ 2 MHz

Addressing Mode: Indirect.

Bvie Codes: SC OE HI AF

C5 05 E5 F5
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Flags: 5 Z H PA/ U C

(no effect).

Example: PUSH DE

Before: After:

D
j

OA03
I
E 1

0A03

SP OOBi SP
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PUSH IX Push IX onto slack.

Funciiofi:

Formal:

Descripdon:

Dala Flow:

(SP - i)-iXh,gh,(SP
SP -SP - 2

2) *- IXiow

1 1 ^

! r 1 1 i byte 2: E5

The stack pointer is decremented, and the contents

of the high order of the !X register are loaded into

the memory location addressed by the slack

pointer. The stack pointer is again decremented

and then the contents of the low order of the IX

register are loaded into the memory location ad-

dressed by the stack pointer.

1. 1

SP

Timing: 4 M cycles; 15 T states; 7.5 usee @ 2 MHz

Addressing Mode-- Indirect.

Flags: S Z H P/V N C

(no effect)
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Example: PUSH IX

Before: After:

IX 04A2 0'IA2

SP 0096

DP

E5

OBJECT CODE

0094

0095

0096

9F

04
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PUSH lY Push lY onto slack.

Funciion:

Formal:

Descnplion:

(SP

SP •

1)

SP 1

i

2) - !Y ow

byte i: FD

;
1 , byle 2: E5

The stack pointer is decremented and the contents

of the high order of the 1 Y register are loaded into

the memory location addressed by the slack

pointer. The slack ponitcr is agam decremented

and the contents of the low order of ihc ! Y register

are loaded mto the memory location addressed by

ihc stack pointer.

Daia Flow:

D
j_

H I

SP

DATA

Timing: 3 M cycles; 15 T states; 7.3 usee @ 2 MHz

Addressing Mode: indirect.

Flags: 5 2 H P/V N C

(no effect)

383



PROGRAMMING THE Z80

Example: PUSH lY

Before: After:

90BF

C»B6

90BP

FD

£5

OBJECT CODE

000-)

00B5

00B6

FF

85

9D

00B4

00B5

00B6 9D
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RES b,s

Fundion:

Formal:

(HL)

(IX + d)

(lY + d)

Reset bit b of operand s.

1 1 1 1 i

1

! 1

1 i

i j

i
^

1

! f i 1

1

] 1b—
1 1

1 1

i 1 i 1 ] 1

I ! 1 1 1

1 1 i 1 1 1 t

d
1 1 S 1 ! 1 !

i

1
'

1

1 1

1 1

! i i i 1 t

1 1 1 } t

t I { ! } I

1 h
'

1 i

t 1

byte 1 : CB

byte 2

byte 1 : CB

byte 2

byte 1: DD

byte 2: CB

byte 3: offset value

byte 4

byte i : FD

byte 2: CB

byte 3: offset value

byte 4

b may be any one of:

- 000

1 ^ 001

2 - 010

3 - OH

100

101

110

111

r may be any one of:

A
B
C
D

111

000

001

010

E
H
L

Oil

100

101
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Description: The specified bit of the location determined by s is

reset, s is defined in the description of the similar

BIT instructions.

Timing:

s: M cycles: T slates:

usee

@ 2 MHz:

r 2 8 4

(HL) 4 15 7.5

(IX + d) 6 23 11.5

(lY -F d) 6 23 11.5

Addressing Mode: r: implicit; (HL): mdirect; (IX + d), (lY + d): in-

dexed.

Byte Codes: RES b, r

CB-

r: A

87 80 8i 82 83 84 85

8F 88 89 8A 88 8C 8D

97 90 91 92 93 94 95

9F 98 99 9A 9B 9C 9D

A7 AO A1 A2 A3 A4 A5

AF A6 A9 AA AB AC AO

B7 BO Bl B2 B3 B4 B5

BF 88 B9 BA BB BC BD

b; 01234567
RES fa, (HL) CB- 86 8E 96 9£ A6 AE B6 BE
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RES r/(HU CB-
RES b, (lY + d) FDCB

b: 2 3 4 5 6 7

86 8E 96 9E A6 AE B6 BE

Flags: S Z H P/V N C

(No effect)

Examples: RES i .

H

Before: After:

CB

8C

OBJECT CODE

H 42
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RET Return from subroutine

Function: PCjo^v ^ (SP): PChigh ^ (SP + H; SP - SP + 2

Format:

Description:

1 1 i !

The program counter is popped off the stack as

described for the POP instructions. The next in-

struction fetched is from the location pointed to

by PC.

Data Flow:

Timing: 3 M cycles; 10 T states; 5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: S Z H P/V N C

{no effecrj
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THE Z80 INSTRUCTION SET

Before: After:

C9

OBJECT CODE

3310

3311

08B1

3310

2i

B4
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RET CC Return from subroutine on condition.

Function:

Format:

Description:

If cc true: PCjQ^y

SP-SP + 2

(SP); PChigh ^ (SP + 0;

1 1

—i—1—

-

1

'^'^

1

If the condition is met, the contents of the pro-

gram counter are popped off the stack as described

for the POP instructions. The next instruction is

fetched from the address in PC. If the condition is

not met, instruction execution continues in

sequence.

Data Flow:

STACK

PCI

PCH

cc may be any one of:

NZ - 000 PO - 100

Z - OOi PE - 101

NC - 010 p - no
c - on M - ill

Timing: Condition met: 3 M cycles; 1 1 T states; 6.5 usee @
2 MHz.
Condition not met; 1 M cycle; 5 T states; 2.5 usee

t@ 2 MHz

Addressing Mode: Indirect.
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Byte Codes: NZ Z NC r PO PE P M
CO C8 DO D8 EG E8 FO F8

Flags: S Z H PA/ N r

j

(no effect)

Example: RET NC

Before: After:

DO

OBJECT CODE

00

PC

SP

85! i

8512

Q\2A

85n

85

Si
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Function:

Formal:

Description:

Data Flow:

Return from interrupt.

PCiow (SP); PChigh - {SP + 1); SP - SP + 2

1 1 i ! ( i

1 Q 1 1 i byte 2: 4D

The program counter is popped off the stack as

described for the POP instructions. This mstruc-

tion is recognized by Zilog peripheral devices as

the end of a peripheral service routine so as to

allow proper control of nested priority mterrupts.

An EI instruction must be executed prior to RETI

m order to re-enable mterrupts.

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz

Addressing Modes: Indirect.

Flags: S Z H P/V N C

(no effect).
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Example: RETI

Before:

84E1

89B2

OBJECT CODE

ED 8982 A4

4D 89B3 Bl

89B2

8983
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EETN Return from non-maskable interrupt.

Function: pciow - (SP); PCKigh - (SP + 1); sp - sp +

2; IFFl *~ IFF2

Format:
i ! 1 1 i

1 i i

byte I: ED

byte 2: 45

Description: The program counter is popped off the stack as

described for the POP instructions. Then the con-

tents of the IFF2 (storage flip-flop) is copied back

into the IFFl to restore the state of the interrupt

flag before the non-maskable interrupt.

Data Flow:

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz

Addressing Mode: Indirect.
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^^^SS: S Z H PA/ N c

(no effect).

Example: RETN

Before: After;

OBJECT CODE
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RL s Rotate left through carry operand s.

Function:

Formal: s:

(HL)

(IX + d)

(lY -f d)

1 r

! ! i 1 1

!

i

1

1 i 1 i 1

! i !

1 1 1 1 , |o i

! i 1 1

1 i 1 ' ! 1 !

1 i 1 V ! i 1

i 1 1

1 1 1 i i i

—^—J—J-

1 1 i 1 1

1 i 1

byte i : CB

byte 2

byte I : CB

byte 2: 16

byte 1: DD

byte 2: CB

byte 3: offset value

byte 4: 16

byte 1: FD

byte 2: CB

byte 3: offset value

byte 4: 16

r may be any one of:

A - Hi E - Oil

B - 000 H - 100

C - 001 L - 101

D - 010

Description: The contents of the location of the specific

operand are shifted left one bit place. The con-

tents of the carry flag are moved to bit and the

contents of bit 7 are moved to the carry flag. The

final result is stored back m the original location, s

IS defined m the description of the similar RLC in-

structions.
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Data Flow:

m

Timing: usee

s: M cycles: T stales: @ 2 MHz:

r 2 8 4

(HL) 4 15 7.5

fix + d) 6 23 11.5

(lY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (lY + d): in-

dexed.

Byle Codes: RL rr r: A B c D E H I

cbJ 17 10 11 12 13 M 15

Flags:

Example:

s z (£>^ N C

• • o • •
C is set by bit 7 of source.

RL E

OBjECT CODE

Before: After:

'mm'

397



PROGRAMMING THE Z80

Rotate accumulator left through- carry flag.

Function:

Format:

Description:

Data Flow:

i i i 1 17

The contents of the accumulator are shifted left

one bit position. The contents of the carry flag are

moved into bit and the original contents of bit 7

are moved into the carry flag. (9 bit rotation.)

Timing: 1 M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

17

OBJECT CODE

s z H PA/ N C

O o
Cis set by bit 7 of A.

RLA

Before:

OF 01

After:
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RLCA Rotate accumulator left with br,anch carry.

Funclion:

J

Format:

Description:

Data Flow:

1 1 1 07

The contents of the accumulator are rotated left

one bit position. The original contents of bit 7 is

moved to the carry flag as well as to bit 0.

<
m

E \ ALU

A

Timing: i M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

07

OBJECT CODE

s z H P/V N c

o •
C is set by bit 7 of A.

RLCA

Before: After:

6B 01

Note: This instruction is identical to RLC A, ex-

cept for the flags. It is provided for compat-

ibility with the 8080.
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Function:

Format:

Description:

Data Flow:

Timing:

Rotate register r left with branch carry.

! 1 1 1

Q
I I

1 1

byte 2

The contents of the specified register are rotated

ieft. The original contents of bit 7 are moved to

the carry flag as well as bit 0. r may be any one of:

A - in
B - 000

C - 001

D - 010

E - on
H ~ 100

L - 101

c

2 M cycles; 8 T states; 4 usee @ 2 MHz

Addressmg Mode: Implicit.

Byte Codes: r: A B C E H L

07 00 01 02 03 04 05
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THE Z80 INSTRUCTION SET

5 Z H N C

• 9 o 9 o #
C is set by bit 7 of source register.

Example: RLC B

ca

OBJECT CODE

Before:

B 62

After:

56 F %mmjz%
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Function:

Format:

Description:

Rotate left with branch carry memory iocation

(HL).

—
(HL

1 1 ! ! 1

1 1

byte 1 : CB

byte 2: 06

The contents of the memory location addressed by

the contents of the HL register pair are rotated left

one bit position and the result is stored back at

that location. The contents of bit 7 are moved to

the carry flag as well as to bit 0.

Data Flow:

Timing: 4 M cycles; 15 T states; 7.5 usee @ 2 MHz

Addressing Mode: Indirect.

Flags: s z (gyv N c

O O
C is set by bit 7 of the memory location.
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Example: RLC (HL)

403
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RLC (IX + d) Rotate left with branch carry memory location {IX

+ d)

Function:
^

I

|-<
^ry;!<,

-ol ^
" (iX + d}

Format:
t 1 1 1 1 1

1 1 1 1 i

...1 1 L

1 1

byte i: DD

byte 2: CB

byte 3: offset value

byte 4: 06

Description: The contents of the memory location addressed by

the contents of the IX register plus the given offset

value are rotated left and the result is stored back

at that location. The contents of bit 7 are moved
to the carry flag as well as to bit 0.

d
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Timing: 6 M cycles; 23 T states; 11.5 usee @ 2 MHz

Addressing Mode: Indexed.

Flags:

Example:

s z H N c

• • O • o •
C is set by bit 7 of memory location.

RLC (iX + n

Before:

42

04BI

After:

0-181

OD

C8

06

OBJECT CODE

OdBl

0dB2

63

94

04B1

04B2

63
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RLC (lY •¥ d) Rotate left with carry memory location (lY -i- d).

Function:

!Y + d]

Format:
1 1 1 1 ! 1 1 byte 1: FD

i 1 1 1 1 byte 2: CB

byte 3: offset value

1 1 1

Description: The contents of the memory location addressed by

the contents of the lY register plus the given offset

value are rotated left and the result is stored back

at the iocation. The contents of bit 7 are moved to

the carry flag as well as bit 0.
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Timing: 6 M cycles; 23 T states; 1 1.5 usee @ 2 MHz

Addressing Mode: indexed.

Flags: s z h n c

9 o 9 o|®

Example:

C IS set by bit 7 of memory location.

RLC (lY 4- 2)

FD

CB

02

06

OBJECT CODE

Before:

lY

0021

0022

0023

C4

002!

05

Bl

A2

After:

lY

002 i

0022

0023

0021

05

B!
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Rotate left decimal.

Function: a[7 4|3 Oj [7 4I3 [hl]

Format:
i 1 ! i 1 1 byte i: ED

byte 2: 6F1 1 1 1 ! 1

Description: The 4 low order bits of the memory location ad-

dressed by the contents of HL are moved to the

high order bit positions of that same location. The

4 high order bits are moved to the 4 low order bits

of the accumulator. The low order of the ac-

cumulator IS moved to the 4 low order bits of the

memory location originally specified. All of these

operations occur simultaneously.

Data Flow:

Timing: 5 M cycles; 18 T states; 9 usee @ 2 MHz

Addressing Mode: Indirect.
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flags: S Z H CE/V N C

• • o • o

Examples: RLD

Before: After:

61

84F2 B4F2

ED

6F

OBJECT CODE

BdF2 48 B4F2
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RH s

Function:

Format:

X

(HL)

(IX + d)

(lY -f d)

Description:

Rotate right s through carry.

s c

1,

! i i i 1 1 byte i : CB

byte 2

byte 1 : CB

byte 2: IE

byte i: DD

byte 2: CB

byte 3: offset value

byte 4: IE

byte i : FD

byte 2: CB

byte 3: offset value

byte 4: IE

!

i i i 1 1

i i 1 1

1 1 1 1 1 1

1 1 i

1 t ! 1 1 1 1

) t i 1 1 1. t

\ 1 1 1

! 1 1 1 1 i

1 1 1 1

t 1 ! , ! 1 1

1 1 1 i

r may be any one of:

A ~ Hi E - on
B - 000 H - 100

C " 001 L - 101

D - 010

The contents of the location determined by the

specific operand are shifted right. The contents of

the carry flag are moved to bit 7 and the contents

of bit are moved to the carry flag. The final

result is stored back in the original location, s is

defined in the description of the similar RLC in-

structions.
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Data Flow: !

c \

E \

L Y

Timing:

s: M cycles: T slaies:

usee

@ 2 MH::;

r 2 8 4

(HLI 4 !5 7.5

(IX + d) 6 23 li.5

(lY + d) 6 23 11.5

Addressing Mode: r: impiicit; (HL): indirect; (iX + d), (iY + d): in-

dexed.

Byle Codes: RR r:
r: A B C D £ H L

CB- !F 18 !9 lA IB IC 10

Flags: 5 Z p/y N c

9 • O • o|©

C is set by bit of source data.

Example: RR H

Before: After:

CB

OBJECT CODE

H 6B
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KRA Rotate accumulator right through carry.

Fimclion:

Formal:

Description:

^oj

—

*-[^—

^

Cf

i 1 i 1 1 IF

The contents of the accumulator are shifted nght-

one bit position. The contents of the carry flag

are moved to bit 7 and the contents of bit are

moved to the carry flag (9-bit rotation).

Data Flow:

Timing: 1 M cycle; 4 T states; 2 usee @ MHz

Addressing Mode: Implicit.

Flags:

Example:

OBJECT CODE

s z H P/V N c

O o m
Cis set by bit Oof A.

RRA

Before: After:

F4 95

Note: This instruction is almost identical to RR A. it

is provided for 8080 compatibility.
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Rotate right with branch carry s.

Function:

Format: s: sisanyofr,(HL), {IX + d),(IY-f d).

r

(HL)

(iX + d)

(lY + d)

r may be any one of:

1 1
1

1
1 1

1

1 1

1

'
i

i 1
i 1 1

\
1

! 1

\ !
! \ 1

1

1 1
1 1 i

_
i

i 1 ' t i i

1 1 1 \ 1 ! ! lJJ

! i 1

i 1 r 1 i ! 1

i !
1 1 1

1 1 i j 1 1 (

1 f ! i \ i \ \

^

J

1 1 1

byte 1 : CB

byte 2

byte i: CB

byte 2: OE

byte i: DD

byte 2: CB

byte 3: offset value

byte 4: OE

byte 1 ; FD

byte 2: CB

byte 3: offset value

byte 4: OE

A - II!

B ~ 000

C - 001

D - 010

E
H
L

Oil

100

101

Description: The contents of the location determined by the
specified operand are rotated right and the result

is stored back in the original location. The con-
tents of bit are moved to the carry flag as well as
to bit 7. s is defined in the description of the
similar RLC instructions.
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Daia Flow:

Timing:

s: M cvdes: T slates:

iiaec

@ 2 MH2.:

r 2 8 4

(HL) 4 15 7.5

(iX + d) 6 23 11.5

(lY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (lY + d): in-

dexed.

Byte codes: RRC r A B C D E H L

OF 08 09 oa|ob OC OD

Flags:

Example:

5 Z H fPVv N C

o o
C is set by bit of source data.

RRC (HL)

Before: After:

object code
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RRCA Rotate accumulator right with branch carry.

Fundion:

Formal:

Description:

Data Flo w:

L^ \7 ^o}--U[~]

1

1

i ,
1

,

r

i

The contents of the accumulator are rotated right

one bit position. The contents of bit are moved
to the carry flag as well as lo bit 7.

Timing: i M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 Z H P/V N c

o O •

Example:

Cis set by bit Oof A.

RRCA

Before: After:

OF

OBJECT CODE

A 04 5i F A 6A 40
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RRD Rotate right decimal.

Fundion: A 7 4 3 7 -i 3 HL

Formal:
1

1

1 1 1 } i

i 1

j
j

1 1 i

byte 1: ED

byte 2: 67

Descriplton: The 4 high order bits of the memory location ad-

dressed by the contents of the HL register pair are

moved to the !o\v order 4 bits of that location. The

4 low order bits are moved to the 4 low order bits

of the accumulator. The low order bits of the ac-

cumuiator are moved to the 4 high order bit posi-

tions of the memory location originaily specified.

All of the above operations occur simultaneously.

Daia Flow:

Timing: 5 M cycles; !8 T slates; 9 usee @ 2 MHz

Addressing Mode: Indirect.
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Flags: H {P/V N C

• • |o • o

Example: RRD

Before: After:

OBJECT CODE
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RST p Restart at p.

Fundion: (SP - n^PCh,ghi(SP "

~ 2: PChigh *~ 0; PClow

2)^PCiow
^ p

SP ^SP

Formal:

Description: The contents of the program counter are pushed

onto the slack as described for the PUSH instruc-

tions. The specified value for p is then loaded into

the PC and the next instruction is fetched from

this new address, p may be any one of:

OOH - 000 20H - 100

08H - 001 28H - 101

iOH - 010 30H - no
iSH - oil 38H - HI

This instruction performs a jump to any of eight

starting addresses in low memory and requires only

a single byte, it may be used as a fast response to

an mterrupt.
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Timing: 3 M cycles; 1 1 T slates; 5.5 usee @ 2 MHz

Addressing Mode: indirect.

Byie Codes: 00 08 ]0 18 20 2S 30 38

C7 CF D7 DF E7 EF F7 FF

Flags:
s z H P/V N c

(no effect).

Example: RST 38H

Before:

PC

SP

AA\A

026B

After:

0269

026A

0269

026A

026B

FF 5!

BF

OBJECT CODE 026B 03 03
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SBC A, s

Fundion:

Formal:

(HL)

(IX + d)

(lY + d)

Subtract with borrow accumuiaior and specified

operand.

A - A - s - C

s: may be r, n, (HL), (IX + d), or (lY -f d)

! i

^

1

! 1

i 1 1 1 1 1

_J ^ 1 , 1 ^ p.

J I i i i_

1
i i i 1

1 r i 1 1

1 i 1 i 1

J 1 1 L

i i ! r ! 1 1

1 1 i ! !

d
J I 1 1 L

byte i: DE

byte 2: immediate

data

byte I:9E

byte 1: DD

9E

byte 3: offset vaiue

byte I: FD

byte 2: 9E

byte 3: offset value

r may be any one of:

A - ill E - 01

1

B - 000 H - iOO

C - 001 L - 101

D - 010

Description: The specified operand s, summed with the con-

tents of the carry flag, is subtracted from the con-

tents of the accumulator, and the result Is placed

m the accumulator, s ss defined in the description

of the similar ADD instructions.
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Data Flo w:

Timing:

s: M cycles: T stales:

usee

@ 2 MHz:

r i 4 2

n 2 7 3.5

(HL) 7 3.5

(IX -f d) 5 !9 9.5

(iY + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): mdirect; (IX +
d), (IY + d); indexed.

Byfe Codes: SBC A, r '-^ C D E H L

9F 98 99 9A 9B 9C 9D

Flags: 5 Z H P/S) N C

Example: SBC A, (HL)

Before: After:

B2 51

3600 3600

9E 3600 OF 3«X3 OF

OBJECT CODE
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SBC HL, SS Subtract with borrow HL and register pair ss.

Fu/iciian:

Formal:

Descnplion:

HL ^ HL ss C

1 i 1 1 i 1

}

I

s s
1

1 byte 2

The conients of the specified register pair plus the

contents of the carry nag are subtracted from the

contents of the HL register pair and the result is

stored back m HL. ss may be any one of;

BC - 00 HL - 10

DE - 01 SP - 11

Da(a Flow:

SP

c

Timing: 4 M cycles; 15 T states; 7.5 usee @ 2 MHz

Addressing Mode: Impiicit.

BC DE HL SP

42 52 62 72
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Flags: S Z H PXgi N C

H is set if borrow from bit 12.

Cis set if borrow.

Example: SBC HL, DE

423



PROGRAMMING THE Z80

SCF Set carry fiag.

Function:

Formal:

C *-
\

! ! 1 1 !

Descnpdon: The carry flag is set.

Timing: 1 M cycle; 4 T states; 2 usee @ 2 MHz

Addressing Mode: Implicit.

Flags: 5 Z H P/V N c

o o 1
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SET b,s

Function:

Format: s:

Set bit b of operand s

(HL)

(IX + d)

(lY + d)

1 1
1 1

i

! !

1 f

~-T~ !

1 1

I

i 1 1

! 1

1 !

i ~i

"
\

i 1 1

'

1

° i

i i
1 1 i

1 1

i r

1 1

f
^

!

! \

1 1 ] 1 1 1 1

i i i ! !

1 1 , 1^ J
j

J___J

! 1 1 f 1 i 1

! i

1

^
y

i i

r may be any one of:

A - ill

B - 000

C - 001

D - 010

b may be any one of:

- 000

1 - 001

2 - 010

3-011

byte i ; CB

byte 2

byte 1 : CB

byte 2

byte 1: DD

byte 2: CB

byte 3: offset value

byte 4

byte i; FD

byte 2: CB

byte 3: offset value

byte 4

E
H
L

Oil

100

101

100

101

no
111

Description: The specified bit of the location determined by s is

set. s IS defined in the description of the similar
BIT instructions.
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Data Flow:

Timing:

s: M cycles: T states:

usee

@ 2 MHz:

r 2 8 4

(HL) 4 15 7.5

(IX + d) 6 23 11.5

(lY 4- d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (lY + d): in-

dexed.

Byte Codes: SET b, r

CB-

SET b, (HL)

SET b, (IX + d1

SET b, (lY + d)

b: f : A B C D E H L

C7 CO Ci C2 C3 C4 C5

! CF C8 C9 CA CB CC CD

2 D7 DO D1 D2 D3 04 05

3 DF D8 D9 DA DB DC DO

4 E7 EO El E2 E3 E4 E5

5 EF E8 E9 EA EB EC ED

6 F7 FO Fl F2 F3 F4 F5

7 FF F8 F9 FA FB FC FD

b; 1 2
TJ 4 5 6 7

C6 CE D6 DE E6 EE F6 FE
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Flags: 5 Z H P/V N C

(no effect)

Example: SET 7, A

Before: Alter:

CB

FF

OBJECT CODE

6S

All
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SLA S Arithmetic shift left operand s.

Function:

Formal: s:

(HL)

(IX + d)

(lY + d)

C 5

! i
1 i i

1

i 1

1 i

i i i i 1

!
1 1

i 1 1 1 S 1

1 I 1 1 i

j—i—i—r—T

—

\ j r~7i
'

! 1 1 . 1 1 i

1 i 1

i 1 1 ! i 1
1

1 1
1 i i

i i i .J i 1 1 !

i
i !

byte i: CB

byte 2

byte i : CB

byte 2: 26

byte 1 : DD

byte 2: CB

byte 3: offset va!ue

byte 4: 26

byte 1: FD

byte 2: CB

byte 3: offset value

byte 4: 26

r may be any one of:

A - 111

B - 000

C - 001

D - 010

E - on
H - 100

L - 101

Description: The contents of the location determined by the

specific operand are arithmetically shifted left with

the contents of bit 7 being moved to the carry flag

and a being forced into bit 0. The final result is

stored back in the original location, s is defined in

the description of the similar RLC instructions.
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Timing:
usee

J.' M cvck's: T siaies: m 2 MHz:

r a 4
(HL) 4 15 7.5

(iX + d) 6 23 U.5
{iY -f d) 6 23 11.5

Addressing Made: r: implica; (HL): mdircci; (!X + d), {iY + d); in-

dexed.

Byie Codes: SLA r ^ e " j.

CB.r27T20
I

21 Yt^VtT] Ts]

Flags: 5 Z H N

• • o • o
C IS set by bit 7 of source data.

Example: SLA {HLi

Before: After:

OBJECT CODE
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SRA S Shift right arithmetic s.

Function:

byte i : CB

byte 2

byte I: CB

byte 2: 2E

byte 1: DD

byte 2; CB

byte 3: offset value

byte 4: 2E

byte 1: FD

byte 2: CB

byte 3: offset value

byte 4: 2E

r may be any one of:

A - ill E - OH
B - 000 H - 100

C - 001 L - 101

D - 010

Description: The contents of the location determined by the

specific operand are arithmetically shifted right.

The contents of bit are moved to the carry flag

and the contents of bit 7 remain unchanged. The

final result is stored at the original location, s is

defined m the description of the similar RLC in-

structions.

Format: s:

r

(HL)

(IX + d)

(iY + d)

1 i
1 1 \

i !

1

1 1
1 i 1

o' ,

i

1 1 1

! ! \ 1 i !

i 1 \ i !

f—T"r i 1 T 1 i n
rT~^ ' '

i i -

i
1 1 !

1 1 1 1 1 1 1

1 1
1 i 1

1 1 1 i !

\ 1 1

d - --

1 1
1
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Data Flow:

Tiniing:

s: M cycles: T stales:

usee

@ 2 MHz:

r 2 8 4
(HLt 4 15 7.5

(IX + cl) 6 23 il.5

(lY + d) 6 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (lY ¥ d): in-

dexed.

Byte Codes:

Flags:

SRA r A B C D E Hi.
CB- 2F 28 29

i 2A 2B 2C 2D

S Z H N C

• • o • o •

Example:

C is set by bit of source data.

SRA A

Before:

A 8B

After:

0^ 1^ Af^Mcsl

_CB_

2F

OBJECT CODE
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SRL S Logical shift right s.

Fundion:

Formal:

(HL)

(IX + d)

(lY 4-

! !
1

i 1

\ 1

1

'

i

1 1
! 1

1 1 1 1

1 1 ! ! i

1 1
i 1

- \
i 1 i 1 1

-< a -— *-

1 1 1 1 ! 1 1 ....

1 1 \ i 1

i 1 1 1 1 1

1 ! 1
1 i

1 1 1
! J~T I !

'
1 1 1 i 1 1 1

! i 1

1
1 1

r may be any one of:

byte 2

byte i: CB

byte 2: 3E

byte t: DD

byte 2: CB

byte 3: offset value

byte 4: 3E

byte i: FD

byte 2: CB

byte 3: offset value

byte 4: 3E

A - 111

B - 000

C - GDI

D - 010

E - OH
H - 100

L - 101

Descnpiion: The contents of the location determined by the

specific operand are logically shifted right. A zero

is moved into bit 7 and the contents of bit are

moved into the carry flag. The final result is stored

back in the ongmal location.
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Timing:

s: M cvdes: T stales:

usee

@ 2 MHz:

r
)

8 4

{HLl 4 15 7.5

(IX + d) 6 23 ii.5

{lY + d) 6 23 11.5

Addressing Mode: r: implicu; (HL): indirec!; (IX + d), (iY + d):

dexed.

Byie Codes:

Flags:

Example:

CB

3B

SRL r B C D E H L

CB
j
3F 38| 39! 3a[3b! 3c! 3D

s z H C

• • •|o •
C is set by bit of source data.

SRL E

Before: After:

01

02

OBJECT CODE
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SUB S Subtract operand s from accumulator.

Function:

Forma!:

A A - s

s: may be r, n, (HL), (IX -f d) or (lY + d)

(HL)

(IX + d)

(lY + d)

i

1
i 1 1

r 1 1 1 1 '
' '

_ n —
—1 1 1 1 1 J 1 '

i 1 1

1 ! i 1 1 1

1 1 ! 1

-1 1 ! r
_ g

1 1 ! 1 r
d

I I i 1 ! L,

r may be any one of:

byte 1: D6

byte 2: immediate

data

96

byte 1: DD

byte 2: 96

byte 3: offset value

I i I i 1 \ 1 byte i: FD

1 1 i 1 byte 2: 96

byte 3: offset value

A - III

B - 000

C - 001

D - 010

E - Oil

H - 100

L - 101

Description: The specified operand s is subtracted from the ac-

cumulator and the result is stored m the ac-

cumulator. The operand s is defined in the

description of the similar ADD instructions.
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Data Flow:

usee

s: M cycles: T slates: @ 2 MHz:

r 1 4 -»

n 2 7 3.5

(HL) 7 3.5

{IX + d) 5 19 9.5

(IX + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): mdirect; (IX +
d), (lY + d): indexed

Byte Codes: SUB r

Flags:

A B H L

97 90 91 92 93 94 95

N C

Example: SUB B

Before: After:

90

31 3i

OBJECT CODE
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Exclusive or accumulator and s.

Fundion:

Format:

(HL)

(IX + d)

(lY + d)

A *- A^s

s: may be r. n, (HL). (IX + d), or (lY + d)

1 ! 1

1
i

1 1 1 1 1 i

i 1 f i

! i 1 1 1 1

1 1 1 1 1 G

1 1

i i

1 r
d

-J 1 1 1 L.

byte i: EE

byte 2: immediate

data

AE

byte i: DD

byte 2: AE

byte 3: offset value

i i 1 f ! 1 ! byte i : FD

1 s 1 ! byte 2: AE

byte 3: offset value

r may be any one of:

A - 111

B - 000

C - 001

D - 010

E - on
H - 100

L - 101

Description: The accumulator and the specified operand s are

exclusive 'or'ed, and the result is stored m the ac-

cumulator, s IS defined m the description of the

similar ADD instructions.
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Date Flow:

Timing: usee
s: M cycles: T states: @ 2 MHz:

r 1 4 2

n 2 7 3.5

(HL) 2 7 3.5

(IX + d) 5 19 9.5

(lY + d) 5 19 9.5

Addressing Modes: r: implicit; n: immediate; (HL): indirect; (IX +
d), (lY + d): indexed

Byte Codes: XOR r r: A B C D E H L

AF A8 A9 AA AB AC AD

Flags: s z H CE>V N r

• • O • O o

Example:

EE

OBJEacODE

XOR BIH

Before:

a] 36 !

After:

437



INTRODUCTION

This chapter will present the genera! theory of addressing and the

various techniques which have been developed to facilitate the retrieval

of data. In a second section, the specific addressing modes available in

the Z80 will be reviewed, along with their advantages and limitaiions.

Finally, m order to familiarize the reader with the various irade-offs

possible, an applications section will demonstrate possible trade-offs

between the various addressmg techniques by studymg specific applica-

tion programs.

Because the Z80 has several 16-bU registers, in addition to the pro-

gram counter, which can be used to specify an address, it is important

that the Z80 user understand the various addressmg modes, and in par-

ticular, the use of the mdex registers. Complex reineva! modes may be

omitted at the begmnmg stage. However, all the addressmg modes are

useful m developmg programs for this microprocessor. Let us now

study the various alternatives available.

POSSIBLE ADDRESSING MODES

Addressing refers to the specification, withm an instruction, of the

location of the operand on which the instruction will operate. The mam

addressmg methods will now be examined. They are all illustrated m

Figure 5.i.

implicit Addressing (or "Implied," or "Register")

Instructions which operate exclusively on registers normally use iin-

piicK addressing. This is illustrated m Figure 5.1. An implicit instruc-
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ADDRESSING TECHNIQUES

tion derives its name from the fact that it does not specifically contain
the address of the operand on which it operates. Instead, its opcode
specifies one or more registers, usually the accumulator, or else any
other register(s). Since interna! registers are usually few in number
(commo-ily eight), this will require a small number of bits. As an exam-
ple, three bits within the instruction will point to one out of eight inter-
nal registers. Such instructions can, therefore, normally be encoded
within eight bits. This is an important advantage, since an eight-bit in-
struction normally executes faster than any two- or three-byte instruc-
tion.

An example of an implicit instruction is:

LD A, B

which specifies "transfer the contentsof B into A" (Load A from B.)

Immediate Addressing

immediate addressing is illustrated m Figure 5.1. The eight-bit op-
code IS followed by an 8- or 16-bit literal (a constant). This type of
instruction is needed, for example, to load an eight-bit value in an
eighl-bit register. Since the microprocessor is equipped with i6-biE reg-
isters, 11 may also be necessary lo load i6-bit literals. An example of an
immediate instruction is:

ADD A, OH

The second word of this instruction contains the literal "0", which is

added to the accumulator.

Absolute Addressing

Absolute addressing usually refers to the way in which data is retrieved
from or placed in memory, in which an opcode is followed by a i6-bit
address. Absolute addressing, therefore, requires three-byte instruc-
tions. An example of absolute addressing is:

LD (1234H), A

U specifies that the contents of the accumulator are to be stored at
memory location "1234" hexadecimal.

The disadvantage of absolute addressing is to require a Ehree-byle in-

struction. In order to improve the efficiency of the microprocessor,
another addressing mode may be made available, whereby only one
word IS used for the address: direct addressing.

439



PROGRAMMING THE Z80

IMPLiCIT/iMPUEO OPCODE

A

IMMEDIATE

1

OPCODE

LITERAL

LITERAL
j

EXTENDED/ABSOLUTE OPCODE

FULL 16-BIT

ADDRESS

DIRECT/SHORT OPCODE

SHORT ADDRESS

OPCODE I

NDEXED OPCODE XREG

DISPLACEMENT

OR ADDRESS

F^f^. 5.1: Basic Addressing Mod
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Direct Addressing (or "Short," or "Relative")

In this addressing mode, the opcode is followed by an eight-bit ad-
dress. This is also illustrated in Figure 5.1. The advantage of this ap-
proach IS to require only two bytes instead of three for absolute ad-
dressing. The disadvantage is to limit all addressing within this mode to
addressesO to 255 or else -128 to +127. When usmg to 255 ("page
zero"), this is also called short addressing, or 0-page addressing. When-
ever short addressing is available, absolute addressing is often called ex-
lended addressing fay contrast. The range - 128 to + 127 is used with
branch instructions. This is called relative addressing.

Relative Addressing

Normal jump or branch instructions require eight fails for the op-
code, plus the i6-bit address to which the program has to jump. Just as
m the preceding example, this mode has the disadvantage of requiring
three words, i.e., three memory cycles. To provide more efficient
faranching, relative addressing uses only a two-word format. The first

word is the branch specification, usually along with the test it is imple-
menting. The second word is a displacement. Since the displacement
must fae positive or negative, a relative branching instruction allows a
branch forward to 127 locations (seven-bits) or a branch backwards to

128 locations (usually +129 or -126, since PC will have been mcre-
cremented by 2). Because most loops tend to be short, relative faranch-
ing can be used most of the time and results in significantly improved
performance for such short routines. As an example, we have already
used the instruction JR NC, which specifies a "jump if no carry" to a
location within 127 words of the branch instruction (more precisely
+ 129 to - 126).

The two advantages of relative addressing are improved performance
(fewer bytes used) and program relocatability (independence from ab-
solute addresses).

Indexed Addressing

Indexed addressing is a technique used to access the elements of a
block or of a table successively. This will be illustrated by examples
later in this chapter. The principle of indexed addressing is that the in-

struction specifies both an index register and an address. The contents
of the register are added to the address to provide the final address. In
this way, the address could be the beginning of a table in the memory.
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The index register would then be used to access all the elements of a

table successively m an efficient way. (This requires the availability of

increment/decrement instructions for the index register), in practice,

restrictions often exist which may limn the size of the mdex register, or

the size of the address or displacement field.

OPCODE

DISPLACEMENT

BASE

displacement

TABlE

y////////

INDEX REGISTER
,

—

BASE

final oddress

MEMORY

Fig. 5.2: Addressing (Pre-indexing;

Pre-Indexing and Post-Indexing

Two modes of indexing may be disimguished. Pre-indexmg is the

usual indexing mode m which the final address is the sum of a displace-

ment or address and of the contents of the mdex register. It is shown m

Figure 5.2, assuming an 8-bit displacement field and a 16-bit index

register.

Post-indexing treats the contents of the displacement field like the

address of the actual displacement, rather than the displacement itself.

This is illustrated in Figure 5.3. In post-indexmg, the final address is the

sum of the contents of the mdex register plus the contents of the mem-

ory word designated by the displacement field. This feature utilizes, in

fact, a combination of indirect addressing and pre-mdexing. But we

have not defined indirect addressing yet. Let us do that.
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OPCODE

Y {index}

N

FtNfll

AODRfSS

Fig. 5.3: Indirect Indexed Addressing (Post-Indexing)

Indirect Addressing

We have already seen that two subroutines may wish to exchange a
iarge quantity of data stored in the memory. More generally, several
programs, or several subroutmes, may need to access a common block
of information. To preserve the generality of the program, it is desira-
ble not to keep such a block at a fixed memory location. In particular,
the size of this block might grow or shrink dynamically, and it may
have to reside in various areas of the memory, depending on its size. It

would, therefore, be impractical to try to access this block using abso-
lute addresses, that is without rewriting the program every time.
The solution to this problem lies in depositing the starting address of

the block at a fixed memory location. This is analogous to a situation in
which several persons need to get into a house, and only one key exists.

By convention, the key to the house will be hidden under the mat. Every
user will then know where to look (under the mat} to find the key to the
house (or, perhaps, to find the address of the scheduled meeting, to
propose a stricter analogy). Indirect addressing, therefore, normally
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uses an opcode followed by a 16-bit address. This address is used to

retrieve a word from the memory. Usually, it will be a 16-bit word (m

our case, two bytes) within the memory since it is an address. This is il-

lustrated by Figure 5.4. The two bytes at the specified address Al con-

tain "A2" . A2 is then interpreted as the actual address of the data that

one wishes to access.

INSTRUCTION MEMORY

OPCODE

(A,jINDIRECT
FINAL

ADDRESS A. ADDRESS (AiJ

4~A; DATA

Fig. 5.4: Indirect Addressing

Indirect addressing is particularly useful any time that pointers are

used. Various areas of the program can then refer to these pointers to

access a word or a block of data conveniently and elegantly. The final

address may also be obtained by pomimg within the instruction to a

16-bu register in which it is contained. This is called "register indirect."

Combinations of Modes

The above addressing modes may be combined. In particular, it

should be possible m a completely general addressing scheme to use

many levels of indirection. The address A2 could be interpreted as an

mdirect address again, and so on.

Indexed addressing can also be combined with indirect access. This

allows the efficient access to word n of a block of data, provided one

knows where the pointer to the starting address is (see figure 5.2).
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We have now become familiar with ali usual addressmg modes that
can be provided m a system. Most microprocessor systems, because of
the limitation on the complexity of an MPU, which must be realized
withm a single chip, do not provide ail possible modes but only a small
subset of these. The 280 provides a good subset of possibilities. Let us
examine them now.

Z80 ADDRESSING MODES

Implied Addressing {Z80)

Implied addressing is essentially used by smgle-byte instructions
which operate on internal registers. Whenever implicit instructions
operate exclusively on internai registers, they require only one machine
cycle to execute.

E.xamples of instructions usmg implied (or "register") addressmg
are: LD r,r'; ADD A,r; ADC A,s; SUB s; SBC A,s; AND s; ORs;
XOR s; CPs; INCr.

Zilog further distinguishes between "register addressing" and "im-
plied addressmg." Implied addressing is then limited, m that definition,
to instructions that do not have a specific field to point to an internal
register. This introduces one more addressmg mode. This is one reason
why the number of addressing modes is insufficient to characterize the
capabilities of a microprocessor.

Immediate Addressing (Z80)

Since the Z80 has both smgie-length registers (eight bits), and double-
length register pairs (16 bits), it provides two types of immediate ad-
dressing, both with 8-bit and 16-bit literals, instructions are then
either two or three bytes long. The second (and sometimes the third)
byte contains the opcode, followed by the constant, or literal, to be
loaded in a register or used for an operation. Exceptions are LD IX and
LD lY, which require 16-bit opcodes.
Examples of instructions using the immediate addressing mode are:

LD r,n (two bytes)

LD dd,nn (three bytesi

and

ADD A,n (two bytes)

When the literal is two bytes long, the mode is called "immediate ex-
tended," in the case of the Z80.
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Absolute or "Extended" Addressing (Z80)

By definition, absolute addressing requires three bytes. The first byte

IS the opcode and the next two bytes are the !6-bit address specifying

the memory location (the "absolute address").

By contrast with "short addressing" (eight-bit address), this mode is

aiso called "extended addressing."

Examples of instructions using extended addressmg are:

LD HL, (nn) and JP nn

where nn represents the i6-bit memory address, and (nn) represents the

contents of the specified location.

Modified Zero-Page Addressing (Z80)

Zero-page addressing is not available m the Z80, except through the

RST instruction. The special addressing mode used by this instruction

is called "modified zero-page addresing."

The RST instruction contains a 3-bit field in bit position b, b^ us-

ed to pint to one of 8 locations in page memory. The effective

address is b5b4b3000 and is loaded into PC. Since it requires only a

single byte, this instruction executes rapidly, and is easily generated in

hardware. It was generally used to respond to multiple interrupts (up to

8.) Its disadvantage is either to limit the execution sequence to 8 loca-

tions, or to require a jump eliminating the speed advantage. This is

because each of the 8 branch addresses are 8-bytes apart.

Relative Addressing (Z80)

By definition, relative addressing requires two bytes. The first one is

the "jump relative" opcode, whereas the second one specifies the dis-

placement and Its sign.

In order to differentiate this mode from the absolute jump instruc-

tion, it is labeled "JR"
From a timing standpoint, this instruction should be examined with

caution. Whenever a test fails, i.e., whenever there is no branch, this m-
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slruciion requires only seven "T cycles." This is because the next

instruction to oe executed is already pointed to by the program counter.

However, when the test succeeds, i.e., whenever the jump takes

place, this instruction requires 12 "T-states"; a new effective address

must be computed and loaded into ihe program counter.

When computing the duration of the execution of a program seg-

ment, caution must be exercised. Whenever one is not sure whether or

not the jump will succeed, one must take into consideration the fact

that sometimes the jump will require 12 Tstates, (condition met),

sometimes? (condition not met).

When designing a loop, execution will, therefore, be faster using a

JR{Jump Relative) testmg a condition usually not met, such as a non-

zero condition for the counter.

When JR's are used outside of loops, and the condition under test is

unknown, an average timing value is often used for the duration

of JR.

This timing problem does not apply to the unconditional jump JR e. It

does not test any condition, and always lasts 12 T-states.

Indexed Addressing (Z80)

This addressing mode did not exist in the 8080, and was added to the

Z80 (as well as the two mdex registers). As a result, it became necessary

to add an extra byte to the opcode, making it a i6-bit opcode in the Z80

instruction set (LD!R is another example of a i6-bit opcode). The

structure of an indexed instruction is shown on Figure 5.5.

OPCODE

OPCODE

DISPLACEMENT

BYTE

BYTE 2

BYTE;

I
LITERAL

I
BYTE 4

L: : _J

Fig. 5.5: Indexed Addressing Has 2-byte Opcode
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instructions allowing indexed addressing are:

LD. ADD, INC, RLC, BIT, SET, CP. and others.

This mode will be used extensively in the programs operating on

blocks of data, tables or lists.

Indirect Addressing (Z80)

The Z80 provides a limited indirect addressing capability called

"Register Indirect Addressing." In this mode, each of the 16-bit regis-

ter pairs BC, DE, HL may be used as a memory address.

Whenever they point to 16-bit data, they point to the lower part. The

higher part resides at the next (higher) sequential address.

Combinations of Modes

Combinations of modes are essentially non-existent, except that in-

structions referring to two operands may use a different type of ad-

dressing for each.

Thus, a load or an arithmetic instruction may access one operand in

the immediate mode, and the other one through an indexed access.

Also, the bit addressing mechanism may access the eight-bit byte

through one of the three addressing modes, as explained in the follow-

ing paragraph. The specific addressing modes available for each in-

struction are indicated m the tables of the preceding chapter.

Bit Addressing

Bit addressing is generally not considered an addressing mode if ad-

dressing is defined as accessing a byte. However, whether defined as a

mode or a group of instructions, it is a valuable facility. Since it is de-

fined as an "addressing mode" m Zilog nomenclature, it will be so de-

scribed here. It is specific to the Z80 and was not provided on the 8080.

Bit addressing refers to the access mechanism to specified bits. The

Z80 IS equipped with special instructions for setting, resetting and test-

ing specified bits in a memory location or a register. The specified byte

may be accessed through one of three addressing modes: register, regis-

ter-indirect, and indexed. Three bits are used within the opcode to select

one of eight bits.
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USING THE Z80 ADDRESSING MODES

Long and Short Addressing

We have already used relative jump instructions in various programs
that we have developed. They are self-explanatory. One interesting
question is: What can we do if the permissible range for branching is

not sufficient for our needs? On many microprocessors, the solution is

to use a so called longjump. This is simply a jump to a location which
contains an absolute or "long" jump specification;

JRNC, S + 3 BRANCH TO CURRENT ADDRESS
+ 3 IF C CLEAR

JP FAR OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION)

The two-line program above will result in branching to location FAR
whenever the carry is set. In the case of the Z80, JP may be used instead
of JR to test all conditions and removes this problem.

Use of Indexing for Sequential Block Accesses

Indexmg is primarily used to address successive locations withm a
table. The restriction is that the maximum length must be less than 256
so that the displacement can reside in an eight-bit index register.

We have learned to check for a character. Now we will search a table
of 100 elements for the presence of a The starting address for this
table IS called BASE. The table has only 100 elements. The program ap-
pears below: (see flowchart on Figure 5.6):

SEARCH

TEST

LD iX, BASE
LD A,

LD B, COUNT
CP (IX)

JR Z, FOUND
INC IX

DEC B
JR NZ, TEST

NOTFND

An improved program will be presented below in the section on
Block Transfer, using DJ NZ.
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iNiiiAuze

TO ELEMENT

READ NEXT

ELEMENT

POiNITO
NEXT ELEMENT

LAST ELEMENT?

YES

NOT FOUND

Fig. 5.6: Character Search Flowchart

A Block Transfer Routine for Fewer Than 256 Elements

We will call "COUNT" the number of elements in the block to be

moved. The number is assumed to be less than 256. FROM is the base

address of the block. TO is the base of the memory area where it should

be moved. The algorithm is quite simple: we will move a word at a time,

keeping track of which word we are moving by storing its position m

the counter C. The program appears below:

GET WORD

BLKMOV LD IX, FROM
LD lY, TO
LD EC, COUNT

NEXT LD A, (IX)

LD (lY), A
INC IX

INC lY

DEC C
JR NZ. NEXT

Let us examine it:

BLKMOV LD IX.FROM
LD IY,TO
LD C, COUNT

These three instructionsinitiahze registers IX, lY, and C respectively, as
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MEMORY

COUNT

IX

iY

SOURCE

DESTINATION

i

1 , - .

1

i
."

...

) FROM

TO

Fig. 5,7: Block Transfer: Initializing the Register

illustrated in Figure 5.7. Index register IX is used as the source pointer,

and will be incremented regularly. Index register IY is used as the desti-

nation pointer, and would be incremented regularly. Register C is load-

ed with the maximum number of elements to be transferred {limited to

256 since this is an eight-bit register) and will be decremented regularly.

Whenever C decrements to zero, all elements have been transferred.

The next two instructions:

NEXT LD
LD

A, {IX)

{IY), A

load the contents of the memory location pointed to by IX into the ac-

cumulator, then transfer it into the memory location pointed to by reg-

ister IY. In other words, these two instructions transfer an element of

the source block into the destination block. The two index registers are

then incremented:

INC
INC

IX

IY

And the counter register is decremented:

DEC C

Finally, as long as the counter is not 0, the program loops back to the

label NEXT:

JR NZ, NEXT

451



PROGRAMMING THE Z80

This IS an example of the possible utilization of index registers. How-

ever, let us compare it to the same program written for another micro-

processor, the MOS Technology 6502, which is also equipped with an

indexing capability, but uses different conventions (i.e., has different

limitations on a general-purpose mdexmg faciIity).The program appears

below;

Without going into the details of the above program, the reader will

immediately notice how much shorter it is than the previous one. This is

because the index register X is used as a variable displacement, whereas

FROM and TO are used as the fixed source and destination addresses.

This example should point out that although m theory indexmg is a

powerful facility, it does not necessarily lead to efficient coding, due to

the addressing limitations imposed on it in the case of various micro-

processors. Truly general-purpose indexing requires the possibility of a

16-bit displacement or address field as well as a 16-bit index register.

However, it should be noted thai this specific problem is solved, in

the Z80 by the presence of specialized instructions. A general-purpose

block transfer will now be described which can be implemented m just

four instructions. However, to be fair to the Z80, let us suggest addi-

tional exercises for the reader:

Exercise 5.1: Write she block transfer program for the Z80 in the style

of the above programfor the 6502, i.e., assuming thai the index register

contains a displacement. Assume (hat the source and the destination

block are located in page 0, i.e., at addresses lo 256. Naturally, it will

be assumed that the number of elements withm each block is small

enough that they do not overlap.

Exercise 5.2: Assume now that the source and the destination blocks are

located anywhere in the memory, except that they are both within the

same page. Rewrite the above program in that case. (Is there a dif-

ference, i.e., does page zero play any role for the Z80?)

Generalized Block Transfer Routine (More Than 256 Elements)

The register allocation and the memory map are shown m Figure 5.8.

NEXT
LDX
LDA
STA
DEX
BNE

DUMBER
FROM, X
TO, X

NEXT
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The program is shown below:

LD BC, COUNT
LD DE, TO
LD HL, FROM
LD!R

NUMBER OF BYTES
DESTINATION ADDRESS
START ADDRESS
TRANSFER ALL BYTES

Memory used: II bytes

Timmg: 21 cycles/byte transferred

The first instruction is:

LD BC. COUNT

It loads the number of elements to be transferred (a 16-bit value) into

the register pair BC. The next two instructions initialize the register pair

DE and the register pair HL respectively:

LD
LD

DE, TO
HL, FROM

Finally the fourth instruction:

LDIR

performs the complete transfer.

LDIR is an automated biock-transfer instruction. Us power should

be obvious from this example. LDIR results in the following sequence:

The contents of the memory location pointed to by H and L are trans-

ferred into the memory location pointed to by DE: (DE) =(HL). Next.

DE is incremented: DE = DE + 1. Then, HL is incremented: HL =
HL+ 1. Next, BC IS decremented: BC = BC -1. If BC becomes 0, the

instruction is terminated. Otherwise, the instruciion is repeated.

COUNTER
-+-

DESTINATION

SOURCE

REGISTERS

MEMORY

Fig. 5.8: A Block Transfer-Memory Map
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The value and power of the LDIR instruction should be apparent at

this point without further comments. Similarly, our search for the char-

acter "star"can be improved by the use of an automated instruction,

CPiR, special to the Z80. The corresponding program appears below:

LD A, **'

LD BC, COUNT
LD HL, STRING

STAR CPIR
JR Z, STAR

NOSTAR

The first instruction loads the accumulator with the code for the

character star. Next, the register pair BC is initialized to the count of

the number of words to be searched within the block:

LD BC, COUNT

The register pair H and L is set to the starting address of the block to

be searched (STRING). The automated instruction is then executed:

LD HL, STRING
CPIR

The CPIR instruction is an automated compare mstruction. The con-

tents of the memory location specified by the address contained in H
and L is compared to the contents of the accumulator. If the compari-

son succeeds, then Z of the flags register will be set to 1. Then, the reg-

ister pair H and L is incremented and the register pair BC is

decremented. The instruction is repeated until either the pair BC goes to

or else the comparison succeeds. After the instruction CPIR is ex-

ecuted, it is therefore necessary to test the Z flag to determine whether

the comparison has succeeded {the CPIR might have looped through

64K words without success in the extreme case). This is the purpose of

the last instruction of the program:

JR Z, STAR

Exercise 5,3: Rewrite the above program so that a search proceeds

backwards. (Hint: Use the CPDR instruction) Continue the block

transfer until isfound.

Let us now develop a program combining the features of the two pre-

vious ones. We will implement the block transfer from location FROM
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to location TO, which shall stop automatically whenever an escape

character, "star", is found. The program appears below:

LD BC, COUNT
LD HL, FROM
LD DE, TO
LD A,'*' DELIMITER (ESCAPE CHAR)

TEST CP (HL) COMPARE WITH MEMORY
CHARACTER

JR Z, END END IF SUCCESS
LDI TRANSFER CHARACTER AND

UPDATE POINTERS AND
COUNT

JP PE, TEST KEEP TESTING UNLESS DONE
P/V INDICATES WHETHER BC =

The first three mstructions of the program perform the usual initiali-

zation, setting up the counter registers and the source and destinalson

pointers:

LD BC, COUNT
LD HL, FROM
LD DE, TO

The star character is deposited, "as usual" into the accumulator, so

that it can be compared to the character read from a memory location.

LD A,'*'

This IS exactly what is done by the next instruction:

TEST CP (HL)

The success or failure of the comparison is determined by testing the Z
bit. The Z bit will have been set if the comparison has succeeded. This is

performed by the next instruction:

JR Z, END

The next instruction is an automated transfer instruction:

LDI

This instruction transfers the character, and updates the pointers and
the count in a single instruction. LDI transfers the contents pointed to

by H and L mto the memory location pointed to by D and E: (DE) =
(HL). It mcremems DE and HL:

DE = DE + i

HL - HL + 1
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Finally, it decrements BC: BC becomes BC -1. The particularity of

this instruction is that the P/V flag is cleared if BC decrements to "0"

and set otherwise. This will be explicitly tested by the last instruction in

the program to determine whether exit should occur:

JF PE, TEST

Adding Two Blocks

A program will be developed here to add element! by element two

blocks starting respectively at addresses BLKl, and BLK2, and having

BLKADD

LOOP

LD IX. BLKl
LD lY, BLK2
LD B, COUNT
XOR A
LD A, (IX + 0)

ADC A, (lY + 0)

LD (IX), A
DEC IX

DEC lY

DEC B
JR NZ, LOOP

B COUNTER

MEMORY

Fig. 5.9: Adding Two Blocks: BLKl -BLKl + BLK2
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The memory layout is shown in Figure 5.9. The program is straightfor-

ward. The number of elements to be added is loaded into the counter
register B, and the two mdex registers IX and lY are initialized to their

values BLKl and BLK2:

BLK ADD LD IX, BLKl
LD lY, BLK2
LD B, COUNT

The carry bit is then cleared in anticipation of the first addition:

XOR A

The first element is loaded into the accumulator:

LOOP LD A, {IX + 0)

The corresponding element of BLK2 is then added to it:

ADC A, (lY +0)

and finally saved into the element of BLKl;

LD (IX), A

The two pointer registers X and Y are decremented:

DEC IX

DEC lY

as well as the counter register:

DEC B

As long as the counter register is not 0, the addition loop is executed:

JR NZ, LOOP

Exercise 5.4: Can you use (he above program lo perform a 32'bii addi-
Iton?

Exercise 5.5: Can you use the above program to perform a 64-bit addi-
lion?

Exercise 5. 6: Modify Ihe abo ve program so that the result is stored m a
separate block slarling at address BLK3.

Exercise 5.7: Modify (he above program to perform a subtraction

rather than an addition.
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Exercise 5.8: Modify the original program above so thai BLKl and

BLK2 are at the top ofeach block rather than the bottom (see Fig.5. 10).

FROM

COUNT = N
SOURCE BtOCK

DESTINAiroN BtOCtt

COUNTEfi

Fig. 5.10: Memory Organization for Block Transfer

SUMMARY

A complete description of addressing modes has been presented. It.

has been shown that the Z80 offers many possible mechanisms, and the

specific addressing modes available on the Z80 have been analyzed.

Finally, several application programs have been presented to demon-

strate the value of the various addressmg mechanisms. Programming

the Z80 efficiently requires an understanding of these mechanisms.

They will be used throughout the programs m the remainder of this

book.

EXERCISES

5. 9: Write a program to add the first 10 bytes of a table stored at loca-

tion "BASE"- The result will have 16 bits. (This is a checksum com-

putation).

5.10: Can you solve the same problem without using the indexing

mode?
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5.11: Reverse the order of Ihe 10 byies of lhis (able. Store the result

at address "REVER'\

5.12: Search the same table for its largest element. Store it at memory
address "LARGE"..

5.13: Add together the corresponding eletnents of three tables, whose

bases are BASEL BASE2, BASES. The length of these tables is stored

at address "LENGTH".
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INTRODUCTION

We have learned so far how to exchange mformatjon between the

memory and the various registers of the processor. We have learned to

manage the registers and to use a variety of instructions to manipulate

the data. We must now learn to communicate with the external worid.

This IS called input/output.

Inpul refers to the capture of data from outside peripherals (key-

board, disk, or physical sensor). Output refers to the transfer of data

from the microprocessor or the memory to external devices such as a

printer, a CRT. a disk, or actual sensors and relays.

We will proceed in two steps. First, we will learn to perform the input/

output operations required by common devices. Secondly, we will

learn to manage several input/output devices simultaneously, i.e., to

schedule them. This second part will cover, in particular, polling vs. in-

terrupts.

INPUT/OUTPUT

In this section we will learn to sense or to generate simple signals,

such as pulses. Then we will study techniques for enforcing or measur-

ing correct timing. We will then be ready for more complex types of in-

put/output, such as high-speed serial and parallel transfers.

The Z80 Input/Output Instructions

The Z80 is equipped with a special set of input and output instruc-

tions. Most eight-bit microprocessors are not equipped with a special

set of input and output instructions, and use the general mstruction set
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on input/output devices. The Z80, like the 8080, is equipped with basic

input and output instructions. However, the Z80 is also equipped with

additional I/O instructions. These will be described in more detail here

in order to facilitate understanding of the programs that will be pre-

sented throughout this section.

The basic input and output instructions are respectively: IN A, (n)

and OUT (n),A. These two instructions are inherited from the 8080.

They will respectively read or write one byte between the selected port

and the accumulator. The actual addressing process is such that the 1,0
device address "n" is gated on lines AO through A7 of the address bus,

while the contents of the accumulator appear on address lines A8 through

A15. When only 256 devices are addressed, it may be necessary to zero

the contents of the accumulator explicitly if any of the address lines A8
throughAiS may be decoded by an I/O device. In the simple examples
that follow, we will assume that fewer than 256 devices are present and
that they are not connected to addresses A8 through A15, so that it will

not be necessary to zero the contents of the accumulator explicitly, for

example prior to using the IN instruction.

A special input instruction: IN r. (C), allows using the contents of

register C as the I/O deviceiaddress. When using this instruction, the

contents of register B automatically provide the top part of the address

(A8 through A15). The specified register r is loaded from the specified

address, "r" may be any of the usual seven general-purpose registers.

Generate a Signal

In the simplest case, an output device will be turned off (or on) from
the computer. In order to change the state of the output device, the pro-

grammer will merely change a level from a logical "0" to a logical "I",
or from "I" to "0". Let us assume that an external relay is connected

to bit "0" of a register called "OUTl". In order to turn it on. we will

simply write a "1" into the appropriate bit position of the register. We
assume here that OUT! represents the address of this output register

within our system. A program which will turn the relay on is:

TURNON LD A, 00000001 B LOAD PATTERN INTO A
OUT (OUTl), A OUTPUT IT TO DEVICE

where OUT is the output instruction.

We have assumed that the state of the other seven bits of the register

OUTl is irrelevant. However, this is often not the case. These bits

might be connected to other relays. Let us, therefore, improve this sim-

ple program. We want to turn the relay on, without changing the state
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of any other bit within this register. We wili assume that it is possible to

read and write the contents of this register. Our improved program now

becomes:

TURNON IN A, COUTl)

OR 0000000 IB

OUT (OUTl), A

READ CONTENTS OF OUT!
FORCE BIT "0" TO "1" IN A

The program first reads the contents of location OUTl, then per-

forms an inclusive OR on its contents. This only changes bit position

to "1", and leaves the rest of the register intact. (For more details on

the OR operation, refer to Chapter 4.) This is illustrated by Figure 6.1.

HSEAV

o

Fig. 6.1: Turning on a Relay

Pulses

Generating a pulse is accomplished exactly as in the case of the level

above. An output bit is first turned on, then later turned off. This re-

sults in a pulse. This is illustrated in Figure 6.2. This time, however, an

additional problem must be solved; one must generate the pulse for the

correct length of time. Let us, therefore, study the generation of a com-

puted delay.

CFU OUTPUT POST SlGNAl

mEP>^OGRA^^ SESECi output post

lOfiD OUTPUT POST REGlSlEP WITHPAtTEBN

WAIT (lOOPFOSNUSEC!
lOAO OUTPUT WilH ZERO

iJE'UMN

Fig. 6.2: A Programmed Pulse
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Delay Generation and Measurement

A delay may be generated by software or by hardware methods. We
will here study the way to perform it by program, and later show how it

can also be accomplished with a hardware counter, called a program-

mable interval timer (PIT).

Programmed delays are achieved by counting. A counter register is

loaded with a value, then is decremented. The program loops on itself

and keeps decrementing until the counter reaches the value "0". The
total length of time used by this process will implement the required

delay. As an example, let us generate a delay of 82 clock cycles:

This program loads A with the value 5. The next instruction decre-

ments A and the following instruction will cause a branch to NEXT to

occur as long as A does not decrement to "0". When A finally decre-

ments to zero, the program will exit from this loop and execute what-

ever instruction follows. The logic of the program is simple and appears

in the flowchart of Figure 6.3.

Let us now compute the effective delay which will be implemented by

the program. In Chapter 4 of the book, we will look up the number of

cycles required by each of these instructions:

LD in the immediate mode requires seven clock cycles. DEC will use

four cycles. Finally, JR will use 12 cycles except during the last itera-

tion, where it will use 7 cycles. When looking up the number of cycles

for JR in the table, verify that two possibilities exist: if the branch does

not occur, JR will only require seven cycles. If the branch does succeed,

which will usually be the case during the loop, then 12 cycles are re-

quired.

The timing is, therefore, seven cycles for the first instruction, plus 1

1

cycles for the next two, multiplied by the number of times the loop will

be executed, minus an extra five-cycle delay for the last unsuccessful JR:

Delay = 7+ 16x5-5 = 82 cycles.

Assuming a .5 microsecond cycle, this programming delay will be 41

microseconds.

DELAY
NEXT

LD
DEC
JR

A, 5

A
NZ.NEXT

A IS COUNTER
DECREMENT
NEXT TEST
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COUNTER= VALUE

Zi
DECREMENT COUNTER

OUT

Fig. 6.3: Basic Delay Flowchart

The delay loop which has been described is used by most mput/outpui

programs. It should be well understood. Try lo do the following exercises;

Exercise 6. 1: What are ilie inaximuin and ihe inmimum delays winch

can be implemented mill these three instructions?

Exercise 6.2: Modify (he program to obtain a delay ofabout WO micro-

seconds.

If one wishes to implement a longer delay, a simple solution is to add

extra instructions in the program, before DEC. The simplest way to do

so is to add NOP instruction. (The NOP does nothing for four cycles.}

Longer Delays

Generating longer delay.s by software can be achieved through using

a wider counter. A register pair can be used to hold a 16-bit count. To
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simplify, let us assume that the lower count is "0", The lower byte
wiU be loaded with "0", the maximum count, then go through a
decrementation loop. Since the first decrementation results m 00-«-FF
and does not affect the Z flag whenever it is decremented to "0" the
upper byte of the counter will be decremented by 1 . Whenever the up-
per byte !s decremented to the value "0'% the program terminates If
more precision is required m the delay generation, the lower count can
have a non-null value. In this case, we would write the program just as
explained and add at the end the three-line delay generation program
which has been described above.

A 24-bit delay program appears below:

DEL24 LD B, COUNTH COUNTER HIGH (8 BITS)
DEL16 LD DE, -1
LOOPA LD ML, COUNTL COUNTER LOW
LOOPS ADD HL. DE DECREMENT IT

JR C, LOOPB GO ON UNTIL NULL
DJNZ LOOPA DECREMENT BAND JUMP

Note that DE is loaded with " - 1 '\ and used to decrement the 16-bit
counter HL.
Naturally, still longer delays could be generated by usmg more than

three words. This is analogous to the way an odometer works on a car
When the right-most wheel goes from "9" to "0", the next wheel to the
left IS incremented by 1. This is the general principle when counting
with multiple discrete umts.

However, the mam disadvantage of this method is that when one is

counting delays, the microprocessor will be domg nothmg else for hun-
dreds of milliseconds or even seconds. If the computer has nothing else
to do, this IS perfectly acceptable. However, m general the microcom-
puter should be available for other tasks, so that longer delays are nor-
mally not implemented by software. In fact, even short delays may be
objectionable m a system if u is to provide some guaranteed response
time m given situations. Hardware delays must then be used, in addi-
tion, if interrupts are used, timmg accuracy may be lost if the counting
loop can be interrupted.

Exercise 6.3: Wnle a program to implement a 100 ms delav (tvpicai ofa
Teletype),

'

Hardware Delays

Hardware delays are implemented by using a programmable interval
timer or "timer" m short. A register of the timer is loaded with a value.
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The difference is that the timer will automatically decrement the

counter periodically. The period can usually be adjusted or selected by

the programmer. Whenever the timer has decremented to "0", it will

normaliy send an interrupi to the microprocessor. It may also set a

status b!t which can be sensed periodically by the computer. The use of

mterrupts will be e.xplamed later m this chapter.

Other timer operalmg modes may include starting from "0" and

counting the duration of the signal, or, counting the number of pulses

received. When functtomng as an interval timer, the timer is said to

operate m a one-shol mode. When counting pulses, it is said to operate

m a pulse counting mode. Some timer devices may even include mul-

tiple registers and a number of optional facilities which the programmer

can select.

Sensing Pulses

The problem with sensing pulses is the reverse of that of generating

pulses, and includes one more difficulty: whereas an output pulse is

generated under program control, input pulses occur asynchronously

with the program. In order to detect a pulse, two methods may be used:

polling and iniermpls. Interrupts will be discussed later m this chapter.

Let us now consider the polling technique. Using this technique, the

program reads the value of a given input register continuously, testing a

bit position, perhaps bit 0. It will be assumed that bit is originally

"0", Whenever a pulse is received, this bit will lake the value "1"-. The

program continuously monsters bit until it takes the value "!"- When

a "I" is found, the pulse has been detected. The program appears

below:

POLL IN A (INPUT) READ INPUT REGISTER

ON BIT 0, A TEST FOR

JR Z, POLL KEEP POLLING IFO

Conversely, let us assume that the input line is normally "!" and that

we wish to detect a "0"
, This is the usual case for detecting a START

bit, when monitoring a line connected to a Teletype. The program ap-

pears below:

POLL IN A, (INPUT) READ INPUT REGISTER

BIT 0, A SET Z FLAG

JR NZ, POLL TEST IS REVERSED

START ...
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Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in the
same way as compulmg the duration of an output pulse. Either a hard-
ware or a software technique may be used. When monitoring a pulse by
software, a counter is regularly incremented by 1, then the presence of
the pulse is verified. If the pulse is stiil present, the program loops upon
Itself. Whenever the pulse disappears, the count contained in the
counter register is used to compute the effective duration of the pulse.
The program appears below;

DURTN LD B, CLEAR COUNTER
AGAIN IN A, (INPUT) READ INPUT

BIT 0, A MONITOR BIT
JR Z. AGAIN WAIT FOR A "1"

LONGER INC B INCREMENT COUNTER
IN A, (INPUT) CHECK BIT
BIT 0, A
JR NZ. LONGER WAIT FOR A "0"

Naturally, we assume that the maximum duration of the pulse will

not cause register B to overflow. If this were the case, the program
would have to be changed to take that into account (or else it would be a
programming error!).

Since we now know how to sense and generate pulses, let us capture
or transfer larger amounts of data. Two cases will be distinguished:

serial data and parallel data. Then we will apply this knowledge to ac-

tual input/output devices.

PARALLEL WORD TRANSFER

It IS assumed here that eight bits of transfer data are available in par-
allel at address "INPUT" (see Fig. 6.4). The microprocessor must read
the data word at this location whenever a status word indicates that it is

valid. The status information will be assumed to be contained m bit 7 of
address "STATUS", We will here write a program which will read and
automatically save each word of data as it comes in. To simplify, we
will assume that the number of words to be read is known m advance
and is contained in location "COUNT", if this information were not
available, we would test for a so-called break character, such as a
ruboiK, or perhaps the character "*", We have learned to do this al-

ready.
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COUNT

STATUS

INPUT I/O DEVICE

7

Fig, 6.4: ParaHel Word Transfer -The Memory

The flowchart appears m Figure 6.5. it is quite straightforward. We

test the status information until u becomes "1", indicating that a word

IS ready. When the word is ready, we read it and save it at, an appropri-

ate memory location. We then decrement the counter and test whether

It has decremented to "0". If so, we are finished; if not, we read the

next word. A simple program which implements this aigorithm appears

below:

PARAL LD A. (COUNT) READ COUNT INTO A
LD B, A B IS COUNTER

WATCH IN A, (STATUS) LOOK FOR 'DATA READY'
TRUE

BIT 7, A BIT 7 IS "1" IF DATA READY
JR Z, WATCH DATA VALID?
IN A, (INPUT) READ DATA
PUSH AF SAVE DATA INTO STACK
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DEC B DECREMENT COUNT
JR NZ, WATCH DO IT UNTIL ZERO

It is assumed that the "data ready" flag is automatically cleared when
STATUS is read.

The first two mstructions mitiaiize the counter register B:

PARAL LD A, (COUNT)
LD B. A

Note that there is no easy way to load B only from memory. One must
either load A, then transfer its contents to B, or load B and C
simultaneously.

POLLING OR SERVICE REQUEST

TRANSFER

WORD

zx:
DECREMENT

COUNTER

NO

OUT

Fig. 6.5: Paraiiel Word Transfer: Flowchart
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The next three instructions of the program read the status informa-

tion and cause a loop to occur as long as bit seven of the status register

IS "0". (!t IS the sign bit, i.e., bit N.)

IN A, (STATUS)

BIT 7, A "IN" DOES NOT SET THE FLAGS
JR Z, WATCH

When JP fails, data is valid and we can read it:

IN A, (INPUT)

The word has now been read from address INPUT where it was, and

must be saved. Assuming that a sufficient stack area is available, we

can use:

PUSH AF

which saves A (and F) in the stack. If the stack is full, or the number of

words to be transferred is large, we could not push them on the stack

and we would have to transfer them to a designated memory area, us-

ing, for example, an indexed instruction. However, this would require

an extra instruction to increment or decrement the index register.

PUSH is faster (only II clock cycles).

The word of data has now been read and saved. We will simply decre-

ment the word counter and test whether we are finished:

DEC B

JR NZ.WATCH

This nine-instruction program can be called a benchmark, A benchmark

program is a carefully optimized program designed to test the capabilities

of a given processor in a specific situation. Parallel transfers are one such

typical situation. This program has been designed for maximum speed and

efficiency. Let us now compute the maximum transfer speed of this pro-

gram. We will assume that COUNT is contained in memory. The duration

of every instruction is determined by inspecting the tables in Chapter Four

and is found to be the following:

PARAL LD A, (COUNT) 13

LD B, A 4

WATCH IN A, (STATUS) 11

BIT 7, A 8

JR Z, WATCH 7/12
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IN A, (INPUT) 11

PUSH AF 11

DEC B 4

JR NZ, WATCH 7/12

The minimum execution time is obtained by assuming that data ts

available every time that we sample STATUS. In other words, the first

JP will be assumed to fail every time. Timing is then:

13 + 4 + (11 + 8 + 7 + II + 4 + 12) * COUNT
Neglectmg the first 17 cycles necessary to initialize the counter regis-

ter, the time used to transfer one word is 64 clock cycles or 32
microseconds with a 2 MHz clock.

The maximum data transfer rate is, therefore:

I

= 3 1 K bytes per second
32 (lO-M

Exercise 6.4: Assume thai ihe /lumber of wards fa he transferred ts

greater ihun 256. Modify the program accordingly and deiernune (he

wipac! on Ihe maximum data transfer rate.

Exercise 6.5: Modify this program m order to try lo improve its speed:
1—using JR instead of JP
2—using DJNZ
3— using INT or IND

Was the above program iru.'y oplimal?

We have now learned to perform high-speed parallel transfers. Let us
consider a more complex case.

BIT SERIAL TRANSFER

A serial input is one in which the bits of information (0\s or i 'si come
in successively on a line. The.se bits may come in at regular intervals.

This is normally called synchronous transmission. Or, they may come
as bursts of data at random mtervals. This is called asynchronous tran.s-

mission. We will develop a program which can work in both cases. The
principle of the capture of sequential data is simple: we will watch an
input line, which will be assumed to be line 0. When a bit of data is de-
tected on this line, we will read the bit in, and shift it into a holding reg-

ister. Whenever eight bits have been a.s.sembled, we will preserve the

byte of data into the memory and as.semble the next one. In order to

simplify, we will assume that the number of bytes to be received is
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known in advance. Otherwise, we might, for example, have to watch

for a special break character, and stop the bit-senal transfer at this

point. We have learned to do that. The flowchart for this program ap-

pears m Figure 6.6. The program appears below;

SERIAL LD C, CLEAR INPUT WORD
LD A. (COUNT) LOAD B WITH BYTE COUNT
LD B, A

LOOP IN A, (INPUT) READ PORT
BIT 7, A BIT 7 IS STATUS, BIT IS DATA

JR Z, LOOP WAIT FOR A"!"
SRL A SHIFT DATA BIT INTO CARRY
RL C SAVE INPUT B INTO C

JR NC, LOOP CONTINUE UNTIL 8 BITS IN

POLLING OR SERVICE REQUEST

READ WORD COUNT

STORE BIT

INCREMENT COUNTER

STORE WORD
RESET BIT COUNTER

DECREMENT WORD COUNT

NO

DONE

Fig. 6.6: Bit Serial Transfer—Flowcharf
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PUSH BC SAVE WORD iN STACK
LD com RESET MARKER BIT
DEC B DECREMENT BYTE COUNTER
JR NZ, LOOP ASSEMBLE NEXT WORD

This program has been designed for efficiency and wii! use new tech-

niques which we will explain (see Fig. 6.7).

The conventions are ihe following: memory location COUNT is as-

sumed to contain a counL of the number of words lo be transferred.

Register C will be used to assemble eight consecutive bits coming in.

Address INPUT refers to an input register. It is assumed that bit posi-

tion 7 of this register is a status flag, or a clock bit. When it is "0", data
is not valid. When it is "i". the data is valid. The data itself will be as-

sumed to appear m bit position of this same address. In many m-
stances, the status information will appear on a different register than
the data register. It should be a simple task, then, to modify this pro-

gram accordingly, in addition, we will assume that the first bit of data
to be received by this program is guaranteed lo be a "1". It indicates

that the real data follows. If this were not the case, we will later .see an
obvious modification to take care of it. The program corresponds ex-

actly to the flowchart of Fig. 6.6. The first few lines of the program im-
plement a waiting loop which tests whether a bit is ready. To determine
whether a bit is ready, we read the input register, then test the zero bit

(Z). As long as this bit is "0", the instruction JR will succeed, and we
will branch back to the loop. Whenever the status (or clock) bit

becomes true ("1"), then JR willfail and the next instruction will be
executed.

This initial sequence of mstructions corresponds to arrow 1 in Fig
6.7.

At this point, the accumulator coniams a "1" in bit position 7 and
the actual data bit m bit position 0. The first data bit to arrive is going
to be a "!". However, the following bits may be either "0" or "1". We
now wish to preserve the data bit which has been collected m position 0.

The instruction:

SRL A

shifts (he contents of the accumulator right by one position. This causes
the right-most bit of A, which is our data bit, to fall into the carry bit.

We will now preserve this data bit into register C (this process is illus-

trated by arrows 2 and 3 in Fig. 6.7):

RL C
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®

®

57

®

©

'///''''/ STACK

STATUS
OR

CLOCK

SERIAL
DATA
IN

Fig. 6.7: Serial-lo-ParaUei: The Registers

The effect of this instruction is to read the carry bit into the right-most

bit position of C. At the same time, the lefl-mosi; bit of C falls into the

carry bit. (If you have any doubts about the rotation operation, refer to

Chapter 4!)

It is important to remember that a rotation with carry operation will

both save the carry bit, here into the right-most bit position, and also

recondition the carry bit with the value of bit 7 (or bit 0).

Here, a "0" will fall mto the carry. The next mslruction:

JR NC, LOOP

tests the cBiTvy and branches back to address LOOP as long as the carry
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IS "0". This IS our automatic bil counier. !t can readily faeseen that, as a
resuit of the first RL, Cwiil contain "00000001", Eight shifts later, the
" 1 " will finally fall into the carry bu and stop the branching. This is an
ingenious way to implement an automauc loop counier without having
to wasie an instrucEion to decrement the contents of an mdex register.

This technique is used in order to shorten the program and improve its

performance.

When JR NC finally fails, 8 bits will have been assembled into C.
This value should be preserved in the memory. This is accomplished by
the next instruction (arrow4 on Fig. 6.7):

PUSH BC

We arc here savmg the contents of B and C into the stack. Saving into
the stack is possible only if there is enough room in the slack. Provided
that this condition is met, it is usually the fasiesi way to preserve a word
m the memory, even though we save an unnecessary register (B). The
Slack pointer is updated automatically. If we were not pushing a word
m the Slack, we would have to use one more instruction to update a
memory poinier. We could equivaienily perform an indexed addressing
operation, bui that would also involve decrementmg or incrementing
the index, using extra time.

After the first word of data has been saved, there is no longer any
guarantee ihat the first data bu lo come in will be a "1". it can be any-
thing. We must, therefore, reset the contents to "00000001 " so that we
can keep using it as a bit counter. This is performed by the next instruc-
iion:

LD C, OIH

Finally, we will decrement the word counter, since a word has been
a.ssembled, and test whether we have reached the end of the transfer.

This IS accomplished by the next two insiructions:

DEC B

JR NZ, LOOP

The above program has been designed for speed, so that one may
capture a fast input stream of data bits. Once the program terminates,

it is naturally advisable to immediately read away from the stack the

words that have been saved there and transfer them eLsewhere into the

memory. We have already learned to perform such a block transfer m
Chapter 2.
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Exercise 6.6: Coiupiile the maxiniuin speed a( which this program will

be able lo read serial bi(s. Look up (he /lumber of cycles required by

every msiruciion in the table at the end of this book, then compute the

lime which will elapse during execution of ihis program. To compute

the length of tune which will be used by a loop, simply multiply the

total duration of this loop, expressed in microseconds, by the number

of tunes It will be executed. Also, when computing the maximum speed,

assume that a data bit will be ready every time that the input location is

sensed.

This program is more clifTicuit lo unciersiand than ihe previous ones.

Lei us look at it agam (refer to Fig. 6.6) in more detail, examining some

trade-olTs.

A bit of data comes mto bit position of "INPUT" from time to

time. There might be, for example, three "Is" in succession. We must,

therefore, differentiate between Ihe successive bits coming m. This is

the function of the "clock" signal.

The clock (or STATUS) signal tells us thai ihe input bit is now valid.

Before reading a bit, we will therefore first test the status bit. If the

status is "0". we must wait. If ii is "i", then the data bit is good.

We assume here that the status signal is connected to bit 7 of register

INPUT.

Exercise 6. 7: Can you e.xpiain why bit 7 is usedfor status, and bil Ofor

data? Does It matter"^

Once we have captured a data bit, we want to preserve it m a safe

location, then shift it ieft, so that we can get the next bit.

Unfortunately, the accumulator is used to read and test both data

and status m this program. If we were to accumulate data m the accu-

mulator, bit position 7 would be erased by the status bit.

E.xercise 6.8: Can you suggest a way lo lesi status willioiil erasing Ihe

comctus oj the uccumulaior (a special iiisiruclton)? If this van be done,

could we use ihe accumulator to accumulate the successive bits coming

in? Can you improve speed by using an "automated jump"?

E.xercise 6.9: Rewrite the program, using the accumulator to store the

bits coining in. Compare it to the previous one m terms of speed and

number of instructions.

Let us address two more possible variations.

Wc have a.ssumed thai, m our particular example, the very first bit to

come m would be a special signal, guaranteed to be "1". However, in
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generai, il may be anything.

txercise 6JO: A-Iodify the program above, assiiiniiig ihut the very firs!

hi I lo come m is valid data (no/ lo he discarded), and can be "0" or
"I" Him: our "ha counter'' should slill work correctly, ifyou initial-

ize It with the coireci value.

Finally, \vc have been savmg the assembled word m Uie stack, to gam
tmie. We could naturally save it in a spcciried memory area.

Exercise 6. 1 1: Modify the program above, and save (he assembled word
in the memory area starling at BASE,

Exercise 6. 12: ModiJ'y the program above so that the transfer will slop
when (he character "S" is deiecied in die input stream.

The Hardware AllernaUvc

As usual for most standard nipui/ouipiu algonthms, it is possible to

miplemeni this procedure by hardware. The chip is called a UART. It

will autoniaiically accumuiaic the bits. However, when one wishes to

reduce the componcisi count, this program, or a variation of ii, will be
used instead.

Exercise 6. 13: Modify ihe program, assuming iluil data is avail(il)le in hi!

position of location INPUT, \\Me ihe slatus mjonmilum is miMk
m bi! position of address INPUT + /.

BASIC I/O SUMMARY

We have now learned to Dcrform elementary mput/outpul opera-

lions as well as to manage a stream of parallel data or serial bits. We are

now ready lo communicate with real mpul/oulpuJ devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICKS

In order lo exchange dala with mpui/oulpui devices, we will first

have lo ascenain whether data is available, if we want to read il; or

whether ihe device is ready to accept data, if we want to send it. Two
procedures may be used: handshaking and interrupts. Lei us study

handshaking i'irst.

Handshakmg

Handshakmg is generally used lo communicate between any two

477



PROGRAMMING THEZ80

AAPU

Sr=FUa

DATA

OUTPUT

DEVICE

Fig. 6.8: Handshaking (OutpuO

asynchronous devices, i.e., belween any two devices which are not syn-

chronized. For example, if we want to send a word lo a paraliei printer,

we must first make .sure that the input buffer of this printer is available.

We will, therefore, ask the printer: Are you ready? The printer will say

"yes" or "no." If it is not ready we will wait. If it is ready, we will send

the data (.see Fig. 6.8).

DATA

irjF-ui

AAPU

iNPUT

DEVICE

Fig. 6.8a: HandsEiaking (Input)

Conversely, before reading data from an input device, we will verify

whether the data is valid. We will ask: "is data valid?" And the device

will tell us "yes" or "no." The "yes or no" may be indicated by status

bits, or by other means (see Fig. 6.8a).

As an analogy, whenever you wish to exchange information with

someone who i.s independent and might be doing something else af the

time, you should ascertain that he is ready to communicate with you.
The usual rule of courtesy is to shake his hand. Data exchange may then
follow. This is the procedure normally used in communicating with in-
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pui/output devices.

Lei us now iliuslrale ihis procedure with a simple example.

Sending a Character To The Printer

The character will be assumed to be coniained in memory location

CHAR. The program to prmi ii appears below:

IN A, (STATUS)
BIT 7, A TEST IF READY
JR Z. WAIT OTHERWISE WAiT
LD A. (CHAR) GET CHARACTER
OUT (PRNTD), A PRINT IT

JR WAiT GO FOR NEXT

The print program is straightforward and uses the handshakmg pro-

cedure which has been described above. The data paths are shown in

Figure 6.9

.

CHAR

7^

DATA

STATUS

PRNTD

PRINTER

MEMORY Z80

Fig. 6.9: Printer—Data Paths

The character (called DATA) is located at memory location CHAR.
First, the status of the printer is checked. Whenever bit 7 of the status
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register becomes 1, it indicates that the printer ready for input, i.e., its

input buffer is available. At this point, the character is loaded into

l\ic accumulator, then ouiput lo l!ic printer, via the accumulator. As

long as the status bit rcmams 0, the program wil! remain m a loop,

called WAIT in the program.

Exercise 6,14: How many instructions would be saved in the above pro-

gram by loading data directly mto register C as well as outputing the con-

tents of register C directly?

Exercise 6. 15: When using an aciual printer, if is usually necessary lo

send a start order before using the device. Modify this program to gen-

erate such cm order, assuming thai the star! command is obtained by

writing a 1 in bit position of the STA TUS register, which is assumed

to be bidirectional.

Exercise 6.16: If the BIT instruction were not available, could you use

another instruction instead, in line 2 of the program? If so, explain the

advantage of using the BIT instruction, if any.

Exercise 6.17: Modify the program above to print a siring of n charac-

ters, where n will be assumed to be less than 255.

Exercise 6. 18: Modify the above program to print a string ofcharacters

until a "carnage-return " code is encountered.

Let us now complicate the output procedure by requiring a code con-

version and by ouiputtmg to several devices at a time:

Ouiput To a Seven-Segment LED

A iraditionai seven-segment lighl-cmiiting diode (LED) may display

the digits "0" through "9"., or even "0" through "F" hexadecimal by

iightmg combinations of its 7 segments. A seven-segment LED is shown

in Figure 6.10. The characters thai may be generated with this LED

appear m Figure 6. H

.

The segments of an LED are labeled "a" through "g" in Figure 6.10.

For example, "0" will be displayed by lighting the segments abcdef.

Let us assume, now, that bii "0" oi" an ouiput port is connected lo seg-

ment "a", that "1" is connected to segment "b", and so on. Bit 7 is

not used. The binary code required to light up fedcba (to display "0")

IS, therefore, "01
1 H 1

!"- In hexadecimal this iS "3F". Dc ihe follow-

ing exercise.
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Fig. 6.!0: Seven-Segment LED
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Fig. 6.11: Hexadecimai Characters Generated
with a Seven-Segment LED

481



PROGRAMMING THE Z80

Exercise 6.19: Compute the seven-segment equivalent for the hexadeci-

mal digits "0" through •'f\ Fill out the table below:

Hex LED code Hex LED code Hex LED code Hex LED code

3F 4 8 C

1 5 9 D

2 6 A E

3 7 B F

Let us now display hexadecimal values on several LED's.

Driving Multiple LED's

An LED has no memory. It wiU display the data only as iong as its

segment lines are active. In order to keep the cost of an LED display

low the microprocessor will display information on each of the LED s

m turn The rotation between the LED's must be fast enough so that

there is no apparent blinkmg. This implies that the time spent from one

LED to the next is less than 100 milliseconds. Let us design a program

which will accomplish this. Register C will be used to point to the LED

on which we want to display a digit. The accumulator is assumed to

contain the hexadecimal value to be displayed on the LED. Our lirst

concern is to convert the hexadecimal value into its seven-segment rep-

resentation. In the preceding section, we have built the equivalence

table Since we are accessing a table, we will use the indexed addressing

mode where the displacement index will be provided by the hexadeci-

mal value. This means that the seven-segment code for hexadecimal

digit "3" is obtained by looking up the third dement of the table after

the base. The address of the base will be called SEGBAS. The program

appears below:

LEDS

DELAY

LD
LD
LD
ADD
LD
LD

OUT
DEC

E, A
D,

HL, SEGBAS
HL, DE
A, (HL)

B. 50H

(C), A
B

A CONTAINS HEX DIGIT

USE "DE" AS DISPLACEMENT
USE "HL" AS INDEX
TABLE ADDRESS
READ CODE FROM TABLE
DELAY VALUE = ANY
LARGE NBR
OUTPUT FOR SET DURATION
DELAY COUNTER
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JR NZ, DELAY KEEP LOOPING
ID A,C C IS PORT NUMBER
DEC C
CP MINLED DONE FOR LAST LED?
iR NZ, OUT
LD BC, (MAXLED) IF SO, RESET C TO TOP LED

OUT RET

The program assumes that register C contains the address of the LED
to be illummated next, and that the accumulator A contams the digit to
be displayed.

The program first looks up the seven-segment code corresponding to
the hexadecimal value contamed m the accumulator. Registers D and E
are used as a displacement field, and registers H and L are used as a
16-bit index register. The hexadecimal digit is added to the base address
of the table:

LEDS LD E, A T-SEGMENT CODE
LD D,

LD HL, SEGBAS
ADD HL, DE

A delay loop is then implemented, so that the code obtained from the
table is displayed for an appropriate duration. Here the constant "50"
hexadecimal has been arbitrarily chosen:

LD A, (HL) READ CODE FROM TABLE
LD B, 50H DELAY VALUE

The delay is accomplished using a classic delay loop. The first instruc-
tion:

DELAY OUT (C), A

outputs the contents of the accumulator at the I/O port pointed to fay

register C {the LED number). The next two instructions implement the

delay loop:

DEC B
JR NZ, DELAY

Once the delay has been implemented, we must simply decrement the
LED pointer, and make sure that we loop around to the highest LED
address if the smallest LED address has been reached:

LD A.C
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DEC C
CP MINLED
JR NZ, OUT
LD BC, (MAXLED)

OUT RET

It is assumed here that the above program has been written as a sub-

routine, and the last instruction is then RET:"retum from subroutine"

Exercise 6.20: It is usually necessary to iurn off (he segment driversfor

the LED prior lo displaying the digit. Modify the above program by

adding the necessary instructions (output "00" as the character code

prior to outputimg the character).

Exercise 6.21: What would happen to the display if the DELA Y label

were moved up by one line position? Would this change the timing?

Would this change the appearance of (he display?

Exercise 6.22: You will notice that thefirstfour instructions of the pro-

gram are, m fief, performmg a I6-bit indexed memory access. How-

ever, It seems clumsy, without using the indexing mechanism. Assume

that the SEGBAS address is known m advance. Call SEGBSH the

high-order part of this address, and SEGBSL the low part of this ad-

dress. Store SEGBSH in the high-order part of the IX register. Now

write the above program, using (he Z80 index-addressing mechanism,

and using SEGBSL as the displacement field of the inslrucion. What

are the advantages and disadvantages of this approach?

E.xercise 6.23: Assuming that the above program is a subroutine, you
will notice that it uses registers B, D, E, H and L internally, and modi-

fies their contents. If the subroutine may freely use the memory area

designated by address TI, T2, T3, T4, 75, couldyou add instructions at

(he beginning and at the end of this program which will guarantee that,

when the subroutine returns, the contents of registers B, D, E, H and L
will be the same as when the subroutine was entered?

Exercise 6.24: Same exercise as above, but assume (hat (he memory
area TI, etc., is not available to (he subroutine. (Hint: remember (hat

there is a built-m mechanism in every computerfor preserving informa-
tion in a chronological order.)

We have now solved common mpui/output problems. Let us con-

sider the case of a common peripheral: the Teletype.
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Teletype Inpul-Output

The Teletype is a serial device. It both sends and receives words of in-

formation in a serial format. Each character is encoded in an 8-bit

ASCII format (the ASCII table appears at the end of this book). In ad-
dition, every character is preceded by a "start" bit, and terminated by
two "stop" bits. In the so-calied 20~miiliamp current loop interface,
which IS most frequently used, the state of the line is normally a "I".
This is used to indicate to the processor that the line has not been cut. A
start is a "l"-to-"0" transition. It indicates to the receiving device that

data bits follow. The standard Teletype is a lO-characters-per-second
device. We have just established that each character requires II bits.

This means that the Teletype will transmit 1 10 bits per second. It is said
to be a IlO-baud device. We will design a program to serialize bits out
to the Teletype at the correct speed.

START PUtSE

MARK

SPACE

9.09 ms

2 STOP PULSES

STOP 1 1 STOP 2 1

iO

Fig. 6.12: Format of a Teletype Word

One-hundred-and-ten bits per second implies that bits are separated
by 9.09 milliseconds. This will have to be the duration of the delay loop
to be implemented between successive bits. The format of a Teletype
word appears m Figure 6.12. The flowchart for bit input appears in

Figure 6.13. The program follows:

TTYIN

NEXT

IN A, (STATUS)
BIT 7, A DATA READY?
JR Z, TTYIN OTHERWISE WAIT
CALL DELAY! CENTER OF PULSE
IN A, (TTYBIT) START BIT
OUT (TTYBIT), A ECHO IT

CALL DELAY9 NEXT PULSE (9 MS)
LD B, 08H BIT COUNT
IN A, (TTYBIT) READ DATA BIT
OUT (TTYBIT), A ECHO IT
SRL A SAVE IT IN CARRY
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TTYIN

YES

WAIT 4.5 ms

ECHO START BIT

WAIT 9,09 ms

SHIFT IN DATA BIT

ECHO IT

NO ^^---^HARACTER
ASSEMBLED'

YES

WAIT 9.09 ms

OUTPUT STOP BIT

WAIT 1 3.59 ms

Fig. 6.13: TTY Input with Echo
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RR
CALL
DEC

C
DELAY9
B

PRESERVE !T INTO C
NEXT PULSE (9 MS)
DECREMENT BIT COUNT

JR NZ, NEXT
IN A, (TTYBIT) READ STOP BIT
OUT {TTYBIT), A ECHO IT

CALL DELAY9 SKIP SECOND STOP
RET

Fig. 6.14: Teletype Program

Let us examine the program m detail. First, the status of the Teletype

must be tested to determine if a character is available;

The "BIT" mstruction is a useful Z80 facility which allows testmg
any bit in any data register. It does not modify the contents of the regis-

ter under test. The Z flag is set if the specified bit is 0. and reset other-

wise.

This program will, therefore, loop until the status finally becomes
"1"- It IS a classic polling loop.

Note also that, since the STATUS does not need to be preserved, we
could advantageously use

AND lOOOOOOOB

mstead of

BIT 7, A

However, using the AND instruction destroys the contents of A
(acceptable here).

When optimizing a program, remember that each new instruction

may introduce side-effects.

Next, a 4.5 ms delay is implemented in order to sense the start bit in
the middle of the pulse.

CALL DELAY!

where DELAY 1 is the delay subroutine implementing the required
delay. The first bit to come is the start bit. It should be echoed to the

Teletype, but otherwise ignored. This is done by the next instructions:

TTYIN IN A, (TTYBIT)

TTYIN IN

BIT

JR

A. (STATUS)
7, A
Z, TTYIN

OUT (TTYBIT), A
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We must then wait for the first data bit. The necessary deiay is equal to

9.09 miliiseconds and is imoSemented by a subroutine:

CALL DELAY9

Register B is used as a counter and is loaded with the value 8 m order to

capture the 8 data bits:

LD B, 08H

Next, each data bit wiU be read in turn into the accumulator, then

echoed, it is assumed to arnve in bit position of the accumulator. The

data bit will then be preserved into register C, where it will be shifted in.

The transfer from A to C is performed through the carry bit:

NEXT IN A, (TTYBIT)

OUT (TTYBIT), A
SRL A
RR C

This sequence is illustrated m Figure 6.15.

A I/O SPACE

COUNTER

STATUS

TTYBiT

DATA

TELETYPE

Fig. 6.15: Telelype Input

Next, the usual 9 millisecond delay is implemented, the bit-counter is dec-

remented, and the loop is entered agam as long as the eight bits have

not been captured:

CALL DELAY9
DEC B

JR NZ, NEXT
Finally, the STOP bit is captured, and echoed. U is usually sufficient to

send a single STOP bit, however both could be sent back using two

more instructions:

IN A, (TTYBIT)

OUT (TTYBIT), A
CALL DELAY9
RET
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The program shouid be examined with attention. The logic is quite

simple. The new fact is that whenever a bit is read from the Teletype {at

address TTYBIT), it is echoed back to the Teletype. This is a standard

feature of the Teletype. Whenever a user presses a key, the information

is transmitted to the processor and then back to the printing mechanism
of the Teletype. This verifies that the transmission lines are working
and that the processor is operating when a character is, mdeed, printing

correctly on the paper.

ENTER

SEND START

BIT

SEND DATA

BITS

SEND STOP

BIT

EXIT

ENTER

SET BET
COUNTER TO

ELEVEN

OUTPUT
A BIT

DELAY
9,1 MSEC

NO NE^

Fig. 6.16; Telelype Output

Exercise 6.25: Wriie ihe delay rouline which resu/is in l/ie 9.09 niil/isec-

ond delay. (DELA Y subroutme)

Exercise 6.26: Using ihe example of ihe program developed above,

wrife a PRINTC program which will print on (he Telelype (he contents

of memory location CHAR (see Fig. 6.15).

The answer appears below:

PRINTC LD B, 11

LD A, (CHAR)
OR A
RLA

COUNTER = 11 BITS

GET CHARACTER
CLEAR CARRY = START BIT

CARRY INTO A
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NEXT OUT (TTYBIT), A OUTPUT
CALL DELAY
RRA
SCF
DEC B

JR NZ, NEXT
RET

NEXT BIT
CARRY = 1 (STOP BIT)

BIT COUNT

Register B is used as a bit counter for the transmission. The contents

of bit of A win be sent to the Teletype line ("TTYBIT"). Note how

the carry is used to provide a ninth bit (the START bit). Also, note that

the carry is cleared by:

OR A

At the end of the program, the carry is set to one by:

SCF

in order to generate a stop bit.

Exercise 6.27: Modify ihe program so that i( wallsfor a START bii in-

stead of a STATUS bil.

Printing a String of Characters

We will assume that the PRINTC routine (see Exercise 6.26) takes

care of printing a character on our printer, or display.or any output de-

vice. We will here print the contents of memory locations (START) to

(START ^ N).

The program is straightforward (see Figure 6. 17):

PSTRING LD B, NBR LENGTH OF STRING
LD HL, START BASE ADDRESS

NEXT LD A, (HL) GET CHARACTER
CALL PRINTC PRINT IT

INC HL NEXT ELEMENT
DEC B

JR NZ, NEXT DO IT AGAIN
RET
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MEMORY

B

COUNTER

TO PRINTER

Fig. 6.17: Printing a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used to
communicate with typical mput/output devices, in addition to the data
transfer, it will be necessary to condition one or more control registers
within each I/O device m order to condition the transfer speeds, the in-
terrupt mechanism, and the various other options correctly. The man-
ual for each device should be consulted. (For more details on the spe-
cific algorithms for exchanging information with all the usual peripher-
als, the reader is referred to our book, C207, Microprocessor Imerfac-
ing Techniques.

)

We have now learned to manage single devices. However, m a real
system, all peripherals are connected to the buses., and may request
service simultaneously. How are we going to schedule the processor's
time?

I.NPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, a scheduling
mechanism must be implemented in every system to determine in which
order service will be granted. Three basic mput/output techniques are
used, which can be combined with each other. They are: polling, inter-
rupt, DMA. Polling and interrupts will be described here. DMA is

purely a hardware technique, and as such will not be described here. (It

IS covered m the reference books C201 and C207.)
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Polling

Conceptually, polling is the simpiesi method for managing multiple

peripherals. With this strategy, the processor interrogates the devices

connected to the buses in turn. If a device requests service, the service

IS granted. If it does not request service, the next peripheral is exam-

ined. Polling IS used not just for the devices, but for any device service

routine.

As an example, if the system is equipped with a Teletype, a tape re-

corder, and a CRT display, the polling routine would interrogate the

Teletype: "Do you have a character to transmit?" it would interrogate

the Teletype oiapul routine, asking: "Do you have a character to

send?" Then, assuming that the answers are negative so far, it would

interrogate the tape-recorder routines, and finally the CRT display. If

only one device is connected to a system, polling will be used as well to

determine whether it needs service. As an example, the flowcharts for

reading a paper-tape reader and for printing on a printer appear in Fig-

ures 6.20 and 6.21.

MPU

HOLD

MPU

MEMORY

1 DATA BUS

POLLING

I/O i/O_
MEMORY

!

!

MPU
1 i

1 1

I/O I/O

t INI

INTERRUPT

MEMORY
A i 1 i

DMA

I/O iJ

DMA

I/O

Fig. 6.18: Three Methods of I/O Control

492



INPUT/OUTPUT TECHNIQUES

Example: a polling loop for devices I, 2. 3, 4 (see Fig. 6.19):

P0LL4 IN A, (STATUS 1) GET STATUS OF DEVICE 1

BIT

CALL
IN

BIT

CALL
IN

BIT

CALL
IN

BIT

CALL
JR

7, A
NZ, ONE
A, (STATUS2)
V, A
NZ, TWO
A, (STATUS3)

7, A
NZ, THREE
A, (STATUS4)
7, A
NZ, FOUR
P0LL4

SERVICE REQUEST?
BIT 7=1?
DEVICE 2

DEVICE 3

DEVICE 4

NO REQUEST, TRY AGAIN

Bit 7 of the status register for each device is "1" when it wants serv-

ice. When a request is sensed, this program branches to the device

handler, at address ONE for device 1, TWO for device 2, etc.

A fine point is worth noting here. For each instruction, it is impor-

tant to verify carefully the way in which it affects the condition codes.

It should be noted that the IN A instruction does not change the flags.

If an IN r instruction has been used instead of an IN A instruction, bit 7

of the input would automaticaliy be reflected as the SIGN bit in the

flags register. The special instruction "BIT 7,A" would become un-

necessary. However, because the IN A instruction does not change the

flags, this extra test must be included in the program.

In some hardware implementations, input/output devices may be

treated as memory devices for purposes of addressing. This is called

memory-mapped mput/output. In this case, the IN mstruction would

be replaced by an LD instruction and the rest of the program would be

as above, since LD does not affect the flags.

The advantages of polling are obvious: it is simple, does not require

any hardware assistance, and keeps ail input/output synchronous with

the program operation. Its disadvantage is just as obvious: most of the

processor's time is wasted iooicing at devices that do not need service.

In addition, by wasting so much time, the processor might give service

to a device too late.

Another mechanism is, therefore, desirable in order to guarantee that

the processor's time can be used to perform useful computations rather

than polling devices needlessly all the time. However, let us stress that

polling is used extensively whenever a microprocessor has nothing bet-
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Fig. 6.19: Polling Loop Flowchart

SET READER

ENABLE ON

Fig. 6.20: Reading from a Paper-Tape Readi
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YES

LOAD PUNCH
OR PRINTER

BUFFER

TRANSMIT

DATA

Fig. 6.2i: Printing on a Punch or Printer

ter 10 do, as it keeps the overall organization simple. Let us examine the

essentia! alternative to poliing: interrupts.

Interrupts

The concept of interrupts is illustrated in Figure 6.18. A special hard-

ware line, the interrupt line, is connected to a specialized pm of the mi-

croprocessor. Multiple input/output devices may be connected to this

interrupt line. When any one of them needs service, it sends a level or a

pulse on this line. An interrupt signal is the service request from an in-

put/output device to the processor. Let us examine the response of the

processor to this interrupt.

In any case, the processor completes the instruction that it was cur-

rently executing; otherwise, this would create chaos inside the micro-

processor. Next, the microprocessor should branch to an interrupt-han-

dling routine which will process the interrupt. Branching to such a sub-

routine implies that the contents of the program counter must be saved

on the stack. An inlerrupt nmsl, therefore, cause the automatic preser-

vation of the program counter on the stack. In addition, the flag regis-

ter F should be also preserved automatically, as its contents will be

altered by any subsequent instruction. Finally, if the interrupt-handling
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routine should modify any internal registers, these internal registers

should also be preserved on the stack (see Figures 6.22 and 6.23).

SP PCL

PCH

Fig. 6.22: Z80 Stack After Interruption

_D

£
_B

F

Fig. 6.23: Saving Some Working Registers

After ail these registers have been preserved, one can branch to the

appropriate interrupt-handling address. At the end of this routine, all

the registers should be restored, and a special interrupt return should be

executed so that the mam program will resume execution. Let us exam-

ine m more detail the interrupt lines of the Z80.

Z80 Interrupts

An interrupt is a signal sent to the microprocessor, which may re-

quest service at any time and is asynchronous to the program. When-
ever a program branches to a subroutine, such branching is synchron-

ous to program execution, i.e., scheduled by the program. An inter-

rupt, however, may occur at any time, and will generally suspend the

execution of the current program (without the program knowing it).

Because it may happen at any time relative to program execution, it is

called asynchronous.

Three interruption mechanisms are provided on the Z80: the bus re-

quest (BUSRQ), the non-maskable interrupt (NMI) and the usual inter-

rupt (INT).

Let us examine these three types.
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The Bus Request

The bus request is the highest priority interrupt mechanism on the

Z80. The interrupt sequence for the Z80 is shown in Figure 6.24. As a

general rule, no mterrupt will be sensed by the Z80 until the current

machine cycle is completed. The NMl and INT interrupts will not be

taken mto account until the current instruction is finished. However,

the BUSRQ will be handled at the end of the current machme cycle,

without necessarily waiting for the end of the instruction. U is used for

Fig. 6.24: Interrupt Sequence
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a direct memory access (DMA), and will cause the Z80 to go into DMA
mode (see ref. C201 for an explanation of the DMA mechanism). If the

end of an instruction has been reached, and if any NMI or INT were

pending, they would be memorized internally m the Z80 by setting spe-

cialized flip-flops: the NMi flip-flop, and the INT flip-nop. In DMA
mode, the Z80 suspends operation and releases its data-bus and

address-bus in the high-impedance state. This mode is normally used by

a DMA controller to perform transfers between a high-speed input-

output device and the memory, using the microprocessor data-bus and

address-bus. The end of a DMA operation is indicated to the Z80 by

BUSRQ changing levels. At this pomt, the Z80 will resume normal

operation. In particular, it will first check whether its internal NMI or

INT flip-flops had been set and, if so, execute the corresponding mter-

rupts.

The DMA should normally not be of concern to the programmer, un-

less timing is important. If a DMA controller is present in the system,

the programmer must understand that the DMA may delay the

response to an NMI or an INT.

The Non-Maskable Interrupt

This type of interrupt cannot be inhibited by the programmer. It is

therefore said to be non-maskable, hence its name. It will always be ac-

cepted by the Z80 upon completion of the current instruction, assuming
no bus request was received. (If an NMI is received during a BUSRQ,
it will set the mternal NMI flip-flop, and will be processed at the end of
the instruction following the end of the BUSRQ.)
The NMI will cause an automatic push of the program counter into

the stack and branch to address 0066H; the two bytes representing the

address 0066H will be installed in the program counter. They represent
the start address of the handling routine for the NMI (see figure 6.25).

This interrupt mechanism has been designed for speed, as it is used m
case of

' 'emergencies' ' , Therefore, it does not offer the flexibility of the
maskable interrupt mode, described below.

Note also that an interrupt routine must have been loaded at address
0066H prior to using the NMI.
NMI will first cause:

SP SP - 1

(SP) PCH
SP SP - I

(SP) PCL

push PC
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MEMORY

IFF!

0066

NMi

0066 HANDLER

©

PC

PC stack

Fig. 6.25: NMI Forces Automatic Vectoring

Then, NMI causes an automatic restart at location 0066H. The com-

plete sequence of events is the following:

Also, the status of interrupt-mask-bit flip-flop (IFFl) at the time that

NMI was received is preserved automatically into IFF2. Then, iFFl is re-

set in order to prevent any further interrupts. This feature is important to

prevent the loss of lower-priority INT's and simplifies the external hard-

ware: the status of a pending INT is preserved internally in the Z80.

The NMI interrupt is normally used for high priority events such as a

real-time clock or a power failure.

The return from an NMI is accomplished by a special instruction. RETN:

"return from non-maskable interrupt." The contents of IFFl are restored

from IFF2, and the contents of the program counter PC are restored from

their location in the stack. Since IFFl had been reset during execution

of the NMI, no external INT's could be accepted during the NMI
(unless the programmer uses an EI instruction within the NMI routine):

there has been no loss of information.

Upon termination of the interrupt handler, the sequence is:

IFF2 ^ IFF! {restore IFF)

STACK PC (restore program counter!

Note that, once IFF! is restored, maskable interrupt enable status is

restored.

PC >

IFFl «

^
•

JUMP TO 0O66H

STACK
JFF2

[FFi

(preserve program counter)

(preserve IFF)

(reset IFF)

(execute interrupt handler)

499



PROGRAMMING THE Z80

Interrupt

The ordinary, maskable.interrupt INT may operate in one of three

modes. They are specific to the Z80, as the 8080 is equipped with only a

single interrupt mode. The ordinary interrupt INT may also be masked
seiectiveiy by the programmer. Settmg the interrupt flip-flops IFFl and

IFF2 to a "I" will authorize interruptions. Setting them to a "0"

(maskmg them) will prevent detection of INT. The EI instruction is

used to set them, and the DI instruction is used to reset them. IFF! and
IFF2 are set or reset simultaneously. During execution of the EI and DI
instructions, INT's are disabled m order to prevent any loss of informa-
tion.

Let us now examine the three interrupt modes;

Interrupt Mode

This mode is identical to the 8080 interrupt mode. The Z80 will

operate in interrupt mode either when initially started (when the RE-
SET signal has been applied) or else when an IMO instruction has been

executed. Once mode has been set, an interrupt will be recognized if

the interrupt enable flip-flop IFFl is set to 1, provided no bus-request

or non-maskable interrupt occurs at the same time. The interrupt will

be detected only at the end of an instruction. Essentially, the Z80 will

respond to the interrupt by generating an lORQ (and an MI signal),

and then do nothing, except wait.

It is the responsibility of an external device to recognize the lORQ
and Ml {this is called an interrupt acknowledge or INTA) and to place
an instruction on the data-bus. The ZSO expects an instruction to be
placed on its data bus by the external device withm the next cycle. Typi-
cally, an RST or a CALL instruction is placed on the bus. Both of these

instructions automatically preserve the program-counter in the stack,

and cause branching to a specific address. The advantage of the RST in-

struction is that it resides within a single byte, i.e., it executes rapidly.

Its disadvantage is to branch to only one of eight possible locations in

page zero (addresses through 255). The advantage of the CALL in-

struction is that It is a general-purpose branch instruction which speci-

fies a full 16-bit address. However, it requires three bytes and therefore

executes less rapidly.

Note that once the interrupt processing starts, all further interrupts

are disabled. IFFl and IFF2 are automatically set to "0", It is then the

responsibility of the programmer to insert an EI instruction (Enable In-

500



INPUT/OUTPUT TECHNIQUES

terrupts) at the appropriate location within his program if he wishes to

enable interrupts, and, in any case, before returning from the interrupt.

The detailed sequence corresponding to the mode interrupt is

shown in Figure 6.26.

1
OIS«ai£ INIEHBUPTS

ifFi. im =

BEADfl

Of !NS7

|UI . !0

51 BYTE

UCTtON

QlOW)

JUMP IO0G3BM

EEAO NtXl BYTE

(NOSMjM. MEM.

W!tHPC5TAI(0NAH¥)

El (EhJAMf INTERBunS)

EXICUre iWSTHUCTlON

El (ENABIE INTEBBUPIS)

fOSCAll

I OR OSI

ONIV

i
D ISABIE IhJreHRUFTS

iFFI. IFFI =

DISABLE IPmRBUPlS

IFFI. !FF3 =

PC-* SIACK READ VEOOR

FORM VECTOR

TABLE ADDRESS:

IBEG + VEOOR

GET SIABTIHG

ADDRESS FROM

VECTOR lABlE

JUMP TO NEW LOCATION

START iNTEHRUPT

SERVICE BOUTIN

E

El (ENABIE iNIEBHUPTSl

1

Fig. 6.26: Interrupt Modes

The return from the interrupt is accompHshed by an RET! instruc-

tion. Let us remind the programmer at this point that he/she is usually

responsible for explicitly clearing the interrupt which has been serviced

on the I/O device, and always for restoring the interrupt disable flag in-

side the Z80. However, the peripheral controller may use the INTA sig-

nal to clear the INT request, thus freeing the programmer of this chore.

In addition, should the mterrupt-handling routine modify the con-

tents of any of the internal registers, the programmer is specifically re-

sponsible for preserving these registers in the stack prior to executing

the mterrupt-handling routine. Otherwise, the contents of these regis-

ters will be destroyed, and when the interrupted program resumes exe-
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cution, It will fail. For example, assuming that registers A, B, C, D, E,

H and L will be used within the mterrupt handler, they will have to be

saved {see Figure 6.27).

PCL

PCH

DECREASING

ADDRESSES

STACK

Fig, 6.27: Saving the Registers

The corresponding program is;

SAVREG PUSH AF
PUSH BC
PUSH DE
PUSH HL

Upon completion of the interrupt-handling routine, these registers must
be restored. The interrupt handier will terminate with the following se-

quence of instructions:

POP HL
POP DE
POP BC
POP AF
EI (unless El was used earlier in

the routine)

Additionally, if registers iX and lY are used by the routine they must
also be preserved, then restored.
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Interrupt Mode I

This interrupt mode is set by executing the IMl instruction. It is an
automated interrupt handler which causes an automatic branch to loca-

tion 0038H. It is therefore essentially analogous to the NMI interrupt

mechanism except that it may be masked. The Z80 automatically pre-

serves the contents of PC into the stack {see Figure 6.28).

INTERRUPT

ROUTINE

LOCATION OF
INTERRUPTION

MEMORY

Fig. 6.28: Mode 1 Interrupt

This automated interrupt response, which "vectors" all interrupts to

memory location 38H, stems from the early 8080's requirement to

minimize the amount of external hardward necessary for using inter-

rupts. Its possible disadvantage is to cause a branch to a single memory
location. In case several devices are connected to the INT line, the pro-

gram starting at location 38H will be responsible for determining which

device requested service. This problem will be addressed below.

One precaution must be taken with respect to the timing of this inter-

rupt: when performing programmed input/output transfers, the Z80
will ignore any data that may be present in the data bus during the cycle

which follows the interrupt (the interrupt acknowledge cycle).
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Interrupt Mode 2 (Vectored Interrupts)

This mode is set by executing an !M2 instruction. It is a powerful

mode which allows automatic vectoring of interrupts. The interrupt

vector IS an address supplied by the peripheral device which generated

the mterrupt, and used as a memory pomter to the start address of the

interrupl-handling routine. The addresssmg mechanism provided by

the Z80 in mode 2 is indirect, rather than direct. Each peripheral sup-

plies a seven-bit branching address which is appended to the 8-bit ad-

dress contained in the special 1 register m the Z80. The right-most bit of

the final 16-bit address bit is set to "0". This resulting address points

to an entry m a table anywhere in the memory. This table may contain

up to 128 double-word entries. Each of these double words is the ad-

dress of the interrupt handler for the corresponding device. This is il-

lustrated in Figures 6.29 and 6.30.

DEVICE

—-INT

7 BIT VECTOR

-i/

START

ADDRESS

DEVICE

HANDLER

2X VECTOR

MEMORY

Fig. 6.29: Mode 2 interrupt

The imerrupt table may have up to 128 double-word entries.

In this mode, the Z80 also automatically pushes the contents of the

program counter mto the stack. This is obviously necessary, since PC
will be reloaded with the contents of the interrupt table entry corre-

sponding to the vector provided by the device.

Interrupt Overhead

For a graphic comparison of the polling process vs. the interrupt

process, refer to Figure 6.18, where the polling process is illustrated on
the top, and the interrupt process underneath. It can be seen that in the

polling technique the program wastes a lot of time waiting.
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Fig. 6.30: Mode 2 - A Practical Example

Using interrupts, the program is interrupted, the interrupt is serviced,

then the program resumes. However, the obvious disadvantage of an
interrupt is to introduce several additional instructions at the beginning

and at the end, resulting in a delay before the first instruction of the de-

vice handler can be executed. This is additional overhead.

Exercise 6.28:Using the tables indicating the number of cycles per in-

struction, in Chapter 4, compute how much time will be lost to save and
then restore registers A, B, D, H.

Having clarified the operation of the interrupt lines, let us now con-

sider two important remainmg problems:

I—How do we resolve the problem of multiple devices triggering an
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interrupt at the same time?

2—How do we resolve the problem of an mterrupt occurrmg while

another mterrupt is being serviced?

Multiple Devices Connected to a Single Interrupt Line

Whenever an mterrupt occurs, the processor branches to a specified

address. Before it can do any effective processing, the interrupt han-

dling routine must determine which device triggered the interrupt. Two
methods are available to identify the device, as usual; a software

method and a hardware method.

In the software method, polling is used: the microprocessor interro-

gates each of the devices m turn and asks them, "Did you trigger the in-

terrupt?" If the answer is negative, it interrogates the next one. This

process is illustrated m Figure 6.31. A sample program is:

POLINT IN A, (STATUS!) READ STATUS
BIT 7. A DID DEVICE REQUEST INT"

JP NZ, ONE HANDLE IT IF SO
"

IN A, (STATUS2)

BIT 7, A
JP NZ, TWO
etc.

The hardward method provides the address of the interrupting device

simultaneously with the interrupt request.

IHT 1 POtLiliS

SERVICE
ROUTirtE

SERVICE
ROUTINE H

lll^RRUPT VECTORED

EESVICE
HOUriflE P

Fig. 6.31: Foiled vs. Vectored Interrupt
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To be more precise, when operating in mode 0, the peripheral device

controller wili supply a one-byte RST or a three-byte CALL on the data

bus in response to the interrupt acknowledge, thus automating the in-

terrupt vectoring, and minimizing the overhead.

Note that a subroutme cail instruction ts required as the Z80 does not

save the PC when operating in mode 0.

In most cases, the speed of reaction to an interrupt is not crucial, and

a polling approach is used. !f response time is a primary consideraEion,

a hardware approach must be used.

Simultaneous Interrupts

The next problem which may occur is that a new interrupt can be trig-

gered during the execution of an mterrupt-handling routine. Let us

examine what happens and how the stack is used to solve the problem.

We have indicated m Chapter 2 that this was another essential role of

the slack, and the time has come now to demonstrate its use. We will

refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from

left to right in the illustration. The contents of the stack are shown at

the bottom of the illustration. Looking at the left, at time TO, program

P is in execution. Moving to the nght, at time TI, interrupt II occurs.

We will assume that the interrupt mask was enabled, authorizing II.

Program P will be suspended. This is shown at the bottom of the illus-

tration. The stack will contain the program counter and the status reg-

ister of program P, at least, plus any optional registers that might be

saved by the interrupt handler or li itself.

MPU
INT

I/O

INTERFACE
'

i

"ITo—

'

' INTERFACE

t IHT H

Fig. 6.32: Several Devices May Use the Same Interrupt Line

At timeTl, interrupt 11 starts executing until timeT2. At timeT2, in-

terrupt 12 occurs. We will assume that interrupt 12 has a higher priority

than interrupt II. if it had a lower priority, U would be ignored until II

had been completed. At time T2, the registers for 11 are stacked, and

this appears at the bottom of the illustration. Again, the contents of the

program counter and AF are pushed into the stack. In addition, the

routine for 12 might decide to save an additional few registers. 12 will

now execute to completion at time T3.
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When 12 terminates (with an RETI), the contents of the stack are

automatically popped back into the Z80, and this is illustrated at the

bottom of Figure 6,33. Thus, automatically 11 resumes execution. Un-
fortunately, at time T4, an interrupt 13 of higher priority occurs again.

We can see at the bottom of the illustration that again the registers for

n are pushed into the stack. Interrupt 13 executes from T4 to T5 and

TIME

PROGRAM P

fNIERRUPI 1,

INTERRUPT U

INTERRUPI i.

i

II

P

I.

_j ^

Fig. 6.33: Stack Contents During Multiple Interrupts

terminates at T5. At that time, the contents of the stack are popped into

Z80, and interrupt 11 resumes execution. This time it runs to comple-

tion and terminates at T6. At T6, the remaining registers that have been

saved in the stack are popped into Z80, and progam P may resume ex-

ecution. The reader will verify that the stack is empty at this point. In

fact, the number of dashed lines indicating program suspension in-

dicates at the same time how many leveis there are in the stack.

Exercise 6.29: Assume that (he area available to (he stack is limiled to

300 locations in a specific program. Assume tfial all (he registers must
always be saved and l/ia( (he programmer allows in(errup(s lo be nes(-

ed. I.e., (o m(errup( each other. Which is (he maximum number of
simultaneous interrupts (hat can be handled? Will any otherfac[or con-
tribute to sdll reduce further (he maximum number ofsumihaneous in-

(errup(s?

it must be stressed, however, that, m practice, microprocessor sys-

tems are normally connected to a small number of devices usmg inter-

rupts. It is, therefore, unlikely that a high number of simultaneous in-

terrupts will occur m such a system.

We have now solved all the problems usually associated with inter-

rupts. Their use is, in fact, simple and they should be employed to ad-
vantage even by the novice programmer.
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SUMMARY

In this chapter we have presented the range of techniques used to

communicate with the outside world. From elementary input/output

routines to more complex programs for communication with actual

peripherals, we have learned to develop ali the usual programs and have

even examined the efficiency of benchmark programs in the case of a

parallel transfer and a parallel-to-senal conversion. Finally, we have

learned to schedule the operation of multiple peripherals by usmg poll-

ing and interrupts. Naturally, many other exotic mput/output devices

might be connected to a system. With the array of techniques which

have been presented so far, and with an understanding of the peripher-

als involved, it should be possible to solve most common problems.

in the next chapter, we will examine the actual characteristics of the

input/output interface chips usually connected to a Z80. Then, we will

consider the basic data structures that the programmer may use.

Exercise 6.30: Compute (he overhead when operating in mode 0, as-

suming that all registers are saved, and thai an RST is received m re-

sponse to the interrupt acknowledge. The overhead is defined as the

total delay incurred, exclusive of the instructions required to implement

the interrupt processing proper.

Exercise 6.31: A 7-segment LED display can also display digits other

than the hex alphabet. Compute (he codes for: H, /, J, L. O, P. S. U,

y, g, h, I, J, I, n, o, p, r, t, u, y.

Exercise 6.32: Theflowchart for interrupt management appears m Fig-

ure 6.34 Answer the following questions:

a— What is done by hardware, what is done by software?

b— What IS the use of tlie mask?

c—How many registers should be preserved?

d—How IS the inlerrupttng device identified?

e— What does the RETI instruction do? How does it differfrom a

subroutine return?

f—Suggest a way to handle a stack overflow situation.

g— What IS (he overhead ("lost time") introduced by the interrupt

meclianism?
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EXECUTE

iNSlfiUCTION

INTERRUPT

REQUEST

NEXT INSTRUCTION

SET MASK

PRESERVE REGISTERS
Of noceisu'y;

UNSET IMSK

IDcNTiFY DEVICE
lif nncoiiQiyj

EXECUTE ROUTiNG

RESTORE REGISTERS

Fig. 6.34: interrupt Logic
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INTRODUCTION

We have learned how to program the Z80 microprocessor in most
usual situations. However, we should make a special mention of the

input/output chips normally connected to the microprocessor. Be-

cause of the progress in LSI integration, new chips have been intro-

duced which did not exist before. As a result, programming a system

requires, naturally, first to program a microprocessor itself, and then

to program the input/output chips. In fact, it is often more difficult

to remember hov^- to program the various control options of an input/

output chip than to program the microprocessor itself! This is not be-

cause the programming in itself is more difficult, but because each of

these devices has its own idiosyncrasies. We are going to examine here

first the most general input/output device, the programmable input/

output chip (in short a "PIO"), then some Zilog I/O devices.

The "Standard PIO"

There is no "standard PIO". However,each PlOdevice is essentially

analogous in function to all similar PIO's produced by other

manufacturers for the same purpose. The purpose of a PIO is to

provide a multiport connection for input/output devices. (A "port" is

simply a set of 8 input/output lines.) Each PIO provides at least

two sets of 8-bit lines for I/O devices. Each I/O device needs a data

buffer in order to stabilize the contents of the data bus on output at

least. Our PIO will, therefore, be equipped at a minimum with a

buffer for each port.

In addition, we have established that the microcomputer will use

a handshaking procedure, or else interrupts to communicate with the
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I/O device. The PIO will also use a similar procedure to communicate

with the peripheral. Each PIO must, therefore, be equipped with at

least two control lines per port to implement the handshaking

function.

The microprocessor will also need to be able to read the status of

each port. Each port must be equipped with one or more status bits.

Finally, a number of options will exist within each PIO to configure its

resources. The programmer must be able to access a special register

withm the PIO to specify the programming options. This is the

control-register. In some cases the status information is part of the

control register.

DATA BU

REGISTER

SELECT

IRQA

IRQB

CRA DDRA PDRA

TO O

73 H
^ CI s 02

-H > m

CAl

CA2

PORTA

CRB DDRB ^DRB

RSiS

RSI

It

11

c: Z—

t

PUT UT

PORTB

CB2
CBl

Fig. 7.1: Typical PIO

One essential faculty of the PIO is the fact that each Hne may be

configured as either an input or an output line. The diagram of

a PIO appears in illustration 7.1. The programmer may specify

whether any line will be input or output. In order to program the

direction of the lines, a data-direction register is provided for each

port. On many PIO's, "0" in a bit position of the data-direction

register specifies an input. A "1" specifies an output. Zilog uses the

reverse convention.

It may be surprising to see that a "0" is used for input and a "1"

for output when really "0" should correspond to output and "1" to

input. This is quite deliberate: whenever power is applied to the

system, it is of great importance that all the I/O lines be configured as

input. Otherwise, if the microcomputer is connected to some
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dangerous peripheral, it might activate it by accident. When a reset is

applied, all registers are normally zeroed and that will result m con-
figuring all input lines of the PIO as inputs. The connection to the

microprocessor appears on the left of the illustration. The PIO
naturally connects to the 8-bit data bus, the microprocessor address

bus, and the microprocessor control-bus. The programmer will simply
specify the address of any register that it wishes to access within the
PIO.

The Internal Control Register

The Control Register of the PIO provides a number of options for

generating or sensmg interrupts, or for implementing automatic hand-
shake functions. The complete description of the facilities provided is

not necessary here. Simply, the user of any practical system which uses

a PIO will have to refer to the data-sheet showing the effect of setting

the various bits of the control register. Whenever the system is

initialized, the programmer will have to load the control register of the

PIO with the correct contents for the expected application.
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RESET-

IRQB-

i4i

^BUS INPUT i

CONTROL

CHIP SELECT

REGISTER
SELECT

INT/
STATUS

iDATABUS; /uJ
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DATA
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<>
"

PERIPHERAL

INTERFACE A

PERIPHERAL

INTERFACE B

CONTROL

(CRB)

STATUS

DATA
DIRECTION

CA I

-CA2

:JlJ>PA0-PA7

CB I

CB2

Fig. 7.2: Using a PIO-Load Control Register
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Fig. 7.3: Using a PIO-Load Data Direction
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Fig. 7.5: Using a PIO Read INPUT

Programming a PIO

A typical sequence, when using a PIO channel, is the following (as-

suming an input):

Load the control register

This IS accomplished by a programmed transfer between a Z80 re-

gister (usually the accumulator) and the PIO control register. This sets

the options and operating mode of the PIO (see Figure 7. 2). It is nor-

mally done only once at the beginning of a program.

Load the direction register

This specifies the direction in which the I/O lines will be used. (See

Figure 7.3.)

Read the status

The status register indicates whether a valid byte is available on in-

put. (See Figure 7.4X

Read the port

The byte is read into the Z80. (See Figure 7.5).
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Fig. 7.6: ZSO PIO pinout

The Zilog ZSO PIO

The ZSO PIO is a two-port PiO whose architecture is essentially

compatible with the standard model we have described. The actual

pmout is shown in Figure 7. 6, and a block diagram is shown in Figure

7.7.

Each PIO port has six registers: an 8-bit input register, an 8-bit out-

put register, a 2-bit mode-controi register, an 8-bit mask register, an

8-bit input/output select (direction register), and a 2-bit mask-control

register. The last three registers are used only when the port is program-

med to operate in the bit mode.

Each port may operate in one of four modes, as selected by the con-

tents of the mode-controi registers (2 bits). They are: byte output, byte

input, byte bidirectional bus, and bit mode.
The two bits of the mask control register are loaded by the program-

mer, and specify the high or low state of a peripheral device which is to

be monitored, and conditions for which an interrupt can be generated,

generated.

The 8-bit input/output select register allows any pin to be either an

input or an output when operating in the bit mode.
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Programming the Zilog PIO

A typical sequence for using a PIO. say in bit niode, would be the

following:

Load the mode control register to specify the bit mode.

Load the input/output select register of port A to specify that

lines 0-5 are inputs and lines 6 and 7 are outputs.

Then a word would be read by reading the contents of the input

buffer.

Additionally, the mask register could be used to specify the status

conditions.

For a detailed description of the operation of the PIO, the reader is

referred to the companion volume in this series, the Z80 Applications

Book.

The Z80 SIO

The SiO (Serial Input/Output) is a dual-channel peripheral chip de-

signed to facilitate asynchronous communications in serial form. It in-

cludes a UART. i.e., a universal asynchronous receiver-transmitter.

Its essential function is serial-to-parallel and parallei-to-serial conver-

sion. However, this chip is equipped with sophisticated capabilities,

like automatic handling of complex byte-oriented protocols, such as

IBM bisync as well as HDLC and SDLC, two bit-oriented protocols.

Additionally, it can operate in synchronous mode like a USRT, and

generate and check CRC codes. It offers a choice of polling, interrupt,

and block-transfer modes. The complete description of this device is

beyond the scope of this introductory book and appears in the Z80 Ap-

plications Book.

Other I/O Chips

Because the Z80 is commonly used as a replacement for the 8080, it

has been designed so that it can be associated with almost any of the

usual 8080 input/output chips, as well as the specific I/O chips manu-

factured by Zilog. Ail the 8080 input/output chips may be considered

for use in a Z80 system.
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SUMMARY

In order to make effective use of mpuE/output components it i.s

necessary to understand m detail the function of every bit. or group of bits,
withm the various control registers. These complex new chips automate a
number of procedures that had to be carried out by software or special
logic before, in particular, a good deal of the handshakmg procedures are
automated withm components such as an SIO. Also, interrupt handling
and detection may be internal. With the mformation that has been pre-
sented in the preceding chapter, the reader should be able to understand
what the functions of the basic signals and registers are. Naturally, .still

newer components are going to be introduced which will offer a hardware
implementation of still more complex algorithms.
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This chapter is designed to lest your new programming skills by pre-

senting a collection of utility programs. These programs or "routines"

are frequently encountered m applications, and are generally called

"utility routines." They will require a synthesis of the knowledge and

techniques presented so far.

We are going to fetch characters from an I/O device and process

them m various ways. But first, let us clear an area of the memory (this

may not be necessary—each of these programs is only presented as a

programming example).

CLEARING A SECTION OF MEMORY

We want to clear (zero) the contents of the memory from address

BASE to address BASE ± LENGTH, where LENGTH is less than 256.

The program is:

ZEROM LD B, LENGTH LOAD B WITH LENGTH
LD A,0 CLEAR A
LD HL, BASE POINT TO BASE

CLEAR LD (HL), A CLEAR A LOCATION
INC HL POINT TO NEXT
DEC B DECREMENT COUNTER
JR NZ, CLEAR END OF SECTION?

RET

In the above program, the length of the section of memory is as-

sumed to be equal to LENGTH. The register pair HL is used as a point-

er to the current word which will be cleared. Register B is used, as
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usual, as a counter.

The accumulator A is ioaded only once with the value (all zeros),

then copied into the successive memory locations.

In a memory test program, for example, this utility routine could be
used to zero the contents of a block. Then the memory test program
would usually verify that us contents remamed 0.

The above was a straightforward implementation of a clearing rou-
tine. Let us improve on it.

The improved program appears below.

ZEROM LD B, LENGTH
LD HL, BASE

LOOP LD (HL).

The two improvements were obtained by eliminating the LD A, in-
struction and loading a "zero" directly mto the location pointed to by H
and L, and also by using the special Z80 instruction DJNZ.

This improvement example should demonstrate that every lime a
program is wrinen, even (hough H may be correct, i( can usually be im-
proved by examining it carefully. Familiarity with the complete instruc-
tion set is essential for bringing about such improvements. These im-
provements are not just cosmetic. They improve the execution time of
the program, require fewer instructions and therefore less memory
space, and also generally improve the readability of the program and,
therefore, its chances of being correct.

Exercise 8J: Wnie a memory test program which zeroes a 256-word
block, then verifies (hat each location is 0. Then, ii will write all 1 'sand
verify the contents of the block. Then i( will write OlOlOIOi and verify
the contents. Finally, it will write WlOIOlO, and verify the contents.

Exercise 8.2: Modify the above program so thai it will fill the memory
section with alternating O's and I 's (all O's. (hen all I'sJ.

Let us now poll our I/O devices to find which one needs service.

POLLING I/O DEVICES

We will assume that those 1/0 devices are connected to our sys-
tem. Their status registers are located at addresses STATUS!,
STATUS2, STATUS3. The program is:

INC
DJNZ
RET

HL
LOOP
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TEST IN A, (STATUSl) READ iO STATUS!

BIT 7, A TEST "READY" BIT (BIT 7)

JP NZ, FOUNDl JUMP TO HANDLER i

IN A, (STATUS2) SAME FOR DEVICE 2

BIT 7, A
JP NZ, FOUND2
IN A, (STATUS3) SAME FOR DEVICE 3

BIT 7, A
JP NZ, F0UND3
(failure exit)

The MASK will contain, for example, "10000000" if we test bit posi-

tion 7. As a result of the BIT instruction, the Z bit of the status flags

will be set to 1 if "MASK AND STATUS" is zero, i.e.. if the cor-

responding bit of STATUS matches the one in MASK. The JP NZ in-

struction Gump if non-equai to zero) will then result in a branch to the

appropriate FOUND routine.

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the keyboard.

Let us accumulate characters in a memory areacalledBUFFER until we

encounter a special character called SPC, whose code has been previ-

ously defined.

The subroutine GETCHAR will fetch one character from the key-

board (see Chapter 6 for more details) and leave it in the accumulator.

We assume that 256 characters maximum will be fetched before an SPC

character is found.

STRING LD HL, BUFFER POINT TO BUFFER
NEXT CALL GETCHAR GET A CHARACTER

CP SPC CHECK FOR SPECIAL CHAR
JR Z, OUT FOUND IT?

LD (HL), A STORE CHAR IN BUFFER
INC HL NEXT BUFFER LOCATION
JR NEXT GET NEXT CHAR

OUT RET

Exercise 8.3: Let us improve (his basic routine:

a—Echo the character back to the device (for a Teletype, for example).

b—Check that the input string is no longer than 256 characters.

We now have a string of characters in a memory buffer. Let us proc-
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ess them in various ways.

TESTING A CHARACTER

Let us determine if the character at memory location LOC is eauai to
0,1, or 2:

ZOT LD A, (LOC) GET CHARACTER
CP 00 !S IT A ZERO?
JP Z, ZERO JUMP TO ROUTINE
CP 01 A ONE?
JP Z, ONE
CP 02 A TWO?
JP Z, TWO
JP NOTFND FAILURE

We Simply read the character, then use the CP mstruction to check its

value.

Let us run a different lest now.

BRACKET TESTING

Let us determine if the ASCII character at memory location LOC is a
digit between and 9:

GET CHARACTER
MASK OUT PARITY BIT
ASCII

CHAR TOO LOW?
ASCII 9

CHAR TOO HIGH?
FORCE ZERO FLAG

ASCII "0" IS represented in hexadecimal fay "30" or by "BO",
depending upon whether the parity bit is used or not. Similarly, ASCII
"9" is represented in hexadecimal by "39" or by "B9",
The purpose of the second instruction of the program is to delete bit

7, the parity bit, m case it was used, so that the program is applicable to
both cases. The value of the character is then compared to the ASCII
values for "0" and "9". When using a comparison instruction, the Z
flag is set if the comparison succeeds. The carry bit is set m the case of
borrow, and reset otherwise, in other words, when using the CP in-

struction, the carry bit will be set if the value of the literal that appears

BRACK LD A, (LOC)
AND 7FH
CP 30H
JR C, OUT
CP 39H
JR NC, OUT
CP A

OUT RET EXIT
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in the instruction is greater than the value contained in the accumu-

lator. It will be reset ("0") if less than or equal.

The last instruction, CP A, forces a "I" into the Z flag. The Z flag is

used to indicate to the calling routine that the character m CHAR was

indeed in the interval (0, 9). Other conventions can be used, such as

loading a digit in the accumulator in order to indicate the result of the

test.

Exercise 8.4: !s the following program equivalent to the one above?:

LD A, (CHAR)
SUB 30H

JP M. OUT
SUB !0

JP P. OUT
ADD 10

Exercise 8. 5: Determine ifan ASCII character containedm the accumu-

lator IS a letter of the alphabet.

When using an ASCII table, you will notice that parity is often used.

For example, the ASCII for "0" is "01 10000", a 7-bit code. However,

if we use odd parity, for example, we guarantee that the total number

of ones in a word is odd; then the code becomes: "101 10000". An extra

r '
is added to the left. This is " BO " in hexadecimal. Let us therefore

develop a program to generate parity.

PARITY GENERATION

This program will generate an even parity with bit position 7:

PARITY LD A, (CHAR) GET CHARACTER
AND 7FH CLEAR PARITY BIT

JP PE, OUT CHECK IF PARITY
ALREADY EVEN

OR 80H SET PARITY BIT

OUT LD (LOC), A STORE RESULT

The program uses the internal parity detection circuit available m the

Z80.

The third instruction: JP PE, OUT checks whether parity of the

word in the accumulator is already even. This instruction will succeed if

the parity is even, "PE". and will exit.

If the parity is not even, i.e., if the jump instruction failed, then the

parity is odd, and a "1" must be written in bit position 7. This is the
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purpose of the fourth instruction:

OR 80H

Finally, the resulting value is saved in memory location LOG.
Exercise 8.6: The above problem was loo simple lo solve, using the in-
ternal parity detection circuitry. As an exercise, you are requested to
solve the same problem without using this circuitry. Shift r/ie contents
of die accumulator, and count die number of I 's m order to determine
which bit should be written into the parity position.

Exercise S. 7: Using the above program as an example, verify the parity
ofa word. You must compute tlie correct parity, then compare ii to the
one expected.

CODE CONVERSION: ASCI! TO BCD

Converting ASCII to BCD is very simple. We will observe that the
hexadecimal representation of ASCII characters to 9 is 30 to 39 or BO
to B9, depending on parity. The BCD representation is simply obtained
by dropping the "3" or the "B", i.e., masking off the left nibble (4
bits):

ASCBCD CALL BRACK CHECK THAT CHAR IS TO 9
JP N2. ILLEGAL EXIT IF ILLEGAL CHAR
AND OFH MASK HIGH NIBBLE
LD (BCDCHAR), A STORE RESULT

Exercise 8.8: Write a program to convert BCD to ASCII.

E.xercise 8.9: Write a program to convert BCD lo binary (more diffi-
cult).

Hint:N,N,N,NoinBCDis(((N, x 10) + N,) x 10 -f- N,) x 10 + Norn
binary.

To multiply by 10, use a left shift {= x2), another left shift (= x4)
an ADC ( = x 5), another left shift ( = x 10).

In full BCD notation, the first word may contain the count of BCD
digits, the next nibble contain the sign, and every successive nibble con-
tain a BCD digit (we assume no decimal point). The last nibble of the
block may be unused.

CONVERT HEX TO ASCII

' 'a' ' contams one hexadecimal digit . We simply need to add a "3 " (or a
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"B") into the left nibble:

AND OFH ZERO LEFT NIBBLE (optional)

ADD A, 30H ASCII

CP A, 3AH CORRECTION NECESSARY''

JP M, OUT
ADD A, 7 CORRECTION FOR A TO F

Exercise 8. 10: Convert HEX to ASCII, assuming a packedformal (two

hex digits in A).

FINDING THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory address

BASE. The first entry of the table is the number of bytes it contains.

This program will search for the largest element of the table. Its value

will be left in A. and its position will be stored in memory location IN-

DEX.
This program uses registers A, F, B. H and L, and will use indirect

addressmg, so that it can search a table anywhere in the memory (see

Figure 8.1).

MAX LD HL, BASE TABLE ADDRESS
LD B, (HL) NBR OF BYTES IN TABLE
LD A, CLEAR MAXIMUM VALUE
INC HL INITIALIZE INDEX
LD (INDEX), HL NEXT ENTRY

LOOP CP (HL) COMPARE ENTRY
JR NC, NOSWITCH JUMP IF LESS THAN MAX
LD A, (HL) LOAD NEW MAX VALUE
LD (INDEX), HL LOAD NEW MAX VALUE

NOSWITCH INC HL POINT TO NEXT ENTRY
DEC B DECREMENT COUNTER
JR NZ, LOOP KEEP GOING IF NOT ZERO
RET

This program tests the nth entry first. If it is greater than 0, the entry

goes m A, and its location is remembered into INDEX. The (n-I)st en-

try IS then tested, etc.

This program works for positive integers.

Exercise 8JJ: Modify (he program so that it works also for negative

numbers in two's complement.

Exercise 8.12: Will this program also work for ASCII characters?

Exercise 8. 13: Write a program which will sort n mmibers in ascending
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A
I

CURRENT MAX
[

COUNTER

HL V

_ POINTER TO
~ MAX

~ INDEX

BASECOUNT=N
ELEMENT 1

s
e
•

INCREASiNG
ADDRESSES

ELEMENT N

Fig. 8.1: Largest Element in a Table

order.

Exercise 8.14: Write a program which will son n names (3 characters
each) in alphabetical order.

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N positive entries of a
table. The starting address of the table is contained at memory address
BASE. The first entry of the table contains the number of elements N.
The 16-bit sum will be left in memoy locations SUMLO and SUMHI. If
the sum should require more than 16 bits, only the lower 16 will be
kept. (The high order bits are said to be truncated.)

This program will modify registers A, F. B. H, L. IX. It assumes 256
elements maximum (see Figure 8.2).

SUMN LD HL. BASE POINT TO TABLE BASE
LD B. (HL) READ LENGTH INTO

COUNTER
SUMIG INC HL POINT TO FIRST ENTRY

LD iX, SUMLO POINT TO RESULT. LOW
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ADLOOP

NOCARRY

1 n CIY 4-0\

LU
LU A, (.rlL,.!

A, \LJ\ + u;

LU (lA -rU;, A
TnJR -Kin Kinr" a R R Y

INC CIV J_ \ \

INC HL
DEC B
JR NZ, ADLOOP
RET

CLEAR RESULT LOW
AND HIGH
GET TABLE ENTRY
COMPUTE PARTIAL SUM
STORE IT AWAY
CHECK FOR CARRY
ADD CARRY TO HIGH BYTE
POINT TO NEXT ENTRY
DECREMENT BYTE COUNT
KEEP ADDING TILL END

COUNT

HL BASE

1
LENGTH = N

ELEMENT

BASE

ELEMENT N

SUMLO

SUMH I

Fig. 8.2: Sum of N Elements

This program is straightforward and should be self-explanatory.

Exercise 8.15: Modify (his program to:

a—compute a 24-bit sum
b—compute a 32-bit sum
c—detect any over/low.

A CHECKSUM COMPUTATION

A checksum is a digit or set of digits computed from a block of suc-

cessive characters. The checksum is computed at the time the data is
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stored and put at the end. in order to verify the integrity of the data, the

data is read, then the checksum is recomputed and compared agamst
the stored value. A discrepancy indicates an error or a failure.

Several algorithms are used. Here, we will exclusive-OR all bytes in a

table of N elements, and leave the result m the accumulator. As usual,

the base of the table is stored at address BASE. The first entry of the

table is its number of elements N. The program modifies A, F, B, H, L.

N must be less than 256

CHKSUM

CHLOOP

LD HL, BASE LOAD ADDRESS OF TABLE
INTO HL

LD B, (HL) GET N = LENGTH
XOR A CLEAR CHECKSUM
INC HL POINT TO FIRST ELEMENT
XOR (HL) COMPUTE CHECKSUM
INC HL POINT TO NEXT ELEMENT
DEC B DECREMENT COUNTER
JR NZ, CHLOOP DO IT AGAIN IF NOT END
LD (CHECKSUM),A PRESERVE CHECKSUM
RET

COUNT THE ZEROES

This program will count the number of zeroes in our usual table, and
leave it in location TOTAL. It modifies A, B, C, H, L, F,

ZEROS LD HL, BASE POINT TO TABLE
LD B, (HL) READ LENGTH INTO COUNTER
LD C, ZERO TOTAL
INC HL POINT TO FIRST ENTRY

ZLOOP LD A, (HL) GET ELEMENT
OR SET ZERO FLAG
JR NZ, NOTZ IS IT A ZERO?
INC C IF SO, INCREMENT ZERO COUNT

NOTZ INC HL POINT TO NEXT ENTRY
DEC B DECREMENT LENGTH COUNTER
JR NZ, ZLOOP
LD A,C
LD (TOTAL), A SAVE IT

Exercise 8.16: Modify this program (o couni

a—(he number of stars (the character "*")

b—the number of letters of the alphabet

c—the number of digits between "0" and "9"
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BLOCK TRANSFER

Let us pick up every third entry in the source block at address FROM
and store it into a block at address TO:

LD HL, FROM
LD DE. TO SET UP POINTERS
LD BC, SIZE

LDI AUTOMATED TRANSFER
INC HL
INC HL SKIP 2 ENTRIES
JP PE, LOOP

BCD BLOCK TRANSFER

We will push up BCD digits m the memory, i.e, shift 4-bu nibbles

(see Figure 8 .3). The program appears below:

COUNT

Fig. 8.3: BCD Block Transfer-The Memory

DMOV LD B, COUNT
LD HL, BLOCK
XOR A A =

LOOP RLD
DEC HL POINT TO NEXT BYTE
DJNZ LOOP DEC COUNT LOOP UNTIL ZERO
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The program uses the RLD instruction, which we have not used yet.

RLD rotates a BCD digit left between A and (HL). (HL) or M designate
the contents of the memory location pointed to by H and L.

M LOW goes into M HIGH
M HIGH goes into A LOW
A LOW goes into M LOW
Here, "low" and "high" refer to a 4-bit nibble.

In order to use the powerful DJNZ mstruction, register B is used as
the digit counter. HL iS set to point to the beginning of the block.

A IS used to store the left digit displaced by each rotation between
two successive accesses to the block.

By convention, "0" will be entered at the bottom of the block.

COMPARE TWO SIGNED 16-BIT NUMBERS

IX points to the first number Ni.

lY points to N2 (see Figure 8.4).

The program sets the carry bit ifNl< N2. and the Z bit if Nl = N2.
COMP LD

LD
AND
JR
BIT
RET
LD
CP
RET
LD
CP
RET

NEGMl XOR
RLA
RET
LD
CP
RET
LD
CP
RET

The program first

B. {IX -f I) GET SIGN OF Nl
A, B

80H TEST SIGN, CLEAR CY
NZ, NEGMI Nl iSNEG
7. CIY+!)
NZ N2 IS NEG
A, B
(IY+1)

NZ
A. {IX)

(lY)

SIGNS ARE BOTH POS

SIGN BIT INTO CY
SIGNS DIFFERENT

BOTH SIGNS NEG

(lY + 1)

C
A, B

(IY+1)

NZ
A, (IX)

(lY)

tests the signs of Nl and N2. If Nl is negative, a
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jump occurs to NEGM\. Otherwise, the top of the program is executed.

MEMORY

IX

IV

N1. LOW

N!. HIGH

N2. LOW

N2, HIGH

HIGH ADDRESSES

Fig. 8.4: Comparing Two Signed Numbers

Note that the BIT instruction is used m the 5th line to test directly the

sign bit of N2 m the memory:

BIT 7, (iY + 1)

The same could have been done for NI, except that we will need the

value of NI shortly. It is therefore simpler to read NI from memory

and preserve it into B:

COMP LD B, (IX + I)

It is necessary to preserve Ni into B because the AND may destroy the

contents of A:

LD A, B

AND 80H

Note also that a conditional return is used (line 6):

RET NZ
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This is a powerful feature of the Z80 which simplifies programming.
Note that the comparison instruction executes directly on the con-

tents of memory, in indexed mode:

CP (iY + 1)

When comparing the two numbers, the most significant byte is com-
pared first, the least significant one second.

Note the extensive use of the indexing mechanism in this program,
which results m efficient code.

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements of a
table m ascending or descending order. The bubble-sort technique de-
rives Its name from the fact that the smallest element "bubbles up" to
the top of the table. Every time it "collides" with a "heavier" element,
It jumps over it.

A practical example of a bubble-sort is shown on Figure 8.5 The Hst
to be sorted contains: (10, 5, 0, 2, 100), and must be sorted m descend-
ing order ("0" on top). The algorithm is simple, and the flowchart is

shown on Figure 8.7

The top two(or else bottom twoielements are compared. If the lower
one is less ("lighter") than the top one. they are exchanged. Otherwise
not. For practical purposes, the exchange, if it occurs, will be remem-
bered in a flag called "EXCHANGED". The process is then repeated
on the next pair of elements, etc., until all elements have been com-
pared two fay two.

This first pass is illustrated by steps 1. 2, 3. 4. 5, 6 on Figure 8.5, go-
ing from the bottom up. (Equivalently we could go from the top down.)

If no elements have been exchanged, the sort is complete. If an ex-
change has occurred, we start all over again.

Lookmg at Figure 8.6, it can be seen that four passes are necessary in

this example.

The process is simple, and is widely used.

One additional complication resides m the actual mechanism of the

exchange.

When exchanging A and B, one may not write

A - B

B = A

as this would result in the loss of the previous value of A (try it on an
example).
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100>2:
NO CHANGE

o

! = 4

f =3

i
-4

2>0
NO CHANGE

©

1
= 3

1 = 3

0<5
EXCHANGE'

©

EXCHANGED

©
0< 10:

EXCHANGE^

©
EXCHANGE
END OF PASS 1

©
END Of PASS I

!00>2:
NO CHANGE

S = 5

2<5:
EXCHANGE!

! = 3

( = 4

EXCHANGED

©

1 = 2

1=3

2<10:
EXCHANGE

2

10
<—

'

5

100

EXCHANGED

©

!00

1 = 1

i=2

2^0:
NO CHANGE

in)

END OF PASS 2

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12
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!0

100 r 5

100> 5

NO CHANGE

®

10

100

1 = 3

5., 10

EXCHANGE'

2

5
—

!0

100

EXCHANGED

1

I 2 2

5 5 5

10 10 10

too 100 100

5^2:
NO CHANGE

3>0:
NO CHANGE

100 > 10:

NO CHANGE

© © ©
END OF PASS J

2 2 — i = 2 2

5 5 5

10 10 10

100 100 100

i0>5;
NO CHANGE

5> 2:

NO CHANGE
2>0:

NO CHANGE

© @
END

Fig. 8.6: Bubble-Sort Example: Phases 13 to 21

The correct solution is to use a temporary variable or location to pre-
serve the value of A;

TEMP = A
A = B
B = TEMP

It works (try it on an example). This is called a circular permutation.
This is the way all programs implement the exchange. This technique

is illustrated on the flowchart of Figure 8.7.
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EXCHANGED =

GET NUMBER OF
ELEMENTS N

i=N

Fig. 8.7: Bubble-Sort Flowchart
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Fig. 8.8: Bubble- Sort

The register and memory assignments are shown on Figure 8.8, and
the program is:

BUBBLE LD (TEMP), HL TEMP = (HL)
AGAIN LD IX, (TEMP) iX = (HL)

RES FLAG, H EXCHANGED FLAG =0
LD B, C
DEC B

NEXT LD A, (IX)

LD D, A D- CURRENT ENTRY
LD E, (IX+I) E = NEXT ENTRY
CP E COMPARE
JR NC, NOSWITCH GO TO NOSWITCH IF

CURRENTS NEXT
XCHANGE LD (iX), E STORE NEXT INTO

CURRENT
LD (IX + 1), D STORE CURRENT INTO

NEXT
SET FLAG, H EXCHANGED FLAG = 1
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NOSWITCHINC IX

DJNZ NEXT

BIT FLAG. H
JR NZ, AGAIN
RET

NEXT ENTRY
DEC B, CONTINUE UNTIL
ZERO
EXCHANGED = 1?

RESTART IF FLAG = 1

SUMMARY

Common utility routmes have been presented in this chapter which

use combinations of the techniques we have described m the previous

chapters. They should allow you to start designing your own programs

now. Many of these routines have used a special data structure, the

table. Other possibilities exist for structuring data, and will now be re-

viewed.
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PART I - THEORY

INTRODUCTION

The design of a good program involves two tasks: algorithm design
and data structures design. In most simple programs, no significant

data structures are mvoived, so the main objective m learning program-
mmg is designing algorithms and coding them efficiently m a given

machine language. This is what we have accomplished here. However,
designing more complex programs also requires an understanding of

data structures. Two data structures have already been used through-

out the boolc: the table and the stack. The purpose of this chapter is to

present other, more general, data structures that you may want
to use. This chapter is completely independent of the microprocessor,

or even the computer, selected. It is theoretical and involves the logical

organization of data m the system. Specialized books exist on the topic

of data structures, just as specialized books exist on the subject of

efficient multiplication, division or other usual algorithms. This

chapter, therefore, will be limited to essentials only. It does not claim

to be complete. The most common data structures will now be reviewed.

POINTERS

A pointer is a number which is used to designate the location of the

actual data. Every pointer is an address. However, every address is not

necessarily called a pointer. An address is a pointer only if it points at
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some type of data or at structured information. We have already en-

countered a typical pointer; the stack pointer, which points to the top

of the stack (or usually just over the top of the stack). We will see that

the stack is a common data structure, called an LIFO structure.

As another example, when using indirect addressing, the indirect ad-

dress is always a pointer to the data that one wishes to retrieve.

Exercise 9. 1: Examine Fig. 9.1. At address 15 in (he memory, (here is a

pointer lo Table T. Table T starts at address 500. What are the actual

contents of the pointer to T?

— POINTER TO T —

TABLE T

_
Fig. 9.1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various kinds.

Sequential Lists

A sequential list, or table, or block, is probably the simplest data

structure, and is one that we have already used. Tables are normally

ordered in function of a specific criterion, such as alphabetical ordering

or numerical ordering. It is then easy to retrieve an element m a table,

usmg, for example, indexed addressing, as we have done. A block nor-

mally refers to a group of data which has definite limits but whose con-

tents are not ordered. It may contain a string of characters; it may
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be a sector on a disk; or it may be some logical area (called segment) of
the memory. In such cases, it may not be easy to access a random ele-

ment of the block.

In order to facilitate the retrieval of blocks of information, directo-
ries are used.

Directories

A directory is a list of tables or blocks. For example, the file system
will normally use a directory structure. As a simple example, the master
directory of the system may include a list of the users' names. This is il-

lustrated in Figure 9.2. The entry for user "John" points to John's file

directory. The file directory is a table which contains the names of all of
John's files and their location. This is, again, a table of pointers, in this

case, we have just designed a two-ievel directory. A flexible directory

system will allow the inclusion of additional intermediate directories, as
may be found convenient by the user.

USER DsBECTOfr

Fig. 9.2: A Directory Structure

Linked List

In a system there are often blocks of information which represent
data, events, or other structures which cannot be moved around eas-
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ily. If they could, we would probably assemble them in a table in order

to sort or structure them. The problem now is that we wish to leave

them where they are and still establish an ordering among them such as

first, second, third, fourth. A linked list will be used to solve this prob-

lem. The concept of a linked list is illustrated by Figure 9.3. On the il-

lustration, we see that a list pointer, called FiRSTBLOCK, points to the

beginning of the first block. A dedicated location within Block 1 such

as, perhaps, the first or the last word m it, contains a pointer to Block

2, called PTRI. The process is then repeated for Block 2 and Block 3.

Since Block 3 is the last entry m the list, PTR3, by convention, either

contains a special "nil" value, or points lo itself, so that the end of the

list can be detected. This structure is economical, as it requires only a

few pointers (one per block) and frees the user from having to physi-

cally move the blocks m the memory.

FIRST
BLOCK 1 SLOCK 2

cx BLOCK 3

n
cc

BLOCK a. a. a.

Fig. 9.3: A Linked List

Let us examine, for example, how a new block will be inserted. This

IS illustrated by Figure 9.4. Let us assume that the new block is at ad-

dress NEWBLOCK, and is to be inserted between Block t and Block 2.

Pointer PTRI is simply changed to the value NEWBLOCK, so that n

now points to Block X. PTRX will contain the former value of PTRI,
i.e., it will point to Block 2. The other pointers m the structure are left

unchanged. We can see that the insertion of a new block has simply re-

quired updating two pointers in the structure. This is clearly efficient.

Exercise 9.2: Draw a diagram showing how Block 2 would be removed
from (his structure.

FIRST
SLOCK 1

BLOCK
BLOCK2 BLOCK 3 Z!

Fig. 9.4: Inserting a New Block
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Several types of lists have been developed to facilitate specific types

of access, msemons, and deletions to and from the list. Let us examme
some of the most frequently used types of linked lists.

Queue

A queue is formally called a FIFO, or first-m-first-out list. A queue
IS illustrated m Figure 9.5. To clarify the diagram, we can assume, for

example, that the block on the left is a service routme for an output
device, such as a prmter. The blocks appearing on the right are the re-

quest blocks from various programs or routmes, to pnnt characters.

The order in which they will be serviced is the order established by the

waiting queue. It can be seen that the first event which will obtain serv-

ice is Block i, the next one is Block 2, and the followmg one is Block 3.

In a queue, the convention is thai any new event arriving in the queue
will be inserted at the end. Here ii will be inserted after PTR3. This

guarantees that the first block to be inserted m the queue will be the

first one to be serviced. It is quite common in a computer system to

have queues for a number of events whenever they must wait for a

scarce resource, such as the processor or some input/output device.

eiocK3

FTR3

BLOCK 2

PTR2

Fig. 9.5: A Queue
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Slack

The stack structure has already been studied in detail throughout the

book. It IS a last-in-first-out structure (LIFO). The last element depos-

ited on top is the first one to be removed. A stack may either be im-

plemented as a sorted block, or it may be implemented as a hsl. Because

most stacks m microprocessors are used for high-speed events, such as

subroutines and interrupts, a continuous block is usually allocated to

the stack insteadof using a linked list.

Linked List vs. Block

Simiiariy, the queue could be implemented as a block of reserved

locations. The advantage of using a continuous block is fast retrieval

and the elimination of the pointers. The disadvantage is that It Is usu-

ally necessary to dedicate a fairly large block to accommodate the

worst-case size of the structure. Also, it makes it difficult or impractical

to insert or remove elements from withm the block. Since memory is

traditionally a scarce resource, blocks have usually been reserved for

fixed-size structures or structures requiring the maximum speed of re-

trieval, such as the stack.

Circular List

"Round robin" is a common name for a circular list. A circular list is

a linked list m which the last entry points back to the first one. This is il-

lustrated m Figure 9.6. In the case of a circular list, a current-block

pointer is often kept. In the case of events, or programs, waiting for

service, the currenl-event pointer will be moved by one position to the

left or to the right every time. A round robin usually corresponds to a

structure in which all blocks are assumed to have the same priority.

However, a circular list may also be used as a subcase of other struc-

tures simply to facilitate the retrieval of the first block after the last

one, when performing a search.

As an example of a circular list, a polling program usually goes in a

round robin fashion, interrogating all peripherals and then coming
back to the first one.

Trees

Whenever a logical relationship exists among all elements of a struc-

ture (this IS usually called a syntax), a tree structure may be used. A sim-
ple example of a tree structure is a descendam, or genealogical, tree.
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EVENI

1

EVENT 2 EVENT N

CURKENI EVENT

Fig. 9.6: Round Robin is Circular List

This IS illustrated in Figure 9.7. It can be seen that Smith has two chil-

dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three

children: Liz, Tom and Phil. Tom, in turn, has two more children: Max
and Chris. However, Robert, on the left of the illustration, has no de-

scendants.

This is a structured tree. We have, in fact, already encountered an ex-

ample of a simple tree in Figure 9.2. The directory structure is a two-

level tree. Trees are used to advantage whenever elements may be classi-

fied according to a fixed structure. This facilitates insertion and re-

trieval. In addition, they may establish groups of information in a

structured way which may be required for later processing, such as in a

compiler or interpreter design.

JANE

TOM PHIl

Fig. 9.7: Genealogical Tree

Doubly-Linked Lists

Additional links may be established between elements of a list. The
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simplest example is the doubly-linked list. This is illustrated m Figure

9.8. We can see that we have the usual sequence of links from left to

right, plus another sequence of links from right to left. The goal is to

allow easy retrieval of the element just before the one which is being

processed, as well as just after it. This costs an extra pointer per block.

BLOCK t

a
a.

cc

ai
BIOCK 2

a:

a.
BLOCK 3

Fig. 9.8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sortmg elements of a list depends directly on the type

of structure which has been used for the list. Many searching algo-

rithms have been developed for the most frequently used data struc-

tures. We have already used indexed addressing. This is possible when-
ever the elements of a table arc ordered m function of a known
criterion. Such elements may then be retrieved by their numbers.

Sequenlial searching refers to the linear scanning of an entire block.

This is clearly inefficient but may have to be used when no better tech-

nique is available, for lack of ordering of the elements.

Binary, or logarilhmic, searching attempts to find an element m a

sorted list by dividing the search interval in half at every step. Assum-
ing that we are searching an alphabetical list, one might start, for exam-
ple, in the middle of a table and determine if the name we are lookmg
for is before or after this point. If it is after this point, we will eliminate

the first half of the table and look at the middle element of the second

half. We compare this entry again to the one we are looking for, and we
restrict our search to one of the two halves, and so on. The maximum
length of a search is then guaranteed to be iog^n, where n is the number
of elements in the table.

Many other search techniques exist.

SECTION SUMMARY

This section was intended as only a brief presentation of usual data
structures which may be used by a programmer. Although most com-
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mon data structures have been organized in types and given a name, the

overali organization of data m a complex system may use any combina-
tion of ihem, or require the programmer to mvent more appropriate
structures. The array of possibilities is only limited by the imagination

of the programmer. Similarly, a number of well-known sorting and
searching techniques have been developed for coping with the usual

data structures. A comprehensive description is beyond the scope of
this book. The contents of this section were intended to stress the im-
portance of designing appropriate section structures for the data to be
manipulated and to provide the basic tools to that effect.

Actual programming examples will now be presented in detail.
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PART 11 — DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data struc-

tures; table, sorted list, linked list. Practical searching and insertion and

deletion algorithms will be programmed for these structures.

The reader interested in these advanced programming techniques is

encouraged to analyze in detail the programs presented in this section.

However, the beginning programmer may skip this section initially,

and come back to it when he feels ready for it.

A good understanding of the concepts presented in the first part of

this chapter is necessary to follow the design examples. Also, the pro-

grams will use all of the addressing modes of the Z80, and integrate

many of the concepts and techniques presented in the previous chapters.

Three structures will now be introduced: a simple list, an alphabetical

list and a linked-list plus directory. For each structure, three programs

will be developed: search, enter and delete.

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common repre-

sentation for each list element:

3-byte label Data
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ENTCEN

lABLEN

TAB BASE

,

LABEL

DATA

lENGTH OF ENTRY

NUMBER OF ENTRIES

ENTER NEW ELEMENT

Fig. 9.9: The Table Structure

ELEMENT

ELEMENT
2

LABEL

D

C

- LABElC

C

D

DATA

ENTLEN

ENTIEN

Fig 9.10: Typical List Entries in the Memory

549



PROGRAMMING THE Z80

Each element, or "entry", includes a 3-byte label, and an n-byte block

of data, with n between i and 253. Thus, at most, each entry uses one

page (256 bytes). Within each list, all elements have the same length (see

Figure 9. 10). The programs operatmg on these two simple lists use some

common variable conventions:

ENTLEN is the length of an element. For example, if each element

has 10 bytes of data, ENTLEN = 3 + 10=13

TABASE is the base of the list or table in the memory

POINTR is a running pointer to the current element

OBJECT is the current entry to be located, inserted or deleted

TABLEN IS the number of entries.

Ail labels are assumed to be distinct. Changing this convention would

require a minor change in the programs.

Fig. 9.11: The Simpie List
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A SIMPLE LIST

The simple list is organized as a table of n elements. The elements are

not sorted (see Figure 9.11). When searching, one must scan through

the list until an entry is found or the end of the table is reached. When
inserting, new entries are appended to the existing ones. When an entry

IS deleted, the entries m higher memory locations, if any, will be shifted

up to keep the table continuous.

Searching

A serial search technique is used. Each entry's label field is compared
in turn to the OBJECT'S label, letter by letter.

The running pointer POINTR is initialized to the value of TABASE.

SEARCH

__i
COUNTER =

NUMBER OF ENTRIES

COUNTER =

.COUNTER = COUNTER - 5

YES
COUNTER = 0? > FAILURE EXIT

POINT TO NEXTENIHV

Fig. 9.12: Table Search Flowchart
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The search proceeds in the obvious way, and the corresponding flow-

chart IS shown on Figure 9.12. The program appears on Figure 9.16

at the end of this section (program "SEARCH")- A sample run of the

program is shown in Figure 9.17.

Inserting

When mserting a new element, the first available memory block of

(ENTLEN) bytes at the end of the list is used (see Figure 9.11).

The program first checks that the new entry is not already in the list

(all labels are assumed to be distinct in this example). If not, it incre-

ments the list length TABLEN, and moves the OBJECT to the end of

the Hst. The corresponding flowchart is shown in Figure 9.13.

The program is shown m Figure 9. 16. It is called "NEW" and resides

at memory locations 0135 to015E.

The index register lY pomts to the source. HL and DE are destma-

tion pointers.

SAVE OLD TABU lENGIH

INCREMENT TABLE lENGTH

POINT AFTER
END Of TABLE

INSERT OBJECT

T
END

Fig. 9.13: Table Insertion Flowchart
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Deleting

In order to delete an element from the list, the elements following it

in the list at higher addresses are merely moved up by one element posi-

tion. The length of the list is decremented. This is illustrated on Figure

9.14.

The corresponding program is straightforward and appears on Fig-

ure 9.16. It is called "DELETE", and resides at memory addresses

0!5Fto0187. The flowchart is shown in Figure 9.15.

Memory location TEMPTR is used as a temporary pointer pointing

to the element to be moved up.

Dunng the transfer, POINTR always points to the "hole" m the list.

I.e., the destination of the next block transfer.

The Z flag is used to indicate a successful deletion upon exit.

Note how the LDIR instruction is used for efficient automated block

transfer (refer to address 0178 in Figure 9. 16).

LD A, B BLOCK COUNTER
NEWBLOC LD BC, (ENTLEN) BLOCK LENGTH

LDIR
DEC A
JP NZ, NEWBLOC

Fig. 9.14: Deleting an Entry (Simple List)
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i
FIND ENTRY

DECREMENT TABLE LENGTH

FINDNBR OF ENTRIES

AFTER OBJECT IN TABLE

SHIFT ONE ENTRY UP

DECREASE COUNT OF
ENTRIES RE/^INING
AFTER THE ONE SHIFTED

I

NO
OUT

Fig. 9.15: Table Deletion Flowchart
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0000 ORG OlOOH
(01B7) EHTLEtl PL EHPER
(0iB9l TAPLEN PL EHDER+2
(018fi> TfiPASE PL ENDER+3
toiec) TEMP St ENDER+5

0100 1600 SEARCH LP DjO ; CLEAR
olo:: 30890! LP A I < TABLEK) i CHECK FOR A ZERO TABLE LENGTH
0105 Pi7 AND *GET FLAGS
01 OA CB RET 2

0107 47 LD P »

A

i*^TnRF TARI F ( FWI^TH*rji!jr\t If!put utrtUIn
OJ09 D02ABA0

1

LP 1 X 1 ( T ADA5E ') !PUT BASE ADPR . IN IX
OIOC DD7ED0 LOOf' tP f*ti IX+0

)

irwFnh' FTf?*iT 1 PTTCP np P"fjTr?v

01 OF FEiBEOO CP ( IY+0!
0112 C2270I JP NZiNEXTQUE
0115 DB7£0! LP At <TX+1 } » CHECK 2ND LETTER
0113 FDBEOi CP (lYf 1

)

OIIB C22701 JP NZiNEXTClHE
OllE £iIi7E02 LP A? ( IX^ 2) JCHECK 3RD LETTER
oi:?i FtPEiE02 CP < IY + 2 >

0124 CA3201 JP ZtFQUfin iEXIT If ALL LETTERS HATCH
0127 05 NEXTOtJE PEC P JDECREHENT TABLE LENGTH COUNTER
0128 CB RET 2 (EXIT IF AT END OF TABLE
0129 EPSPB701 LD DE.fEtntEN) !5ET IX TD NEXT ENTRY APDR,
oi2ri PP19 ADD IXi fiE

012F C30C01 JP LOOP ?TRY AGAIN
132 1 6FF FOUND LD ft , OF-p'H tEiET P TD SHOLJ TX CONTAINS AliDRi

0131 CV RET * 1 i DF ENTRY IN TABLE

0135 CPOOOl UEU CALL SEARCH iSEE IF OBJECT IS THERE
0138 11 IMC Ti

0139 CftSEOl JP ZiQUTE ilF D UAS FF. EXIT
013C 3flS901 LD Ar (TABLEfi)
013F SF LD E.A ;lOAD E WITH TABLE LENGTH
01^0 3C IfiC A
0111 328901 LD (TAPLEN) lA ) INCREMENT TABLE LENBTH
Olll liOO LD luo
<llt6 2flBfl01 LD HLi (TADASE >

01 "l? ED4B8701 i.0 DC T ( ENTLEH > 'SET P TO LENGTH OF AN ENTRY
01 All 4

1

LD P t C
01 4E 19 LQBFE ADD HL 1 DE
01-lF lOFD DJHZ LOOPE iADD HL TC <ENTLEMiiTADLEN)
0151 ED4PS701 LD DC- (ENTLENl
0155 FDES PUSH lY im'JE lY TO PE
0157 DI POP DE
015B E& EX DEiHL
0159 EtiBO LPIR iffOyE MEMORY FROM OBJECT TO END
015P OlFFFF LD DC.OFFFFH < . .OF TABLE
015E C9 QUTE RET

013F CPOOOi

;

PELETE CALL SEARCH iFINP ENTRY TO DE DELETED
0162 14 INC D 'sec ii^ SI "tfi^ r Utjr***

li3 C^960

I

0166 3nB901 LP A r £ TADLEN

)

r DECREMENT TABLE 1 ENfaTK
0169 3D DEC
01 6fl 328901 LB ( TABLEN) .A
016D 05 PEC B !B NOW-* DF ENTRIES LEFT IN TABLE
0\6E Cft8301 JP Z.EXIT i.. AFTER ONE TD BE DELETED
0171 r^DES PUSH IX iHOUE IX TO DE
0173 81 POP DE
017^ 2AB701 LD HL. (EMTLEN) *SET HL ONE ENTRY AHEAD DF PE
0177 19 ADn HL.PE
J7B 78 Ll> A.D fSET BLDCh COUNTER

0179 EB4E'e70! HEuriLOC LP PC. (ENTLEfi) ;BET block LENGTH COUNTER
01711 EDPD LDIR fSHIFT i ENTRY OF TABLE
017F 3P DEC A
OlSO C27901 JP HZ.NEUDLQC !SH1FT ANOTHER BLOCK
0103 OlFFFF EXIT LD BCOFFFFH fSHOU THAT IT UAS BONE
Olflfi C9 OUT RET

01B7 (0000) Em

Fig. 9.16: Simple List—The Programs
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5THB0L TABLE

DELETE
LOOP
OUT
TEMP

OIOC

OIBC
{JUTE

01i37

015E

ENTl.EfJ

SEftRCH

0187
0135
0100

EXIT
NEySLO
TfiBftSE

01B3
0179
OlBft

FOUHB 0132
HEXTQH 0127
TftBLEff 0189

Fig. 9.16: Simple List— Thie Programs (cont.)

Display Memory

-DM300
0300 53 IF
0310 AA 11

0320 AXl IF
0330 flE

03'10 Al IE
03S0 00 00
O3A0 00 00
0370 00 00

IE 31 31 31 31
-1-1 32 32 3:; 32
ID 33 33 33 33
13 31 3-1 3-1 3-1

51 35 35 35 35
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

31-31 31 31 31
32-32 32 32 32
33-33 33 33 33
31-31 31 31 31
35-35 35 35 35
00-00 00 00 00
00-00 00 00 00
00-00 00 00 00

Lfscing of Objects

»iih ihelr localPons

In memory

31 00 00 00 BONllIil 111 ii .

.

32 00 00 00 tfnLS2222222222. .

33 00 OO 00 HDH3333333333.

.

34 00 00 00 U(iC1141141111. .

35 00 00 00 nHT55555S5555.

.

00 00 00 00
00 00 00 00
00 00 OO 00

-SY
Y=0000 300 Set lY 10 0300H (pointer lo OBJECT)

-Gi93/19tb

p=o!96 0194' Run 'INSERT'

0-100 53 IF IE 3! 31 3! 3! 31--31 3! 31 31 31 00 00 00
Olio 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00
0120 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00
0130 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00
0110 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 oo--00 00 00 00 00 00 00 00
Olio 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Tflblecanfiguralion

nflcr program run

SDHlimillll..

-SV
Y=0300 3iO Set lY to 0310H (next OBJECT)

-GI93/19fi

p=oi9fi 0196' Run 'INSERT'

-DH100
0400 53 IF IE 31

0110 32 32 32 32
0120 00 00 00 00
0130 00 00 00 00
0110 00 00 00 00
0150 00 00 00 00
0160 00 00 00 00
0170 00 00 00 00

31 31 31 31-31 31

32 32 32 32-32 32
00 00 00 00-00 00
00 00 00 00-00 00
00 00 00 00-00 00
00 00 00 00-00 00
00 00 00 00-00 00
00 00 00 00-00 00

31 31 31 11 11 14

00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

Table conHjuration

aflcr second Insert

SaNllllllllUDflD

-PM100
0100 53 IF IE
0410 32 32 32
0420 34 31 31
0430 33 33 33
0110 35 00 00
0150 00 00 00
0460 00 00 00
0170 00 00 00

(More insertions)

31 31 31 31 31-31 31
32 32 32 32 32-32 32
31 31 31 31 1D-1F III

33 11 4E 54 35-35 35
00 00 00 00 00-00 00
00 00 00 00 00-00 00
00 00 00 00 00-00 00
00 00 00 00 00-00 00

3! 31 31 11 11 44
55 IE 43 34 34 31
33 33 33 33 33 33
35 35 35 35 35 35
00 00 00 00 00 00
00 00 00 00 00 00
00 00 OO 00 00 00
00 00 00 00 00 00

Table confiEuracion

after aCYcral Inserts

SONllllllllilDAn
2222222222UNC4'14
^441111M0M333333
3333ANT555555555
5

Fig. 9.17: Simple List—A Sample Run
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DATA STRUCTURES

-G 190/ 173

^=oi?3 Run 'SEARCH'

- Reg D shows lha( Object was found

(i rtsflt' [iC=0;2rF DE=FrOD HL = 0:!1ti S-0100 F'^0!?3 0I93' CALL 0135
A'=00 f'^OOOO ri'=0000 H'=^0000 X--0t27 1'=03:'0 <-00 <0135'1

Address of Object

0-100

0410
0420
0430
O'lflO

0450
0460
0470

1199- Run 'DELETE' Tabic confiRuraliun

after dcicliitn

1 4F 4E 31 31 31 3! 31-31 3! 31 31 31 Al 14 HON SI 1 1 1 11 I ! lliAti

; 32 32 32 22 32 32 32-32 31! Sf; A£ 43 34 34 34 2222222222U((C4 4

4

I 34 31 34 34 34 34 41-4E 54 35 35 33 35 35 35 4444444 A((T555555
; 35 35 35 41 4E 54 35-35 35 35 35 35 35 35 35 S5r,5ANT555555555
i 00 00 00 00 00 00 OO-OO 00 00 00 00 00 00 00 5
) 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
) 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
t 00 00 00 OO 00 00 00-00 00 00 00 00 00 00 00

Y=0240 340

P=^0199 0199

-Df1400
0400
0410
0420
0430
0440
0450
0460
0470

53 4F
32 32
34 34
35 35
35 00
00 00
00 00
00 00

I

Delete last entry in tabic Nuie: noaiiparcni

'

} chanjic in table

cdnfiEuralion

4E 31 31 31 31 31-31 31 31 31 31 44 41 44 SOHl 1 11 1 1 ! ! 1 1 DAR
32 32 32 32 32 32-32 32 55 4E 43 34 34 34 2222222222UNC444
34 34 34 34 34 41-4E 54 35 35 35 35 35 35 4444444AMTS55555
35 35 41 4E 54 35-35 35 35 35 35 35 35 35 5555ANT555555555
00 00 00 00 00 00-00 00 00 00 00 00 00 00 5
00 00 00 00 00 00-00 OO 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 00 00

-PHi09Si
01B9 03 —

•

-Gi90/193

P=0193 0193'

Memory location 'TABLEN' — shows true length of (able

Run 'SEARCH' for deleted Object

-Dshows that Object was not found

A=55 DC=O0FF DE=00OD HL=0441 S^OIOO P=0!93 0193' CALL 013S
(I'-OO B' = 0000 ri'=0000 H'=0000 X = 04in Y-0340 f=00 (013S'

Fig. 9.17: Simple List— A Sample Run (cont.)
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ALPHABETIC LIST

The alphabetic list, or "table," unlike the previous one, keeps all

Its elements sorted m alphabetic order. This allows the use of fast-

er search techniques than the linear one. A binary search is used here.

Searching

The search algorithm is a classic binary search. Let us recall that

the technique is essentially analogous to the one used to find a name in

a telephone book. One usually starts somewhere in the middle of the

book, and then, depending on the entries found there, goes either back-

wards or forward to find the desired entry. This method is fast and

reasonably simple to implement.

The binary seach flowchart is shown in Fig. 9.18. and the program is

shown in Fig. 9.23.

This list keeps the entries in alphabetical order and retrieves them by

using a binary or "logarithmic" search. An example is shown in Figure

9.19. The search is somewhat complicated by the need to keep track of

several conditions. The major problem to be avoided is searching for an

object that is not there. In such a case, the entries with immediately

higher and lower alphabetic values could be alternately tested forever.

To avoid this, a flag is maintained in the program to preserve the value

of the carry flag after an unsuccessful comparison. When the INCMNT
value, which shows by how much the pointer will next be incremented

reaches a value of "1". another flag called "CLOSENOW", which we

will abbreviate to "CLOSE", is set to the value of the COMPRES
flag Thus, since all further increments will be "1", if the pointer goes

past the point where the object should be, COMPRES will no longer

equal CLOSE and the search will terminate. This feature also enables

the NEW routine to determine where the logical and physical pointers

are located, relative to where the object will go.

Thus, if the OBJECT searched for is not m the table, and the running

pointer is incremented by one, the CLOSE flag will be set. On the next

pass of the routine, the result of the comparison will be opposite to the

previous one. The two flags will no longer match, and the program will

exit indicating "not found".
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DATA STRUCTURES

I

HAQS =.

PO\m lO TABIE BASE

LOGiCAL POSITION =
INCREMENT VALUE =
TABi£ LENGTH/

2

(ADO ! IFSTWASODD)

T

YES
NOT FOUND

POINT TO MIDDIE OF TABLE

(ENTRY)

INCREMENT VALUE = INCREMENT VALUE/

2

ADD ONE !F IT WAS ODD

COMPARE OBJECT TO ENTRY

¥ES

FOUND

PRESERVE CARRY (SIGN OF COMPARISON}
IN COMPHES FLAG

T

(NEXT TEST)
(LAST ONE)

Fig. 9.18: Binary Search Flowchart
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(NEXT IEST5

cioSiNOw ^

wot KXJNO«—<^ COMIWS'

ilOOlO]

MOVE PQIN(£B5

DOWN BY I

ClOStNOW — COMPSiB

MOVE POWIIfiS
UP BY I

Fig. 9.18: Binary Search Flowchart (coni.)
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The other major problem that must be deait with is the possibiHty of
runmng off one end of the table when adding or subtractmg the incre-

ment value. This is solved by performing a test "add" or "subtract"
using the logical pointer and length value which record the actual num-
ber of entries, not the physical positions in memory used by the physical

pointers.

Tn summary, two flags are used by the program to memorize infor-

(0121) LD A, C
SRL A
ADC
LD C, A

TABASE

AAA

BAC

)—

^

fIL

JES

XYZ

FIRST IHY
SEARCH (NERVAL = 5

INO)

0—

iNOl

SECOND IHY
SEABCH iNIEBVAL = 3

Fig. 9.19: A Binary Search

561



PROGRAMMING THE Z80

mation: COMPRES and CLOSE. The COMPRES flag is used to preserve

the fact that the carry was either "0" or "1" after the most recent com-

parison. This determines if the eiement under test was larger or smaller

than the one with which it was compared. The C indicates the relation.

Whenever the carry C was "1", and the element was smaller than the

object COMPRES is set to "I", Whenever the carry C was "0", indi-

cating that the element was greater than the object, COMPRES will be

set to"FF".

The second flag used by the program is CLOSE. This flag is set equal

to COMPRESS when the search increment INCMNT becomes equal to

"1"> it will detect the fact that the element has not been found if

COMPRES is not equal to CLOSE the next time around.

Other variables used by the program are:

LOGPOS which indicates the logical position in the table

(element number)

INCMNT which represents the value by which the running

pointer will be incremented or decremented if

the next comparison fails

TABLEN represents as usual the total length of the list.

LOGPOS and INCMNT will be compared to TABLEN in order to

assure that the limits of the list are not exceeded.

The program called "SEARCH" is shown on Figure 9.23. It resides

at memory locations 0100 to OICF,and deserves to be studied with care,

as it is much more complex than m the case of a linear search.

An additional complication is due to the fact that the search interval

may at times be either even or odd. When it is odd, a correction must

be introduced. (It cannot, for instance, point to the middle element of a

four-element list.) When it is odd, a "trick" is used to point to the

middle eiement: the division by 2 ts accomplished by a right shift. The

bit "falling off" into the carry after the SRL instruction will be "1" if

the interval was odd. It is merely added to the pointer.

The OBJECT is then matched against the entry m the middle of the

new search mterval. If the comparison succeeds, the program exits.

Otherwise ("NOGOOD"), the carry is set to "0" if the OBJECT is less

than the entry. Whenever the INCMNT becomes "1", the CLOSE flag

(which had been initialized to "0") is then checked to see if it was set. If

it was not, it gets set. If it was set, a check is run to determine whether we

passed the location where the OBJECT should have been but is not.

562



DATA STRUCTURES

Also note that when the carry was " 1 " , the running pointer will point

to the entry below the OBJECT.

Element Insertion

In order to insert a new element, a binary search is conducted. If the

element is found in the table, it does not need to be inserted. (We
assume here that all elements are distinct), if the element was not found

in the table, it must be inserted immediately before or immediately after

the last element to which it was compared. The value of the COMPRES
flag after the search indicates whether it should be inserted immediately

before or immediately afterwards. All the elements following the new

location where it is going to be placed are moved down by one block

position, and the new element is inserted.

BEFORE ARER

TABASE- AAA AAA

ABC ABC

BAT BAC —NEW
ELEMENT

TAR BAT

ZAP TAR

ZAP

OBJECT BAC MOVE DOWN

Fig. 9.20: Insert: "BAC"
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The insertion process is illustrated in Figure 9.20, and the corre-

sponding program appears in Figure 9.23.

The program is called NEW. and starts at memory location OlDO.

Note that the automated Z80 instructions LDDR and LDIR are used for

efficient block transfers.

Element Deletion

Similarly, a bmary search is conducted to find the object. If the

search fails, it does not need to be deleted, if the search succeeds, the

element is deleted, and all the foHowmg elements are moved up by one

block position. A corresponding example is shown m Figure 9.21, and

the program appears in Figure 9.23. The flowchart is shown in Fig.

9.22.

The program is called "DELETE" and resides at address 0221

.

A sample run of the above programs is shown in Fig. 9.24.

BEFORE AFTER

MOVE UP
ABC

BAC

BAT

TAR

ZAP

DELETE

AAA

ABC

TAR

ZAP

Fig. 9.21: Delete "BAC"
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DUEIE

COUNT HOW MANY
EIEMENT5 FOUOW IHf
ONE TO BE DELETED

RESULT COUNTER
(LOG PCS)

POINT TO NEXT ENIBy
POiNTER = TEMP iSOURCE-

i

TRANSFER IT UP ONE BLOCK

POINT TO NEXT ENIBV
POINTER = POINTER lOESIINAIiON.

DECREMENT lOGPOS
j

NO -""''''^ ^"^^-^^

(DOWNTAB) YES

Fig. 9.22: Deletion Flowchart (Aiphabetic List)
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oioo
0102

oioa
0109
oioc
01 OF
01 1 I

OlKl
01 Ifl

01 in

0! IH
01 1

)

01 sn

01 !R
01 IE

0! IF
0121
0122
oir^
OI2ii
012:^

012rt

012^
0130
0133
0!36
0139
0!3C
01 3F
0M2
014^
01>17
01<!9
Oi-iC
OtAXi

OME
0151
Olfifl

0155
015B
0159
015C
015D
OSAO
01fi3
Oifi*

01A7
01 1^11

0I6C
oiau
0170
0173
017-!

0177
017!)

0i79
01 7C
017F
0180
01S2
01B5
01B6
0!B7
OlOfl
018E:
0I8F
Oi9D
oi?:!

0193

1 OIMfi

)

(o:m!i)

(02'!CI
(03111)

lOr-IFl

3E00
J 2WO 2
3211'0?

2n'>rt02

3Artr.02

CP3F
CEOO
^F
17
cfiPAOi
5F
if
crmiioi

[itii;

Cl.nSFNIlU Kl

rwTLFt) m

! 1'

LI'

i.ti

OIOOH

FHitn'i 1

r HM'J' 1 7
Fnririit3

rttl'FiHr.

(i>0
(i:i,n3iF(inu> -a

ICntiFRFS) .0

ii. A
Ml. ( IrtiiflSF)

n-l TAHi E(J>

E5
nt'E 1

CD3F
CEOO
IF
riD7E00
FHPEOO
C2'i?01

EiP7E0I
FHPEOl
C24201
Pti7E02
FP&F02
CrtDCOl
3E01
[104901

3EFF
32tl'02
7V
3P
C2fi901

07
CA630i
57
3AflP02
92
CA6V01
C3SA0!
3fl4P0r
324/102
I'DETi

£i
S9
CPPPOI
304 PO

2

3C
C29601
79
91
C0B501
EirtBSOl

47
eD52
C31E0!
7B
3P
CAPftOl
EtSHflFO:
37
3F
EP52
05
C3ftF0i

n

LP c.n
LP
JF ZTflDTFOUfiP

1 p F • A
liEC E

CAI.I MULT

APP HS. PF
PUSH ML
Fat- IX

LIi A.C
r,RL A
rtPC

LP r . A
I.P Af ( IX 10

1

CP < !YFO >

JP HZfHDGOOP
i.P A, ( IXFl )

CF < lYf I 1

JP 117 , mmoi'
1_P A. r rxF2i

CF- 1 IYt21
.If Z.FOONH
LP A. i

JF C.TEST5
W A.OFFH
I.P irnHFI-'ES) rA

LP n.n
iiFX A

JP H7-tJFXTF5r

LP o, (CLOSENOUi
OfiP A
JP ZTtJi3TCL0SE

LP P. A

LP A,(COMPf.-E!;)

SUt' P
JF Z. HEX FES I

JF
ND1CL1ISE LP

LP
HEXTERT PUSH

POP
LP
CALL
LP
INC
JF'

LP
SUP

LP
SPC
JP

rOOLDSJ LP
PEC
JF
LB
SCF
CCF
SPC
DEC
JP

tiOTFOUNP
A, (CGMpriFiil

ICLOfiEHOU) .A

E.C
HULT
A. <CD»PF(E!;)

A
IIZtAPPIt

C
2 t FOOLHU
CtTOOLOU
Kun
HL.PF
EUTRY
A -II

(1

i.iioiFOiim
itE-(EHILEiJ)

HLtPr

REALCLOS

;/i:i;i! Fl AO LllCAriOtiii

; IKITiALJZE Hi.

:PIUIIiF PY

iAPP I'?' PTE HACK KJ

iStn^F AS INCUFHFin yAlJlF

(JTCIRF AS LOIHCAL FlliUTni" t.'ALiJE

••CHECK IF LEljr.iH IS ZERO

iMUlTIFlY lF-n::rHTLFH

mn HI TO MIPPLE OF TAPLE
;! OA!' HL TN!0

IPIVIPE CNCNEMEHT 'JALIJE PY FUn

JCOHPARE FIRST LETTER

ir,OMPARE 2HP 1 E1TER

;CQHPARK 3RP LETTER

iHf.t :;OMPARE RESULT FLAG TO

,, .RESULT OF COMPARE (l.FF)

;iS INCREMENT VALUE l'

;yes- is close flag set'

iYES.SEE IF HAUE PASSER UHERE

i.. ENTRY SHUULP PE PUT ISN'T

!';FT CLOSE FLAfi TO PlRECl lOH OF

...SFARCH TO PREVENl REPETITION
JPREPARE ML ANIi PE FOR APP OR

-..SiJP OF tNCF-EHENT VALUE

;test if uAin Tn app or sup

ITEST TO SEE IF SUP UILL RUN

, ..(IFF nGFTOH OF TAPLE

liiET NEU LOGICAL PDSITtUN VALUE
tcHAMiSE ALitiF^Ei;:; itself

iSEE IF POSITION IS

;1F SO, EXIT
iJUST sun i ENTRY POSITION

iCHflNGE LOGICAL POSITiON

Fig. 9.23: Binary Search Program
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0194
01 ?9 90
019rt 9 J

<l!9t 19
1 ?F 78

OlAO BI
01 A! A7
oin:' r.MZO I

Ol/iT, B]
1 Art C AHA 01

01 A9
aii\i< 19
OIAE Ort

OlrtF "EO!
oil'! 3A.irior

1 [ '1 AO"*
] p 7

1 r*A ! A^'f

oi fir C9

i^i I'll
,-,

cr-

OH.F 1 aoo
Of CI loono
OSCA
OICB ii

01 C9 19
(in:A

o!(:c r;
11 CIi ri'

OiCF F !

OICF il'f

mi^o r.r'Oool

! 4

01 rm r; :':'(] 0?
OliiV

Olt^A
<3 1 i-y !;aoi:(i?

-lArtFiO?

lilt:- CArno!
Oiitf,

rooiiiiiH

1 r9
OliTA

')!L-r

ojri
0JF2

OlFA
01F9
OIFA
OlFfp

1 FC
OIFF
o?oo
0?0!

or>07

orofi

0201-
O2of:

0?0F
O20F
0210
021 «

0216
02! 9

t)21ft

02! [I

0220

fc'H

?ArtF02
19
i H
FrMr'^F02
FfiFif!

3ri

E: 20 102
2,1

FKET.

in
rh
f P1I14F02
FHi-O
3 AO C 02
3C
32'1C02
OlFFFF
C9

"iiff mm
fOU"!'

r.nuf-

E_ f' A- ( T AFfLF.Ii

)

^LJM F
Jf' c. nifiinr.ii
AIl!i HLiiT
LI' A t ii

f\U}' Ex

I li h 1 A
Jf

'

FHIi,Y

Jl- .'uinnnsnh
i. n I'F. (FOIi FN!
Alili (+1. ' uv
3 Nl^

LI' L 1 [

1 Ii A- (COHI FiF (; >

LI' iCi nnrfinu) ,a
JF
1 1' I'tof Fir

M i

Ml

hi:

i [' i'tO
i.fi HI .0000
iji EiF:,<Ffni 1 (Jl

1 u s<.i:

AI'I' ill tl'F

AT'I'LH
!-nr-'
J

E'l'

nr » HI

I'llL III

r'Ai 1 SF AFi'ETH

"
Jf fj/ IT j 1

L !' A. 1 !A!i! F H)
niui

-if' / ' 1 (V^EFi 1

A r i C'riflF 'f.'F J] )

! fJF

Jf I'.iinnF'i
1 i< w . ?r/Jii F (1)

AI'I' IIL .lit

-IF ftFIUF-

urn ii

1 1' A . 1 ! Af'l 1 (( 1

'.mi' Fl

.IF- 7. iH;iF i;i

Ll' F.A
r:AL!

AM'
EiEi:

i:x

I I'

AM'
EX
I f
l.t'ITi-

I't'n

JF-

lur
MISH
F-IIF-

€X
i.I'

I i'lK

Hiii. 1

FIL . DF,

HI

E'F.H!

Hi, . I|;NF! i fil

HL.I'F
I'F.Hl

f'f:. '.i'tni Ffi)

A

i'F , 111.

i'C. '.r.mi Ftn

A. < lAf^LEN)

( rniiLfN) .A
Hn.OFrFFFl

'U.'.-.l IF! sr_! IF Cim-R-EFH F'l]fini(3M
•..F-I.IJS IJiCFiFfiFill UI! 1 l;il F-A!;i
- . . -FFJf OF inr TAlTl I

;i'i uh, iruAWiF AciuAi AinrFiEs;;
ii:HA(JiiF LOHICAl F'Fl'-,. 'JALIFF-

ISFF ir FIlEiil lUH Sn AT ?!!F- ilF

'-.lAMF (!;AHf- At; FAHLFH-Ii)
;ni'tt i FfiFF-Y i-iii;f F fikj

; TtiriiFMi in ! hbila! vmn um
••r,( 1 IFJFRi HF fiF iil i

''.'!
i :;i ii:-,r ri nr, u\ crihi af.f

-- . .i.FHlll '

. .'Jni iir ill T'F nil F XI

F

;sf F rs Hi. Jl ': I ai i-i ai'y uii i.:i

WJfFLK J (!! il lAI'l |-

ii:iifii-Ri.f, -j . SFT HI. M<im mil l.!

=
. .Di'jFFi sumif fiii

irnrtF-i(f ;i -o. f;F I !• for 'iuin f;a!: 1

;si:(: miu haiii iir.uv.r, (\ki ii i i

'•'.iVi III. HI i.fisi F'tiHinnii iFj lA^iF
i . .FHFi,y

FtiF r HF ' FIHRr AI'IIVF HI

iHHl! I liF- riKF HflTR-Y Fir HFHGf<Y

if.TFrAi Ii wrcrfiiiAf-'Y
i!!l i;; FFiONT flF NdU EHF-FT SF-AFTE
FLOAi' OiLlFCT IIIIQ EHF-TY SfAEJF

; iNi:r,rtiRHT iablc i.ETHr.TFF

}r,HnU THAT IE UA!i hllNB

Fig. 9.23: Binary Search Program (cont.)
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(GET APPRES5 OF OBJECT
iEEE IF OBJECT IS THERE

!iiE IS LOC. OF OBJECT. HL IS

, , .ONE ENTRY OBOyE
iSEE mu MANY ENTRIES ARE LEFT

;SHIFT DOWN 1 ENTRY LENGTH

IDECREKENT TABLE LENGTH

>SHGU THAT ACTION UAS TAKEN

Q2A(\ (0000) ENBED ENIi

SYHDOL TABLE

flftnPM 01C9 ADDIT 0196 CL05EN 02-lfl COMPRE O^'IB

^^Sn^A 023F mllu 0=.A ENTLEN 024F ENTRY OllE

uicTnc niPTi INSERT 020C HOUEH 0201 HULT 0I8D

NeIteI 0149 lullm 01.2 NQTCLO 0162 NOTFOU OIBA

OUTE 0249 REALCL OifiF SEfiRCH 0100 SETUP OlEE

TABA5E 024D TABLEN 024C TESTS 01A9 TDDHIG Olf.5

Fig. 9.23: Binary Search Program (cont.)

LINKED LIST

The linked Hst is assumed to contam, as usual, the three alphanu-

meric characters for the label, followed by one to 250 bytes of data, fol-

lowed by a two-byte pointer which contains the starting address of the

next entry, and lastly followed by a one-byte marker. Whenever this

one-byte marker is set to "1", it will prevent the insert-routine from

substituting a new entry in the place of the existing one.

Further, a directory contains a pomter to the first entry for each let-

ter of the alphabet, in order to facilitate retrieval. It is assumed m the

program that the labels are ASCII alphabetic characters. All pointers at

the end of the Hst are set to a NIL value which has been chosen here to

be equal to the table base, as this value should never occur withm the

linked Hst.

The insertion and the deletion programs perform the obvious pointer

manipulations. They use the flag INDEXED to indicate if a pomter

pointing to an object came from a previous entry in the Hst or from the

directory table. The corresponding programs are shown in Figure 9.29.

The data structure is shown in Figure 9.25.

02:?!

0224
0225
032B
022C
022D
022E
0231
0232
023S
0237
023B
023C
023F
0242
02fl3

02'16
0249

DELETECEiOOOI
14
CA4902
er>5Ti4F02

EB
19
3A4C02
90
Cfi3F02
EB4B4F02 SHIFTIN
EEtBO

311

C23502
3ft4C02
3D
324C02
OIFFFF
C9

CALL
INC
JP
LD
EX
ADD
LD
SUB
JP
LD
LBIR
DEC
JP

E'OUHTftB LB
DEC
LD
LB
RET

SEARCH
D
Z.OUTE
DE. CEHTLECJ
DE.HL
HLiDE
n,<TftEILEN>

B
Z. DOWN TAB
EC. (EMTLENl

A
NZ.SHiFTIN
A, < TABi.EH)
A
(TABLEH! lA

BC.OFFFFH

DELETE 0221
FOUND OIBC
NEW 01 BO
OUT 0230
SHIFT I 0235
TODLOU 0165
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DATA STRUCTURES

-£'M400 InitiiiMaNi-
doo 00 00 00 00 00 00 oo oo -oo oo oo oo oo oo oo on
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
04:!0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ,

oino 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .'.

0^.10 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0-150 oo 00 00 00 00 00 00 00-00 00 00 oo 00 00 00 00 ....
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
O4?o 00 00 00 00 00 00 00 00-00 00 00 00 oo oo 00 00

l.hUna iif Ohjec^

uiKtlhcirliiculiims

-iiH300 tninemiin

0300 53 4F IE 31 31 31 31 31 31 31 31 3! 00 00 00 SHN! 1 i n i 1 1 1 1 .

.

O.1I0 44 41 44 27 ,in 3:> :i:'-nr ,!? 3:? 00 00 00 i,ni':'2?-^''-'-^-'- .

.

03:'0 411 4F 41. 33 33 33 33 33-33 33 33 33 33 00 00 00 MaH3333333333 . ,

0330 r,5 4E 43 34 J'i 34 34 34-34 34 34 34 34 00 00 00 (JflC44i1 4444444 . .

0340 41 4i; S4 3s 3r, 3;; 3:, 35-3S 3r, 35 35 3:1 00 00 00 niirsssssfissss.

,

03^/0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0360 00 00 00 00 OO 00 00 00-00 00 00 00 00 00 00 00 ,

03-/0 00 00 00 00 00 00 oo oo-oo oo oo oo oo oo oo oo

-SY ,

> = 0000 3;!0 }

RunlNSKRT'
f-o:'A6 o::66-

-i'M4015

'1400

0410
04ro
0430
0440
0450
04*0
0470

4Ir 4F
00 00
00 00
00 00
00 00
00 on
00 00
00 00

Hi 33 33 33 33 33-33 33
00 00 00 00 00 00-00 00
00 00 00 00 00 00-00 00
00 00 00 00 00 00-00 00
00 00 00 00 00 00-00 00
00 00 00 00 00 00-00 00
00 00 00 00 00 00-00 oo
00 00 00 00 00 00-00 00

Tabic after inkier i! [I

n

33 33 33 00 00 00 MQH3333333333 , .

.

00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00 ,

00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

T-03:;o 310
-G:;A3/26fl

;-o:!,'„'. or.v.fi'

Run -INSERT' on anolher Objeci

ysiinRof tnlilcafier

inscrtiun. Nate: iBble

-ilH4(IO li kepi alphabelic

0400 44 41 44 3? 32 32 32 32-32 32 32 32 32 4n 4F 4Ii r)rtn22:!2222:;22fio»
04 10 33 33 33 33 33 33 33 33-33 33 00 00 00 00 oo oo 3333333333
0420 00 OO 00 00 00 00 00 00-00 00 00 00 00 00 00 00
O430 00 00 00 00 oo 00 00 OO-OO 00 00 00 00 00 00 00
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
04r,0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
04.',0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OI.'O 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

' ' (additional in!ier(>i) * ' "

Fig. 9.24: Alphabetic List—A Sample Run
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0100
0410
0420
0430
0440
0450
OIAO
0470

H 4E
32 32
33 33
31 31
34 00
00 00
00 00
00 00

54 35 35 35

32 32 32 32
33 33 33 33
31 31 55 4E
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

35 35-35 35

32 32-32 32
33 53-4F 4E
43 34-34 34

00 00-00 00
00 00-00 00
00 00-00 00
00 00-00 00

Table Eanngunilion

nfIcr all Objects

have been inserled

35 35 35 44 41 44 flNT555555555SI!fi[!

flP 4F -III 33 33 33 2222222222H0H333
31 31 31 31 31 3i 3333333SC}HnUn
34 34 34 34 34 34 i 1 1 !UflC444444444

00 00 00 00 00 00 4

00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

Y=0340 300 I

-G260/263 [ Run 'SEARCH' for "SON" (at address 0300)

P=0263 0263')

-PR ^
Z N fi=4E BC=0401 DE=000I3 HL=0427 S=0 100 . P=02fi3 0263'

ft'=00 B'=0000 B-=0000 H'^0000 X=0427 Y=0300 1=00
CALL 01 DO

(0!R0'

)

-0266/26?

P=0269 0269'

0400
0410
0420
0430
0440
0450
0460
0470

41 4E
32 32
33 33
34 34
34 00
00 00
00 00
00 00

-Address of Object in table

(verify in Table above thai it is "SON">

Run 'DELETE' on "SON"
Table conflBUtallon

nfler delellon. Nole:

ihnl UNC was stilfled

up. The last UNC
en fry mtisl be

d isregarded

3S 35 35 44 41 44 ftNT5555555555PnD

4D 4F 4R 33 33 33 2222222222H0M333
34 34 31 34 3n 34 3333333UNC444444
34 34 34 34 34 3fl 4444UNC444444444
00 00 00 00 00 00 4

00 00 00 00 00 00
00 00 00 00 00 00 . •

00 00 00 00 00 00

54 35 35 35
32 32 32 32
33 33 33 33
34 34 55 4E
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

35 35-35 35
32 32-32 32
33 55 4E 43
43 34-34 34
00 00-00 OO
00 00-00 00
00 00-00 00
00 00-00 00

-G260/263
Try run of "SEARCH" again (on "SON")

P=0263 0263'

p-— Not found

rt=Fe BC = 040! IlE^FFOIl HL=0'127 S^OIOO P^0263 0263' CALL OlPO

rt'=00 £l-=0000 IJ-^0000 H'^0000 X=0427 V = 0300 1=00 (Oltl

-G263/266
j^^ .^^^^.^ qjj.j,^,^ (..gON")

P=^0266 0266'

S

Currcnl lable

conriguni lion.

Compare ( ihe one

prior (oltie

DELETTE

ftNT5555555S55DfiP
2222222222HDH333
3333333SDfllllll!
liUUNC444444444

J—-
Shows that action was executed

n=OS BC=FFFF DE=0434 HL=0300 5=0100 ^=0266 0266' CALL 0221

fl'^00 0'=OOOO D'=0000 H'-OOOO X-0427 Y=0300 1=00 (0221'

-I>H400
0400 41 4e 54 35 35 35 35 35--35 35 35 35 35 44 41 44

0410 32 32 32 32 32 32 32 32--32 32 4B 4F 4P 33 33 33

0420 33 33 33 33 33 33 33 53-'4F 4E 3i 3! 31 31 31 31

0430 31 31 31 31 55 4E 43 34--34 34 34 34 34 34 34 34

0440 34 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00

0450 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00

0460 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00

0470 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00

Fig. 9.24: Alphabetic List—A Sample Run (cont.)
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DATA STRUCTURES

DiREaORY

"A"

'R-

POINTER

™^
A

POiNTER

R

POiNTER

N!L

Nil

Fig. 9.25: Linked List Struclure

An appiication for this data structure would be a computerized ad-
dress book, where each person is represented by a unique three-letter

code (perhaps the usual initials) and the data field contains a simplified

address, plus the telephone number (up to 250 characters). Let us exam-
ine the structure in more detail. The entry format is:

C
i
C D D 51 D O

unique label data (1 to 250 bytes) pointer to

(ASCII) next
occupied

As usual the conventions are:

ENTLEN: total element length (in bytes)

TABASE: address of base of list

The address of the OBJECT is always assumed to reside in the lY register

prior to entering the program. Here. REFBASE points to the base ad-
dress of the directory, or "reference table."

Each two-byte address within this directory points to the first occur-
rence of the letter to which it corresponds in the list. Thus, each group
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of entries with an identical first letter m their labels actually forms a sep-

arate list withm the whole structure. This feature faciUtates searching

and IS analogous to an address book. Note that no data are moved dur-

ing an insert or delete. Only pointers are changed, as in every well-

behaved linked list structure.

if no entry starting with a specific letter is found, or if there is no en-

try alphabetically following an existing one, their pointers will point to

the beginning of the table {= "NIL"). At the bottom of the table, by

convention a value is stored such that the absolute value of the differ-

ence between it and "Z" is greater than the difference between "A"
and "Z". This represents an End Of Table (EOT) marker. The EOT
value is assumed here to occupy the same amount of memory as a nor-

mal entry but could be just one byte if desired. The letters are assumed

to be alphabetic letters in ASCII code. Changing this would re-

quire changmg the constant m the PRETAB routine.

The end-of-table marker is set to the value of the beginning of the

table ("NIL").

By convention, the "NIL pointers", found at the end of a string, or

within a directory location which does not point to a string, are set to

the value of the table base to provide a unique identification. Another

convention could be used- In particular, a different marker for EOT
results in some space savings, as no NIL entries need be kept for non-

existing entries.

Insertion and deletion are performed in the usual way (see Part I of

this chapter) by merely modifying the required pointers. The

INDEXED flag is used to indicate if the pointer to the object is in the

reference table or another string element.

Searching

The SEARCH program resides at memory locations 0100 to 0155

an uses subroutine PRETAB at address 01D2.

The search principle is straightforward:

1—Get the directory entry corresponding to the letter of the alphabet

in the first position of the OBJECT'S label.

2—Get the pointer. Access the element. If NIL, the entry does not
exist.

3— If not NIL, match the element against the OBJECT. If a match is

found, the search has succeeded. If not, get the pointer to the next entry

down the list.

4—Go back to 2.

An example is shown in Figure 9.26.
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)
—

^

A-POtNTEH AAA

B.POINTER

fJ

® r

[FOUND)

fJ STEPS REQUiHED)

AZC

Fig. 9.26: Linked List—A Search

Inserling

The insertion is essentially a search followed by an insertion once a
"NIL" has been found.

A block of storage for the new entry is allocated past the EOT
marker by looking for an occupancy marker set at "available" -

The program is called "NEW" in Figure 9.29 and resides at ad-
dresses 0156 to 1A3. An example is shown in Figure 9.27.

J*

A-FOfNIEB

B-POINIEB

C-PO!NttR

Fig. 9.27: Linked List: Example of Insertion
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Deleting

The element is deleted by setting its occupancy marker to "available"

and adjusting the pomter to it from the directory or else the previous

element.

The program is called "DELETE", and resides at addresses 01A4 to

OlDi.

An example of a deletion is shown in Figure 9.28.

DOC P01N![B -_r-

HOn OAF !S MO! EBfiSiO. Bur -iNViSiHli'

Fig. 9.28: Example of Deletion (Linked List)
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DATA STRUCTURES

iii.'ii 'I r '.}')f

!

1 11 H ' 1 ili'i' i ! s flUi !
' J 1 f n M
< 01 r fi 1 Id 1 hnrd Ml

'.niir

'

F [J T 1 f 17 rrf i ain i
I •

,

f> t M 00 1 1' 1^ '1

4;'
1 ri

:ir. 1

.()!
1 !!

'11 n 7 en! ( 'id i f-UUf- Plf
f fjfii y f 'H [ Nl i

Oi Oft i fi
1 u A - Tir 1 ; HiJVt r 1 n H H'F'" r:iifv r F fJ r 1 T rf rrr

')
1
();t

\ i>

<) 1 nr. 1 ',
1 tn

•U (lit tfi
1

Ol ot
1 ji

<l lOF HI

(J J J
1
*

f s 3 f !![' /I 00 '" '

'

ir
'•I nni r. 1 f [ r-:;: f i e" 1 i e i- nf v in f-r

1) 1 ! '."i !
€71'

'-'<\i ?S E'; SFif MAI' r. EE.
h'n

J
' [<''"','', r, 1 IF" 'Jj ! 1 fill I E f )ri?j 1

J

f ) r f (-1 I'Ei^E (v{i ;i:nrti Ai f t iHsi 1 r e f f r-;?iun 1' CI ! T V M?

'

(11 rn ir 1; , ^JSHii JOJi

(1 1

1

ri'^'iTiO 1 11

OK'rt h!i;'F.o3 1 I' A - 1 r y < M ; J ]i .'lil' M T IF

1 Flil'F 01 V! ' r V f 1 i

'.) i
:'( Jift.fr 01 »

<> 1 ;'F f;:-:.;".') i Jr
1 .fl' I'lui 0.-'

! I< n r ' F ' f > -
1

' DMF ' nE'' f lE- f ' 1 h 1 IF F'"i

my.-, f f Y 1 J

(H .in f : rtM !

IC'r'.OI If

'

'jr T 1 1 ii rr'i

'

(i! ,!F ]j]if 'i tHiiillUli

f 1 M <l ]i ] 1-rii'" T

['

f ) T 3 L'Ar ro 1 ! I f n T fm 1 M 1

'")
3 'I 1 ') ^il'l' HI ' I'F

')! AT: -11
1 !i

1 ' 1 HL - f '1
1 1 F 'H J *J 1 1 F^ vnj 1 JI r FT

.

<)i W, :m 3 fJs' H\

'J 1 J '.' -ic,
1 ii I' » £|1| 1

cr. I'llHH Eu: • i iii'>\' r X u riM rni^/rf f-

OJ JV I't'i'i i-Of f X

11] .ii' SE 00 1_H M .

) 1 ! ,'0

1

!. l! - F-E ';E i r 1 f"iH

o 1 :;o r.3i?oi .1; IJjflF f^Ei!

1 o.'.r 1 ' ilEKJii !. f Hr'lf f H
f V Niirr mnu- ill 1

01''i& !;!»() (If 1 STAf'C H i'-.i 1 UHl.F.f HhJI rn '.iium l< HO
S '"jV O'l

1 1^1. "
ii I Si'* r' 1 II M
1 r L-[' Ml' il

r!

1

lAfi^^' !

i S7 UE:r . IJI I 'i. r V [ Hi i', i /J T Jt Y
1 'ji /rti !j'>i 1 E'

'» 1 .'. 1 ( 1' rif 1 1 fitii 1
"

E'! ''i! f^HVE rn EfH* 'SF J5E*1 IfiTE'^p'

f ') 3 t !• lit ' f 1 1 1 rJ ^

OI i
1 rj|] fll ' TiIkH '- E- HF^' E.'E Af ( F f^f r 1 H F )F \

fl}

UJf. HI.

f) !

7

rilc HI
[ '/ HI ' L'E

i ;,> Ml A ' >

f)
1 Ui [rl r

.

j'j

11 - HI- f nirJf ' i I 'Hii^i i n i iJi < 1'. 1 Hi- i-i - i!'* Af'/^r*?'11 n Jb^( 1 ' 1 1 ff( E J 1 J ? !( ! !: : ( F' f "If ifl | F*

iH i,"i I til' hr
'.1 3 C.I !!',

1 'llfiH [ff

J 1 ,'o i he:. I'tlMl 1

1

')3 t ! ! llf fii

') ! 7 ', i.ii'U't CO 1 1 h > Ml I'-'f IJl-IFI'T THTH '

i)! ;v : I'l") 1
]i

1
1^'

5)1 7-/ r iisn I • iI'Ml AHlii- 111 1 (JTi.-T OF if I- (IK, 11 ITT

01 E 1 rriF' \n . . ,0! i-ni;j!i l, i OS! ! i(((i

owe f 1'
i * E'rl.Hl

'!! 7£ i.l> 'HI > rr

'J 1 7r IIJC HI.
<) 1 7i'

( u (HE > IJ

'J 3 1)0 !IIC. nr.

Olii! (601
1 u £Hi 3 - ( •<:a I fii,rufrtHcv unkij i-

Fig. 9.29: Linked List—The Programs
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Hi.

ft

SEP! iHL
irE. (ENTLEH!
HL.Kf.
HE
(HL) -L

ML
<Ml, > 'H
FINISH
I'C:

( ML > .

f

Hi.

( HL 1 I n

nc.oFrrFH

IGET ftHIiR OF UHFRE THIS SPftCt IS

;SEF UHAT PREVfOlJS POIHTERS MOST

. . . Fir F.i: r

iHET nUPR QF E»TKt PKEVinUB Til

OBJECT K MfJVE Tn r-fltHTEF: ftBfrt

iRFHur'-'i: ftiiitR or oiui^ci

irin n initJirr.- rnsniiiN

;i:LS-:A!i- OUT 'MfiCh

KiET HiHEX iMUiiiF-Hli

U.mi' HI. INTH IT

JCiFi Aftl'iiESS OF IIHJECT

:r,FE T r ii; THi:f;E

iTiET Hi_ TO F'aiiiirii ftRFii OF oiuEri

;;;ft hi th rornrEfi or rRF'-'iom;

;r-Hr Antif; oF hfit iini) ijhaif'-'fr

...(FTIHER INHEX OR FN7RY>

fon Frr-J5i leufk of oimeft
JREMIH'E ,V,\:U i,EAr!EF:

El
i IM 3rtE70l

01(37 :u»

OlliU covaoi
01 ai' E3
OiQC EUliHECOI
0190 19
0191 in

oi9n 73
0173 23
0191 72
0I'?5 C3A001

1 9H CI
019V Clili201

oi9c: EP
01911 73
019E
OiVF 72
OlftO 1 FFF F-

|}1A;^ C9

Olft*} CI'OOO I

1 it '!

OlftO c rm 1

1 tsl' ifiiE;;

01 fill Ei
OIAH EHIHECOl

1 FC 09
1 [<,! IE

OH'-l -•7.

01D5
1 1'ft 23

01117 3A00
1 1<'} 3fiF70 1

1 IT. 31"

1 t'Ti r,2i:70I

01 CO f:fiiooi

om:.; En
Oi€4
0IC7 2AEr01

1 Zt\ 19
oicil 71

OHX 23
1 en 70

o 1 ci- OlFFFF
Ollil C9

it i [T Il'i

Fri7r.oo

1 HA 3!i

(1 1 li

1 Ii9 (:ii?7

OITH'

OlIiE Bfi

i| 1 HF AF

OlEO ti2F-10i

h;
"IF-l V\'

n 1 F % El

01FA f
1 i: '.' (0000)

nVfliiO! lAMi F

CHftiiGi; 01 c^'

runsH OiAO
!)EU) OlSA
OUTF oini
rftliASF OlEEl

F'OP

L!i

lire

jp
E)!

i.n

rttiTi

F-nr

i.i'

!((C

Lli

JF
SFL II tlx POP

CALl
FX
L ['

INC
l_ii

FTNtnil Lli

Oin !iEI

HEi.ETE r.ALF.

(NC
JP
FlJfii)

F-np

i-If

Aim
IJl

iw:
I.n

INC
i.li

f.[!

HFC
Jp
CALL
r.x

JP
CFiANCEM LIi

Al'I'

INC
LIi

LIi

ilUTF f!ET

rr(ETAii pHSiM
LIP

PEC

SI. A
i.ii

(Mi[i

Lit

JP
UlC

FixUJ- FX
POP
RET

knuer enii

COttPAR 0112
FTXliP 01E1
NEXiniJ 0161
FRET All 01112

HL
M:- (ENTLENl
HF_ t !iC

C. IHL>
FH.

I' t ( HL I

IIL

< HL > - O

A. ( INHEXFFO
A
NZ'CHAtlOFM
PiiETAii

mi-HL
mv I n

HL. (ENt! ENi
HL .I'F

( i!i ) . r

FiL

I HL < < 1<

iiCOFFFFFF

Hi.

A . ( I Y * O ?

A
lOlt

A
FFF Oii FMAliE >

F.

i. .A

fJC . F ! Xl]p

FF

tiF_ . HI

Hi

PfJ. FTF 01A1
FnilNIi f)iS3

NFir.naii oi3f
REFRAS OlEA

;rfiFi-if'jf- poihtfr

•hUl i IP! Y I'V
"'

ENIiER 0!E7
INUEXE OfT-"

MOTFOl) Olli'J

SEARCFF OlOO

ENILEN 01 EC

MOUTH I'iCR

niii niA;t

Fig. 9.29: Linked List—The Programs (cont.)
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Fig. 9.30: Linked List— A Sample Run (coni.)

SUMMARY

The beginning programmer need not concern himseif yet with the

details of data structures implementation and management. However,

efficient programmmg of non-tnviai algorithms requires a good under-

standing of data structures. The actual examples presented in this

chapter should help the reader achieve such an understanding and solve

all the common problems encountered with reasonable data structures.
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PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have been
developed by hand without the aid of any software or hardware re-
source. The only improvement over straight binary coding has been the
use of mnemonic symbols, those of the assembly language. For effec-
tive software development, it is necessary to understand the range of
hardware and software development aids. It is the purpose of this chap-
ter to present and evaluate these aids.

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: writmg a program m binary or hexa-
decimal, writing It in assembly-level language, or writing it m a high-
level language. Let us review these alternatives.

Hexadecimal Coding

The program will normally be written using assembly language mne-
monics. However, most low-cost, one-board computer systems do not
provide an assembler. The assembler is the program which will auto-
matically translate the mnemonics used for the program into the re-
qmred binary codes. When no assembler is available, this translation
from mnemonics into binary must be performed by hand. Binary is

unpleasant to use and error-prone, so that hexadecimal is normally
used. It has been shown m Chapter 1 that one hexadecimal digit will
represent four binary bits. Two hexadecimal digits will, therefore, be
used to represent the contents of every byte. As an example, the table
showing the hexadecimal equivalent of the Z80 instructions appears in
the Appendix.
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In short whenever the resources of the user are limited and no assem-

bler IS available, he will have to translate the program by hand mto hex-

adecimal. This can reasonably be done for a small number of mstruc-

lions such as, perhaps, 10 to 100. For larger programs, this process is

tedious and error-prone, so that U tends not to be used. However, near-

ly all single-board microcomputers require the entry of programs m

hexadecimal mode. They are not equipped with an assembler and a lull

alphanumeric keyboard, m order to limit their cost.

in summary, hexadecimal coding is not a desirable way to enter a

program in a computer, it is simply an economical one. The cost ol an

assembler and the required alphanumeric keyboard is traded-ofl

agamst increased labor required to enter the program in the memory.

However, this does not change the way the program itself is written.

The program is still wnlien in assembly-level language so that it can be

examined by the human programmer and be meaningful.

Assembly Language Programming

Assembly-level programming covers both programs that may be

entered in hexadecimal and those that may be entered m symbolic

assembly-level form m the system. Let us now examine the entry of a

program directly m its assembly language representation. An assembler

program must be available. The assembler will read each of the mne-

monic instructions of the program and translate it mio the required bit

pattern using i to 5 bytes, as specified by the encoding of the instruc-

tions In addition, a good assembler will offer a number of additional

facilities for writing the program. These will be reviewed m the section

on the assembler below. In particular, diredives are available which

will modify the value of symbols. Symbolic addressing may be used and

a branch to a symbolic location may be specified. During the debugging

phase when a user may remove or add instructions, it will not be neces-

sary to rewrite the enure program if an extra instruction is inserted be-

tween a branch and the point to which it branches, as long as symbolic

labels are used. The assembler will take care of automatically adjusting

all the labels during the translation process, in addition, an assembler

allows the user to debug his program in symbolic form. A disassembler

may be used to examine the contents of a memory location and recon-

struct the assembly-level instruction that it represents. The various soft-

ware resources normally available on a system will be reviewed below.

Let us now examine the third alternative.
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SYMBOLIC

HiGH-lEVEl

ASSEMBlY-LEVEL

MACHiNE-lEVEL

Fig. 10. i: Programming Leveis

High-Levei Language

A program may be written in a high-level language such as BASIC,
APL. PASCAL, or others. Techniques for programmmg in these vari-

ous languages are covered by specific books and will not be reviewed
here. We will, therefore, only briefly review this mode of program-
ming. A high-level language offers powerful instructions which make
programming much easier and faster. These mstructions must then be
translated by a complex program mto the final binary representation
that a microcomputer can execute. Typically, each high-level instruc-

tion will be translated into a large number of individual binary instruc-
tions. The program which performs this automatic translation is called

a compiler or an interpreter. A compiler will translate all the mstruc-
tions of a program in sequence into object code. In a separate phase,
the resulting code will then be executed. By contrast, an interpreter will

interpret a single instruction, then execute it. then "translate" the next
one, then execute it. An interpreter offers the advantage of interactive

response, but results m low efficiency compared to a compiler. These
topics will not be studied further here. Let us revert to the programming
of an actual microprocessor in the assembly-level language.
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SOFTWARE SUPPORT

We wiil review here the mam software facilities whicii are (or should

be) available in the complete system for convenient software develop-

ment. Some of the definitions have already been introduced. They will

be summarized here and the rest of the important programs will be de-

fined before we proceed.

The assembler is the program which translates the mnemonic repre-

sentation of instructions into their bmary equivalent. U normally trans-

lates one symbolic instruction mto one bmary instruction (which may

occupy 1, 2 or 3 bytes). The resulting bmary code is called object code.

It IS directly executable by the microcomputer. As a side effect, the

assembler will also produce a complete symbolic listing of the program,

as well as the equivalence tables to be used by the programmer and the

symbol occurrence list in the program. Examples will be presented later

m this chapter.

In addition, the assembler will list syntax errors such as instructions

misspelled or illegal, branching errors, duplicate labels or missing

labels.

It will not delete logical errors (this is your problem).

A compiler is the program which translates high-level language in-

structions into their binary form.

An inlerpreter is a program similar to a compiler, which also trans-

lates high-level instructions into their binary form but does not keep the

intermediate representation and executes them immediately. In fact, it

often does not even generate any intermediate code, but rather executes

the high-level instructions directly.

A monilor is the basic program which is indispensable for using the

hardware resources of this system. It continuously monitors the input

devices for input and manages the rest of the devices. As an example, a

minimal monitor for a single-board microcomputer, equipped with a

keyboard and with LED's, must continuously scan the keyboard for a

user input and display the specified contents on the light-emitting

diodes, in addition, it must be capable of understanding a number of

limited commands from the keyboard, such as START, STOP, CON-

TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys-

tem, the monitor is often qualified as the executive program, when

complex file management or task scheduling is also provided. The over-

all set of facilities is called an operaiing syssein. if files are residing on a

disk, the operating system is qualified as the disk operaiing sysiem, or

DOS.
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An editor is the program designed to facilitate the entry and the mod-
ification of text or progams. It allows the user to enter characters con-
veniently, append them, msert them, add lines, remove lines, search for

characters or strings. It is an important resource for convenient and ef-

fective text entry.

A debugger is a facility necessary for debugging programs. When a
program does not work correctly, there may typically be no mdication

whatsoever of the cause. The programmer, therefore, wishes to insert

breakpoints in his program m order to suspend the execution of the

program at specified addresses, and to be able to examine the contents

of registers or memory at this point. This is the primary function of a

debugger. The debugger allows for the possibility of suspending a pro-

gram, resuming execution, examining, displaying and modifying the

contents of registers or memory. A good debugger will be equipped
with a number of additional facilities, such as the ability to examine
data in symbolic form, hex, binary, or other usual representations, as

well as to enter data in this format.

A loader, or Unking loader, will place various blocks of object code
at specified positions in the memory and adjust their respective sym-
bolic pointers so that they can reference each other. It is used to relocate

programs or blocks m various memory areas. A simulator or an emu-
lator program is used to simulate the operation of a device, usually the

microprocessor, in its absence, when developing a program on a simu-
lated processor prior to placing it on the actual board. Using this ap-

proach, it becomes possible to suspend the program, modify it, and
keep it in RAM memory. The disadvantages of a simulator are that:

1— It usually simulates only the processor itself, not input/output
devices

2—The execution speed is slow, and one operates in simulated time.

It IS therefore not possible to test real-time devices, and synchronization

problems may still occur even though the logic of the program may be

found correct.

An emulator is essentially a simulator in real time. !t uses one proces-

sor to simulate another one, and simulates it in complete detail.

Utility routines are essentially all the routines which are necessary in

most apphcations and that the user wishes the manufacturer had pro-

vided!

They may include multiplication, division and other arithmetic oper-

ations, block move routines, character tests, input/output device han-

dlers {or "drivers"), and more.
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THE PROGRAM DEVELOPMENT SEQUENCE

We wili now examine a typical sequence for deveioping an assembly-

level program. We will assume that all the usual software facilities are

available m order to demonstrate their value, if they should not be

available m a particular system, it will still be possible to develop pro-

grams, but the convenience will be decreased and, therefore, the

amount of time necessary to debug the program is likely to be in-

creased.

The normal approach is to first design an algorithm and define the

data structures for the problem to be solved. Next, a comprehensive set

of flowcharts is developed which represents the program flow. Finally,

the flowcharts are translated into the assembly-level language for the

microprocessor; this is the coding phase.

Next, the program has to be entered on the computer. We will exam-

ine in the next section the hardware options to be used in this phase.

The program is entered m RAM memory of the system under the

control of the editor. Once a section of the program, such as one or

more subroutines, has been entered, it will be tested.

First, the assembler will be used. If the assembler did not already

reside in the system, it would be loaded from an external memory, such

as a disk. Then, the program will be assembled, i.e., translated mto a

binary code. This results m the object program, ready to be executed.

One does not normally expect a program to work correctly the first

time. To verify its correct operation, a number of breakpoints will nor-

mally be set at crucial locations where it is easy to lest whether the inter-

mediate results are correct. The debugger will be used for this purpose.

Breakpoints will be specified at selected locations. A "Go" command

will then be issued so that program execution is started. The program

will automatically stop at each of the specified breakpoints. The pro-

grammer can then verify, by examining the contents of the registers, or

memory, that the data so far is correct. If it is correct, we proceed until

the next breakpoint. Whenever we find incorrect data, an error in the

program has been detected. At this point, the programmer normally

refers to his program listing and verifies whether his coding has been

correct. If no error can be found m the programming, the error might

be a logical one and one might refer to the flowchart. We will assume

here that the flowcharts have been checked by hand and are assumed to

be reasonably correct. The error is likely to come from the coding. It

will, therefore, be necessary to modify a section of the program. If the

symbolic representation of the program is still m the memory, we will
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Simply re-enter the editor and modify the required lines, then go

through the preceding sequence again. In some systems, the memory
available may not be large enough, so that it is necessary to flush out

the symboiic representation of the program onto a disk or cassette prior

to executmg the object code. Naturally, m such a case, one would have

to reload the symbolic representation of the program from its support

medium prior to entering the editor again.

The above procedure will be repeated as long as necessary until the

results of the program are correct. Let us stress that prevention is much
more effective than cure. A correct design will typically result in a pro-

gram which runs correctly very soon after the usual typing mistakes or

obvious coding errors have been removed. However, sloppy design may
result m programs which will take an extremely long time to be de-

bugged. The debugging time is generally considered to be much longer

than the actual design time, in short, it is always worth mvestmg more
time m the design in order to shorten the debugging phase.

However, using this approach, it is possible to test the overall organi-

zation of the program, but not to test it in real time with input/output

devices. If input/output devices are to be tested, the direct solution con-

sists of transferring the program onto EPROM's and installing it on the

board and then watching whether it works.

There is a better solution. U is the use of an m-circuii ennilaior. An
in-circuit emulator uses the Z80 microprocessor (or any other one) to

emulate a Z80 m (almost) real time. It emulates the Z80 physically. The
emulator is equipped with a cable terminated by a 40-pin connector, ex-

actly identical to the pin-out of a Z80. This connector can then be in-

serted on the real application board that one is developing. The signals

generated by the emulator will be exactly those of the Z80, only perhaps

a little slower. The essential advantage is that the program under test

will stiil reside in the RAM memory of the development system. It will

generate the real signals which will communicate with the real in-

put/output devices that one wishes to use. As a result, it becomes possi-

ble to keep developing the program using all the resources of the devel-

opment system (editor, debugger, symbolic facilities, file system) while

testing input/output in real time.

In addition, a good emulator will provide special facilities, such as a

trace. A trace is a recording of the last instructions or status of various

data busses in the system prior to a breakpoint. In short, a trace pro-

vides the film of the events that occurred prior to the breakpoint or the

malfunction. It may even trigger a scope at a specified address or upon
the occurrence of a specified combination of bits. Such a facility is of
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great value, smce when an error is found il is usually too late. The in-

struction, or the data, which caused the error has occurred prior to the

detection. The availability of a trace allows the user to find which seg-

ment of the program caused the error to occur. !f the trace is not long

enough, we will simply set an earlier breakpoint.

Fig. 10,2: A Typical Memory Map

This completes our description of the usual sequence of events in-

volved m developing a program. Let us now review the hardware alter-

natives available for developing programs.
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HARDWARE ALTERNATIVES

Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach to

program development. It is normally equipped with a hexadecimal key-

board, plus some function keys, plus 6 LED's which can display ad-
dress and data. Since it is equipped with a small amoun t of memory, an
assembler is not usually available. At best, it has a small monitor and
virtually no editing or debugging facilities, except for a very few com-
mands. All programs must, therefore, be entered in hexadecimal form.
They will also be displayed in hexadecimal form on the LED's. A sin-

gle-board microcomputer has, m theory, the same hardware power as

any other computer. Simply because of its restricted memory size and
keyboard, it does not support all the usual facilities of a larger system
and makes program development much longer. Because it is tedious to

develop programs in hexadecimal format, a single board microcom-
puter IS best suited for education and training where programs of lim-

ited length have to be developed and their short length is not an obstacle

to programming. Single-boards are probably the cheapest way to learn

programming by doing. However, they cannot be used for complex
program development unless additional memory boards are attached

and the usual software aids are made available.

The Development System

A development system is a microcomputer system equipped with a

significant amount of RAM memory (32K, 48K) as well as the required

input/output devices, such as a CRT display, a printer, disks, and, usu-

ally, a PROM programmer, as well as, perhaps, an in-circuit emulator.

A development system is specifically designed to facilitate program
development in an industrial environment. It normally offers all, or

most, of the software facilities that we have mentioned m the preceding

section. In principle, it is the ideal software development tool.

The limitation of a microcomputer development system is that it may
not be capable of supporting a compiler or an interpreter. This is be-

cause a compiler typically requires a very large amount of memory,
often more than is available on the system. However, for developing

programs in assembly-level language, it offers all the required facilities.

But because development systems sell in relatively small numbers com-
pared to hobby computers, their cost is significantly higher.
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Hobby-Type Microcomputers

The hobby-iype microcomputer hardware is naturally exactly analo-

gous to that of a development system. The main difference lies in the

fact that it IS normally not equipped with the sophisticated software

development aids which are available on an industrial development sys-

tem. As an example, many hobby-type microcomputers offer only ele-

mentary assemblers, minimal editors, minimal file systems, no faciliUes

to attach a PROM programmer, no in-circuit emulator, no powerful

debugger. They represent, therefore, an mtermediate step between the

smgle-board microcomputer and the full microprocessor deveiopmeni

system. For a user who wishes to develop programs of modest complex-

ity, they are probably the best compromise, since they offer the advan-

tage of low cost and a reasonable array of software development tools,

even though they are quite limiied as to their convenience.

Time-Sharing System

It is possible to rent terminals from several companies which will con-

nect to time-sharing networks. These terminals share the lime of the

larger computer and benefit from all the advantages of large installa-

tions. Cross assemblers are available for all microcomputers on vir-

tually all commercial time-sharing systems. A cross assembler is simply

an assembler for. say, a Z80 which resides, for example, in an 1BM370.

Formally, a cross assembler is an assembler for microprocessor X,

which resides on processor Y. The nature of the computer being used is

irrelevant. The user still writes a program in Z80 assembly-level lan-

guage, and the cross assembler translates it into the appropriate binary

pattern. The difference, however, is that the program cannot be ex-

ecuted at this point. It can be executed by a simulated processor, if one

is available, provided it does not use any input/output resources. This

solution IS used, therefore, only in industrial environments.

In-House Computer

Whenever a large m-house computer is available, cross assemblers

may also be available to facilitate program development. If such a com-

puter offers time-shared service, this option is essentially analogous lo

the one above. If it offers only batch service, this is probably one of the

most inconvenient methods of program development, smce submittmg

programs in batch mode at the assembly level for a microprocessor re-

suits m a very long development time.
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Front Panel or No Front Panel?

The front panel is a hardware accessory often used to facilitate pro-

gram debugging. It has traditionally been a tool for conveniently dis-

playing the binary contents of a register or of memory. However, all the

functions of the control panel may be accomplished from a terminal,

and the dominance of CRT displays now offers a service almost equiva-

lent to the control panel by displaymg the binary value of bits. The ad-

ditional advantage of using the CRT display is that one can switch at

will from binary representation to hexadecimal, to symbolic, to decimal

(if the appropriate conversion routines are available, naturally). The

disadvantage of the CRT is that one must hit several keys to obtain the

appropriate display rather than turn a knob. However, since the cost of

providing a control panel is quite substantial, most recent microcom-

puters have abandoned this debuggmg tool. The value of the control

panel is often considered more on the basis of emotional arguments in-

fluenced by one's own past experience than by the use of reason. It is

not indispensable.

Summary of Hardware Resources

Three broad cases may be distinguished. If you have only a minimal

budget and if you wish to learn how to program, buy a smgle-board

microcomputer. Using it, you will be able to develop all the simple pro-

grams m this book and many more. Eventually, however, when you

want to develop programs of more than a few hundred instructions,

you will feel the limitations of this approach.

If you are an industrial user, you will need a full development system.

Any solution short of the full development system will cause a signifi-

cantly longer development time. The trade-off is clear: hardware re-

sources vs. programming time. Naturally, if the programs to be devel-

oped are quite simple, a less expensive approach may be used. How-
ever, if complex programs are to be developed, it is difficult to justify

any hardware savings when buying a development system, since the

programming costs will be by far the dominant cost of the project.

For a personal computerist, a hobby-type microcomputer will typi-

cally offer sufficient, although minimal, facilities. Good development

software is still to come for many of the hobby computers. The user will

have to evaluate his system in view of the comments presented in this

chapter.

Let us now analyze m more detail the most indispensable resource:

the assembler.
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THE ASSEMBLER

We have used assembly-level language throughout this book without

presenting the formai syntax or definition of assembly-level language.

The time has come to present this definition. An assembler is designed

to allow the convenient symbolic representation of the user program,

and yet io make if simple for the assembler program to convert these

mnemonics into their binary representation.

Assembler Fields

When typing m a program for the assembler, we have seen that fields

are used. They are:

The label field, optional, which may contain a symbolic address for

the instruction that follows.

The msiruciion field, which includes the opcode and any operands.

(A separate operand field may be distinguished.}

The comnwni field, far to the right, which is optional and is intended

to clarify the program.

These fields are shown on the programming form in Figure 10.3.

Once the program has been fed to the assembler, the assembler will

produce a lisiing of it. When generating a listing, the assembler wil!

provide three additional fields, usually on the left of the page. An ex-

ample appears on Figure 10.4. On the far left is the line number. Each

line which has been typed by the programmer is assigned a symbolic line

number.

The next field to the right is the actual address field, which shows m
hexadecimal the value of the program counter which will point to that

instruction.

Moving still further to the right, we find the hexadccmial representa-

tion of the instruction.

This shows one of the possible uses of an assembler. Even if we are
designing programs for a single-board microcomputer which accepts

only hexadecimal, we should still wnie the program in assembly-level
language, providing we have access to a system equipped with an as-
sembler. We can then run the programs on the system, using the assem-
bler. The assembler wili automatically generate the correct hexadecimal
codes on our system. This shows, in a simple example, the value of ad-
ditional software resources.
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OPERAND

j

COMMENTS

SYMBOLIC OPCODE

LABEL

z
Op CO

xu
LU ZD

cs

Z

ADDRESS

Fig. 10.3: Microprocessor Programming Form
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Tables

When the assembler translates the symbolic program mto its bmary

representation, it performs two essential tasks:

1— It translates the mnemonic mstructions into their binary en-

coding.

2— It translates the symbols used for constants and addresses mto

their binary representation.

In order to facilitate program debugging, the assembler shows at the

end of the listing the equivalence between the symbol used and its hexa-

decimal value. This is called the symbol table.

Some symbol tables will not only list the symbol and Us value, but

also the line numbers where the symbol occurs, thereby providing an

additional facility.

Error Messages

During the assembly process, the assembler will detect syntax errors

and include them as part of the final listing. Typical diagnostics in-

clude: undefined symbols, label already denned, illegal opcode, illegal

address, illegal addressing mode. Many more detailed diagnostics are

naturally desirable and are usually provided. They vary with each as-

sembler.

The Assembly Language

Opcodes have already been defined. We will here define the symbols,

constants and operators which may be used as part of the assembler

syntax.

Symbols

Symbols are used to represent numerical values, either data or ad-

dresses. Symbols may include up to six characters, and must start with

an alphabetical character. The characters are restricted to letters of the

alphabet and numbers. Also, the user may not choose names identical

to the opcodes utilized by the Z80, the names of registers such as A,B,

C.D,E,H,L, BC, DE, HL, AF, EC, DE, IX, iY. SP. as well as the

various short names used as pseudo-operators by the assembler. The

names of these assembler "directives" are listed below in the corre-

sponding sections. Also, the abbreviations used to designate the flags

should not be used as symbols: C.Z,N.PE,NC,P,PO.NZ.M.
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Assigning a Value to a Symbol

Labels are special symbols whose values do not need to be defined by

the programmer. The value will automatically be defined by the assem-

bler program whenever it finds that label. The label value thus auto-

matically corresponds to the address of the instruction generated at the

Hne where it appears. Special pseudo-instructions are available to force

a new starting value for labels, or to assign them a specific value.
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Fig. 10.4: Assembler Output—An Example
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However, other symbols used for constants or memory addresses

most be defined by the programmer prior to their use.

A special assembler directive may be used to assign a value to any
symbol. A directive is essentially an instruction to the assembler which
will not be translated into an executable statement. For example, the

constant LOG will be defined as:

LOG DFW 3002H

This assigns the value 3002 hexadecimal to the variable LOG. The
assembler directives will be examined m detail m a later section.

Constants or Literals

Constants may traditionally be expressed either in decimal, in hexa-

decimal, in octal, or in binary, or as alphanumeric strings. In order to

differentiate between the base used to represent the number, a symbol
must be used. To load "0" into the accumulator, we will simply write:

LD A,

Optionally a "D" may be used at .the end of the constant.

A hexadecimal number will be terminated by the symbol "H", To
load the value "FF" into the accumulator, we will write:

LD A, OFFH

An octal symbol is terminated by the symbol "0" or "Q". A binary
symbol is terminated by "B" =

For example, m order to load the value "1 1 i U 1 1
1 " into the accumu-

lator, we will write:

LD A, nilUHB

Literal ASCII characters may also be used m the literal field. The
ASCII symbol must be enclosed in single quotes.

For example, in order to load the symbol "S" into the accumulator,
we will write:

LD A, 'S'

Exercise 10. 1: Will the following (wo instructions load the same value
in the accumulator: LD A, '5\ and LD A, 5H?
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Nole that in the Ziiog convention, parentheses denote an address.

For example:

LD A, (10)

specifies that the accumulator is loaded from the contents of memory
iocation 10 (decimal).

Operators

in order to further facilitate the writmg of symbolic programs, as-

semblers allow the use of operators. At a mmimum, they should allow

plus and minus so that one can specify, for example:

LD A, (ADDRESS)
LD A, (ADDRESS +1)

U is important to understand that the expression ADDRESS + 1 will

be computed by the assembler m order to determme the actual memory
address which must be inserted as the binary equivalent. It will be com-
puted a( assembly time, not at program-execution time.

In addition, more operators may be available, such as multiply and
divide, a convenience when accessing tables in memory. More special-

ized operators may be also available, such as greater than and less

than, which truncate a two-byte value respectively into its high and low
byte.

Naturally, an expression must evaluale to a positive value. Negative

numbers may normally not be used and should be expressed in a hexa-

decimal format.

Finally, a special symbol is traditionally used to represent the current

value of the address of the Hne: This symbol should be interpreted

as "current location" (value of PC).

Exercise 10.2: What is the difference between the following instruc-

tions?

LD A, lOlOlOlOB

LD A, (iOlOlOlOB)

Exercise 10.3: What is (he effecl of the following instruction?

JR NC. S - 2

Expressions

The Z80 assembler specifications allow a wide range of expressions
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with anthmetic and logical operations. The assembler wi!i evaluate the

expressions in a left-to-nght manner, usmg the priorities specified by

the table m Figure 10.5. Parentheses may be usedto enforce a specific

order of evaluation. However, the outermost parentheses will denote

that the contents are to be treated as an address.

Assembler Directives

Directives are special orders given by the programmer to the assem-

bler, which result either in storing values into symbols or into the mem-

ory, or in controiHng the execution or printing modes of the assembler.

The set of commands which specifically controls the printing modes of

the assembler is also called "commands" and is described m a separate

section.

To provide a specific example, let us review here the 11 assembler

directives available on the Zilog development system:

ORG nn

This directive will set the assembler address counter to the value nn. In

other words, the first executable instruction encountered after this

directive will reside at the value nn. It can be used to locate different

segments of a program at different memory locations.

EQU nn

This directive is used to assign a value to a label.

DEFL nn

This directive also assigns a value nn to a label, but may be repeated

within the program with different values for the same label, whereas

EQU may be used only once.

DEFB *S'

This directive assigns eight-bit contents to a byte residing at the current

reference counter.

DEFB 'S'

assigns the ASCII value of "S" to the byte.

DEFW nn

This assigns the value nn to the two-byte word residing at the current

reference counter and the following location.
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OPERATOR FUNCTION PRIORITY

+
~

UNARY PLUS

UNARY MINUS
1

1

.NOT. or \ LOGICAL NOT 1

.RES. RESULT !

'

EXPONENTIATION 2

MULTIPLICATION

/ DIVISION 3

.MOD. MODULO 3

.SHR. LOGICAL SHIFT RIGHT 3

.SHL LOGICAL SHIFT LEFT 3

+ ADDiTiON 4

SUBTRACTION 4

.AND, or& LOGiCAL AND 5

.OR. or 1 LOGICAL OR 6

.XOR. LOGICAL XOR 6

.EQ. or = EQUALS 7

GT. or > GREATER THAN 7

.LT. or < LESS THAN 7

.UGT. UNSIGNED GREATER THAN 7

,ULT. UNSIGNED LESS THAN 7

Fig. 10.5: Operator Precedence

DEFS nn

reserves a block of memory size nn bytes, startmg at the current value

of the reference counter.

DEFM 'S'

stores mto memory Lhe string 'S' starting at the current reference coun-

ter. It must be less than 63 in length.

MACRO PO PI. . -Pn

is used to define a label as a macro, and to define its formal parameter

list. Macros are defined in another section below.

END

indicates the end of the program. Any other statements foUowmg it will

be ignored.

ENDM

is used to mark the end of a macro definition.
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Assembier Commands

Commands are used to modify the format of the listmg to control the

printing modes of the assembler. All commands start with a star m col-

umn one. Seven commands are provided by the Z80 assembler. Typical

examples are:

EJECT

which causes the listing to move to the top of the next page; and

LIST OFF

which causes the pnntmg to be suspended, effective with this com-

mand. The others are: "^HEADING S", "*LIST ON", "*MACLIST
ON", "*MACUST OFF\ "*INCLUDE FILENAME".

Macros

A macro is simply a name assigned to a group of instructions. It is a

convenience to the programmer. If a group of instructions is used sev-

eral times m a program, we could define a macro to represent them, in-

stead of always having to write this group of instructions.

As an example, we could write:

SAVREG MACRO
PUSH AF
PUSH BC
PUSH DE
PUSH HL
ENDM

then simply write the name "SAVREG" instead of the above instruc-

tions. Any time that we write SAVREG, the five corresponding lines

will get substituted instead of the name. An assembler equipped with a

macro facility is called a macro-assembler. When the macro assembler
encounters a SAVREG, it performs a mere physical substitution of
equivalent lines.

Macro or Subroutine?

At this point, a macro may seem to operate in a way analogous to a
subroutine. This is not the case. When the assembler is used to produce
the object code, any time that a macro name is encountered, it will be

replaced by the actual instructions that it stands for. At execution time,

the group of instructions will appear as many times as the name of the

macro did.
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By contrast, a subroutine is defined only once, and then it can be

used repeatedly; the program will jump to the subroutme address. A
macro is called an assembly-tune facility. A subroutine is an execution-

lime facility. Their operation is quite different.

Macro Parameters

Each macro may be equipped with a number of parameters. As an

example, iei us consider the following macro:

SWAP MACRO #N, ffT

This macro will result in swapping (exchanging) the contents of mem-
ory locations M and N. A swap between two registers, or two memory
locations, is an operation which is not provided by the Z80. A macro

may be used to implement it. "T" in this instance is simply the name
for a temporary storage location required by the program. As an exam-

pie, let us swap the contents of memory locations ALPHA and BETA.
The instruction which does this appears below:

SWAP (ALPHA), (BETA), (TEMP)

In this instruction, TEMP is the name of some temporary storage

location, which we know to be available and which can be used by the

macro. The resulting expansion of the macro appears below:

LD A, (ALPHA)
LD (TEMP), A
LD A, (BETA)
LD (ALPHA), A
LD A, (TEMP)
LD (BETA), A

The value of a macro should now be apparent: it is convenient for the

programmer to use pseudo-instructions, which have been defined with

macros. In this way, the apparent instruction set of the Z80 can be ex-

panded at will. Unfortunately, one must bear in mind that each macro

LD
LD
LD
LD
LD
LD
END

A, m
n, A
A, m
#M, A
A, ffT

m, A
M

; M INTO A
; A INTO T ( = M)
; N INTO A
; A INTO M ( = N)

; T INTO A
; A INTO N ( = T)
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directive will expand into whatever number of instructions were used. A
macro will, therefore, run more slowly than any single instruction. Be-

cause of its convenience for the development of any long program, a

macro facility is highly desirable for such applications.

Additional Macro Facilities

Many other directives and syntactic facilities may be added to a sim-

ple macro facility; macros may be nested, i.e., a macro call may appear

within a macro definition. Using this facility, a macro may modify it-

self with a nested definition! A first call will produce one expansion,

whereas subsequent calls will produce a modified expansion of the same

macro. This is allowed by the Z80 assembler, but nested definitions are

not allowed.

CONDITIONAL ASSEMBLY

Conditional assembly is another facility provided m the Z80 assem-

bly. With a conditional assembly facility, the programmer can devise

programs for a variety of cases, and then conditionally assemble the

segments of codes required by a specific application. As an example, an

industrial user might design programs to take care of any number of

traffic lights at an intersection, for a variety of control algorithms. He
will then receive the specifications from the local traffic engmeer, who

specifies how many traffic lights there should be and which algorithms

should be used. The programmer will then simply set parameters in his

program and assemble conditionally. The conditional assembly will

result in a "customized" program which will retain only those routines

which are necessary for the solution to the problem.

Conditional assembly is, therefore, of specific value to industrial

program generation in an environment where many options exist and

where the programmer wishes to assemble portions of programs quick-

ly and automatically in response to external parameters.

Only two conditional pseudo-CPs are provided in the standard

micro-assembler version supplied by Zilog. They are respectively:

COND NN and ENDC

where NN represents an expression. The pseudo-OP "COND NN" will

result in the evaluation of the expression NN. As long as the expression

evaluates to a true value (non-zero), the statement following the COND
will be assembled. However, if the expression should be false, i.e., eval-
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uate 10 a zero vaiue, the assembly of all subsequent statements will be
disabled up to the ENDC mstruction.

ENDC is used to terminate a COND, so that the assembly of subse-

quent statements is re-enabled. The COND pseudo-OP's cannot be
nested.

In theory, more powerful conditional assembly facilities could exist,

with "IF" and "ELSE" specification. They may become available in

future versions of the assembler.

SUMMARY

This chapter has presented the techniques and the hardware and soft-

ware tools required to develop a program, along with the various trade-

offs and alternatives.

These range at the hardware level from the smgle-board microcom-
puter to the full development system; at the software level, from binary

coding to high-level programmmg.
You will have to .select them on the basis of your goals and resources.
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CONCLU;SION

We have now covered all important aspects of programming, from

definitions and basic concepts to the internal manipulation of the Z80

registers, to the management of input/output devices, as well as the

characteristics of software development aids. What is the next step?

Two views can be offered, the first one relating to the development of

technology, the second one relating to the development of your own

knowledge and skill. Let us address these two pomts.

TECHNOLOGICAL DEVELOPMENT

The progress of mtegration in MOS technology makes it possible to

implement more and more complex chips. The cost of implementing the

processor function itself is constantly decreasing. The result is that

many of the input/output chips or the peripheral-controller chips used

in a system now incorporate a simple processor. This means that most

LSI chips in the system are becoming programmable. An interesting

conceptual dilemma is now developing. In order to simplify the soft-

ware design task, as well as to reduce the component count, the new

I/O chips now incorporate sophisticated programmable capabilities:

many programmed algorithms are now integrated within the chip.

However, as a result, the development of programs is complicated by

the fact that all these input/output chips are radically different and

need to be studied in detail by the programmer! Programming (he

system is no longer programming [he microprocessor alone, but also

programming all (he other chips a((ached to t(. The learning time for

every chip can be significant.

Naturally, this is only an apparent dilemma. If these chips were not

available, the complexity of the interface to be realized, as well as of the

corresponding programs, would be still greater. The new complexity

that is introduced is the need to program more than just a processor.
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CONCLUSION

andtoiearn the various features of the different chips in a system. How-
ever, it is hoped that the techniques and concepts presented in this book
will make this a reasonably easy task.

THE NEXT STEP

You have now learned the basic techniques required to program sim-

ple applications on paper. That was the goal of this book. The next step

is actual practice for which there is no substitute. It is impossible to learn

programming completely on paper; experience is required. You should
now be in a position to start writing your own programs. It is hoped
that this journey will be a pleasant one.
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HEXADECIMAL CONVERSION TABLE

HEX 1 ? n 4 fi 5 ^ q A B c D F 00 OOQ

2 4 S 6 7 a 9 10 11 12 13 14 15

i ?S 17 16 19 20 21 22 23 24 25 26 27 28 23 30 31 256 4096

2 32 33 34 3d 36 37 38 39 40 41 42 43 44 45 45 47 512 8192

3 18 49 50 55 52 S3 54 55 55 57 58 59 eo 61 62 63 768 I22BB

1 G.1

BD

65 66 67 66 69 70 71 72 73 74 75 75 77 78 79 1024 15364

5 81 S2 63 84 65 86 87 88 69 90 91 92 93 94 95 5280 2048Q

6 95 97 93 99 too 10! 102 103 104 !05 105 107 loa 109 110 in 1536 24575

7 112 113 114 115 116 117 118 !19 120 !21 122 123 124 125 126 127 1792 26572

8 !2a 129 130 131 132 133 134 135 136 137 138 139 140 14! 142 143 2048 3276B

9 14J 145 1-16 147 148 !49 150 151 152 153 154 155 156 557 I5B 159 2304 35854

A 160 !6t 162 163 164 165 166 167 150 169 170 171 172 173 174 175 2560 40960

B !76 177 178 179 leo !B1 132 183 184 185 186 187 188 189 190 19! 2816 45056

C !93 193 194 195 196 197 198 199 200 20! 202 203 204 205 205 207 3072 49152

D 20B 209 210 21) 212 2!3 214 215 216 217 218 219 220 221 222 223 3328 53246

E 224 225 226 227 22B 229 230 231 232 233 234 235 238 237 23B 239 3504 57344

F 240 24! 242 243 244 245 246 247 246 249 250 261 252 253 254 255 3840 61440

5 4 3 2 1

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

1 ,048,576 ( 65,536 1 4,096 256 f 16 i

2 2.097.552 2 531,072 2 8,192 2 512 2 32 2 2

3 3,N5,728 3 196,608 12.268 768 3 48 3 3

4 A. 19'), 304 A 262, 144 4 16,384 4 1,024 4 64 4 4

5 5.242,880 5 327,680 5 20,480 5 1,280 5 80 5 5

6 6.291,456 6 393.216 6 24,576 6 1,536 6 96 6 6

7 7.340.032 7 458.752 7 28,672 7 ),792 7 112 7 7

8 8,388,608 8 524,288 8 32.768 8 2.048 8 128 8 8

p 9,437,584 <? 589,824 Q 36.964 9 2,304 9 144 9 9

A 10,485.760 A 655,360 A 40,960 A 2,560 A 160 A 10

B 11,534.336 B 720.896 B 45.056 B 2.816 B 176 B 11

C 12,582,93 2 C 786,432 C 49, 1 52 C 3,072 C 192 C 12

D 13,631.488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 14,680,064 E 917.504 E 57.344 E 3,584 E 224 E 14

F 15,728.640 F 983.040 F 6!,440 F 3,840 F 240 F 15
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ASCII CONVERSION TABLE

HEX MSD 1 2 3 4 5 6 7
LSD BITS 000 001 010 Oil 100 101 110 111

0000 NUL OLE SPACE @ P P
1
1 J

1
t a

2 0010 STX DC2 2 B R b r

3 0011 ETX DC3 # 3 C S c s

4 0100 EOT DC4 $ 4 D T d t

5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f V

7 0111 BEL ETB 7 G w g w
B 1000 BS CAN c 8 H X h X

9 1001 HT EM ) 9 I Y i y
A 1010 LF SUB J Z

!
2

B 1011 VT ESC + K
[ k

1

C 1100 FF FS < L \

D 1101 CR GS M m
E 1110 SO RS > N A n

F 1111 SI US 9 O DEL

THE ASCII SYMBOLS

NUL ~Nuit OLE —Data Link Escape
SOH —Slflrt of Heading DC —Device Control
STX —Start of Text NAK — Negative Acknowledge
ETX -End of Text SYN —Synchronous Jdie

EOT —End of Tranamisston ETB —End of Transmission Block
ENO —Enquiry CAN —Cancel
ACK —Acknowledge EM —End of Medium
BEL -Seli SUB -Substitute
BS —Backspace ESC —Escape
HT — Horiionta! Tabulalton FS -File Separator
LF —Line Feed GS —Group Separator
VT —Vertical Tabuiatlon RS —Record Separator
FF —Form Feed US -Unit Separator
CR —Carriage Return SP -Space (Blank)
SO —Shift Out EL —Delete
SI -Shift In
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RELATIVE BRANCH TABLES

FORWARD RELATIVE BRANCH TABLE

\LSD
1 7 4 5 6 7 s 9 A B C D F

1 2 6 7 8 9 10 1 i 12 13 U 15

1 i6 17 18 19 20 31 23 24 35 26 27 38 29 30 31

2 32 33 34 35 36 37 3S 39 40 41 43 43 44 45 46 47

JB 49 50 51 53 53 54 55 56 57 58 59 60 61 62 63

J 64

80

65 66 67 68 69 70 71 72 73 74 75 76 77 7B 79

5 Si 82 83 6J as 86 a? 03 69 90 91 92 93 94 95

6 56 97 96 99 iOO !01 102 103 104 !05 i06 107 lOB 109 1 10 111

7 1 (2 tn n-! 115 !16 1 17 118 n9 i2Q i3i 122 133 !24 135 126 )27

BACKWARD RELATIVE BRANCH TABLE

\ISD
WSD\

i 3 4 5 6 7 8 9 A 3 C

8 125 137 126 135 124 133 123 131 120 1 19 116 117 1 16 115 114 113

9 112 1 n no 109 iOB 107 i06 105 !04 !03 102 101 100 99 98 97

A 96 95 94 93 93 91 90 89 BS 87 86 35 84 B3 83 81

B 80 79 76 77 76 75 74 73 73 7! 70 69 6B 67 66 65

C 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

D 48 47 46 43 44 43 42 41 40 39 3B 37 36 35 34 33

33 3i 30 29 23 27 26 35 24 23 22 31 20 19 18 17

16 15 14 13 13 11 10 9 8 7 6 4 3 1
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DECIMALTO BCD CONVERSION

DECIMAL BCD DEC BCD DEC BCD

QOOO 10 00010000 90 10010000

1 0001 11 00010001 91 10010001

2 0010 ia 00010010 92 10010010

3 001! 13 00010011 93 10010011

4 0100 14 00010100 94 10010100

5 0101 15 00010101 95 10010101

6 0110 16 00010110 96 10010110

7 0111 17 00010111 97 10010111'

B 1 000 18 00011000 9a 10011000

9 100! 19 00011001 99 10011001
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Z80 INSTRUCTION CODES

(The literal d is shown as 05 in the object code.t

OBJ SOURCE
CODE STATEMENT

8£ ADC A,(HL)

0DSE05 ADC A,HX+dl

FD8E05 ADC A.(!Y + d)

Sf ADC A,A

86 ADC A.B

89 ADC A.C

8A ADC A.D

SB ADC A,E

8C ADC A.H

ao ADC A.L

CE20 ADC A,n

ED4A ADC HL.BC

ED5A ADC HL.DE

SD6A ADC HL.HL

ED7A ADC HL.SP

86 ADD A.IHLI

DD8605 ADD A.(!X+dl

FD8605 ADD A,llY+dl

87 ADD A.

A

80 ADD A.B

81 ADD A,C

82 ADD A,D

oo ADD A.E

84 ADD A,H

03 AUU
C620 ADD ft r*

09 ADD HL.BC

19 ADD HL.DE

29 ADD HL.HL

39 ADD HL.SP

DD09 ADD IX,BC

D019 ADD IX.DE

DD29 ADD IX. IX

DD39 ADD IX.SP

FD09 ADO iY.BC

FDig ADD iY.DE

FD29 ADD iYJY

FD39 ADD lY.SP

A6 AND IHLl

DOAB05 AND (IX+dl

FDA60S AND llY+dl

A7 AND A

AO AND S

Al AMD C

A2 AND D

A3 AND E

A4 AND H

AS AND L

OBJ SOURCE
CODE STATEMENT

E620 AND n

BIT O.(HL)

DDCB0546 BIT 0,iIX+dJ

BIT U.l P T TQl

/ RITi>i 1 A
CB40 CJi (

n\J,0

HiT C

CB42 a IT
1 i D

Ld4o E

D ITOl 1 H

C845 1 i L

CB4E a IT"bl 1 i IHLl

DDCoUa'ic lai T
1 1

l,(IX+d)

rULbUaMC O 1 t 1 (lY+di

CB4F BIT t ft

CB48 BIT i ,B

CB49 BIT 1 1^
1

CB4A BtT t.D

C84B BIT 1 ,S

CB4C BIT i .H

CB4D IT I
1

1

CBS6 BIT

BIT 2.IIX+d!

BIT 2,llY+d)

CB57 BIT 2.A

CB50 BIT 2.B

CB51 Bit 2.C

CB52 SIT 2.D

CB53 SIT 3.E

CB54 BIT 2.H

CB55 BIT 2.L

CB5E BIT 3.(HL1

DOCB055E BIT 3,(iX+d)

FDCB055E BIT 3,(IY+dl

CB5F BIT 3,A

CS5S BIT 3,B

C859 BIT 3,C

CB5A BIT 3.D

CB5B SIT 3,£

CB5C BIT 3,H

CB5D BIT 3.L

CB66 Bi r 4.{HL)

DDCB0566 SiT 4,i!X+di

FDCB0566 BIT 4.UY+dl

CB67 BIT 4.A

CS60 BiT 4.B

CB61 BIT 4.C

CB62 BIT 4.D

608



APPENDIX

OBJ SOURCE OBJ SOURCE
CODE STATEMENT CODE STATEMENT

CB63 BIT 4,E CPIR
CB64 BIT 4,H EDA1 CPI
CB65 BIT 4,L 2F CPL
CB6E BIT 5,iHLi 27 DAA
DDCB056E SiT 5.ilX+d) 35 DEC iHLI
FDCB055B BIT 5.(|y+dl OD3505 Dec liXnt)

CB6F BIT 5.A FD3505 DEC dV+d}

CB6a BiT 5,B 3D DEC A
C869 BIT 5.C 05 DEC a

C86A BiT 5.D OB DEC BC
CB6B BIT 5,E OD DEC C

CB6C BIT 5.H 15 DEC D
CB5D BiT 5,L

IB DEC DE
CB76 BIT 6.{HL)

10 DEC E

BIT 6.liX+d) 25 DEC H

BIT 5.liY+d)
2B DEC HL

CB77 BiT 6.A
DD2B DEC iX

CB70 BIT 6,B
FD2B DEC iV

CB71 BIT 6.C
20 DEC L

CB72 BIT 6.D
3B DEC SP

CB73 BIT 6.E

6.H

F3 Dl

CB71 BiT
103E
FB El

EXCB75 BIT 6.L CO (SPLHL
CB7E BIT 7.1HL1 D0E3 EX (SPLIX
ODCB057E BiT 7.(1 X+d) FDE3 EX ISPl.iY

AF.AF'
FDCB057E BIT ?.(IYfd) 08 EX
CB7F SiT 7 .A E8 EX DE.HL
C878 BIT 7.B 9 exx
CB79 BIT 7.C 76 HALT
CB7A BiT 7.D ED45 m

i

CB7B BIT 7,E ED56
CB7C BIT 7.H ED5E m 2CB7D BiT 7,L ED78 IN A. (CI
CS-IOS CALL C.nn ED40 IN S,(C!
FC8<!05 CALL M.nn ED48 IN C. iCl

D. iCi

E. IC)

CALL NC.nn SDSO IN
C18405 CALL £058 IN
F1S4G5 CALL P.nn E060 IN H.iCI
EC8405 CALL PE.nn EDSa IN L,(C)
E4B'105 CALL PO.nn INC iHLI
CC84G5 CALL Z.nn DD3405 !NC llX+dl
CD8405 CALL nn FD3405 INC UY^rii
3F CCF 3C mc A
BE CP IHLl on !NC 8
DOBE05 CP llX^d} 03 iNC BC
FDBE05 CP (lY^dl OC INC c
BF CP A 54 iNC D
B8 CP B 1

3

iNC DE
89 CP C INC E
8A CP D INC H
BB CP E 23 INC HL
BC CP H INC IX
BD CP L FD23 INC 1 Y
FE20 CP n 2C fNC L
EDAg CPD

33 iNC SP
EDB9 CPDR 820 IN A, In)
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PROGRAMMING THE Z80

OBJ SOURCE

CODE STATEMENT

EDAA IND

EOBA INDR
!;0A2 !NI

EDB3 INIR

C38^05 JP nn

CO JP iHLl

JP (iX)

F D£9 JP 11 Yl

JP C,nn

JP M.nn

mo nix JP NC.nn

JP NZ.nn

JP Pnn

t: Ao**uJ JP PE.nn

E38405 JP PO.nn

CASflOB JP Z,nn

382 E JR C.i-

302 E JR

202 E JR NZ.i:

282 £ JR Z.s

f '
' ^ ^JB

m LD (tiCl.A

1 f
1 ^ LD iDEl,A

77 LO (HL).A

70 LD (HLl.B

71 LD !HLI,C

72 LD [HD.D

73 LD IHLLE

74 LD (HLl.H

75 LD [HD.L

3620 LD IHLl.n

U/ /Ub LD (IX^-ci).A

DO7005 LD (IX^di.B

D7105 LD ()X+dl,C

DD7205 LD ilX+d),D

DD7305 LD {IX-tdl.E

LD llX*d},H

DD7505 LD ilX+d].L

LD !l X+d) .rs

LD (iY+d),A

F D7005 LD (lY+dl.B

FD7105 LD iiY*dl,C

r tj / *:U3 LD (1 V+d),D

LD (! Y+dI.E

FD7405 LD liY+dl,H

FD7505 LD (rY+d).L

F 350520 LD llY+d),n

LD (nn).A

LD Inni.BC

60538405 LD lnn),DE

228405 LD (nn),HL

DD228405 LD Innl.lX

FD2284DS LD (nn).iY

ED738405 LD (nri).SP

OA LD A.(BC]

lA LD A,(DE)

7E LD A,(HL)

OBJ SOURCE
CODE STATEMENT

DD7E05 LD A.ilX+dl

FD7E05 LD A.!1Y+dl

SABIOS LD A,i nn)

7F LD A A

78 LD

79 LD A.C

7A LD A.O

7B LD A.E

7C LD A H

LD A,l

7D LD i\ IA.L

3E20 LD A,n

ED5F LD A.R

46 LD B.IHL)

DD-ieos LD B.llX-^d)

LD B,(iY+d)

47 LD 8.A

jinHij LD B.B

4

1

LD B.C

/IT LD 8.0

43 lD B.E

44 LD S.H

45 B.L

0620 LD B.n

ED4B8405 LD BC.inni

018405 LD BC nn

4E LO CJHL)

DD4E05 LD C.(lX*dt

FD4E0B LD C,(iY*d}

4F LO C,A

48 LD C,B

49 LD C.C

4A LD C

4B I n C.E

4C LD C.H

4D ! n C L

0E20 1 nL_LJ C n

56 LD D.iHL)

DD5605 LD O.iiX+d)

FD5605 LD D,(iV+d}

57 LO D.A

SO LD D.B

51 LD D,C

52 LD D.D

53 LD D.E

54 D H

55 1 n D L

1620 LD D,n

EDSB8405 LD DE.Innl

118405 LD DE.nn

5E LD E,1HL1

LD £,HX+d)

FD5E05 LD E.llY+d)

5F LD E,A

58 LD E,B

59 LD E.C

5A LD E.D
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OBJ
CODE

SOURCE
STATEMENT

LD 5.E

LD E H
5D LD E,L

1E20 t:,n

66 to H.IHLJ

DD6605 LO H.(!X+d)

FD6605 LD H.{IY+dl

57 LO H.A

60 LD H.B
61 LO H,C

62 LD H.O

63 LD M e
54 LD H H
65 LD H.L

2520 LO H.n

LD HL.(nn)

21 S405 LO HL,nn

LO l,A

LD !X,{nn)

LD IX,nn

FD2A8<105 LD (Y,{nnl

FD2 16405 LD 1 V rtrt

6E LD 1 IMF 3

DOS EOS LD
FD5E05 L.ii T+dJ

6F LO
68 LD L,B

69 LD L,C

6A LD L.D
CE3 LO L.E

LD L.H

dlj LD L,L

2E20 LD L.n

ED4F LD R,A
£0788405 LD SP inn)

F9 LD SP.HL
DDF9 LD SP IX

FDF9 1 n Or. 1 1

318405 1 n SP nn

EDAS LDD
EDB8 [ nnp
EDAO LDI
EDBO LOIR
ED44 NEG
00 NOP
B6 OR (HLl

DDB605 OR (IX-*di

FDB605 OR !PY+dl

B7 OR A
SO OR 8

Bl OR C
B2 OR D
B3 OR E

84 OR H
B5 OR L

F620 OR n

ED8B OTDR

OBJ SOURCE
CODE STATEMENT

£083 OTiR
ED79 OUT in a

ED41 OUT !CJ B

ED49 OUT IC) C
ED5I OUT
ED59 OUT
ED61 OUT
ED59 OUT
D320 OUT (iii.A

EDAB OUTD
EDA3 OUTI
Fl POP AF
CI pnpr\jf

01 POP DE
El POP HL
DDEl rUr 1

X

FOEl rUr 1

Y

F5 PUSH AF
C5 PUSH 8C
05 PUSH DE
E5 PUSH HL
DDES PUSH IX

FDE5 PUSH i Y
CB86 RES O.IHLj

DDCB05B6 RES 0,lIX+d)

FDCB058G RES O.liY+dl

CB87 RES 0,A

CB80 RES O.B

C8S1 RES 0,C

CB82 RES 0,0

CB83 RES 0,E

CS84 RES O.H

CS85 RES O.L

CB8E RES i.lHLl

DDCB058E RES l.dX-'dl

FDCB058E RES l.UY+d)

CB8F RES i,A

CB88 RES I.B

CBB9 RES i.C

CaSA RES l.D

CS8B HES i.E

CB8C RES I.H

CB80 RES i.L

CB9S RES 2, (HLl

ODCBOS96 RES 2.IIX+d)

FDCB0596 RES 2.(!Y*d)

CB97 RES 2.A

CB90 RES 2.B

CS91 RES 2.C

C892 RES 2,D

CB93 RES 3.E

RES 2.H

CB95 RES 2,L

CB9E RES 3,iHL)

0DCB059E RES 3.(tX+dl

FDCB059E RES 3.nY+dl



PROGRAMMING THE Z80

08J SOURCE
CODE STATEMENT

CB9F RES 3,

A

CB98 RES 3.B

RES 3,C

CB9A RES 3.D

RES 3.E

RES 3.H

RES 3,L

CBA6 RES 4,iHLl

DDCB05A6 RES 4,( \ X+dJ

r-DLHObAb RES 4.(!Y+dJ

CBA7 RES 4.

A

CBAO RES 4,B

CBAl RES 4.C

CBA2 RES 4,0

CBA3 RES 4.E

CBA4 RES 4,H

CBA5 RES 4,L

CBAE RES S.IHLi

DDCB05AS RES 5,(!X+dl

FDC805AE RES 5.{IY+df

CBAF RES 5,

A

CBA8 RES 5.S

RES b,U

oDMM R ES t: nb.U

RES 3.C

RES a.ii

UdmU H to u.L

CBBG RES
RES B.IIX+d}

rUUbUatib RES 6,ilY+d}

CBB7 RES 5.A

CBBO RES 6.B

CBB1 RES 5.C

CBB2 RES 5,0

CBB3 RES 5.E

CBB4 RES 6,H

CBB5 RES S.L
none RES 7.1HLi

RES 7.{iX+dl

rUCbUbbt RES 7,(iY-*d)

CBBF RES 7,

A

CBB8 RES 7.B

CBBB RES 7,C

CBBA RES 7.0

CBBB RES 7.E

CBBC RES 7.H

CBBD RES 7.L

RET
npud RET C
F8 RET M
DO RET NC
CO RET m
FO RET p

ES RET P6

EO RET
CS RET z

612

OBJ SOURCE
CODE STATEMENT

RETI

ED45 RETN
CB15 RL (HLl

DCB0515 RL !!X+dl

FDCB0516 RL {!Y+di

CB!7 RL A
CB50 RL B

CB1

1

RL c

CB12 RL D

CB13 RL E

CB14 RL H

CB1

5

RL
17 RLA
CBDB RLC {HD
DDCB0505 RLC |!X+dl

FDCB0506 RLC SiY+d)

CB07 RLC A

RLC B

CB01 RLC C

CB02 RLC D

CB03 RLC E

CB04 RLC H

CBOS RLC L

07 RLCA
EDBF RLD
CBlE RR (HLl

OOCB051E RR ilX+d)

FnfRfTil F RR liY+dl

CB1 F RR A
f^R 1 RR B

L>D r 3 RR c

CB1 A RR
CBIB RR
CB1

C

RR
L.D 1 U J_

RRA
CBOE RRC (HLl

RRC {tx-t-d)

FDCB050E RRC (!Y+d}

CBOF RRC A
CBOS RRC a

CB09 RRC C

CBOA RRC U
CSOB RRC E

CBOC RRC H

i-

OF RRCA
ED57 RRD
07 RST 00 H

OF RST OBH
D7 RST 10H
F RST IBH

E7 RST 20H

EF RST 28H
F7 RST 30H

FF RST 38H
DE20 SBC A.n
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OBJ SOURCE
CODE STATEMENT

95 SBC A,(HL)

DD9E05 SBC A.lIX+d}

FD9E05 SBC A.ilY^-d)

9f SBC A.A

98 sac A.B

99 SBC A.C

9A SBC A.D

9B SBC A.E

9C SBC A,H

9D SBC A,L
ED42 SBC HL.BC
ED53 SBC HL.DE
ED62 SBC HL.HL
ED72 SBC HL.SP
37 SCF
CBC6 SET OJHL)
DDCBD5C6 SET 0.(iX+dl

FDCB05C6 SET O.iiY+d)

C8C7 SET O.A

CBCO SET O.B

CBC1 SET O.C

C8C2 SET 0,D

CBC3 SET O.E

C8C4 SET O.H

CBC5 SET 0,L

CBCE SET IJHL!
DDCB05CE SET i.liX-tdJ

FDCB05CE SET
CBCF SET i.A

CBC8 SET LB
CBC9 SET i,C

C8CA SET i.D

CBCB SET !,E

CBCC SET 1 .H

CBCD SET I.L

CBD6 SET 2,(HL)

DDCS05D6 SET 2,(lXt-tl)

FDCB05D6 SET 2.{!Yfdl

CBD7 SET 2,A

CBDO SET 2,B

CB01 SET 2.C

CB02 SET 2.D

CBD3 SET 2.E

CBDt SET 2.H

CBD5 SET 2.L

CBDa SET 3.B

C8DE SET 3.(HL)

DDCB05DE SET a.dX-'d)

FOCB05DE SET 3.(iy+dl

CBDF SET 3,

A

CBD9 SET 3,C

CBDA SET 3.D

CBOB SET 3.E

CBDC SET 3.H

CBDD SET 3.L

CBE6 SET

OBJ SOURCE
CODE STATEMENT

OCBOBEB SET I.UX+d)

FDCB05E6 SET 4,(IY+d}

C8E7 SET 4.A

CBEO SET 4.B

CBEi SET 4.C

CBE2 SET 4,0

CBE3 SET 4.E

CBE4 SET 4.H

CBE5 SET 4.L

CBEE SET 5.(HL)

DDC805EE SET 5.1! X+d}

FDCB05EE SET 5.{IY+d}

CBEF SET 5.

A

CBE8 SET 5.B

CBE9 SET 5.C

C8EA SET 5.0

CSEB SET 5.E

CBEC SET 5,H

CBED SET 5.L

CBF6 SET 6.(HL)

DOCB05F6 SET 5,1! X+d)

FDCB05F6 SET 6,(iY+d)

CBF7 SET 6,A

CBFO SET 6.B

CBFi SET 6.C

CBF2 SET 6,0

CBF3 SET 5.E

CBF-l SET 6.H

CBF5 SET 6,L

CBFE SET 7.iHL}

DCB05FE SET 7,(iX+d)

FDCB05FE SET 7.(!Y+d}

CBFF SET 7.A

CBF8 SET 7.B

CBF9 SET 7.C

CBFA SET 7,0

CBFS SET 7,E

CBFC SET 7.H

CBFD SET 7.L

CB25 SLA (HL)

DC B 0526 SLA llX+d}

FDCB0526 SLA IPY-t-dl

CB27 SLA A
CB20 SLA B

CB21 SLA C
CB22 SLA D
CB23 SLA E

CB24 SLA H

CB25 SLA L
CB2E SRA (HL)

DDCBD52E SRA (IX+dl

FDCBQ52E SRA (lY^-dl

CS2F SRA A
CB38 SRA B

C829 SRA C
CB2A SRA D
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OBJ

CODE

SOURCE
STATEMENT

CB2B SRA E

CB2C SRA H

CB2D SRA L

CB3E SHL !HLI

SBL (IXtdl

SRL nY*d)

CB3F SRL A

CB38 SRL B

CB39 SRL c

C83A SBL D

CB3B SRL E

CB3C SRL H

CB30 SBL L

ab SUB (HLI

SUB (IX*dl

SUB (IV + (J1

SUB A

90 SUB 8

91 sue C

92 SUB D

93 SUB E

94 SUB H
SUB L

D620 SUB n

AE XOB (hl:

DDAE05 XOR
FDAE05 XOR
AF XOR A

A8 XOR B

A9 XOR C

AA XOR
AS XOR E

AC XOR H

AO XOR L

EE20 XOR n

(Coitrtesv of Zilog Inc.

)
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Z80 to 8080 EQUIVALENCE

Z80 8080 70nZSu 8080

ADC A {Hi
J

ADC M XTHL OR n ORI \B2\

ADC A, n AC! rB2t HALT HIT >.JK I ORA r

ADC A. , ADC

,

A in! !N jB2| OR (HL) ORA M
ADDA. (HL) ADDM INC BC !NX B OLiT (n) A OUT (321

ADD A, r. ADI iB7] !NC DE INX POP AF POP P5VV

ADD A, . ADD' iNC HI INX H POPBC POPB

ADDHL, BC DAD B iNC i fNS r
POPDE POFD

ADD HI, DE DAD D !NC SP INX 5P POPHL POPH
ADDHL. HL DAD H !NC (HL} INR M PUSH Af PUSH PSW

ADD HL, 5P DAD SP jp c nn PUSH BC PUSHB

ANDn AN! (B21 jP M. nn JM[B2j[B31 PUSH DE PUSHD

AND' ANA

'

jP f^C, nn JNC !B3j [B31 pySH HL PUSH H

ANDlHL) ANAM JPnn JMP (B2j (B3] RET REI

CALLC. nn CCrB2j [B3! jPNZ. nn JNZ SS2] [S3] RETC RC

CALLM. nn CM m] [B3j JPP, nn JPfBSi [33]
RErM RM

CALi NC, nn CNC fB2j [33] JP P£, fjn JPE !B2]EB3I RETNC RNC

CAU nn CALL JPPO, nn jPO[B3i[B3) REtNZ RNZ

CALLNZ. nn CN2fB2j[a3j JP Z. nn JZJB2J [B3] RETP RP

CALLP nn CPfB3i[B3j JP(HL) PCHL SET P£ RFE

CALL Pt. nn CPE iB2j [B3! IDA, (DE) LDAX RETPO RPO

CAU PO, nn CFO jB3| [B3) IDA, (nn! IDA i62j (33)
RETZ RZ

CALL Z, nn CZ rB21[831 [DDE, nn LXID. iB2j [331
RLA RAl

CCF CMC ID SP. nn LXI5P. [B2] [B3|
SLCA RIC

CP' CMP' LD (BCi. A STAX3 HRA RAR

CPIHL} CMPM 10 (DE), A STAX D RRCA SHC

CPt. CMA LD|HL}. .- MOV M.

,

HSIP RSTP

CPn CPf fB2j LD jnn). A 5TA[B2] [83]
sac A, (HL) SBBM

DAA DAA ID(nn), HL SHLD ia2] [B3!
SBC A, n SBI IB3]

DEC BC DCXB LDA. (BCj LOAXB SBC A.

,

SBBi

DEC DE DCXD LD 3C, nn LXIB, f62j [B3]
SCF SIC

DECHL OCXH [DHL, (nn) LHtD(B2nB3] SUBf? SUI (B3i

DEC. DCR' LDHL, nn IXl H [B2J(B3i
5U8r SUB'

DEC SP PCX SP LOr. (HC) MOV 1 . M SUBIHL) SUBM
DEC (HI) DCRM LDr, o MVI(, JB2!

XORn XR! fa2)

Di DI LDr. ,' MOV r i , [2
XORr XRAr

£! £1 LDSP, HL SPHi XOR(HL) XRAM
EXDE HL XCHG NOP NOP
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8080 to Z80 EQUIVALENCE

8060 Z80 8080 Z80 OUSU J.OU

ACi \B2] ADC A. n IN iB2I iN A, (n] POPH POP HL

ADCM ADC A, (HL) INRM iNC (HI) POPPSW POP AF

ADC. ADC A, . INHr INC

.

PUSH B PUSH BC

ADDM ADDA. (HL) INX B INC BC PUSH D PI (etj nc

ADD r ADDA. 1
INX D INC D^ PUSHH PUSH HL

AD^ !B2] ADD A n )NX H iNC HL PUSH PSW PUSHAF

ANA M AND (HL) iNX SP INCSP RAl HIA

ANAr ANDr JC iB2| [33} JPC. nn RAR BRA

ANMB2I AND n Jm!B2] [B31 JPM, nn RC HEIC

CALL CALLnn JMPiB2HB3i JPnn RET HET

CC iB21 [B3I CALl C. nn JNC IB2j [B3) JP NC, nn HLC HLCA

CM fB2) [B3) CALL M. nn \tJ7 tATt JP NZ nn RM HETM

CMA CPL JP [B2| [B3) JP P, nn RNC RETNC

CMC CCF JPE iB2) [83} JPFE. nn RNZ RETNZ

CMPM CP(HL) JPO !B2J [B31 JP PO. nn fiP REIP

CMPr CPr jZ (B2] [635 jPZ, nn RPE fiETPE

CNC m} EB3! CALLNC. nn IDA rB2} [B3i IDA, (nn)
RPO HETPO

CNZfa2)(63| CALl NZ, nn IDAXB LD A, (BC)
RRC RRCA

CPfB21 [B31 CALl P. nn LDAXO IDA, (DE)
RST HSTP

CPE IB2| [B3| CALL PE, nn LH iD fB2j [B3| LDHL. (nn}
RZ RETZ

CPi (B21 CPn tXS B ia2j [fl35 LD BC. nn SB3M SBC A, (HI)

CPO iB2] [B3} CAtL PO. nn LDID IB2J [B3i LD DE. nn SBBr SBC A, ,

CZ \B7] (B3| CALL Z, nn LXI H iB2j [B3} LDHL. nn SBi IB3I SBC A, n

DAA DAA LXI SP (B2i [B3 LD SP, nn 5HLD fB21 [B31 LD(nnj. HL

DADB ADD HL. 8C MOV M,

.

LD (HLj, .

5PHL IDSP, HI

DADD ADDHL. DE MOV !. M LD r. (HL)
STA (02) [B3| LD (nn), A

DADH ADD HL. HL MOV f 1 , r2 LD I,
.

'

STAXB LD (BC), A

DAD SP ADD HL. SP MVIM LD {HLi. n
5TAXD LD (DE). A

DCRM DEC (HL) MV! ! |B2l LDr. n STC 5CF

DCRf DEC. NOP NOP SUBM SUB{HL)

OCXS DEC BC ORAM OR (HL)
SUBr SUBt

oao DECDE ORAr OUr 5Ulf52i 5llBfl

DCXH OECHL OS! |B2| 0«n XCHG EXDE. HL
DCXSP

Di

Ei

HALT

DECSP

DI

ourmi OUr(n). A XfiAM XORfHl)
PCHi JPfHLJ XRAf XORr

El POPB POPBC XRifBZi XOHn
HLI POPD POPDE XTHL EX (SP), HL
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A B
absolute addressing 108,439, 446 B 52

ACT 61 banks of registers 62

accumulaEor 439 BASIC 24

ADC lOi basic architecture 46

ADC, A. s 190 basic concepts 15

ADCHL.ss 192 basic programming choices 579

ADD 101 basic programming techniques 94

ADD A,(HL) 84, 194 BCD 35, 37, 525

ADDA, {IX 4- d) 196 BCD addition 107, no
ADDA, (iY + d) 198 BCD arithmetic 107

ADDA, n 67,200 BCD block transfers 530

ADDA, r 67,75,76,201 BCD nags !i2

ADDHL, ss 203 BCD representation 35

ADD IX, rr 205 BCD subtraction 110

ADDIY, rr 207 BCD table 35

addition 58,95, iOO, 105 benchmark 470

address bus 47 binary 20,21.22,41,45

address registers 51 binary code 19

addressing 438. 442 binary digit 18

addressing modes 438, 440, 444, 445 binary division 133

addressing techniques 438 binary logic 18

algorithm 15. 16, 114.539 binary representation 41

alphabetic list 558. 565, 569, 570 binary search 546, 558, 559, 560.

alphanumeric data 39 561,566,567,568

ALU 46, 77, 85 BIT b. (HU 211

AND 166. 167 BIT b, (IX + d) 213

ANDs 209 BITb.dY -i- d) 215

application examples 520 BIT b, r 217

arithmetic-iogical unit 46.61 bit 18.20,41

arithmetic programs 94 bit addressing 448

arithmetic shift 119 bit manipulation 172. 173

ASCII 39, 524, 525 bit serial transfer 471,472

ASCM conversion tab!e 40 block 540, 542, 544

assembler 96. 582. 590 block transfer 450, 45 i , 453. 458, 530

assembler directives 596, 598 block transfer

assembler fields 590 instructions 163,450. 452

assembly-language 67. 580, 592 bootstrap 48

assigning a value 593 bracket testing 523

asynchronous 471,496.518 branch instruction 441

automated Z80 branching point 115

instructions 142,453,455 break character 467

617



PROGRAMMING THE Z80

brcakpoim 584, 586

bubbic-sorl 533, 534, 535, 536, 537

buffer regisier 59,61

buffered 49

buffers 61

bus request 497

BUSRQ 92, 497

byte 18, 19,41,444

C
C 28, 30, 3!, 62. 73

CALL !45, 156,446,500

CALL cc, pq 219

CALL pq 222

CCF 224

CALL SUB !43, 144, 145

carry 22,23,26,28,30, 174

central-processing unit 'JO

checksum computation

circular lisi 344, 34>

classes of instructions I KA

clearing memory 32U

Clock 4/

clock cycles 69

clock-synchronous logic 86

code conversion 525

coding 16

combinaiion chips 48

commands !6

commeni field 590

compare 531

compiler 545, 581,582

COND 600

conclusion 602

conditional assembly 600

conditional instruction 50

constants 439, 445,594

control box 49

control bus 47

control instructions 157, i85

control registers 512,513,515

control signals 91

control unit 46

count the zeroes 529

counter 463, 465

CP i66

CPs 225

CPD 227

CPDR 229

71

1

CPIR 233

165, 235

CPU 46, 187

critical race 60

CRT display 44, 587

crystal 47

CU 46

n
n 62 74

DA A [09, 236

(\^t^ hi* ffpr 511

data bus 47

data counters 51

data direction register 512

data processing 155

data processing instructions 164

data ready 46y

data representation

data structures no

data transfers I 34, i JO, lOU

debugger 583

debugging 18

decimal 20, 2 1 , 22

ubC m zia

Ltus- rr 74(1

DEC IX 242

DECIY 243

decode 71,86

decoding 56

decoding logic 49

decrement 164, 442

DEF8 596

DEFL 596

DEFM 597

DEFS 597

DEFW 596

delay generation 463

delay loop 464, 483

deleting 553, 565, 574

design examples 548

destination register 67

development systems 587

DFB 596

D! 244

direct addressing 439,44!

direct binary 19

direction register 515
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directives i46, 571, 580, 594 F

directories 541,545 F 61

disk operating system 541,582 fetch 55, 70. 84

displaceisient 63 fetch-execute overlap 78

displacetncnt field 442 FIFO 543

DJNZe 245 file directory 541

DMA 491,498 nags 31,50,51, 179, 180

documenung 97 flags register 61

DOS 582 flip-flops 51

doubly-iinked iisis 545, 546 floatmg point representation 37, 38

double-precision format 34 Howcharting 16, 17, 114,

drivers 450, 464, 469, 494, 559
tmn f Til nf 1

G
general purpose registers 51

E getting characters m 522
E 62

EBCDIC 39 H
echo 486 H 62, 176

editor 583 haif-carry flagCH) 176

EI 247 HALT 92, 185,257

8-bit addition 95 handshaking 477,478.511
8-bit division 134, 137 hardware 93

clement deletion 564 hardware delays 465

element mseriion 550, 563 hardware organization 46

emulator 583 hardware resources 587, 589
END 597 HEX 525
ENDC 600 hexadecimal 41,42,481
ENDM 597 hexadecimal coding 43, 579
EPROM's 585 high byte 103
EQU 596 high level language 581
error 586

error messages 592 I

EX AF, AF^ 162 63

exchange instructions 162 iPFl 499

ExciiiSive ORing 3i IFF2 499

EX DE, HL 249 illegal code 107

execuiable statements !6 IMO 258

execute 7i IM i 259

execution 56, 69, 599 IM2 260

execution cycle 55 immediate addressing iO(J, 159,439,445

exponent 37. 38 immediate operation 69

EX (SP), HL 250 implicit addressing 438, 445

EX(SP}, IX 252 implied addressing 438

EX(SP), lY 254 improved multiplication 126, 128, 129

extended addressing 160,441,446 IN r. (C) 26!

external representation IN A,(N) 263

or information 41,44 in-circuii emulator 585

EXX 256 INC(HL} 267
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INCr 264 interrupt table 504

increment 164, 442 interrupt vector 498

incrementer 57 interrupts 495

[NCrr 265 I/O control 92

INCdX + d) 268 iORQ 92,500

INC(iy + d) 270 IR 55

INC IX 272 iX 53,63

INC lY 273 iY 63

IND 274

index register 53,63,441,442 J

indexed addressing 160, 441, 447, 540 JP cc, pq 282

indexing 63 JPnn 89

indirect addressing 443,444,448,540 JPpq 284

indirect indexed addressing 443 jP(HLi 285

indirect memory access 499 jP(IX) 286

INDR 276 Jp(IY) 287

information representation !8 JR cc, e 288

in-house computer 588 JRe 290

iN! 278 JUMP 90, 172, 179,441

INIR 280 jump instruction 156,182

input/output 1 57, 460, 5 1 8 jump relative (JRl 446, 447

input/output devices 51 1, 521

input/output instructions 183,460 K
input register 466 !K 24
inserting 552, 373

instruction 96 L
instruction field 590 L 62

instruction formats 66 label field 590

instruction register 55, 64 largest element 526, 527

mstruction set 154 LD A, (n, nj 69, 86

instruction types 1 12 LD D, C 72

INT 91 LDD 164

internal control registers 51,513 LDDR 164

internal representation t-Dl 164

of information 18 1-DIR 142, 164

interpreted 69 LDdd, (nn) 291

interpreter 545, 581, 582 LD dd. nn 293

interrupt 466, 496, 497, 500, 505, LD r, n 295

508,509,511 LDr, r 66

interrupt acknowledge 500 LD r, H 297

interrupt flag 187 LDCBC), A 299

interrupt handler 502 LD (DE), A 300
interrupt logic 510 LD{HL), n 301

interrupt-mask-bit 499 LD(HL), r 303
interrupt mode 500 LDr, (HL) 356

interrupt mode 1 503 LD r, (IX + d) 305
interrupt mode 2 504 LD r, (IY + d) 307

interrupt overhead 504 LD(iX + d}, n 309
interrupt-page addressing register 63 LD(IY + d), n 3U
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LD(1X -f d), r 313

LD(IY + d),r 315

LD{nn3, A 317

LD(nnj, A 319

LD(nn), dd 321

LD(nn), HL 323

LD(nn3, IX 325

LD(nn), lY 327

LDA, (BO 329

LD A.(DE) 330

LDA, I 331

LD 1, A 332

LDA, R 333

LDHL. (nn) 334

LDiX. nn 336

LDiX,{nnI 338

LDIY.(nn} 340

LDIY.nn 342

LD R, A 344

LDSP, HL 345

LDSP, JX 346

LDSP, iY 347

LDD 348

LDDR 350

LDI 352

LDIR 354

LED 41,480

LiFO struciure 540, 544

light emitting diodes 41

linked list 542. 544, 568, 571, 573,

574, 577, 578

linked loader 583

list 540, 548, 549, 550, 555, 556, 557

lisiing 590

list pointer 542

literal 69, 439, 455. 594

load 96, 106

loader 583

logarithmic searching 546, 562

logical 166, 558

logical errors 582

logical operations i4i

logical shift 119

long addressing 449

longer delay

M
machine cycle

MACRO

464

69

597, 598, 600

mantissa 38

MASK 168,522

memory cycles 55

memory map 453, 586

memory-mapped i/0 157

memory-refresh register 64

micro instructions 86

mnemonic 67, 579

MI 92

modes 444

monitor 48,582

monitoring 467

MOS Technology 6502 452

MPU 52,59

MPU pinout 91

MREQ 92

multiple devices 506

multiple LED's 482

multiple precision 98

multiplexer 52, 62

multiplication U3, 114, 115, 116,

124, 151, !52, 153

MUX 52,62

N
N
NEC
negative

nested calls

nibble

NMi
nonmaskable mterrupt

nonrestormg method

NOP
NOPs
normalize

normalized mantissa

34

358

24, 26, 32

145

18,36

91,92,498

498

133

359

92

37

37

O
octal 41,42

odometer 465

one's complement 25

one-shot 466

opcode 66, 86, 439. 444, 446

operand !00, 102,438,439

operating system 582

operator precedence 587

OR 166, 168

OR 5 360
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ORG
OTDR
OTIR
OUT (C), r

OUT (N), A
OUTD
OUTI
output register

overdraw

overflow

overlap technique

596

362

364

366

368

369

371

461

133

28,30, 3 i, 32

79

packed BCD 36, 107

packed BCD subtract 1 10, ! 11

paper-tape readers 494

paraiie! input/output 48

parallel work transfer 467, 468, 469

parity bit 39,40

parity generation 524

parity/overflow (P/V) 175

PC 52

PiC 446. 506

PIO 48.511, 512,513, 514.515, 518

pointers 5 1 , 62, 444, 539, 544, 550. 55

1

polling 466, 469, 492, 521, 544

polling loop 493,494

POP qq 373

POP IX 375

POP lY 377

pop 53,76, 154

port 511,515,516

positional notation 20

positive 24, 26. 32

post-indexing 442, 443

power failures 48

pre-indexing 442

printer 44, 479, 495

program 16, 48

program counter 52

program development 579, 584

program loops 63, 121

programmable mput/output chip 511

programmable interval

timer (PIT) 463,465

programmer's model 94

programming 15, 16,515,518,602

programming language 16

pseudo-instructions 98

pulse 462, 467

pulse counting 466

punch 495

PUSH qq 379

PUSH IX 381

PUSH lY 383

push 53.76,154

Q
queue

R
R
RAM 48,75,

random element

RLCA
RD
read operation

read-only memory
read-write memory
recursion

reference table

register addressing

register indirect addressing

register-interrupt

register pairs

registers 31,51, 149,

relative addressing

relative jump

relays

request blocks

RES b. s

RESET
restoring method

RET
RETcc
RETI
RETN
RETURN
RFSH
RLs
RLA
RLCr
RLC (HU
RLC(1X + d)

RLC(IY + d)

RLD
ROM
rotation 120. 155,

181,

181,

543. 544

64

584, 587

541

385

92

96,515

48

48,75

148

571

438

444, 448

184

51

439, 474

441,446

156

461,462

543

386

92

133

389

391

393. 501

395,499

144. 145

93

397

399

103

402

404

406

408

48

170, 171
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rotate

round robin

RRs
RRA
RRCs
RRCA
RRD
RST
RSTp
riibout

50, 156

544, 545

410

412

413

415

416

183,500

418

467

S 178

saving the registers 502

SBC A, s 420

SBC HL, ss 422

SCF 424

scheduling 491

searching 551,558,572

segment drivers 484

segments 480,541

sensing pulses 466

sequential lists 540

sequential searching 546

service routmg 492

SET b, s 425

seven-segment light-emitting

diode (LED) 480,481

shift 50, 118, 120, 155, 156

short addressing 441, 446, 449

short instruction 19

sign !78

signal 46

1

signed binary 24, 25

Signed numbers 532

simple list 551

simulator 583

simultaneous interrupts 507

single-board microcomputers 587

16-bit accumulator !03

16 by 8 division 134. 135

16 by 16 multiplication 130, 131

skew operations 169

skip 157

SLA s 428

software aids 582, 587

SP 53

special digit instructions 172

speed 476

SRA s 430

SRL s 432

stack 53, 146, 149,496. 508,539.544

stack pointer 53, 540

standard architecture 49

standard PIO 511

status 31,85,476,515

status bus 50,512

status register 50

stormg operands !02

string of characters 490

SUB A, s 434

subroutine call 143, 146

subroutine library 150

subroutine mechanism 1 44

subroutine parameters 149

subrouimes 142, 147, 443, 598

subtraction 104

subtract (N) 175

sum of N elements 527, 528

syraboiic 4i, 44

symbols 592, 593

synchronous 471, 496

syntactic ambiguity 16

syntax 544

system architecture 46

T
tables 526, 539, 540. 551, 554, 592

technological development 602

teletype 466, 485, 487, 488, 489

temporary register

test

testing a character

timer

time-sharing system

timing

trace

transfers

trees

truncating

truth table

two's complement

Ewo-ievel directory

U
UART
underflow

utility routines

61

16, 156. 172

523

465

588

463

585

52

544, 545

34

167

25, 26, 27, 29

541

477,518

32

583

623



PROGRAMMING THE Z80

V

V 28.30,3!

S 137

vectoring of inierrupls 504

\V

W 87

WAiT 92

working registers 496

WR 92

X
XOR 166, 169

XOR s 436

Z

Z 87. 177

Z80 registers 95

zero 177

zero page addressing 441 , 446

ZiiogZSOPlO 516.517

ZilogZSOSIO 518
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BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. MiHer 340 pp., 120 iiiustr., Ref. B240

TTiis second book in the "Programs for Scientists and Engineers' ' series provides a
library of problem solving programs while developing proficiency in BASIC.

INSIDE BASIC GAMES
by Richard Mateosian 350 pp., 240 Hiustr., Ref. B245

Teaches interactive BASIC programming through games. Games are written in

Microsoft BASIC and can run on tiie TRS-80, APPLE II and PET/CBM.

FIFTY BASIC EXERCISES
by J.P. Lamoitier 240 pp., 195 lUustr., Ref. B250

Teaches BASIC by actual practice using graduated exercises drawn from everyday

applications. All programs wntten m Microsoft BASIC.

EXECUTIVE PLANNING WITH BASIC
by X.T. Bui 192 pp., 19 illustr., Ref. B380

An important collection of business management decision models in BASIC,
including Inventory Management (EOQ), Critical Path Analysis and PERT,
Financial Ratio Analysis, Portfolio Management, and much more.

BASIC FOR BUSINESS
by Douglas Hergert 250 pp., !5 illustr., Ref. B390

A logically organized, no-nonsense introduction to BASIC programming for

business applications. Includes many fuliy explained accounting programs, and
shows you how to wnte them.

YOUR FIRST COMPUTER
by Rodnay Zaks 260 pp., 150 Illustr., Ref. C200A
The most popular introduction to small computers and their peripherals: what

they do and how to buy one.

DON'T (or How to Care for Your Computer)
by Rodnay Zaks 220 pp., 100 Uliistr., Ref. C400

The correct way to handle and care for all elements of a computer system including

what to do when something doesn't work.

INTRODUCTION TO WORD PROCESSING
by Hal Glatzer 200 pp., 70 illustr., Ref. W!01
Explains in plain language what a word processor can do, how it improves produc-

tivity, how to use a word processor and how to buy one wisely.

INTRODUCTION TO WORDSTAR
by Arthur Naiman 200 pp., 30 illustr., Ref. WHO
Makes it easy to learn how to use WordStar, a powerful word processing program

for personal computers.

FROM CHIPS TO SYSTEMS: AN INTRODUCTION TO
MICROPROCESSORS
by Rodnay Zaks 560 pp., 255 illustr., Ref. C207A
A simple and comprehensive introduction to microprocessors from both a hard-

ware and software standpoint: what they are, how they operate, how to assemble

them into a complete system.



by Rodnay Zaks and Austin Lesea 460 pp.. 400 Illustr., Ref. C207

Complete hardware and software interconnect techniques including D to A con-

version, peripherals, standard buses and troubleshooting.

PROGRAMMING THE 6502
by Rodnay Zaks 390 pp., i60 iiiustr., Ref. C202

Assembly language programming for the 6502, from basic concepts to advanced

data structures.

6502 APPLICATIONS BOOK
by Rodnay Zaks 280 pp., 205 Illustr., Ref. D302

Real life application techniques: the inputioutput book for the 6502.

6502 GAMES
by Rodnay Zaks 300 pp., 140 Iiiustr., Ref. G402

Third in the 6502 series. Teaches more advanced programming techniques, using

games as a framework for learning.

by Rodnay Zaks 620 pp., 200 Illuslr., Ref. C280

A complete course in programming the Z80 microprocessor and a thorough intro-

duction to assembly language.

PROGRAMMING THE Z8000
by Richard Mateosian 300 pp., 125 Illustr., Ref. C28i

How to program the Z8000 i6-bit microprocessor. Includes a description of the

architecture and function of the Z8(XX) and its family of support chips.

THE CP/M HANDBOOK (with MP/M)
by Rodnay Zaks 330 pp., 100 Hiustr., Ref. C300

An indispensable reference and guide to CP/M— the most widely used operating

system for small computers.

INTRODUCTION TO PASCAL (Including UCSD PASCAL)
by Rodnay Zaks 420 pp., 130 Illustr., Ref. P3i0

A step-by-step mtroduction for anyone wanting to learn the Pascal language.

Describes UCSD and Standard Pascals. No technical background is assumed.

by Jacques Tiberghien 490 pp., 350 Illustr., Ref. P320

A dictionary of the Pascal language, defining every reserved word, operator, pro-

cedure and function found in all major versions of Pascal.

by Alan Miller 400 pp., 80 Iiiustr., Ref. P340

A comprehensive collection of frequently used algorithms for scientific and
technical applications, programmed in Pascal, includes such programs as curve-

fitting, integrals and statistical techniques.

by Douglas Hergert and Joseph T. Kaiash 380 pp., 40 illustr., Ref. P360

A collection of the most popular computer games m Pascal challenging the reader

not only to play but to investigate how games are implemented on the computer.



INTRODUCTION TO UCSD PASCAL SYSTEMS
by Charles T. Grant and Jon Butah 300 pp., 1 10 illustr., Ref. P370

A simple, clear introduction to the UCSD Pascal Operating System for beginners

through experienced programmers.

INTERNATIONAL MICROCOMPUTER DICTIONARY
140 pp., Ref. X2
Ail the definitions and acronyms of microcomputer jargon defined m a handy
pocket-size edition. Includes translations of the most popular terms into ten

languages.

MICROPROGRAMMED APL IMPLEMENTATION
by Rodnay Zaks 350 pp., Ref. ZIO

An expert-level text presenting the complete conceptual analysis and design of an
APL interpreter, and actual listings of the microcode.

Recorded live a( seminarsgiven by recognizedprofessionals in the microprocessor
field.

INTRODUCTOR YSHORT COURSES:
Each includes (wo cassettes plus special coordinated workbook, (2 'A hours)

SIO—INTRODUCTION TO PERSONAL AND BUSINESS
COMPUTING
A comprehensive introduction to small computer systems for those planning to

use or buy one, including penpherals and pitfalls.

51—INTRODUCTION TO MICROPROCESSORS
How microprocessors work, including basic concepts, applications, advantages

and disadvantages.

52—PROGRAMMING MICROPROCESSORS
The companion to S 1 . How to program any standard microprocessor, and how it

operates internally. Requires a basic understanding of microprocessors.

53—DESIGNING A MICROPROCESSOR SYSTEM
Learn how to interconnect a complete system, wire by wire. Techniques discussed

are applicable to all standard microprocessors.

INTRODUCTOR Y COMPREHENSIVE COURSES:
Each includes a 300-500 page seminar book and seven or eight C90 cassettes.

SB3—MICROPROCESSORS
This seminar teaches all aspects of microprocessors: from the operation of an MPU
to the complete interconnect of a system. The basic hardware course. (12 hoursi

SB2—MICROPROCESSOR PROGRAMMING
The basic software course: step by step through all the important aspects of micro-

computer programming. (10 hoursi



ADVANCED COURSES:
Each includes a 300-500 page workbook and three orfour C90 cassettes.

SB3—SEVERE ENVIRONMENT/MILITARY
MICROPROCESSOR SYSTEMS
Complete discussion of constraints, techniques and systems for severe environ-

mental applications, including Hughes, Raytheon, Actron and other militarized

systems. (6 hours)

SBS—BIT-SLICE
Learn how to build a complete system with bit slices. Also examines innovative

applications of bit slice techniques. (6 hours)

SB6—INDUSTRIAL MICROPROCESSOR SYSTEMS
Seminar examines actual industrial hardware and software techniques, components,

programs and cost. (4'/i hours)

SB7—MICROPROCESSOR INTERFACING
Explains how to assemble, interface and interconnect a system. (6 hours).
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PROGRAMMING THE "80

has been designed both as jr educational text and as a self-ccntained reference book. As sue;-, tt

can be ii=.;d as a complete introductory book on programrri'i iq, ranging from the basic concepts to
advanced data struci',.-res manipulations.

It also contaifio a comprehen-sive descrrption of all ti.e Z80 instructions as well as its int- na!
operation, and st'ould provide a comprehensive reference for the reader who is already farr.iliar

with the prirciples of programming, but wishes to learn ine Z80.
This ;jcok is the result of extensive expenence by the author in the field of ed»'jation and

propr^fTiming. As such, it has been designed to be clear and easy to read. AN concepts are
exp'<3ined in simple yet prftcise terms, building progressively lowardb more comDifiy techniquss
T:,e reader wiil gain not only an understandmg of programming in the language of tlt^ Z80 "ut also
a detailed understanding of the way a microprocessor such as ihe Z80 actuaiiy exe- Jtes
inslruciK'n^, The reader will ioilow the flow of expculion between the vanous registers and along
Ihe buses. This is indispensible for effective programming at machine level in the world of

microprocessors. Because prugran-.ining rs not just the skill of coding in algonthm inio a
programming language but also the art of designing appropriate data structure'-, an fc-<tensiV0

chapter on data structures is prasenter which bothi introduces the concepts and acti'^i application
programs. The reader will find there lists, taoles. binary trees, and tho required algorit ims.

After reading this book. tBe reader should hav? acquired all the basic skills requii- d to

program not jusi at the e-!ernentary level, but in moot practical cases.
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