' CONTROL YOUR
TRS-80

Better BASIC and Machine Code §

IAN STEWART - ROBIN JONES - NEVIN B. SCRIMSHAW

Control
Your TRS-80

Better BASIC and
Machine Code

Control
Your TRS-80

Better BASIC and
Machine Code

Ian Stewart
Robin Jones
and Nevin B. Scrimshaw

Birkhéuser
Boston © Basel ° Stuttgart

Library of Congress Cataloging in Publication Data

Stewart, Ian.
Control your TRS-80.

Bibliography: p.

Includes index.

1. TRS-80 (Computer) — Programming. 1. Jones, Robin.
H. Scrimshaw, Nevin, 1950- . I11. Title.
QA76.8.T18574 1983 001.642 83-12221
ISBN 0-8176-3143-7 :

Al rights reserved. No part of this publication may be reproduced, stored in 2
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, wi thout prior permission of the
copyright owner.

© Ian Stewart, Robin Jones and Eric Deeson, 1983
ISBN 0-8176-3143-7

Printed in USA

A BCDETFGHIUJ

The Rubaiyat of Programmer
Khayyam

Awake! For Morning’s fickle hand doth load
Updated software in the daylight mode.

Return from sluggish subroutine of night:
DIM the array, but brilliant the code!

Myself when young did frequently frequent

The data-punching rooms, and heard great argument;
But evermore it seemed I must emerge

By that same interface wherein I'd went.

Ah, but my computations, people say,
Process the text to clearer meaning? Nay,

Though Man may seek the symbols to construe
The Greater Editor will have his way.

The User programs while the disk-drives whisk;
Taps the mad keyboard of a mind at risk.

The work of years comes suddenly to naught
As random noise corrupts the floppy disk.

Some for the glories of this world, and some
Sigh for a pointer to the world to come.

Ah, seize the output, let the record go,
Nor heed the rumble of magnetic drum!

A User-Manual ‘neath a labelled tree,

A pint of beer, a ploughman’s lunch —and Thee!
What care I then for megabytes?

Thy tiniest bits yield megabytes for me.

The moving cursor writes, and having writ
Moves on: nor all your piety nor wit

Shall lure it back to cancel half a line
Nor all your Tears wash out a word of it.

But wait! say ye: The console’s cursor keys
Can Backspace, Delete, Edit as we please?

Not so! These merely tidy the display:
Still the grim input’s in the memories.

Some peek the ROM of Time’s predestined flight;
Some seek within Life’s RAM new lines to write.

In vain each strives t’assemble faultiess code,
For still Death’s Digits poke the final byte.

Contents

Preface

Data Structure

1

~1I O\ W B e b

Arrays
Searches
Stacks
Queues
Linked Lists
Trees

Game Trees

Structured Programming

8
9
10

Zedtext-80
Checkout
French Countdown

Machine Code

11
12
13
14
15
16
17
18
19
20
21
22

Numbers in Machine Code
Positive and Negative
Machine Architecture
Jumps and Subroutines
Indirection and Indexing
At last the Z80!

Load

Arithmetic

A Subset of Z80 Instructions
A Machine Code Multiplier
The Display File

Some Things 1 Haven’t Told You.

Appendices

1
2
3

Hex/Decimal Conversion
Summary of Z80 Commands
Z80 Opcodes

Bibliography
Index

57
59
67
83

107
111
116
119
125
128
134
136
139
144
155
160
165

177
179
180
182

186
187

Preface

This book is intended for user’s of the TRS-80 Model’s 111 and IV who
have mastered the fundamentals of BASIC and wish to delve a little
deeper. Its main objectives are to develop techniques for writing more
complicated programs clearly and rapidly; to describe a variety of useful
data structures for holding information; and to introduce the delights
of Machine Code.

The principles of good programming are machine independent and
almost everything in this book applies (subject to important changes in
the system variables) to any machine built around the Z80 or Z80A CPU.
In particular, users of the Model IV will enjoy a well spent tour of the
Model 111 that coexists inside their computer.

This book is for those who have mastered the basics, and wani to
cut their teeth on some thing more substantial.

One thing you can do is write more complicated BASIC programs—
after all, that’s why high level-languages were invented. To write bug-
free programs which can be understood and modified without courting
the lunatic asylum, you need to develop a well structured style. We pur-
sue this line of thought in the sections on Data Structures and Struc-
tured Programming.

You can also go outside BASIC altogether. On the TRS-80 that means
Machine code: the language that the Z80 microchip talks. Often (though
not always) Machine Code is faster than BASIC: the snag is that you
have to do more of the thinking vourself by way of compensation. We
didn’t think that you would want to write Jong Mlachine Code routines
at this stage; but we've given enough information for you to take several
steps along that road, so more advanced books become accessible.

One important feature of Machine Code is that it teaches you a lot
more about the way the computer actually works—and in the coming

iX

age of microeverythings, that’s going to be an important piece of
knowledge.

We've included plenty of programs as examples: searching a stock list,
enqueing and dequeing data, pushing on to a stack and popping from
one, cataloging a library, a game tree where the computer works out
its own winning strategy, a simple word processor, a simulation study
of supermarket checkouts which applies equally” well to allocating hospital
beds, an educational software package that tests your French vocabulary.

There are Machine Code routines to give thie display a checkerboard
pattern (instantly), to draw Hexmas trees, to add and multiply numbers,
to move data around in RAM, to scroll individlual regions of the screen
fast enough to be useful, to scroll sideways, and to renumber BASIC lines.

The appendices include several tables of usef ul data: hex/decimal con-
version (including 2’s complement notation for relative jumps); a sum-
mary of Z80 commands; a list of all 694 Z80 opcodes. In short, all you
need to control your TRS-80!

Acknowledgements

Special thanks are due to the following people, without whose help this book would
not have been written: Klaus Peters, for his vision; Mary Fitz-Gibbon, for her patience;
Cort Shurtleff, the long program sleuth; David Epstein, for shooting troubles; Tad
Gaither, for service beyond the call of duty; Adrien Stair, the first steps, and finally,
Arts & Letters, for their patience, good cheer and talent.

Data Structures

There’s a lot more to programming than just knowing the features of
a particular programming language. For one thing, we need a clear idea
of the procedure, or algorithm, we are going to employ in solving a given
problem. We need to develop ways of splittirag this algorithm up into
“chunks small enough to be convenient for coding in BASIC, or whatever
language we're using. That’s a topic we’ll come back to. For the minute,
P'm concerned about an even more fundamemntal problem in program
design: that of the organization, or structure, of the data which the pro-
gram is to manipulate. Actually, we’re quite u sed to the idea of impos-
ing a structure on data which we wish to handle manually, although
we probably wouldn’t give the operation such & grand title. Think about
a bank statement for example:

Date Details Debits Credits Balance
7/3 B/FWD - — 148.78 &
7/5 897669 24.48 — 124.30 0
7/9 S.TILL — 20.90 104.30 @
8/1 W.L.INC. - 254.11 358.41

It’s clear that the data presented here are structured in a very formal
way. Each type of data—date, debit, credit aand so on—only appears
in a given column. There’s even some implied organization —we know,
without being told, that the first number in thze date is the month, and
the second is the day. (This implicit structure can get us into trouble—if
the date is read by someone from Great Britain he'll see it the other way
round!) Of course, somebody had to decide in the first place that this
was a convenient way to present bank statement s and, naturally, he would
have asked the question: “How easy is it goirag to be to deduce useful
information from this structure?” We, on the other hand, are not in-
terested in deriving information directly fromz a data structure, but in
getting the computer to derive the informatiora. for us. So we are always
going to have to ask the question: “how easy is it going to be to write
programs to derive useful information from a particular data structure?”

So it’s clear, I think, that it’s important to have the data organized
before you start to think about the program .

We're going to look at a number of common data structures in this
book, and to describe some of the ways in vwhich they are used. The
list isn’t exhaustive, and in some cases it can be useful to design a struc-
ture which is quite novel; so don’t be put off frozn doing so simply because
a structure which seems convenient isn’t listed here!

2

Arrays are directly available in BASIC and easy to use: for
example, to list commercial data. But there are other ways
to use them—including the analysis of weather-maps.

1 Arrays

Some structures are built into languages, and some you have to build
for yourself. In BASIC, there is only one data structure within the
language. It’s called an array, and it seems a convenient place to start.
Remember, on the TRS-80 only the first two letters in a variable name
are significant.

Let’s review the way we think about the organization of the computer’s
memory. We could see it as a series:

R3 7
ZCOUNT 49
ABLE 1.8
P$ ABC

FRED -15

LETTERS PORS
JIM 0

L

of cells, each able to contain a number or string of characters, and each
given a name, as in the diagram, for example.

This is fine for many applications, but not for all. For instance, sup-
pose we want to input 260 numbers and hold all their values at the same
time. It’s no good writing:

14 FORP = 1TO 200
26 INPUTX
39 NEXTP

because with every loop, a new value will be entered into X, wiping out

3

the old one. So, in the end, only the final v alue in the sequence will
be in memory.
We could write:

14 INPUT X1
20 INPUT X2
3¢ INPUT X3
40 INPUT X4

2000 INPUT X200

but it would be a pain, and anyway this will occupy a lot of memory
within the program.

An array provides us with a way out of the dilemma. BASIC allows
us to specify a whole block of memory as having just one name:

R3
ZCOUNT

P$

—]

The block of memory represented above is called the array X. (It can
have any valid BASIC name; see page 100 o f the reference manual.)

An array may have any number of memory cells in it, but we have
to tell the interpreter, at the beginning of the program, how many cells
to allocate to it. This is done with a DIM (sh.ort for dimension) state-
ment. In the above case, X has 6 cells, so we would write:

16 DIM X(6)

We still need to be able to refer to individual <ells, or elements, within
X. BASIC allows us to talk about X(1), the first element of X; X(2),
the second; X(3), the third; and so on.

4

Coming back to our original problem, we could write:

16 DIM X{(200)

28 INPUT X(1)

3¢ INPUT X(2)

40 INPUT X(3)
“Hang on!” you’re all saying. “That’s no better than it was before. In
fact, it’s worse, because there are loads of extra brackets.”

True, true. However, the trick is that when we wrote X1, X2, X3 etc.,
the 1, 2, and 3 are part of the variable names and can’t be altered; but
if we write, for instance, X(P) then the computer sees this as X(1) if
P = 1. X(2)if P = 2 and so on. So the value in the brackets (called
a subscript) can be changed.

In this case, we want to change the subscript by starting it at 1, and
adding 1 to it until it reaches 200, and that’s a clear cue for a FOR-
NEXT loop.

18 DIM X(200)

20 FORP = 1TO 200
3¢ INPUT X(P)

44 NEXTP

Why should we want to store 208 numbers all at once? About the
simplest program I can think of in which it’s clearly necessary, is one
to print in reverse order the numbers input to it:

18 CLS

26 DIM X(200)

3 FORP = 1T0O 200

40 INPUT X(P)

58 NEXTP

60 FORP =200TO 1STEP -1
78 PRINT X{P);

80 NEXTP

Obviously we can’t print anything until the last number has been read,
and we must remember all the previous numbers, since they are to be
printed subsequently.

CALCULATING DISCOUNTS

Here’s another example of a rather different nature.
Suppose we run a wholesaling business and we split our customers

5

into the following groups, each of which is offered a different discount,
shown in brackets:

1. Private {0%)

2. Local authority (4.0%)
3. Education (6.5%)
4. Government (7.0%)
5. Trade (9.0%)
6. Trade—special contract (12.0%)

What we would like is a program that will accept a customer’s name,
his type (1-6), the number of items he’s buying and the retail value per
itern, and print out the details of his bill.

Since the calculations depend on the customer type we might expect
to have a series of IF statements like:

50 IFTYPE = 1 THEN. ..
60 IF TYPE = 2 THEN. ..
76 IFTYPE = 3 THEN...

il

[

This would be tedious but not beyond reasonable bounds. But what if

there were 300 categories?. . .
Let’s set up an array called DP (for Discount Percentage) like this:

DP

DP(1)
DP(2)
DP(3) 6.
DP(4)
DP(5)
DP(6) 1

NN RS

Now if TYPE = 1, the discount value we’re interested in is in DP(1).
If TYPE = 2, the value we want is in DP(2). En other words the value
we are after is always in DP(TYPE)! So the code to input the data and
evaluate the discount would look something Iike:

80 INPUTNS§
82 INPUTTYPE
84 INPUT NUMBER
86 INPUT PRICE
9¢ LET AMOUNT = NUMBER*PRICE
106 LET DISCOUNT = AMOUNT*DP(TYPE)/ 108

No IFs anywhere!

Note that we’re using TYPE to point to the right value in the array.
We call a variable used in this way a pointer.

How can we set up the array in the first place? The simplest way is
to have a series of assignment statements like:

5 DIM DP(6)

16 LETDP(1) =290
15 LETDP2) =4
26 LETDP(@3) = 6.5
25 LETDP@4) =7
36 LETDP(S) =9
35 LETDP(6) = 12

This is OK for small arrays but tedious for large ones. An alternative
is to use an input loop:

5 DIM DP(6)
10 FORP =1TO6
29 INPUT DP(P)
36 NEXTP

but, of course, we don’t want to execute this routine every time the pro-
gram is run, although we may wish to do so occasionally, if the dis-
counts change. So we could have:

1 CLS
2 INPUT “NEW DISCOUNTS (Y/N)”; AS
3 IFAS = “N”THEN 80

so that the program jumps round the input routine if the discounts aren’
changed. When you save the program, the array values are also saved,
so this will work for successive runs provided you key in GOTO 1 and
not RUN (RUN clears all variable values).

ARRAYS IN TWO DIMENSIONS

What I've been describing so far is called a one-dimensional array or
vector. It’s possible to have a two-dimensional array or table. We specify
such an array by a DIM statement as before. For example:

18 DIM AG3D

specifies an array which looks like:

A

In other words, I've identified for the computer a table having 7 col-
umns and 3 rows. There isn’t, though, any stamdard convention which
decrees that the number of columns must appear before the number of
rows in the DIM statement. It’s the way you thiink about the table that
matters. In other words, I could, equally validly , have specified the same
array by:

16 DIM A(,3)

provided that in each subsequent reference to the array, 1 always give
the row number second, and the column number first.

The golden rule is: having chosen a convention, stick to it; you're less
likely to make a mistake, In this book I'll use what is probably the com-
monest convention: give a row number first, the column number second.
That’s convenient because one-dimensional arrays are usually drawn as
single columns.

Now, when we want to refer to a particular cell in the table, A, we
can do so by specifying the row and column whaich intersect at that cell;
so if we wanted to set the shaded cell in the diagram to 24, we could write:

580 LET AQ,5) = 24

OK; that’s the basic idea.

Now let’s put it to some use.

Imagine that you are a geographer who wants to keep a record of
the annual rainfall in a particular region. There aze weather stations dotted
around the region, so we might have a map which looks like Figure 1.1,
in which the region of interest is shown shadexd, and a star denotes a
weather station.

Figure 1.1

Obviously, the map is two dimensional, and we can easily represent
it in a corresponding two-dimensional array by giving each point on the
map a numeric code. There are only three types of point:

1. Points inside the region not at a weather station.
2. Weather stations.
3. Points outside the region.

At the weather stations we know the rainfall so the corresponding
position in the array can just contain this value (in millimeters). Two
values which can’t be confused with a rainfall value are now needed to
identify points inside and outside the region. Since you can’t have negative
rainfall, we could choose —2 for a point outside the region and —1
for one inside. So an array which models the map would look something
like:

-2 -2 -2 -2 -2 -2 -2 -2
-2 -2 -2 =2 -2 461 -2 -2
-2 -2 -2 -2 -1 -1 =2 -2
-2 -2 4 -1 -1 -1 -2 -2
-2 4 -1 -1 -1 -1 =2 -2
-2 -1 44¢ -1 -1 48 -2 -2
-2 420 -1 424 -1 -1 484 -2
-2 -2 -2 -2 =2 -2 =2 -2

9

Of course, the resulting shape doesn’t look as smooth as the original.
However, we can always improve the appearar ce (and accuracy) of the
representation by making the array bigger.

OK, we've managed to store a representation of a map in the com-
puter. So what? What’s wrong with a conventional atlas? Nothing, ex-
cept that a conventional atlas leaves you to deduce whatever informa-
tion you need from it. Now that our representation is inside the com-
puter’s memory we can write programs to ansvwer all sorts of questions
about the map:

How many weather stations are there?

What percentage of them have rainfall figures over 416 mm?
What is the highest recorded rainfall, and where is it?

What is the area of the region?

With a map of practical size, it would be verw tedious to answer any
of these questions manually; let’s see how sim ple it would be to write
the programs.

We'll suppose that the array has been set wp by:

16 DIM MAP(50,50)

and that the values have already been input to it. We want to know how
many stations there are.
So a rough outline for the procedure would be:

e FExamine a cell.
e If it contains a non-negative value it’s a wezather station so count it.
® Repeat the process for all cells.

For a particular cell, somewhere in MAP, whose column value is C and
whose row value is R, the IF statement we need is;
1938 IF MAP(R,C) > = § THEN LET NWS = INWS + 1
[NWS = number of weather stations]

To deal with all the columns from 1 to 5 in a row R, we need a
FOR loop: '

1026 FORC = 1TO 50
1930 IF MAP(R,C) > = §THEN LET NWS = NWS + 1
1040 NEXTC

10

and to deal with all the rows from 1 to 58, we need a FOR loop round
that:

1918 FORR = 1TO 58

1926 FORC =1TO 59

1930 IF MAP(R,C) > = § THEN LET NWS = NWS + 1

1048 NEXTC

1056 NEXTR

Now all we need to do is make sure that NWS contains zero to begin
with:
1006 LETNWS =0

and print the result out at the end:

1969 PRINT “NO. OF STATIONS = ”; NWS

The other three problems I listed are very similar. They all require
the same pair of FOR loops. The IF statements, and what to do when
they are true, change, of course. You might like to try them.

ARRAYS IN THREE DIMENSIONS

Let’s suppose that our geographer wants to use a bit more raw data.
He’s now got rainfall figures for each month at each weather station.

So we need twelve two-dimensional arrays like MAP to represent these
data. Each array is like a page of an atlas. Shouldn’t we be able to com-
bine the arrays, like binding the atlas pages into a book? Well, we can.
What we end up with is a three-dimensional array, which we could define
by:

14 DIM BIGMAP(59,56,12)

on that computing course and
learned how to use String

™~

/ @,ﬁm \ zx-1

(remember the TRS-80 thinks of BIGMAP as BI) and the third value
in the brackets represents the number of months. On the TRS-80 you
have to use the CLEAR command to allocate memory space for a large
array. In fact this array will never fit in 16K.

We can ask all the same questions as before, and the only change
in the programs will be that we need another, outside, loop to change
the month value.

For instance, the new loop could be:

FORMONTH = 1 TO 12

NEXT MONTH

and the IF statement will look like:
IF BIGMAP(R,C,MONTH) = ... THEN ...

(Of course, some questions, like “How many stations are there?” don’t
change with time, and if you try this with that program you’ll just get
12 times as many stations as you should.)

How about a routine to tell us the rainfall figure for a particular sta-
tion in a given month? The code could look like this:

2088 PRINT “ENTER MAP REFERENCE OF STATION (R,C)”
2016 INPUTR

2028 INPUTC

2039 PRINT “ENTER 1ST 3 LETTERS OF MOINNTH”

2046 INPUT M$

2050 IF M$ = “JAN” THEN LET MNTH = 1

2060 IF M$ = “FEB” THEN LET MNTH = 2

2070 IFMS$ = “MAR” THEN LET MNTH = 3

2160 IF M$ = “DEC” THEN LET MNTH = 12
2176 PRINT “REQUIRED FIGURE IS:” ;BIGM.AP(R,C,MNTH); “MM”

Lots of IFs again! How can the chunk of code between lines 2050 and
2164 be improved?

Let’s set up an array of month names (much as we setup the discount
table earlier). We'll call it MNAMES.

12

MNAMES

JAN

MAR
APR

DEC
and then replace the relevant lines with:

2056 FOR MNTH = 1 TO 12
2060 IF MNAMES$(MNTH) = M$ THEN 2170
2076 NEXT MINTH

Get it? It searches through the MNAMES array looking for a match

with the input month (M$). When it finds one, the value of the pointer,
MNTH, is the numeric equivalent. A good maxim is:

If you've just written a piece of code with a lot of similar IF statements,
one after the other, there was probably an easier way.

ARRAYS IN HIGHER DIMENSIONS

Perhaps you noticed that I carefully refrained from saying “A three-
dimensional array looks like a cube” in the preceding section. Of course,
you can think about it like that, but it makes it difficult to think about
what a four-dimensional array (yes, you can have one!) behaves like,
because it doesn’t look like anything. We can’t imagine four-dimensional
solids. But that doesn’t imply that it can’t mean something.

At the risk of flogging a dead geographer, let’s return to our map
problem, and suppose that now he provides us with the monthly figures
for a decade! So we now have ten 3D arrays. Why not call that one
4D array, just as we called the twelve 2D arrays one 3D array. Now
we refer to a particular cell in the array as:

EVENBIGGERMAP(R,C,MONTH,YEAR)

and we only have to provide the appropriate values of R, C, MONTH
and YEAR to elicit the required data.

In principle, there’s nothing to stop us having five-, six-, seven- or
even higher-dimensional arrays. Each extra dimension is used to store

13

another attribute such as population, death rate, temperature and so on.

In practice, we're limited by the available nnemory. Actually, as far
as 16K is concerned, we had already run out of memory at the 3D stage.
It’s easy to calculate:

We had a 50 x 50 x 12 = 30,000 cell array.

Each cell occupies 2-8 bytes, so we are using at a2 minimum 64,000 bytes.
A 16K memory has 16 X 1824 = 16,384 bytes. Oops! (see page 221
of your reference manual for the details.)

Of course, we can always make the map srnaller to fit in; 16 X 16
X 12 just fits (but by the time the program is stored as well, it might
not!). So these refinements are really for larger machines, although there
can be occasions when a7 X 7 x 7 x 7 four cdimensional array (which
is getting on toward the largest possible in 16K) is useful.

Given a list of data, how do you find the item you want?
You could just read through the whole list . . .
but there may be better ways.

2 Searches

It’s obvious that one of the most useful things we can do with an array
is to search it for some particular piece of information; in fact, we've
already done so, in our examples, several times. On each previous occa-
sion, we’ve shown what is known as a flinear search, so called because
every element of the array is examined in turn until the target cell is
reached. This is fine for small arrays, but with large ones it can be rather
time-consuming.

There’s an alternative, known as a binary search, which is faster, pro-
vided the data are in a known order in the array. Let’s look at an exam-
ple. Remember my wholesaler with his discount system? He’s now getting
ambitious. He wants to implement a stores control system. Each item
he deals with is given a reference number, and the information held about
each item is the number in stock and the price per unit.

So we could set up an array like:

STOCK

Ref. No. No. in stock Price
1384 58 3172
1791 246 2.60
2114 15 254.00
2164 2486 0.53
8561 1418 @.16

Note that the reference numbers are in ascending order. The procedure
won’t work otherwise.

15

Among other routines, we would like one which allows the storeman
to enter an item reference number, and the system responds by display-
ing the number currently in stock, and the price of the item.

The way a binary search does this is first to look at the middle row
in the table. Thus if there are 180 rows, we look at the 50th. (As there
isn’t an exact middle row if the number of rows is even, the 51st will
also work, if you prefer.) If the reference number we’re looking for is
greater than the one we find here, it can’t be in the lower half of the
table, so we discard that, and concentrate on the upper half. Now we
repeat the process for the remaining part of the table. This will chop
out one half of the remainder, and continued repetition will ultimately
narrow the search to one row.

Sounds long winded? Well, think about an example. Suppose there
are 1000 items in the table. According to Murphy’s law the one you're
after is always the last one you look at, so a linear search requires an
examination of all 1008 items. A binary search removes:

53 items from consideration on the 1st test

250 ” " 2nd "
s & v 3d
62 " o ath
31 & " Sth v
s & " 6th
L & "o Tth
S & " 8th
o & "ot oth

which means we must find the target on the 16th test (even with Murphy’s
pessimism)!
The diagram below may make the idea a little clearer.
Target:7

12
18
20

Mid-pointer

-

1A

12>7, so ignore the top half of the table.

A 4

Mid-pointer

3<7, so ignore the bottom half of the table.

h 4
1]

Mid-pointer

Gotcha!

Let’s write a routine to do this for the STOCK array. Since STOCK
is an illegal variable name we shall refer to it as STCK in our program.
We need three pointers; one to the top of the region we’re examining
(TP), one to the bottom (BP), and the mid-pointer (MP), which is just
(BP + TP)/2. So for an array with 1000 rows we start with:

25080 LETBP = 1
2518 LET TP = 1000
25206 LET MP = INT((BP +TP)/2)

The INT is strictly necessary because otherwise MP may include a decimal
part (as here: 1001/2 = 500.5) which doesn’t make sense.

Now we need to compare the required reference number (assuming
this has already been entered into RN) with the reference number in
STOCK pointed at by MP:

253¢ IF STCK(MP,1) = RN THEN GOTO 3000

(Remember that item reference numbers are all in column 1).

17

So when we get to line 3000, MP is pointings to the row we want and
we'll be able to write:

3060 PRINT “NO. IN STOCK IS”; STCK(MP,2}
391¢ PRINT “PRICES”; STCK(MP,3)

If the condition isn’t met, however, we need to know if the value pointed
to by the mid-pointer is greater than the target value and, if so, we chop
out the top half of the table:

254¢ IFSTCK(MP,1) > RNTHEN LET TP = VP~ 1

On the other hand, the value pointed to by MAP might be less than the
target value:

2558 IF STCK(MP,1) < RNTHEN LET BP = ™MP +1

Now we need to calculate the new mid-poinger so:

2568 GOTO 2520

Tying the whole thing together gives:

2508 LETBP = 1

2519 LET TP = 1000

2526 LET MP = INT((BP +TP)/2)

253¢ IF STCK(MP,1) = RN THEN GOTO 3600

254g IF STCK(MP,1) > RNTHENLET TP = BMP~1
2558 1IF STCK(MP,1) < RN THEN LET BP = BMP +1
2568 GOTO 2520

3000 PRINT “NO.IN STOCK IS”; STCK(MP,2)

3018 PRINT “PRICE IS”; STCK(MP,3)

if

Of course, there are lots of refinements you could build in. What hap-
pens if you enter a nonexistent item reference riumber, for instance? I'll
leave you to think about that one.

18

“Last in, first out” is the rule for a stack, either in the
Tower of Hanoi or in a machine code program.
Here’s how to build an efficient one.

3 Stacks

As I've said before, arrays are the only data structures inside BASIC.
Other structures have to be built, usually in terms of arrays. So let’s look
first at a structure which is very simple to implement in terms of an array,
called a stack.
The name “stack” explains its operation pretty well. You can only pile
things on top of it, and you can only remove items from the top.
For example, we might start with:

4
2
7
If we add 9 and 12 (in that order) to the stack we get:
12
9
4
2
7
Remove an item from the stack and we have:
9
4
2
7

[ou—y
D

Obviously what we have is very like a one-dirmensional array, but with
the added restriction that access may only be rmade at a particular place
(the top of the stack). Unfortunately, the topp moves about inside the
array depending on how many items are on the stack. So we need a
pointer to determine where the top of the stack is. We'll define it to point
at the first free location on the stack.

So now the previous example looks like:

N

12 12

9
4
2
7

~3 P
~EDo L] O

Notice that when the 12 is removed from the stack it does not have to
disappear from the array, because the pointer tells us where the top is
to be considered to be.

STACK ROUTINES

OK. Let’s try writing BASIC routines to implement a stack. First of all,
what routines are needed? Well, there are tlrree:

1. Set up the stack in the first place. We'll call this INITIALIZE.
2. Load a value on to the stack. The technical term for this is PUSH.
3. Remove a value from the stack. This is called POP.

The INITIALIZE routine can be put right at the beginning of the
program:

19 CLS
28 DIM STACK(20)
30 LETSP = 20

For a stack to hold a maximum of 20 items that’s all it is! Putting the
stack pointer (SP) to 20 tells us the stack is empty because it defines
STACK (20) to be the first free location.

The other two routines will be needed throuaghout the main program
and so they will be subroutines. PUSH look s like:

20

3014 LET STACKESP) =V
5026 LETSP = SP-1
503¢ RETURN

(assuming that V contained the value to be PUSHed). What’s happen-
ing is that the value is put into the array where SP is pointing. As that
is the first free location, that’s fine. Then the stack pointer is moved
to point to the next free location. One is subtracted from it because of
the mental model I have of the stack:

—E-:] STACK

FULL
STACK (1)
STACK (2)
STACK (3)
.....}
STACK (20) EMPTY

(There’s nothing to stop you thinking about it the other way round if
you prefer; provided, of course, you do it consistently.)

Actually, this diagram gives us a clue to something we haven’t con-
sidered: what happens if the array fills up? SP will contain zero, and
an attempt to execute line 5019 will lead to an error message. We need
a line 5000 to test for this condition:

5680 IF SP = § THEN 5040

and:

5049 PRINT “STACK FULL”
5058 END

POP will be similar:
6008 IF SP = 20 THEN 6049
6016 LETSP = SP+1
6028 LETV = STACK(SP)
6039 RETURN
6040 PRINT “STACK EMPTY”
6050 END

21

EXAMPLE: THE TOWER OF H.ANOI

The “Tower of Hanoi” puzzle provides a simple example of the use of
stacks. In its initial state, the puzzle looks like this:

2 3

Figure 3.1

There are five discs with holes drilled through their centers, mounted
on a spindle, with the largest disc at the bottom and the smallest at the
top as shown in Figure 3.1. A disc may be xemoved from the top of
this heap (or any other that forms) and placed on one of the other two
spindles.

Obviously, we’ve got three stacks. But there’s an extra constraint: at
no stage may a larger disc sit on top of a srmaller one. The goal is to
transfer the whole tower to one of the other spindles.

Our problem is to allow a player to make moves, and display the state
of the discs at each stage, checking for illegal moves.

Since there are three stacks we need to make some modifications. We'll
have a pointer P to the current stack, so thrat line 200 becomes

26 DIM STACK(28,3)

Also we need three separate stack pointers, vwhich we’ll put in an array
called SP:

15 DIM SP(3)

2¢ LETSP{l} = 20
21 LETSP2) = 20
22 LETSP3) = 26

(Incidentally, we're only using 20 here because it was used before: a
smaller stack would be fine.) Now all refererzces in PUSH and POP to
STACK(SP) become references to STACK(SP(P),P). For instance, line
5010 reads:

22

5016 LET STACKESPPL,P) =V
and 5020 becomes
5020 LETSP(P) = SP(P)-1

Now, before we call PUSH or POP, we have to ensure that P is set
to the right stack.

Here goes. The first job is to set up the left-hand stack (P = 1) to
contain the discs. We can identify these by the numbers used in Figure
3.1. So:

186 LETP =1

114 FORV = STO1STEP —1
126 GOSUB 5600

130 NEXTV

Then we find out which stack the player wishes to remove a disc from:
14¢ INPUT “WHICH PILE TO BE REDUCED?”; SR
and we unstack that value

156 LETP = SR
168 GOSUB 6000

At this stage the required value is in V. We don’t need to test whether
there was a disc in the stack to remove, because POP tests for an empty
stack anyway! Now we ask where the disc is to be put:

176 INPUT “WHICH PILE TO BE INCREASED?”; SI

Now see if the move is legal. This is going to need some thinking about,
so we'll put off the day of reckoning and simply define a subroutine,
from which a return only occurs if the move is valid:

180 GOSUB 300
So if 190 is reached the move was legal, and we can PUSH into the
stack SI, and then repeat the whole moving experience. ..

199 LETP = SI
286 GOSUB 5000
219 GOTO 140

It remains to attack LEGALCHECK. We need to confirm that the
value on top of the SI stack is greater than the value in V. That involves

23

POPping this stack — which will overwrite the value in V! So we’ll save
V first:

300 REM LEGAL CHECK
316 LETVS =V

320 LETP = SI

338 GOSUB 6000

340 IFV > VSTHEN 379
356 PRINT “ILLEGAL”
360 END

3786 GOSUB 5000

386 LETV = VS

399 RETURN

Note lines 378 and 38@: having popped the walue off the stack to ex-
amine it we mustn’t forget to push it back on , to restore its state. Also,
since we moved V out into VS temporarily, we have to restore its original
value, otherwise the PUSH at line 220 will be pushing the wrong thing!

And now I have to tell you that this won’t work. The reason is that
we haven’t considered the special case that a stack is empty when
something is added to it. Under these circumstances the program will
never get past line 330, calling POP: it will simply object that it can’t,
because the stack is empty. The simplest thimg would be to put “6” at
the bottom of all three stacks to start with, so that any value in the range
1-5 is allowed to stack on top of it. I'll leave that (or the alternative:
test if the stack is empty, and PUSH straight away) as an exercise for you.

I'll also leave you with the problem of displaying the stacks as the
game progresses. This can be as simple as printing out the internal values,
if you like; or more satisfyingly, plotting each disc, using the internal
value 1-5 to define the length of the line of graphics characters used.

One final comment: I've adopted a new convention here of allowing
named subroutines (GOSUB, PUSH, etc.). Obviously that’s for improved
readability. You can write these names into y our program listing using
REM statements. This idea can also save work if you decide to change
the subroutine addresses.

24

How to store information temporarily and
process it in the order in which it arrived.

4 Queues

Again the word “queue” describes the operation of the structure well
enough. Items are added to the queue at one end, but removed from
the other. So now we need two pointers, one for the head of the queue

and the other for the tail, like this:
‘—E] head pointer

E—'- tail pointer

Implementing a queue is very like implementing a stack, but there’s one
extra problem: testing the queue to see if it’s full. For instance, suppose
we add two items to the queue shown above, so that the tail pointer
is now beyond the array. If we didn’t think too carefully about it, we
could use that information to decide that the queue is full. Of course,
it isn’t, because there’s a spare slot above the head, and if we remove
items from the queue there will be more available space there, although
the tail pointer hasn’t moved, and it’s the tail pointer we’re testing to
see if the gqueue is full.

25

So let’s rethink the problem. Firstly, when the tail pointer falls off
the bottom of the array we want it to reappear at the top, so as to use
the available array space. In other words, the array becomes a circular
structure, and both pointers chase each other round it. That still leaves
the question of how we tell when the queue is full or empty. Let’s think
about a simple example:

=

If we remove two items from this queue, we’ll have to add two to the
head pointer and the gueue will now be emzpty:

—= W
=t

(For clarity, I've removed the 2 and 7 from thse array, although, as with
the stack, they will actually be left there).

So there’s a nice simple rule to determine when the queue is empty:
the head and tail pointers are equal.

Now let’s fill the original queue by adding two values (9 and 4, say)
to it. So the tail pointer goes back to the beginning of the array and
then gets incremented by one:

26

O~]

Oops! The head and tail pointers point to the same place again, so all
our rule actually tells us is that the queue is either full or empty. Not
much use really. ..

Never mind! We can get round it quite easily. What we’ve really done
so far is roughly like taking a snapshot of a car race and asking somebody
to look at it and say which car is in the lead. Of course, he can’t, because
he doesn’t have any information about how many laps each car has done.
We're in a similar position. The pointers could be neck and neck (empty)
or the tail pointer could be about to lap the head pointer (full). So we
don’t need to know exactly how many laps each pointer has done, only
the difference between them. This can only be zero or one, because to
allow more would overfill the array.

QUEUE ROUTINES

Having dealt with the problem, the rest of the programming is pretty
similar to that for a stack. Again, we need three routines, called
INITIALIZE, ENQUEUE and DEQUEUE. As before, INITIALIZE

can appear at the beginning of the program:

5 CLS
16 DIM QUEUE(64)
20 LETHP =1
30 LETTP =1
40 LETLAP =96

the ENQUEUE routine is:

27

2000 IF HP = TP AND LAP = 1 THEN 2060
2010 LET QUEUE(TP) = V

2020 LETTP = TP+1

2930 IF TP > 20 THEN LET LAP = LAP+1
2046 IFTP > 20 THEN LET TP = 1

2056 RETURN

2060 PRINT “QUEUE FULL”

2070 RETURN

A couple of things to note:

As for a stack, I'm assuming an array of length 2@, and the value
to be enqueued to be held in V. Line 2000 tests to see if the queue is
full. Lines 2030 and 2040 deal with the problem of completing a lap.
Since two actions are necessary to do this, we can either ask the same
question twice (as I have) or let:

203¢ IF TP > 26 THEN GOSUB 2080

perform the two actions on 2080 and 2090 and have another RETURN
on 21640.

Logically they are equivalent, but if you spray too many GOSUBs
and GOTOs around your code, it looks like undisciplined knitting, and
becomes very difficult to read.

DEQUEUE takes the form:

3008 IF HP = TP AND LAP = 8 THEN 3060
3018 LETV = QUEUE(HP) ’
3026 LETHP = HP+1

3036 IF HP > 20 THEN LET LAP = LAP~ 1
30490 IFHP > 26 THENLETHP = 1

39580 RETURN

3060 PRINT “QUEUE EMPTY”

3979 RETURN

See how similar the two subroutines are? There’s a kind of mirror-image
symmetry about them. The same was true of the PUSH and POP
routines. It’s a very common phenomenon in routines which do, in some
sense, opposite things. The programmer with a nose for trouble will worry
when symmetry like this isn’t present. It’s not a hard and fast rule; just
a hunch that comes with experience, but useful nevertheless.

28

A FOOTBALL QUEUE

Here’s an example of how a gueue might be used.

The video-printers used by TV networks to transmit the football results,
are really just a kind of long-distance typewriter. When the operator
types a character, it is not immediately transmitted, but queued. The
entire queue is dequeued only when the operator hits “‘return.”” That
way “DENVER”’ will flash on to the screen as a whole word, instead
of being laboriously typed D-E-N...

Here’s the necessary code:

5 CLS

16 DIM QUEUES$(64)
20 LETHP =1

3 LETTP =1

40 LETILAP =6
119 LET V$ = INKEYS
1286 IF V§ = “” THEN 118

139 IF V$ = CHRS$(13) THEN 160
146 GOSUB 2000

150 GOTO 119

160 FORI=1TO20

176 GOSUB 3900

189 IF EMPTY = | THEN 219
190 PRINT V§;

200 NEXTI

219 PRINT

2286 LETEMPTY =0

238 GOTO 114

There are some important modifications needed to ENQUEUE and DE-
QUEUE, because we're dealing with characters, not numbers. In par-
ticular V becomes V$, and the arrays become string arrays so QUEUE(1)
becomes QUEUES(1) and so on. When the queue is flushed we don’t
want “QUEUE EMPTY” appearing on the screen — imagine the viewers’
surprise at this little-known team playing against Dallas—so we replace
line 3060 of DEQUEUE by

3060 LET EMPTY =1

Now we simply test EMPTY on the return to see if the queue is empty
yet; and if it is, we start on the next word.

29

We are here using EMPTY as a flog: we wave it (i.e. set it to the
value 1) to show that something interesting has happened. Then, to find
out later if it did happen, we just look at the flag. If it’s at @, then it
didn’t happen after all. Flags are important iater in the machine code
chapters.

At the moment you’ll get a printout like

DENVER 2
MIAMI 3

because a new line is generated at every queue-~flushing operation by line
214.
For another example of the use of queues see Checkout, Chapter 9.

30

The treasure-hunt principle for easily modified listings.

5 Linked Lists

The structures we've looked at so far have all had one thing in com-
mon; if vou know where a particular element is, you know where the
next one is, because it’s always in an adjacent memory cell. But suppose
we allowed related data to be sprinkled all over memory? (Let’s not worry
for the moment about why we might want to.) Then we would need
some explicit way of finding an item when we know where the preceding
one was. The diagram below illustrates this in an abstract way.

[T [+ [ETF— I¢]

T] *]

The symbols T,E,A,H,C and “space” are arranged in nc obvious pat-
tern until you take into account that each is associated with a pointer
so that provided you start at the T on the top line and follow the pointers
through to the asterisk, which 'm using as a delimiter to mean “end

31

of list”, you get the message: “THE CAT”. Lt’s the treasure-hunt prin-
ciple, isn’t it? Find an item, and that gives you a clue to the next.

How do we implement the structure? Well, <ach element has two com-
ponents, some data and a pointer. So why mot have a pair of corre-
sponding one-dimensional arrays organized as shown:

DTAS
PTR

1 T 2

2 H 3

3 E 4

4 O 5

5 C 6

6 A 7

7 T 0

so that if we want to print the contents of D'TAS in the right order we
need a subroutine like:

1000 LETP = 1

1616 PRINT DTAS(P);

1026 IF PTR(P) = 8 THEN RETURN
193¢ LET P = PTR(P)

1040 GOTO 1010

(Note that I've had to use zero, rather than asterisk, for my delimiting
pointer because PTR is a number array.)

“Hang on a minute!” You're all objecting (1ike mad by now I expect).
“You don’t need to make all this fuss. You could just print out the con-
tents of DTAS in a2 FOR loop from 1 t0 7.7

That’s right. But suppose I want to alter the message to “THE BLACK
CAT”. Doing it the straightforward way, I'dd have to move the letters
C A T down the array to make room to insert BLACK. Using the link-
ed list all I need to do is to tag BLACK on to the end of the array and
change one of the original pointers (5) like this:

32

DTAS PTR

1 T 2
2 H 3
3 E 4
4 O 8 |&——change
5 C 6
6 A 7
7 T 0
8 B 9
9 L 10
10 A 11
11 C 12
12 K 13
13 [5

OK, it wouldn’t have been a great problem to move three letters five
places down the array, but suppose these were the first words of a five
thousand word essay?

What we've just done is to edit a piece of text. That’s the main job
of what have come to be called “word-processing” programs, and I've
just introduced the fundamental data structure on which most word-
processors depend. I don’t want to take this example any further just
now, because the word-processor case study (Chapter 8) deals with it
in some depth.

A LIBRARY CATALOGUE

However, the linked list is such a useful structure that it’s worth look-
ing at another application for it. Let’s suppose that a librarian wants
to keep an author index so that when a subscriber asks “have you got
any other books by Austin P, Goatwhirler?” he can answer immediate-
ly, even though he is not a Goatwhirler fan himself.

We might, first of all, hit on the idea of using a simple table like this:

Name Title 1 Title 2 Title3

U

33

but, of course, the disadvantage with that is that the number of books
which can be recorded for each author is fixed, and some authors may
only have one book in the library, in which case a lot of memory is being
wasted, while others may have more books tham we can allocate space for.

An organization in which each author has Iis own linked list of book
titles gets over this problem. There’ll have tc be an author array with
a corresponding pointer array to point to the first entries in the book
lists like this:

AUTHORS FP BOOKS PTR
LECARRE I T THE SPY WHO CAME INFROMTHE COLD ?
DEFOED. 4 A SMALL TOWN IN GERMANY 3
KAFKAF. 5 —l‘ TINKER TAILOR SOLIDIER SPY 3
RUNYOND. 7 AL MOLL FLANDERS 0

THE TRIAL 6
\ THE CASTLE]

To list all the books by a particular author, all we need to do is match
the author’s name with the corresponding first pointer:

508 PRINT “ENTER AUTHOR”

519 INPUT AS

526 FORP = 1TO200 [if there are 200 authors]
530 IF AS = AUTHRS(P) THEN 578

540 NEXTP

55¢ PRINT “THERE IS NO REFERENCE TO THIS AUTHOR”
568 RETURN

When we get to line 570, P points to the target author, and also to the
corresponding position in the FP array. So that FP(P) tells us where
to start looking in BOOKS.
So the rest of the routine looks very like the previous linked list print-

out program:

579 LETP = FP(P)

580 PRINT BOOKS$(P)

590 IF PTR(P) = 0 THEN RETURN

600 LETP = PTR(P)

618 GOTO 580

34

All this assumes that the AUTHORS, FP, BOOKS$ and PTR arrays have
already been correctly set up. Our librarian will not thank us if he has
to know about the internal structure of his data in the primitive way
that we've just thought about it. So we need another routine which allows
him to enter the data in a more natural way, and sets up the links that
we need automatically. I'll leave you to think about that problem. It’s
quite an interesting little project. Just to give you some pointers (pun!)
to it, I'll consider a related routine, one to make an insertion of a new
book into an existing author catalogue.

To take a particular example, suppose we add Franz Kafka’s America
into it, keeping a note of where it is (element 8, in our example). At
the same time we can set the corresponding element of PTR to zero,
since the new book is now the last entry under this author. So PTR(8)
= @ in this case. The only other thing to do is replace the old zero
delimiter by 8, so that “AMERICA?” will be printed after “THE CASTLE”
in the print routine. Of course, it’s no good just searching the PTR array
for a zero, because we need the one which terminates Kafka’s novels.
So we have to look for KAFKA F. in AUTHORS, find 5 in the cor-
responding FP element, look in PTR(5), find 6, look in PTR(6), find
zero and replace it by 8.

The routine is:

1560 PRINT “ENTER AUTHOR”
1516 INPUT AS

1526 PRINT “ENTER NEW TITLE”
1530 INPUT NT$

15460 FORP = 1TO 1006 [if BOOKSS is 1000 elements long]
1550 IF BOOKS$(P) = “” THEN GOTO 1570 Q_., search for
1568 NEXT P] Ist null entry
1576 LET BOOK$(P) = NT$ "] insert new
1586 LET PTR(P) = 6 _ | tle
1598 For 1 = 1 TO 200]
search for
1609 IF A$ = AUTHRS$(I) THEN GOTO 1620 [~ author
1616 NEXT1 _
1626 IF PTR(I) = 6 THEN GOTO 1650] search for
1630 LETI = PTR() __ terminating
1648 GOTO 1620 _] #re
1656 LETPTR(I) =P]— replace it with P

1666 RETURN

35

MENUS

We've got the basis, here, of a genuinely useful data-retrieval system.
Obviously, there are a lot more routines which would be necessary (for
instance we don’t have a way of deleting an entry at the moment), and
we need a way of linking them together. A convenient technique is to
use a menu. When the program is run, it fizrst displays on the screen
a list of options which it can execute. So, in this example, we might get
something like:

LIBRARY RETRIEVAL SYSTEM

OPTIONS ARE:

1. SETUPNEW LIBRARY
2. INSERT

3. DELETE

4. SEARCH

ENTER OPTION (1-4):

When you enter one of the options you may get a sub-menu. In this
case if 2 is entered, you could get:

INSERT ROUTINE

OPTIONS ARE:

1. AUTHOR INSERT
2. NEWTITLE

ENTER OPTION (1/2):

This way, all the routines can be written as independent subroutines,
the menus can just be printed out at the beginmning, and calling the right
subroutine can be achieved with;

45 INPUT “ENTER OPTION (1-4)"; L
50 ON L GOSUB 1000, 2000, 3000, 4000

where OPT is the value input at the bottom of the menu. We just have
to ensure that the SET UP NEW LIBRARY routine is at 1990, INSERT
is at 2008, DELETE is at 3900 and so on. The INSERT routine would
have something similar:

2015 INPUT “ENTER OPTION (1/2)”; L
2020 ON L GOSUB 2300, 2600

36

The AUTHOR INSERT routine would have to be at 2300 and the NEW
TITLE routine at 2600.

There’s more about breaking programs down into manageable chunks
in the section on Structured Programming.

There are plenty of other features which you can add to this embryo
data retrieval system. How about a subject-index, for example? A
SUBJECTS$ array will be necessary (with its associated FP array), be-
having just like the AUTHORS array. There’s no point in repeating the
information in BOOKS, but the linking pointers will be different, so
we need a new PTR array.

At the moment, it is not easy to find out who wrote a particular book.
Why not have a set of pointers pointing from BOOKS and AUTHORS
to handle that?

And so on, and so on. But I'll hand over to you, at this point. There’s
a lot of interesting programming here, and a really useful program at
the end of it.

Project

I've alluded several times in this section to problems in Stock Control.
It isn’t particularly difficult to write a suite of programs to handle the
stock for a small business.

You’d start by considering what kinds of data are required, and a
suitable structure for these. You'd certainly need things like part number,
part description, unit cost, number in stock, location (bin number),
reorder level, reorder number, supplier’s address. The chances are that
arrays organized as tables will do for this, unless there are alternative
suppliers of some items, in which case linked lists would be convenient.

Then you’d need routines like these:

1. Add new stock.
2. Remove stock.
3. Interrogate system for (a) number in stock of a given item
(b) location of a given item
Add new item.
Delete item.
Change supplier of item.
Change price of item.
Generate orders for items at below reorder level.
Generate financial reports (such as average cash tied up in stock).

0 0 N o e

37

Like all “real” projects this can grow like Topsy. The important thing
is to make sure that each routine is independent of the others so that
new ones c¢an be added, and old ones can be edited, with the minimum
of bother.

2x-17

He makes a highly
efficient darter-
processor!

Not entirely... you
get problems if
you try to
retrieve the
darter

An old genealogist’s trick, Or tasks
which branch at every stage.

6 Trees

A tree is a structure consisting of nodes and branches. Each node (ex-
cept one) has exactly one branch entering it, and may have any number,
including zero, leaving it. The exception is the root, which has no branches
entering it. A node which has no branches leaving it is called a /leaf.
So, a tree might look like:

The lettered circles are all nodes, joined by straight line branches. “A”
is the root and “D”, “E”, “F”, “G”, “I” and “J” are all leaves. Imple-
menting this structure isn’t much different from implementing a linked
list, except that now there is a variable number of pointers from each
node. In this case there are never more than three, so a three-column
array will do:

39

DTAS N PTR

1Al 2 3 0
2| B 45 6
3|c 7 8 @
4|D 6 0 ¢
51E o 0 0
6|F 6 @ 0
71G ¢ 0 0
8| H 9 19 0
9|1 6 0 0
103 6 0 0

A FAMILY TREE

There are some very straightforward applications for trees, and some
less obvious ones.

Let’s look at a straightforward one first — the representation of a family
tree.

This is another data retrieval problem, really. "We store the family tree,
and then want answers to questions like “who was X’s maternal grand-
father?” So we might consider an organizatiorz like:

JiM

EDITH | | ALBERT MARTHA TOMl

| MABEL| |GEORGE| | EVE| [JoHN | | zoE||[HARRY] [susan||PETER

In other words, Jim and Mary are Bill’s parents, Albert and Edith are
Mary’s and so on. Of course, it’s an incomplete representation, because
there is, for example, no way of telling whether Albert and Edith had
more than one child. It’s really just that part of the complete tree which
affects Bill directly. To get more detail, we wowuld need pointers from

40

each node to other trees showing the offspring of that node’s brothers
and sisters; which would lead to other trees in the same way. Boggle,
boggle! Let’s keep it simple.

The internal structure looks like:

DTA$ PTR

I |BILL

2 IMARY
3 1JIM

4 |EDITH

3]

L N
L W

5 |ALBERT 01
6 |MARTHA 2 13
7 | TOM 4 1
8 |MABEL

9 |GEORGE

10 |EVE

11 {JOHN
12 | ZOE

13 |HARRY
14 | SUSAN
15 |PETER

- 8 s e e s S
= e R s S e s = W

SETTING UP A TREE

Genealogists are, in my experience, no more sympathetic to the problems
of computer programmers than librarians are, so we’ll need a way to
set up this structure. Suppose we ask the user to enter the name of a
member of the tree, together with his (or her) mother and father, in that
order. We don’t ask any more than this; that is, we don’t insist that BILL
is the first entry, for instance.

So we have:

100 INPUT “ENTER NAME, TYPE * TO EXIT”; N§(1)
118 INPUT “ENTER MOTHER”; N$(2)
126 INPUT “ENTER FATHER”; N§(3)

Now we insert N$(1), N$(2) and N3$(3) into the DTAS array. Anywhere

41

will do, because the pointers are going to take care of the links, so the
simplest thing is just to load them into the first three available spaces.
Rather than have to read DTAS every time this is done to find some
free space, we could keep a pointer to the first free element. This will
be 1 to begin with so:

99 LETPFF = 1

Hang on though! What if one (or even all} of these names have been
entered before? We don’t want double entries, so we’ll have to search
the array for each name in turn:

166 FORI =1TO3

176 LETP(I) =90

188 FORR =1TO 15

199 IF DTA$(R) = N$(I) THENP(I) = R
200 NEXTR

216 NEXTI

It may have been worrying you why I bothered to enter the names into
a new array (N$). Can you see that it’s saved repeating lines 176 to 200
for three sets of values?

What’s the inside loop doing? Well, if the narme isn’t already in DTAS,
P() is left at zero. Otherwise, P(I) contains the row where the name
is to be found.

Let’s follow this through so far with the example. We enter BILL,
MARY, JIM. The program searches for these names and doesn’t find
them so we're left with:

N§ P

[,

BILL
2 | MARY
JIM 0

We can use this to make the rule: “If an element of P contains zero,
the corresponding element of N$ can be entered into DTAS, because
it hasn’t occurred before.”

Now we enter MARY, EDITH, ALBERT. This time N$ and P ap-
pear as:

42

NS P

I MARY
2{EDITH
31 ALBERT

= S,

So only EDITH and ALBERT need to be copied. As we copy them,
let’s keep a record of where we put them by holding the row values in
the P array:

226 FORI=1TO3

238 IFP() < > @ THEN 270
240 LET DTAS(PFF) = N$(I)
250 LET P(I) = PFF

260 LETPFF = PFF+1

278 NEXTI

So now we've got:
NS P

MARY
EDITH
ALBERT

[O
W b S

and that tells us that the pointers in row 2 should be 4 and 5, or in general,
row P(1) contains the pointers P(2) and P(3)!
All we need to write is:

28¢ LET PTR(P(1),1) = P(2)
29¢ LET PTR(P{1),2) = P(3)

That’s broken the back of the problem; now for some tidying up. First
we need to loop what we've got, to allow all the names to be entered:

3986 GOTO 160
316 END

And that means we need a way out of the loop:

185 IF N$(1) = “*” THEN 310 [or GOTO wherever]

43

Finally, we’ve got to dimension all the arrays:

10 DIM DTAS$(15) [if no name exceeds 19 letters]
26 DIM PTR(15,2)

30 DIM N$(3)

40 DIM P(3)

One more thing you should notice: since leaves don’t have pointers leaving
them, the initial values at leaves in the PTR array are never altered. Since
these will be set to zero by BASIC when the array is dimensioned, and
we’re using zero to indicate “no pointer,” this is fine unless, in the middle
of the program, you want to grow a new tree in the same array. Then,
you would have to zero the PTR array to leave it in the state the “Grow
a tree” routine expects to find it. It would be safest to do this anyway
at the beginning of the routine.

Now we come to a very interesting feature of the program we've just
written. We have assumed throughout that the data are entered in the
logical order — first BILL, MARY and JIM, then EDITH and ALBERT
followed by JIM, MARTHA and TOM etc. But actually the order in
which the sets of three names are entered doesn’t matter a bit. Try it.
Key in the program, tack a routine on the end to point to the DTAS$
and PTR arrays and then enter, for instance, ALBERT, EVE, JOHN,
then JIM, MARTHA, TOM, then MARTHA , ZOE, HARRY and so
on. Of course, the positions of the names in the DTAS array will vary
depending on your order of entry, but the pointers will also change so
that they point to the right names.

This is nice, because it allows the user to dredge bits of information
out of his memory in no special order (which is how most of our
memories work) and enter them while he remembers them. He doesn’t
have to form a notion of the tree that we’ve been working from.

Searching the tree for details of a person’s parentage is easy. Find the
required names in DTAS. The pointer in column 1 of PTR of that row
points to his (or her) mother and that in column 2 points to the father.
The process can be repeated to look for grandparents, great grandparents
and so on. I'll leave the actual coding to you. If you want to accom-
modate longer names try converting DTAS to a two-dimensional array
and using DIM accordingly.

44

A common use for trees: storing moves in a game.
Backtrack through the tree to find a winning strategy.
Here the computer teaches itself to win at NIM.

7

Game Trees

It’s possible to represent the moves in a two-person game in a tree. Let’s
look at a simple example. I'll define the rules of a game as follows.

i
2.
3.
4

There are two players who take it in turns to move.

The initial state of the game is that five matchsticks lie on a table.
A legal move consists of removing either one or two matchsticks.
A player has won if the other player removes the last match.

You’ve probably recognized this as a simplified form of Nim (in which
there are more matchsticks and more options) and if you've ever played
Nim you’ll know it’s a very simple game, so what we’ve got is very simple
indeed!

The tree shows every position that is possible in the game, and links
are shown between successive possible positions. The letters in the nodes
are just references, but the numbers indicate the number of matchsticks
left at that stage:

! said 2 chess program
would need a colossal

booget

@ @ 1st plaver’s move

@ @ @ @ 2nd player’s move

@ @ @ KA @ @ @ ist player’s move

@ @ @ @ @ 2nd player’s move
@ Ist player’s move

Notice that I haven’t said anything vet about whether a move is good
or bad. For instance, if the game reaches node E, player 1 certainly isn’t
going to remove two matches and so reach node K because in doing
so he loses! But it is a legal move and the tree is only concerned with
all possible legal moves.

WHEN IS A MOVE GOOD?

Now let’s assign some values to the nodes which indicate the quality of
a particular move. Obviously, this is easiest at the leaves because we know
who’s won. Let’s define a value 1 to mean player 1 wins and a value
— 1 to mean player 2 wins. (Pve used — 1 out of a feeling of symmetry:
you could try 9.)

For instance, node U has the value — 1 becauise player 1 picks up the
last match. Similarly Q, R, Sand T are all set to 1, and K, M and N
to — 1. In some cases, it’s possible to assign values to nodes which aren’t
leaves. For example, since node P only branches to node U it must have

46

the same value as node U (i.e. + 1). This is another way of saying that
once the game has reached node P, player 2 is guaranteed to win.
Now we’ll make the assumption that each player plays his best move
at each stage. That means that if player 1 has the option of going to
a node whose value is 1 he’ll take it, and so the node from which he’s
moving can be said to have the value 1. Similarly player 2 will try to
make a node + 1. Using this rule, we can “back up” the tree from the
leaves evaluating each node as we go. Look at a small portion of the tree:

(value 1 because player 1 can go

to L whichis 1) 2nd player’s move

(has to be 1, because

it only leads to T) -1 1lstplayer’s move

2nd player’s move

If you back up this tree to the root, youll find the root evaluates to
1. In other words the first player can always win!

What this shows is that Nim isn’t a very interesting game. Indeed,
no game of which the complete set of moves can be written down is
very interesting, because the implication is that it can be played in a totally
automatic way, without any guesswork or inspiration. On the other hand,
it’s exactly that feature which should make it easy for a computer to play!

A PROGRAM FOR NIM

So, how would we go about designing a Nim playing program? First,
it’s obvious that we need to store the tree:

47

>
=
Z
<

PTR

o
\\M
\\.

1 A 5 1 2 3
2 B 4 1 4 3
3 C 3 -1 6 7
4 D 3 1 8 9
5 E 2 1 19 11
6 F 2 1 12 i3
7 G 1 -1 14 (]
8 H 2 -1 15 16
9 1 1 1 17 ?
(U 1 1 18 U]
11 K @ -1 @ ¢
12 L 1 1 19 0
13 M @ -1] @
14 N 0 -1 @ @
15 P 1 -1 20 @
16 Q 0 1]]
17 R @ 1) U
J RN] 1 0 @
9T 2 1] @
20 U 0 -1 0 @
node numberof node left right
reference matches value pointer pointer

We could set this up with a series of input statements inside a loop, or
we could “grow” the tree in a similar way to that in which we grew the
family tree. Either way, we’ll assume that it’s available in the form shown.
From here on, the problem’s easy. At each stage, the computer has
two possible moves, given by the PTR values in the current row. It simply
chooses one which leads to a “1” in the node value array. So to start
with, we have to initiate a row pointer to the root of the tree, display
the number of matches and inform the human player that it’s the com-
puter’s go (after all, we want the computer to win, don’t we?):

48

1000 LETR =1
1016 PRINT “THERE ARE ”;NM(R); “ MATCHES ON THE TABLE.”
1826 PRINT “IT'SMY TURN”

Notice that I've written NM(R) in line 1610 rather than just “5” because
this will enable us to use the same statement next time around.
Now to calculate the computer’s move:

1030 FORC = 1TO2

1049 1F NV(PTR(R,C)) = 1 THEN 1060

1959 NEXTC

1968 LETR = PTR(RR,C)

1979 PRINT “THERE ARE ” ;NM(R); “ MATCHES ON THE TABLE.”

The loop (1930-1050) looks for a pointer in the current row which points
to an NV value of 1. When it finds one it updates the current row to
this value. There’s no real need for a loop, since there are only two
columns (i.e. two possible moves) to consider. But using one means that
this form of routine will work for more complicated games where there
are dozens of possible moves and correspondingly many columns. We
only have to change the “2” in line 1930 to however many columns there
are. Note also that we only need to find the first “1” in NV. After all,
any “1” leads to a win.
Now we allow the human player a turn:

1980 PRINT “YOUR TURN NOW”

1099 PRINT “HOW MANY MATCHES DO YOU WANT TO PICK UP?”
1196 INPUT HM

1116 IFHM > 6 AND HM < 3 THEN 1140

112¢ PRINT “NO CHEATING”

1136 GOTO 1990

1149 LET R = PTR(R,HM)

Now to see if we've won yet, and if not, to play again:

1156 IF NM(R) > 0 THEN 1419

11686 PRINT “I'VE WON AGAIN!”: RETURN

If we want to be generous, we could allow the user to go first every
other game, by passing control to the “computer move” and “human
move” routines in the opposite order. That would mean including lines
in the move routine to see if the human player has won, and treating
the two “play” routines as separate subroutines rather than in-line code.
If there’s a variable called G which counts the number of games played,

49

and the two routines begin at 1020 and 1088, as they do here, the call-
ing program could look something like:

500 LETG =0

518 IF G = 2*(INT(G/2)) THEN GOSUB 192¢ ELSE GOSUB 1080
526 IF G = 2*(INT(G/2)) THEN GOSUB 198¢ ELSE GOSUB 18260
530 LETG =G+ 1

548 GOTO 519

(don’t forget to terminate the two “play” routines with RETURNS).

There are various other “cosmetic” modifications to be made (at the
moment it displays: THERE ARE 1 MATCHES ON THE TABLE,
for example), but I’'m more concerned with another problem:

MAKING THE COMPUTER DO THE WORK

So far, we’ve assumed that the arrays have to be set up manually, in
one way or another. But do they? After all, we set up the tree, and hence
the arrays, from a knowledge of the rules of the game, and nothing else.
Couldn’t we give the computer the rules and get it to generate the array
values in a similar way?

Let’s give it a whirl. The NM array shouldn’t be difficult; we just start
with 5 in row 1 and use the rules to subtract 1 or 2 from this at each
stage. The PTR array will have to link these values, and so far we have
(without ever actually saying so) adopted the convention that the rule
“Remove one match” is handled by the first column (rule 1) and the rule
“Remove two matches” is handled by the second (rule 2). So we'll stick
to that. Of course, the NV array will have to wait until we've grown
the tree, because we need to “back up” to get the node values.

Assuming the arrays are already dimensionied, we can start with:

99 LETR =1 [first row]

186 LETNM(1) =5 [set the root]

116 LETCP =2 [set the “curremnt pointer” to the first
free row]

126 LET NM(CP) = NM(R)—-1 [rule 1]

130 LET PTR(R,1) = CP flink the pointer for rule 1]

149 LETCP = CP+1 fupdate 1st free row]

15¢ LET NM(CP) = NM(R)—2 {rule 2]

160 LETPTRR,2) = CP [link the pointer for rule 2]

176 LETCP = CP+1 [update Ist free row]

180 LETR = R+1 [go to next node]

50

Now we would like to go back to line 120, of course, to deal with the
next node, but we need to avoid getting into an endless loop. We could
cheat by remembering that there are twenty rows in the arrays, and branch
out of the loop when we've dealt with all twenty; but bear in mind that
we're trying to use this game to develop techniques which will still be
applicable in more complex situations, when probably we won’t know
how many nodes there are in the tree.

Actually, there’s an implicit rule we haven’t used yet; namely, that
you can’t pick up a match which isn’t there. So when matches are sub-
tracted at line 126 and 150, we ought to test to see that NM (CP) does
not go negative. If it becomes zero, that implies that we've reached a
leaf. Maybe we can use this to get out of the loop. If we insert:

115 [FNM(R)-1 < 8 THEN 180
145 IF NM(R)-2 < @ THEN 180

the “negative match” problem goes away.

Now let’s think about the way the pointers, R and CP, behave. CP
jumps off at twice the rate of R to begin with, since it’s updated twice
every loop to R’s one. When the leaves start to be reached, CP slows
down and eventually stops at 20, because the tests at lines 115 and 145
cause jumps around the “CP update” lines. All this time, R is plodding
along, tortoise-like, at one update per loop. When it catches up with
CP, we know there have been no forward entries past this row. 5o all
we need is to test if R = CP yet:

196 IFR < CP THEN 115

Now we'’re left with generating the NV array values. Obviously we have
to start at the leaves. We can find them easily enough, since the NM
value at a leaf is zero. But in order to give the node a value we have
to know whose turn it was.

Let’s set up another array called WPM (which player to move) whose
values will be set to 1 or 2 according to whether player 1 or player 2
is about to move. Here it is, added to the previous table.

51

Nl\\/l NV 7R WPKI
1 A 5 1 2 3 1
2 B 4 1 4 5 2
3 C 3 -1 6 7 2
4 D 3 1 8 9 1
5 E 2 1 19 11 1
6 F 2 1 12 13 1
7 G 1 -1 14 @ 1
8 H 2 -1 15 16 2
9 1 1 1 17] 2
10 J 1 1 18 @ 2
11 K @ -1 0) 2
12 L 1 1 19 0 2
13 M @ -1 0 @ 2
14 N @ -1 0 0 2
15 P 1 -1 20 0 1
16 - Q 0 1 9 0 1
17 R 0 1 @ @ 1
8 S 0 1 0] 1
19 T @ 1] @ 1
26 U 0 -1 {1 @ 2
node number of node left right which player
reference matches value pointer pointer to move

So in row 1, the WPM value is 1. Now, the rest of the WPM array
is a bit puzzling, because there are varying numbers of 1s and 2s in each
block. In an ideal world they would simply double each time: 1, 2, 4,
8 and so on, because there are two branches leaving every node. They
don’t of course, because some branches would lead to illegal moves. So
we need a limit on the number of rows we examine with each loop.
Initially, the first and last entries in WPM are at row 1 so:

2189 LETFST
226 LETLST

I

1l

1
1

52

To start with, player 1 is making a move so:

239 LET PLAYER = 1

Now we want to change the player:

249 LET PLAYER = (ZAND (PLAYER = 1))+ (1 AND (PLAYER = 2})

That’s a sneaky piece of code which will swap PLAYER from 1 to 2
and vice versa. Now, we'll loop from FST to LST counting the entries
in WPM as we go:

259 LET ENTRIES = @

2686 FORR = FSTTOLST

278 IF PTR(R,1) = 8 THEN 339 fthis branch doesn’t lead anywhere!]
286 LET WPM(PTR(R,1)) = PLAYER

29¢ LET ENTRIES = ENTRIES+1)

308 IF PTR(R,2) = 6 THEN 330 [neither does this one]

316 LET WPM(PTR(R,2)) = PLAYER

320 LET ENTRIES = ENTRIES+1 330 NEXT

Now look at the next block:

346 LETFST = LST+1
350 LETLST = FST+ENTRIES -1

and see if we’re over the end of the array vet:

360 IF FST < CP THEN 248

EVALUATING THE MOVES

MNow we can set the NV values for the leaves:

379 FORR = 1TO 20
380 IF NM(R) > 9 THEN 418

398 IF WPM({R) = | THEN LETNVR) = 1 [here only for a leaf]
400 IF WPM(R) = 2THENLET NV(R) = —1
416 NEXTR

Next we search backwards through the tree, linking the node values.
There are three situations to consider:

1. There’s only one branch, so we can just pass the value back.
2. There are two branches, and the search finds the left link.
3. 'There are two branches, and the search finds the right link.

53

In the last two cases, the code is going to be several lines long, testing
which pointer points to the maximum node value, and whether we want
to pass back the minimum or maximum value, depending on who is
about to play. So we’ll put it in a subroutine starting at line 8000. The
code is:

4286 FORR = 20TO2STEP~1

43 FORRP =1TO20

44¢ IF PTR(RP,1) = RAND PTR(R,2) = 8 THEN NV(RP) = NV(R)
45¢ IF PTR(RP,1) = R AND PTR(RP,2) < > & THEN GOSUB 8000
460 IF PTR(RP,2) = R THEN GOSUB 8400

47¢ NEXTRP

480 NEXTR

Notice that, to make the code simple, all twenty rows are always searched
in the inside loop. Of course, they don’t need to be, because there’s only
one reference to a given pointer in the PTR array. So the code is ineffi-
cient, but tidy.

Now for the subroutine: let’s make a table showing all the possible
combinations of node values being pointed to, and show also what each
player would want as a backed-up node value:

Left pointer Right pointer Player 1 Player 2
node value node value

,q.A
}
-

-1 1 1
1 -1 1 -1
1 1 1

In the first and last cases, there is no choice in the backed up value,
since both branches lead to the same number.

What we ought to do is determine in each case what the maximum
and minimum value is, but this seems a bit like overkill for just two
branches. (If there were more, we would have to do this.) Suppose we
add the two node values in each line:

-2

oS

54

Now, only when this value is —2is a “— 1” forced to back up and only
when it’s 2 is a “1” forced to back up:

8808 LET TV = NV(PTR(RP,1))+NV(PTR(RP,2)) [add the node values]
8019 IF WMP(RP) = 2 THEN 8050

8020 LET NV(RP) =1 for player 1 assume node is 1]
8436 IFTV < THENLETNV(RP) = —1 [if it can’t be, set it to — 1]
8048 RETURN

8056 LET NV(RP) = ~1 [for player 2, assume node is — 1]
8068 IFTV > 0 THENLET NV(RP) = 1 [if it can’t be, set it to 1]
807¢ RETURN

OTHER GAMES?

And that’s it! A computer program which works out its own strategy!
OK, the code is less than elegant in places; and here and there I've made
use of features of this particular game, rather than making things totally
general; but I was concerned with making it as easy as possible to follow
the code. (Anyway that’s my story.) It shouldn’t be difficult to apply
these principles to the design of a tic-tac-toe playing program, for in-
stance. (Remember, though, that in this case it’s possible for the game
to be drawn so node values of zero will appear.)

More complicated games have a serious problem, however. The trees
get colossal. Take chess for example. The first player has a choice of
20 moves to start with. (Two moves with each of eight pawns and two
moves with each knight). The second player has exactly the same op-
tions from each of the 28 nodes just generated, so there are 421 nodes
(including the root) after just one move each!

The solution is not to grow the whole tree—it simply wouldn’t be possi-
ble, however large a machine you had —but to restrict it to, say, five
moves ahead. Of course, that means it has to be regrown every move,
and it also means that there may not be any leaves in the region we're
locking at. That’s a problem, because our whole technique has depend-
ed on setting the leaf values and back up the tree.

What we have to do is to give values to the terminal nodes in the por-
tion of the tree we have stored, according to some set of rules. At the
simplest level we score high if we win material and low if we lose pieces.
Then we add some “fine tuning”. For example, deduct points if cur king
is unprotected, add them on if our queen controls the center files. How
many points to allot for a particular feature is pretty much a matter

55

of intelligent guesswork to start with. Scoring will become modified with
experience of how well, or badly, the program plays.

I don’t recommend that you leap into action and write a chess-playing
program, but there are a number of simpler games which are relatively
easy to program and at which your TRS-80 can be made to play a sur-
prisingly mean game. Connect-4 and Othello spring to mind. But BASIC
versions are pretty slow. Read the Machine Code section if you want to
speed up the action —and then prepare for a long job of programming!

TREES AND INTELLIGENCE

To the outside user, our Nim or Othello player will appear to play pretty
sensibly. I will avoid obvious traps, go for winning moves, and in general,
will not make aimless plays. That’s what a human player would do. So
does the program exhibit intelligence?

Well, it depends on what you mean by intelligence. If you mean the
ability to model human behaviour in some way (however restricted the
field), then the program does do that. If you mean the ability to solve
problems which are completely new to the machine, then of course, it
can’t. But can anybody? Don’t we all need some set of rules to work
from —some prior knowledge? So maybe the real problem is to devise
ways of giving the machine sets of rules (a model of the relevant aspect
of the world, if you like) in as convenient & way as possible.

The family tree example is, if you think about it, a simple case of
rule giving. After all, a statement like: “Martha and Tom are the parents
of Jim” is not, logically, very different from a doctor making a diagnosis
saying “A high temperature and spots indicate measles”. All we’ve done
is replace “Martha” with “a high temperature”, “Tom” with “spots” and
“Jim” with “measles”. It’s possible to design a system which allows a
consultant surgeon, for instance, to tell it about symptoms, diagnoses
and so on, and which stores all this information in tree-like structures.
It can then search the tree to make its own diagnoses when sets of symp-
toms are given to it. I may even “discover” simplified sets of rules leading
to a particular conclusion.

So trees are pretty interesting structures, although handling them can
get a little hairy at times. Usually, though, splitting the program down
into manageable lumps (as we did in the Nim program), and careful
dry running, will allow you to create interesting and useful routines.

56

Structured
Programming

As well as structuring your data, you should also structure the program.
Essentially this means writing it as a series of linked subroutines — which
can be debugged and tested separately, and then strung together, safe
in the knowledge that they work. You can name the subroutines in REM
statements if you want, to make the listings easier to follow.

More elusive than structure is style. Each programmer has his own;
and my favourite trick may not be to your taste. If you compare
FRENCH COUNTDOWN and CHECKOUT you’ll certainly notice the
difference in style —but you may not prefer the same style as somebody
else. Style is partly clarity and efficiency, and partly good organization;
but there’s something else, which is hard to pin down.

Rather than lecture to you about structure and style, I've written out
three case-histories of the design of longish programs (in BASIC). One
is the beginning of a text-editor, one a statistical simulation of super-
market checkouts, and one is an educational program to help teach
French (kindly provided by Eric Deeson and adapted to the TRS-80 by
Cort Shurtleff). If you don’t want to wade through the description, just
copy out all the lines in order, as they appear. But I'd rather you took
them routine by routine, which is one reason why no complete listing
is given on its own.

58

Beginning steps on a text editor, which give insight
into program structure, word processors,
and the way the TRS-80 works.

8 Zedtext-80

You hear an awful lot these days about word processors or text editors:
programs that turn a microcomputer into an intelligent typewriter able
to edit and manipulate a written text, The TRS-80 facilities for on-screen
editing of programs amount to a rudimentary text editor. You can buy
very sophisticated word processors that can paginate, justify and index
text automatically. Zedtext-80 won’t act as a practical text-editor as it
stands, however with a little ingenuity you can add a multitude of text-
editing functions. If you have a line printer there’s no telling what you
could do!

CHOOSING A DATA STRUCTURE

A text-editor must accept textual input, and process it in various ways.
Before starting on the program to do this, we must first work out the
most suitable structure for the data—the text itself. But before structur-
ing the data, we have to consider what we intend to do with it. Vicious
circle? No, because we can think pretty loosely at first, and write a few
experimental programs to test our hunches.

First we must be able to enter text and store it in memory. A second
feature is that we should be ooble to delete mistakes like that one, to
produce a clean text. We should also be able to append text (or insert
it in the middle like this) to existing text, just as this sentence is appended
to the previous one. Numerous other features would be desirable —the
ability to remember a segment of text and copy it into a chosen place,
the ability to save the results on disk or tape, and so on—but the above
will be enough for deciding on a data structure.

59

So let’s think about the possibilities.

(@) Think of text as a one dimensional array of single characters:

T HitisigjifsiojalglrielxIr
1i2y(3141s5]6|718To]10]11[12]13]14

(Pve drawn it horizontally —the boxes indicate a space, which is a
character after all.) The main problem with this is that to insert material
in T$ we need to shift lots of characters up several spaces, using code like:

1866 FOR K = TOP TO BOTTOM STEP -1
1818 LET T$(K) = T$(K -92)
1026 NEXTK

(say). We start at the top and move downwards, of course, to avoid
erasing sections of text not yet moved.

This looks as if it would run slowly on a text of say, 30090 characters;
otherwise it has the advantage of simplicity.

(b) Linked Lists. Arrange the text in a list, with pointers to the next
character.

Number | Character| Pointer

o B WD e
-~ N B Wb

Modifications of the kind “insert” or “delete®® are now very easy. For
example, to change the text to

THISOISONOTOAL TEXT. ..

all we do is add to the end of the list

15 N 16
16 O 17
17 T 18
18 O 19

60

and modify two pointers to get the characters in sequence:

8 ad
18 O

ko

Deletions are equally easy: you just change one pointer to reroute past
existing text. One minor problem: the deleted text is still “there” in the
sense that it’s taking up memory space—it’s just that you won't find it
by tracking through the list following the pointers, because nothing points
into it. If memory is short, it’s a nuisance wasting it in this way. There’s
a good way out, though: put up some kind of flag in the deleted en-
tries, and every so often do a “garbage collection run” which goes through
the list renumbering everything and getting rid of the flagged entries.
But such garbage runs will be slow to operate, so the best time to do
it is when you get fed up and go off to get some coffee. Moral: don’t
collect garbage until the memory is close to full.

(¢) variant on (b): use linked lists of words. Now you’ll have a genuine word-
processor, but it won’t be very good at handling symbolic text, e.g. pro-
gram listings.

The above discussions are very theoretical. In practice, which of these
structures you use depends heavily on the particular architecture of the
machine you are using. So let’s see how the TRS-80 copes.

(c) turns out to be a bit awkward because string arrays always have
to have a fixed length of word. This means you have to dimension the
array to fit the longest word likely to be used, say

18 DIM T$(508,21)

for 20 character words. But now our sample text above goes in as:

THISOOOOOODOOOoO000000
1SOO00000000000000000:
ADDOOCCOO00000000000
TEXT DO00000000000000

e Lod BN e
s W B

which wastes acres of memory. Now by being clever, you could doubt-
less take care of some of this; but it takes time and program space, and
it smelis complicated.

So ditch that one.

Linked lists look attractive, in fact many commercial editors do use
linked lists with the programs written in machine code for extra speed.
But on the the TRS-80 there’s a simpler way: we could use the video

61

memory map and treat it as a large string array. We write text on the
screen and then use PEEK and POKE to insert it into a block of RAM.
This has an advantage of simplicity but when I tried it, it took several
minutes to transfer into memory a single screen of text. Ditch that one
until you get to machine code—it has special features for the transfer
of blocks of code.

We end up using (a) above with a difference. We tie together individual
strings in a string array to form a single large string. As it stands it is
a bit clumsy. The text is stored in “pages” of 256 characters. We use
elements of the array to store the contents of any given “page” and use
other string variables to act as a sort of messeriger RNA to move blocks
of text. Later when you have machine code under control you can use
actual blocks of addresses in RAM as memory storage. One advantage
to storing text in a string is that we can print onto the screen with the
PRINT@ statement.

So after all that, it transpires that there are very good reasons to select
a simple Data Structure: the text will be stored in a simulated single string
of length specified by a DIM statement

As it happens, this has expository advantages too: it’s easier to see
how the various subroutines work in this rather transparent data struc-
ture. In addition, you can later write simple block transfer subroutines
in machine code that will easily be patched into your BASIC program.
These machine code subroutines will substantially increase the execu-
tion speed.

INITIALIZATION

For demonstration purposes we will limit our simulated long string to
12 pages, each containing 255 characters. As you type in a character
it is simultaneously printed on the screen and concatenated onto a string
array. In this section we need to take care of reservation of memory,
initialization of variables, and protecting the top of the screen from
scrolling away. Here is the groundwork needed:

18 REM *** ZEDTEXT — 8¢ ***

20 CLS

36 CLEAR 4000

45 PRINT @24, “ZEDTEXT - 8

9 ZZ=3:P=1:CP =1

60 DIM T%(12)

79 POKE 16912, 3 : REM SCROLL PROTECT

8 ES§ = *

62

99 PRINT @128,

196 GOTO 300

The string ES$ consists of 64 empty spaces, ZZ is the screen-full flag,
CP stands for current write page and P indicates the actual page. To
understand what these do you need to examine the section of the pro-
gram that is used to enter text, the Write Loop. Line 90 may be a bit
hard to read, it prints a solid line across the screen to separate our scroll
protect area from the rest of the screen. Our goal is to smoothly enter
text on the screen and store it the same time. The following program
lines do the job.

THE WRITE LOOP :

This section of the program has a simple skeleton:

506 REM *** WRITE LOOP ***
518 PRINT @ 64*3,*”
528 AS = INKEYS :IF A$ = “” THEN 520

610 PRINT @ CP*256+CI—-128,A8 :Cl = C1+1

670 GOTO 528

The INKEY$ function retrieves a character from the keyboard buffer
and is PRINTed @ the appropriate place on the screen. The variable
CP has no duty at this point; its presence is needed later to place the
text at the right screen location. We will display only three “pages” on
the screen at any given time and CP will indicate which page is active
at the moment. CI tells us the location of the next character of text.
Since a string variable can hold only 255 characters, we need to reset
the variable CI back to 0 at the end of the page. The— 128 in the
arithmetical expression in Line 610 slides the entire display up two lines.
(Try deleting it to see what happens.)

One advantage of our choice of this design is that we get an upper-
case/lowercase toggle for free—pressing the SHIFT and the @ keys
simultaneously will do the trick.

The next set of program lines store the text in an one dimensional
string array, and handle the bookkeeping when a page is full:

6280 TP = TSP)+AS
630 IFCl=255THENP = P+1:Cl = 8:CP = CP+I1
679 GOTO 520

63

All well and good but what happens when the screen is full? We need
to be able to scroll the text up and get a fresh screen to work on. First
we test to see if the third page is full:

65¢ IF P = ZZ THEN GOSUB 3600

You could just test to see if CP = 4 but using ZZ will free CP if you
want to use it in the Edit Mode of the program. Here is the Scroll
subroutine that is called for:

3000 REM *** MOVE IT UP ***

3p18 CLS: PRINT@ 236, T3(P-1)
30 Cl=0:22=Z22+1:CP=2
303¢ RETURN

This subroutine starts by clearing the screen . (Since we have activated
the scroll protect feature, the message on top is preserved.) It then prints
the last “page” at the top of the screen. To continue writing, we have
to adjust the variables appropriately. A little experimentation yielded
the above results.

One final detail, the cursor:

660 PRINT@ CP*256+CI—128

This will be written over automatically when you type your next character.

A CARRIAGE RETURN

An essential feature of any word processor is a carriage return. Cbviously
computers don’t have carriages, what we mean is a way to signal the
TRS-80 that we wish to move to the next line. The ENTER key is the
key to use. It’s ASCII code is 13. First edit Line 680 to match:

600 IF S<32 OR S> 127 THEN GOTO 2000
Now add:

2008 REM *** COMMAND DECODE ***
2019 1IF S< >13 THEN 2079
2026 PRINT @ 256*CP+CI—128 "

This gives a bit of space to work with and also erases the cursor.
Gur next problem is to make sure that the text in memory matches
the screen after a carriage return. It’s easy ennough to get the cursor to
skip to the next line, the problem is that we have to add all the spaces
we have just created to to the text variable; T3(P). That’s why I put in

64

the variable ES$ back in the initialization, it is full of handy empty spaces.
Add:

2030 Q = INT (CI/64): W = ((Q+I)*64)—CI
2040 IFQ = 3THENW = W—1

2050 A$ = LEFTS (ES$,W):CI = CI+W
2060 GOTO 620

207 GOTO 520 REM TEMPORARY

Line 238 calculates the number of spaces remaining. This is a useful
math trick so it’s worth a little thought. Line 2640 betrays a glitch in
our program design. Since a string variable can only store 255 characters
every fourth line will be one space short. At this point we will live with
it but we do need to add 2840 to make the math come out right. You
can patch this up later by inserting some extra lines.

Line 2058 defines A$ to be the correct number of spaces and Line
2050 sends the computation to the right place in the Write Loop.

THE DELETE KEY

Though most editing will take place in edit mode, it would be a con-
venience to have a delete key in Write Mode. The left-arrow key is the
obvious choice. The key has ASCII code 8, so the first step is to set a trap:

530 S = ASC(AS)
549 IF S< >8 THEN 640

The space between Lines 548 and 600 are reserved to deal with the book-
keeping involved in deleting the last element of the text string T$(P).

568 CI = CI-1:T$P) = LEFTHTHFP),Ch)
576 PRINT @ (CP*256)+CI—-127), “”
580 GOTO 660

If you test the program at this point you will note that it works fine
except when CI = #. (That is when you are at the end of a “page”. The
following line resets the variables when CI = 4.

558 IFCIl=8THENCI =255:P = P-1:CP = CP-1I

You now have a text writer that stores the text in a string array. This
should give you some insight intoc what happens when you start writing
ambitious programs. There are two other major components to
Zedtext-80 that you can tackle if you want: storage on disk (or tape)
and Edit mode. My advice is to finish the book and then, if yow're still

65

interested, finish Zedtext-80 with your new found skills. To get you started
here’s a way to access your screen editor and the Main Cursor loop. ..

EDIT MODE

The idea behind a screen editor is that you can rmove the cursor anywhere
on the screen and direct the computer to take some appropriate action,
say insert or delete text. In addition there should be commands to scroll
the screen up and down so that you can inspect any part of your text.
If you take a structured approach, you can keep adding more and more
features as you figure out how to devise them. If you don’ take a struc-
tured aproach, vou’ll likely start developing increasingly frustrating cul-
de-sacs. Your choice.

This final bit of code allows you to exit Write Mode when you press
the clear key. (ASCII code 31) At that point you can move the cursor
anywhere on the text screen with suitable combinations of the SHIFT
and right and left-arrow keys.

2079 1F S = 31 THEN 5000 ELSE 520

5000 REM *** EDIT MODE *#**

5010 S1=Cl:82=CP:S3 =P

5020 ClI = 128 : MM = 15360

530 CZ = PEEK(MM +CI) : POKE MM +C1,95

5040 AS$ = INKEYS: IF AS = “” THEN 50468

5050 S = ASC(AS)

5060 IFS = 9 AND CI< 896 THEN POKE MM + CL,CZ : CI = CI+1: GOTO
5039

5070 IFS = 8 AND Ci> 192 THEN POKEMM + CL,CZ:Cl = CI-1:GOTO
5030

5088 IFS = 24 ANDCI > 191 THEN POKEMM + CI,CZ: CI = CI-64: GOTO
5030

5050 IFS = 25 ANDCI < 831 THENPOKEMM —+ CLCZ: CI = CI+64: GOTO
5030

750 GOTO 5620

Obviously my choice of line numbers through out this program was in-
spired by hindsight. To make room for the ornigoing improvements you
can simply increment by 188 or you can budget your program lines in
advance. You might say that structured programnming is hindsight applied
ahead of time. The next two chapters demonstrate how to take a pro-
gram goal and work it through to fruition using the structured approach.

66

A simulation of customer-flow in a supermarket, which
can be adapted to the allocation of hospital beds
and the queues at filling stations.

9 Checkout

This is an example of a computer simulation. A supermarket manager
wants to know how many checkouts to keep open at a given time of
day, subject to information on the rate of arrival of customers, distribu-
tion of time spent dealing with each customer, and so on. The program
will attempt to approximate the true sequence of events, keep an eye
on queue lengths, waiting times, number of checkouts idle, and so forth,
and present its results. This (ideally) would help the manager decide how
many checkouts to keep open, and hence how many checkout staff to
employ.

The actual program below is just a first step towards a practical
simulation; but by the time we’ve written it we’ll be well aware of what
extra features it would need, and how to extend it. Meanwhile we’ll keep
it relatively simple.

DATA STRUCTURE

What is a good data structure for dealing with N supermarket queues?
It’s no accident that the word “queue” appears here: the corresponding
data structure is designed to do exactly what a real queue does, namely
accept input at one end and push things out at the other. What we want
is a list of N queues: that is, a queue array. Recall that to set up a queue
of length 25 (say) we use DIM Q(25), and then special routines to en-
queue and dequeue entries. For a queue array we do exactly the same
thing, but adding an extra dimension. If CN is the required number of
queues (or checkouts) then we’ll need DIM Q(CN,25). The “head” and
“tail” pointers H and T, and the lap counter L, also become arrays of
size CN.

67

OPERATION

We'll need a main routine to process the queues, say at time steps of
1 minute (simulated time, not real time, that is !). At each time step this
will have to:

1. Decide how many new customers join the queues.

2. Decide how long each of them will take to pass through the checkout
(i.e. how many goods they’ve bought).

3. Enqueue them according to some reasonable “customer strategy”.

4, Decrease by 1 minute the waiting time of the customer at the head of
each queue.

5. Dequeue customers whose time has decreased to 8.

In addition we’ll arrange for:
6. The production of a graphic display of the current situation.

After a chosen number of time steps (say 100) the program should stop,
and display an analysis of the way the queues behaved. Some useful
quantities would be:

® The average length of a queue.

® The maximum length of a queue.

e The average time a customer spends waiting in a queue,

e The maximum time a customer spends waiting in a queue.
e The average number of checkouts idle.

These quantities will be evaluated by various “system variables”, and the
main program must keep these up to date; so we'll also need:

7. Update the system variables.
8. Display analysis at end of simulation run.

ENQUEUE AND DEQUEUE

Let’s build these subroutines first, because we've already got them worked

out (see page 22). Assume we are working on gueue number 1 and wish

either to enqueue an extra number V, or dequerze a number and call it V.
Initialize:

5 CLS
16 DIM Q(9,25)
286 DIM H(®)

68

30
49

DIM T(®)
DIM L(9)

are envisaging a maximum of nine queues here. (To save memory we
could first input the number CN of checkouts, then define CN and change
all 9s above to CN; but there’s plenty of room in 16K so why bother?)

1000
1616
1820
1930
1040
1050
1066
1976
1080

REM *** ENQUEUE ***

IF H() = T(D) AND L(I) = 1 THEN GOTO 1678
LETQUITA) = V

LETT® = TH+1

IFT(M > 25 THEN LET L{) = L(D+1

IFT(> 25 THENLETT(D) = 1

RETURN

PRINT @896, “QUEUE FULL”

STOP

(If a queue of length 25 gets full, the run stops; but this indicates that
queues have grown much too large for comfort, and more checkouts
are needed.)

1190
1119
1120
1138
1149
1158
1160

REM *** DEQUEUE ***

IF H() = T() AND L(I) = § THEN RETURN
LETV = QLHID)

LETH(I) = HD =1

IFH@D > 25 THENLET L) = L(D~1
IFHE > 25 THENLET H(D) = 1

RETURN

As it happens, when we dequeue, V is always @; but we don’t know this
at this stage in the writing; anyway, it would be nice to check., We're
not worried if a queue gets empty (unlike ENQUEUE where a full queue
spells disaster) so line 1118 doesn’t ask for a “QUEUE EMPTY?” display
as line 1070 did.

The initialization of T and H isn’ quite what we want, though: the
ENQUEUE and DEQUEUE routines assume H and T start at 1, not
@. So we need to add:

50
60
78
89

FORI = 1T09
LETH({ =1
LETTO) = 1
NEXTI

69

GRAPHICS

The next routine sets up CN “checkouts” with spare lines for the queues
to be printed out (by another subroutine which follows).

1200
1210
1220
1239

1246
1250

REM *** CHECKOUT GRAPHICS *#*

CLS
FORI = 1 TOCN

PRINT @74+ 64*1,CHR$(141); CHR$(140); CHR$(148); CHR$(48 + I);

CHRS$(140)
NEXT 1
RETURN

To print the queues:

1300
1319
1320
1330
1349
1350
1360
1378
1380
1390
1400

REM *** QUEUE PRINT ***
LET X = H()

LET Q$ =

IF Q@,X) = 8 THEN GOTO 1350
LET Q$ = Q$+CHR$(48+Q)

IF X = T(I) THEN GOTO 1399
LET X = X+1

IFX > 25 THENLET X = 1
GOTO 1330

PRINT @79 +64*1, Q$; « ”;
RETURN

build inverse video

copy of queue

} print it

Each queue is stored in a string variable, the nurmbers in the queue repre-
sent the waiting time for that individual (i.e. the time needed for him/her
to pass through the checkout).

CUSTOMER HANDLING

Next, the subroutines dealing with customers. First we need to decide
how many new customers join the queues duzring one time-step (one
“minute”). For simplicity I'll use a random number of arrivals, generated
in the obvious way, to produce an gverage arrival rate AR. I'll input
AR itself later.

1560
1510
1520

REM *** ARRIVALS ***
LET NA = INTQ*AR*RND(®))
RETURN

70

Well, that’s almost too trivial to have as a subroutine at all; but I'm
going to leave it like that in case someone wants a more complicated
distribution of arrivals at some later stage in the development of the pro-
gram. It will be easier to change it if it’s a subroutine on its own. NA,
of course, is the number of customers arriving.

What do the customers do when they join a queue? They sit and wait.
The question is, for how long? Each customer will have bought a cer-
tain number of goods, which will take a certain time to process. For
ease of display and computation, I'm going to assume that each customer
is assigned a waiting (i.e. processing) time that is a whole number of
minutes, and at least 1.

For illustrative purposes, suppose we want to produce a distribution
of waiting times, so that of every 30 customers, on average:

4 customers take Iminute to process

6 " " 2minutes "’ \
10 11 ’t 3 2 £ t1
8 7t rr 4 rs ¥ 17 .
2 rr rr S 1t 77 77

Looks like a messy thing to program, but it’s not. Take an easier case:
suppose that out of every 6 customers, on average, we want

1 customer to take 1 minute
1 " " 2 minutes

1 " " 6minutes

Obviously we “roll a die” to decide the length of tine for each customer.
That is, we’'d use INT (1 + 6 * RND). For the more complicated distribu-
tion above, we need to concoct a 3@-sided die, such that 4 sides are labelled
“1”, 6 sides “2”, 10 sides “3”; 8 sides “4”, and 2 sides “5”.

Here is such a die:

LET D$ = “111122222233333333334444444455”

If we can pick a digit out of D$ at random, we can “roll” the die too;
and that’s not hard to arrange:

LET XX
LETNT

1t

INT(1 + 30*RND(®@))
VALMIDS$(D$,XX,1))

It

OK, here’s the scenario. When a new customer arrives, (s)he is going
to select which checkout to go to by some strategy. The waiting time

71

is assigned using the “die” D$. For the moment Pm only going to il-
lustrate the simplest strategy, “choose a queue at random”; but you might
like to think about modifying the program to allow two others:

1. Choose the shortest queue {(or at random fromm the shortest ones if there
is more than one)—I'll add this in later.

2. Choose the queue with shortest total waiting tizme (which a customer could
estimate fairly well by looking at how much stuff is in people’s baskets,
5o it’s reasonably realistic).

That gives us two new subroutines:

1680 REM *** STRATEGY ***
1618 LETI = 1 + INT(CN*RND(@))
16286 RETURN

(which decides which checkout a given customer will go to, and calls it I):

1788 REM *** NEXT WAITING TIME ***
1718 LET XX = INT(+ 3¢*RND(@))

1720 LET NT = VAL(MID$(D3,XX,1))
1739 RETURN

We've also got to initialize DS$:

S8 LET D$ = “111122222233333333334444444455”

MAIN PROGRAM

Now comes the bit that organizes all the rest: it works out what hap-
pens during the Nth time-step. First we initialize a variable to count the
steps,

1866 LET STAGE = 8

Next we arrange for the operator to input a couple of variables that need
to be decided before the subroutines can work:

306 PRINT “SUPERMARKET CHECKOUT SIMULATION”
316 INPUT “ENTER NUMBER OF CHECKOUTS (1- 9, CN
328 PRINT “ENTER CUSTOMER ARRIVAL RATE”

330 INPUT “{ AVERAGE PER MINUTE Y; AR

498 GOSUB 1280

" Now we’re all set for the action:

72

500 REM *** ONE TIME STEP ***

510 LET STAGE = STAGE +1

520 PRINT @965, “STAGE = ”;STAGE;

530 GOSUB 1500 _ - number arriving?
535 IF NA = 0 THEN GOTO 599

540 FORX = 1 TONA

545 GOSUB 1609 "} choose queue
556 GOSUB 1700 "} find waiting time
560 LETV = NT

576 GOSUB 1000

580 NEXT X }e“q“e“e

596 FORI = 1TOCN .
600 IF H() = TQ) AND L(I) = 8 THEN GOTO 649
616 IF Q(LH®) = 9 THEN GOSUB 1100

620 IF QULH{)) = ¢ THEN GOTO 649

63¢ LET QULH®) = QLH®)-1

640 NEXTI

659 FORI =1TOCN

6680 GOSUB 1300

679 NEXTI L print queues
680 GOTO 590

decrement front
- of queue, and

dequeue if zero

Not bad. But it won’t ever stop! If we want to run a specified number
of stages, then we’ll need to tell the machine how many, and when to
come out of the loop from 688 back to 5@0. So we'll add:

check if
360 INPUT “ENTER NUMBER OF STAGES IN RUN”; NSTAGE ha

run has
675 1IF STAGE = NSTAGE THEN GOTO 2000 ded

ende

At line 2000 we’ll put a routine that produces an analysis of the main
features of the run.

That raises all sorts of interesting questions, because we'll have to keep
track of those features as the run proceeds, and so far we haven’t built
anything into the program that will do this. So let’s take a look at the
problems involved.

SYSTEM VARIABLES

To keep track of what’s happening, we need tO set up various new
variables, update them as necessary, and use them to calculate the in-

73

formation required in the final analysis of the run.
First let’s decide what we’d like to know. A few suggestions:

ML = maximum length of a queue.

AL = average length of a queue.

MW = maximum time a customer waits iryx a queue.

AW = average time a customer waits in a queue.

AE = average number of empty queues (i.e. idle checkouts).

Of these, ML and MW are the easiest to deal with. All we have to do
is scan the queue lengths (wait times) at each stage (as each customer
joins) and increase ML or MW if this number is larger than the current
value. So first we initialize:

11 LETML =0
126 LETMW =0

Then we need two arrays W and N which hold the total waiting time
and length of a given queue:

136 DIM W(9)
140 DIM N(©)

Now for those averages. You have to think quite carefully what they
mean. The way to get an average is to total a lot of numbers and divide
out by how many of them there are—but you1 have to total the right
things! The sensible way is to keep a running total, and a running count,
and divide one by the other.

Thus to get the average length of the queue, we need a running total
length TL, which is updated for each queue once per stage. The running
total of queues involved, at CN per stage, is just CN * STAGE. So AL
= TL/(CN * STAGE). But where do we update TL?

First we initialize it:

15¢ LETTL =0

Then we decide where to find the queue lengths: the easiest place is dur-
ing the QUEUE PRINT routine:

1395 LET N(I) = LENQS$

We haven’t finished with TL vet, but let’s put the rest of the calculation
into an UPDATE subroutine, to be written below; and start working
on AW, the average waiting time. Averaged over what? Average per
customer. A given customer’s waiting time is the total waiting time of

74

the queue he joins, at the moment he joins it, p/us his own waiting time.
So most of the updating will get done during the ENQUEUE subroutine,
where the customer joins the queue. Further, we need to keep a check
on the total number of customers that has passed into the system, with
a variable TCUS (for Total CUStomers). And TW will total the waiting
times. Sounds messy? Just keep a clear head!

168 LETTW =0
1786 LETTCUS = @

Updating is done here:

642 FORI=1TOCN
644 LETWOQ = WD—~1+(W(D) = 9
646 NEXTI

1062 LET TCUS = TCUS+1
1964 LET W) = WDH+V
1906 LETTW = TW+W(I)—-1

UPDATING

The update routine also takes care of the “average number of checkouts
empty” variable, by making a running total TE and dividing by the value
of STAGE. Initialize:

186 LETTE =0

18086 REM *** UPDATE ***

1818 LETEC =8 "}~ set empty counter EC
1826 FORI = 1TOCN

1839 IFN() > ML THENLETML = N() __}— update ML

1849 IF W() > MW THEN LET MW = W(l) __}—update MW

1850 IF N() = 6 THEN LETEC = EC+1 } update EC

186 LET TL = TL=N() "} update TL
1870 NEXTI

188¢ LET TE = TE+EC - update TE
1896 LET AL = TL/(CN*STAGE)

1996 IF TCUS = 8 THEN GOTO 1928
1918 LET AW = TW/TCUS

19260 LET AE = TE/STAGE

193¢ RETURN

compute averages

75

Before we get too carried away with the @mazing success of this
subroutine, we’d better take care of one minor point: there’s no way
to get into it yet. We need to modify the main program:

672 GOSUB 1800

ANALYSIS

Coming down the home stretch now. All we need is to work out a few
more system variables, and print it all out.

2000 REM *** ANALYSIS ##**

20186 CLS

2020 PRINT * ANALYSIS”,,,

2039 PRINT “NUMBER OF CHECKOUTS = ";(CN

2049 PRINT “CUSTOMER ARRIVAL RATE= ;AR

2050 IF SNUM = 1 THEN PRINT “CUSTOMER STRATEGY:RANDOM”
255 IF SNUM = 2 THEN PRINT “CUSTOMEER STRATEGY :'TLINE”

SHORTEST LINE”
2060 PRINT “NUMBER OF STAGES= ";NSTA<GE

2078 PRINT
2086 PRINT “MAXIMUM LENGTH= "ML
2099 PRINT “AVERAGE LENGTH= ™AL

21866 PRINT “MAXIMUM WAIT = "MW
2118 IF TCUS = 8 THEN GOTO 2158

21286 PRINT “AVERAGE WAIT = AW
2138 PRINT “AVERAGE EMPTY = "AE
2148 STOP

2158 PRINT “AVERAGE WAIT ="
2168 GOTO 2130

A SAMPLE RUN

Once you've got the above listings typed in {(and no doubt re-debugged
them, typing errors being almost unavoidable in this game) the simula-
tion is ready. Type RUN. When asked, INPUT the number of checkouts
(say 7), the arrival rate (say 4) and the length of run (say 16, since the
program runs fairly slowly). You'll get a graphic display, changing at
each stage according to the way the customers behave. Then, after the
10th stage, comes the Analysis.

76

Here’s a typical series of runs, with the arrival rate AR = 3 throughout,
and NSTAGE = 20; all the values CN = 1, 2, 3,....,9 have been tried
in turn. (You can of course get the computer to do all this for you, by
suitable modifications—but for an exploratory attempt it’s not really
worth the bother.) The analysis is summarized in a table:

CN ML AL MW AW AE
1 QUEUE FULL AT STAGE 15—RUNSTOPPED

2 23 12.675 62 31.711864 9.2
3 15 5.8333333 46 18.44 §.2
4 10 3.9125 27 12.5 $.25
5 11 3.31 31 11.565217 #.9
6 7 1.7 18 7.4418605 2

7 6 1.81642857 15 6.7884615 1.75
8 5 1.03125 16 5.4324324 385
9 4 1.9722222 13 4.4444444 3.1

So, for example, with 7 checkouts the longest queue in the 29 stages
run was 6; the average was about 1.8, the longest wait was 15 minutes,
the average wait about 6.8 minutes, and on average 1.75 checkouts were
idle. The extra decimal places provide a totally spurious suggestion of
accuracy, and shouldn’t be believed.

These are probably barely acceptable figures: you wouldn’t want
customers to wait much longer than that! The figures with 6 checkouts
are a trifle worse; with 8, better on average; with 9 better still. With
5, they’re terrible! So you conclude that you need about 7 checkouts.

Of course, 20 is a rather short run; but armed with this rough estimate,
you can try longer runs with 7 or 8 checkouts. I took NSTAGE = 100,
AR = 3, and got:

CN ML AL MW AW AE
7 11 3.5857143 34 11.7¢1961 0.95
8 12 1.875 38 7.9620253 2.85

Now 7 looks less good; and 8 is acceptable. Conclusion: we need §
checkouts.

77

ALTERNATIVE STRATEGIES

You won’t always get exactly these figures, of course, because of the
random element in the simulation; but they’re fairly typical. However,
you may well suspect that the figures are unreasonably distorted by the
choice of customer strategy: in practice, shoppers do not choose the
checkout to join at random!

We can easily modify the existing program to permit different
strategies: simply change the subroutine at 1600, or better still, allow
a range of strategy subroutines and call the required one when starting
the run. Note that it is this easy precisely because we have broken the
program up into subroutines.

For example, suppose the customer sizes up the queues, sees which
are shortest, and joins one of the shortest ones (at random if there are
two or more). Then we would need a new strategy subroutine; and for
ease of modification we’ll put it at line 3000. Here’s the guts of it:

3000 LETZ =1

301 LET MQL = 25 find length
326 FORI = 1 TOCN
— of shortest

3936 IF N({) < MQL THEN LET MQL = N

queues
3040 NEXTI]
3056 FORI = 1TOCN 1
3860 IF N(I) < > MQL THEN GOTO 3¢90 list shortest
3070 LETB(Z) = 1 | queues
3080 LETZ = Z+1
3090 NEXTI
310 LETR = 1+ INT ((Z~ D*RND) -
3116 LETI = BR) select one
31286 LET N({) = N(D)+1 B at random
313¢ RETURN e

As always, there’s some initialization to take care of, and a bit of tinkering
with the original program. First, DIM B. ..

199 DIM B(9)

Next, we want to call either our old strategy at 1680 or our new one
at 3808. That’s easy enocugh:

380 PRINT “CHOOSE STRATEGY: 1.RANDDOM,”
3%0 INPUT“ 2.SHORTEST LINE. (1 OR 2)”;SNUM

78

Then we change the branch to:
545 IF SNUM = 1 GOSUB 1608 ELSE GOSURB 3000
Finally, we need to tidy the ANALYSIS:

2058 PRINT “CUSTOMER STRATEGY: ”;(“RANDOM” AND SNUM = iy
(“SHORTEST QUEUE” AND SNUM = 2)

With more than two strategies, this might get clumsy— you can work
out a better way!

We now have an additional option in the simulation: the choice of
strategy. Let’s see what effect it has on the results. RUN as before; but
when asked for the strategy input 2. Here’s a sample with the same in-
puts as before: see how the results change!

STRAT=2, AR = 3.

CN ML AL MW AW AE
1 QUEUE FULL AT STAGE 14—RUN STOPPED

2 19 5.55 35 14.657895 0.05
3 4 225 11 10.886364 0.05
4 5 2.6 16 9.9795918 @.65
5 3 1.57 10 7.3695652 9.5
6 3 1.4583333 11 5 1.15
7 2 0.69285714 7 5.7272727 2.95
8 1 0.4375 4 3.6666667 4.5
9 2 0.61666667 6 2.1698113 4

This time we get acceptable figures with only 4 or 5 queues. Note the
dramatic jump in empty checkouts (AE) between CN = 5 and CN =
6. Again, the shortness of the run (20 stages, as before) may be causing
distortions, so you should now try CN in the range 4-5-6-7 with, say,
100 stages. Experiment, and imagine you’re the Manager deciding how
many staff to hire. Or possibly the Consumer Watchdog, deciding
whether the times are acceptable to customers.

DOCUMENTATION

The program is pretty much self-explanatory; but here’s a summary of
its main points.
When you run the program you will be prompted to supply the number

79

of checkouts, average rate of arrival of customers, desired length of run,
and chosen customer strategy.

The program will perform the simulation, and provide an analysis
of the results, listing the above variables, and also:

The maximum gucue length.

The average queue length.

The maximum waiting time per customer.
The average waiting time per customer.
The average number of checkouts empty.

System variables

Numeric AE Average number of checkouts empty
AL Average length of queues
AR Customer arrival rate (nurnber per minute)
AW Average waiting time
CN Number of checkouts
EC Counter in UPDATE routine
ML Maximum length of queue
MQL Minimum length of queue
MW Maximum waiting time
NA Number of customers arriwing
NSTAGE Number of stages in simulation run
NT Next waiting time
STAGE Current stage in run
SNUM Customer strategy number
TE Running total of empty ch eckouts
TL Running total of queue lengths
TCUS Running total of customers arrived
™ Running total of waiting times
v ENQUEUE or DEQUEUIE variable
Strings D$ Dice—distribution of waiting times
Q$ Used in QUEUE PRINT routine
Arrays A2y Strategy line numbers
B9 List of queues of minimurn length
H(®) Head pointers for queue routines
L (9) Lap counters for queue ro utines
N9 Length of queues
Q (9,25 Queues
T Tail pointers for queue routines
W (%) Total waiting times

Subroutine line numbers

10 Initializations
300 Request for variables CN, AR, NSTAGE, SNUMB

80

500 One time step—main program

1000 Enqueue

1190 Degueue

1260 Checkout graphics
1300 Queue print

1500 Arrivals

1600 “Random” strategy
1706 Next waiting time
1800 Update

2000 Analysis

3000 “Shortest queue’” strategy
5000 Autosave

Projects

If you've followed the instructions this far, vou ought to be able to tinker
with the program without much trouble; or even insert new subroutines
allowing extra options (but be careful —you don’t want to spend twenty
minutes setting things up for each run!). Here are some suggestions—
and some additional simulations you can try.

1. Change the waiting times. The “3@-sided die” D$ controls the distribu-
tion of waiting times. Change it, and see what difference it makes. Bet-
ter still, let the computer build up D$ given the required distribution.

2. Remove transients. I've ignored almost completely the problem that
we start with an “empty supermarket” —no customers —so the first few
stages are not entirely representative. It might be more sensible to run
the program for, say, 10 stages; reset all variables (except queues and
related ones); then start the run proper. Try to write a program that
allows this.

3. Multiple runs. You don’t want to sit there all day keying in values
1, 2, 3,...for CN. Get the computer to do it; you’ll need to store the
various analyses in arrays now, and modify the final display. Oh, yes—
and change the QUEUE FULL jump so that the machine does something
useful, rather than just stopping.

4. Coincident birthdays. N people at a party compare dates of birth.
Ignoring the year, what are the chances that at least two of them have
the same birthday?

Simulate it. You’ll need a 365-sided die (don’t use a D$; use 365 *
RND(@)). Don’t worry about leap-years unless you're a perfectionist.
Generate N birthdays, compare, count coincidences; repeat 50 times (say);
print the results.

81

Try N = 5, 19, 15, 20, 25, 38, . . . What size rmust N be fore the chances
to be more than even (probability 1/2) that a coincidence occurs? Unless
you know the answer, you’ll be surprised. ..

5. Gas station. This has a line of PN pumps, each capable of accom-

modating two cars at a time, but serving only one. Arriving cars join

one of two lines (for each side of the pumps), which they cannot leave

until served. The lines move whenever a space on that side becomes emp-

ty. Given randomly distributed arrival and sexve times, find maximum

and average line lengths, waiting times, number of pumps idle, etc.
Generalize to PL lines, each with PN pumnps.

6. Hospital beds. A hospital ward has BN beds. Patients arrive at ran-
dom, and stay a random number of days. Beds are allocated as they
become spare. If there are none, the patient goes on the waiting list.
What is the optimum number of beds to ensure that the waiting list
doesn’t get too long, and that as few beds as possible remain empty on
average?

If you think this is a thinly disguised rewrite of CHECKOUT —you're
right! But the sensible numbers are different, and you’ll need new
graphics.

82

A case history in educational computing: test your French
vocabulary and fly to the Moon at the same time!

10 French Countdown

by Eric Deeson, adapted by Cort Shurtieff

Eric runs EZUG, an educational software user’s group. Here he writes
of his experiences at the sharp end of program design and distribution,
where theory must sometimes be temepered with practical considerations.
So here, straight from the horse’s mouth (no offense, Cort!) are some
valuable tips on program design and a blow-by-blow account of their
use; some special tricks to get more from your TRS-80 and some advice
about selling and distributing software on the open market.

INTRODUCTION

Everyone knows that doctors at cocktail parties have a big problem. As
soon as they mention their job, they are faced with a list of symptoms
to diagnose. Teachers tend not to be invited to cocktail parties; however,
they have been known to drop in on the occasional social gathering.
As a computing teacher I have the doctors’ problem —if another teacher
finds out what I do, the reaction is likely to be, “Oh, could your write
a program to help my 3C with their quantum mechanics?” Or the details
of the Spartan wars. Or the two-times table, or whatever. My weak smile
is sometimes followed by total inaction; sometimes an idea grows and
reaches the stage of several scraps of paper. Very occasionally, after many
hours’ work, a polished program results. FRENCH COUNTDOWN
came about in that kind of way. The story of how it reached a polished
version can now be told. I would like to use it to illustrate how one can
produce complex software by way of a methodical approach. This is
a learning program, one that can be (and is!) used by children at home
or at school. But the principles of structured program development are

83

generally applicable. There are also various coding tricks described, at
least some of which you may find novel and useful.
Any program, I think, has to meet the following criteria.

e It must do the job for which it was designed.

e It must do so efficiently and with minimum effort on the part of the user.

e Once the program is loaded, it should expect no computing knowledge
at all. And the user should never be in doubt what to do.

e The screen display must be pleasing — effectively laid out, uncluttered, easy
to follow.

e The user must enjoy using the program.

The designer needs, therefore, to know not only about programming,
but about communication. And he/she must krnow the subject concerned.
In the case of a teaching program, that theoretically means that three
people form the development team—a comnpetent programmer, a
specialist in the teaching of the subject at the level concerned, and some-
one with an eye for language and layout. Brilliant as I am, I can’t do
all that for a French teaching program, and I consulted several teachers
about different aspects of the software.

PROGRAM DESIGN

Teachers have to think on their feet a lot, fielding sudden questions with
(one hopes) effective as well as immediate answers. I suspect, therefore,
that computing teachers are more able than most programmers to write
a workable program without much planning. However, that applies only
to short chunks of code with straightforward objectives. The tempta-
tion to rush at a long complex program without thinking ust be resisted.
I’'ve not been able to resist the temptation sormetimes—and I've always
got in a heck of a mess in the coding and not been satisfied with the

“a) / The worm-

processor will
never replace
the secretary-

end result. We need a structured approach to the design and coding of
programs likely to occupy more than a couple of dozen lines or so. A
common type of structured development is called fop-down program-

ming. We can illustrate it like this:

| IDEA OF APPROACH |
|
[[1 1 N
PART PART PART PART PART
A B C D E
! | [! Y ! l 1 l |
SUBSECTIONS, DEVELOPED AND TESTED SEPARATELY
I — L]] I | [_J L |
[i 1]
| TESTED END PRODUCT |

Figure 10.1

Note the word “tested” there. A major advantage of top-down pro-
gramming is that one can test each individual procedure before linking
it with the rest.

In essence, then, we must develop the initial idea into a number of
fairly water-tight sections. Each section is called a module—it is
developed, tested and polished on its own as a subroutine. The final
program is a suife of such modules, suitably linked together and suitably
tested and polished as a whole. Testing may seem irksome, for it is more
than just trying the procedure vourself a couple of times to see if it works.
The programmer must do his best to make sure it succeeds in ¢/ con-
ceivable circumstances. If it doesn’t what use is it?

The final program is therefore a set of modules, or subroutines, linked
together in some suitable way. We can view it like this:

’ L
| START lMODUILEA E EE

Figure 10.2

Actually I've been using words rather carelessly. It may not really mat-
ter here, but there are differences between subroutines, modules and
procedures.

A module is a self-contained section of a program, one with a logical
identity and which can be tested in isolation. A subroutine is a section
of code designed to carry out a specific task. There are two kinds. The
kind we are used to, called by GOSUB and terminated by RETURN,
is a closed subroutine. An open subroutine, on the other hand, is a set
of instructions in a larger one—it still has a specific task but does not
use GOSUB/RETURN.

A procedure is a sophisticated closed subroutine with its own set of
variables.

From now on, I'll use the word “module”™ to indicate a conceptual
part of the final program. As far as coding is concerned, a given module
may be a set of open and/or closed subroutines.

As I do quite a lot of coding, I find it useful to reserve different parts
of the computer memory for different types of module. The TRS-80s
memory map for my programs is laid out like this:

~% ~5¢0 —100 —500 — 1006 1500 —2000 5000~ 9998
COMMON | MAIN | SPECIAL. | DATA |GRAPHICS

S |87/ N SAVE
REMS | START | INTRO | ¢ OUTINES [PROGRAM |[ROUTINES [ROUTINES [ROUTINES

You’'ll see the differences between the sections when we get to look
at the development of FRENCH COUNTIDOWN.

Here are the stages of the structured moduilar development of a pro-
gram. The stages marked * involve particularly careful testing, by the
writer, by others, by victims representing the final target population.

1. Definition of program aims and objectives.
2. Development of plan of approach leading to outline flowchart and story-
board. (I'll explain these posh terms later.}

3. Analysis of the overall program into logical modules, based (theoretical-
Iy} on the boxes in the outline flowchart.

Developing the main program module (¥).

Developing, coding, and testing each module and subroutine.

Linking the modules together (*).

Revising as necessary (¥).

Polishing the main and subsidiary modules for speed, layout, efficiency ().
Adding the opening and closing routines {*).

R AN

86

10, Polishing and testing the whole thing.
11. Preparing documentation as necessary from the records developed earlier.

Records? Yes—keep the paperwork associated with steps 1-3 above,
and during the coding stages maintain vigorously the following lists:

(a) Variables and their significance.
(b) Addresses of modules and subroutines.
(c) Graphics plotting data,

At the end, all this may be condensed into one page or so for filing—
perfectly adequate if you keep your REMs in the listing.

Remember that no program is ever perfect —if it is worth keeping it
is worth improving every so often. At the very least, you will come to
find parts of it impossibly clumsy in the light of your growing expertise —
those summary records in the file will make modification fairly
straightforward.

DESIGNING FRENCH COUNTDOWN

By now you will have forgotten that I'm supposed to be talking about
the development of a specific program — FRENCH COUNTDOWN, a
language teaching unit,

How was all the theory of the last section applied in this case? Let’s
take it step by step.

Step 1: Definition of aims and objectives

The original cocktail party request was for a program with which in-
dividual pupils could test their elementary French vocabulary. That overall
plan led to the following aims.

1. Todraw at random from a pool of vocabulary items, requesting transla-
tion either from English to French or the other way.
To keep count of score.

3. To do all this within the context of a simple game.
To set up the pool so that it could be easy for the teacher/parent to change
the vocabulary tested.

There was only one specific objective —that when the user had run the
program two or three times he/she would know the vocabulary better.
(That objective indicates that, in educational jargon, this is a drill pro-
gram rather than one for just testing knowledge. I admit that the original
request was for a simple test; trust me to think I know better.)

87

Step 2: Development of plan of approach

The above aims can be expressed in a very simple flowchart.

[

INTRODUCTION

Y

3a C—8 4
} CeC+1 C: question number

3b

Y

4 QUESTION

ANSWER
RIGHT?

7 ADVANCE

8 TIE UP 5
Restart

Figure 10.4

88

The skeleton of a set of modules is appearing out of the gloom already.
Some are tiny routines, like the C-loop (setting a given number of ques-
tions); others, like getting an individual question onscreen, and check-
ing out the answer, are going to be complex and will need much more
definition.

What about that ADVANCE box? Therein lies the game aspect of
this program. Some kind of “thermometer” display is needed, a graphics
routine to show how successful the user is. Many programs of this nature,
if they have a graphics game angle at all, stick to getting a train to move
further and further along a track. Not me. With an eye on “Space In-
vaders” I settled on launching a rocket ship. Each correct answer would
build the ship up further on the launch-pad, like sketch (a) below. Full
marks at the end of the run, and the ship would buzz off around a screen
full of stars. Sketch (b) shows that dream. (I didn’t quite succeed in that,
I tell you now.)

Title ,//f/? P 5@ “x
) ax
o # 7,
Scove Fuce Marke
a b

Sketches like this form what is called a story-board (a term intended
to show my keen knowledge of the film industry, another industry in
which 1 have failed to make a fortune).

Boxes 3, 4, and 5 are going to make the main program modules. 3
is simple—it needs no more extension as it will form a nice little
FOR...NEXT loop. Box 4, though, needs more thought. Here the pro-
gram must select a question from the pool, check that it hasn’t already
been used, and present it on screen. To some extent the routines there
will depend on the data structure used to hold the pool of questions,
but at this stage we can break box 4 down into smaller modules like this.

89

Y

GET
4a QUESTION

Y TITLE

TRANSLATE:
LEJARDIN

4c PRESENTIT

Figure 10.6 +

Maybe in practice 4a will need further subdivision, in particular to allow
random choice of translation direction. Anyway, leave it for now. Same
with 5, 6 and 7—they’re likely to become complex in practice.

(Actually, at this stage of development, my plans for boxes 6 and 7
were —to say the least—vague.)

CODING

The foregoing took several hours, all without setting a single program
line down on paper or in memory. Not only that, but those several hours
were spread over several days. That is an accidental part of my pro-
gram development procedures, for I do have other things to do than
sit at a keyboard. But it is now an explicit part of my system. Even when
I have a brilliantly exciting program idea I refuse to do any coding until
a little while has elapsed in which my subcomscious can kick routines
around.

But now it’s time to code! We're on to steps 4, S and 6 at last. First
the barest skeleton, based on my standard memory map (sketched earlier):

1 REM *** INITIALIZE ***
35 REM *** START **#*
498 REM *** SERVICE ROUTINES ***
999 REM *** PROG ***
1085 FORC = 1 TO 19
1899 REM *** FINISH OFF ***

90

1169 REM *** BACK TO START ***
1498 REM *** SPECIAL ROUTINES *#**
1999 REM *** VOCABULARY *#*

4999 REM *** GRAPHICS ***

It’s a start! And immediately some points arise:

1. These fragments of code are accompanied with (column 2) the growing
list of variables.

2. Sprinkle REMs all over the place however good the paper-work. But give
them line numbers just below the corresponding start-points—more on
that later.

Having dealt with the skeleton I must now start building up the main
program routine. You see I've allocated only a few lines to this (1000
to 1099). (For FRENCH COUNTDOWN that proves to be
insufficient —showing that I don’t really follow my own rules too well.)
Without a RENUMBER facility, which I tend not to like with any com-
puter, that means cramped unidy line-numbers. Unless I run entirely
out of line number space in a module, I try not to renumber by hand —it’s
time-consuming and unimportant even if it does make for a neater listing.

I've already dealt with box 3 in the flowchart, so let’s get stuck into
box 4. The first part of this, 4a, is “get question.” As I said before, the
procedure depends on how the question data are stored. By now I've
decided to have sixty questions in the pool and 'm going to store them
in two string arrays: FRNCHS for the French words and then naturally,
ENGLHS$ for their English counterparts.

TRS-80 BASIC allows for an array depth (for us neophytes: that’s
the number of slots along one dimension of the array), without using
a DIM statement, of eleven. Since 'm going to have sixty words, each
of our two string arrays must have a depth of sixty. Clearly sixty is more
than eleven, so I had to DIM each array (actually in testing the pro-
gram [started out with an abreviated vocabulary of just ten words).

And while we're at it, such large string arrays all demand a CLEAR
statement because left to its own devices the TRS-80 will reserve only
5@ bytes of space to store strings in which is not enough for our pur-
poses. We can get more space with the CLEAR n statement, where n
is the number of bytes we want to reserve, but we must be careful for
the statement will also set all variables to zero. Consequently, I put it
at the beginning of the program where it will reserve the string space
we need but won’t erase anything since, at the start of the program, there
isn’t anything to erase yet.

91

What value for n? One character one byte, sO 120 words of, say, length
12 are going to require 1440 bytes of memory. To cover for other strings
in the program and give a cushion I added an extra 508.

18 CLEAR 1940
15 DIM ENGLH$(69) : DIM FRNCHS$(64)

The two arrays are, within a subroutine, filled with vocabulary after being
called from the top of the program by a, vou guessed it, GOSUB. The
assignment coding,

1999 REM *** VOCABULARY ***

2000 FRNCHS$(1) = “LA TABLE” : ENGLH$(1) = “THE TABLE”
2001 FRNCHS$(2) = “LE TV” : ENGLISHS$(2) = “THE TV”

2082 RETURN

was designed so that the vocabulary could be changed easily by editing
out the old vocabulary and in the new. Note that I’ve only started with
two entries — I'll expand the list later. Here’s the subroutine call.

20 GOSUB 20006
So let’s enter the vocabulary fetch lines.

1216 CLS

1015 PRINT@128,“TRANSLATE:”;

1926 NUM = RND(2)

1925 T = RND(2)-1

1036 IF T=1 THEN PRINT@139,FRNCHS(INUM);

1935 IF T=0 THEN PRINT@139,ENGLHS(INUM);

1949 PRINT@256,”AFTER YOUR ANSWER,”; @320,“PRESS ENTER.”;

Run it (with GOTO 1)—it works! By the way, I used those trailing
semicolons on the PRINT@ statements to tell the machine that, apart
from what P’ve had it print, I want the display left alone. If they weren’t
there it would erase anything previously printed on unused portions of
the present line and, if that happened to be the bottom line of the screen,
it would cause everything displayed to move up a line with embarrass-
ingly amateurish results.

That leaves one tricky bit for the module of box 4—only allowing
the subroutine to be accessed if it hasn’t been 1ised before. What we need
is a “flag” system. If each routine starts off with its flag at 8, and this
switches to 1 when the routine is accessed, then we can test the flag and
try again if it’s 1. Here, an array is definitely the structure to use. I'll

92

set up an array U (for “used”) with dimension 6f; initialize each ele-
ment to zero; test the flag; reject the choice of vocabulary if it’s 1; ac-
cept the choice and set the flag to 1 if it’s 4.

The initialization needs a subroutine of its own. Here it is:

i1 DIM U(s8)

106 GOSUB 1600
1599 REM *** ARRAY ***

16860 FORN = 1 TO 60
1615 LETUMN) = 9
1618 NEXTN

1615 RETURN

Note how just before the beginning of the subroutine there is a REM
statement that contains the subroutine’s title. If, while looking over the
program, 1 come upon a call for it and have forgotten what it is, all
1 have to do is list the line before the first line of the subroutine to jog
my memory. I could have actually started the subroutine with the REM
but by bypassing it I can speed the processing.

Right —when the program first runs, all those flags will become @.
Then testing for and conditionally setting the flags in the main routine:

1923 IF U(NUM) = | THEN 1920
1924 UNUM) = 1

Get it? Fairly straightforward really. Now, put a temporary GOTO 1015
at line number 1845 and run it from the top. The routine should fetch
a word once and then again You might need to add a delay routine be-
ween fetches to see it. Check out the DELAY routine on page 94. Then
it freezes up because both flag one and flag two will have been set and
our random number generator, as presently structured, will only generate
a one or a two.

Did you see that we have got a design bug to overcome? It might
not have been evident if LE TV or THE TV was fetched before LA
TABLE or THE TABLE, but as the program now stands old vocabulary
words remain on the screen until they are written over. If a subsequent
selection happens to be shorter than its previous counterpart, the remains
of the first word will appear tacked onto the end of the second. This
is not exactly what might be called polished. What I had to do was erase
the first word before I fetched the next. So, to generalize the solution,
at the start of the program I put in a variable for 12 spaces:

12 BLANKS = * *

93

and then whenever I needed it, I could use it, as in the following solu-
tion for our problem at hand:

1826 PRINT@139,BLANKS;

I must now admit that I decided upon the line number, 1026, only after
some experimentation. You see there were a number of places on the
screen where I eventually needed this “eraser™ and it proved useful to
erase almost the whole “board,” as it were, with each go round of the
PROG loop. 1026 fit in nicely as the spot to erase in. By the time coding
was completed 1026 looked like this:

1826 PRINT@139,BLANKS; @460,BLANKS; @57 8, BLANKS; @333,BLANKS;

At this point I decided to expand the voca bulary table. So here we
g0 again:

1999 REM *** VOCABULARY ***
2000 FRNCHS$(1) = “LLA TABLE” : ENGLH$(1» = “THE TABLE”
2001 FRNCHS$(2) = “LE TV : ENGLHS$(2) = “THE TV”

and so on up to the RETURN statement at line 2060.

But, hold it —if we’ve got twenty each of nowuns, verbs and adjectives,
can’t we get a menu going? Of course we carx. Mind you, it’s going to
mean messing about round 1020 again. Still —it’ll be a nice feature.

465 GOSUB 800
416 PRINT@592,“1 SHALL ASK YOU TEN G UESTIONS.”;
420 GOSUB 509
425 PRINT@712,“WHAT TYPE DO YOU WA.NT THESE QUESTIONS TO
BE?”;
430 GOSUB 500
435 PRINT@868,“PRESS : 7;@958, 1 FOR INOUNS 2 FOR VERBS
3 FOR ADJECTIVES 4 FOR MIXTURE™;
449 INKY$ = INKEYS: IF INKY$ < “1” OR ZNKY3$ > “4” THEN 440
445 WRDTYP=VAL(INKYS)
450 GOTO 999
That calls two new service subroutines. I use I ELAY in most programs.
It causes execution to pause for a time set by the parameter DELAY.
It can be cut short at any time, by pressing €he spacebar in this case.

45 DELAY =75
499 REM *** DELAY ***
506 FOR B = 1 TO DELAY

94

505 INKYS$ = INKEYS : IF INKY$ = “” THEN GOTO 585
518 IF ASC(INKYS$) = 32 THEN RETURN

515 NEXTB

5286 RETURN

Yes, yvou're allowed two returns (or more) in a subroutine,
And here’s TITLE, at 800:

809 REM *+* TITLE #***
805 CLS

818 B$ = CHRS$(191)

815 FORFORI = 1TO 18: BS = B$+CHR$(143) : NEXT I

826 B$ = BS$-+ CHR$(191)

825 PRINT@277,BS;@405,8%;@405,CHRS$(143); @424, CHR$(143);
839 PRINT@341,CHRS(191);* FRENCH COUNTDOWN ”;CHR$(191);
835 RETURN

Before we get too far ahead of ourselves, don’t forget to fill in the
rest of the vocabulary table. Yes, all sixty entries and for our menu to
work correctly enter 20 sets of nouns followed by 20 sets of verbs and
finish up with the adjectives.

After all that convoluted rigmarole (sorry about it) we can LIST PROG
and have a go at getting the value of WRDTYP in use.

1816 RANGE = 20 :IF WRDTYP = 4 THEN RANGE = 60
1817 NUM = RND(RANGE)
1918 IF WRDTYP = 2 THEN NUM
1619 IF WRDTYP = 3 THEN NUM
1828 IF U(NUM) THEN 1917

i

NUM +28
NUM + 48

il

Follow that lot through with care. It may seem convoluied, but I think
it’s fairly neat in the circumstances. (OK, if I'd had the idea of choice
of topics before I'd started, I'd have come up with an easier way—but
I didn’t.)

We now only have to deal with boxes 5-7 in the main program—
checking if the answer’s correct and acting accordingly. Actually we've
been having rather a heavy time, so we'll do box § now with just a touch
of 6 and 7 and then take a break.

Because of the random choice of translation direction (Lines 1425-1435)
checking the correctness is not perfectly straightforward. The correct
response is FRNCHS if T is @ and ENGLHS if T is 1. So:

95

1945 INPUT R$:IF RS = “ OR LEN(R$) <3 "THEN 1645
1958 PRINT@448,“YOUR ANSWER: ";R$;
1955 IF(NOT T ANDR$ = FRNCHS$(NUM)) OR

(T AND RS = ENGLHS(NUM)) THEN

GOSUB 550 : ELSE GOSUB 608

For the moment let’s not develop those two subroutines—we can just
enter the following and test evervthing to date:

549 REM *** RIGHT ***
55¢ PRINT “RIGHT”;

595 RETURN

3599 REM *** WRONG #**
600 PRINT “WRONG™;
645 RETURN

We'll need to spend quite a bit of time perfecting those routines —but
later, after the break I promised.

GRAPHICS

This program is geting quite good already, but it’s still only an automatic
set-question-and-check-answer machine. The “countdown” in the title
concerns the building and lauch of a rocket-s hip. Remember? So now,
to make a change, we’ll go fairly fast through the graphics routines from
line 5000.

We have ten questions in our main C-loop. So there must be ten stages
leading to launch, each stage calling on the predecessors, and the stage
reached depending on the score. Part of the R IGHT/WRONG modules
will in fact determine score and call the countdown routines. We'll
build the graphics up and test it bit by bit and as a whole.

Here’s the overall plan.

4999 REM *** GRAPHICS *#*
5049 REM *** GROUND ***
595 RETURN

5099 REM *** SKY ###*

5100 GOSUB 5850

5145 RETURN

5149 REM *** GANTRY ***
5156 GOSUB 5190

96

5195 RETURN

5199 REM *** BASE ***
5200 GOSUB 5150

5245 RETURN

5249 REM *** STAGE 1 ***
5258 GOSUB 5200

5295 RETURN

5299 REM *** STAGE 2 #**
5300 GOSUB 5250

5345 RETURN

5349 REM *** STAGE 3 ***
5350 GOSUB 5300

5395 RETURN

5399 REM *** CLEAR GANTRY ***
5400 GOSUB 5350

5445 RETURN

5449 REM *** COUNTDOWN ##**
5456 GOSUB 5400

5495 RETURN

5499 REM *** LAUNCH #***
5568 GOSUB 5450

5595 RETURN

Can you see the pattern? Each routine calls on the preceding one, which
calls on the one before, etc, etc. By the time the score reaches 18 you'll
have given your subroutine stack a thorough work-out. This structure
should be tested. Insert temporary lines like:

5058 PRINT “GROUND”;
5195 PRINT “SKY”;

and so on.

And then hold your breath and try direct entry: GOTO 5500. If the
resulting screen activity is too fast to follow try, again temporarily, in-
serting our DELAY routine after each PRINT. Vary the size of the
DELAY variable until the execution rate seems right for you. You should
see an awful mess of messages building up —but they should all appear
in the right order.

Now I'll reproduce the designs I came up with, stopping only for really
necessary comments. Try to see my short-cuts; run each subroutine when
coded by a direct GOTO whatever.

97

1. Ground

5056 GRS = «7

5055 FORI =1TO25

50686 GR$ = GR$+CHR$(131)
5065 NEXT1

5070 PRINT@932,GRS;

2. Sky
5118 PRINT@43,“*”;,@100,“*”;@124,“*”;
5115 PRINT@169,“*”;@184,“*”;@315,“*”;
3. Gantry

5160 PRINT@875,CHR$(170);CHRS$(187);CHRE(149);
5165 PRINT@811,CHR$(178);CHRS$(183);CHRS(181);
5176 PRINT@747,CHR$(176);CHRS$(187); CHR B (151);
5175 PRINT@683,CHRS$(178);CHR$(183);CHRS(149);
5186 PRINT@814,CHR$(176); CHRS$(176);
5185 PRINT@750,CHRS$(131);CHRS$(131);

4. Base

5218 PRINT@879,CHR$(176); CHRS$(176);
5215 PRINT@882,CHR$(176);CHR3(176);

5. Stage I

5260 PRINT@880,CHRS$(190);CHR$(143);CHRE.(189);
5265 PRINT@816,CHRS$(160);CHR$(176); CHR 5(144);

6. Stage 2

5318 PRINT@816,CHR$(178);CHRS$(191);CHR S (149);
5315 PRINT@752,CHR$(166);CHR$(176); CHRE (144);

7. Stage 3

53680 PRINT@752,CHRS$(160);CHR$(191);CHRS (144);
5365 PRINT@689,CHRS$(176);

8. Clear gantry

5418 PRINT@815,CHR$(144);@811,CHR$(186); @751, CHR$(129);
@747,CHRS$(17D);
5415 GOSUB 500

98

5428 PRINT@815,“ ”;@819,CHR$(160);@751,“ 7 ;@746,CHR3(130);
5425 GOSUB 500
543¢ PRINT@814,CHRS$(144); @816,CHRS$(176);
@758,CHR$(129); @746,CHR$(131);
5435 GOSUB 500
5440 PRINT@814,“ ”;@899,CHRI(168); @758, ”;@745,CHRS(130);

9. Countdown

5460 FORT = 9TO 1 STEP -1

5465 PRINT@974,“COUNTDOWN T MINUS ", T;* SECONDS AND
COUNTING™;

5476 GOSUB 508 : NEXT T

5475 IF CFLG = @ THEN PRINT@ 1007, “HOLDING ”;

5480 CFLG = 1

The clear flag, set to zero at the beginning of each run of the program,
is used so that the switch from printing “COUNTING” to “HOLDING”
is not made if some knowledgeable or lucky student manages to reach
LIFT OFF. After all, it wouldn’t do to have “HOLDING?” flash on the
screen while the countdown continued down from 1 to @.

36 CFLG =0

Anyway it’s off to launch we go. But, alas, not to realize my dream
of having the rocket zoom off into star-set. BASIC’s just too cumber-
some. Here’s how the launch ended up— quite majestic actually.

10. Launch

5565 PRINT@992,9”;

5510 TAIL = 944 : TIP = 753

5515 DELAY = 50

5520 FORI =1TO 16

5525 DELAY = DELAY —3*I: GOSUB 500

5530 TAIL-TAIL-64:TIP = TIP-64

5535 IFI = 12 THEN 5555

5540 J = I1-11:1F J<@THEN 5550

5545 ONJ GOTO 5555,5560,5565,5579,5575

555¢ PRINT@TIP,CHRS(191);

5555 PRINT@(TIP +63),CHR3$(170); CHR$(191); CHR $(149);
5568 PRINT@(TIP + 127),CHR$(186); CHR$(191);CHRS$(181);

99

5565 PRINT@TAIL,“* 7,

5578 IF 1< 2 THEN 5588 ELSE PRINT@(TAIL +64), * 7
5575 IF 1< 3 THEN 5580 ELSE PRINT@(TAIL +129),“ *;
5586 NEXTI

There it is, a rocket take off. Isn’ it beautifizl! Some might say it locks
a lot prettier when you run it on the machine but us programmers know
that the real beauty is in the logic of that crisp, well ordered and ra-
tional bit of coding, right?

If you didn’t understand any of it, here are a few clues. Taking it
from the top: the “@” finishes off the countdown; the TIP is the location
of the tip of the rocket; likewise for the TAIL ; with each pass through
the loop the DELAY is shortened so that the rocket appears to accelerate.
(For you physics buffs out there, here’s a problem for you! Develop a
set of equations which describe the acceleration, speed and postion of
the rocket at time t. Hint: it reaches the speed of light very shortly after
leaving the screen.) The loop draws, erases and redraws the rocket while
shifting TIP and TAIL up the screen; the ON J GOTO jumps over suc-
cessive parts of the rocket as it leaves the screen; and finally those last
three lines before the NEXT I employ “*”s to create the spectacular special
effects you see trailing the rocket.

A lot of care is needed when typing all that from a listing, so check
it out properly —it’s a nice rocket and it does take off.

POLISHING OFF THE MAIN ROUTINE

After all that work outside the PROG section, you may expect a lot
of amendments within it. But no, that’s the beauty of the modular ap-
proach. There’s no effect on the center of the massive new building in
the suburbs.

In fact, we've almost finished the main routine now. All that’s left
is to deal with the score (incrementing which is of course the function
of the RIGHT subroutine).

We need to initialize the score:

1003 SC =90
and we need to display it in the C-loop:

1875 PRINT@704,“YOUR SCORE SO FAR”; @768, — — — — — — — — s
1086 PRINT@833,8C;* OUT OF ”;C;

1985 GOSUB 508

1098 NEXT C

100

And that’s the end of PROG!

Just as well deal with 1899 REM FINISH OFF now, too. That should
make us feel good, though there will still be a few oddments left. Here’s
how 1 closed each run of FRENCH COUNTDOWN.

1100
1145
1110
1115
1120
1125
1130
1135
1149
1150
1155
1160
1179

GOSUB 802

PRINT@646,“YOU HAVE HAD YOUR TEN QUESTIONS.”;
GOSUB 500

PRINT “YOUR SCORE WAS”;SC;*.”;

GOSUB 500

IFSC = 1 THEN PRINT@785,“WE HAVE LIFT OFF — WELL DONE.”;
IF SC< 18 THEN PRINT@787,“THE COUNTDOWN IS ON HOLD.”;
IF SC< 5 THEN PRINT@%14,“YOU MUST LEARN YOUR WORDS.”;
DELAY = 156 : GOSUB 500

GOSUB 808

PRINT@655,“LET SOMEONE ELSE HAVE A TRY NOW.”;

GOSUB 590

GOTO 35

Here’s the OPEN routine the above calls on. You may guess from
its position that in truth I set it up earlier in the development process
than now!

1499
1500
1505
1519

REM ##* QPEN ***

PRINT@785,“TO TAKE COMMAND PRESS ENTER.”
IF INKEYS = “” THEN GOTO 1565

RETURNM

RIGHT OR WRONG

Now we come to the only remotely hairy bits left —developing the
modules in subroutines 558 and 6@8. These deal, you recall, with cor-
rect and incorrect responses respectively, boxes 7 and 6 in the flowchart.
For a correct response, we need:

{a) to add I to the score;
(b) a suitable message; and
{c) to build the rocket stage further.

I start off like this:

101

549 REM #** RIGHT ***
558 SC = S5C+1

That’s (a) done. Trouble with “suitable messases” is that they can be
rather gruesome if they don’t vary. So I decided to incorporate five
suitable messages each for correct and incorrect responses, with random
access to them. This called for two additiona® subroutines; RMSGS,
for right messages, and WRMSGS for, you guessed it, wrong ones.

555 NUM = RND®#)
568 PRINT@578, RMSGS(NUM);NE;“.”;

RMSGS is filled in during the start up as follows, subroutine call first:

25 GOSUB 1700
1699 REM *** RMSGS ***
1706 RMSG$(1) = “RIGHT, ” : RMSG$(2) = “GOOD, ” : RMSGS$(3) =
“CORRECT, ” : RMSG$(4) = “WELL DONE, ”
1716 RETURN

Enter N§$, the student’s name, directly for testimg purposes at this stage
rather than restricting the later development ©f the introduction.
Now we can go on with our right answer <oding...

565 FOR SPOT = 35 TO 995 STEP 64

576 PRINT@SPOT,BLANKS; BLANKS§;* 77

575 NEXT SPOT

580 PRINT@970, BLANKS; BLANKS; BLANIKS; BLANKS;

That erases the launch scene so that 1 could r<build it with each right
answer. Here’s the call to the graphics sectiors:

585 ON SC GOSUB 5650,5100,5150,5200,525£3,5300,5350,5400,5458,5500
599 RETURN

There’s almost nothing at all to the wrong amswer module except the
same kind of message generator as used for right answers. Note the lack
of an increment to the score.

600 REM *** WRONG ***

635 NUM = RND(4)

616 PRINT@ 578, WGMSGS(NUM);N§;«.”;
645 RETURN

102

And here are those wrong messages and the call to initialize them.

30 GOSUB 1809
1799 REM *** WRMSGS **#*
1890 WGMSGSH(1) = “NOT S50, ” : WGMSGS(2) = “WRONG, ” :
WGMSGS(3) = “NO,NO, 7 : WGMSGS(4) = “SORRY, ”
1814 RETURN

See, I told you there was almost nothing to it.

THE END

The end is of course the beginning, the only bit we haven’t entered. |
suggest that that is the right idea— leave the introduction, especially the
instructions, until the rest of the program is spotless. I don’t think there’s
anything at all special about the remaining lines. So I'll just rush them
off to you, and make one or two asides if need be. First a REM:

1 REM ERIC DEESON (C) 1982
And the introduction itself:

35 CLS

38 SC =40

49 GOSUB 1500

45 GOSUB 890 : DELAY = 75 : GOSUB 500

58 PRINT@528,“DO YOU KNOW YOUR FRENCH WORDS?”;
55 GOSUB 500

68 PRINT@652,“IF YOU DO PREPARE FOR. LIFT OFF!;
65 DELAY = 156 : GOSUB 308 : GOSUB 800

70 PRINT@3531,“THIS IS MISSION CONTROL.”;

75 DELAY = 75: GOSUB 500

80 PRINT@652,“PLEASE TYPE YOUR NAME AND PRESS ENTER.”;
85 INPUT N3

99 PRINT@783,“WELCOME TO THE LAUNCH PAD ”;N$;“.”;
95 DELAY = 150 :GOSUB 500

And that, my friend(s), is that. Le programme (yes, that’s what they
call it!) est fini.

By now, of course, you've forgotten my opening pages. But rest assured
that I've tried to meet the criteria my cocktail party friend needs:

103

e effectiveness;

e efficiency;

e ease of use;

® no computing knowledge required;

e no doubts as to actions required;

e carefully laid out, uncluttered, easy to read screen display;
s enjoyment —well, hopefully.

These were not in fact specifically educational criteria—I've also
incorporated:

e full test details and corrections on hard copy;

e carefully determined (and varying) pace with delay-interrupt option;
e full mug-trapping;

e minimum predictability.

Well, it’s helped me revise my French anyway. Et maintenant. . .

DISTRIBUTION

Having sweated many hours over a hot keyboard to produce an all-time
masterpiece of useful programming, one’s mind naturally turns to the
possibility of making the material available to a wider audience than
one’s family or captive students.

There are many ways of distributing software in the hope of rich
rewards. (They include sticking an ad in the computer press, submitting
the material to a software library, or finding a publisher for it.) Whichever
one chooses, there is now an extra stage —that of preparing the distribu-
tion version. This stage involves several activities —before any of which
it is essential to get a full LISTing. These activities are:

1. Removing REMs—to save memory/loading time and to make it harder
for others to follow.

Undertaking further technigues for cutting rmemory/loading time.
Polishing the whole thing to impress anyone who sees the coding.
Testing again, fully.

5. Renumbering (if you're keen), and testing again, fully.

AW

There are, then, two major differences between the master version of
a program and the one distributed. The first, and more important, is
the minimization of memory requirement. Removal of the REMs so
necessary during development, and shortening variable names can, in

104

particular, lead to a reduction of 18-15% in the length of the program
and therefore in its loading and saving times.

The second aspect of preparation for distribution is, I suspect, the
more important to those folk who’re neurotic about copy-blocking. There
is no way to stop pirates copying your programs. The method for copy-
ing any program is straightforward, but I shan’t give it here. (Potential
pirates are invited to send me—er —$58 for the secret, if they promise
not to tell anyone else.) All the same most people distributing software
do make some attempt to make it harder to pirate. They may at least
make the listing hard to disentangle (well, that’s the reason so often given
for a cassette full of spaghetti), or they may prevent its being LISTed.
If you are worried about this, best just “fingerprint” the program by
including some dummy lines or directly entered combination code. Then
at least you can test a suspected rip-off to see if it bears your fingerprints.

USING FRENCH COUNTDOWN

There are two schools of considered thought about user documentation.
(I say “considered” because many people don’t seem to give the matter
any thought at all.) On the one hand there are the suppliers who feel
duty bound to provide sheaves of literature with their programs; few
users can follow it, let alone find it relevant. On the other hand, there
are the folk who reckon that their progrms are self-documenting — and
need no accompanying paper. I'm in the latter class. 1 have over 260
cassettes for the computer I primarily write software for (and as many
again, in total, for the other computers 1 use). I find almost insurmount-
able the problem of storing accompanying paper so that it’s as accessible
as the tapes. And there are few things in life more frustrating than want-
ing to use a good program and not being able to find the instructions.

A fully self-documenting program must contain within itself all that
the most inexperienced user is likely to need. That user is expected to
know only how to get the software into the micro. So a program should
be RUN when loaded and should never lead to a report code. Ideally
the BREAK key should be disabled —in practice, I mask it stiffly enough
so that it’s very hard to actuate accidentally. Also the program should
contain all necessary instructions. This takes up memory, of course—
but that’s a great inducement to keep the instructions simple. {(Alternative
approaches some people use are to have the instructions saved as a
separate program on the tape, or to put an audio commentary on the
reverse.) I think FRENCH COUNTDOWN is fully self-documenting.
Well, almost. So here are all the user instructions it needs. ..

105

French Countdown recorded on cassette at higher than normal volume
for the TRS-80 16K. Valid for any student after some six months of
a school French course, this is a game for testing simple English/French
and French/English vocabulary. The user is invited to select nouns, verbs,
adjectives, or a mixture, and is presented with a test sequence of ten
translations. Each correct answer prepares a rocket further for launch;
the rocket takes off if all ten questions are answered correctly. Start with
RUN. If delays are found to be excessive, speed them up using the space
bar.

Teachers may wish to change the vocabulary used. It is stored from
line 2000.

End of non-self-documentation.

106

hine Code

Mac

An Odd Hexmas Tree

We've been able to tackle some pretty serious problems in BASIC, and
I've never actually said anywhere, “This would be a lot easier if we could
tackle it in language X,” although I may have thought that a couple of
times. So why worry with machine code at all? Won’t it be much more
difficult than BASIC? Is there anything to be gained?

The first question is of course rhetorical. The answer to the second
question is that machine code isn’t difficult to wnderstand provided you
have a clear grasp of the way the machine really handles data, and the
form that the data take. The answer to the third is: “It depends.” Let
me elaborate:

There’s a Z80 microprocessor (actually a Z80A, but this makes no
difference) at the heart of your TRS-80 which does the real computing
donkey work. Unfortunately, it only responds to cryptic, and very simple,
instructions written in—you guessed it — its machine code. Any BASIC
statement you want executed has first to be trarzslated into this machine
code, and that’s done by a program (itself writtera in machine code) called
an interpreter, which sits permanently in the Read Only Memory (or
ROM) chip of your computer. This translation process takes time, and
it’s done every time the statement is executed. So if we bypass the inter-.
preter, by writing directly in machine code, we get a dramatic improve-
ment in speed. A program may run something likee ten times faster! There
are other reasons why speed improvements may be possible, but I'll leave
those till later. Of course, whether this increased speed is worth the hassle
depends on what you’re trying to do. Some moving graphics displays
may be hopelessly slow in BASIC. On the other hand, if you’re just
waiting for an answer to some complicated problem to be printed, you
may be quite happy to sit around for 20 seconds rather than 2.

There can even be positive disadvantages to writing in machine code.
A program can use more memory than its BASIC equivalent. (Again,
we'll see why later.)

What I'm saying is that machine code is no cure-all. It’s a tool, like
any other, to be used in its proper place. If youve ever tried
french — polishing a table with a chisel you’ll know what I mean.

108

A QUICK CHECK

Since we’ll need to wade through a fair amount of stuff before we can
write our own machine code and understand what’s going on, here’s a
couple of programs to demonstrate the power of machine language pro-
gramming. They both do the same thing but with a difference. The first
one is all BASIC, the heart of the second one is machine code stored
within and executed by a BASIC program. Here’s the first one. Type
it in and RUN it.

18 CLS

26 DIM ADDS (3)

30 ADDS(1)=15630 : ADDS(2)= 15600 : ADDS(3)= 15830
49 FORI=1T0C3

30 LET ADDRS=ADDS(I)

60 LETLTR=49

79 FORJI=1TO8

8 FORK=1TO@%*}I-1)

99 POKE ADDRS,LTR
196 LET ADDRS=ADDRS+1
118 NEXTK
126 LET ADDRS=ADDRS+64~-2%]
130 IF I=STHENLET LTR=64
140 LETLTR=LTR+2
158 NEXTJ
1680 NEXTI

Now for the second one. Enter it exactly as listed. Machine language
errors are notoriously unforgiving as you will undoubtedly discover in
vour pursuii of machine language expertise. If you’re wondering about
those DATA statements, they're just a convenient way of storing data,
in this case our machine language routine, within a BASIC program.
Do you see that READ statement further down in the program? Start-
ing at the beginning of the first DATA statement, each time it’s executed
it pulls the next piece of data out and stuffs it into CODE. When the
end of the first DATA statement is encountered it goes to the beginning
of the next one and so on.

19 CLS
20 DATA 33,158,61,229,33,176,60,229,33,206,68,229
38 DATA 6,3,225,197,62,1,14,49,17,64,0,6,8,25

109

49 DATA 197,71,113,35,16,252,193,27,60,60,12
50 DATA 12,254,11,32,2,14,66,16,234,193,16,2220,201
68 FORI=1TO 50
76 READ CODE
80 LET ADDRS=32255+1
9 POKE ADDRS,CODE
106 NEXTI
119 POKE 16526,0 : POKE 16527,126
126 Y =USR(20)

Type RUN. Fast isn’t it? It looped through the display in the same
way the first one did. It’s just that it’s so fast that it appears to appear
all at once. You'll never get that kind of speed out of BASIC.

When you’ve finished this book, you'll knew that it’s not magic at
all: in fact you’ll be able to write this kind of ™ thing before breakfast.
And you should be able to turn back to this page and answer two
questions:

1. How does the machine language routine work?
2. What is the meaning of the obscure chapter title?

110

As Dve told you before, the first thing is to understand
the data structure. So what structure should numbers
take in a machine code program?

11 Numbers in Machine Code

I said, a little while ago, that we were going to have to understand how
the machine really represents data. Let’s start with that.

We normally think about numbers in terms of tens. If I write the
number 3814 we all understand that to mean:

IX 1000 + 8 X 100 +1 x 10 +4 %1

we can see that to get a “place value” from the one on its right we simply
multiply by ten. We say the number is in base ten.

Because we've been doing this for as long as we can remember, it’s
difficult to realize that there are other, perfectly sensible, ways of doing
the same job. Early computer designers certainly didn’t; they used base
ten representations in their machines and hit some nasty snags. Mostly
they were caused by the fact that electronic amplifiers don’t behave the
same way for all the signals you want to input to them. For instance,
an amplifier that is supposed to output double its input signal may well
do so for inputs of 1, 2, 3, and 4 units; but then it starts to “flatten
off” so that an imput of 5 produces an output of only 9.6, 6 produces
10.8, and you can hardly tell the difference between the outputs for in-
puts of 8 and 9.

Put a music tape in your el cheapo cassette recorder and wind up the
volume. Hear the distortion in the loud bits? It’s the same effect.

Pioneer computer designers didn’t hear any distortion; they just found
that the machines couldn’t distinguish between different digits at times,
and that was hopeless for a computer. So they had to rethink their
number representation to suit what the electronic dodads would do best.

The simplest thing you can do with an electrical signal is to turn it

111

on or off; so you can represent the digits 8 (off) and 1 (on) satisfac-
torily. Distortion no longer matters. It’s clear whether a signal is pre-
sent or not regardless of how mangled it is. But can we devise a number
system which only uses @s and 1s?

Yes. In a base ten number, the largest possible digit is 9. Add 1 to
9 and you get 18—a carry has taken place. We can write any number
using any other base we choose, and the largest possible digit will always
be one less than the base. If the base is 2, the largest digit is 1, so a
base 2 (or Binary) number only contains s and Is.

What about the place values? In the base ten case we got those by
starting at 1 (on the right) and multiplying by 18 every time we moved
left one place. For a binary number we still start at 1, but we multiply
by 2 every time we move left.

So for instance the binary number 1101 can be converted to base 10
like this:

1 i @ 1

1

> X 2 > @
3> X 4 > 4
x 8 8
- 13

Converting the other way is easy as well; take 25 for example. If we
write down the binary place values:

32 16 8 4 2 1

and work from the left, it’s clear that we need a 16, which leaves 9, and
that’s made up of an 8 and a 1, so 25 is:

] 1 1 @ @ 1

HEXADECIMAL CODE

This is fine for relatively small values, but a bit messy for large ones.
There are a number of quick conversion techniques, but I want to ex-
amine a procedure which makes use of hexadecimal code, because it
will stand us in good stead later.

A number in hex {nobody ever says “hexadecimal”, except me, just
now) is a number in base 16. So the place values are obtained by suc-
cessive multiplications by 16. The first five are:

65536 4996 256 16 1

112

“Hang on!” everybody’s saying. “Those are nasty numbers, and anyway,
in base 16 the largest digit has the value 15. Things are getting
complicated.”

Bear with me. We handle the problem of digits greater than 9 by assign-
ing the letters A-F to the values 10-15. So the number 2AD in hex con-
verts to decimal like this:

2 A D
L*éxl —_— 13 (D=13)
x 16 160 (A =10)
X 256 512
= 685

Now for the nice feature of hex. Because 16 is one of the binary place
values (the fifth one) it turns out that each hex digit in a number can
be replaced by the four binary digits which represent it. (By the way,
“binary digit” takes almost as long to say as “hexadecimal” so it’s nor-
mally abbreviated to “‘bir”’.) The table below shows the conversions:

Decimal Hex Binary
] @ 000
1 1 01
2 2 2010
3 3 011
4 4 G100
5 5 3191
6 6 #1109
7 7 g1
8 8 1600
9 9 1061

10 A 1019
11 B 1911
12 C 1160
13 D 1191
14 E 1116
15 F 1111

113

A more extensive table is given in Appendix 1.
Now suppose we want to convert 9941 to hex. First we extract two
496s, then some 256s and so on like this:

9G4

2 X 4096 = 8192 -
849

3X 256= 768 ~
81

5 x o= _ 80~
1
1=
@

So the hex representation is 2351.
Now we just copy the digit codes from the table:

2 3 5 1
2010 911 0101 00

and that’s the binary equivalent of 9941; just run the four blocks together
to get 1191001101010001.

The hex-to-binary conversion is so easy that, more often than not,
we leave numbers in hex even when, ultimately , we need them in binary.
After all, it’s easy to make an error in copying long strings of @ and Is.

CONVERSION BY COMPUTER

Here’s a program to convert from decimal to heex. It successively divides
the number by 16, looking at the remainder each time, so it extracts
digits in the opposite order to that shown above.

Also it’s going to use a few string functions which you'll find in the
manual if you’re not absolutely sure of them: . Note also a minor an-
noyance built into ASCII code. Since character A does not immediately
follow character 9, we’ve got to make the adjuastment. And not for the
last time either.

10 PRINT “DEC/HEX CONVERTOR”

20 PRINT “1) DEC— > HEX”: PRINT “2) HEX — > DEC”
38 PRINT “3) END”

35 PRINT “ENTER 1, 2 OR 3" : INPUT SEL

49 ON SEL GOSUB 88,170

114

50
60
79

IF SEL = 3 THEN END
PRINT « ”
GOTO 28

The result is always presented as a 4-digit number. The program won’t
work if the result should contain more than 4 digits, but that’s ideal for
our purpose, as we shall see,

Here’s the code to convert in the opposite direction (hex to decimal):

80

90
100
110
120
130
140
150

LETP = 4
PRINT “ENTER DECIMAL NO. (MAX = 65535)” : INPUT DN
LET N = INT(DN/16) : LET R = DN— 16*N

LET DISP = 48 : IF R>9 THEN LET DISP = 55

LET HEXS$(P) = CHR$(R +DISP)

LETDN = N:LETP = P-1

IF DN > THEN GOTO 100

PRINT “HEX VALUE IS ”;HEXS$(1); HEX$(2); HEXS$(3); HEX$(4)

We could tie these routines together with a little menu:

179
180
199
200
210
220
230
249
250
260

PRINT “ENTER HEX NO. (MAX FFFF, INCLUDE LEADING ZEROS)”
INPUT HEXS

D=4:DN=g:1=90

LET H$ = MID(HEX$,D,1) : LET N ~ ASC(H$)

LET DISP = 48 : IF N>57 THEN LET DISP = 35

LETN = N-DISP

LET DN = DN+N*16 [I

LETD =D-1:LETI = 1+1

IF D>@ THEN GOTO 200

PRINT “DECIMAL VALUE IS ”;DN

and of course, we'll need RETURNs at lines 160 and 274.

In the North-west ... with a strong chance of a
scattered flowers and swarm developing towards
honey intervals... the evening ...

To deal with negative numbers, the
machine uses a clever trick.

12 Positive and Negative

Now that we'’ve seen something about manipulating binary numbers let’s
return to looking at the way they are handled inside the machine. Usually,
a number is held in a fixed number of bits, often 16 or 24 or 32, depend-
ing on the machine design. This number of bits is called the word size
for the machine.

Let’s examine what numbers could be held in a 4-bit word:

4-bit pattern Decimal value

R0 @
G001 1
3010 2
o011 3
0100 4
9191 5
6119 6
9111 7
1004 8
1001 9
1016 16
1011 i
1160 12
1161 13
1119 14
111 15

116

It’s obvious why bigger word sizes are chosen in practice; a machine which
can only represent the numbers @ to 15 is unlikely to be adequate. But
there are two other problerms; the notation can’t represent fractional values
(7.14, for instance) and it can’t represent negative numbers,

We'll ignore the fractions problem because most machine code routines
only use integers, but the way in which negative numbers are dealt with
is more pressing.

The technigue is simple: if you've got the binary representation of a
positive number and you want to create its negative equivalent you do
two things:

1. Change all the s to 1s and all the 1s to fs (this is rather picturesquely

called “flipping the bits”).

2. Add 1 to the result.

For instance, suppose you want — 3,
3 = @11 in a 4-bit word

Flipping the bits gives: 110
Now add 1: +1
¢

So 1101 represent — 3. It’s called the 2% complernent of 0911.

I'm not going to explain exactly why this works, but you can prove
to yourself that it does in any particular case like this:

If we add 3 to—3 (or 5 to—5 or anything to minus itself) we should
get zero. So:

it (=3)
+ 1141 {(=-3)
111 (Don'tforgetthat 1 + 1 = @carry 1 in binary!)

So we don’t get 9000 at all; but the junior 4 bits are zero, and if we're
working in a 4-bit word the senior bit will just drop off the end. (For
a convenient analogy, think about a car trip-meter with 3 digits; if it
reads 999 and you drive an extra mile, it reads 909 and a “1” has “dropped
off” the left hand end).

In other words we should have seen it like this:

11
+ 11100

il

117

This always works provided that the number o f bits is fixed throughout.
Don’t forget to include leading zeros to makee up the number of bits
to this standard length, before taking the 2’s complement.

Let’s rewrite the 4-bit table of values, now including negatives:

Decimal Binary 2’scomplemen t Decimal
g 0000 0000 0
5 1 0001 111 -1
L2 9010 1110 -2
L3 @011 1161 -3
L4 0100 1109 -4 |
E 5 0101 1011 -5 ;
L6 9110 1019 -6
rog 111 1901 -7
TR T T L 5|
9 1001 T
10 1010 #1190 ~10
11 1011 9101 ~11
12 1100 0100 -12
13 1101 G011 ~13
14 1110 @010 ~14
15 1111 01 ~15

Straight away we see that there’s a problem; every bit-pattern occurs twice
so that, for instance, 1801 could mean 9 or — 7. So we’ll have to restrict
the range of values still further. I've drawn a dotted line around the region
we actually choose to represent. If you look at the senior (leftmost) bit
in each of the patterns you’ll notice that it’s “@”” if the number is positive
and “1” if the number is negative. This is obwiously a very convenient
distinction.

So the range of numbers we can get into a 4-bit wordis —81to +7.
For Sbits it would be —16tc +15. For 6 bitsit willbe —32to +31
and so on.

A 16 bit word (which is important so far as the Z80 is concerned)
holds the range — 32768 to +32767. A table of 2’s complement nota-
tions for 8-bit words is given in Appendix 1.

118

It’s easier to start with a simplified, imaginary machine.
The Z80 is like this, but more complicated:
get the main ideas here!

13 Machine Architecture

That’s enough about numbers. Now we’ll look at how the machine
crunches them. To do this, we need to know about the internal structure
of the processor —its architecture.

Now, the Z80 processor is the product of some twenty-five years of
computer development and is a fairly sophisticated beast. So it’s not really
a good place for the beginner to start. What I’'m going to do, then, is
describe a simple processor which might have been built in the late 1940s
(except it wasn’t), just to introduce the important concepts which are
relevant to virtually all current devices, without having to worry about
the frills, which we can look at later (in Chapters 16 onwards).

We'll suppose that our imaginary machine has a memory of 16-bit
words and a number of 16-bit special-purpose registers as shown below:

Allez... You're bound to crash
000P5 ! if vou use the
wrong hopeode

119

Memory

A-reg. [_——__:\ Accumulator 000

001

PC [:::] Program counter o

003

Sp [::] Stack pointer oM

005

I-reg. l i Indirection register 096

007

X-reg. [::] Index register 208

00A
B

TN

Memory

addresses

Let’s look at the memory first. In BASIC we could have called each
of those memory locations anything we fancied, but the naked machine
isn’t so friendly. It insists on numbering every location in an absolutely
fixed way, starting at zero, as I’ve shown. These numbers are called the
memory addresses, and I've numbered them in hex, although you should
always bear in mind that, ultimately, the coding will be binary.

What can be held in a memory word? Well, any pattern of 16 bits.
Obvious; but the point 'm driving at is that those 16 bits can mean
anything we want them to mean. If we want them to mean a 2’s com-
plement coded integer then a word holds a number in the range — 32768
to 32767. If we want them to mean a positive integer with no sign bit
then the number is in the range @ to 65535. If we want, we can split
the word into two 8-bit fields each of which represents an alphabetic,
punctuation or graphics symbol. As Tweedledee (or was it Tweedledum?)
said: “When 7 use a word it means just what I choose it to mean—
neither more nor less.” I sometimes think Lewis Carroll was ahead of
his time.

Now for the special-purpose registers. Just the A-register to kick off
with. This is used every time you do any arithmetic. The result of any

120

sum you ask the machine to do is put into the A-register. (Sometimes
it’s called the accumulator, by the way.) Most arithmetic operations work
on two values; it’s no good asking the machine to work out 3+, you
need to say what 3 is to be added to. One of these values must be in
the A-register before the addition operation is executed. So you can write
an instruction like:

ADD (1A3)
and the machine takes that to mean:

1. Add the contents of memory location 1A3 to the contents of the
A-register. (The brackets round 1A3 are being used to indicate that it’s
the contents of 1A3 and not the number @1 A3 which is to be added.)

2. Put the result back in the A-register.

We've just written our first machine level instruction. It’s not actually
in machine code, but it’s close. Look at its general form. It consists of
an operation code, ADD, and an address, (1A3). Many instructions will
look like that. Incidentally, life is too short to say “operation code” too
often; everybody shortens it to opcode.

AN ADDITION PROGRAM

Let’s think about a sequence of machine instructions which would model
the BASIC statement:

LETR =B+ C

First we would have to assign actual addresses to R, B, and C. Sup-
pose that these are 183, 184 and 165, respectively. We have to get the
contents of 104 into the A-register. Let’s invent an LD (for load ac-
cumulator) instruction to do this:

LD (i64)
then add on the contents of 185
ADD (185)

and finally we need a way of storing the A-register’s contents back in
193. So we’ll invent a “store” instruction:

ST (103)

Now we have a simple machine level program consisting of 3 instructions:

121

LD (164) fload B into A-register]
ADD (185) fadd on C]
ST (193) [put the result in R}

How do we get the machine to run such a program?
We're used to the idea that a program is stored in the machine before
it’s executed. After all, if you wrote the BASIC statement:

18 PRINT “HELLO WORLD”

you'd be somewhat disconcerted if, as soon as you hit ENTER, the
message “HELLO WORLD?” were displayed. You expect it to be held
until you need it. So, by the same token, a machine level program has
to be stored first. Where more natural to store an instruction than in
a memory word? (A word means what you warat it to mean —remember?)
Of course, that implies that the opcodes LD, ADD and so on have to
be coded as bit patterns, but all we have to do is invent a table of bit
patterns in a quite arbitrary way like this:

Opcode mnemonic Binary code
ADD (R00
LD o0t
ST 0019

and every time we think of a new opcode that’s needed, we add it to
the table.

I've assumed, above, that all opcodes have a 4-bit binary code. That
allows 16 different patterns and therefore 16 distinct instructions. This
is a small instruction set by modern standards, but it will do for our
hypothetical toy computer. We've got 16 bits in the word altogether,
s0 12 are left for the address portion of the instruction.

So LD (184), once inside the machine looks like:

(0001000 100000100]

opcode address (184 hex converted to binary)

Once you’ve seen one bit pattern, you've seen them all, so from now
on we'll write the hex versions of instructions. I't’s marginally less tedious.

122

THE PROGRAM COUNTER

Suppose we store our 3-instruction program f{rom location OFF onwards:

~— OFE

1194 OFF
0105 190
2163 101
162
103
104
105
106

g N

Now we need a way of saying to the machine: “Kick things off by
executing the instruction of @FF, then do the one in 190, then one in
191.” That’s what the PC-register, or program counter, is for. It acts
as a kind of bookmark for the computer. We run the program by in-
itializing the PC to the address of the first instruction. While the machine
is obeying this instruction, the PC is automatically updated by 1, so that
when the system returns to examine the PC, it will go and obey the next
instruction, and so on.

There’s a snag, though. While the last instruction (in 161) is being
dealt with, the PC will be updated by 1 as usual, and so when the machine
looks at it again, it will find 162, and leap off to execute the instruction
there. What instruction? We didn’t put one in 102. Ah! But there has
to be a bit-pattern in 192 left by a previous program, or just set up when
the machine was switched on. So the machine will interpret this pattern
as if it is an instruction, because that’s what we've asked it to do. And
then it will roll on through locations 183, 104, and 165 and that’s where
we're storing datal! So if the number in 104 is 20FF, for instance, the
machine will interpret this as:

ST (UFF)

which will copy the contents of the A-register into @FF, thereby destroying
the first instruction of our program! Obviously what we need is a “halt”
instruction (I'll use the mnemonic HLT) which stops the updating of
the PC in its tracks. So the program now reads:

123

LD (104)
ADD (165)
ST (103)
HLT

There’s an important point here. Precisely because we are using words
to mean different things at different times, we hhave to keep a very careful
eye on the implications the machine will draww from what we tell it to
do. If we request it to ADD the contents of a Zocation to the A-register,
then it will assume that that location holds a number. It will make no
tests; it cannot —any bit-pattern could represent a number. Similarly,
any bit-pattern could represent an instructiom, so if the PC points to
a location, its contents will be executed as an instruction.

The rule is: keep data and programs firmi{y apart. 1f you don’t you
can expect to be totally mystified at regular in tervals. As I've indicated,
a whole program can disappear without trace while it is running!

124

Some more instructions: the functions of the
program counter and the stack.

14 Jumps and Subroutines

So far, our instruction set looks a bit thin. We've got LD and ST, which
will move things around memory, ADD, which is pretty primitive
arithmetic, and we can stop things with HLT.

We'll pep up the arithmetic capability a bit by adding SUB, which
will subtract the contents of a location from the A-register, but that’s
all we’re getting. No multiply, no divide, definitely no square root.

What we really need is a set of branch instructions, equivalent to
BASIC’s IF...THEN. ..

JUMPS

It’s going to be fairly easy to branch to an instruction out of the usual
sequence; what we need to do is change the contents of the PC. So we’ll
use an instruction like:

JP 416 [jump to 416}

Whenever it is executed, it will put 416 in the PC. The system is “fooled”
into thinking that the next instruction is in 416, and then it will go on
to 417, 418 etc. until the next “jump” instruction is encountered. Of
course, any address can follow the JP code.

This instruction is more like a GOTO than an IF...THEN ... What
we need is an instruction which resets the PC only if some condition
is met. The simplest test we can make is whether the A-register contains
ZEro.

JPZ 2A7 [jump to 2A7 only if A-reg. contains @}
Another would be:

JPN 14E [jump to 14E only if contents of A-reg. are negative]

125

That’s the minimum we can get away with, because we can now test
for a positive (non-zero) number by noticing when the program doesn’t
jump on either JPZ or JPN instructions.

SUBROUTINES AND STACKS

While we’re on the subject of transferring control from one place to
another inside the program, how about something like BASIC’s GOSUB
and RETURN?

We'll have an instruction:

CALL 285 [call the subroutine starting in 2001

What does it do? Well, obviously it puts 205 inito the PC, but we could
use a JP for that. CALL performs a second flunction: it stores the ad-
dress of the instruction after the CALL, so that when a “return” (opcode:
RET) is encountered it can load the stored address back into the PC
to continue the main program from where it left off. This is where the
SP register comes in. We use some of the mem ory as a stack (remember
stacks?) and SP points to the top of the stack. "When a CALL is obeyed,
the return address (the address of the CALL + 1) is pushed on to the
stack. When the RET is encountered the stack is popped into the PC,
Here’s an example:

N
PC 3B9 CALL 3BC 3B9
3BA
SP 3FF 3BB
3BC
3BD subroutine
RET 3BE
s
3FD
3FE
E— 3FF
T —]

The CALL is about to be obeyed. ..

126

PC

3BC

’\/—"‘*’\

CALL 3BC

RET

3BA

I i N

3B9

3BA
3BB
3BC
3BD
3BE

3FD
3FE
3FF

subroutine

Now it has been, and the return address is on the stack. The program
steps through the subroutine until it reaches the RET,

CALL 3BC

RET

3BA

b s

and control is back inside the main program.

3B9
3BA
3BB
3BC
3BD
3BE

3FD
3FE
3FF

after which:

subroutine

127

The private eye tracks his victim: how
to use the coratents of one address
to point to another one.

15 Indirection and Indexing

There are only two registers left to talk abowt, and both have similar
functions: they can both alter the address pzart of an instruction while
the program is running.

INDIRECTION

Let’s look at the way the I-register does this first. We'll invent a new
opcode, LDI or “load indirect.” Like HLT, it doesn’t have an address
associated with it. To the machine, it’s just 1ike an LD except that the
high bit of the address field is set to “1.” Th1is bit is called the indirec-
tion flag, and simply indicates to the machine that indirection is in force.
So the binary form of the LDI instruction s:

[0001]1[00000000000|

T T

opcode address (not used)

indirection flag

The hex code is 1808. When the machine eracounters this instruction,
it uses whatever number is in the I-register ass the effective address. So
if the I-register contains 1E4 and an LDI irmstruction is executed, the
effect is exactly the same as if the instruction Inad been LD 1E4. In other
words, the I-register acts as a memory pointer, and we can move it around
to our heart’s content if we can do arithmentic swith it. That means moving
values into the A-register, because that’s time only place we can do
arithmetic. So we’ll invent an opcode XAl for “exchange contents of

128

A-register with contents of I-register.”

Of course, the indirection flag can be set for any instruction which
has an address part. So we can have STI, JPI, ADDI etc. and in each
case, the last 3 digits of the hex code will be 804.

AN EXAMPLE

Let’s look at an example which uses these ideas. Suppose that we want
to initialize a 1D array of length 20, to hold the numbers 2, 4, 6, 8. . .440.
In other words we want a machine code equivalent of the BASIC:

FORC =1TO 20
LETA(C) = C*2
NEXT C

There are a series of values which are going to have to be in memory
somewhere, to make this work. They are 1 (because the loop count goes
up in ones), 2 (because that’s the increment for the array contents) and
20 (which is needed to test for the end of the loop). I don’t, for the
moment, want to be bothered with exactly where these numbers should
be stored, so I'm going to allow addresses to be referred to temporarily
by names (just like BASIC names). We'll have to convert these to numbers
when we finally get to machine code, of course. This is an application
of Jones’s First Law of Computing: “Never put off till tomorrow what
you can put off till the day after.” So we’ll assumme that the numbers
we want are available in locations called N1, N2 and N2@. Similarly,
we’ll have a location called BASE which holds the address of the first
element of the array, and one called COUNT which will act as the loop
counter.

First we set the I-register to point to the base of the array:

LD BASE
XAI

Then we set the COUNT to 1:

LD Nl
ST COUNT

Now we double this (by adding it back into the A-register) and store
it in the location pointed at by the I-register. (We talk about “storing
through the I-register” for short.)

129

ADD COUNT
STI

We “undouble” the value on the A-register zagain, subtract 20 and see
if the result is zero. If it is we've finished:

SUB COUNT
SUB N2g
JPZ OUT

OUT is another, as yet unspecified, address. We don’t know where
it is yet, because we don’t know where the program ends, and so, again,
it’s useful to give it a name temporarily.

If the branch doesn’t occur, we add 1 to the COUNT:

LD COUNT
ADD NI
ST COUNT

and increment the I-register by 1:

XAI
ADD NI
XAQI

The current COUNT is now back in the A-register, so we can loop back
to the doubling operation:

P LOOP

provided we give the “ADD COUNT” instruction the symbolic address
“LOOP.” Let’s do this by preceding the instru<tion by its symbolic ad-
dress followed by a colon:

LOOP: ADD COUNT

We can do the same sort of thing to set up thse initial values we need,
by defining a new opcode HEX which just sets a word to a required
value. It isn’t really an opcode at all since it isn’ equivalent to a machine
instruction, so we call it a pseudo-operation. T he whole program looks
like this (ignore the numbers in the left- and right-hand margins for the
moment):

130

020 LD BASE 1 033
921 XAI A 000
022 LD Ni 1 630
023 ST COUNT 2 32
@24 LOOP: ADD COUNT ¢ 932
s STI 2 800
326 SUB COUNT 4 932
027 SUB N2¢ 4 931
428 JPZ ouT 6 047
029 LD COUNT 1§32
A ADD N1 ¢ @30
2B ST COUNT 2 932
#C XAl A 000
2D ADD N1 ¢ 030
2E XAl A 000
nF . Jp LOOP 5 M4
030 Ni1: HEX 0001 ¢ 001
@31 N2¢: HEX 9014 0 014
$#32 COUNT: HEX G000 0o 000
%33 BASE HEX Q000 0 000

The only symbolic address which doesn’t appear in the left-hand column,
and is therefore still unspecified, is OUT. We'll worry about it later.

The form of the program we now have is written in what is known
as assembly code. On modern sophisticated computers there will be an
assembler program whose function is to convert this into real machine
code for us.

Assemblers have been written for the TRS-80 and are available on
both cassettes and disks. However, we're going to learn a lot more about
computers and about assembly language basics by hand assembling our
routines. If, after you’ve gotten a feel for machine language program-
ming, you think it meets your programming needs, you should consider
buying an assembler. They’re surprisingly cheap and with what you've
learned here you’ll have no problem getting right in over your head. Of
course if you’re a purist {masochist) you should do all your programm-
ing in machine language (binary that is, hex is too human).

131

HAND ASSEMBLY

First we need a table of opcodes and their equivalent hex values:

Opcode Hex

ADD
LD
ST
HLT
SUB
JpP
JPZ
JPN
CALL
RET
XAI

6~ N A B W R e R

o

Also we need to know where the beginning of the program is. That’s
a more or less arbitrary decision, so let’s assuzmne it’s at #28. Since each
instruction occupies 1 word, we can write down the address of each in-
struction. You'll see that I've done this down the left-hand side of the
program. Now we can replace the opcodes arxd addresses by their hex
equivalents. For instance, LD BASE becomes 1033, since BASE is now
identified as 033. The right-hand margin shows the complete code.
The only instruction which needs further cormxment is JPZ OQUT, which
encodes as 6847. Why should OUT be at 8477 It could be elsewhere,
but 947 is the first location it can be at. The reason is that the array
is occupying the space from @33 to 346 (twenty words), and we obviously
don’t want to go clumping around inside the program’s data area.

THE INDEX REGISTER

When the X-register is in use, the real instruction address is formed by
adding the address field to the contents of the X-register. For instance,
if the X-register contains 490, then the instruction LDX 005 has the same
effect as LD 405.

We'll pinch another bit of the address field to indicate when indexing

132

is in operation, so the LDX @05 instruction looks like this:

looo1lol1|o000000101]

¥_T_—, ’T
opcode address
index flag

indirection
flag

In hex, that’s 1405.

Actually there’s nothing you can do with indexing that you can’t do
with indirection. It’s just that it will do arithmetic with addresses
automatically instead of leaving the job to you.

133

The actual architecture of the Z80 CPU,
the heart (or is it the brain?)
of your TRS-80.

16 At last the Z80!

I'm sorry that you've had to wade through the last ten or so pages without
being able to try anything out, but if you've really understood the ideas
in them, you’ll find that understanding the Z80 is a breeze.

Before we get into the Z80’s architecture (sorry, the chapter heading
isn’t quite accurate!) let’s consider some of the difficulties of the pro-
cessor I've just described.

First, the 4-bit operation code only allows 16 different instructions.
(OK, we cheated a little, by allowing the indirection and indexing flags
to spill over into the address field, but that in turn means we’ve limited
the address size, and therefore the maximum size of memory!) The Z80
has 694 instructions! To give each of them a separate bit pattern means
that we need an 8-bit field (1 byte); and even them some fudging is needed.

Second, our imaginary machine uses memory in a rather careless way.
Some of the instructions don’t use the address field (HLT, LDI, STI,
for instance), so a sequence of such instructions wastes 14 bits in every
word. The Z80 gets over this problem by allow ing different instructions
to have different lengths. Some instructions have no address field and
are just 1 byte long. Others have a 1-byte acidress field and so are 2
bytes long. Others have a 2-byte address field for a total of 3 bytes. There
are even some which have 2-byte opcodes! This means that the PC can’t
increment by 1 for every instruction executed . It has to increment by
the length of the instruction.

Third, we always have to handle 16-bit words, which is inconvenient
if we're dealing with characters (which normally occupy a byte each).
So it would be nice to allow 8-bit and 16-bit operations.

Fourth, the fact that there is only one general-purpose register (the
A-register) can be annoying. It often means that intermediate results have

134

to be stored temporarily back in memory while some other calculation
is done. The Z80 has a number of general-purpose registers; although,
as we shall see, exactly how many there are varies depending on what
we're using them for.

THE REGISTERS

Here’s the register organization:

8 bits 8 bits 8 bits 8 bits
A F A’ F’
B C B’ C’ general-
D E D’ E’ purpose
H L H’ L’ registers
main set alternate set
X .
Iy special-
SP purpose
PC registers
16 bits

Ignore the alternate set for the moment. The registers appear in pairs,
indicating that they may be used either as 8-bit or 16-bit registers. For
instance, we can refer to the B-register (8 bits), or the C-register (8 bits)
or the BC register (16 bits). The B, C, D, E, H and L registers can all
be used in this way (in pairs BC, DE HL on/y) but the A and F registers
are strictly 8-bit registers and cannot be combined. For the 16-bit pairs,
the senior byte is the left-hand one (B, D, H) as you’d expect.

There are two index registers, the IX and 1Y, a stack pointer (SP)
and program counter (PC). What, no indirection? Actually any of the
16-bit general-purpose register pairs (BC, DE or HL) can be used for
indirection but, for simplicity, we shall always use the HL for this
purpose.

There are two sets of instructions, one for handling 8-bit operations
and the other for handling 16-bit operations. We’ll start with the 8-bit
“load” instructions.

135

How to shuttle data from one place to another. ..
and a few words about addressing modes.

17

Load

Let’s look at the “load” (LD) operation as an example of the 8-bit group,
It’s very like the LD instruction in our imaginary machine, except that
two extra addressing modes are allowed: register-to-register, and
immediate. That gives a total of five, with direct, indirect, and indexed
available as before.

1.

Direct addressing

This looks much the same as our imaginary equivalent, except that, since
there is more than one register, we have to specify which register we want
loaded:

LA A,(3F1C)

This loads the contents of 3F1C into the A-register. Note that, by con-
vention, the movement is from right to left, so that we can write:

LD 3FIC),A

and mean “copy the contents of the A-register into 3F1C”. (Actually,
the A-register is the only 8-bit register which can be directly addressed.)

Indirect addressing
Again, this is straightforward. Since we’re going to standardize on the
HL for indirection, the instruction format it:

LD A,(HL)

which means “load the A-register through (i.e. from the address con-
tained in) the HL register”. To pass data in the opposite direction we
could have:

LD(HL),A

136

which puts the contents of A into the address contained in HL. (For
this instruction, registers other than A are allowed.)

3. Indexed addressing
Here, we need to indicate which index register is in use, and the amount
of the offset:

LD A,(IX + 2B)

Note that in direct addressing, I showed an address of 4 hex digits, because
16 bits (2 bytes) are allowed for the address. The offset value in an in-
dexed address instruction must be held in 1 byte, however, so I've only
shown two hex digits.

4. Register-to register
We can transfer data between registers like this:

IL.DD,B
which means: “load the contents of B into D”.

5. Immediate
Here, data itself, rather than the address of data, is placed in the ad-
dress field. So we can write:

LD B,@7

to mean “put the number 7 in B”. Note again that the number is two
hex digits, since it has to be stored in the single byte of the B-register.
Note also that a “LD” is really a copy: the numbers are retained in their
original addresses or registers, but a copy is placed at the destination.

HEX CODES

Now let’s see what each of these instructions looks like in hex; for a
full listing see Appendix 3.

1. LD A, (BF1C)

First we look up the opcode for the LD A, (an) instruction. (The nn
indicates a general 2 byte address). This is 3A. So you would expect the
instruction to code as:

3A3FIC

Unfortunately, there’s a slight complication caused by the way the Z80
thinks about numbers; it likes the least significant (junior) byte of an
address first. So we have to swap the address bytes round:

137

3A IC3F

This is mildly annoying, but you soon get used to it. It is an invariable
rule for 2-byte numbers in Z80 instructions: junzor byte first, then senior.
The LD (nn), A instruction has the code 32, so:

LD (3F1C) becomes 32 1C 3F
2. LD A, (HL)

This is easy. There is no address part so it’s just a 1-byte opcode. Look
it up and youll find it’s 7E.
Similarly LD(HL),A codes as 77.

3. LD A, (IX + 2E)

The general instruction is LD A,(IX + d),d indicating a 1 byte displace-
ment (in 2’s complement notation), and its code is DD 7E. {Note that—a
2-byte opcode!) So the instruction is:

DD 7E 2E
where the byte 2E is the displacement chosen in this case.
4. LD D, B
No problem here, again. The code is 50.
5. LD B, 97
The opcode is 86 so the instruction is 96 §7.

138

To kick off with, here’s a machine code program to
add two numbers—and a simple BASIC loader
to write and run machine code easily.

18 Arithmetic

What about arithmetic? There’s an ADD and a SUB instruction, both
of which reference the A-register, and which may use any of the ad-
dressing modes except direct.

So let’s try writing a program to add the numbers 4 and 7 together.
This would work:

LD A% [put 4 in the A-reg]
LD B,g7 [put 7 in the B-reg]
ADD A,B [add them, and put the result in the A-reg.]

Now store the result away somewhere:
LD (TEQ9),A

Here’s the program, the hex code, and the decimal equivalent:

Program Hex Decimal
LD A% 3E g4 62 04
LD B,g7 g6 a7 g6 a7
ADD A,B 80 128
LD (7Eg0),A 32007E 50900126
LOADER

We’re left with the problem of loading this code into the TRS-80, and
then executing it. Since we’re going to do a number of machine code

139

routines, it’s going to be worthwhile writing 2a BASIC program which
loads and then executes machine code.

But before we key in the basic we must enswure that it will coexist with
our machine code routine. When you turn thee machine on one of the
things it asks for is “MEMORY SIZE?”. Ordinarily we would just hit
ENTER; but this time key in “32255” first arad then hit ENTER. The
machine will use 32255 as the highest address thhat BASIC can use, which
will leave us with a 512 byte “attic” for machine language routines (32767
is the highest address of 16K RAM and 32767 -512 = 32255).

If you've got a disk system, TRSDOS for example, the machine will
pop you the “MEMORY SIZE?” question only after you've entered disk
BASIC, at which point you can respond appropriately. Or, if you prefer,
you can bypass the disk system entirely by holding down the SHIFT
and the BREAK keys while you turn the machine on (or hit the reset
key) and then proceed as above. Now for the loader.

This is fairly easy. In principle, all we need to do is to ask the user
where he wants to put the code in memory, then ask for each byte of
code in turn, and POKE it into the appropriate location. Then we run
the program by calling the USR function. Finally, we PEEK all the pro-
gram locations and data area to ensure that the program is still intact
(remember, it’s possible to overwrite a program by accident) and that
the results are correct. Obviously, it makes senise to have the data and
program areas adjoining. So we’ll adopt this convention: the data area
always precedes the program area, and is loaded with zeros to start with.
So we'll begin by asking the user the size of his data area (as a number
of bytes).

There’s one other problem; according to the T'RS-80 Reference Manual
all routines called by USR have to end the same way.

RET C9 201

We call this the standard ending. So we might as well make the pro-
gram generate this code at the end of the routine automatically. Here’s
the loader in its simplest form.

19 PRINT “BASE ADDRESS: ”;

26 INPUT B: PRINT B

3¢ PRINT “NO. OF DATA BYTES: *;
43 INPUT D: PRINTD

56 IF D=¢ THEN GOTO 99

66 FORI=0TOD-1

76 POKE B+ 10

140

80 NEXTI
9% LETA=B+D
106 PRINT “CODE: 7;
116 INPUTC
120 IF C<@ THEN GOTO 170
136 PRINTC
149 POKEA,C
150 LETA=A+1
168 GOTO 118
176 POKE A,201

The TRS-80 manual says that USR functions fetch the starting addresses
of their machine language routines at RAM 16526-16527. At this point
our program’s starting address (HEX 7E@1) is stored in the variable A.
So we'll add some code that posts the correct address for us. Note how
the least significant byte of our machine language routine address goes
into the first location (16526) and the most significant byte into the next.

180 LET Q = INT((B+D)/256)
199 LETR = (B+D)~-256*Q
2080 POKE 16526,R

21¢ POKE 16527,Q

fl

i

Here’s the USR function that calls our machine language routine.
228 LETY = USR@29)

The value, here Y, returned by USR isn’t usually needed, but it has
to be there to satisfy the syntax of the statement. It actually contains
whatever was in the BC register pair on returning from the machine code
routine. The same is true for the argument 20. For our purposes any
number will do.

No. you idiot -
I said search
through the

Loader !

Finally, we look at the state of the program and its data:

236 FORI=BTOA+8
24¢ PRINT LLPEEK I
256 NEXTI

RUNNING

Now, to run the program. Load the “loader’® program and run it. In
response to its BASE ADDRESS request, type 32256, and, to NO. OF
DATA BYTES, type 1. Finally, key in the machine code (62, 4, 6, 7
etc.) terminating with a negative value, a delirniter ignored on loading
but signalling “end of code listing”.

The system responds by printing the contents of bytes from 32256
onwards. In 32256 is 11, which is the sum of 4 and 7. This shouldn’t
surprise us much, since that’s where we asked to store the result, and
it’s also the byte we allocated for data. The rest of the “memory dump”
just confirms that the program is correctly stored.

Experiment, by altering the values being added. (Just POKE new values
into 32258 and 32260 and GOTO 220). Or put the result somewhere
else— 32257, say. But to be on the safe side, reload the routine with an
appropriate to the BASE ADDRESS or the INO. OF DATA BYTES
before you try this one. In general, it’s not a good idea to overwrite pro-
gram code with data results! See how it charges the program?

In particular, try adding 240 to 100 (decimal). The result isn’t 340! why?

Think about it in binary:

249 11110060
104 + $1100100

1010100 = 84
i 11

1

The sum generates a 1 in the ninth bit, which can’t be held in an 8-bit
byte, so it falls off the end and the quoted result is too small by the
value of that ninth bit —256. No check has been1 made, no helpful error
message printed. When you write machine code you’re on your own.
What you don’t test for, you don’t find out about.

142

AN IMPROVED LOADER

For that first try, I gave you a program that loaded decimal opcodes.
That was so you could concentrate on the mechanics without worrying
about hex codes. But hex is so much more convenient. Here’s how to
modify LOADER to accept hex, by combining it with the decimal/hex
converter in Chapter 11. Beginning with line 110 through line 144, change
the code as follows:

116 INPUT C3 : PRINT C$

114 IF C$ = “S” THEN GOTO 179

118 LETDN = @

122 FORI=1TO2

126 LET H$ = MID$(C$,1,1) : LET E = ASC(HS)
130 LETF = 48:IFE > 64 THENF = 55

134 DN = DN+ 16[Q2-D*E-F)

138 NEXTI

146 POKE A,DN

The procedure is exactly as before; but now at each input you key in
the hex code: 3E, then @4, then 06, etc. Don’t omit the zeros. Use “S”
to end the inputs, in place of the previous “negative number” delimiter.
That last POKE corresponds to the code POKE in the decimal loader.

From now on, I’'m only going to give the hex codes. You can either
modify LOADER as above, or you can convert from hex to decimal
using Appendix 1. Since the latter is tedious, and it’s easy to make errors,
I strongly recommend the former.

143

There are 694 Z80 instructions: here’s a selection
of the more fundamental and accessible ones,
and what they will do.

19 A Subset of Z80 instructions

I'm not going to describe every one of the 694 opcodes the Z80 has;
that would be tedious and unnecessary. (But see Appendix 3.) We'll look
at a subset of 3@-odd types of instruction (covering about 23@ actual
commands). Unfortunately, not all of them can use all the addressing
modes. Here’s a quick reference table showing which instructions can
use what; the opcodes are given in Appendix 4.

o LD ADD ADC INC IR kid Pz LD ADD INC
P SUB SBC DEC IRC PN ADC DEC
¢ AND SLA JRNC pC SBC PLISH
o OR SRA IRZ PN POP
Address\| d XOR SR IRNZ hidd
Mode < <P DINZ. PnE
Register 1D ADD AT INCr ADDHL s FINC e
immediate LDrn ADRD AN 3P an IPZ. nn 1Dr nn
Direct LDA {nn} LD HL. tnm)
LD (nn). A LD {nan). HI
Indirect LD A (HLy JADDA. (HL) INC (HL) JP{HL)
LD (HL). A
Indexed LD A (IY « JADD A, (1Y + &) [INC (1Y + }PJR Y
LAY + di. A

]

8-bit operations

I

16-bit operations

The notation in the table needs some explanation. Some of the opcodes
will be unfamiliar, but we’ll deal with those later. Otherwise, the con-
ventions are:

1.

Each entry in the table shows an example of the format of the instruc-
tion type. Any of the other opcodes in that column could be substituted.

144

2. “r” or “s” denotes any register. Whether this is an 8-bit or a 16-bit register
depends on which part of the table the instruction is in. For instance,
in the LD r, s instruction, r and s are any 8-bit registers (A, B, C, D,
E, H, or L), but in ADD HL,r “r” is one of BC, DE, HL, SP.

3. “n” is any 8-bit number. “nn” is any 16-bit number.

If a register is explicitly stated, as in LD A, (an), then this is the only
register which may be used for this purpose.

This is a wild oversimplification. Sometimes, other registers are usable,
but the point is that the set of instructions I've shown are always OK
and you can worry about extending your vocabulary of instructions when
you’re handling this lot confidently.

5. “d”is any 8-bit number, but it’s always added to some 16-bit value. In
other words, it’s an indexing displacement.

Now let’s look at the new opcodes:

AND

This operation takes the contents of the A-register, and another 8-bit
field, and examines these, bit by bit. Only if corresponding bits are both
“1” does it put a “1” back in this position in the A-register. Otherwise
it inserts a “@”.

For instance, AND A, &7 has the following effect:

A-register before the operation: 0110101

a7 QOO0 111
A-register after the AND: 00000101

See how the junior three bits have been transmitted? So you can use
AND to select a portion of a byte.

OR

This works in a similar way to AND, but this time, the resulting bit
is a “1” if either of the initial bits is a “1”. So OR A, 05 gives

A-register before: 010¢10611
05: 00000161
A-register after: P1oH1111

Now, certain bits are being forced to “1” regardless of their original value.

145

XOR

Here the initial bit values must be different for the result to be a “17,
XORA A, B3 gives:

A-registerbefore: 010110190

B3: 101100611
A-register after: 11161601

It’s particularly useful for flipping a register from @ to 1 and back again.
If the A-register contains 0 to start with, every time the instruction XOR
A,01 is executed, the value in the A-register will flip. (@ to 1, back to
g, back to 1 and so on.)

CP

This is the “Compare” instruction. The contents of the A-register are
compared with those of another 8-bit field. That raises a problem, though:
how is the result of the comparison signalled?

This is what the F (or flags) register is used for. Each bit of the
F-register holds some information about the effect of the last instruc-
tion to alter them. (Not all instructions do alter them).

The flags which most interest us are the Carry, Zero, Overflow and
Sign flags. CP can alter any of these, but the one of most significance
here is the Zero flag, which is set if the two values being compared are
equal.

If the A-register contents are /ess than those of the compared byte,
the sign flag is set. This is equivalent to saying “the result is negative”.
This is all you need to know about the flags at the moment; it’s an in-
tricate topic if you delve deeper.

THE JUMPS

All the conditional jumps branch (or not) depending on the contents
of the flags. So, for instance, JPZ says “jump if the Zero flag is set”.
Now we can see how the CP instruction can be used. Suppose, for ex-
ample, that we wish to see if a particular byte, pointed at by HL, con-
tains 1E hex. If it does, we want to branch to 7E32. The code is:

LD A, 1IE 3E 1E
CP A,(HL) BE
JPZ TE32 CA327E

146

All the other jumps behave similar; JPNZ says ‘‘jump on a non-zero
result” (zero flag not set), JPP says “jump on a positive result” (sign
flag not set), and so on. All of them have one thing in common, and
that is that the address of the jump is fixed. In other words, if, for any
reason, we would like a routine to run somewhere in memory other than
where we first loaded it, all the jump addresses must be changed. The
780 deals with this neatly by allowing “relative jumps” (JR). In other
words, you can jump so many butes forward (or back) from where you
are. This displacement is held (in 2’s complement notation, Appendix
1) in 1 byte, so the distance which can be jumped can’t exceed 128 bytes
backwards or 127 bytes forwards.

The displacement is calculated from what the PC value would have
gone to next, had no jump occurred; namely, the address of the next
command in the program. Like this:

/‘\/‘ﬁ
«— —128 86
e W .
F’//\ N
€— -3 FD
JR command > 18 |e— -2 FE
displacement code —————y, ?7 e -1 FF
where PC would have gone —— N 0 o
€« 1 o1
L 2 @2
R 3 a3
/‘\,.J
T N— .
- 127 7F
GRS T
size of 2’s
displacement complement
to be coded hex code
as ‘7"

Here’s an example. We want to examine each byte of memory in turn
for the first occurrence of 1F hex. Assume for simplicity that the start
address is already in HL. We could write:

147

LD A, 1E

LOOP: CP A, (HL)
INC HL
JRNZ LOOP

Two points need explaining. First, 've sneak ed in a new instruction:
INC. This is short for INCrement. It just adds 1 to the contents of the
specified register; so the compare operation is aalways looking at the next
memory byte because HL is being bumped up by 1 every loop. (By the
way, DEC, short for DECrement, does exactly the opposite.) The se-
cond point is that there’s no obvious difference between JRNZ LOOP
and JPNZ LOOP. It isn’t until we assemble the instructions into machine
code that the difference is clear. Suppose the code is to be loaded from
4300 hex:

Address Instr-uction Hex code
4300 LD A.IE 3E1E
4302 LOOP: CP A, (HL) BE
4303 INC HL 23
4304 JRNIZ LOOP 20 FC

Why is FC in the address part of the JRNZ instruction? It works like
this: when the JRNZ instruction is executed £he PC is bumped up by
2 because it’s a 2-byte instruction. So the PC is now at 7E06. We want
to jump to LOOP, which is at 7E#2, 4 bytes back, or —4 bytes away,
to use the Z80’s way of thinking about it. Novw, 4 in binary is 80000100
and we create —4 by flipping the bits and aciding 1 (2’s complement,
remember?). So:

GOo0RO109
flip the bits
11111811
+ 1 add 1
r1rir 1160
: convert to hex
F I C

148

Another thing which may be worrying you: INC HL doesn’t alter the
flags, so I'm safe to test after the increment.
The same program with absolute jumps would have looked like:

Address Instruction Hex code
4300 LD A, 1IE 3E1E
4302 LOQOP: CP A, (HL) BE
4303 INCHL 23
4304 JPNZ LOOP C20243

Notice that the JPNZ instruction has 3 bytes because it contains a whole
16-bit address; and don’t forget about swapping the 2 bytes of that ad-
dress around!

There’s one very powerful instruction in the Jump group I haven’t
mentioned yet—DINZ. It decrements the B-register by 1 and jumps
(relative) only if the result is non-zero.

Suppose our little “search for 1E” program is only to search a region
one hundred (hex 64) bytes long, after which it should leave the loop
whether it’s found a 1E or not:

LD B. 64 06 40
LDA.IE 3EIE
LOOP: CPA.(HL) BE
JPZ GOTCHA CA — — (address for GOTCHA)
INCHL 23
DINZ LOOP 1B F9

| assume you're keeping that \ We've put plenty of bugs\ A thoroughly weevil- minded
Red Admiral under adequate in his ship's biscuits.) plan! Worthy of the Dirty
surveillance, Smith? 1 i Ticks Dept., m'boy!

The loop is executed one hundred times, unless a 1E is found, in which
case a branch to GOTCHA occurs. In other words, DINZ acts like a
simple FOR loop in BASIC.

Note that with a// the relative jump comrmands JR, JRC, JRNC,
JRNZ, and JRZ, the size of jump is calculated the same way. A table
of 2’s complement hex codes is given in Apprendix 1 for hand-coding
of jumps.

ADC and SBC

These are the “ADD with Carry” and “SUB with Carry” instructions.
I said earlier that there is a Carry flag in the flags register. This gets
set if there is a carry generated out of a register by an arithmetic in-
struction. The ADC instruction will act just like ADD, except that it
will add 1 more in if the Carry bit has been set by a previous operation.
The SBC instruction works the same way, except that it will subtract
the Carry flag.

THE SHIFTS

The shift instructions, SLA, SRA and SRL, all have the effect of shift-
ing bit-patterns around.
SLA shifts the pattern left by 1 bit, so if the B register contains:

[00101100]

and SLA B is executed, the result is:

[01011000]

(Notice that a zero is used to fill on the righat.)

Since 09101100 = 44 and 81011000 = 88 (decimal) you can see that
the effect is to multiply by 2.

Another SLA B will give:

[Te110000]

Since the senior bit is now 1, this will be seen as a negative number,
and the Sign flag will be set. So far as the programmer is concerned,
what’s happened is that the value (176) can’t Ize held in a byte, s0 we've
got an overflow condition.

150

Right shifts work much the same way, but there’s one important thing
to note: SRL fills the senior bit with a zero, but SRA fills with whatever
was there before.

For instance:

[01o11000
/

SRL

[1o110000]

SRA

110110090

The reason is this: SRL is a shift right logical, which simply shifts the
bit pattern without alterning it. SRA is a shift right arithmetic, which
treats the operation as “divide by 2.” Now, when a negative number is
divided by 2 the result should still be negative, so we have to preserve
the sign bit.

PUSH and POP

You'll probably remember these terms from our discussion on stacks.
They’re used here in exactly the same way, and allow us to access the
machine stack other than through a subroutine call.

This can be useful for saving values temporarily. For instance, sup-
pose you've got a value in BC which you want later, but just now you’d
like to use BC for something else. You can write:

PUSH BC

This is often done before a subroutine CALL as well, so that it doesn’t
matter what registers the subroutine uses: it can’t interfere with the call-
ing program’s data. You may see code like:

151

PUSH BC
PUSH DE - save the registers
PUSHHL _J
CALL 4FAL1
POPHL

POP DE — restore register values
POP BC

- (note the order!)

assuming that the A-register is manipulated by the routine, so we don’t
need to save it.

Warning

Unless you deliberately choose to alter it, the stack pointer SP will be
set according to the operating system of the T RS-80. There’s no harm
in leaving it at that value, provided you make sure that PUSHes and
POPs cancel out in pairs, so that SP returns to its initial value on leav-
ing the machine code routine. Similarly CALLs and RETs have to match.
(USR generates a CALL, matched by the final RET that is tacked on
to the end by the LOADER routine.)

A 16-BIT QUIRK

One feature of the 16-bit operations (PUSH, POP, LD in particular)
which is important to grasp is the order in which bytes are transferred
from register to memory and vice versa. It’s like this:

LD (4195),HL

will have the following effect, if HL contairz 1E4F:

H L

JUNIOT ——y 4F 4195

senior —3 iE 4196
L e

In other words, the least significant or “junior” byte in the register is
loaded into the specified address; and the most significant or “senior”
byte is loaded into the by following this. Conversely,

LD HL,(4195)

152

would have exactly the reverse effect. (NB: it codes as 2A 9541 , follow-
ing the standard convention!) Similarly

LD HL 1000

(an attempt to load HL with the value 1000 hex) encodes as
21 90 10

so that, even though 1004 is data, not an address, its bytes get trans-
posed as usual.

CRASHES

When a BASIC program crashes, there’s little harm done: you can always
break out, one way or another, without losing the program. But machine
code crashes are more spectacular, and infuriating. Spectacular, because
they often signal their presence by drawing op-art patterns all over the
screen; and infuriating because the only way to break out of them is
to pull the power plug out or hit the reset button, either way you lose
the contents of RAM. You want to see a crash, OK, try this little varia-
tion of a program in hand. Remember the hexmas tree program back
on page 109, the one with all the DATA statements ? Replace all of
them with:

180 DATA 205,201,090

Adjust all the line numbers and modify the loop so that it only READs
and POKEs the three DATA items. Now run it.

The machine returns to BASIC. Everything seerns all right, but wait
a minute. Try listing your BASIC program. What happened to it?

Our machine language routine, via a subroutine call, loaded the ad-
dress #0201 into the program counter. Now, §02%1 is a ROM address
and, more specifically, is a part of the machine start up routine so the
machine was trying to turn itself on but because we jumped in the mid-
dle (it begins at 9000@) much of the routine was skipped. Notice that
the computer did not ask you for the cassete rate or the memory size.

As crashes go this one isn’t so bad. Once a crash occurs, you’re stuck
with it: pull the plug and start again. (However, there’s no way to alter
the ROM contents, so don’t worry about doing any lasting harm! It is
you, not the TRS-80, that will suffer!) But there are some simple precau-
tions worth taking.

153

Check all machine code listings scrupulously and make sure you
have input them correctly.

Never use HALT (hex code 76).

Make sure that CALLs and RETs match, as do PUSHes and
POPs.

Make sure you call the correct starting address.

Unless there’s not much to lose. SAVE what you can on tape or
disk before calling USR.

184

Machine code has no instruction for multiplying numbers;
but you can do it if you combine arithmetic, logic,
and shifts. Digging deeper now. ..

20 A Machine Code Multiplier

Now let’s write a few simple routines. Remember 1 said that there’s no
780 multiply instruction? Let’s write a subroutine to do the job.

AN EXAMPLE

First we should examine the nature of the problem, and there’s no better
way of doing that then looking at an example. We'll keep things a simple
as possible, and work in 8-bit registers; so if we want to multiply 9 by
13 it will look like:

00601091
X 00601101

Now we can treat this as a conventional long multiplication, but because
it’s in binary, it’s actually easier than usual; if the current digit we’re
multiplying by is 1, copy the top line; if it’s zero, do nothing:

PIB01001 P
X BO061181 Q

000061601
001060160
910010600

1116101

Of course we've had to add in zeros on the right at each stage, just as
we would in a decimal long multiplication. In machine code terms, that’s
equivalent to a shift left. I've called the two numbers P and Q, for
reference.

155

While P is shifted left, it’s also going to be convenient to shift Q right,
because that way we only need to keep examining the junior bit of Q
to determine whether to add P into the sum or not.

PROCEDURE

Assume that P and Q are in the D and E registers. The procedure is:

Set the A-register to zero.

If the junior bit of E is 1 then add D into A.
. repeat these
Shift D left. l" steps 8 times

Shift E right.

N

Here’s a first stab at the code:

LD A,00
LD B,&8

The first step’s obvious; the second sets B to act as a loop counter in
conjunction with a DJNZ to come at the end. Now we want to test the
junior bit of E. The only way we currently have of doing that is to use
a mask pattern (00000001) with an AND operation, so let’s set up the
C register to that pattern:

LD Ca1

We can only AND with the A-register, which will destroy its current
contents, so we'll save it in L first:

LOOP: LDLA
then extract the junior bit of E, and restore the A-register:

LDAC
AND AE
LDAL

If the result of the AND was zero, we need to jump round the “add
D into A” part of step 2 so:

JRZ SHIFT

(Note that since LD doesn’t affect the flags, the JRZ still refers to the
AND.) Otherwise perform the ADD:

ADD AD

156

Now do the shifts;

SHIFT: SLAD
SRAE

and see if we’ve done the loop enough times yet:

DJINZ LOOP
RET

THE CODE
Here’s the whole thing:

Address Instruction Hex code
0000 LD A, 00 3E 09
o002 LD B, ®8 %o 98
0004 LD C. 91 0E 01
06 LOOP: LDL. A 6F
o7 LDA.C 79
0008 AND A.E A3
3009 LDA. L 7D
GOOA JRZ SHIFT 28(1
0oeC ADDA.D 82
00D SHIFT: SLAD CB22
POOF SRAE CB2B
011 DINZ 1L.OOP 10F3
0013 RET C9

If you want to try this program out, you’ll have to arrange for the D
and E registers to hold the values to be multiplied. So you could precede
the program by something like:

LD HL,7E00 21 60 7E
LD D,(HL) 56
INCHL 23
LD E,(HL) SE

157

and then POKE 7E@0 (hex) and 7E@! (hex) with the values to be
multiplied, before calling the program. These two bytes will, of course,
be the two zero bytes at the beginning of the routine, so the LD HL,
7EG will start in 7E@2. Note that I didn’t assign actual addresses to the
program, but simply started at zero. This is because all the jumps are
relative, so actual addresses are unimportant; only displacements mat-
ter. For example, with 16K you can replace all 43s in the above by 7Fs,
to work with a 256-byte attic.

You’'ll also need to output the answer: at the moment it’s just sitting
in the A-register. A simple way to do this is to stick the answer into
the display file (see next chapter for details) by adding the following code
at the end, in place of the C9 (RET) instruction, which is there only
because I said this was going to be a subroutine.

2013 LD HL 3C &) 2198 3C
2016 INCHL 23
9o17 IDHLA 77

Add this at the end; add the bytes 87 and 88 at the front (or POKE
them later); enter using LOADER with 2 data bytes. The number “7”
will appear at the top corner of the screen. The code for 7 is 56; and
that’s the product of the two numbers §7 and #8 you POKEd in. Of
course a more elegant display routine would be nice: think about PRINT
USR or read the next chapter and design one. But for a test, this method
suffices.

BIT

Now, I have a confession to make; there’s an easier way of testing to
see if the junior bit of E contains 1. There’s an instruction BITS, E which
does the job. So:

LOOP: LDLA 6F
LDAC 79
AND AE A3

becomes just:
L.OGP: BITBE CB43

and the LD A, L has to disappear as well.
Why didn’t I tell you that in the first place? Well, firstly, I promised

158

to use only the subset of instructions in the table, a promise I've now
broken. But I've made an important point in the process—that it’s possible
to do things satisfactorily without knowing the full instruction set.

This has been something of an academic example; I chose it because
it uses several common instructions in conventional, but not necessarily
obvious, ways, but 'm not suggesting that you will find a need for dozens
of 8-bit integer multiplications.

Darling - we've
incremented the
Bee- Register!

To control graphics from machine code, you must know where
the display is stored, and how to alter it. Change the whole screen
to inverse video, or draw a line of characters, all in a flash!

21 The Display File

So now for something more clearly useful. Fed up with BASIC’s ability
to draw graphics lines at a snail’s pace? Let’s see if we can’t write a
machine code subroutine which will draw straight lines from any point
on the screen running horizontally, vertically, or diagonally.

At least, that’s the target. Let’s deal with the problem in easy stages.
Obviously, we need to know something about how the TRS-80 handles
displays before we can get anything on the screen. As you’ve probably
seen from the Manual, there’s an area of memory called the mermory
mapped video display from which the screen display is generated. All
we have to do is store character values in this region to get them displayed.

The file is a 1024 byte section of RAM beginning at address 15360.
The first 64 bytes of the file form the top row of the screen. The second
64 form the second row and so on until you have 16 rows, which fills
the screen. This 16 by 64 approach is no accident as 16 and 64 are both
powers of two which ties in nicely with our binary computer system.

DISPLAYING A CHARACTER

Anyway let’s try something simple, like putting a graphics symbol at
the top left-hand corner of the screen. If the screen is blank to start with,
there will be just 16 new lines in the display file. So our problem is to
overwrite the second of them (where the “A” is in the above example)
with our chosen symbol.

First we load HL with an address within the display file, 15800 for
instance:

LD HL,3E% 2190 3E

160

Now put the graphics character (88 hex, say) in the A-register:
LD A,88 3E 88
and finally, put this value where HL is pointing:

LD (HL),A 77

LINE-DRAWING

To get a horizontal line, 19 characters long, on the top line of the display
we could execute the following code:

LD A,88 3E 88 set value to be displayed

LD B,gA 06 0A set loop count

LD HL,3C30 21 09 3C point to first character in display file
LOOP: LD (HL)A 77 display

INC HL 23 point to next character

DINZ LOOP 18 FC do it again

To do the same job anywhere else on the display, all we need to do is
alter the value in HL to start with by an appropriate offset. In principle
it’s easy to calculate the necessary offset. Let’s think about the display
file like this:

1 2 3
Column — 01234567890 123456789012345678901

Row ¢ _ >000000000000C0O00COOCOO0DCOO0OOO0OO0:

! 1 oo onoo0oCco0oooooooooooooooong -

(o]

Do00onoocconooooooonoooooooooog---
3 0o0o0ooooooooooooooooonooonoonondg.-

4 0o0000oo00ooooooooCoDoooooonooo -

If the HL is loaded with 360 so that it points at column 9, row @, then

we simply multiply the row number we want by 64 and add on the column
number. That is:

offset = row*64 + column

161

Provided the row value never exceeds 7, we couild use our 8-bit multiplier
here. But there’s a neater way:

offset = row*(32 + 1) + column
row*32 + row + column

Despite the fact that this expression for the offset seems more complicated
than the original, it has the advantage that the multiplication is now by
a power of 2 (2 raised to the fifth power), so all we have to do is shift
row left 5 times to evaluate row * 32.

Now let’s imagine that the row value is avail able in the E-register, and
the column value is in the C-register. We can calculate the offset like this:

LD B,&5 86 96
SHIFT: SLAE CB 23
DJNZ SHII'T 19 FC

Hold on, it’s not quite as easy as that! This piece of code shifts the E
register contents left 6 times all right, and that’s fine if row * 64 is less
than 255, but it could easily be more than that, and the E-register will
overflow. So we need a 16-bit register. If we use DE, the above code
can be used as a basis for the routine, but there are some pieces to add
on. First, we’'ll have to make sure that D corztains zero to begin with.
Second, as bits shift left off the end of E we want them to appear in
D and then shift along D. This will work:

LD D,og 16 90 clear D

LD B, 26 96 load loop count into B
SHIFT: SLAD CB 22 .

shift left DE

SLAE CB23

JRNC EOL 39 01 go to End of loop on no carry

INCD 14 put the carry into the junior bit of D
EOL: DINZ SHIFT 19F7 test for end of loop

Now we want to add this into HL, having first loaded it with the first
address of the display file:

LD HL,3Co) 21 683C
INCHL 23
ADD HL,DE 19
ADD HL,BC o

Now we simply execute the “draw a line” roaitine as before:

162

LD A,88 3E 88 {or whatever)

LD B,gA 26 OA
LOOP: LD HL))LA 77

INCHL 23

DINZ LOOP 1OFC

The hex codes are given below, tidied up.

This routine produces a horizontal line because of the INC HL in-
struction in the loop. Change HL be some value other than 1, and we
get different shapes. INC HL twice, and every other print position will
display the character, for instance. Add 64 (decimal) into HL in every
loop and we get a vertical line. Add 65 (decimal) into HL in each loop
and we get a diagonal line.

You could have a library of such routines and simply call one whenever
you want that kind of line.

LISTING

Here’s the complete code. This time we won’t bother with addresses in
the listing: they’re not important (thanks, once again, to relative jumps).

LD C. 00 0E 00
LDE. 00 1E 00
LD HL, (400C) 2A 0C 40
INCHL 23
LD D, 0 16 00
ADD HL. DE 19
LD B. 05 06 05
SHIFT: SLAD CB22
SLAE CB23
JRNC EOL 3001
INCD 14
EOL: DINZSHIFT 10F7
ADD HL. DE 19
ADD HL. BC 09
LD B. 0¢ 06 00
LD A. 00 3E 00

163

LOOP: LD(HL). A
LD DE. 00 0@

ADDHL.DE

DINZ LOOP

77
1009
19

10 F9

The zero bytes underlined must be POKEd before calling the routine,

as follows:
Start address + 1:
Start address + 3:
Start address + 25:
Start address + 27:
Start address + 30:

Start address + 31:

starting column (e.g. 95 for column 5)
starting row (e.g. @7 for row 7)

number of characters to be plotted (e.g. GA)
code of graphics character

value added to HL between plots (e.g. 81 for a
horizontal line, 21 for a vertical line, 28 or 22 for
diagonal lines)

not normally used unless the value to be added exceeds
255, otherwise set to 00

Once you've loaded this up, and seen what it does, think about in-
corporating it into BASIC programs to generate, say, a series of squares.
Use RND to find the top left-hand corner (column and row) and the
length of side. Then POKE the relevant addresses in the machine code
routine, and call it via USR. Do this four times for the four sides of
the (open) rectangle. Don’t forget to test the sizes to see if it will all fit

on the screen!

It's the unsocial hours
that get me down

Some new, powerful commands: block search and block
transfer. The alternate registers. And programs to SCROLL
limited parts of the screen, or scroll sideways at high speed.

22 Some Things I Haven’t
Told You

I've deliberately simplified (even oversimplified) in places in this chapter,
and I don’t appologize for that. After all machine code isn’t the easiest
thing to tackle, and listing all its features at once is just confusing. On
the other hand, if you looked at other books on Z80 machine code, you
may well be wondering why I have frequently done things in a round-
about way.

So I'll try to redress the balance now.

BLOCK SEARCH

First, there are some very powerful instructions which will search a whole
block of memory. I'll take CPDR which is short for “compare, decre-
ment and repeat” as an example.

Listen! It's a
Death Watch
Beetle!

2x-1&

165

If T write a piece of code like this:

LD BC, 0100 0190001
LD HL, 5009 210050
LD A,®5 3EG5
CPDR ED B9

NEXT: ——

what happens is this:

When the CPDR instruction is encountered the value in the A-register
is compared with the contents of the byte at which HL is pointing.
If they are equal, control passes to NEXT: If not, BC and HL are both
decremented by one, and the “compare” is repeated until a match is found
or until BC contains zero. In other words, those four instructions say:
“Find the first occurrence of a byte containing 95 from address 5000
(hex) down to address 4F@9 and leave HL pointing at it. If there isn’t
one, set BC to zero.”

So the first example I gave of using jumps, which was a little “com-
pare” loop, could have been done much more easily. But, of course,
it wouldn’t have illustrated jumps!

BLOCK TRANSFER AND PARTIAL SCROLLING

Secondly there are some block transfer commands LDIR and LDDR
which are invaluable for shifting blocks of data around in memory. For
instance, to use LDIR, you:

e Load HL with the address of the first byte to be transferred.
e ILoad DE with the address of the first destination byte.
e Load BC with the number of bytes to be mmoved.

Then LDIR transfers the first byte; increments HL and DE; decrements
BC, and keeps doing this until BC hits zero. LDDR is similar, but it
decrements HL and DE (and decrements BC as before). To see LDIR
in action, here’s a very useful routine that lets you SCROLL a band
of columns on the screen, leaving the rest fixed.

166

COLUMN 87 98 set up

WIDTH 29 90 data
LD A0 3E %
LD HL, 3C%0 21 9936 get ready
LD DE, (COLUMN) EDS5B#g for block
ADD HL, DE 19 transfer
INC HL 23

LOOP:LDD,H 54
ILDE,L 5D
LD BC, 9040 o1 40 06 shift section
ADDHL, BC @9 of a line up
PUSH HL E5 to line
LD BC, (WIDTH) ED4B 2 7E above
LDIR ED Bg
POP HL El test and
INCA 3C repeat until
CPA, 16 FE@ last line
JRNZ, LOOP 20ED reached

‘The numbers in COLUMN and WIDTH can be POKEd to change them:
here 've set up a scroll starting in column 7 and of width 9, which means
that columns 7,8,9,10,11,12,13,14,15 will scroll and the rest will not.
There are 4 data bytes before the start address.

To see this in action, you’ll need to give it something fo scroll: a clear
screen isn’t too dramatic! One way to do this is to add a few lines to
LOADER:

212 FORI=1TO8§

214 PRINT “AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

215 PRINT “BBBBBBBBBBRBBBBBBRBBBBBEBBBBBBRBEBBBEB”
216 NEXTI

And, for scrolling more than one line, put the USR instruction inside
a loop:

218 FORI = 1 TO 13
226 LETY = USR (28)
222 NEXTI

Experiment, putting different designs on the screen before scrolling.
The underlined 19 can be changed (but only to something smaller)

167

to scroll only down to a certain row. By changing the start, you can
select a rectangle and scroll that. But, you’ll need to think about what
happens to thee bottom line, or the scroll will just copy it out again in
the same place.

You can write a BASIC partial scroll but it is much too slow to be
interesting.

SIDEWAYS SCROLL

Here’s another useful routine in the same vein. It scrolls the whole screen
sideways, as if the display were cylindrical. In each line of the display
the first character is pushed on to the stack, the rest are shifted down,
and then the first one is popped off again to the top end. This is repeated
for all lines of the display.

LDA,O 3E 00 set loop count

LD HL, 3Co9 21 693C initialize

LDD,H 54 for block

LDE,L : 5D transfer of

INC HL 23 first line
LOOP: PUSH AF Fs save loop count

LD A, (DE) 1A

PUSH AF FS

LD BC, 63 dec 01 3F 00 rotate one

LDIR ED B9 row one

POP AF Fl1 left

DEC HL 2B

LD (HL), A 77

POP AF Flincrement

INCA 3C loop count

INC HL 2 TIMES 2323 adjust for

INC DE 1313 next row

CP A, 16dec FE 10 jump unless

loop count is on
JRNZ LOOP 26 EC last row

To see this at its best, embed it in a BASIC loop so the screen scrolls
repeatedly; and give it a nice display to scroll. For instance:

212 FORI=6TO 15
214 PRINT AT LI; “SCROLL”

168

216 NEXTI
2280 LETY = USR (20)
222 GOTO 220

MNEMONICS

The next thing 1 should mention is that some people use slightly dif-
ferent mnemonic opcodes from those I've described. For instance, where
I would write LDA (nn), some people write LD {(nn). This is because
the A-register is the only register which can be loaded directly, so it’s
not strictly necessary to specify it. I find that actually quoting it every
time is a useful aid to memory, though.

ALTERNATE REGISTERS

1 said that there is an alternate set of registers, and then promptly ignored
them. You can always get away without using them, and they aren’t very
useful anyway. You can’t do any arithmetic in them. Their main use
is to save temporarily the contents of the main set while you’re executing
some routine which alters the main register contents in ways you don’t
want. This is done by exchanging the contents of the main and alter-
nate sets before, and again after, the offending routine:

EX AF. AF a8 swap AF with AF'

EXX D9 swap BC, DE. HL with BC', DE', HL’
CALL. .. CD—— call offending routine

EX AF. AF’ 08

EXX D9 restore registers

Of course, you could do the same thing by PUSHing the register con-
tents you want saved onto the stack before the CALL, and POPing them
off afterwords.

FLAGS

I steered clear of the technicalities of the F-register; but here’s a brief
summary: for more details consult one of the machine code books in
the bibliography.

There is room in the F-register for eight flags; but it only uses six of
its available bits. The flags are:

169

C Carry flag
Z Zero flag
S Sign flag

P/V Parity/Overflow flag
H Half-Carry flag
N Subtract flag

These are arranged in the register like this:

[sTzlxTulx [][N]c]

where X means “not used.”

The Carry flag is affected mainly by add, subtract, rotate and shift
commands, and we've already seen how it works.

The Zero flag is affected by a tremendous number of commands.
Roughly, if anything (except LD, INC, DECY» changes the contents of
A, then the Zero flag is set (to 1) if A is zero, and reset (to @) otherwise.
BIT sets the flag if the specified bit is zero. P sets or resets the flag
according to the result of a comparison.

The Sign flag stores the sign bit of the result of whichever operation
has just been carried out: 1 for negative, @ for positive.

The P/V flag works differently on arithmetic or logical commands.
In arithmetic, it is set if there is an overflow in 2’s complement arithmetic
(e.g. if the sum of two positive numbers rurzs off the end of the ac-
cumulator, giving an apparently negative result). For a logical opera-
tion it is set to @ if the byte in A has an everz number of bits equal to
1; and to 1 if the number of bits equal to 1 is oded. The odd/even character
of the number of bits equal to 1 is called the parity ofthe byte.

The H and N flags are used only for binary coded decimal calcula-
tions, and can be ignored.

ROM ROUTINES

I have also been guilty of reinventing the wheel now and then. The point
is that the BASIC interpreter in ROM has to call on routines such as
those we've developed. So why not simply caf/ them, rather than write
our own? In general, the answer is that it would have been much more
sensible to do so, since it saves a lot of effort and, almost as important,
computer memory. But—so far as this book is concerned, my aim has
been to tell you about Z80 machine code, and avoid, as far as possible,

170

the special features of the TRS-80. If all the examples had consisted of
a series of calls to addresses in ROM you wouldn’t have learned much!
Of course, to use the ROM routines, you need to know where they are.

EFFICIENT USE OF MACHINE CODE

Finally, I want to tie up two loose ends I left hanging right at the
beginning. I said that there may be reasons other than BASIC’s need
to interpret statements each time they are executed for a machine code
program to run faster than BASIC.

I'll explain with an example:

BASIC Machine code

18 FORI=20TO1STEP ~1 LDB. 14
.......... LOOP:

50 NEXTI DINZ LOOP

In each case, every time the loop is executed a variable is decremented
by 1. But that process is much more complicated in BASIC than it is
in machine code. The reason is that since BASIC has to deal with decimal
values some of the time, it assumes that it’s doing so all the time, and
so it actually subtracts 1.00000000, which is no easier than subtracting
1.58712684. In fact, the procedure employed is quite complex and time-
consuming. The machine code, on the other hand, uses a single, purpose-
built instruction. The result is in the region of 190 times faster.

The other point I deferred was that machine code can occupy more
memory than its BASIC equivalent. Here’s an example which illustrates
why:

BASIC Machine code No. of bytes

3¢ IFR=PANDP=QTHEN

LETP=W LD HL. 5000
LD A, (HL)
LD HL., 5601
SUB A, (HL)
JRNZ NEXTBIT
LD HL., 5¢61
LD A, (HL)

[R VS I L R]

171

LD HL, 5002 3
SUB A, (HL) 1
JRNZ NEXTBIT 2
LD HL, 5001 3
LD A, (5003) 3
LD (HL). A 1

7

NEXT BIT: TOTAL

The machine code assumes that R, P, Q, and W are held in the bytes
5000, 5001, 5992 and 5003, respectively. In practice it wouldn’t be as
simple as that because each number will occupy 5 bytes and the SUB
will actually be a CALL to a floating point subtraction routine. In any
event, the actual code would need at least as many, and probably more
than, the 27 bytes shown. The equivalent BASIC line occupies only 18
bytes, 1 for each of the symbols (IF, =, W, AND, and so on), 4 for
the line number and 1 for the line delimiter. The more complex the BASIC
statement, the more memory overhead there is in the machine code
version.

OTHER PLACES TO STORE MACHINE CODE

The main disadvantage with storing code above RAMTOP is that you
can’t save it. The advantage is that you can load other stuff under it.
But to save code there are other alternatives.

One place to store the code is in a character string which is easily located
via the VARPTR function. ASCII values of the machine code can be
appended into the string using the string operator (+). To access the
code you can write a BASIC routine, using string functions and a
modified version of our loader routine to extract it from the string, decode
it from ASCII, load it into RAM and finally run it. The main advan-
tage of using strings is that they can be writterz on, or read from, a tape
(or disk) using BASIC commands. Another place to store code is in
DATA statements as we did in the HEXMA S TREES routine. Using
this technique, you can save programs on tape and also be protected
from wiping out your code with a RUN or a CLEAR.

DEBUGGING

There are no built-in debugging facilities in #nachine code. Your best
bet at this point is to dry-run the routine using old fashioned pencil and

172

paper. Of course you can insert tracing statements into machine code
but watch out for changes in address and jump-sizes.

One useful (though apparently backhanded) trick is to write your
routine in BASIC first, and debug that: use only BASIC instructions
that correspond to machine code (that is erulate the machine code in
BASIC). It will work slowly, if at all; but it’s debuggable.

You may wish to break down altogether and buy an assembler. Radio
Shack sells a nice one at a reasonable price that has all sorts of nifty
debugging aids. Let’s try the pencil and paper approach.

DRY-RUNNING A LINE-NUMBERING ROUTINE

As an example of debugging using a dry-run, I'll tell you about my first
stab at a routine to renumber the lines of a BASIC program, and how
it got debugged. Being the first stab, I number the lines 16,20,30, . . .
going up in ten’s. Once I got that working, I reckoned I could fancy
it up a bit (arbitrary start and finish, arbitrary step size etc.).

Now to do this, you need to know how BASIC lines are stored in
memory. They occupy a block of addresses starting at 17385. Each line
takes the following form:

NJINSILJ LS code for line

Here NS and NJ are the senior and junior bytes of the (in 2-byte hex)
address of the next line of BASIC. And since the first two bytes of the
next line contain, you guessed it, the address of the next line after that,
NS and NJ really contain the address of the next address of the next
address. .. and so on.

LS and LJ are much simpler. They contain the BASIC line numbers
we are trying to change.

QOur procedure to alter all the line numbers will be a machine language
routine and as such it is called, via the USR function, by a BASIC routine.
Since, and here’s the clever part, the machine routine changes line
numbers, it will change those of the BASIC program which has called it!

So if we want to renumber a program we will:

1. load the machine code routine
enter the BASIC program to be renumbered

3. add to the end of the BASIC program, using 32768 as a line number,
a line containing the USR call to our machine language routine

4. execute the machine language with a GOTO 32768

173

The machine code will, starting at 17385, read the address of the next
BASIC line number, change the contents of the next two bytes, go to
the next line and so on until it encounters a one in the senior bit of the

LS byte of a line of BASIC.

What kind of a line number does it take to set that senior bit? Well,
32768 or, in binary, 19000000 G000O0O0, as you can see, contains a set

senior bit.

At this point the routine returns control to the BASIC program. Every
line has been renumbered except that last one, 32768, which, of course,
is only our USR call and can now be deleted as its job is done. Here’s
the machine code:

LOOP:

QUT:

LD BC,000A
LD E,(HL)
INC HL

LD D,(HL)
PUSH DE
INC HL twice
LD A,(HL)
BIT7,A
JRNZ OUT
LD (HL),B
DEC HL

LD (HL),C
LD H,B
LDL,C

LD DE,000A
ADD HL,DE
LD B,H
LDC,L
POP HL

JR LOOP
RET

01 6A 00
SE

23

56

D5
2323
7E
CB7F
20 0E
70

2B

71

60

69

11 0A 9
19

a4

40

El

18 E7
201

Well that was theory. In practice, it led to a decorative crash.
So what was wrong?
To find out, I did a dry-run on a short test program. This is sum-
marized, in a rather cryptic form, below: the idea is to track through
step by step and see what happens to the registers, the stack, and the

174

data in the BASIC area. As you work through, successive lines list how
the registers change. You'll need pencil and paper: build up your table
yourself, comparing it with mine.

43FER 43BC 43FB 43FC A F B C D E H L STACK

G00A 0000 o8 @1 98 BA 43 F9 43 E9 43F9
o8 14 08 OA 99 BA 43 EA
43 EB
43 EC
96 BA
o0 14
43 F9

I've assumed we’re renumbering a program with two lines of BASIC.
Well, not quite. The second line is really our 32768 line that tells us to
quit so we've really only got a one line program. Small though it is, it
proves to be large enough to locate our bug. Now on to the second line.

43EB 43EC 43FB 43FC A F B € D E H L STACK
oo0A 0000 19 08 06 14 44 @99 43 FA 4409
43 FB

Now we’ve finished the second line and should be done but notice there
is an unPOPed address left in the stack. Here’s our problem. Whatever
goes onto the stack must come off the stack; otherwise the computer,
when it’s time to go back to BASIC, will go to the wrong address.

The moral: observe where the error arose. Not in the complicated part
of the routine, where the main work was done: but in the condition for
the work to end. This kind of “boundary problem” is a constant source
of errors in programming. Unless you can work out very carefully the
precise “edges” of what you are trying to do, you can easily get lost in
the wilderness.

175

Appendices

1

Hex/Decimal Conversion

@ i 2 3 4 5 6 7 8 9 A B C D E F
8 ~128 -127 ~-126 ~-125 ~124 ~123 ~-122 -2t -126 -119 —-118 -117 -116 ~115 ~il4 -3 4
9 -112 -1t ~1i@ ~-i@9 188 ~187 ~186 185 ~18¢ ~193 ~12 -161 -166 -99 -98 ~-97
A ~% 95 -%4 ~93 ~92 ~91 -9 -89 -8 ~87 -8 -85 -8 -8 -8 -8i
B ~8¢ -79 -78 -77 -6 ~-75 ~74 ~73 ~72 -7t -7 -69 ~68 67 —66 —65
C ~-64 —63 -62 -61 -6 -59 -58 -57 -56 -55 -34 -33 52 ~51 -3 ~49
D ~48 47 ~46 ~45 44 -43 42 -41 -4 -39 38 -37 -36 -35 -34 -33
E -32 -3 ~3% -29 -2 -~27 ~26 ~25 ~24 -~23 ~22 -2t -20 ~-19 -8 17
F -6 =15 -4 ~-13 -2 ~11 -1 -9 -8 -7 -6 -3 -4 -3 -2 -1
[U] 1 2 3 4 5 6 7 8 9 ¢ 1 12 13 14 15
1 16 17 8 19 20 21 22 23 24 25 26 27 28 29 36 31
2 32 33 34 35 36 37 38 39 49 41 42 43 44 45 46 47
3 48 49 56 51 52 53 54 55 56 57 58 59 4 61 62 63
4 64 65 66 67 68 69 % K 2 3 74 75 76 77 78 79
5 86 81 82 83 84 85 86 87 8 8 99 9 92 93 94 95
6 96 97 98 9 e 101 12 183 164 165 186 167 168 19 116 11l
7 112 13 14 s t16 117 18 119 120 121 122 123 124 125 126 127
8 128 129 136 131 132 133 134 133 136 137 138 139 140 141 142 143
9 144 143 146 147 148 149 156 151 152 153 154 155 156 157 158 159
A 164 161 162 183 164 165 166 167 168 169 179 171 172 173 174 175
B 176 177 178 179 188 181 k@% 183 184 i85 186 187 188 18% 15¢ 191
C 192 193 194 195 196 197 198 199 206 201 202 263 284 205 206 247
D 208 29 216 211 12 213 214 215 216 217 18 219 226 221 222 223
E 224 225 26 227 28 229 236 231 232 233 234 235 236 237 238 239
F 246 241 242 243 244 245 246 247 248 249 256 251 252 253 234 255 N

179

2’s complement

ordinary

2 Summary of Z80 Commands

This is a list of all the opcode mnemonics, with a summary of their effects. Those
commands explained more fully in the text are given a page reference. The effects on
the flags are omitted: for these, consult the books listed in the bibliography under
“Machine Code.”

ADC
ADD
AND
BIT

CALL

CCF
CpP

CPD
CPDR
CPI
CPIR
CPL
DAA
DEC
DINZ
El

EX

EXX

HALT

M
IN
INC

Page
Page
Page
Page

Page

Page
Page

Page

Page
Page

Page

Page

Page

Page

Page

150
139
145
158

126

146
165

165

165
165

148

149

169

165

148

IND. INDR, INI, INIR

P

Page 146

Add, including the carry flag. Store in A or HL.

Add, ignoring the carry flag. Store in A or HL.

Logic AND on corresponding bits: store in A.

BITb, rsets the Zero flag according to the value of the b-th bit
of the byte in register r. The bits are in the order 76543210
within each byte.

Calls a subroutine. There are conditional calls signalled by the
additional letters C (call if the Carry flag is set); M (if the Sign
flag is set— “the result (of a compare) is negative”); NC (if the
Carry flag is not set); NZ (if the Zero flag is not set); P (if the
Sign flag is not set—*““the result is positive™"); PE (if the Parity
flag is set: ignore this one); PO (if the Parity flag is not set:
ignore this too); Z(if the Zero flag is set). For flags. see Page
134.156.

Complement Carry flag (i.e. swap @ and 1).

Compare: sets the flags as if it were a subtraction from A, but
leaves A unchanged.

Compare and decrement. Compare through HL; then decre-
ment HL and BC.

Compare, decrement, repeat: block search. Like CPD but
repeating until either the result of the comparison is @, or BC
reaches .

Like CPD except that HL increments; BC still decrements.
Like CPDR but incrementing HL.

Complement (flip bits of) the A-register.

Decimal adjust accumulator. Used in binary-coded decimal
work: ignore.

Decrement: reduce value by 1.

Disable interrupts. Ignore.

Decrement, jump if non-zero. Decrement B and jump rela-
tive unless the Zero flag is set. Used in loops like a BASIC
FOR/NEXT.

Enable interrupts. Ignore.

Exchange values. Instructions with (SP) exchange the regis-
ters HL, IX or I'Y with the top of the stack.

Exchange all three register-pairs BC, DE, HL with their
alternates BC', DE’, HL".

Wait for an interrupt. Unless you've got hardware attached,
and know what you’re doing. DO NOT USE as the program
will wait forever.

Interrupt mode: ignore.

Input from a device. Ignore.

Increment: increase value by 1.

Input commands analogous to LDD, LDDR. LDI, LDIR.
Ignore.

Jump. Variants with added C, M, NC.NZ, P, PE, PO, Z are
conditional jumps, with conditions as for CALL.

180

JR

LD
LDD

LDDR

LDI

LDIR
NEG
NOP

OR

OTDR, OTIR
OUTD, OUTI
POP

PUSH

RES

RET

RETI, RETN
RL

RLA
RLC

RLCA
RLD

RR
RRA
RRC
RRCA
RRD
RST

SBC
SET
SLA
SRA

SRL
SUB

XOR

Page 146

Page 136

Page 166

~ Page 166

Page 166

Page 145

. OUT,

Page 151
Page 151

Page 126

Page 150
Page 150
Page 150

Page 150
Page 139

Page 146

Jump relative—followed by a 1-byte displacement. Condi-
tional variants are C, NC, NZ, Z only.

Load. Can use all five addressing modes.

Not the same as LD D! Load what HL points to into what DE
points to: decrement BC, DE, HL.

Load, decrement, repeat: block transfer. Do LDD until BC
hits zero. Copies a block of memory whose length is stored in
BC, out of what HL points to and into what DE points to.
Like LDD except that HL and DE increment: BC still dec-
rements.

Like LDDR except that HL and DE increment.

Negative: change the sign of the contents of A.

No operation. Do nothing for 1 time-cycle—i.e. waste time.
Useful for temporary deletion of instructions when debug-
ging: harmless and helpful.

Logic OR on bits. Store in A.

Various outputs. Ignore.

Pop from stack into indicated register.

Push from register on to stack.

Reset a bit—i.e. make it zero.

Return from subroutine. Conditional returns, corresponding
to the possibilities for CALL., are possible. (Conditions on a
CALL need not match those on a RET!)

Return from interrupt subroutines. Ignore.

Rotate left: like a shift, except that the carry flag is included as
if it were bit number 8.

Rotate left accumulator. Like RL A but with a different effect
on the flags.

Not the same as RL C! Rotate left, but put bit 7 into carry and
into bit §.

Like RLC A, but same flag difference as RLA.

Not what you'd expect at all: rotate left decimal. Used for
binary coded decimal: ignore.

Like RL but to the right.’

Like RLA.

Like RLC.

Like RLCA.

Like RLD.

Like CALL, but only from addresses @, 8, 19, 18,26, 28, 30, 38
(hex). These are all in the ROM on the ZX81: see lan Logan’s
books in the Bibliography. RST @ is like temporarily discon-
necting the power.

Subtract, taking account of the carry flag. Store in A or HL.
Set carry flag (to 1).

Set a bit—i.e. make it 1.

Shift left arithmetic. All bits move up 1; bit @ becomes @.
Shift right arithmetic. Move bits down 1; copy bit 7 into 6 and

Shift right logical. Move bits down 1 place; make bit 7 zero.
Subtract, ignoring carry. Store in A. (ThereisnoSUBHL.r
command: if you want one, reset the Carry flag and use SBC.
Exclusive or on each bit. Store in A.

181

3 Z80 Opcodes

Examples:
LD BC, nn hastheopcode@lnn, so LD BC, 732F codesas@12F73.
LDA,(IY+dy " " " FDTEdsoLDA(IY+G7) " "FDTE®@.

The table of opcodes is based on one published by Zilog Inc.

ADC A, (HL) 8E BITC, B €840 BITS,E £BEB
ADCA, (IX +d) DD8Ed BITO,.C CB41 BITE, H CB6C
ADCA, (IY +d) FDBEd 8iTe, b CB42 BITS, L cBeD
ADC A, A 8F BITO,E CB43 BIT 8, (HL) CB76
ADCA,B 88 BITOH CB44 BITS, (X +d} DDCBd76
ADCA,C 89 BITO, L CB45 BITE, (IY + d} FDCBA76
ADCA,D 8A BIT 1, (HL} CB4E BiTE A cB77
ADCAE 88 BIT 1, (IX + d} DDCBA4E BITG, B ca70
ADCA H 8C BIT 1, (Y + d) FOCBJ4E BIT6,C cB71
ADCA, L 8D BIT1 A CB4F BiTe, D cB72
ADC A, n CEn BIT1LB £B48 BITS,E CB73
ADCHL, BC ED4A BIT1,C CB4g BIT6,H CcB74
ADC HL, DE EDBA BIT1,D CB4A BITS, L CB75
ADCHL, HL ED6A BIT1,E CcB4B BIT7, (HL) CB7E
ADCHL, SP ED7A BIT1,H CB4C BIT7, (X + d) DDCBA7E
ADD A, {HL) 86 BiTy, L CB4D BIT7, (Y +d} FDCBJ7E
ADDA X +d) DD8ed BIT 2, (HL) CB56 BIT7 A CB7F
ADDA, lY +d) FD86d BIT2 {IX +d) DDCBd56 BIT7,8 cB78
ADD A A 87 BIT2,(IY + d) FDCBJ56 BIT7,C cB79
ADDA.B 80 BIT2 A £B57 BIT7,D CB7A
ADDA,C 81 BIT2,8 CB50 BIT7E CB78
ADD AD 82 BIT2,C CB51 BIT7,H CB7C
ADD A, E 83 BIT2,D CB52 BIT7,L CB7D
ADDA,H 84 BIT2,E €853 CALLC, nn DCnn
ADDA, L 85 BIT2, H €B54 CALLM, nn FCnn
ADDA, n Cén BIT2, L CB55 CALL NC, nn Dann
ADDHL, BC 08 BIT3, (HL) CBsE CALL nn CDnn
ADDHL, DE 19 BIT3, (IX + d) DDCBASE CALLNZ, nn Cann
ADDHL, HL 29 BIT3, (IY + d) FDCBJ5E CALLP, nn Fénn
ADDHL, 8P 3¢ BIT3 A CBS5F CALLPE, nn ECnn
ADDIX, BC DDOoS 8IT3,8B cB58 CALLPO, nn E4nn
ADD IX, DE DD18 BIT3,C CB59 CALLZ, nn CCnn
ADD X, IX DD23 BIT3,D CB5A CCF 3F
ADD IX, SP DD3g BIT3,E cBs8 CP (HL) 8E
ADDIY, BC FDOS BIT3, H CB5C CPUX +d) DDBEd
ADDIY, DE FD18 BIT3 L CBsD CP(IY + d} FDBEd
ADDIY, IV FD29 BIT 4, (HL) CB66 CPA 8F
ADDIY, SP FD39 BIT4, (IX + d} DDCBdSE crB B8
AND (HL} A8 BiT4 (Y +d) FDCBd66 cPC BS
AND (IX + d) DDAgd BIT4 A CcB67 cPD BA
AND (1Y + d) FDAS&d BIT4, B caeo CPE BB
AND A A7 BIT4,C CB61 CPH BC
ANDB AD BIT4,D cB82 CPL BD
ANDC Al BIT4,E CB63 CPn FEn
ANDD A2 BIT4,H CcB64 cPD EDAS
AND E A3 BIT4, L CB65 CPDR EDB9
ANDH A4 BITS5, (HL) CB6GE CPl EDA1
ANDL A5 BITS, (iX + d) DDCBdSE CPIR EDB1
AND n E6n BITS, (iY + d) FDCBJ6E CPL 2F

BIT O, (HL) CB46 BITS, A CB6F DAA 27
BITO, (IX + d) DDCBd48 BITE, 8 CB68 DEC (HL) 35
BITO, (IY + d) FDCBd46 BITS,C CB69 DEC{IX + d} DD35d
BITO A cB47 BITS,D CBSA DEC(IY + d} FD35d

182

EX{SP), HL
EX(8P),1X
EX(SP}, 1Y
EX AF, AF'
EXDE, HL
EXX

HALT

MO

M1

INC (HL)
INC {(IX + d)
INC{lY + d)
INCA
INCB
INCBC
INCC
INCD
INCDE
INCE
INCH
INCHL
INCIX
INCIY
INCL
INCSP
IND

INDR

NI

INIR

JP (HL)
JPAIX)
JPY)
JPC, on
JP M, nn
JPNC, nn
JPnn
JPNZ, nn
JPP, nn
JPPE, nn
JPPO, nn
JPZ nn
JRC.d
JR.d
JRNC, d

ED78

ED40
ED48
ED5B0
EDS8
ED60
ED68

DD34d
FD34d

04
03

14

13

ic

24

23
DD23
FD23
2C

33
EDAA
EDBA
EDA2
EDB2

DDES
FDE9
DAnn
FANn
D2nn
C3nn
C2nn
F2nn
EAnn
E2nn
CAnn
38d
18d
30d
20d
28d

12
77
70
71

::r-:cmonmb': mTmOOn >

LDAE
LDAH
LDA,I

LDA L
LDA,n

LD B, (HL}
LDB, X +4d)
LDB, (IY + d)
LDB A
LGB, B
LbB.C
LDB,D
LDB.E
LDB,H

LD C, (HL)
LDC, (IX + d)
LDC, (fY + d)
LDC. A
LDC, B
Lb¢C,C

LbC, D
LDC.E

LDD,H

72

73

74

75

36n
DD77d
DD70d
DD71d
DD72d
DD73d
DD74d
DD75d
DD36dn
FD77d
FD70d
FD71d
FD72d
FD73d
FD74d
FD75d
FD36dn
32nn
ED43nn
ED53nn
220n
DD22nn
FD22nn
ED73nn

EDS7
70
3En

48
DD4sd
FD46d
47

40

41

42

43

44

45

06n
ED4Bnn
0inn

[3
DD4Ed
FD4Ed
4F

43

49

4A

4B

4c

4D
0En

56
DDs&d
FD56d
57

50

51

52

53

54

LDO, L

LDD, n

LD DE, {nn)
LD DE, nn
LDE, (HY)
LDE (X +d)
LDE (Y +d)
LDE A

IDE. B
LDE,C
LDE,D
LDEE
LDEH

LDE L

LDE n

LDH, D

LDIY, nn
, (HL)

LD L, {IX + d)

LDL (Y +d)

LDL A

DL, B

LoL,C

LDL, D

LDLE

LDLH

DL L

DL, n

LD SP, {nn}

LD SP, HL

LD SP, X

LDSP, 1Y

LD SP, nn

LDD

LDDR

Lo

LDIR

NEG

NOP

OR{HL)

OR (IX + d)

OR (Y + d)

ORA

ORB

ORC

ORD

ORE

ORH

ORL

ORn

OTDR

OTIR

OUT{

OUT(

ouT

ouT

PrImoO®m>

o
<
3

OUT(
ouTt
ouT

Z00880808680

55
16n
EDSBnn
1inn
5E
DDsEd
FD5Ed
5F
58
59
A
58
5C
5D
1En
66
DD66d
FDééd
67
60
61
62
63
84
65
26n
2Ann
2inn
ED47
DD2Ann
DD21nn
FD2Ann
FD21nn
6E
DD6Ed
FD6Ed
6F
68
69
8A
68
6C
6D
2En
ED7Bnn
2]
DDF9
FDFS
3inn
EDAB
EDBS
EDAQ
EDBO
£D44
00
86
DDBed
FDBE&d
B7
B0
B1
B2
B3
B4
BS
Fén
£DB8
£DB3
ED78
ED41
ED4S
ED51
ED59
ED61
ED69
D3n

183

OouTD

ouTl

POPAF
POPBC

POP DE

POP HL

POP IX

POP Y

PUSH AF
PUSHBC
PUSH DE
PUSHHL
PUSH IX
PUSHIY

RES 0, (HL)
RES 0, (IX + d}
RES 0, (IY + d)
RES O, A
RESO0,B
RESO,C
RESO,D

RES O, E

RES O, H
RESO, L

RES 1, (HL)
RES 1, (IX + d)
RES 1, (IY +d)
RES 1, A
RES1,B
RES1,C
RES1,D

RES 1, E

RES 1, H

RES 1, L

RES 2, (HL)
RES 2, (IX + d)
RES 2, (1Y + d)
RES 2, A
RES2.B
RES2,C
RES2,D
RES2,E

RES 2, H

RES 2, L

RES 4, (HL)
RES 4, (IX + d)
RES 4, (Y + d}
RES4, A
RES4,B
RES4,C
RES4,D
RES4,E
RES4,H
RES4, L

RES 5, (HL)
RES S, {IX + d)
RES 5, (IY + d)
RESS, A
RESS5, B

RES 5, C
RESS5,D
RES5,E

RES 5, H

RES 5, L

RES 6, (HL}
RES 6, (IX + d)

EDAB
EDA3

F1

C1

D1

E1

DDE1
FDE1

F5

Cs

D5

E5
DDES
FDES
CB86
DDCBd86
FDCBd86
cBgy
CB8o
cBg1
CB82
CB83
CB84
B85
CB8E
DDCBJ8E
FDCBJ8E
CB8F
CB8ss
CB8s
cB8A
cBsg
cBsC
cBsD
CB98
DDCBA96
FDCBA96
CB97
CB90
cegl
cB92
CB93
CB94
CB95
CB9E
DDCBJSE
FDCBASE
CBaF
CB9g
CBg99
CB9A
CBaB
CB9C
CBaD
CBAB
DDCBdA6
FDCBdAG
CBA7
CBAO
CBA1
CBA2
CBA3
CBA4
CBAS
CBAE
DDCBJAE
FDCBJAE
CBAF
CBA8
CBAS
CBAA
CBAB
CBAC
CBAD
CBB6
DDCBdBS

RES 6, {lY + d}
RES 6, A
RESSE, B
RES 6, C
RES 6, D
RES6,E
RES 6, H
RES 6, L
RES 7, (HL)
RES 7 {IX + d}
RES 7, (Y + d)
RES7,A
RES7,B
RES7,C
RES7.D
RES 7, E
RES7,H
RES7,L
RET

RETC
RETM

RET NC
RET NZ
RETP
RETPE

RET PO
RETZ

RET!

RETN
BL(HL)
RL{UX + d}
RL{IY +d}
RLA

RLB

RLC

RLD

RLE

RLH

RLL

RLA

RLC (HL)
RLC(IX + d}
RLC Y + d}
RLCA
RLCB
RLCC
RLCD
RLCE
RLCH
RLCL
RLCA
RLD

RR (HL)
RR{IX + d)
RR{Y + d}
RRA

RRB

RRC

RRD

RRE

RRH

RRL

RRA

RRC (HL}
RRC (iX +d)
RRC (IY + d)
RRCA
RRCB
RRCC
RRCD
RRCE
RRCH
RRCL
RRC A
RRD
RSTO

FDCBdAB&
CBB7
CBBO
CcBB1
cBBe2
CBB3
CBB4
CBBs
CBBE
DDCBJBE
FDCBAJBE
CBBF
CBB8
CBB9
CBBA
CBBB
CBBC
cBBD
ce

08

F8

DO
co

Fo

E8

EO

c8

ED4D
ED45
CB18
DDCBd16
FDCBd16
cB17
cB10
cB1t
cB12
CB13
CB14
CB15

17

CBO6
DDCBJOE
FDCBd06
cBo7
CBOO
cBoY
CBO2
CB03
€Bo4
CBO0S

07

EDEF
CB1E
ODCBAIE
FDCBA1E
CB1F
cB18
ce19
CB1A
CcB1B
ceic
cB1D

1F

CBOE
DDCBAOE
FDCBOE
CBOF
CBO8
CcBo9
CBOA
CBOB
cBoC
CBOD

OF

EDE7

Cc7

RST 10H
RST 18H
RST 20H
RST 28H
RST30H
RST38H
RST8
SBCA,

SBCA,
SBCA A
SBCA,B
SBCA,C
SBCA, D
SBCAE
SBCAH
SBCA, L
SBCA,n
SBCHL, BC
SBCHL, DE
SBCHL, HL
SBCHL, SP
SCF

SETO, (HL)
SETO, (IX + d)
SETO, (IY +d)
SETO A
SETO,B
SETO.C
SETO0,D
SETOE
SETO, H
SETO.L
SET 1, (HL)
SET 1, (X +
SET 1, (Y +
SET1,A
SET1.B
SET1,C
SET1,D
SET1E
SET1.H
SET1 L
SET 2, (HL)
SET2,(IX +d)
SET2,{iY + d}
SET2,A
SET2,B
SET2.C
SET2,D
SET2,E
SET2,H
SET2,L

SET 3B

d}
d)

. (HL)
SETB {IX + d}
SET3 (Y + d}
SET3 A
SET3,C
SET3,D
SET3.E
SET3 H
SET3, L
SET4, (HL)
SET4,(IX + d}
SET4, (Y + d}
SET 4, A
SET4,B
SET4,C
SET4,D
SET4,E
SET4,H
SET4,L
SET5, (HL)
SETS, {
SETS, (4

X+ d}
Y + d)

9D

DEn
ED42
ED52
ED62
ED72

37

CBC6
DDCBACE
FDCBACE
CBC7
CBCO
CBC1
CBC2
CBC3
CBC4
CBC5
CBCE
DDCBACE
FDCBJCE
CBCF
CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CBD6
DDCBAD6
FDCBAD&
CcBD7
CBDO
CBD1
cBD2
CBD3
CcBD4
CBDS
CBD8
CBDE
DDCBADE
FDCBADE
CBDF
CBD9
CBDA
CBDB
CBDC
CBDD
CBE6
DDCBJES
FDCBAJES
CBE7
CBEO
CBE1
CBE2
CBE3
CBE4
CBE5
CBEE
DDCBJEE
FDCBJEE

184

5 A
5B
5,C
5D
M-
5, H

3

T
T
T
T
T

HE:AN

T8, (HL)
T8, (IX + d}
IT6.(IY +d}
iT6,A
iT6,B
iT6,C

iTe, D
iT6,E
T6H
HEAN

77, (HL)
770X +d}
T7,(0Y +d)

CBEF
CBES8
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCBdF8
FDCBdJF6
CBF?7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CBFE
DDCBAFE
FDCBJFE
CBFF
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD

SLA (HL)
SLA{IX + d}
SLA{IY + d)
SLAA
SLAB
SLAC
SLAD
SLAE
SLAH
SLAL

SRA (HL)
SRA{IX + d)
SRA Y + d}
SRAA
SRAB
SRAC
SRAD
SRAE
SRAH
SRAL

SRL (HL)
SRL{IX + d)
SRL{(IY + d)
SRLA
SRLB
SRLC

CB26
DDCBd26
FDCBd26
CB27
CB20
CB21
cB22
cB23
CcB24
CB25
CB2E
DDCBd2E
FDCBdZE
CB2F
cB28
CB29
CB2A
cBzg
cB2C
CB2D
CB3E
DDCBA3E
FDCBA3E
CB3F
Cca38
cB39

SRLD
SRLE
SRLH
SRLL

SUB (HL})
SUB(IX +d)
SUB(lY + d)
SUBA
SuUBB
SUBC
SUBD
SUBE
SUBH
SUBL
SUBn

XOR (HL)
XORI{IX + d)
XOR(IY +d)
XORA
XORB
XORC
XORD
XORE
XORH
XORL
XORn

CB3A
CB38
CB3C
CB3D
96
DDY6d

185

Bibliography

Data structures

Aho, Hopcroft and Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley.

Berztiss, Data Structures, Theory and Practice, Academic Press.

Brillinger and Cohen, Iniroduction to Data Structures and Non-numeric Computa-
tion, Prentice Hall.

Machine code

Carr, Z80 User’s Manual, Boston Publishing Co. Inc.

Nichols, Nichols and Rony Z80 Microprocessor Programming and Interfacing,
Howard Sams & Co.

Spracklen, Z80 and 8080 Assembly Language Programming, Hayden.

Zaks, Programming the Z80, Sybex.

Zilog Z80 CPU Prograrmming Reference Card.

Zilog Z80 CPU Technical Manual

General

Brady, The Theory of Computer Science, Chapman and Hall.

Dahl, Dijksta, and Hoare, Structured Programming, Academic Press.

Sloan, Introduction to Minicomputers and Microcomputers, Addison-Wesley.

Tocher, The Art of Simulation, E.U.P.

Wegner, Programming Languages, Information Structures, and Machine Organiza-
tion. McGraw-Hill.

Weizenbaum, Computer Power and Human Reason, W.H. Freeman.

186

Index

accumulator

ADC

ADD

addition in machine use
address

addressing mode
algorithm

altnernate registers
AND

architecture (hypothetical)
architecture (Z80)

arithmetic in machine code

array
assembler
assembly code

base

binary

binary coded decimal
binary digit

binary/decimal conversion

bit

BIT

block search
block transfer
branch

byte

CALL

carry

carry flag
CHECKOUT
chess

CP

CPDR

120,121
144,150,180
139,144,180
139-41
120,132

144

2
135,136,169
144,145,180
119

134

139-41
155-59
3-14,17,39
131,122,172
131

111
111
107
112
113
113
158,180
165
165-7
39
14,134

126,152,180
112
146,169-70
67-82

55

146,180
165,180

crash
cursor

data

data retrieval system
data structure
debugging
decimal/hex conversion
decrement

DEC

delimiter

dequeue

die

dimension

direct addressing
discount

displacement

display file

displaying a character
distribution

DINZ

documentation
dry-running

educational computing
engueue

EX

EXX

family tree
field
flag

flipping the bits

153
64

2

36,40
2,59,62,67
58,172
114,179

148
144,148,180
31

27,28,67

71

4

136

5

138

160

161

104
144,149,180
79,105

172

83
27,28,67
169,180
169,180

40
132-33
30,92-3,
146,169
117,148

FRENCH COUNTDOWN 83-106

187

game tree
general purpose register
graphics

HALT

hand assembly

hex

hexadecimal code
hex/decimal conversion
hex loader

hospital bed simulation

immediate addressing
increment

INC

index

index flag

index register
indexed addressing
indirect addressing
indirection

indirection flag
initialize
intelligence

P

JR

jump
junior bit
junior byte

lap counter

LD

LDDR

LDIR

leaf

library catalogue
line-drawing

line renumbering
linked list

load

LOADER

load through

machine code
machine code multiplier
machine stack

45-56
134
70,96-100,160

154

132
112,137,139
112
112,114,179
139-41

82

137

148
144,148,180
120,132,137
133

120,132

137

136

120,
128-133,136
128

20

56

144,146,180
144,146,181
125,146
155-59
138,173

27-8
136,144,181
166,181
166,181
39,46

33

173-75
31-38,60
136-38
139-43
136

107
155-59
151

mask
memory
menu
mnemonic
module

named subroutine
negative number
Nim

node

number

opcode

operation code
OR

outline flowchart
overflow
overflow flag

parity

partial scrolling
PC

pirating

pointer

pop

POP

procedure
program counter
program design
psuedo operation
push

PUSH

queue
queue array

register

register to register
addressing

relative jump

RET

rocket

root

running machine code

SBC

156
3,119
36,115
122,169
85

24
116-18
45-56
39,45-6
111-15

121,180-85
121
144,145,181
88

142

169-70

169-70

166

120

105
7,16,25-7,31,
40-2,48,60,
67,127

20-4
144,151,181
86

120,123

84

130

20-4
144,151,181

25-30,68
68

119-20

137

146
126,152,181
89,96-9
39,48

142

144,150,181

188

search

search, binary
search, linear
senior byte

shift

shift right arithmetic
shift right logical
sideways scrolling
sign flag
simulation

SLA

SRL

stack

stack pointer

standard ending

stack control

store

store through

storing machine code
story-board

strategy

string

structured programming
SUB

submenu

subroutine

subroutine, closed
subroutine, machine code
subroutine, open
subscript

suite

supermarket simulation
symbolic address

15-8,42,54
15

15
135,138,173
60,150

151

151

168

147,170
67,81
144,150,181
144,150,181
19-24,
125-6,152
19,20,120,135
140

15,37

120-1

129

109,172

89

55,78-9
3,60,62
37,57
139,144,181
37
54,58,68-70,86
86

125-6

86

5

85

67

130

table

text-editor

top down programming
Tower of Hanoi

tree

USR

value of a move
VARPTR
vector

weather map
word
word-processor
word size

XOR

zero flag
ZEDTEXT-80

Z80 microprocessor

Z80A microprocessor
Z80 opcodes

2’s complement notation

16 bit quirk of Z80

59
85
22
39,44

140

46-7,53
172

11
116,120
33,59
116

144,146,181
146,170

59

108,118,
134,180
108

144-54,
180-81,
182-85

117-118,
138,179
152

189

TRS-80 Model III or Model IV users: Are you taking full advantage

of your sophisticated equipment? Have you mastered BASIC, and now
long to break free of ‘‘canned’’ software? Are you anxious to learn the
tricks of serious programming? If so, this book was written just for you.

CONTROL YOUR TRS-80 will teach you the techniques for writing
more creative programs, clearly and quickly. It will reveal the secrets of
data structures, and introduce Machine Code, the computer’s internal
language. Knowing Machine Code gives you the advantage of getting
into the inner workings of your computer, and allows you to control
the speed and complexity of your programs. This book does not train
you with rote exercises; it teaches the concepts of professional
programming.

With the help of this book, you can use your TRS-80 to:
e Search an inventory list
e Push onto and pop off a stack
¢ Catalogue your library
e Build a game tree
e Program a simple word processor
e Perform a real-life simulation study

Machine Code instructions enable you to:
¢ Display a checkerboard pattern (instantly)
® Draw a ‘““Hexmas”’ tree
e Add and multiply numbers
* Move data around in RAM
* Take advantage of split-screen capability
e Scroll sideways
¢ Renumber BASIC lines automatically

Plus a sample ‘‘game’’ program to test your French vocabulary, and
excellent appendices for reference.

In short, all you need to CONTROL YOUR TRS-80!

CONTROL YOUR
TRS-80

ISBN 3-7643-3143-7 $14.95

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf

