Jim Colvin

Developed by:

Jim Colvin

Quality Computer Systems
3394 E. Stiles Avenue
Camarillo, CA 93010
U.S.A.

Published by:

. The Code Works

Box 6905

Santa Barbara, CA 93160
US.A.

805/683-1585

Q/C User’s Guide
Copyright © 1981, 1982, 1983 1984 by Quality Computer Systems.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, ‘photocopying, recording, or otherwise, without the prior written
permission of Quality Computer Systems. Printed in the United States of America.

Disclaimer

Quality Computer Systems and The Code Works make no representations or warrauties, either expressed or implied,
with respect to the adequacy of this documentation or the programs which it describes in regard to merchantibility or
fitness for any particular purpose or with respect to its adequacy to produce any particular result. The computer
programs and documentation are sold “‘as is,” and the entire risk as to quality and performance is with the buyer.
Should the computer programs or documentation prove defective, the buyer (and not Quality Computer Systems, The
Code Works, its distributors or retailers) assumes the entire cost of all repair or correction and any incidental or
consequential damages. In no event shall Quality Computer Systems or The Code Works be liable for special, direct,
indirect or consequential damages resulting from any defect in the programs, documentation or software. Some states
do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the
above limitations and exclusions may not apply to you.

987654321

CP/M is a registered trademark of Digital Research, Inc.
Q/C is a trademark of Quality Computer Systems.
UNIX is a trademark of Bell Laboratories.

Z80 is a trademark of Zilog, Inc.

RMAC is a trademark of Digital Research, Inc.
MACRO-80 is a trademark of Microsoft, Inc.

CWA is a trademark of The Code Works

ii

Table of Contents

k<4

Chapter 1: Getting Started ... FASTI

1.1 Q/C system Requirements
1.2 Backup the Q/C Disk
1.3 Set Up Your Working Q/C Disk
1.4 Campile and Run a Program
Sample RMAC Session
Sample MB0 Session
Sample CWA Session
1.5 Using QRESET to Custamize Q/c
Changing Compiler Default Settings
Changing Compiler Table Sizes

Chapter 2: Using the Q/C Compiler

1 A Quick Overview
2 A Closer lock at a Q/C Program
3 Campiling a Program
Same Examples
Summary: Running the Compiler
Summary: Specifying File Mames
4 Campiler Qptions
-5 Campiler OQutput
6
7

Error Messages

Tips for Interpreting Error Messages
Assembling a Program

Using M80O

Using RMAC

: ONONB WWN [E

iv Table of Contents

6.4

6.5
6.6

Rmning Your Q/C Programs

Cammand Line Arguments
Standard I/O Files
I/0 Redirection

Advanced Q/C Topics

Interfacing With Assembly Language
A Simple Example
A Larger Portable Example
Explanation of the Example
Using Campiler Support Routines
Q/C Calling Conventions
Writing RMable Programs
Campiling a large Program in Parts

Q/C Function Library

Comparison with the Standard I/0 Library

Overview of the Library
Console I/0 _
Character (Buffered) Disk I/O
Low-level (System) Disk 1/0
System Functions
Memory Allocation

Function Descriptions

Compiler Intermals
Overview

Preprocessing
Type Handling

Filling in the Type Table: Some Examples

Parsing Derived Types

Structure Member Table
Globals/Functions

Global Variables

Synbol Table (Part l: Glabals)

Function Definition

ts

Symbol Table (Part 2: Arguments)
Local Declarations

Symbol Table (Part 3: Locals)

Externals

Autamatic Variables

Register Variables

Static Variables

Labels

21
23
24

25
25
27
29
31
31
32
32

35

113
115
116
118
119
120
121
121
121
124
124
124
125

126
126
126
126
126

6.7 Statements

Statement Expansion

6.8 Expressions
6.9 Recursive Descent Parsing

A Parsing Example
ing the Parse Results

6.10 Code Generation

Overview

An Example

Auto Variables
Static Variables
Register Variables
Global Variables
Register Usage

6.11 Code Optimization

Appendix A:

Stack Space Management
Logical Tests
Register Usage

Special Cases
Peephole Optimization

How Q/C Differs fram Standard C

Appendix B: Q/C Exror Messages

Appendix C:
Appendix D:
Appendix E:
Appendix F:

Sample Compiler Output
Compiling the Compiler
Q/C an CP/M-Compatible Systems

Table of Contents

127
127
129
130
131
132
133
133
134
136
136
136
137
137
138
138
138
139
140
141

143
149
159
161
165
173

Introduction

Q/C is a campiler for the C programming language operating under the
CP/M-80 operating system. The current version supports all standard C
features with the exception of float and long data types, parameterized
#define, declarations in compound statements, and bit fields.

Since portability is one of the most important reasons for writing
programs in C, great care has been taken to make Q/C and its function library
campatible with the WNIX Version 7 C campiler fram Bell Laboratories. The Q/C
function library contains over 80 I/0 and utility functions. Both the
campiler and the library are written in C. The source for a few functions in
the campiler and the 1library are ided in C and in hand-coded assembly
language for speed. In both cases, you can campile the C version by simply
defining the symbolic constant PORTABIE as shown in the camments at the
beginning of the files.

The output fram Q/C is 8080 or 280 assembler code. The 8080 code can be
assembled with either the Digital Research RMAC assembler or the Microsoft
MACRO-80 (MBO) assambler. The Z80 code uses Zilog mnemonics and must be
assembled with the Microsoft MBS0 assembler or with The GCode Works CWA
assembler. A good deal of optimizing is being done within the limitations of
a one-pass campiler. -

Q/C is also a canpiler learning tool. If you want to learn more about
campilers, Q/C provides you with the source code to a working campiler and an
explanation of the major parts of the campiler. You can study the source
code, experiment with it to improve efficiency, and expand it to make the
campiler more powerful .

This manual dJdoes not attempt to teach you C. There are several good
bocks available for learning C. All € programmers should have a copy of
'I'heC%n%.r_)g' #ﬁ by Brian W. Kernighan and Dennis M. Ritchie

Pr 1, 1978). It is difficult, but it is the authoritative reference
for the language. It teaches good programming style, and contains a wealth of

well-written, usable C programs. Throughout the manual I will refer to this
bock as Kermmicghan & Ritchie.

Abo&%ichiseasiertoreadisCPrograrmﬁ.ngmidebyJackMdun(QUE

Corporation, 1983). Unless you are an experienced programmer, you will
probably want to start with a book like this.

viii Introduction

Another fascinating book is The C Puzzle Book by Alan R. Feuer
(Prentice-Hall, 1982). When I got my copy, 1 kept reading it for hours. It
explores more ways than you can imagine of writing C and figuring out what the
results will be. Every puzzle has a solution and an explanation of why the
results were produced. All of these books are available fram The Code Works.

I also recammend that you get a copy of Software Tools by Brian W.
Kernighan and P. J. Plauger (Addison-Wesley, 1976). This boock provides so
many well-designed and useful programs you will get new ideas and inspiration
each time you open it. The programs are written in RATFOR (RATional EORI'RAN),
but RATFCR is patterned so closely after C that the oconversion effort is
minimal. The text formatter used to print this manual started out as a
translation of the fommat program presented in Software Tools.

Finally there is the problem of bugs. Although the Q/C campiler has been
- tested extensively, a program this size is bound to have errors lurking
sanewhere. Unlike most software you buy, you have the source code so you may
be able to correct the problem by recampiling the campiler. Whether you
correct it or not, please report any bugs to me. I can usually be reached
evenings (between 7 and 11 P.M. Pacific time) and weekends at (805) 482-3935.

If you want to write, my address is:

Quality Camputer Systems
3394 E. Stiles Ave.
Camarillo, CA 93010

Please include a sample of the C code that produces the error and any
information about your system which you feel might be pertinent.

If you have any camments or suggestions for improving Q/C or the
Q/C User's Manual, please write to me at the address above. In any case, I
hope you enjoy working with Q/C as much as I have.

Jim Colvin

Acknowl edgements

I would like to thank the following people for their oontributions to
Q/C. Glen Fisher of The Code Works developed the type handling routines used
in Q/C Version 3. Also, the assermbly language version of the library function
makfch is modeled on one he wrote. Randy Gilleland helped with the first 280
version of Q/C. Kirk Bailey wrote the port I/0 functions and developed
improved run-time library routines for the 280 version which do relation
tests, multiplication and division significantly faster. Iyle Bickley
contributed the full printf for this release of Q/C.

Special thanks go to Ron Jeffries of The Code Works who has contributed
to Q/C in so many ways. His ideas and encouragement really keep me going. In
addition, he does much of the work that makes Q/C a polished, professional
product. Without his support you would not be reading these words.

Style Conventions Used in This Mammal

VhenIs}nwfhegeneralfomofacamand(orsmepartofacamandsuch
as a file name) I use the convention

KEYWORD required [optional] ...

vhere means

KEYWORD a keyword which must be typed as shown (like OC to run the
canpiler). These can be typed in upper or lower cage.

required a required input specified by you (like a file name)

[optional] anog;ion;xali:mtv&dchyoumspecify(smhasoptimsfo;me
campiler

theprecedingitencanberepeatedasnanytjmesasnecessary

When I show an example, the part that you type will be underlined like this
A>QCC HELLO

meaningthatyoutypecr:moaftertheCP/Mprmpt».

Finally, in the body of the text I use the following conventions:
convention use

boldface used for C keywords (e.g. char). Also used to refer to parts of
an example which is being explained (just as I used it above in
referringtothepartsofthemmoexanple.

“C used to indicate a control character. For example, “C means the
character generated by holding down the CONTROL key (may be
called QONTL or CTRL on various terminals) while pressing the C
key. These are the ASCII control characters having values in

the range ‘'\0' through '\37'.

1

Getting Started ... FAST!

If you're like me, when you get a new piece of software you like to see
it do samething immediately. I know you don't feel like wading through a lot
of reading. But, if you stick with me through the first few sections of this
chapter, you'll know you've got a working C campiler.

1.1 Q/C System Requirements

Q/C Version 3 is designed to run on a 56K CP/M 2.2 system. Your CP/M
Transient Program Area (TPA) should be 50K or larger (see Section 1.5 for a
way to measure this). You need one disk with approximately 200K capacity, but
two are recommended. If you want to canpile Q/C itself, you must have two
disk drives. Q/C cames in two versions —— Gne campiles your C program into
8080 assembler code, the other generates Z80 assembler code. using Zilog
memonics. If you use the 8080 version you will need either the Digital
Research RMAC assembler or the Microsoft MACRO-80 (MBO) assembler. For the
Z80 version you must have the Microsoft MSO agsambler or The Code Works WA
Z80 assembler.

Q/C should run on CP/M~campatible systems, but this is not gquaranteed.
If you have problems, see Appendix F “"Q/C on CP/M-Campatible Systems."

1.2 Backup the Q/C Disk

Istramglyrecam\endthatyoumkeatleastonebackupcwy of the q/C
distribution disk before you do anything elsel File the original as your
"archive”, and always use a copy. (Please remember to put the ocopyright
notice “Copyright (c) 1984 Quality Camputer Systems" on the label of all your
copies of my campiler.)

versionofCP/Mdoesmthaveaspecial utility to copy disks, you can use the
standard CP/M utility PIP. Put a CP/M disk with PIP in drive A and a blank
formatted disk in drive B. Then type (underlined part only):

WPIP

PIP will prampt you with an asterisk (*) for the files to be copied. Now
remove the CP/M disk from drive A and replace it with your Q/C disk. Type

B:=, *OVv]

2 Getting Started ... FAST |

to copy all the files fram the Q/C disk to the blank disk. The O option in
[ov] is necessary to copy CRIBLIB.REL. This is the relocatable version of the
Q/C standard library. Since it is an object file, it may contain the CP/M
end-of-file character “Z anywhere in the file.

From now on, whenever I refer to the Q/C disk, use your personal copy.
1.3 Set Up Your Working Q/C Disk

The next thing you need to do is copy just the files you'll normally use
onto a "working” disk. It is most convenient to have the campiler, the files
it always needs, and your assembly tools on one disk. I suggest that you set
up your working disk as follows:

1. Start with a blank, formatted disk. Put a copy of the CP/M system on
it so it is "bootable." This is normally done with the utility
program SYSGEN supplied with your CP/M system. See your CP/M
docunentation for the correct program and instructions for using it.

2. Copy the Q/C camwpiler (CC.CM) and the standard header file
(QSTDIO.H) to your working disk fram your personal copy.

3. Copy the source file HELIO.C for the test session in the next
section.

4. Copy the relocatable version of the 1library (CRINLIB.REL). Don't
forget to use the "0O" (cbject) flag when you PIP this file.

S5a. If you use RMAC, copy RMAC.COM and LINK.OM fram your copy of those
tools. Note: these programs are not part of the Q/C distribution
disk.

5b. If you use MBS0, copy M80.OM and L80.CM to your working disk. Note:
ﬂxeseprogransareﬁpartofﬂer/Cdistrihatimdisk.

5c.‘If you use The Code Works (WA assembler, copy CWA.CM and CWLNK.CM
to your working disk. Note: these programs are not part of the Q/C
distribution disk.

You will probably want to have several other tools on your working disk,
such as STAT, PIP and your favorite text editor. But for now, you are ready

to try a quick sample session and see if everything works.

1.4 qud.lealﬂnmaprogxm 3

1.4m1eamnnaProg:u

This section shows three sample sessions, one for the RMAC assembler, one
for MBO, and the other for CWA. Yourmrkingdisknmstbeindrivel\.. In
each session, you type the underlined parts. The messages which are printed
on the screen will look similar to the sample sessions.

If you can't get Q/C to run, it may mean that you don't have enough
Memory. Run QRESET described in Section 1.5 “Using QRESET to Customize Q/c
to see how much memorv is actually availableinym:rsysten for running
prograns.AsImtetheré,S(I(isaba:ttheminjmmspacenwessaxytonm

Sample RMAC Session

If you set up your working disk as suggested in the previous section, you
should have plenty of space left. The sample session needs about 5K of disk
Space to hold the files which will be Created.

Step 1: Compile the program (reads HELLO.C, writes HELLO.ASM)

A>CC HELIO -A

A .C

*** include gstdio.h

*** resume HELIO.C

Q/C Compiler V3.x (8080) Copyright (c) 1984 Quality Camputer Systems
Symbol table entries left: 136 Memory unused: 1905 bytes

Literal space left: 986 bytes Macro space left: 916 bytes

No errors found

Step 2: Assemble the output (reads HELLO.ASM, writes HELIO. REL)

A>RMAC HELID $PZ-S
CP/M RMAC ASSEM 1.1
O0CE
003H USE FACTOR
END OF ASSEMBLY

Step 3: Link the program with the Q/C library (reads HELIO.REL and
CRINLIB.REL, writes HEII0.OM)

A>LINK HELLO,CRUNLIB(S,$SZ]
LINK 1.3
(1link messages)

Step 4: Run the program (HELLO.OM)

A>HELIOD
Hello, world

4 Getting Started ... FAST |

Sample MBO Session

Ifyousetupyourworkingdiskassuggestedinﬂmeprevia:s section, you
should have plenty of space left. The sample session needs about 5K of disk
space to hold the files which will be created.

Step 1: Camwpile the program (reads HELLO.C, writes HELLO.MAC)

Step 2

Step 3

Step 4

A>CC HELLO

Q/C Campiler V3.x (Z80) Copyright (c) 1984 Quality Computer Systems
*** read HELLO.C

*** jnclude gstdio.h

*** resume HELIO.C

=== main()

Symbol table entries left: 136 Memory unused: 1905 bytes

Literal space left: 986 bytes Macro space left: 916 bytes

No errors found

Assemble the output (reads HELLO.MAC, writes HELLO.REL)

A>MB0 =HELIO
No Fatal error(s)

Link the program with the Q/C library (reads HELIO.REL and
CRINLIB.REL, writes HELLO.COM)

A>L80 HELLO,CRINLIB/S,HELLO/N/E

Link-80 3.42 19-Feb-81 Copyright (c) 1981 Microsoft
Data 0103 oc17 < 2949>

37114 Bytes Free
o111 oc17 12]

Run the program (HELLO.OM)

A>HELLO
Hello, world

1.4 Compile and Rn a Program 5

Sample O Session

Ifyousetupyourmrkingdiskassuggestedintheprevioussection, you
should have plenty of space left. The sample session needs about 5K of disk
space to hold the files which will be created.

Step 1: Campile the program (reads HELIO.C, writes HELLO.MAC)

A>CC HELIO

Q/C Campiler V3.x (280) Copyright (c) 1984 Quality Computer Systems
*** read HELIO.C

*** include gstdio.h

*** resume HELLO.C

Symbol table entries left: 136 Memory unused: 1905 bytes

Literal space left: 986 bytes Macro space left: 916 bytes

No errors found

Step 2: Assemble the output (reads HELIO.MAC, writes HELIO.REL)

A>CWA HELLO
QWA Z80 Assembler V x.x Copyright -(c)- ZEE Microware 1983

Code Length in Bytes = 0015 (21)
Data Length in Bytes = 00CE (14)
No Errors

Step 3: Link the program with the Q/C library (reads HFILIO.REL and
CRINLIB.REL, writes HELLO.CM)
NOTE: The camm before the slash is required.

A>CWLNK HELLO, /X

CWLNK V x.x Copyright -(c)- ZEE Microware 1983
Processing File = HEI1IO .REL
Processing File = CRUNLIB .REL
Library Scan
Entry =0111 End =0C20 File Size inK=4
Kilobytes of Free Memory = 46

Step 4: Run the program (HELLO.OM)

A>HELLO ‘ v
Hello, world

Nowthatyouhavecmpiledarﬂnmaprogranyoucanrelax. Sit back and
read some more of the manual; thenyou'llbereadytouseQ/Cwimsanerealc

programs.

6 Getting Started ... FAST |

1.5 Using QRESET to Custaomize Q/C

Before you read this section, please realize that unless you are using
RMAC, youdontneedtobo&erw:.thgxcustamatlonnghtrm Even if you
do use RMAC, all you'll save by custamizing right now is that you won't have
to use the -A option each time you campile.

The CRESET program lets you change two major characteristics of the Q/c
campiler. First, you can change same default campiler options, such as
whether it initializes large arrays. Second, you can change the size of
important tables used by the campiler. (It is unlikely that you'll ever need
to change the table sizes since they are set to large values. If a table size
is exceeded, Q/C gives you an error message saying which table must be
enlarged.)

You run QRESET by typing the cammand
A>QRESET
This will change the file CC.CM on the currently logged drive. If Q/C is o
another drive or you have changed its name, QRESET will also accept a drive

specifier or a different file name. For example, to change CC.CM on drive B
say

A>QRESET B:
As another example, if you change the campiler name to QC.CM, say
A>QRESET QC

and you will change QC.CM on the drive currently logged. Finally, if QC.CM
is on drive B, the cammand

A>QRESET B:QC
will change it.
(RESET announces itself like this:
CQRESET custamization program for Q/C Campiler V3.x

The version number is given because CRESET checks to see that the file it is
changing has the same version number. If there is a difference you will get
the following messages:

This version of QRESET only works with Q/C V3.x
No changes made
This prevents you from destroying your executable campiler.

1.5 Using QRESET to Customize Q/C 7

Another check is made to insure that the file being changed actually
appears to be a Q/C campiler. If it does not, you will get the mesgsage:

CC.CM does not lock like a Q/C Compiler -
either the file is damaged, or you have changed
the order of global variables in OGLBDEF.C

If everything looks all right, QRESET first reports the size of your CP/M
Transient Program Area (TPA) like this

Your CP/M TPA size is: 50K

This is calculated fram the jump address at location 6H. If this is less than
50K, Q/C will not run without decreasing the size of some of the canpiler
tables. If your TPA size is less than 49K, Q/C will probably not run at all.

Next QORESET reports each of the current settings and asks you for a new
value. To leave a setting unchanged, type a carriage return. If you 3just
want to see what ﬂxemn'rentsettingsare,answeralltheqmstionswitha
carriage return and no changes will be made. If you change your mind at any
pointduringamESErrm,youcanquitbyanmring‘Ctoanyquestion. None
of your previously specified changes will take effect.

The following two sections show the rest of a sample dialogue. Each
exchange is followed by a short explanation. Notice that when you specify a
change, QRESET confirms the change that it will make.

Changing Compiler Default Settings

Currently campiler will generate code for MSO (8080 version only]
Enter A (RMAC), M (MBO) or <CR> for no change: a
Campiler changed to generate code for RMAC

The underlined response a tells (RESET to change the default to RMAC
code. bbticethatyouranswercanbeu;perorlwercase.

Qurrently campiler is in verbose mode
Enter T (terse), V (verbose) or <CR> for no change:

Q/C is sent to you in the verbose mode. As it runs it will notify you
when it starts reading an input or include file and when it starts
campiling a new C function in your program. See the section "Compiler
Output" for an illustration of verbose mode. If you change to terse
mode,themlythingyouseecnyourscremduringacmpilationis a
summary at the end.

8 Getting Started ... FAST |

Qurrently campiler pauses after 6 errors
Enter new size or <CR> for no change:

No change is made to this setting. When verbose mode is on, Q/C
autamatically pauses after each error message to prevent the message
fram being forced off the screen by the verbose mode ocutput. Wwhen
terse mode is on, the error pause count is the mumber of errors that
Q/C will write on the console before it pauses. This prevents error
messages fram scrolling off the screen if you walk away during a
campile. Each error message takes three lines. The pause count is
initially set to 6 which works nicely ona 24 by 80 screen. This
still allows enough lines for the summary messages at the end of the
canpile if the final screen has six errors.

CQurrently campiler does not initialize large arrays
Enter I (initialize), N (do not initialize) or <CR> for no change:

The default is to skip initialization of arrays which are longer than
128 bytes. The C language definition says that all global and static
variables initially contain zero if no explicit initialization is-
given. However, if your C program has large arrays, the .CM file can
be quite large. Because of this, arrays larger than 128 bytes are not
initialized autamatically. You can still initialize selected arrays
by initializing at least one element. Q/C will then set the remaining
elements to zero. i

Qurrently campiler excludes redirection
Enter R (redirect), N (do not redirect) or <CR> for no change:

The default of excluding redirection is left unchanged. Since the
linkers only load the library functions which are needed, a program
which does not need redirection will be smaller. Depending on which
functions are actually required, you can reduce the size of the .CIM
file by 1 to 5K. You can still include redirection in individual
programs by using the -R campiler switch described in Section 2.3
“"Compiling a Program.”

Ghanging Compller Table Sizass

SYMBCQL, TABIE size is: 150 entries
Enter new size or <CR> for no change: 200
New SYMBOL TABLE size is: 200 entries

Here the campiler symbol table is being changed fram 150 to 200
entries. This is ordinarily done in response to the camwpiler error
message "Symbol table overflow." If this happens with any table, the
best thing to do is to increase the size by a fair amount (say 20%8)

and try again.

1.5 Using QRESFT to Customize Q/C 9

MEMBER TABLE size is: 50 entries
Enter new size or <CR> for no change:

TYPE TABLE size is: 50 types
Enter new size or <CR> for no change:

LITERAL (string) POOL size is: 1000 characters
Enter new size or <CR> for no change:

MACRO (#define) POOL size is: 1000 characters
Enter new size or <CR> for no change:

SWITCH/LOOP nesting depth is: 10 levels
Enter new size or <CR> for no change:

SWITCH/CASE TABIE size is: 50 cases
Enter new size or <CR> for no change:

The last six campiler table sizes are left unchanged.

Normally, the

only time you change any of the table sizes is in response to a
campiler error message saying that a particular table has overflowed.
When you change table sizes, you should be sure that you have enough
memory available. The sizes you specify for the literal pool and
macro pool are already in bytes. Each symbol table entry takes 15
bytes and each type table entry takes 9 bytes. The member table, the
switch/loop queue and the switch/case table each require 4 bytes per
entry. The summary messages at the end of each campilation tell you
how much memory was unused by the campiler. Since this will vary from

program to program, be conservative.
B:CC.CM has been changed

QRESET informs you that the changes have been made and shows you
exactly which file was changed. If you do not request any changes

this message will be "No changes made."”

@

2

Using the Q/C Compiler

2.1 A Quick Overview

Q/C reads one or more files containing the source code for your C program
and campiles (translates) it into 8080 or 280 assembler language. This
version of your program is then assembled and linked with a group of
subroutines called the function library to form a complete CP/M .CIM file
which can be run simply by typing its name.

The function library contains three types of subroutines. First are the
campiler support routines. Several cammon operations such as 16-bit
arithmetic and logical tests are done by calling these subroutines rather than
inserting the assembler code each time the operation is performed. This makes
the program shorter but slightly slower. Calls to the campiler support
routines are generated autamatically by Q/C, so you will normally not be aware
of them. ‘

The second group includes the input/output (I1/0) functions. These are
the ions youuseinyourprogramtodotenuinalanddiskl/o. As an
example, the C statement

putchar('a');

calls the library function putchar which will place the character 'a' on the
terminal screen at the current cursor position.

StrCW(ar b);

The .CM file generated by Q/C is a true “"native code" compiled version
of your program. Since no interpretation is being done, programs run fast.
n a 4 Mhz 280, the "do-nothing" loop

for (i = 0; i < 32767; ++i);

runs in less than 5 seconds. TrythatinBASICarxisee‘mmlalgittakes!

12 Using the Q/C Compiler

2.2 A Closer Loock at a Q/C Program
Iet's look at the program HELLO.C which is supplied on your disk:

#include "gstdio.h"
main()

printf("Hello, world\n");
}

Although it's not long, it illustrates several important features of a Q/C
program. It starts with the #include directive which tells Q/C to include the
file QSTDIO.H as part of the input to the campiler. This file contains the
definition of same frequently used constants like TRUE (1) and BOF (-1). It
also includes the definition of the FILE data type and several external
variables needed by 1/0 library functions. Any program which uses the I/O
library must include QSTDIO.H.

HELIO.C consists of a single function named main. A program may consist
of any mumber of functions. Ifyoumnt:.ttobeastarﬂ-aloneprogran
(meaning one which will become a .CM file which you can run), it must comtain
a function named main.

Since your external variable names and function names are labels in the
assembler program, they must meet certain requirements that the assemblers put
on label names. The two things you must remember are:

1. Label names are translated to upper case, so names like holdx, Holdx,
and HOLDX which are unique in C are all equivalent in assembler.

2. The assemblers retain only the first 6 characters of an external
label. This means that the unique C names ungetch and ungetc are
considered the same by the assemblers.

This version of Q/C insures that none of your global names will conflict with
any asseambler reserved words. This means that it is perfectly legal, for
example, to define a global variable hl even though HL is the name of an
8080/280 register.

So, a quick review of the requirements for a Q/C program:

1. If you call any library functions, the programn must start with the
preprocessor statement #include “"gstdio.h”.

2. If the program will be run as a stand-alone program (a .CM file), it must
contain a function named main.

3. All external variables and function names must be unique within the first
six characters regardless of case. (The distinction between upper and
lower case which makes names unique in C is lost in the assembler and will
cause duplicate label errors.)

2.2 A CQloser Iock at a Q/C Program 13

2.3 Compiling a Program
Some Examples

Now that you have seen what a Q/C program should lock like, let's see how
you campile it. The simplest possible way to campile (when everything fits on
the same disk) is:

A>CC HELLO

wp

CC is the name of the canpiler, and the file containing the program is
HELIO.C. If you don't specify a file extension, Q/C will use .C as the
default. If no output file name is given, the input file name is used with
the file extension .MAC since the default is to produce code for M80. Thus
the output file is called HEIIO.MAC. :

Although this simple command will handle many situations, there are a
several options and additional ways of naming files that can be used. let's

lock at same common situations first. Suppose you want to rename the output
file. Type

A>CC HELLO -O GOODBYE

The input file is still HELID.C. The dash tells the campiler you are giving
it an option, and the O Says you are specifying the output file. The space
between O and the output file name GOOIBYR is required. Since no file
extension is given, Q/C will add the extension .MAC as before, making the
output file GOODBYE.MAC.

The file names can also have a drive specifier, and the autamatic file
extension can be stopped. If you type

A>CC HELIO. -0 B:

the input file will just be HEILIO with no extension. When Q/C finds a period
in the file name it doesn't change the name. The drive specifier B: on the
output file name will make it B:HRIIO.MAC. In this case, Q/C uses the input
file name plus the default extension .MAC to form the output file name. As
you can see, ymcznuseanyfilenamesandanydrivesyoumnt, or you can
let Q/C do most of the work for you.

Sametimes your progranwillbesolargeyouwanttokeepitinsmller
piecestonakeiteasiertoedit. Ifyourprogramisintwopartsitcwldbe
campiled like this ,

A>CC PART1 PART2 -O BIGPROG

This would campile PART1.C and PART2.C ard call the output BIGPROG.MAC.

14 Using the Q/C Compiler

Sumary: Ruming the Compiler

The preceding examples show the pattern for running the campiler. You
type the camwiler name CC followed by the input file(s). Then you type the
options, if any, and finally the new flle name if desired. The general form
is

CC infile ... [-options] [outfile]

where the fields are separated by blanks. All that is required is the
campiler name CC and at least cne infile. There can be as many input file
names as you need. The camwpiler assumes that all fields up to the -options
field are the names of input files. The output file name ocutfile if specified
must came after the options. If you don't specify the output file name, it
will be the same as the first (or only) input file name with .ASM or .MAC
added as the extension.

Summary: Specifying File Names

, A file name is specified as a CP/M unambiguous file name but you do not
need to specify all of the parts —— the campiler will generally fill in the
missing pieces. The general form of a file name is:

[d:]J[filename][.ext]

Although all parts are optional in different cases, you must always specify at
least one of the parts.

d: is an optional drive specifier. 1If an explicit drive is not
specified, Q/C will read input files fram the currently logged drive and write
the output file on the same drive as the first (or only) input file.

filensme must always be given for input files. Output files need only a
drive sgpecifier if you simply want to put the output on a different drive fram
the input. In this case, the output file name will be the same as the first
input file name with the default file extension added.

.axt is an optional file extension. If you don't give an extension, a
default file extension will be supplied. If you want to specify a file which
has no file extension, put a period after the file name and no extension will
be added.

2.4 Compiler Options

Compiler options are specified by "switches" (a dash, then a letter) on
the cammand line when you run the campiler. If you do not specify any options
you will get the default settings shown below. Notice that many of these
defaults can be changed by running the program QRESET included on your
distribution disk. See section 1.5 "Using QORESET to Customize Q/C" for
instructions on using QRESET.

2.4

Compiler Options 15

Generate output for the Digital Research RMAC assembler using .ASM as
the file extension for the output file. The default can be changed
permanently with CRESET.

Note: this option is not in the Z80 version -- you always generate
code for MSO.

Default: generate output for MSO.

additional comments to indicate what the assembler code is doing.
See Appendix C "Sample Compiler Qutput" for an example of what a file
produced with the —C option looks like. If the output is for RMAC,
the exclamation point (1) in C statements will be translated to a
number sign (#). Otherwise the assembler thinks that the the rest of
the C statement is a new assembler statement.

Default: no camments in the assembler program.

Debug mode. Send the output to the console rather than to a disk
file so you can lock at it immediately. This is very useful for

debugging changes made to the campiler.
Default: output goes to a disk file.

Turn on autamatic initialization of large arrays. Normally Q/C only
does autamatic initialization of global and static arrays which are
no longer than 128 bytes. This speeds up the assembly and reduces
the size of the .OM file. If ‘you Jjust want selected arrays
initialized , you can force it without using ~I. Simply initialize
at leastoneelenentoftlwarrayandQ/Cwill set the rest to zero.

Do a librarygenerationrmaspartofbuildinganewlibra.ry. All
globals defined at the beginning of the program will be placed in the
normal output file. Each function will be written to a separate file
named function.MAC or function.ASM where function is the actual name
of the C function.

Default: don't do a library generation

Generate code for the Microsoft MBO or The Code Works CWA assembler
using .MAC as the automatic file extension for the output file.

Note: this option is not in the 280 version — You always generate
code for M8BO and CWA.

Default: generate output for MsO.

Specify a name for the output file. If you do not specify a file
extension, the compiler will use the file extension appropriate for
the assembler you are generating code for. If you specify only a
drive, the output file name will be the same as the input file with
the appropriate extension, and it will be written on the specified
drive.

Default: the first input filename with the file extension ASM or MAC
as appropriate.

16 Using the Q/C Compiler

-R Include the redirection capability in the camwpiled program. When you
specify -R, you also get autamatic closing of all buffered files at
end of run. Notice that if your program does not need the
redirection capability, you can reduce the size of the .OM file by
excluding redirection. For more information on redirection and
autamatic closing of files, see Section 3.3 "I/O Redirection."
Default: do not include redirection capability.

-8 Generate ROMable code and optionally specify where you want the stack
to start. Specifying -S tells Q/C to do same things differemtly
gsince the code generated will be loaded in ROM. Normally Q/C starts
its stack immediately below the CP/M BDOS. RMable code may have
specific location of RAM where the stack must be, so specifying a
hexadecimal address after -S tells Q/C where the stack must start.
For example, if the stack should start at OEFFFH, say -SEFFF when you
ruvn Q/C. In addition, -S eliminates the calls to the library
routines which parse the CP/M cammand line and which reboot CP/M at
the end of the program. See Section 4.2 "Writing RMable Programs”
for more information.

Default: do not generate RCMable code.

< Generate trace messages in your program. When you run your program
every function will print its name in the messages

> function—-name
<function-name

each time it is entered and exited. This is useful when your program
mysteriously dies saomewhere, and you don't want to trace it at the
assembler language level to see where it is and how it got there.

If‘yuadax'tvanttotraceall functions, you can turn tracing on and
- off with "amart" camments. If you have enabled tracing by specifying
-T, then the campiler loocks for camments of the form

/* § +T [any text] */

where the white space is optional. Initially, tracing is on. -1
turns tracing off and #F turns it back on. This allows you to trace
only the functions you are interested in by placing "smart"” coumments
arourd them.

Default: no trace messages.

<V Toggle the campiler between verbose and terse mode (see the section
"Compiler Output" for an example of the effect of this option). If
you change the default to terse mode using QRESET, then specifying -V
will turn verbose mode on.
Default: campiler is in verbose mode.

2.4 Campiler Options 17
When you specify options, all but =S can be typed together as well as
separately. For example, the two cammands

A>CC DISKDUMP -A -O B:
ard A>CC DISKDUMP -AQ B:

will both compile DISKDUMP.C, generate assembler code for the Digital Research
RMAC assembler because of the -A option, and change the name of the output
file to B:DISKDUMP.ASM (forcing it to drive B) because of the -0 option.

2.5 Campiler Output

Normally you will simply let the campiler output go to a disk file and
then assemble it without locking at it. Wwhen the canpiler is in "verbose"
mode the output locks like:

A>CC PROGRAM
Q/C Campiler V3.x (280) Copyright (c) 1984 Quality Computer Systems
*** read PROGRAM.C ‘)
*** include gstdio.h)
*** resume PROGRAM.C
Symbol table entries left: 135 Memory unused: 2655 bytes
Literal space left: 873 bytes Macro space left: 674 bytes
No errors found
A>MB0 =PROGRAM

etc.

If the campiler is in "terse" mode (because -V was specified or because QRESET
changed the default), the only output you will see is the campiler sumary at
the end. Notice that a canpile of a large size program of say 1000 lines will
take several minutes, and there won't be any indication of what Q/C is doing
during this time. In terse mode, the previous run loocks like:

A>CC PROGRAM -V
Q/C Campiler V3.x (280) Copyright (c) 1984 Quality Computer Systems
Symbol table entries left: 135 Memory unused: 2655 bytes
Literal space left: 873 bytes Macro space left: 674 bytes
No errors found
A>MBO =PROGRAM
etc.

If you want to see what the assembler code for your program 1looks like
for any reason, the -C option will generate same helpful assembler camments.
See Appendix C "Sample Compiler Output” for an example of a simple C program
and the assembler output using the -C option.

18 Using the Q/C Compiler

2.6 ExTor Messages

Unfortunately, none of us writes perfect C programs all the time. When
Q/C finds samething it doeen't like it prints a three line message on the
console. For example, campiling the file ERR.C which contains the program:

/* error - force an error message */
int i, n[80];
error() {
:;.snEO; /* bad subscript syntax */

will generate the error message

<ERR.C> @ 4: Missing punctuation — assumed present:]
i = n[0;

All error messages have this general form. First, the error message is
printed showing the name of the disk file being read enclosed in angle :
brackets <>, followed by an at sign @ and the line mumber in the file. In our
exanple <ERR.C> @ 4 means the error is at line 4 in the file ERR.C. This
allows you to go directly to the erronecus line in your editor. Next the line
with the error is shown with all extra white space removed. Finally, a line
with only a caret “ is printed to show where the cawpiler was looking when it
found the error.

_The error message itself may be just a general message like "Must be
lvalue”, or it may include some specific information for this particular case
after the message. The earlier example not only says that the needed
punctuation is missing, but also that the campiler supplied the closing
bracket "]" it was looking for.

If the error occurs inside an #include file, the error message will tell
you. If the file ERR.C is used as an #include file in the source file

INCIERR.C like this:
/* inclerr.c - force an error in a #include file */
#include “err.c
the error message will change to
<INCIERR.C> @ 3: #include <ERR.C> @ 4: Missing punctuation —

assumed present:]
i = nl0;

This says that the file being campiled is INCIERR.C, but that there is an
#include cammand at line 3. The file being included is called ERR.C and the
error is actually at line 4 of the file ERR.C. If you use nested include

2.6 Error Messages 19

files, you will see only the input file name fram the cammand line and the
include file currently being campiled. The intermediate include file names
will not be shown.

Appendix B is an alphabetic listing of all the error messages given by
Q/C along with an explanation of possible causes of the error. ‘

'l‘ipsﬁ:tlnteqretingmmssages

Normally the compiler has scanned beyond the error by the time it
realizes that there is an error. In the previous example, i = s[0;, the caret
""" was pointing at the semicolon " ;" because that is where Q/C was expecting
to find the closing bracket "]". Since white space is ignored, if the
semicolon were also missing, the campiler would have scanned to the next line
locking for a non-white space character. In this case it would have reached
the closing brace "}" which termminates the program before realizing that there
was a problem. The line that it reported in the error message would be one
line too far. Fortunately, this will usually happen only if you omit a
required semicolon at the end of a line. In general, you should lock to the
left of the caret for the error, and occasionally on the line before the line
shown.

2.7 Assenmbling a Program

After you cawpile a program, you must assemble the campiler output and
link it with the function library to build a .CM file to run. In Chapter 1
"Getting Started" you saw a brief example. This section shows the process in
more detail.

Using MBSO

Using the MB0 assambler you campile, asseamble, link and produce an
executable .CM file, by typing the underlined parts:

A>CC ions

(c:::m;n.i ler messages;

A>MB0

(assenbger messages)

A>L80 progname, CRUNLIB/S , progname/N/E

(linker messages)

At 1link time, the /S option causes L80 to search CRINLIB.REL and include only
those functions needed by your program.

20 Using the Q/C Compiler

Using RMAC (8080 version only]

With RMAC, campiling, assembling and linking locks like this (you type
the underlined parts):

A>CC progname -options
(canpiler messages)

A>RMAC progname $PZ-S
(assembler messages)

A>LINK m,mig,ml
(load messages)

You will probably want to suppress the .PRN file and the .SYM file
produced by RMAC. This is accamplished by the options $PZ-S. When you link,
you want only those functions which are actually needed to be included in the
.CM file. This is specified by the option S following the left bracket ([)
which tells LINK to search CRINMLIB.REL and include only the needed functions.
The remaining options suppress the listing and recording of the global symbol
table.

3

Running Your Q/C Programs

When you run a Q/C program, it interacts with CP/M in various ways.
First, you can pass parameters to a program fram the CP/M cammand line.
Second, you can redirect the standard input and output files on the cammand
line so that they refer to disk or the printer rather than the console. This
chapter tells you how to use these and other features.

3.1 Command Line Arquments

When you run your program, You can pass parameters to it by us:.ng the
normal argc, argv mechanism. In the current release of Q/C there are three
minor differences fram the way Kernighan & Ritchie describe camend line
arguments. ‘

To show how things work in Q/C, Suppose you have a program called FIND
which searches a file for a given string of characters. If you want to find
dl&eﬁrstatmentsinﬂ:eprogranm&youwuldnmﬂueprogranlﬂce
this

A>FIND COMPARE.C \Lfor

The first difference is that CP/M translates the camand line to upper
case so FIND receives the second argument as \LFOR. This means you have to
use same kirﬂofescapesequencetoindicatethatfu:islomrcase. The \L
infrontofﬁrisintendedtotelll?m)thatthe rest of the argument is
lower case. This escape sequence is strictly for illustration. Q/C does not
recognize\Lashavnaganyspecialsignificanceina camand line .
The program FIND must interpret \L as an indication that the rest of the

The program FIND would start out like this

22 Rning Your Q/C Programs

main(argc, argv)
int argc;
dmar*a.rgVE{ 1:

char *filename, *string;
filename = argv{1l];
string = argv{2];

As usual, argv[1l] is a pointer to the second argument on the cammand
line, so setting filename equal to argv{l] causes filename to point to the
string "OOMPARE.C®. If you only need to refer to the entire string, it is not
necessary to define and use filename of course. For example, you can open the
file that FIND is to search by saying

fopen(argv(l], "r")
since fopen only needs the pointer to the string containing the file name.

The second difference is that argv[0] points to a null string " rather
than “FIND", the name of the program being run, since CP/M only preserves the .
portion of the canmmand line that follows the name of the program.

The final difference is that Q/C allows an argument to contain blanks or
tabs by putting quotes around it. If you wanted FIND to locate all the
endless for loops which you wrote as for (;;) with a blank between the keyword
for and the left parenthesis, you would say

A>FIND COMPARE.C "\Lfor (;;)"
When Q/C finds an argument starting with a quote (") it makes everything up to

the next quote or the end of the cammand line part of the argument. As
before, the escape sequence \L tells FIND.C that the letters are lower case.

In summary, the three differencés fram standard command line argument
passing are:
l.lsinceCP/Mtranslatesthecamxﬂlinetoupperme, all the argv
strings will be in upper case regardless of how you typed them on the
command line.

2. argv{0] is a null string rather than the name of the program that is
being rum.]

3. An argument enclosed in quotes can contain blanks or tabs.

3.2 Standard I/0 Files 23

3.2 Standard I/O Files

Q/C supports standard files which you can use without opening or closing
much like standard C. These files include the standard input file stdin, the
standard output file stdout, and the standard error file stderr. They are all
normally assigned to the console (CP/M CON: device). The standard file names
are declared in the file QSTDIO.H which should be included in any program
using the I/O library. This file also defines the constants you normally need
such as NULL and ECF.

The standard files cas be used in several ways. The functions getchar
and gets read fram stdin, while putchar and puts write to stdout. Thus, the
simplest copy program you can write is

/* copy.c - copy stdin to stdout */
#include <gstdio.h>
main() {
int c;
while ((c = getchar()) = ECF)
| putchar(c);

This simple program can be useful as you will see in the discussion of 1/0
redirection.

You can also use the standard filenames in any of the character
(buffered) I/0 functions. For example

getc(stdin)
has the same effect as
getchar()
They both read the next character fram stdin.

When you use the standard file names this way there are three
requirements:

1. You must include QSTDIO.H in your program.
2. You must not open or close the standard file names.

3. You must not assign a value to the standard file names. In other
words, don't do this

stdin = 5; /* ILLEGAL */

24 Ruming Your Q/C Programs

3.3 I/O Redirection

Q/C supports I/0 redirection fram the command line. This means that the
files stdin and stdout can be redirected from the console to disk, and that
stdout can be redirected to the printer.

Notice that redirection is optional. If a program does not need
redirection, you can reduce the size of the .CIM file by excluding
redirection. For example, a program which does only terminal I/0 will not
need the library functions which open and close files. If you exclude
redirection and you do disk I/O with the buffered I/O functions, you will have
to close the output files yourself. This can be done by ending your program
with a call to the exit function or by closing the output files individually
with the function fclose.

To see how redirection is done, consider the program copy.c described in
the last section. If you run it like this

A>COPY

it will read from the oconsole and write to the console. This is not very
useful because it will just repeat everything you type. However, you can
redirect stdin to a disk file by typing the less-than symbol "<" in front of
the file name like this

A>QOPY <OTHELLO.PRN

and print the file OTHELIO.PRN on the screen. To copy one file to another,
type the greater-than symbol ">" in front of the destination file name. For
example

A>QOPY <CTHELLO.C >B:OTHELLIO.C

will copy OTHELIO.C fram drive A to drive B. The ">" in front of B:OTHELLO.C
redirects stdout fram the console to the file B:OTHEIIO.C. In both of these
examples, the disk files are opened and closed autamatically; you never
mention them in the program COPY.C.

Finally, you can redirect stdout to the printer like this
A>COPY <OTHELIO.C >LST:

Q/C recognizes LST: (or 1lst: or any cambination of upper ard lower case) as a
reference to the CP/M LST: device (the printer). For a way to write to the
printer without using stdout, see the description of the fopem function in
Section 5.3 "Function Descriptions".

The arguments which do redirection are not passed to your program. ‘They
may be mixed in with other cawmand line arguments, and they may appear in any
order.

4

Advanced Q/C Topics

4.1 Interfacing with Assembly Language

Since C was designed for systems programming, it is seldam necessary to
use assembly language. C programs can be written and debugged much more
quickly than assembler programs, and are much easier to understand and change
later.

Infrequently you will need to write a function in assembly language. For
example, it may be necessary to speed up a heavily used function. For these
rare occasions, Q/C provides the fasm and #endasm preprocessor directives.
These allow you to embed assembly language in your C program. The best way to
do this is to make the assembler routine a function which you call fram your C

program.
A Simple Example

This example shows the basic requirements for writing an assembly
language subroutine which will be called as a C function. We will rewrite the
standard library function isdigit which locks like this in C:

isdigit(c)
int c:
{

return (c >= '0' && c <= '9');

isdigit checks the arqument c to see if it is between 0 and 9 and returns true
(non-zero) or false (zero). The same program in assembler is:

26 Advanced Q/C Topics

isdigit(g

#asm
ILXI H, 2 sget arg off of stack
DAD SP
MoV AM
CP1 48 :'0!
Jc ?isdqgl
CP1 58 :'9'+1
JNC ?isdql
ORA H :set Z flag to zero
RET
?isdgl: XRA A ;set Z flag to one
MoV H,A ;return FALSE
MOV L,A
#endasm |

The output fram the campiler will be:

PUBLIC isdigit?
isdigit?:
H,2
SP
AM
48

?isdgl
58

?isdgl
H
?isdgl: A

H,A
L.A

AE85H8HRAREEE

Since the function is defined in C, the cawpiler takes care of several
housekeeping chores. First, it appends a ? to the function name to eliminate
conflicting with assembler reserved words. Second, it generates the assembler
pseudo~cp PUBLIC to make this function name known to other files when you
link. Alﬂnughyoucan'tseeit,thecmpileralsoentersthenmeiaﬂigitin
its symbol table. Then any calls in this same C program will know that
iadigitisdefimdasaglobalnme.sotheywn'tcauseanﬂﬂ'ﬂipse\ﬂo-opto
be generated erronecusly.

Notice that the assembly language version does not include the argument
c in the function definition. You must NOT define the argument(s) when you
supply the entire function. If you do define them, the camwpiler will generate
calls to entry and exit routines in the rn~time library. ‘These calls are
unnecessary in this case and they can cause problems. Since the function
returns a value, the campiler expects the Z flag to be set to correspond to

4.1 : Interfacing with Assembly Langquage 27

the return value. When the exit routine is called, it will wipe out your 2
flag setting. A final note is that the campiler generates the closing RET
statement. .

The first few lines of the assembler code get the value of ¢ off the
stack. When you call isdigit in your C program, the campiler generates -code
that looks like this:

LHLD c?
PUSH H
CALL isdigit?

So, when isdigit is entered the stack looks like this:

SP —> return address
SP+2 ¢

The label ?isdgl used in this function was chosen to meet several
requirements. It starts with a ? so that it doesn't conflict with any global
names defined in C. C names must start with a letter or an underscore ()
which gets changed to an at sign (@) so they will never start with 2. The
campiler generates its own labels in the form ?rmn where nmm is a number (for
example ?27). So as long as the second character of your labels is a letter,
there will never be a conflict with campiler-generated labels. Finally, your
labels must be unique within the Ffirst 6 characters to satisfy all the
assemblers.

Once you know what you want to return (zero or non-zero) you must place
it in HL if it is not already there. This is where the cawpiler expects the
return value fram a function call. Also, the compiler expects the Z flag to
be set to one if the return value is zero, or set to zero if the return value
is non-zero.

A lLarger, Portable Example

The example on the next page shows how to write an assembler function
which can be called from Q/C and how to call a Q/C function from assembler.
It also shows how to maintain portability using conditional campilation when
your function can also be written in C. This example is similar to the symbol
table search in the Q/C compiler.

28 Advanced Q/C Topics

$ifdef PORTABLE (1)
£indglb(sname)
char *sname;
{register char *ptr;
for (ptr = symtab; ptr < glbptr; ptr += SYMSIZE)
if (streq(sname, ptr))

return ptr;
;'eturn NULL;
t#else
findglb() { (2)
extern char *glbptr, *symtab; (3)
extern streq();
#asm 8080 (4)
PUSH B :save calling program stack frame ptr (5)
LXx H,4 :get address of sname on stack (6)
DAD Sp
MoV c,M sput it in BC
INX H
MOV B,M
LHLD glbptr? ;address of last global symbol (7)
XCHG : in [E
LHLD symtab? ;address of first global symbol :
2fglbl: MOV AH ;is ptr < glbptr? (8)
awp D
JNZ ?2fglb2
MV AL
cMP E
?2fglb2: JINC 2919 ;no, so we didn't find it
PUSH D ssave glbptr
PUSH B :name is first arg to streq (9)
PUSH H :ptr is second arg
CALL streq? ;test the two strings for equality (10)
POP H ;clear args off the stack which also (11)
POP B ; restores the values in the registers
JNZ 2fglb8 ;if the strings matched, we're done
xa D, 15 sotherwise, move to next symbol
DAD D ;ptr += SYMSIZE
FOP D ;restore glbptr
JMP ?2fglbl ;loop and. try again
?fglb8: POP D ;smatched, finish clearing stack (12)
POP B ;restore caller's stack frame pointer (13)
RET
?fglb9: POP B ;restore caller's stack frame pointer
IXI H,0 :no match, return NULL (14)
XRA A s;set 2 flag to indicate FALSE
RET
#endasm (15)

#endif

4.1 Interfacing with Assembly Lanquage 29

Explanation of the Example

First, a brief explanation of what the function is doing. findglb
searches the global symbol table for the symbol name pointed to by sname. The
C function streq is called to campare sname with the name stored in successive
entries in the symbol table. If a match is found a pointer to this entry is
returned. Otherwise NULL is returned.

In the following discussion the numbers in parentheses refer to the
nunbered lines in the example.

(1) One of the most important points illustrated in this example is the use of
conditional campilation (the #ifdef PORTABIE) to retain a version of the
subroutine which is portable to other machines. If you decide to mowve this
routine to an 8086, for example, you simply #define PORTABLE ahead of the
#ifdef and the portable C code will be canpiled. When PORTABIE is not
defined, the assembly code will be included in the output file giving a speed
increase.

(2) You must not declare the arquments to the function when you are going to
manage the stack yourself. Leaving out the arguments suppresses the calls
normally generated by the compiler to entry and exit routines which maintain a
constant stack frame using register BC (and in the Z80 version IX).

(3) If you refer to global variables defined in C you must declare them extern
as shown here. Then the campiler will figure out whether assembler EXTRN
pseuwdo-ops need to be generated depending on whether these names are defined
in the current source file or elsewhere.

(4) and (15) The entire assembly language routine is swrrounded by the
preprocessor cammands #asm...fendasm. This tells Q/C to copy everything in
between directly to the output file. Only two things are done while fasm is
in effect. An #include cammand will be cause the requested file to be copied,
and assembly language camments will be stripped out. The presence of "8080"
in the #asm cammand causes the 280 version of Q/C to generate the M80
pseudo-op ".8080" at the beginning of your assembler code. It will also
generate a ".Z80" when it reaches the #endasm command. The 8080 version of
Q/C will ignore the “8080", however, allowing you to write one version of your
program which can be campiled and assembled with either flavor of the
canmpiler.

(5) In this version of Q/C, a constant stack frame pointer is maintained in
register BC as mentioned in (2). This allows the canpiler to reference all
local autamatic variables with a constant offset fram BC. It also means that
every function must preserve the contents of BC so that the stack frame
pointer of the calling function will still be set when returning to it.

280 users NOTE: The index register IX must also be preserved.

(6) when you retrieve arguments you must remember that they are pushed onto
the stack before the CAIL to the function. The CALL then pushes the return
address on the stack. When findglb is entered the stack locks like this

30 Advanced Q/C Topics

SP ==> return address
SP + 2 sname

When there is more than one argument, the last argument pushed will be the
first one above the stack pointer since they are pushed onto the stack in the
order they are found in the call. The five lines starting here show how to
get the argument sname. When BC is pushed onto the stack in step (4), the
offset of sname fram the stack pointer is changed to 4. So, the address of
sname is camputed in HL by adding the offset 4 to the stack pointer (SP).
Then the two bytes at this locajion are loaded into the BC register pair.

(7) You can refer to a global variable like glbptr by using its name with a
question mark (?) appended. Q/C appends a question mark to all global names
so that they will not conflict with assembler reserved words such as HL and
RET. Thus, if you reference a C global name you must add the question mark.
Similarly, if you define a global name in assembler, you must add the question
mark yourself if you want C to find it.

(8) All of the labels in this example start with ? to prevent them fram:
colliding with labels generated for global variables in your C program. All
internal labels generated by the campiler consist of a question mark followed
by a nunber (like ?46), so if your assembler labels start with a question mark
follomed by an alphabetic character, you will never have labels which

duplicate canpiler-generated labels.

(9) Here we start pushing the arguments for streq onto the stack. Notice that
they are pushed in the order they are seen in the call to streq. In this case
all the arguments are passed as the actual value. If you need to pass an
array, a function or a structure or union to the called routine, you must pass
a pointer to the actual variable (meaning the address of the array, function,
structure or union).

(10) To execute a C function, simply ' CALLL its name with a question mark
apprended. See the discussion in (7).

(11) Now the arguments must be cleared back off the stack. You must do one
POP for each arqument. Notice that the calling routine is the one that clears
the arguments off the stack. In general, you should not rely on restoring the
values in the registers this way because the called function may have altered
the values passed to it.

(12) since we pushed the value of glbptr on the stack earlier we must FOP it
back off to restore the stack pointer to the way it was when £findglb was
entered. Otherwise the RET instruction will not find the return address.

(13) Before we return, the calling routine's stack frame pointer must be
restored. See the discussion in (4).

4.1 Interfacing with Assemdly Langquage 31

(14) The next two lines show what Q/C expects to get back fram the function.
Since there is a return value, it must be loaded in the HL register pair and
the Z flag must be set to reflect whether the value is zero or nonzero. This
is the unmatched condition which returns NULL (zero).

Using Campiler Support Routines

One thing not illustrated by this example which can simplify your
asseambler language programming is the use of the cawpiler support routines
located in CRIMLIB.MAC. Virtually all the C operators are implemented as
calls to the support routines to perform the 16 bit operation.
operators expect their operand in HL and binary operators expect the left
operand in IE and the right operand in HL. The result is always returned in
HL.

To show how these routines are used, suppose you need to multiply the two
global integers xi and yi and put the result in zi. In C this would be
zi = xi * yi; and in assembler you write

IHLD xi? ;load left operand

XCHG imove it to DE

LHLD yi? :load right operand in HL

CALL rult ;do xi*yi with the library routine
SHLD zi? sthe result is returned in HL

Q/C Calling Conventions

Here is a summary of conventions you must follow when you write in
assembly language:

1. Arguments are always passed as 16 bit values. char arguments are sign
extended to 16 bits (the campiler support routine ?sxt can be used to
do this). Everything else is already 16 bits.

2. Each argument is pushed onto the stack in the order it is found, i.e.
fram left-to-right.

3. The value of the 8080/280 stack pointer (SP) and the Q/C constant
stack frame pointer (BC) must be preserved. If you change either SP
or BC, you must restore them before returning. The values in all
other registers may be destroyed.

Z80 users NOTE: The index register IX must also be preserved.

4. If there is a retwrn value, it must be in the HL register pair. The Z
flag must be set to indicate whether the return value is zero or
non-zero. If there is no return value, the contents of HL and the
setting of the Z flag are undefined (in other words you don't have to
set them in any particular way).

32 Advanced Q/C Topics

4.2 Writing ROMable Programs

When you write programs which will be loaded in RCM, there are several
things which must be done differently. The main difference is that everything
in the code segment (CSEG) will end up in ROM where it can't be changed, while
everything in the data segment (DSEG) will be in RAM where it won't be
initialized. Another difference is that ROM programs normally don't run under
CP/M so that you don't need or want to load the library routines which parse
the CP/M cammand line to build argc and argv and which reboot CP/M at the end

of the program.

You tell Q/C you want to generate ROMable code by campiling with the -S
campiler option. Following the ~S you specify the address that you want the
stack pointer (SP) initialized to. For example, if you are campiling the
program ROMPROG.C whose stack will start at ODFFFH, compile it with the
cammand

A>CC ROMPROG -SDFFF

When you specify this option, the campiler places all strings (for
example "abcd®) in the CSEG so they will be initialized. Of course this means
that you cannot change these strings which is normally allowed. Also, if you
want to set up tables you can define global variables and initialize them.
These will also go in the CSEG and also cannot be changed. All uninitialized
global variables will not get the default initialization and will be placed in
the DSEG so they will end up in RAM. You must not define any local static
variables because they won't be handled correctly.

If you will not be using the I/O functions or the memory allocator malloc
in the library, you do not have to include the standard header file QSTDIO.H
in your program. This will eliminate unneeded library variables from being
placed in the DSEG. If you do this, you may need to define the symbolic
constants TRUE and FALSE which normally are defined in QSTDIO.H.

If you do not want any DSEG variables brought in fram the library you
must rework the library module CRINTIME.MAC. Change the definition of the Q/C
"register” variables r?12-r?5? fran DEFS 2 to DEFS 0 and eliminate the
end-of-memory symbols defined immediately after them. Then assemble
CRINTIME.MAC and replace the module “crunti” in CRMIIB.REL. as described in
Apperdix E "Maintaining the Function Library”. If you make this change, be
sure you do not define any local variables as register.

4.3 Compiling a Large Program in Parts

When a program is large it may be convenient to campile parts of it
separately. With relocating assemblers like MBO and RMAC this works nicely.
Each part of the C program generates a .MAC or .ASM file which is assembled to
produce a relocatable .REL file. When you are ready to build the .CM file,
you simply link all the .REL files with L8O or LINK.

If one part of the program changes, you cawpile only that part and

4.3 Compiling a Large Program in Parts 33

assemble the camwpiler output to produce a new .REL file. This .REL file can
then be linked with the existing .REL files to create the new .CM file.

To make this concrete, suppose your program consists of two parts called
PART1.C and PART2.C, and that the relocatable files PART1.REL and PART2.REL
exist fram previous compilations and assemblies. Now if you decide to change
PART1.C and build a new version of your program which you call BIGPROG.CM,
you give the following cammands using MB8O:

A>CC PART1
Tcawpiler messacts)

A>MB0 =PART1
(assembler messages)

A>L8O PART1,PART2,CRUNLIB/S,BIGPROG/N/E
(linker messages)

If you are using RMAC this locks like:

A>CC PART1
{campiler messages)

A>RMAC PART1 $PZ-S
(assembler messages)

A>LINK BIGPROG=PART1 ,PART?2,CRUNLIB[S,$SZ]
(1inker messages) T

d

Q/C Function Library

The C language does not include any input or output. The designers
decided that all I/0 should be done using library functions. Also, while C
has many powerful operators, it does not support frequently used functions
such as finding the length of a string of characters, or copying one string to
another. A positive effect of these design decisions is that C is a fairly
small language that is relatively easy to implement. But even its designers
needed to do I/0, not to mention character handling!

So, very early in the history of C there came to be libraries of cammonly
used functions. As time passed, the folks at Bell labs found that different
groups were experiencing (unnecessary) problems due to small incampatibilities
in their function libraries. After a period of evolution, all oconcerned
agreed on what is called the "Standard I/O Library". This library has been
quite stable for several years, with small revisions when Version 7 of UNIX
appeared, and others with UNIX System III.

An important point to remember is that the Standard I/O Library now
exists in several environmments, including UNIX, UNIX lock-alike operating
systems, and even CP/M. Thus, C programs that rely only on the Standard I/O
Library are very portable.

5.1 Comparison with the Standard I/0 Library

The Q/C function library includes essentially all of the Standard I/O
Library and various system functions which provide access to CP/M disk I/0 and
other system facilities. Most of the system functions simulate UNIX system
calls. All functions which are not unique to CP/M are intended to be
identical to or campatible with their UNIX counterparts. Q/C function library
features include:

Similarities

- All buffered sequential I/0 functions
- Cammand line redirection of buffered 1/0
. = Autamatic opening of stdin, stdout, and stdexrr

- Autamatic closing of all buffered files at end of job when the program
is compiled with the redirection switch (-R) on

- The formatted print facility printf, f;ruxr_f and sprintf

- The formatted input facility scanf, fscanf and sscanf
- Memory allocation using malloc and free

35

36 Q/C Punction Library

Differences

- Randam I/0 (via seekr and tellr) is done only at the system level

- System level I/O must be done in multiples of 128 bytes

- System level I/0 cannot be redirected

- Redirection and fopen recognize the CP/M IST: device

- Newline characters are converted to carriage return/line feed (CR/LF)
pairs for cawpatibility with CP/M text files

- CP/M ECF ("2) is recognized as end-of-file

The last two differences are intended to allow the great majority of C
programs which process text files to work the same under CP/M and WNIX. If
you don't want any tampering done during file I/0, you can open the file for
binary I/0.

5.2 Overview of the Library

Table 5-1 groups the functions according to use, and gives a one line summary
for each cne. All functions except bdos, bdosl, mpm, setjmp, longimp, in and
ocut are written in C (ar in assembly language and C).

Console I/0

This group of functions is normally used when you want to cammmnicate
with the user at the console. Since these functions actually do their input
and output using stdin and stdout, they can be redirected to disk files from
the cammand line that runs the program. In this case the disk files will be
autamatically opened and closed, so you can do disk I/O with a minimm of
effort by using these functions. Of course, you're limited to one input and
one output file. However, in many cases this is all you need.

Character (Buffered) Disk I/O

Ihisgm;pofftmcticnstogetherwiﬂmtheprevia:sgroupnakeupm of
the Standard I/0 Library. These functions are normally used to do disk 1/0.
However, if you tell these functions to use stdin, stdout, or stderr the
console will be used unless you have redirected stdin or stdout.

These functions allow you to work with one character or line at a time.
All buffer management is done for you. Buffer space is allocated when the
file is opened, and buffers are autamatically filled or emptied when

necessary.

In addition, you have the option of opening files for normal (text) I/0
or binary I/0. If a file is opened for text I/0, CR/LF pairs are changed to
newline characters on input. The newline character is changed back to a CR/LF
pair on output. This means that CP/M files created by a normal text editor
can be manipulated by a Q/C program using the normal C convention where a line
is terminated by a newline character. Also, the CP/M EOF character “Z is
recognized in input files and is added to the end of output files when they

5.2 Overview of the Library 37

are clo_sed .

Files opened for binary I/0 have absolutely no tampering done. On input,
you get each character exactly as it was read. A CR/LF pair cames in as the
two characters '\r', '\n'. The CP/M BOF character "Z is returned as the
decimal value 26. You will not get the BOF indication until there is no more
data to read. Also, no sign extension is done. Thus, if the character OxFF
is read, it will be returned as the decimal value 255 rather than -1 (which is
ECF). On output, each character is written exactly as given to the output
function. When you close the file, a “Z is not added.

Examples of uses for binary I/O are reading the input for a file dump
routine and writing escape sequences to a printer to control special features

such as graphics.

Files used by this group of functions are identified by a file pointer
(fp) which is defined like this

FILE *fp;

FIOE is defined in the file QSTDIO.H which should be included in all Q/C
programs. When you open a file, you get back a file pointer for that file.
All the other functions in this group are given this file pointer as an
argument to identify the file.

Low-level (System) Disk I/O

These functions, which simuilate UNIX system calls, give you access to the
CP/M sequential and randam disk I/O routines. You can read or write one or
more CP/M 128-byte logical records with minimal overhead by using these
functions. You must provide the buffer space to hold all the records being
read or written, but the library functions will maintain the CP/M file control
block (fcb) for each file.

These routines are used only in special cases, such as file copy
programs, where efficiency is the most important consideration. You lose
portability when you use these functions, and your program has to do its own
buffer management.

Notice that I/O at this level can not be redirected as it can under WNIX.
If you try to use a file descriptor of 0 (stdin under INIX), 1 (stdout), or 2
(stderr) you will get an error return value.

Files used by the functions in this group are identified by a file
descriptor (fd) which is simply a small integer. When you open a file, you
get back a file descriptor for the file. When you call any of the other
functions in this group, you give them the file descriptor as an argument to
tell them which file to use.

38 Q/C Punction Library

CONSOLE INPUT/CUTPUT

getchar() Read a character fram the standard input file
getkey() Check for keyboard input

gets() Read a string fram the standard input file
gprint£() Short version of printf

print£() Write formatted print to the standard output file
putchar() Write a character to the standard output file
puts() Write a string to the standard output file
scanf() Read formatted data fram the standard input file
CHARACTER (BUFFERED) INPUT/O0UTPUT

clearerr() Clear the error indicator for a file
fclose() Close a file

feof() Check whether end-of-file has been found
ferror() Check whether an I/0 error has occurred
fflush() Flush an output file buffer

fgets() Read a string from a file

fileno() Get the internal file descriptor number
fopen() Open a file

fprint£() Write formatted output to a file

fputs() Write a string to a file

fread() Read data items fraom a file

facanf() Read formatted data fram a file

furite() Write data items to a file

getc() Read a character fram a file

getw() Read a word fram a file

putc() Write a character to a file

patw() Write a word to a file

setbeize() Set the size of a user-supplied buffer
setbuf() Provide a user-supplied buffer

ungetc() Push a character back onto an input file
LOW-1EVEL (SYSTEM) INPUT/OUTPUT

close() Close a file

creat() Create a new file or reuse an existing file
open() Open an existing file

read() Read a file in multiples of 128 bytes
seekr() Change read/write pointer

tellr() Report read/write pointer

write() Write a file in multiples of 128 bytes
CHARACTER TESTING

isalmm() Is the character a letter or a number?
isalpha() ees a letter?

isascii() ««+ an ASCII character

isontrl() ..+ @ control character

isdigit() «ee A number?

islower() «e. @ lower case letter?

isprint() ««. printable?

ispunct() ... punctuation?

isspace() «+. white gpace?

isupper() .«+ an upper case letter?

Table 5-1. Q/C Function Library

5.2

Overview of the Library

STRING AND CHARACTER HANDLING

Convert a numeric string to an integer

Convert an upper case letter to lower case

Convert a lower case letter to upper case

Find the first occurrence of a character in a string
Convert an integer to a string in various bases

Find the last occurrence of a character in a string
Format a string

Get formatted data fram a string

Apperd one string to the end of another string
Campare two strings

Copy one string into another string

Calculate the length of a string

Copy one string into another string

Append at most n characters fram one string to another
Campare at most n characters in two strings

Copy exactly n characters fram one string to another
Convert a character to lower case

Convert a character to upper case

Do a CP/M system call and return a double byte
Do a CP/M system call and return a single byte
Close the files and return to CP/M -

Input a byte fram an 8080/Z80 port

Output a byte to an 8080/Z80 port

Build a CP/M file control block

Do an MP/M system call

Delete a file fram the CP/M directory

MEMORY ALLOCATION

calloc()
free()
malloc()
maxsbrk()
moat()
shrk()

MISCELLANEOUS

imax()
imin()
longjmp()
peek()
poke()
set jmp()
wpeek()
wpake()

Allocate and zero array space

Return space to memory allocator for reuse
Allocate a block of memory space which can be freed
Report memory space available from sbrk

Set the size of the stack reserve space
Permanently allocate a block of memory space

Find the maximum of two integers
Find the minimum of two integers
Do a non-local jump

Look at a byte of memory
Change a byte of memory

Set up for a non—-local jump
Look at a word of memory
Change a word of memory

Table 5-1. Q/C Function Library

39

40 Q/C Punction Library

System Functions

This group of functions provides you with various capabilities for
interacting directly with CP/M or MP/M and the hardware. You can make system
calls, build file control blocks, delete files fram disk and do I/0 to the
8080/280 ports.

Memory Allocation

’mesef\mctimsprcvideasinplemsmryallocatim scheme. Memory can be
allocated by calling malloc or »iloc and later returned for reuse by calling
free. Ifyoudon'twanttheoverr‘eadassociatedwiththisschere,youcanget
memory by calling stxk. Your executable program will be smaller, but memory
obtained this way cannot be freed for reuse.

Allthespacebetweenthetcpofﬂieprogranarxiﬂmestad(is available
for allocation except for a buffer zone just below the stack. This buffer
zone,calledthennat,ptotectsyourprogramfranhavingthestack grow down
into it. This is not foolproof, of course, becausethestadcnaygrwlarger
than the moat. The moat is originally set to 1000 bytes, but this can be
changed with the moat function.

5.3nmtimDeaa'.i.pr_ian

merestofthischapterdescribeeeachofthefmctimsinthelibrary
in a standard format. The descriptions are arranged alphabetically by
function name. Other than a few closely related functions, each function
appears on a separate page. Qxlythesecf_i.amﬂ\atareneededappear in the
descriptions.

mefomatusedforeachfmctimdescriptimisshamonthenextpage.

Sample Function Descriptions Sample 41

Name
function name - one line description of the function

Synopsis
Defines the calling sequence, the arguments and indicates the type of the

return value if it is samething other than int.

Description
Describes what the function does.

Returns
Tells what the return values are. Symbolic constants (for example, NULL
and BOF) are defined in the file QSTDIO.H which should be included in

every program.

Example (optional)
Gives an example of the use of this function.

Remarks (optional)
Discusses any points of interest or potential problems in using " this
function.

Portability (optional)
Identifies those functions which are not in the Standard I/O Library.
Also points out functions which are peculiar to this implementation for
CP/M or which differ fram their UNIX counterpart. Notice that if you use
mlythoseftmtxonsvh:.charem the Standard I/0 Library, you will
minimize the effort of moving your program to ancther standard
implementation of C.

See Also (optional)
Lists related functions which you might want to lock at.

Bugs (optional)
Tells about serious problems with the way this function works.

Name ,
atoi - convert a mumeric string to an integer

Synopeis
atoi(s)
char *s;

Description
Converts a string containing a signed decimal mumber in the range -32768
to +32767 to its integer equivalent. Leading white space will be skipped,
and a + or - sign may precede the number. atoi will continue converting
until a character other than '0' through '9' is found.

Returns
The value returned is the integer equivalent of the number in s.

Example
Several examples are

atoi("123") returns 123
atoi(" -5") returns -5
atoi("l2abc®) returns 12
atoi("abc") returns O
atoi("123456") returns an undefined integer
Remarks '
No check is made to determine that the mumber will actually fit in an

integer.

See Also
itob

bdos/bdosl Function Descriptions bdos/bdosl 43

Name
bdos - do a CP/M system call and return a double byte value
bdosl - do a CP/M system call and return a single byte value

Synopsis
bdos(c, de)
int ¢, de:

bdosl(c, de)
int ¢, de:
2
Description
Do a CP/M bdos call to location 5H using ¢ as the function mumber and de
(when needed) as the argument. c¢ is loaded in register C and de is loaded
in the register pair L[E.

Returns
bdos returns an integer which is the double byte value placed in register
HL by CP/M. bdosl returns an integer whose low-order byte is the single
byte value placed in register A by CP/M and whose high-order byte is zero.

Example
If you want to stop a C program immediately without any of the usual
cleanup done by exit(), you can warm bxot CP/M using system call zero by
saying :

bdos(0, 0);

Remarks
If you are using CP/M, the function bdos can be used for all calls to CP/M
and the return value will be correct. If you are using a CP/M—campatible
system, you should call the the appropriate function depending on whether
you expect a single or double byte return value. See Appendix F for more
information.

If you need to do disk I/O yourself for any reason, makfcb will build a
CP/M file control block (fcb) for you.

Portability
These functions are not in the Standard I/O Library.

See Also
makfcb, mpm

Bugs
Because Q/C pushes the arguments to a function on the stack in the same
order it finds them, you must always include the argument de even if it is
not used (just say bdos(l, 0) for example). If you don't, bdos will not
find the first argument and exciting things may happen. Always be
CAUTIOUS when using this function.

4 calloc Function Descriptions calloc

Name
char *calloc - allocate and zero array space

Synopeis
calloc(nelem, elemsize)
int nelem, elemsize:

Description
Allocates memory space for an array of nelem elements where elemsize is
the size of an element. The space allocated is initialized to zero.

Returns
A pointer to the beginning of the space allocated or NULL if there is not

enough space available.

Example
Suppose you need a array of 100 structures and you don't want the space

included in your .OM file. Instead define a pointer to the structure and
get the space from calloc:

struct xyz *a of xyz;

if ((a_of xyz = calloc(100, sizeof(struct xyz))) == NULL)
printf("Can't allocate a_of xyz\n"):

Remarks
If you store outside the space given to you by calloc you can cause all
sorts of serious errors including crashing CP/M. Also, you can cause very
mysterious errors if you don't check to see that you really got the space
you requested. Since calloc returns NULL which is zero, your pointer to
the new memory will contain zero. Then when you start storing into your
block of memory you will actually be writing over CP/M information in low

memory.

See Also
free, malloc

Name
close - close a file

is
close(fd)
int £d4;

Description
Closes the file associated with file descriptor fd. This frees the file
descriptor for use by another file. If the file is open for output and no
errors have occurred while writing the file, a CP/M close will be done to
record the file permanently in the file directory.

Returns
The return value is O if the close is successful or -1 if the file is not
open or CP/M can't close it.

Example
Suppose the name of the output file is in the array outfile, and. that
outfd contains the file descriptor given to this file when it was opened.
Then you can close the file and test for a bad close like this

char outfile[15];
int outfd;
if (close(outfd) == -1) {
printf(“Can't close: 3s\n", outfile);

exit(1l);
Portability
This function is not in the Standard I/O Library. It simulates a WNIX
system call.
See Also

open, creat

46 chlower/clapper Function Descriptions chlower/chupper

Name
d\laer-cawertan@ercaselettertolwercase
clmpper-cawertalwercaselettertouppercase

Synopeis
chlower(c)
int c;

chupper(c)
int c;

Description
If ¢ is an upper case letter 'A' through 'Z', chlower will convert it to
its lower case form ‘'a’ throuwgh 'z'.

If ¢ is a lower case letter 'a' through 'z', chapper will convert it to
its upper case form ‘A' through ‘zZ°.

Returns
chlower returns the lower case form of ¢ when c is a letter ard «

otherwise.

chupper returns the upper case form of ¢ when ¢ is a letter and ¢
otherwise.

Example
Say you have thefilenane"copy.c”inanarraypoirrtedtobypﬂleand
you want to convert it to upper case. The following piece of code

for(; *pfile; +Hpfile)
*pfile = chupper(*pfile);

will convert it to "COPY.C". The period in the middle of the name is not
affected.

Remarks
These functions were added totheQ/CI.ibra:ybecausetheStandardI/O
Library functions tolower and toupper will change some non-alphabetic
characters as well as the ones desired.

Portability
'IheseftmctimsaremtintheStarﬂardI/OI.ibraxy.

See Also
tolower, toupper

clearerr Function Descriptions Clearerr 47

Name
" clearerr - clear the error indicator for a file

Synopsis
clearerr(fp)
FILE *fp;

Description
Clears the error flag for the file pointed to by fp.

Returns
No return value.

Remarks
Normally, if an error occurs the error flag remains set until the file
is closed and all further calls to the I/O functions will be ignored.
If there is same I/0 which must be done, you can reset the error flag
with this function.

See Also
ferror

48

creat Function Descriptions creat

Name
Creat - create a new file or reuse an existing file

Synopsis
creat(filename, pmode)
char *filename:
int pmode;

Description

Opens the file named by filename for use. If the file does not exist,
it is created. If it does exist, it is deleted and then recreated
which effectively discards the previous contents of the file. pmode
is the protection mode for a new file under UNIX. It has no meaning
in Q/C and is included only for campatibility. Your call will
nomally be creat(filename, 0644). If your program is run under UNIX,
the pmode of 0644 says that you can read or write this file, but
everyone else can only read it.

Returns
A file descriptor (int £d) if successful or -1 if not.

Example
To open the file named "PROGRAM.C" for output (or reuse the file if it

already exists) say
int outfd;
outfd = creat("PROGRAM.C", 0644);

outfd is the file descriptor which will tell write and close which
file to work with.

Portability
This function is not in the Standard I/0 Library. It simulates a UNIX
system call.

See Also
open, close

exit/ exit Function Descriptions exit/ exit 49

Name
exit - close all open files and return to CP/M
_exit - return immediately to CP/M

Synopsis
exit(n)
int n;

_exit()
Description

exit closes any buffered files which are open for output and reboots
CP/M. If n is not zero, this is considered to be an error
termination. In this case, exit will also delete the CP/M submit file
A:$$$.SUB if present. This will terminate the submit stream which ran
this program.

;exi.t does a CP/M warm boot by calling bdos function zero. No other
action is taken.

Returns
Does not return.

Example
The main procedure in Q/C ends with the statement

exit(nerrors);

where nerrors is the number of errors the campiler found in your C
program. If you are using a submit file to campile and assemble your
program, it will be deleted if the compile is unsuccessful. ‘This
prevents the assembler fram trying to assemble a bad file.

Portability
These functions are not in the Standard I/O Library. They simulate
UNIX system calls.

50

fclose Function Descriptions fclose

Name

fclose - close a file

Synopseis

fclose(fp)
FILE *fp;

Description

Closes the file pointed to by fp thus freeing the file pointer for use
by another file. If the file is open for output, a CP/M BOF (“Z) will
be added, any characters in the buffer will be written, and a CP/M
close will be done to ake the file permanent. If the file was open
for binary output, the CP/M ECF character will not be added. If the
last 128 byte sector is not filled, whatever is currently in the
buffer will be written on the file.

Returns

Returns ECF if the close is not successful. The return value for a
successful close is not specified, so you should oanly check for ECF.

Example

To close the file pointed to by cutfp say
fclose(outfp);

See Also

fopen, f£flush

feof Function Descriptions feof 51

Name
feof - check whether end-of-file has been found

is
feof(fp)
FILE *fp;
Description
Checks whether end-of-file has been read on the file pointed to by fp.
Returns
Returns non-zero if end-of-file has been read and zero otherwise.
Example
To check whether end-of-file has been read on the file pointed to by
input say
FILE *input;
if (feof(input)) {
{* do end-of-file processing */
Remarks

The buffered I/0 functions all return BOF to indicate an error
condition. This means that input functions such as getc return the
same value for an error and for end-of-file. You can determine which
cordition actually occurred by calling feof and ferror.

See Also
ferror

52

Name
ferror - check whether an I/O error has occurred

Synopsis
ferror(fp)
FILE *fp;

Description
Qmeckswhetheranerrorhasoccurredonthefilepointedtobyfp.

Returns
Returnsrm—zeroifanerrorhasoccurredandzerootherwise.

FILE *output;

if (ferror(output))
{* do error processing */

Remarks
'Iheerrorcorﬂitioncanbesetforanunberofreaeonsbesides actual
hardware problems. For example, if the file was not Opened
successfully, or if an attempt was made to write an input file or read
an output file, the error flag will be set.

See Also
feof, fopen

Name
fflush - flush an output file buffer

is
fflush(fp)
FILE *fp;

Description
If the file pointed to by fp is open for output, any data in the
buffer will be written. If the last 128 byte sector is not full,
whatever is alreac in the buffer is written. If the file is not open
for output, this is considered an error and nothing will be written.

Returns
Returns ECF if an error occurs.

Example
To write the contents of the current buffer for the file pointed to by

outfp say
fflush(outfp);

See Also
fopen, fclose

54 fgets Function Descriptions fgets

Name
fgets - read a string fram a file

Synopsis
char *fgets(s, n, fp)
char *g;
int n;
FILE *fp;

Description
Readsalinefranthefilepointedtobyfpintoﬂlestrings. A maximm
of n -1 characters will be moved. Any characters remaining in the line
will be available for the next call. If the file is not open for binary
1/0, a CR/LF pair is converted to a newline character ‘\n'.

When the file is open for binary I/0, end-of-file is reported only at the
physical end of the file (no more sectors on the disk to read). If the
file is open for normal I/0, reading a CP/M BOF ("2) will also be
considered end-of-file. When end—of-file is detected part vay through a
line read from a disk file, the partial line will be returned. The next :
call to fgets will report the end-of-file.

If the file is not open for input, it is considered an error and nothing
will be put in s.

Returns
The value returned is s or NULL upon end-of-file or error.

Example
I1f youwanttoreadlinesfrcmeithertheconsoleoradiskfiletyusing

redirection use the following code

#define MAXLINE 81 /* allow for '\0' */
char buffer[MAXLINE];

V;l:u:.le (fgets(buffer, MAXLINE, stdin) l= NULL) {
{* do samething */

Remarks
If stdin is being read fram the console, CP/M function 10 (Read OConsole
Buffer) is used. This means that all the usual CP/M editing characters
will work. However, the only time end-of-file will be recognized is if a
CP/M ECF (“2) is the first character typed on the line.

See Also
gets

Name
fileno - get the internal file descriptor number

Synopsis
fileno(fp)
FILE *fp;

Description
Gets the file descriptor mumber which the buffered 1/0 functions use when
they call the system I/O functions to do the actual I/0. This is the
number returned by the system I/0 function open.

Returns
The internal file descriptor number.

Remarks
This function is in the Standard I/O Library and is included more for
campleteness rather than any great usefulness.

See Also
open

56 fopen chtJ.mDeecnpt.xms fopen

Name
fopen - open a file

Synopsis
FILE *fopen(filename, mode)
char *filename, *mode;

Description
Opens the file given by filename for buffered I/0. Ffilename is a CP/M
file name which may include a drive (for example B:INPUT.DAT) or you can
specify "lst:" to write to the printer. mode is "r" to read, "w" to
write, or "a" to append to the file. "a" will create the file if it does
not exist. Mode specifications may be in upper or lower case.

Normally the file will be treated as CP/M text meaning newline characters
will be converted to carriage return/line feed (CR/LF) pairs, and “Z will
be treated as end-of-file. For a camplete description of the tampering
being done, see getc, putc, and fclose. If you want to do I/O without any
tampering, open the file for binary I/O by specifying a mode of "rb", "wb"
x llab".

a text file in append mode ("a") positions the file at the CP/M
end-of-file ("Z) so the first character written overwrites the “3.
Opening a binary file ("ab") positions the file at the beginning of the
next CP/M sector following the last sector already written.

The open will fail if:
(1) filename is not a valid CP/M file name or "lst:" or if filename
is opened for reading and can't be found.
(2) m is Ibt llrll' "w"’ lla“' llrbll' llm" w llabll.
(3) The maximm number of buffered files is already open.
Returns

The value returned is a file pointer (FILE *fp) for a successful open or
NULL if any errors are found.

Example
To open the file "STDSUB.LIB" for input and check the result say
FILE *1libfp;
if ((libfp = fopen("STDSUB.LIB", "r")) == NULL)
/* print error message */
Remarks

You can supply your own buffer by calling setbuf. If you don't, buffer
space is obtained by calling sbrk the first time the the file is read or
written. This means that you only use buffer space for the files which
are open. Q/C comes with the library set up to support 10 files open at
once, but there is very little space penalty for increasing this. See the
appendix "Maintaining the Function Library" to change this limit.
See Also
fclose, setbuf, setbsize

fprintf Function Descriptions fprintf 57

Name
fprintf - write formatted output to a file
Synopsis
fprintf(fp, format, argl, arg2, ...)
FILE *fp;
char *format;
Description
'Iheargunentsazglargz.. arefomattedaccordmgtothe

specifications given in format and written to the file with file pointer
fp. This works as described in Kernighan & Ritchie with the exception
that none of the specifications for long and float are available.

If the file is not open for output, nothing will be written.

Returns
No return value.

Example
The function cantopen which reports the name of a file which can't be
cpened and then terminates the run can be written like this

cantopen(filename)

char *fi]{.ename;
fprintf(stderr, "Can't open: %s\n", filename);
?xit(O):

Remarks
As the example above shows, this function can be used to print error
messages which must appear on the console. Even if stdout is redirected
to a file, stderr will always be the console.

See Also
printf, gprintf, sprintf, puts, fputs

Name
fputs - write a string to a file

Synopseis
prtS(SJ fp)
char *s;
FILE *fp;

Description
Writes the string s to the file pointed to by fp. If the file is open for
normal (text) I/O, a newline '\n' will be expanded to a CR/LF pair to meet
the CP/M text convention. If it is open for binary I/0, every character
in 8 will be written exactly as received.

If the file is not open for output, it is an error and nothing will be
written.

Returns
No return value.

Example
You can write the text line "This sentence no verb.\n" to a file in either
of these two ways ,

fputs("This sentence no verb.\n", outfile);

or
fputs("This sentence", outfile);
fputs(" no", outfile);
fputs(” verb.\n", outfile);
Remarks

Noticeifyoudomtendalinevdthanewlinecharacter,nothingwill be
amerﬂedsoyoucanh:ildupalinewithseveralcallstofp:ts.

See Also
puts

fread Function Descriptions fread 59

Name
fread - read data items fram a file

Synopsis
fread(ptr, size, nitems, fp)
int nitems
FILE *fp;

Description
Reads nitems of data each with length size from the file associated with
file pointer fp. and places them in the area pointed to by ptr. If the
file is open for text I/O the CR/LF pairs are changed to newline
characters and end-of-file is recognized when a CP/M BOF (°2) is
encountered. If the file is opened for binary I/O0 you get everything
unchanged.

If the file is not open for input, it is an error and nothing is read.

Returns :
The return value is the number of items read or zero at end-of-file or if
an error occurs.

Remarks
Usually, fread is used to read data written by fwrite. No conversion is
done on input. This means, for example, that int data must be recorded as
two byte binary integers on the file. If you want to read text files
(ASCII data) and do conversions you should use fscanf. fgets should be
used if you want to read text lines which end with carriage return/line
feed pairs.)

See Also
fgets, fscanf, fwrite, read

Bugs
Since CP/M does not record the exact end-of-file, files opened for binary
I/0 will not get an end-of-file indication until the end of the last
sector is read. This means your program will need a special data item
which it can recognize as end-of-file as the last item in the data file.

60 free Function Descriptions free

Name
free -~ return space to the memory allocator for re-use

Synopsis
free(p)
char *p;

Description
The space pointed to by p is returned to the pool of free memory which can
be allocated by the functions calloc and malloc. p must point to an area
which was originally uotained fram calloc or malloc or the integrity of
the entire system is threatened.

Returns
No return value.

Example
Suppose you have obtained space for a table from malloc. When the space
1snolongerneeded1t<nnbereturnedforsaneotherusel.ﬂ<ethls..

char *table; /* pointer to the table */
table = malloc(SIZE); /* get the space for table */

free(table); /* space no longer needed */

See Also
calloc, malloc

facanf Function Descriptions fscanf 61

Name
fscanf - read formatted data from a file

is
fscanf(fp, format, argl, arg2, ...)
FILE *fp;
char *format;

Description
Reads characters fram the file pointed to by fp, interprets them according
to the specifications given in format, and stores them in the arguments
argl, arg2, etc. This works as described in Kernighan & Ritchie with the
following exceptions:

(1) None of the specifications for long and float are available.

(2) The WNIX V7 use of the "h" conversion is followed. This treats "h" as
a modifier of other integer conversions, so the valid uses are %hd,
o, and ¥hx. :

(3) Also, the WNIX V7 use of the "c" conversion is followed. This means
that %c puts a single character in the matching argument which must be
a pointer to character. However, ®nc puts n characters into the
matching argument which must be a pointer to an array of characters.

Returns
The value returned is the mumber of format items successfully matched and
assigned to the arguments. BEOF is returned upon end-of-file or error.

Example
You can read a person's name fram a file like this:

char firstname[10], initial[2], lastname[20];
fscanf(fp, "“%s 81ls. ¥s8", firstname, initial, lastname);

With the input "Brian W. Kernighan", firstname will ocontain "Brian",
initial will contain "W", and lastname will contain "Kernighan".

Remarks
The arguments to fecanf must be pointers or you will not get back the
values assigned. If no items are matched, the ocount returned is =zero
which is different from BOF. If end-of-file is found in the middle of the
format, the return value is the number of items matched to this point.
The next call to fscanf will return EOF.

See Also
fgets, gets, scanf, sscanf

Bugs
Doesn't implement the WNIX V7 $[...] conversion.

62 furite Function Descriptions fwrite
Name
fwrite - write data items to a file
Synopsis
fwrite(ptr, size, nitems, fp)
int nitems
FILE *fp;
Description
Writes nitems of data each with length size fram the area pointed to by
ptr to the file associated with file pointer fp. If the file is open for
text I/O the newline characters are changed to CR/LF pairs and a CP/M EOF
(“2) is added when the file is closed. If the file is opened for binary
1/0 everything is written unchanged.
If the file is not open for output, it is an error and nothing is written.
Returns
The return value is the number of items actually written or zero if an
error occurs.
Remarks
fwrite writes the data with no conversion so int data is recorded as
binary integers on the output file. If you want to write text files
(ASCII data) and do conversions you should use fprintf. fputs should be
used if you want to write text lines which end with carriage return/line
feed pairs.
See Also
fputs, fread, fscanf, write
Bugs

Since CP/M does not record the exact end-of-file, files opened for binary
1/0 will have garbage in the last CP/M sector after the final data item.
This means your program will need to write a special item after the last
data item which can be recognized as end-of-file when the file is read
M m.

getc Function Descriptions getc 63

Name
getc - read a character fram a file

Synopsis
getc(£fp)
FILE *fp;

Description

Reads the next character from the file pointed to by fp. CR/LF pairs are
changed to the newline character '\n' and CP/M ECF ("Z) is recognized as
end-of-file when the :ile was opened for normal (text) input. If the file
is open for binary input, all characters are returned 3just as they are
read. They are not signmextended, so the character with value OxFF can be
distinguished fram BEOF. End-of-file will be reported only when there is
no more data to read.

If the file is not open for input, it is an error and nothing is read.

Returns
The return value is the character read or ECF.

Example
To read a single character fram the file pointed to by fp and test for
end-of-file say

int ¢

1f ((c = getc(£fp)) 1= ECF)
/* do samething */

Notice that ¢ should be defined as int to be sure that the special return
value ECF can be distinguished fram any legitimate character which might
be read fram the file.

Remarks

Once end-of-file has been reached or an error has occurred, all subsequent
calls will return BCOF. Notice that if you do not supply your omn file
buffer by calling setbuf, the first call to getc will cause it to get
buffer space fram the memory allocator sbrk. If no space is available,
getc will return ECF to indicate the error. Since BOF can indicate
reading end-of-file oranerror,younmstusethehbraryfmx:tmnsfeof
and ferror to distinguish which meaning is intended.

See Also
feof, ferror, getchar

64 getchar Function Descriptions getchar

Name
getchar - read a character from the standard input file
Synopsis
getchar()
Description
Readsthenextcharacterﬁanthestarﬂardinpztfilestdin.
Returns
The value returned is the character read or ECF.
Example
A classic example of the use of getchar fram Kernighan & Ritchie is
int c;
while ((c = getchar()) != ECF)

putchar(c);

This copies the standard input file to the standard output file one -
character at a time until end-of-file is reached.

Remarks
EOF is returned when a CP/M end-of-file (“Z which is '\32') is read. If
stdin has been redirected to a disk file, EOF will also be returned when
the physical end of a disk file is reached.

If stdin is assigned to the console (which is the default), a “°C typed as
the first character on the line will warm boot CP/M.

menc}oosingbetweengetdnrandgetcmticet}atgetdarletsyoureada
disk file without declaring a file pointer or explicitly opening the file.
you run the program. On the other hand, you can only specify one input
file this way.

See Also
feof, ferror, getc, getkey

getkey Function Descriptions getkey 65

Name
getkey - check for keyboard input

Synopsis
getkey()

Description
Checks to see if a console key has been pressed and gets the character if
one is available.

Returns
The character typed or BCOF if no character is available.

Example
This function provides a good way to get a different seed value for a
randan number gdgenerator every time a program is run. Simply ask a
question and then increment the seed until the user respords.

int seed, answer;
seed = 1;
print£("Do you want instructions (y or n)?");
while ((answer = getkey()) == ECF)
++seed;

The while loop will check to see if a key was pressed and store the result
in anewer. As long as there is no response, getkey will return BEOF and
seed will be incremented. When a key is pressed, the loop will end.
answer will have the response, and seed will be set to same randam value.

Remarks
The advantage of this function over other console input functions such as
getchar is that you get control back if no character has been typed. Any
other function will wait until a character is ready. Notice that getkey
cannot be redirected.

Portability
This function is not part of the Standard I/O Library.

See Also
getchar, getc

66 gets Function Descriptions gets

Name
gets -~ read a string fram the standard input file

Synopeis
char *gets(s)
char *s;

Description
Reads a line fram stdin into the string s. A carriage return/line feed
(CR/LF) cambination is considered the end of the line. The CR/LF is
discarded and a null character '\0' is appended to conform to C

conventions.

Returns
The value returned is s or NULL upon end-of-file or error.

Remarks
If stdin is assigned to the console, the CP/M Read Console Buffer function
(#10) is used. This means that all of the usual CP/M editing characters
will work just as if you were typing a line to CP/M. In this case, the
only way that an end-of-file will be recognized is if the first character
typed on the line is a “Z.

See Also
fgets

Bugs
Since you can't specify the maximum length of the string to be read, it is
possible to overwrite whatever follows s. gets has no way of knowing how
big s was defined so it just stuffs in everything up to the CR/LF. If
there is a possibility of reading a line which is too long, you can use
fgets to read stdin like this

fgets(s, MAXSIZE, stdin);
and limit the number of characters read to MAXSIZE -~ 1.

getw Function Descriptions getw 67

Name
getw - read a word fram a file

Synopeis
getw(fp)
FILE *fp;

Description
Reads the next word from the file pointed to by fp. The word is built up
by two successive calls to getc so the same actions described there for
text vs. binary files apply. The word is read low byte first and then

high byte.
If the file is not open for input, it is an error and nothing is read.

Returns
The return value is the word read or ECF on end-of-file or error. Since
EOF is just an integer value which may be returned normally you must call
feof and ferror in this case to determine what actually happened. -

Example : ‘
To read a single word fram the file pointed to by fp and test for

end-of-file say
int word;

if ((word = getw(fp)) == ECOF && feof(fp))
print£("End of file reached\n");

See Also

68 in Function Descriptions in

Name
in - input a byte fram an 8080/Z80 port

Synopsis
in(port)
int port;

Description
Gets a byte fram the port indicated by port.

Returns :
The return value is the byte read zero-extended to convert it to an
integer.

Example
If port 32 is connected to same interesting device you can get the value
currently available by saying:

#define [EVICE 32
unsigned value;

value = in(DEVICE);

Remarks
This function does not use any self-modifying code so it can be used in a
program which is placed in RCM. The 280 version uses the 280 instruction
"IN A,(C)" so the port mmber is loaded in register C. The 8080 version
builds the instruction "IN port" on the stack so that "port" does not need
to be put into the function's code.

Portability
This function is not part of the Standard I/0 Library. It is included
only to provide a C interface to the 8080/280 hardware.

See Also
ot

immx/imin Function Descriptions imnx/imin 69

Name
imax - find the maximm of two numbers
imin - find the minimum of two rmumbers

Synopsis
imax(m, n)
int m, n;

imin(m, n)
int m, n;

Description
imax/imin determines the maximm/minimum of the two numbers m and n by
doing a signed camparison.

Returns
The value returned by imax/imin is the larger/smaller of m and n.

Example
If a contains -20 and b contains 15 then the statement

c = imax(a, b);
will set c to 15.

Portability
These functions are not in the Standard I/O Library.

70 index F\mumneacnpu:ns index

Name
irﬁex-lodtforagivmcharacterinastring

Synopeis
char *imeX(8, C)

char *s, c;

Description
Lodmforthefirstoccurrenceofthecharactercinthestrings.

Returns
'mevaluereturnedisapon&ertothefirstoccurrenceofcinsor NULL

if c is not found in s.

Example
Progransvhichreadaninp:tﬁleandprodmeanmtputﬁleoftenusethe
input file name with a different file extension as the output file name.
A text formatter reading filename.TXT as the input might use filename.PRN
as the output when no output file name is specified. The following code
ﬁ'agmmrtcopiestheinpxtfilenanetothewtputﬁlenmeandlodcs for :
a period in the name. If it finds one, it copies PRN after the period.
Otherwise, it adds .PRN (with the period) to the end of the name.

char infile(15], outfile[15], *p;

strcpy(outfile, infile); /* start with input filename */
if ((p = index(outfile, '.')) l= NULL) /* loock for period */

strcpy(p + 1, "PRN"); /* add "TXI" after period */
else /* no period found */

strcat(outfile, ".PRN");

See also
rindex

is Q/C Library Function Descriptions is st

Name
isalmum -~ is the character a letter or a number?
isalpha - ... a letter?
isascii - ... an ASCII character

isontrl - ... a ocontrol character

isdigit - ... a mmber?
islower - ... a lower case letter?
isprint - ... printable?

1spunct .+ punctuation?
:Lsspace- ... white space?

isupper - ... an upper case letter?
Synopsis

is (c)
int c;

Description

Each of these routines is called with an integer value and a test is done

to see if it belongs to the specified class. isascii is defined for all

integers, but the other tests are defined only if isascii is true, or for

isalmum - Is the character a letter 'a’ through 'z' or 'A' through 'Z', or
a nunber 'O' through '9'?

isalpha - Is the character a letter ‘'a’ through 'z' or 'A' throuwgh 'Z'?

isascii - Is the character an ASCII character, which means the numeric
value of the character is in the range '\0' through '\177'?

iscntrl - Is the character a control character, which means its numeric
value is in the range '\O' through '\37' or is '\177'? (cP/M
would call these “@ through ° and [EL or RUBOUT.)

isdigit - Is the character a mumber '0' through '9?

islower - Is the character a lower case letter 'a' through 'z'?

1spr1nt-Isthednracter;tintable? This means will you see it if you
try to print it. A blank is considered printable.

ispunct - Is the character punctuation? This means is it one of the
characters !"#$%&' ()*+,-./:;<>2@[\]"_ (I}~

isspace - Is the character white space, which means one of the characters
blank (' '), newline ('\n'), carriage return ('\r'), formfeed
(*\f'), or tab ('\t')?

isupper - Is the character an upper case letter 'A' through 'Z'?

Returns
Non-zero if true or zero if false.

Example
To test whether the string symname contains a valid Q/C name (meaning the
first character is alphabetic or an underscore) say

if (isalpha(symname[0]) || symname[0] == * ')

72 itob Function Descriptions itob

Name
itob - convert an integer to a string in various bases

Synopsis
char *itob(n, s, b)
int n, b;
char *sg;

Description
Converts the integer n to its ASCII representation in base b and places it
in string s. n can be signed or unsigned. The base can be -10 for signed
decimal or any value fram 2 to 36 for unsigned numbers. For bases greater
than 10, capital letters starting with A are used to represent digits
greater than 10.

Returns
The value returned is a pointer to s.

Example
Sane examples of using itob are:
itob(6, s, 2) puts "110"
itob(6, s, 10) pats “"6"
itob(35, s, 8) puts "43"

itob(35, s, 36) pats "2"
itob(65535, s, 10) puts "65535"
itob(65535, s, -10) puts "-1"
itob(65535, s, 16) puts "FFFF"

EEEEEEE

To print the signed decimal representation of n on stdout say
puts(itob(n, s, -10));

Remarks
The string s must be long encugh to hold the longest number you expect
plus one position for the end-of-string character '\0'. If you specify
signed decimal (b == -10), be sure to allow one additional position for a
negative sign. For the usual cases (bases 8, 10, and 16), you should use

sprintf(), as it is portable.
Portability
itob is not in the Standard I/O Library.

See also
atoi, sprintf

Name
longjmp - do a non-local jump

Synopsis
tinclude <setjmp.h>
longjmp(env, val)
Jmp buf env;
int val;

Description
longjmp causes a jwrp to the location where the function setjmp was last
called with the argument enw. The previous enviromment which is saved in
env is restored amd the integer val is sent to setjmp as its return value.

Returns

This function does not return. Control is transferred to the last call to

Example
Say you are deep in your full-screen editor program and you find you are
out of memory. You want to return to the top of program, report the error
and quit.

#define MEM ERR 1
#include <setjmp.h>
Jp buf hold env;

deepfunc() {

ié.((p-nalloc(m)) == NULL)
longimp(hold env, MEM ERR);

Remarks
You must have called setjmp with the same J= buf variable before you call
longjmp. Otherwise, longjmp may go anywhere and you will probably crash
your system.

Portability
This finction is not considered part of the Standard I/O Library.

However, it is identical to the library function normally available to C
programs under UNIX.

74 mekfcd Function Descriptions makfch

Name
makfcb - build a CP/M file control block (fcb)

Synopsis
makfcb(filename, fcb)
char *filename, *fcb;

Description

Builds a CP/M file control block (fcb) for the file filename which can be
any valid CP/M file name. The filename is converted to upper case.
Explicit drive names and the CP/M wild card characters '*' and '?' are
allowed. ficb must be a least 36 bytes long to accammodate CP/M 2.X random
access functions. The first 12 bytes will contain the drive code and file
name, and the remaining 24 bytes will be zeroed. mmkfcd considers the
following conditions to be errors:

(1) drive code not alphabetic, e.g. 1:PROGRAM.C

(2) file name portion longer than 8 characters, e.g. DISKLIBRARY.C
(3) file type longer than 3 characters, e.g. INPUT.DATA

(4) control characters in the file name, e.q. PR"OGRAM.C

Returns
Returns -1 if an error is found.

Example
To build an fcb that matches any C program file on the currently logged
drive, say

char fcb{36];
mekefcb("*.c", £ob);

The name portion of the ficb (ficb[1] through £icdb[11]) will contain the
characters 2?2?2?2222Cbb where "b" indicates a blank.

Remarks
This function is typically used when you make a CP/M system call using
bdos and the second argument is an fcb.

Portability
This function is not in the Standard 1/0 Library.

malloc Function Descriptions malloc 75

Name
malloc - allocate a block of memory space which can be freed

Synopsis
char *malloc(n)
unsigned n;

Description
Allocates a block of n bytes fram the space available between the top of
the program and the bottam of the stack. A certain amount of space
(called the moat) which is directly below the stack cannot Dbe allocated.
This is intended to leave space for stack growth so the stack does not

grow down into the program memory space.

Returns
The value returned is a pointer to the beginning of the space allocated or
NULL if there is not enough free space available.

Example
To allocate a table of 1000 bytes and make ptable point to the beginning

of the space say

if ((ptable = malloc(1000)) == NULL)
/* report not enough space available */

You should always check the return value to see that you really got the
space.

Remarks
The size of the moat is initially set to 1000 bytes, but you can change
this with the library function moat.

If you store outside the space given to you by malloc you can cause all
sorts of serious errors including crashing CP/M. Also, you can cause very
mysterious errors if you don't check to see that you really got the space
you requested. Since malloc returns NULL which is zero, your pointer to
the new memory will contain zero. Then when you start storing into your
block of memory you will actually be writing over CP/M information in low
memory.

See also
calloc, free, maxsbrk, moat

76 maxshrk Function Descriptions maxsbrk

Name
maxsbrk - report memory space available fram shrk

Synopsis
unsigned maxsbrk()

Description
Determines how much memory space is available for sbrk allocate.
Returns

The value returned is the amount of memory between the top of the memory
allocated and the bottam of the moat.

Example
If you want to get all the memory available for a large buffer say:

bufsize = maxsbrk();
Since the stack pointer bounces up and down, you should probably reduce
this muber by a few bytes (say 10 or 20) to be sure you can really get
this much when you actually call sbrk to get the space.

Portability
This function is not in the Standard I/O Library.

See also
malloc, moat

Name
moat -~ set the size of the stack reserve space

Synopsis
unsigned moat(size)
unsigned size

Description
The moat is the amount of free memory space directly below the current
stack which cannot be allocated to allow for stack growth. This value is
initially set to 100C zytes, but moat lets you change this.

Returns
The value returned is the old moat size.
Example
To change the moat size to 500 bytes say
moat (500);

Remarks
Normally, you should not set the moat size to less than 500 bytes. All
local variables except register variables and all function argunents are
pushed onto the stack, so the stack can grow quickly. Local arrays will
make the stack grow very quickly!

Portability
This function is not in the Standard I/O Library.

See also
malloc, maxsbrk

78 mpm Function Descriptions mom
Name

mpm - do an MP/M system call
Synopsis

mpm(c, de, a)

int ¢, de, *a

Description
Do an MP/M system call to location SH using c as the function number and
de as the argument. c is loaded in register C and de is loaded in
register pair IE.

Returns
Returns an integer which is the double byte value placed in register HL by
MP/M. Also returns the value MP/M places in register A in the integer
pointed to by a. This integer will contain the contents of register A in
the low-order byte and zero in the high-order byte.

Example)
To call MP/M and get both the value in register pair HL and the value in °
register A say

im a' C, del hl:
hl = mm(c, de, &a);

Portability
This function is not in the Standard I/O Library.

See Also
bdos, bdosl

Bugs '

You must always include the argument de even if it is not used by MP/M.
You can just pass a constant zero like this

an(C: 0, &a) 7

open Function Descriptions ocpem 79

Name

open - open an existing file
Synopeis

open(filename, rwmode)

char *filename;

int rwmode;
Description .
Opens the file named by filename. rwmode can be:
0 = read
1 = write

2 = read and write

It is an error to open a file which does not exist. An error will also
occur if filenmme or rwmode is invalid, if CP/M cannot open the file, or
if the maximum mumber of files is already open.

Returns :
The value returned is a file descriptor (int £d) or -1 if an error was
detected.

Remarks
This function is used to open files for system I/0 using the read and
write functions. The maximm number of files allowed to be open at one
time is 10. This can be increased by recomwpiling the disk library
functions. See the Appendix E "Maintaining the Function Library".

rwmode = 2 indicating that the file can be read or written is normally
used for a file which will be accessed randamly and positioned using the
function seekr. Initially the file is positioned at the first record in
the file which is CP/M randam record number 0.

Portability
This function is not in the Standard I/0 Library. It simulates a UNIX
system call.

See also
creat, close

Name
out - output a byte to an 8080/280 port

Synopeis
out(value, port)
int value, port;

Description
Writes the low-order byte of value to the port indicated by port.

Returns
The return value is the byt< written zero-extended to convert it to an
integer.

Example
To serd the value 0x80 to port 19 say:

out(0x80, 19);

Remarks :
This function does not use any self-modifying code so it can be used in a
program which is placed in ROM. The 280 version uses the 280 instruction
"OUT A, (C)" so the port number is loaded in register C. The 8080 version
builds the instruction "OUT port" on the stack so that "port" does not
need to be put into the function's code.

Portability
This function is not part of the Standard I/O Library. It is included
only to provide a C interface to the 8080/Z80 hardware.

See Also
in

Name .
gerintf - short version of printf
Synopsis
gprintf(format, argl, arg2, ...)
char *format;
Description

The arguments argl, arg2, ... are formatted according to the
specifications given in format and written to stdout. This works as
described for the function printf except that the only conversion
specifications allowed are 8d (decimal), %u (unsigned decimal), %o
(octal), ¥x (hexadecimal), %c (character), and %s (string). The width,
precision, justification, and padding specifications available in printf
are missing here.

Returns
There is no return value.

Example
gorintf can print an error message on the console like this:

char filename[15];
qgprintf("Can't open: %s\n", filename);

If filename contains "INPUT.DATA" the message on the console will be:
Can't open: INPUT.DATA

Remarks
This function is useful when you are doing simple formatted output to the
consolearxiyouneedtoconservetheamamtofmemryused.

Notice that qorintf is a proper subset of printf. This means that if you
use gorintf in a program, you can simply change all references to intf
and your program will still work correctly.

Portability ‘
This function is not in the Standard I/O Library. It is provided only to
aid in writing campact programs to fit in the 64K address space provided
on 8080/280 machines. You should use printf in any program where
portability is required.

See Also
printf

82 peek/poke Function Descriptions peek/poke

Name
peek - look at a byte of memory
poke - change a byte of memory

Synopeis
peek(address)
unsigned address;

poke(address, value)
unsigned address;
int value;

Description
peek lets you lock at the contents of a byte in memory.
poke changes the value stored in a byte of memory.

Returns
The value returned by peek is the value of the byte at address. poke
returns the value that was previously stored in the byte being changed.
The return value is not sign-extended in either case. The high-order byte -
will always be zero.

Example »
To see what is in the CP/M ICBYTE at location 3H say

char iocbyte;
iobyte = peek(3);

To change it so that the LIST device is the line printer (LPT:) regardless
of what it previocusly was say

poke(3, ((iobyte & Ox3F) | 0x80))

The left-most two bits of iocbyte are forced to binary 10 (LPT:). This
value is then put in location 3H.

Remarks
These functions are useful to work with one or at most a few bytes in

memory. If you want to do more than this, you should define a character
pointer and do indirection on it. For example, the peek example above
would becamne

char *p, iobyte;
p = 0x3; /* make p point to location 3H */
icbyte = *p; /* lock at the contents of 3H */

Portability
These functions are not in the Standard I/0 Library.

See Also
wpeek, wpoke

printf , Function Descriptions printf 83

Name
printf - write formatted print to the standard output file
Synopeis
printf(format, argl, arg2, ...)
char *format;
Description
The arguments argl, arg2, ... are formatted according to the

specifications given in format and written to stdout. This works as
described in Kernighan & Ritchie with the exception that long and float
formatting is not available. Thus the conversion characters recognized
are d (decimal), u (unsigned decimal), o (octal), =x (hexadecimal), ¢
(character), and s (string). The width, precision, justification, and
padding specifications work just as described in the book.

Returns
There is no return value.

Example
printf can print a simple string like this:

print£("Nothing fancy here\n");
prints

Nothing fancy here
In this case the format is “Nothing fancy here\n". Since it has no
gersion specifications, no other arguments are expected or will be

Normally the format will have conversion specifications. For example, you
can see the internal value of a character like this:

printf(“The ASCII code for %c is %d.\n", 'A', ‘A‘');
prints
The ASCII code for 'A‘ is 65.

The 3c conversion treats 'A' as a character, so it prints as A. The %4,
however, treats it as its decimal value 65 and prints that.

(continued on next page)

84 printf(cont) Function Descriptions ' print£f(cont)

This example shows what the number stored in the variable u looks like
when it is printed in different bases by using the different conversion
specifications.

static char mesg[] = "Different representations of";

static unsigned u = 65535;

printf(“"%s %u = 0%, %d, Ox%x\n", mesg, u, u, u, u);
prints

Different representations of 65535 = 0177777, -1, OxFFFF

Finally, to show the effects of specifying width and fill characters,
suppose we wanted to print amounts stored as cents in an integer called
ocost. If the current value in cost is 1305 then the call

printf("$334.%02d", cost/100, cost$100);
prints

$ 13.05
cost/100 is 13 which is printed in a 3 character field, right-adjusted and
filled with leading spaces. cost3100 is 5 which is printed right-adjusted
in a 2 character field and filled with leading zeros.

See Also
~ fprintf, gprintf, sprintf

Name
putc - write a character to a file

Synopsis
putc(c, fp)
c:
FILE *fp;

Description
Puts the character c on the file inted to by fp. The newline character
‘\n' will be changed to a CR/LF pair to conform to the CP/M text
convention if the file is open for normal (text) output. If it is open
for binary 1/0, each character will be written exactly as received.

It is an error to write to a file which is not open for output, and in
this case nothing will be written.

Returns
'Ihevalueretumedisco:rliﬁ‘ifanerroroccurs.

if (putc(c, outfp) == BF) {
printf("Output disk full\n"):
exit(l);

Remarks
The file being written must be opened by calling fopen and
calling fclose. 'Ihefilepointerfpusedinthecalltoputcarﬂfcloae
is the value returned by fopen.

If you do binary I/0 to a printer, you must Supply your own carriage
return character ('\r') for each newline (linefeed) character if your
printer will not do this autamatically.

See also
fopen, fclose, putchar

Name
putchar - write a character to the standard output file

Synopeis
putchar(c)
char c;

Description
Writes the character ¢ on the standard output file stdout. If ¢ is the
newline character '\n', it is expanded to a carriage return/line feed
(CR/LF) pair to conform to the CP/M convention for text.

Returns
The value returned is c.

Remarks

putchar and getchar can be used together to easily write programs with one
input and one output file. (See getchar for a very simple copy program.)
No file definitions are needed and the files are opened and closed
autamatically. If you want, you can also redirect the output file
(stdout) to the printer for more flexibility. Notice that you must
include the redirection capability with the campiler -R switch to do any
of these things.

See also
putce, getchar

Name '
puts - write a string to the standard output file

Synopeis
puts(s)
char

*87

Description
Writes the string s to stdout followed by a newline character '\n'. Any
newline character is changed to a CR/LF pair to conform to the CP/M text
conventions. Since -/ puts always appends a newline, if s ends with a
newline, you'll end up with two of them.

Returns
There is no return value.

See also
fputs

Name
putw - write a word to a file

Synopsis
putw(word, fp)
int word;

FILE *fp;

Description
Writes word to the file pointed to by fp. The word is written by two
successive calls to putc so the same actions described there for text vs.
binary files apply. The word is written low byte first and then high
byte.

If the file is not open for output, it is an error and nothing is written.

Returns
The return value is the word written or BCOF if an error occurs. Since ECF
is just an integer value which may be returned normally you must call feof
and ferror in this case to determine what actually happened.

Example
To write a single word fram the file pointed to by fp and test for an

error say

int value;
if (putw(value, outfile)) == EOF && ferror(outfile))
printf("Error writing output file\n");

See Also
getw

Name
read - read a file in multiples of 128 bytes

Synopsis
read(fd, buffer, n)
int £4, n;
char *buffer:;

Description
Reads at most n bytes from the file with file descriptor 4 into the
location pointed to by buffer. For CP/M, n must be a multiple of 128.

buffer is an area defined in your program.

Reading starts at the current value of the read/write pointer. Normally,
this is the next CP/M record after the last record read or written.

However, the read/write pointer may be changed by calling seekr.

When end-of-file is reached you may not get n bytes, but read tells how
many bytes it actually read. The next call will return O since there is

nothing left to read.

It is an error if the file is not open for input. In this case nothmg
will be read or placed in buffer.

Returns
The value returned is the actual number of bytes read (<= n) so 0
indicates end-of-file. Returns -1 if an error occurs or if n is not a
multiple of 128.

Example
To read 8 CP/M records (1024 bytes or 1K) at once, say

#define BUFSIZE 8*128
char filebuf[BUFSIZE];

nread = read(infile, filebuf, BUFSIZE):
nread will be set to the number of bytes actually read.

Remarks
To use read, you must have opened the file with open. The file descriptor

fd is the return value fram the call to open.

Under WNIX, read is a direct entry to the operating system which lets you
read any number of bytes. Here it is an entry to CP/M sequential disk
1/0. Since CP/M does its I/O in 128-byte records, you are restricted to
‘multiples of this size. When you use read, CP/M transfers the data
directly into your buffer so there is very little overhead.

Portability

This function is not in the Standard I/0 Library. It simulates a UNIX
system call.
See also

open, close, getc, seekr

90 rindex Function Descriptions rindex

Name
rindex - find the last occurrence of a character in a string

Synopeis
char *rindex(s, c)
char *s, c;

Description
Locks for the last occurrence of the character c¢ in the string s.

Returns "
The value returned is a pointer to the last occurrence of ¢ in s or NULL
if ¢ is not found in s.

Example
Suppose you want to know if the final characters of the string currently
contained in 8 are "xyz". You could check like this:
char *p, s[80];
if ((perindex(s, 'x')) l= NULL & stram(p, "xyz") == 0) {
{* do samething */

See also
index

sbrk Function Descriptions sbrk 91

Name
sbrk - allocate a block of memory space

Synopsis
char *sbrk(n)
unsigned n;

Description
Allocates a block of n bytes fram the space available between the top of
any previously allocated memory and the bottam of the stack. A certain
amount of space (called the moat) which is directly below the stack cannot
be allocated. This is intended to leave space for stack growth so the
stack does not grow down into the program memory space.

Returns
The value returned is a pointer to the beginning of the space allocated or
-1 if there is not enough free space available.

Example)
To allocate a table of 1000bytesandnakeptah1epointtothebeginning

of the space say
char *ptable;

if ((int)(ptable = sbrk(1000)) == -1)
/* report not enocugh space available */

szl’mzldaluayscheckthereturnvaluetoseethatyou really got the
space. Otherwise you will end up destroying the CP/M information in low
memory when you store into “"your" newly-acquired space. The cast is
necessary in the test so the test is done properly since ptable is a
pointer. Pointers are unsigned so their value is never considered to be
negative.

Remarks
The size of the moat is initiallysettolOOObytes,butyoucanchange
this with the library function moat.

Notice that space obtained fram sbrk can never be returned for reuse. 1f
you need the space only temporarily and would like to return it for
re-allocation by calling free, use malloc.

Q/C uses shbrk to get its table space, thus reducing the size of the
executable file OC.CM considerably. Also, the buffered I/O functions
such as getc get their buffer space by calling sbrk. This means your
program only requires enough memory to support the number of files that
are actually open.

See also
malloc, maxsbrk, moat

92 scanf Function Descriptions scanf

Name

scanf - read formatted data fram the standard input file
Synopsis

scanf(format, argl, arg2, ...)

char *format:;
Description

Reads characters from stdin, interprets them according to the
specifications given in format, and stores them in the arguments argl,
arg2, etc. This works as described in Kernighan and Ritchie with the
following exceptions:

(1) None of the specifications for long and float are available.

(2) The WNIX V7 use of the "h" conversion is followed. This treats "h" as
a modifier of other integer conversions, so the valid uses are %nd,
o, ard hx.

(3) Also, the INIX V7 use of the "¢" conversion is followed. This means
that %c puts a single character in the matching argument which must be
a pointer to character. However, %nc puts n characters into the
matching argument which must be a pointer to an array of characters.

Returns
The value returned is the numwber of format items successfully matched and
assigned to the arguments. ECOF is returned upon end-of-file or error.

Example
You might read a person's name fram the console like this:

char firstname[10], initial[2], lastname[20]:
scanf("%s %ls. 88", firstname, initial, lastname):

If you type Dennis M. Ritchie on the console, firstname will contain
"Dennis", initial will contain "M", and lastname will contain "Ritchie”.

Remarks
The arguments to scanf must be pointers or you will not get back the
values assigned.

When your input is fram the console, the only way that end-of-file will be
recognized is if the first character typed on the line is “Z. If no items
are matched, the count returned is zero which is different fram ECF.

See Also
fscanf, gets

Bugs
Doesn't implement the WNIX V7 $[...] conversion.

seekr Function Descriptions seekr 93

Name
seekr - change read/write pointer

Synopeis
seekr(fd, offset, mode)
int f4, mode;
unsigned offset;

Description

Changes the read/write pointer for the file with file descriptor fd so
that the next record will be read fram or written to a different location
in the file. offset says how far to move the read/write pointer measured
in CP/M 128 byte records. The offset is measured fram the beginning of
the file if mode is 0, the current record if mode is 1, or end-of-file is
mode is 2. Although offset is treated as an unsigned number, the correct
result will be obtained if you specify a negative offset when mode is 1 or
2.

Returns
The value returned is -1 if an error occurs.

Example
To position a file at the last record before end-of-file say

seeh‘(ﬁ' -ll 2):

Remarks
This function does not return the new read/write pointer location because
without long integers there is no way to distinguish between randam record
65535 and the error return value -1. If you need to know the current
read/write pointer location, use the fuinction tellr.

Portability
This function is not in the standard I/0 library. It is intended to work
in a similar fashion to the WNIX system call lseek which lets you position
a file to a particular byte.

See Also
tellr

Name

setbsize - set the size of a user-supplied buffer
Synopsis

setbsize(fp, bufsize)

FILE *fp;

int bufsize;
Description

Sets the size of the buffer for the file pointed to by fp to bufsize. If
bufsize is not a multiple of 128, it will be rounded down to the next
lower multiple. For example, if bufsize is 250, only 128 bytes of your
buffer will be used. If bufsize is less than 128 or if no user buffer was
supplied, a standard size system buffer will be allocated.

Returns
No return value.

Remarks .
setbeize must be called after calling setbuf and before reading or writing’
the file.

Portability

This function is not in the Standard I1/0 Library.
See Also

fopen, setbuf

Name
setbuf - provide a user-supplied buffer

Synopsis
setbuf(fp, buffer)
FIILE *fp;
char *buffer;

Description
The char array buffer is used instead of a system-supplied buffer for the
file pointed to by fp. If buffer is NULL, a system buffer will be
allocated. The library routines assume that buffer is the same size as a
standard system buffer (512 bytes if you haven't modified the Q/C
library). This can be overridden by calling setbsize.

setbuf must be called after fopen but before the file is read or written.

Returns
No return value.

Example
To use a 1K buffer to write the file BIGFILE.TXT say

#define BIGBUFSIZE 1024

FILE *output;

char buffer[BIGBUFSIZE];

if ((output = fopen("BIGFILE.TXT", "w")) == NULL) {
printf("Can't open BIGFILE.TXT\n"):;
exit(0);

}
setbuf(output, buffer); /* supply large buffer */
setbsize(output, BIGBUFSIZE); /* say how big it is */

(Now you can start writing to BIGFIIE.)

Remarks
It is sometimes useful to supply a larger or smaller buffer for certain
files. For example, the Q/C campiler uses a 128 byte buffer to read
#include files because they are usually fairly short. This saves space at
execution time without any real sacrifice in speed. You can tell the
library routines your buffer is a different length with the function
setbsize.

See Also
fopren, setbsize

9%

set jmp Function Descriptions setJmp

Name

setjmp - prepare for a non-local jump

Synopeis

#include <setjmp.h>
setjmp(env)
jmp buf env;

Description

Saves the current stack enviromment in the variable emv. A later call to
longjmp (which is usually in a different function) will return here as if
setjp were returning with the value longjmp supplies. All local
variables in this function will have the same value they had at the last
call to setjmp. The function which contains the call to setjmp must not
have returned in the meantime.

Returns

When you call setjmp it returns zero. When you call longjmp later, setjmp
appears to return the value supplied by longjmp.

Example

In this example, the call to setjmp saves the enviromment and returns o.
This causes the switch statement to select case 0 and processing begins.
If everything works process returns and the break statement transfers
control to the cleanup at the end of the program. If an error occurs
samewhere in process or below, calling longjmp will return control to the
point where setjlp returns. The value returned (which should indicate the
error) is placed in err " code and then the switch causes the appropriate
messagetobepnntedandanyrequlredflxupact_mntobeperformed

#include <setjmp.h
jmo_buf hold env;
main() {
int err_code;
err_code = setjmp(hold env);
switch (err code) {
case 0: process(); /* normal processing */
break; /* all went well */
case l: printf("Error #1 - program ending\n");
/* do any fixup needed for this error */
break;

}
/* Do same cleanup and quit */
?xit(err_code);

Remarks

setjmp is used in conjunction with longjmp to provide a way of returning
fram deep within a program when same catastrophic error occurs. This
eliminates the need to pass error flags up through many layers of function
calls.

See also

longjmp

Name
sprintf - format a string

Synopsis
sprintf(s, format, argl, arg2, ...)
char *s, *format;

Description
The arguments argl, arg2, are formatted according to the
specifications given in format and put in the string s. This works just
as described in Ker:;u.ghan & Ritchie except that the specifications for
formatting long and fitat variables are not present. See the description
of printf for more details.

Returns
No return value.

Example
If 8 is a character array and n contains 23, the call

sprintf(s, "LABEL303d:", n)

will put "IABELO23:" in s.
Remarks

If you put the value zero into the middle of the string s, this will be
considered the end of the string since strings are terminated by a zero
'\O'. Any time 8 is used, the characters after the zero will not be seen.
This call

sprintf(s, "$s %c 8", "Early end", 0, "Lost");
will build a string which is effectively "Early end " because the 0 loaded
by the $%c will terminate the string. The characters " Iost" will be in s
but won't be seen.

See also _
fprintf, printf

Name
sscanf - get formatted data fram a string

Synopsis
sscanf(s, format, argl, arg2, ...)
char *s, *format;

Description
Takes characters from the string s, interprets them according to the
specifications given in format, and stores them in the arguments argl,
arg2, etc. This works as described in Kernighan & Ritchie with the
following exceptions:

(1) None of the specifications for long and float are available.

(2) The WNIX V7 use of the "h" conversion is followed. This treats "h" as
a modifier of other integer conversions, so the valid uses are $hd,
$ho, and $hx.

(3) Also, the UNIX V7 use of the "c" conversion is followed. This means
that % puts a single character in the matching argument which must be
a pointer to character. However, %nc puts n characters into the
matching argument which must be a pointer to an array of characters.

Returns
The value returned is the number of format items successfully matched and
assigned to the arguments. If the first character in the string does not
match the format, zero is returned. If s is the null string "", then BECF
(which is different fram zero) is returned.

Example
The following example shows a st.r:Lng containing a date broken up into
month, day and year.
char date[10], month(3], day[3], year(3]:
sscanf(date, "%2s/%2s/%2s", month, day, year);

If date contains "01/02/84" then after calling sscanf month will contain
"01", day will contain "02" and year will contain "84".

Remarks
The arguments to sscanf must be pointers or you will not get back the
values assigned.

See Also
scanf, sscanf

Bugs
Doesn't implement the INIX V7 $[...] conversion.

Name
strcat-appendmestringtotheendofamtherstring

Synopeis
char *strcat(sl, s2)
char *sgl, *s2;

Description
Concatenates the strings sl and 82 by copying s2 to the end of sl.

Returns
A pointer to the beginning of sl.

Example
To add the file extension ".ASM" to filename say

strcat(filename, ".ASM");

If filename contained "PROG" before the call, it will contain “PROG.ASM"
afterwards. If filename contained "PROG.C", it would contain "PROG.C:ASM"
afterwards.

Remarks
8l must be long enough to hold the string it currently contains plus s2 aor
whatever follows 8l will be overwritten. Since only the calling program
knows how long sl is, it must do the checking.

See also
strcpy, strncpy, strmov.

100 stramp Function Descriptions stramp

Name

stramp - campare two strings
Synopeis

stramp(sl, s2)

char *sl, *s2;

Description
Campares sl and 82 character by character to determine if they are equal
or which string's ASCII representation is higher and lower. Examples are:

stramp(“abc", "abc™/: /* gl == g2 */
stranp(“abl", "abc"); /* sl < 82 since 'l' < 'c' */
stramp("ab$", "Abc"); /* sl > 82 since ‘a' > 'A‘' */
Returns
stramp returns zero to indicate the strings are equal, a negative number

to indicate that sl is less than 82, and a positive number if sl is
greater than s2.

Example
The following piece of code indicates how you might use stromp in a sort
routine
if (stramp(sl, s2) > 0) { /* is sl > 822 */
/* code to reverse the position of sl and s2 */

}

Remarks
stramp is most often used just to test if two strings are the same.

See also
strnanp

strcpy Function Descriptions strcpy 101

Name
strcpy - copy one string into another string

Synopsis
char *strcpy(sl, s2)
char *sl, *s2;

Description
Copies s2 into sl.

Returns
A pointer to the beginning of sl.

Example
To copy the string "Hold this string" into the character array holdstr say

char holdstr[81];
strcepy(holdstr, "Hold this string");

Remarks :

The previous contents of sl are lost. sl must be long enough to hold s2
or whatever follows sl will be overwritten. Since only the calling
program knows how long sl is, it must do the checking.

See Also
strcat, strncat, strmowv.

102 strlen Function Descriptions strlen

Name
strlen - calculate the length of a string

Synopsis
strlen(s)
char *s;
Description
Counts the number of characters in the the string s wp to but not
including the end-of-string character '\0°.

Returns
The length of the string s.

Ebtam;';‘];e find the length of the second cammand line argument passed to your C
program say
arg2len = strlen(argv{2]);
If you had run the program by typing
A>copy prog.c prog.bak
arg2len would be set to 8, the length of "prog.bak".

stmov Function Descriptions strmov 103

Name
strmov - copy one string into another

Synopsis
char *strmov(sl, s2)
char *sl, *s2;

Description
82 is copied to sl.

Returns
The value returned is a pointer to the new end of sl. 1In other words, you
get back a pointer to the end-of-string character '\O' at the end of sl.

Example
After this series of calls to stmmov:

char mesg[20], *p;

p = strmov(mesg, "one,"):
p = strmov(p, "two,"):
strmov(p, "three!l"):

mesg will contain "ane,two,threel”.

Remarks
Since you get back a pointer to the end of the string each time, you can
do several calls to strmov cne after another and fill a character array as
shown in the example above.

Portability
stomov is not in the Standard 1/0 Library.

See also
strcpy, strncpy, strcat, strncat

104 strncat Function Descriptions strncat

Name
strncat - append at most n characters from one string to another

Synopsis
char *strncat(sl, s2, n)
char *sl, *s2;
int n;

Description
Copies at most n characters fram string s2 to the end of sl. If s2
contains less than n characters, the copy will stop with the end-of-string
character '\0'. In either case, sl will be properly mull-terminated.

Returns
A pointer to the beginning of sl.

Example
To add the file extension ext to filename but copy at most 3 characters
say

char filename[15], ext[10];
strncat(filename, ext, 3);

If filename contains "PROG." and ext contains "BASIC" before the call,
then filename will contain "PROG.BAS" afterwards.

Remarks
sl must be defined long enough to hold the string it ocurrently contains
plus a least n additional characters or what follows sl may be
overwritten. Since only the calling program knows how long sl is, it must
do the checking.

See also
strcat, strcpy, strncpy, strmow.

strnomp Function Descriptions strnamp 105

Name

strnamp - campare at most n characters in two strings
Synopsis

strnamp(sl, s2, n)

char *sl, *s2;

int n;
Description

Campares sl and 82 character by character up to the end of the shorter
string or n characters to determine if they are equal or which string's
ASCII representation is higher and lower. If one string is shorter than
the other and its length is less than n, then it will campare low.

Returns
stronomp returns zero toindicatethestringsareequalatleastupton
characters, a negative number to indicate that sl is less than 82 at least
within the first n characters, and a positive number if sl is greater than
82 in the first n characters.

Example
strnamp("abc”, "abx", 4) returns < O since 'c' < 'x'
strnamp(“abc”, “"abx", 3) returns < O since 'c' < 'x°
strnomp(“abc", "abx", 2) returns O since "ab" == "ab"
strnamp("abc", "ab", 3) returns > O since "abc" > "ab"
strnamp("abc”, "ab", 2) returns O since “"ab" == “ab"
See Also

106 strncpy - Function Descriptions strncpy

Name
strncpy - ocopy exactly n characters fram one string to another

Synopsis
char *strncpy(sl, s2, n)
char *sl, *s2;
int n;
Description
Copies exactly n characters into sl. If the length of 82 is less than n,

sl will contain a copy of s2 padded with null characters ('\0'). If the
length of 82 is greater than n-1, sl will not be properly null-terminated.

Returns
A pointer to the beginning of sl.

Example
If 8 is defined by

char s[6] = "xooxx";
then after the call
strncpy(s, "ab", 4);
8 will contain 'a‘', 'b*, '\0', '\0', 'x', °‘'\0'. An additional null

character is oopied after "ab" to make 4 characters. After the further
call

strncpy(s, "abcdefg", 6);

8 will oontain ‘a‘', 'b', ‘'¢', 'd', 'e', 'f' and will not Dbe
null-terminated.

Remarks
The previous contents of sl are lost. sl must be at defined to be at
least n characters or whatever follows sl will be overwritten. Since only
the calling program knows how long sl is, it must do the checking.

See Also
strcpy, strcat, strncat, strmov.

tellr Function Descriptions tellr 107

Name
tellr - returns the current read/write pointer location

Synopsis
unsigned tellr(fd)
int £4;

Description
Gets the read/write pointer for the file with file descriptor fd. This is
the next 128 byte record which will be read by read or written by write.
For CP/M this is a nuzrer fram 0 to 65535.

Returns
The record number in the read/write pointer.

Remarks :
The read/write pointer is just the CP/M random record number in the file
control block (fcb) for this file. ,

Portability
This function is not in the Standard I/0 Library. It is similar to the
UNIX system call tell which tells you the next byte which will be read or
written.

See Also
seekr

108 tolower/toupper Function Descriptions tolower/toupper

Name
tolower - convert a character to lower case
toupper - convert a character to upper case

Synopsis
tolower(c)
int ¢;

toupper(c)
int ¢;

Description
tolower cornverts the character ‘c' fram upper to lower case by adding 32
(which is 'a' - 'A') to it.
toupper converts the character 'c' fram lower to upper case by subtracting
32 (which is 'a' - 'A') fram it.

Returns
The value returned by tolower is ¢ + 32 and by toupper is ¢ - 32.
Example
If you say
printf("toupper('d') = %", toupper(‘d‘'));
you get:

toupper('d') =D
but it you say
printf("toupper('D') = 3c", toupper('D'));

you get:
toupper('D') = §
See also
chlower, chupper
Bugs

Notice that these functions don't check to see if ¢ is actually a letter
of the right case. They always do the conversion without checking to see
if it makes sense. This is the way they are defined in INIX, so they are
provided in this form. For a version of these functions which does what
you would expect, see chlower and chapper.

ungetc Function Descriptions ungetc 109

Name
ungetc - push a character back onto an input file

Synopsis
ungetc(c, fp)
int c;
FILE *fp;
Description
Pushes the character c back onto the file pointed to by fp. The next call

to getc will return this character. Only one character can be pushed
back, and BOF cannot be pushed back.

If the file is not open for input, it is an error and nothing is done.

Returns
The value returned is ¢ or ECOF if the character cannot be pushed back.

Example
If you are reading a number fram a file, you may not know you have reached

the end until you find a character which is not numeric:

while (isdigit(c = getc(fp))) {
{* do samething */
ungetc(c, fp); /* push back the non~mmeric character */

Remarks
fp must be either stdin or the value returned by fopen when the file was

open for input.

See also
fopen, getc

110 wnlink Function Descriptions wmlink

Name
unlink - delete a file fram the CP/M directory

Synopsis
unlink(filename)
char *filename;

Description
Deletes the file filename fram the CP/M directory. filename must be a
valid CP/M file name.
¥
Returns
The value returned is 0 if successful and -1 otherwise.

Example
To delete the file "CHAPTERL.TXT" on the C: drive regardless of what the

currently logged drive is say
unlink("C:CHAPTERL.TXT");
Portability

This function is not in the Standard I/0 Library. It simulates a UNIX
system call.

wpeek /wpoke Function Descriptions wpeek/wpoke 111

Name
wpeek - look at a word of memory

wpoke - change a word of memory

Synopsis
wpeek (address)
unsigned address;

wpoke(address, value)
unsigned address;
int value;

Description
wpeek lets you look at the contents of a word in memory.
wpoke changes the value stored in a word of memory.

Returns
The value returned by wpeek is the value of the word at address. wpoke
returns the value that was previously stored in the word being changed.
In both cases, the contents of address is the low order byte of value, and
the contents of addresst+l is the high order byte of value.

Example
If you wanted to see the location of the CP/M bios by locking at the jump

address at location 2H you could say

unsigned bios;
bios = wpeek(0x2):

Remarks
These functions are useful to work with one or at most a few words in
mamory. If you want to do more than this, you should define a pointer and
do indirection on it. Using pointers, the wpeek example above becames

unsigned bios, *pbios;
pbios = 0x2; /* point to bios address at H */
bios = *pbios; /* get the bios address */

Portability
These functions are not in the Standard I/O Library.

See also
peek, poke

Name
write - write a file in multiples of 128 bytes

Synopsis
write(fd, buffer, n)
int f4, n;
char *buffer;

Description
Writes at most n bytes fram the location pointed to by buffer to the file
with file descriptor fd at the current read/write pointer location. For
CP/M, n must be a multiple of 128. buffer is an area defined in your
program. Normally, the next sequential CP/M record is written. If you
change the read/write pointer by calling seekr, then you will start
writing records sequentially fram that point.

It is an error if the file is not open for output. In this case nothing
will be written.

Returns
The value returned is the number of bytes actually written or -1 if an
error has occurred. After an error occurs, all subsequent calls will
return -1.

Remarks :
The file being written must be opened by calling creat or open and closed
by calling close. The file descriptor fd passed to write and close is the
return value fram the call to creat or open.

The error return value (-1) may mean that the file is not open for output
or you did not specify a miltiple of 128 bytes to be written. Most often
though, it means that the disk you are writing on is full.

Under WNIX, write is a direct entry to the operating system which lets you
write any number of bytes. Here it is an entry to CP/M disk I/0. Since
CP/M does its I/0 in 128-byte records, you are restricted to multiples of
this size. When you use write, CP/M transfers the data directly fram your
buffer so there is very little overhead.

Portability
This function is not in the Standard I/0 Library. It simulates a UNIX
system call.

See Also
creat, close, open, putc(the buffered 1/0 equivalent of write), seekr

6

Compiler Internals

This chapter explains the major features of the Q/C campiler's internal
operations. It is as accurate as possible, but like any program, the source
code itself is the final authority on how Q/C actually works.

6.1 Overview

In the following sections you will follow the campiler throogh a C
program fram the highest level view to the lowest. First all preprocessing is
done. This includes recognizing and acting upon preprocessor cammands and
preprocessing your C program code. You can think of this as being done before
cawpilation. Since this is a one-pass campiler, however, each line is
preprocessed and then campiled before going on to the next line.

The campiler starts its analysis with external declarations which include
the function definitions. Global variable definitions cause assembler code to
be generated immediately to reserve storage space and initialize the variable.
Function definitions are considerably more camplicated. Analysis proceeds
through the arguments of the function, the local declarations in the function,
and the C statements which make up the function. The statements are separated
into expressions, and then the expressions are broken down into their
operators and operands. At this point the campiler has reached its lowest
level view of the C program. It is now ready to generate the assembler code
which will do what you have specified in your C program.

If you lock at the main function in Q/C you will see the overall flow of
the canpiler. Most of the functions called by main call other functions in
turn to do their work. Initial housekeeping is performed by init. The signon
message is printed, 1200 bytes of stack space are reserved fram the memory
allocator, and various global variables are initialized. Next, getoptions
determines the campiler options requested and the names of input and output
files. getspace cbtains campiler table and buffer space fram the memory
allocator. Then, zeramem sets all memory between the top of the program and
the bottam of the stack to zero. This allows the camwpiler to calculate the
amount of unused memory at the end of campilation. getinfil opens the first
or only input file and getoutfil opens the output file. gettable initializes
same table entries and chains together all the free space in the structure
member table. Finally, kill clears the input line and campilation begins.

113

114 Campiler Intermals

The program is brought in a line at time by inline and the function
pregxocess locks for preprocesser camands. Conditional campilation is
handled here by campiling or ignoring lines of C program code under the
control of #if...else...emdif cammands. For all lines which are campiled,
procline removes camments and extra white space, checks for matching
apostrophes on character oconstants and matching quotes on strings, and also
does any replacement of #define text.

The second level driver is parse. It works through many other functions
to produce assembler code equivalent to your C program. After parsing is
camplete, the campiler does its cleamup. The literal pool for the last
function is dumped, the output file is closed, and the cowpiler summary is
printed.

Before these processes are described, let's step back and see how the
finished product will lock. You may want to review the CP/M Interface Guide
for more details on how CP/M lays out memory. The executable part of the
program starts at the beginning of the CP/M transient program area (TPA). The
external and static variables are included in this part. At the top of the
TPA (just below the CP/M FDOS) is the Q/C stack. Autamatic local variables °
and arguments to functions are placed on the stack causing it to grow down
towards low memory. The space between the top of the program and the bottam
of the stack is free space fram which the library functions malloc and sbrk
can allocate memory space for the C program.

File buffer space is allocated fram the free space. This has two
advantages. The .CM file for your program does not include the space for
file buffers so it takes less space on disk and it loads faster. Also, when
your program is running no memory space is tied up by file buffers that aren't
needed.

The campiler uses this capability to get all of its table space at
execution time. The main tables it uses are:

(1) a symbol table to keep track of all identifiers (functions and
variables) and their characteristics;

(2) a structure member table which contains a list of pointers to the
symbol table entries for the members of each type of structure;

(3) a type table which contains an entry describing each unique type of
identifier currently defined;

(4) a macro pool to hold the #define definitions and their replacement
text;

(5) a literal pool which contains all the strings defined in the program;

(6) a table for loops and switch statements to keep track of where break
and continue statements must go; and

(7) a table containing the location and value associated with the case
labels in a switch statement.

The definitions of all of these tables appear in the header file CSTIDODEF.H
. along with the values that the various fields may hold. Now that you have the
big picture, let's see the details.

6.2 Preprocessing 115

6.2 Preprocessing

As each line of C text is brought in, it is scanned first by the function
preprocess for #preprocessor cammands. The cammands #include and fasm/#endasm
are straightforward. The #include command causes the function doinclude to
switch to the include file and remember what the input file was. This process
may be nested to a depth of three include files. Q/C uses the function doasm
to copy assembly code surrounded by the #asm and #endasm cammands directly to
the output file. Only two special actions are taken inside these cammands.
The #include cammand is recognized, and all assembly language camments are
stripped out to reduce the size of the output file.

The conditional campilation cammands #if, #ifdef, #ifndef, #else, and
#endif work together. When one of the #if camwrands is found, the required
test is done. The global variable condif is set to PROCESS or SKIP depending
on the result of the test. As each line of the program is read, preprocess
checks condif to see if the line should be campiled or skipped.

If an felse commard is found, the current setting of condif is reversed.
If condif is not already set, an error message is printed. The variable
condelse is set true at this point so the campiler can verify that only one
felse occurs for each #if. '

When the #endif cammand is found, the campiler checks to see that condif
is set. If it is, the variables condif and condelse are set false to signal
that conditional compilation is no longer in effect. If condif is not set,
there is nothing to end so an error message is printed.

These canmands can can be nested up to six levels. At any of the nested
levels, the variable condif can take on a third value, IGNORE. This occurs
when the higher level condition is SKIP. Since all input is being skipped
because of the higher level condition, the campiler must not change the
setting of condif when a #else is found. Once the nested condition is
terminated by a #endif, then condif reverts to value it had at the higher
level.

Each time you use the #define cammand, the name and replacement text are
stored in a table called the macro pool by the function addmac. When the
campiler scans your C text in fimction procline, it will call findmac for each
symbol name it finds. If the name is one for which you have defined same
replacement text, the replacement will be done before the line is campiled.

As an example, suppose you give the two definitions

#define NULL O
f#define BOF -1

These will be entered in the macro pool as follows. At one end the macro pool
is divided into 10 byte fixed-length slots which have roam for a legal C
symbol name (maximum of 8 characters) plus a 2 byte pointer to the location of

116 Compiler Intermals

the replacement text for this symbol. By keeping the names a fixed distance
apart, these names can be searched quickly by simply doing a serial search
through the table until either the name is found or the end of the names
already defined is reached. The replacement text is entered at the other end
of the macro pool as a null-terminated string. The pointer stored with the
macro name points to the beginning of this string so it can be retrieved.
After the two definitions above the macro pool will lock like

|™SULL " + pointer to "O" |
| "EGF 4 pointer to "—1"|
I ses I
I llou n_l] '

The #undef cammand finds the definition of the specified name in the
macro pool (if it exists) and changes the name to the null string. This
prevents subsequent references to this name fram finding the entry, but it
does not free the space used by the entry.

6.3 Type Handling

At the highest level, your program consists of definitions of identifiers
- either global variables or function definitions. Identifiers have two
basic properties: their storage class and their type. The storage classes
possible for an identifier depend on whether it is declared globally (cutside
any function) or locally (within a function). Because of this, storage
classes will be discussed at the different possible levels.

The types possible for an identifier are the same at both levels with one
exception. A function cannot be local to (i.e. known only inside) another
function. Therefore, type handling is done only on one level. The type table
contains a single entry for each type of identifier currently active. When
there are no variables of a given type defined, the type table entry can be
reused. This only occurs, however, when the type table fills. In the
following discussion, all symbolic constants (for example T INT) are defined
in the header file CSTIDEF.H.

Type Table
The type table is an array of structures with entries of the form:

6.3 Type Handling 117

struct typeinfo {

char t_code,
int t size,
int t refs,

union baseinfo { ~
struct memtab *memlist:
struct typeinfo *p type;
} *t base;
struct typeinfo *t next;

-
’

s

The first field, t_code, contains one of the fundamental C types such as T INT
for an int variable, or one of the derived types such as T ARRAY for an array.
The second field contains the size of one instance of this type. Thus an
integer variable will have a size of 2, whereas an array of 5 integers will
have a size of 10. The next field, t refs, is simply a count of how many
references there are to this table entry. When this number drops to zero, the
entry can be reused.

Skipping the field t base temporarily, t next ties all entries for a
given fundamental or derived type together in a list. An array of structures
called basetypes contains the head of each list. As an example, the list of
array entries (meaning those with t code containing T ARRAY) starts at
*basetype[T ARRAY]. The field t next in this entry points to the next array
entry and the final array entry contains a pointer back to basetype signalling
the end of the list.

To simplify type processing, the function inittypes initializes the type
table with entries for all fundamental types (and for the derived type
function returning integer since it is so cammon). The t refs field is set to
one so that these entries will never be removed fram the type table even if
there is currently no active identifier of the given type. Global pointers
are defined for each of these permanent entries in the global definition file
OGLBLEF.C with names like chartype and inttype.

The derived type entries are built up using the baseinfo union t_base,
while fundamental types contain NULL in the this field. All derived types
except structures use the typeinfo pointer P type to link the type
information. For example, the derived type ‘"pointer to character" is
represented by an entry whose type is pointer and whose base type is char.
Thus the entry has T PIR in t code and a pointer to the entry for the
fundamental type char in t base. More camplicated types are built up by
chaining more entries together through the base type field.

Structures use the memtab pointer memlist in t base to point to the list
of members for this type of structure. The member lists are contained in
another table called the structure member table.

118 Compiler Intermals

Ri.llirqinthe'l&pe'l‘able: Some Examples

Let's create same type table entries to make this discussion clear.
We'll oconcentrate on character variables to show the possibilities, but the
same types of entries are made for signed and unsigned integers. Initially
the type table contains one entry for the type "character" pointed to by
chartype. If the type table is located at address 1000 (decimal) it loocks
like:

Address t code t size t _refs t base t_next

1000 T _CHAR 1 1 NULL &basetypes[T CHAR]
The ellipsis (...) represents the other permanent entries. Now suppose a
simple character variable is defined like
char c;

Since there is already an entry for the fundamental type "character”, the only’
change is to increment t refs making it 2. -

Next suppose a pointer to character variable is defined by
char *pc;
A new entry is added to the table making it look like:

Address t_code t size t refs t_base t_next
1000 T _CHAR 1 3 NULL &basetypes[T CHAR]
1045 T_PTR 2 1 1000 &basetypes[T PTR]

This entry is located at 1045 (decimal). It has a type of T PTR and a size of
2 bytes since pointers are 16 bit addresses, and it has one reference to it.
This time the base type is "character" so t base contains 1000, the address of
the fundamental type. Since the type "character" now has another reference to
it, its t refs field is incremented to 3. There are no other pointer types
defined yet, so t next points back to the head of the list of pointers.

Now suppose an array of 10 characters is defined by:
char ac[10];

A new type entry is created giving:

6.3 Type Hardling 119

Address t code t size t refs t base t_next
1000 T CHAR 1 4 NULL &basetypes[T CHAR]
1045 T PIR 2 1 1000 &basetypes[T PTR]
1054 T ARRAY 10 1 1000 &basetypes[T ARRAY]

t_refs for the fundamental type "character” is now 4. An entry has been added
for an array with size 10 bytes whose base type 1is "character" located at
address 1000.
If a array of 10 pointers to character is defined by:
char *apc[10];

the type table looks like:

Address t _code t size t refs t_base t_next
1000 T CHAR 1 4 NULL &basetypes[T CHAR]
1045 T PTR 2 2 1000 &basetypes[T PTR]
1054 T ARRAY 10 1 1000 1063
1063 T ARRAY 20 1 1045 &basetypes[T ARRAY]

The entry for "pointer to character" at location 1045 now has 2 references to
it. The first entry for type array (T ARRAY) now points to location 1063 as
the next entry of type array. Finally, only one new entry was needed for type
array of 10 pointers to character since an entry already existed for the
derived type "pointer to character". Notice that the new entry has a size of
20 bytes vice the 10 for the preceding entry since pointers to character take
2 bytes each. Also, t base of the new entry points to location 1045 which is

itself a derived type pointing to the fundamental type "character" at location
1000.

Parsing Derived Types

Declarations are identified by the function isdecl which returns a
pointer to a type table entry (among other things) when it finds a
declaration. Normally this will be one of the fundamental types such as
chartype for character variables. When the identifier being declared is a
derived type 1like "array of character", the function dodecl parses the
identifier. It uses a type parsing stack whose important part is defined as:

struct typestack {
char t_ocode;
int t_size;

}:

dodecl locks for the pointer operator "*“, function operator "()", array
operator "[]", and parentleses which simply alter the normal associations of

120 Compiler Intermals

the other operators. dodecl calls itself recursively to parse the
declarations in the proper order. Each time it finds dne of the operators it
is locking for, it calls pushtype which records the code and size in the
typestack structure given above.

As an example, the last type discussed in the previous section, "array of
10 pointers to character", would generate the type stack entries:

t_code t _size

T_PIR 2
T_ARRAY 10

After the parsing is camplete, the function loadtype uses the information in
the type stack to build the list of type table entries for this type as
discussed in the preceding section.

Structure Member Table

The structure member table records the members contained in each type of -
structure currently defined. As I mentioned earlier, each structure entry in
the type table points to the list of its members in the structure member
table. This allows Q/C to check for valid initialization of structures and to
define the right type and size variable for each structure member.

The member table is an array of structures with entries:

struct memtab {
struct st *p_sym;
struct memtab *nextmem;
};

Initially all the space in unused, and the entire table is chained together by
the nextmem pointer. The final entry contains NULL in this field. Q/C keeps
the address of the beginning of the member table in the global pointer memtab
and the head of the free space list in the pointer freemem.

As structure declarations are parsed by decltag, the member table is
filled in by calling the function addmem. When a member is added to the
symbol table, p sym is assigned the address of the symbol table entry. The
nextmem pointer in the previous member entry is set to point to the current
member entry. This chaining of entries is necessary because structures can be
declared inside of other structures. In this case, decltag is called
recursively and starts parsing the inner structure declaration. When it is
through and the inner member list has been campleted, it continues to work on
the outer 1list. The final entry in the list contains NULL in the pointer
nextmem.

Local structure declarations are only in effect until the end of the
function, so they must be removed fram the member table. This is done by
calling the function delmem to return the member list to the free space chain.

6.3 Type Handling 121

delmem changes the last entry in the list so that it points to the current
head of the free space list, and then changes the head of the free space list
to the beginning of the list being deleted.

6.4 Globals/Functions

Typically, your program begins with the declaration of global (external)
variables. These are followed by the definition of the functions which make
wp your C program. The second level driver function, parse, searches through
your program looking for global declarations and function definitions until
end-of-file is reached.

Glabal Variables

parse calls isdecl to lock for declaration keywords specifying a storage
class (such as static), a type (such as char) or both. isdecl will find all
keywords and return the storage class if any and a pointer to a type table
entry if a type or typedef name was found. If no storage class specifier is
given, the default global (SC GLOBAL) is used. Similarly, if no ‘type
specifier is given, the type defaults to int (the pointer inttype discussed in
Section 6.3 "Type Handling"). If neither specifier is found, parse assumes it
has found the definition of a function which returns an integer. 1In this
case, both defaults are taken.

Notice that typedef definitions are normally given at the beginning of
the programn and thus are actually global declarations. typedef is treated
just like any of the usual storage classes. Once a typedef definition has
been given, the name defined can be used in place of the ordinary type
specifiers such as int.

parse calls declglb and passes it the storage class and type pointer.
declglb determines the names and characteristics (such as pointer) of each
variable being declared by calling declvar for each name in the declaration
list. If the name is a function, then isfunc is called to either process the
function definition or determine that this is simply a declaration of the type
the function returns. Finally addglb is called to add the identifier to the
symbol table for future use.

If a variable is being defined, doinit is called to initialize it. When
no explicit initialization is given, or when an array is not campletely
initialized, definit puts in zeros.

Symbol Table (Part 1l: Globals)

Every global and local variable declared in the C program has an entry in
the symbol table. Global variables, unlike local variables, remain in the
symbol table until the end of the program since their scope extends over the
entire program. Entries for local variables will be discussed in section 6.5
"Local Declarations".

122 Compiler Intermals

The symbol table entry ocontains the name of the variable, its
characteristics, and any additional information needed to find it when it is
used in an expression. The symbol table is an array of structures with the
entries defined as:

struct st { :
char st_sc; /* storage class */
struct typeinfo
st ._type; / pointer to type table */
int st Info; /* see Table 6-2 */
char st_name[NAMESIZE];
char st_idset; /* tag/member or variable */

}:

Table 6-1 shows the possible values for each field in an entry. These values
are shown as symbolic constants which are defined in the file CSIIIEF.H on the
Q/C disk. The information field st_info is used in a number of different ways
dependngmﬂ'lematkuﬂofvarlable is represented in this entry and what
its storage class is. Table 6-2 shows all the uses of the information field. °

The use of most fields in the symbol table entry should be clear fram
Table 6-1. The storage class field st sc can have the values SC . GLOBAL,
SC ST GIB or SC EXTERN depending on how the global variable is declared.
Given the declarations

int 1i;
static int j;
extern int k;

the first declaration says i is being defined and that storage space should be
reserved. The second declaration says that j is being defined as a global in
this file but is not known in any other file. The final declaration says that
k has been defined elsewhere, but be aware that it exists because this program
will refer to it. The compiler puts SC GICBAL in the storage class field of
the symbol table entry for i, &STGIBfor j, and SC EXTERN for k.

For all global variables defined in this file, the information field
st_info contains the symbolic constant DECL GIB to indicate that this name is
known throughout the file. If the variable is only declared as extern either
explicitly or by making a function call, then the information field can also
contain [ECL LOC. This indicates that the name is only known in the current
function, but that the campiler should canpare all references to this name to
see that they agree on the type of the variable.

6.4 Globals/Functions
| Possible | |
{ Field Values |I Comment s |
I
| st sc SC GLOBAL | A plain global definition |
I SC_ ST GIB | A static global definition I
SC EXTERN	A global which has only been declared
SC STATIC	A local static variable
SC AUTO	A local auto variable
l SC_ARG	An argument to a function I
I SC_REG	A local register variable
SC MEMBER	A member of a structure
SC TYPE = A structure tag or typedef name	
—	
st type	pointer
{ : describing this type of variable	
[
st info	Table 6-2
——	
st name	Any valid
l symbol name } name of this symbol l	
st_idset	ID VAR
ID STRICT	A structure/union tag or member
Table 6-1. Possible values in a symbol table entry.	
st _idset	st sc
ID VAR	SC GIOBAL/
I I' SC_ST GIB }	
DL	
	SC_EXTERN/
: {SC_TYPE }IECLLCX: known only in the current function	
	sC AUTO/
	sC ARG }intenmallabelnunberﬁorastatenentlabel
	——
!	SC STATIC
	SC REG ; Register number assigned to this variable
1	———
ID STRUCT	SC_TYPE
; } }DECLUI: known only in the current function	
	SC MMMBER
Table 6-2. Uses of the information field (st_info) in the symbol table.

123

124 Compiler Intermals

Function Definition

when Q/C sees a declaration of a function, it calls isfunc to decide
whether this is the definition or just a declaration of the function name and
the type it returns. . A function definition is distinguished by the presence
of an argument list in parentheses or an opening brace "{" following the empty
parentheses. isfunc returns FAISE if it is only a declaration. If it is the
definition of the function, however, it analyzes the function, generates
assembler code, and then returns TRUE. isfunc does its work by calling a
nunmber of other functions.

The next few sections discuss arguments, local variable declarations, and
then the statements which make up the function.

6.5 Arguments

When a function is called, the arguments are pushed onto the stack by the
calling routine in the order they are seen. To retrieve the arguments, the
function being called must know this order. This is determined by the way the
arguments appear in the argument list. If the function definition begins

function(argl, arg2)

then it knows that argl was pushed on the stack first and arg2 next. Since
the call pushed the return address on the stack after that, the stack looks
like this

SP —> return-address
arg?2
argl

when the function is entered. To retrieve an argument, it is only necessary
to know its offset fram the stack pointer (SP).

Symbol Table (Part 2: Arguments)

Information about the arguments is recorded in the symbol table similarly
to the way it is recorded for global variables. The arguments of a function
(along with any variables declared inside the function) are local to the
function, however. This means that their names are known only inside the
function. In fact, if the local name is the same as a global name, the local
name takes precedence and the global name is temporarily not available.

To accamplish this, global variables are entered at one end of the symbol
table and remain there permanently. Local variables are entered starting at
the other end of the symbol table and remain only until the compiler is
through compiling the function. Wwhen the next function is being campiled, its
local variables will reuse the local symbol table entries, and they will be
the only local variable names known.

6.5 Arguments 125

By sharing the symbol table in this way, it does not need to be
partitioned rigidly into a global and a local section. Since the symbol table
will not be filled until there are no more entries available for either type
of variable, the amount of space allocated for the symbol table can be
smaller. A program with an unusually large number of either type of variable
will not cause one part of the table to overflow while the other part still
has plenty of roam.

Since the location of the arguments is determined by the order of the
argument list, and the characteristics are determined by the declaration list,
the symbol table entry is built in two parts. The argument list is processed
by procarg which adds each argument to the local symbol table. Then
analyzes the argument declarations. It determines their characteristics (such
as integer, pointer, etc.) and also checks for multiple declaration of

arguments.

As each argument is found in the argument list, its name is recorded in
the local portion of the symbol table. The type pointer st type is set to
NULL to indicate that the argument has not been declared yet. When a variable
is found in the declaration list, its type entry is checked. If it is NULL,
the entry is changed to point to the appropriate type table entry. This also
indicates that this name has been declared. If the type pointer is not NULL,
this is a multiple declaration, so an error message is printed.

6.6 Local Declarations

Q/C expects all local declarations to be given at the beginning of the
function body which means immediately after the first opening brace {. ‘This
is a deviation fram standard C which allows local declarations at the head of
any canmpound statement or in other words after any opening brace. This
restriction simplifies campilation and code generation considerably. The
cawpiler only has to be concerned with one level of local variables rather
than a number of levels each of which may supersede variables declared in the

higher levels.

It also simplifies managing the stack. Since space for autamatic local
variables is reserved on the stack, this space must be returned whenever local
variables are deallocated. If variables may be declared in any campound
statement then the space for these variables must be freed whenever the block
is left. This means that break, goto, continue, and return statements as well
as simply exiting a block must all be concerned with freeing varying amounts
of stack space. ,

The function proodecl finds all the declaration statements at the
beginning of a function. This is done by calling isdecl repeatedly just as
globals and arguments are handled. In the case of local variables all storage
classes are allowed so no special error checking is needed. Defaults are set
for storage class and type if needed. Then declloc is called to process the
variables that are being declared.

declloc calls declvar for each name it encounters. declvar checks for

126 Compiler Internals

valid symbol names, duplicate declarations, camputes the size of each
variable, and determines its characteristics. For static variables, it also
does initialization by calling doinit. This works just as described in
section 6.4 under the heading "External Declarations". After declvar is
through, declloc calls addloc to add the symbol table entry for each variable.

Sysbol Table (Part 3: Locals)

Once again Tables 6~1 and 6-2 show the camplete range of possible values
for the symbol table entry of a local variable. The discussion here is broken
down by storage classes since each class is handled differently. Labels are
considered separately since they do not really belong in any storage class.

Externals

Any variables declared as extern are added to both the global and local
portions of the symbol table. Function declarations are always considered to
be extern. In the global entry, the information field is set to DECL LCC.
this allows the campiler to check for consistent usage throughout the source
file while still limiting the scope of the local declaration to an individual
function.

Autamatic Variables

Automatic (auto) variables are given space on the stack. To retrieve an
autaomatic variable, its offset fram the beginning of the stack frame for this
function is recorded in the information field of the symbol table entry.

Register Variables

Register variables are held in a special place where they can be
retrieved easily. Other than this, they act like autamatic variables. Only
variables which occupy two bytes (which means integers and pointers) will be
put in a register. Also, there are only five registers available, so not all
variables declared as register will end up in a register. If a variable is
placed in a register, the register number will be recorded in the information
field of the symbol table entry.

Static Variables

If a local variable is declared static, the campiler reserves space for
it in memory inside the function. This space is given a campiler-generated
internal label so it does not conflict with any other local or global
variables with the same name. The internal label number is recorded in the
information field of the symbol table entry.

Labels
Statement labels exist only to give the goto statement a place to go.

The campiler has several things to concern it when you use labels. A label is
declared the first time it is seen whether it appears in a goto statement or

6.6 Local Declarations 127

as the label on a C statement. At this time it is assigned an internal 1label
number, and it is added to the symbol table. Its type points to the labeltype
entry in the type table. If it appears in a goto, its storage class is set to
SC NONE. Any further appearances in goto statements cause its symbol table
entry to be checked, and its internal label number to be retrieved for use in
the assembler output. When it used as the label on a statement, however, its
storage class is made SC AUTO and it does not change after this.

This allows the campiler to check for duplicate statement labels and
undefined statement labels. If a label appears on a statement and the symbol
table entry says its storaie class is SC AUTO, this means it has already
appeared as the label of a statement so it is a duplicate. At the end of the
function, the campiler checks all of the local synbol table entries. If it
finds an entry with a type of label and a storage class of SC NCNE, this is a
label which was used in a goto statement but never appeared as the label of a
statement.

6.7 Statements

The local declarations are followed by the statements which make up the
body of the function. After isfunc finishes with the declarations, it calls
campound to process the rest of the function body. ocompound in turn calls
statement repeatedly until the highest level compound statement which started
the function is completed. The function statement is very straightforward.
It calls chklabel to see if the statement has a label. Then it loocks for the
keyword (such as if, for, etc.) to see what type of statement it has.

There is a function to process each statement type. For example, if
statements are handled by the function doif. These functions check the syntax
to see that the required keywords and punctuation are present. They also save
any required information, such as case values for switch statements, in tables
so the assembler code can be generated.

These functions do not do any code generation themselves. They call on a
number of lower level functions for this. As an example, the call
jumpcond(FALSE, label) produces the assembler code to test the value of an
expression and then jump to label if the expression is false. 1label is an
internal label generated by the campiler.

Statement Expansion

The camwpiler breaks the logic of each C statement type into simple
cambinations of tests and jumps since this is what can be done in assembler
language. Each C statement is shown in its general form and then as the
canpiler implements it in terms of tests and jumps. Tests are shown like a
simple C if statement which has no else. Junpe are shown as gotos. The
labels are all internal labels generated by the campiler so they start with ?
which is the usual convention in the assembler code generated. The terms
expression and statement represent normal C expressions and statements which
appear in the locations shown.

128 Compiler Intermals

Loops (while, do...while, and for) and the switch statement must also
provide for the comtimme and hwreak statements. In the expansions 2cont is the
labelforamtinnstaterenttojmpto,arﬂ?h:kisﬂmelabelﬁoratzuk.

if (expression) statement

if (| expression)
goto ?1
statement
?1:

if (expression) statementl else statement2

if (| expression)
goto ?1
statementl
goto 22
?1: statement?2
?2:

while (expression) statement

?cont: if (! expression)
goto 7brk
" statement

goto ?cont
7brk:

do statement while (expression)

?1: statement

?cont: if (expression)
goto ?1

2brk:

for (expressionl ; expression2 ; expression3) statement

expressionl
?1: if (| expression2)
goto 7brk
goto 22
?cont: expression3
goto ?1
?22: statement
goto ?cont

6.7 Statements 129

switch (expression)
case constant-expression: statement

default: statement

expression
goto ?1
?2: statement /* case 1 */
/* more cases */
?N: statement /* default case */
goto 7brk
?1: [call the run-time library routine to pick case]
[argument list of case values and matching labels]
?brk:
break
goto 7brk
contime
goto ?2cont

The two statement types not shown have no real expansion. A return
statement is simply an assembler return. A goto is done as a jump to a
campiler-generated label. These labels are discussed under the heading Symbol
Table (Part 3: Locals).

6.8 Expressions

The C statements are made up of either simpler C statements or keywords
and expressions plus punctuation. The expressions are made up fram primaries
and operators. If you lock at the cawpiler source code you will see that a
great deal of it is devoted to parsing expressions.

The major camplicating feature of parsing expressions is applying the
operators in the correct order. Each operator works aon one or more operands.
For example, in the expression

a+hb

the operator is + and its operands are a and b. If an expression could just
be scanned fram left to right determining the operands and doing the specified
operations, there would be almoet nothing to it. However, as shown in Chapter
2 of Kernighan & Ritchie, there is a particular order in which Operators are
applied. In the expression

a+b*c

the multiplication must be done before the addition so in effect this
expression is

130 Compiler Intermals

a+ (b*c)

As if this weren't hard enough, same of the operators have the same
priority and then they have to be applied either left-to-right or
right-to-left. A common example of this is stepping throuwgh an array of
characters using a pointer

*4-+p

Both operators * and + have the same priority but they are grouped
right-to-left. This means that ‘his expression is evaluated as

*(++p)

First the value of the pointer p must be retrieved, then it mist be
incremented, and finally the character it points to is loaded.

Because of this priority scheme, the operands of any particular operator
can be expressions involving any of the operators having a higher priority. -
To make this concrete consider the expression

a*b+c*d

Since multiplication has a higher priority than addition a * band ¢ * d will
be done first. Then those two quantities will be added to get the value of
the expression. In effect this expression is

(2 *b) + (c*dqd)
The operands of the addition operator + are the expressions a * b and ¢ * 4.

Since Q/C makes one pass through your C program fram left to right, it
must remember which variables are having what operations performed on them and
in what order. This is done by using the technique of recursive descent

parsing.
6.9 Recursive Descent Parsing

Recursive descent parsing uses the ability to call subroutines
recursively to record the variables, operators, and order of operations in the
expression being parsed on the stack. The record is camposed of local
variables in the routines which parse the different operators and the order in
which the routines are called. Recursion is used when an inner expression is
enclosed in parentheses. Then the parser calls itself to evaluate the inner
expression first.

The functions which make up the recursive descent parser are expression,
heirl through heirl5, and primary which are all in CC4.C. If you lock at the
table in Chapter 2 of Kernighan & Ritchie which shows the order of evaluation
of operators, you'll notice that same operators are at the same level. The

6.9 Recursive Descent Parsing 131

functions heirl through heirl5 each handle the operators at one level in this
table. The direction of increasing priority is fram heirl to heirl5. Thus
heirl parses the sequence (camma) operator, while heirlS handles function
references () and array references []. The variables or constants involved in
these expressions are identified by the function primary.

A Parsing Example

Whenever C syntax calls for an expression the function expression is
called to parse the expression. When the argument load is TRUE, the
expression must be evaluated and the value be available for further use. If
load is FALSE, the expression is evaluated but the final value is not load

if it is not a by-product of the code to evaluate the expression. expression
calls heirl which calls heir2 and so on. All of these functions work in a

similar way. The operators must be recognized and their operands must be
identified.

To see how this is done in Q/C, let's parse the simple expression
a+b*c

discussed in the last section. Recall that multiplication has a higher
priority than addition, so the expression is evaluated as if it were written

a+ (b*c)

You may want to look at a listing of the functions heirl through heirl5 and
primary as the expression is parsed.

Each routine starting with heirl calls the next level routine to see if
there are any higher priority operators to be evaluated first. heirl2, which
handles addition, is locking for an expression like this

expressionl + expression2

where + is the addition operator, expressionl and expression2 are the operands
of the addition operator, and the result will be the value of expressionl plus
the value of expression2. The general form of the expression heirl2 is
locking for is

operand operator operand

Thus the first thing heirl2 needs if indeed it is locking at an addition
expression is the operand expressionl. The operands of a given operator are
expressions possibly involving any higher priority operators as discussed in
the previous section. To find an expression involving any of the higher
priority operators, heirl2 calls heirl3. Wwhen the lower level subroutines
return to heirl2, they will have already parsed the expressions involving
higher priority operators such as multiplication.

In this case, the series of calls reaches primary which identifies the

132 Compiler Intermals

variable a. At this point the camwpiler moves its attention to the next item
in the expression — the addition operator +. primmry returns to heirl5 which
does not find any of the operators it is loocking for, so it returns to heirl4.
This continues until heirl2 is reached. heirl2 is locking for a + or a -, and
a + is what it finds. It has now identified the left operand (a) and the
operator (+) of an addition expression. It now needs the right operard.
Since this operand may be an expression involving higher priority operators,
heirl2 once again calls heirl3 to get an operand.

This time when primary is reached it finds the variable b. Oontrol is
once again returned to heirl5. It sees the multiplication operator * which it
is not interested in so it returns. Wwhen heirl3 is reached, however, it is
locking for an *. It now recognizes that it has found b * which is the left
operand and operator of a multiplication expression. It needs a right operand
to camplete the expression, so it calls heirl4 to evaluate the right operand.

Once again primary is reached and this time identifies the variable c.
When control returns to heirl3 it now has an entire multiplication expression

b * c
operand operator operand

S0 its job is done (We temporarily ignore the need to generate assembler code
to do the multiplication).

heirl3 returns to heirl2 which now has its cauplete addition expression

a + b*c
operand operator operand

The multiplication has already been done, so heirl2 has the correct operands
—— the variable a and the expression b * c.

This campletes the parsing of the original expression. The operations
specifiedhavebeenfomﬁarﬁappliedinﬂmeconectsequemeaccordhxgtothe
order of operations given in Kernighan & Ritchie. Any expression, no matter
how camplicated, can be parsed just the way it was in this example.

Recording the Parse Results

Now that you have seen the parsing you may be wondering how the different
level routines tell each other what they have found. The method is fairly
simple. Each time one routine calls another to find an operand, it passes a
structure with four elements as an argument to the called routine. The called
routine (or same lower level called routine) fills in the structure.

The structure is defined as:

6.9 Recursive Descent Parsing 133

struct operand {

char op_load;
struct st *op_sym;
int op val;

struct typeinfo *op type;
}; ' -

The entry op sym contains a pointer to the symbol table if the expression
being parsed consists of a variable which has not yet been loaded. Otherwise,
it contains NULL. op type simply contains a pointer to the type table entry
which describes the type of the expression parsed so far.]

The more interesting entries are op_load and op val. op load can take on
a number of values (all defined in CSTDDEF.H). Each value sets a different
bit, and it is possible for more than one bit to be set.

EXPRESSION - an expression whose value is already loaded

ICADVALUE - the value of the expression must be loaded

LOADADDR - the address of the variable must be loaded

LVALUE - the expression is an lvalue

CQINSTANT - a constant expression suitable for use as an

initializer, an array dimension, or a case value

the address of a global or static variable plus a

constant offset suitable for use as an initializer

CONSTGFF - a local variable whose address plus a constant
offset must be loaded

ASQCCNST -~ a constant which appeared on the right side of
an assigrment statement but which wasn't loaded

CONSTADDR

The entry op val holds different values depending on the contents of
op load. When op load is CONSTANT or ASGCONST, it contains the value of the
constant. For CONSTADDR or OONSTCFF, it comtains the offset to be added to
the address of the variable.

6.10 Code Generation

The last section mentioned the fact that asseambler code must be generated
as soon as the parsing of an expression is campleted. This is required
because Q/C is a one pass campiler. Once campilation has moved past an
expression, the information that was recorded on the stack indicating the
variables involved and the order of operations is lost. The only permanent
record of what was to be done is the assembler code generated to carry out the
specified operations.

Overview

Basically, there are two kinds of assembler code generated. For same
things, a series of assemwbler statements is generated at that point in the
program to carry out the operations specified by the C code. This is called
inline code. Other operations are done over and over the same way, so the

134 Compiler Intermals

caupiler calls on a small group of subroutines when these operations are
needed. These routines, which have been mentioned before, are called the
canpiler support routines.

The cawpiler support routines are all written in assembler code and
reside in the file CRINTIME.MAC. They consist of routines to do 16 bit
arithmetic, routines to load and store variables, and routines to perform most
of the C operators (for example ocamparison operators such as >=). The
canpiler generates calls to these routines autamatically when they are needed,
so you will not be aware of them unless you lock at the assembler code
generated.

To simplify accessing arguments and local variables on the stack, Q/C
uses a constant stack frame pointer. This means that the campiler maintains
its own stack frame using the BC register pair (and the index register IX in
the 7Z80 version). Regardless of where the stack pointer (SP register), local
variables and arguments are at a constant offset fram the stack frame pointer.
Typically, all functions now start and end with a call to a 1library routine
which manages the activation record for the function. These calls are
generated if any of the following services are needed: :

- allocate and free stack space for local auto variables
- save and restore the Q/C "registers" for local register variables
- save and restore the constant stack frame pointer (register BC/IX)

Q/C ensures that your global names do not conflict with assembler
reserved words or with campiler-generated labels by adding a ? to the end of
your names, and by starting all campiler-generated labels with a ?.

An Example

Before discussing this any further, let's see what code generation looks
like. As a example, the C code

will generate the assembler code:

B :save the address of 1 for the assigrment
H,2 :load the offset of j fram the stack frame ptr
B of j

load the value of j in the HL register pair
put the value of j in the [E register pair
X load the offset of k fram the stack frame ptr
DAD canpute the address of k

CALL ?2g load the value of k in HL

CALL mult multiply HL by [E placing the result in HL
POP D ;retrieve the address of i

CALL ?r ;store HL at the address contained in [E

:
g

?g

H,4
B

g WS N0 NP ™ wmp

6.10 Code Generation 135

The comments are not part of the generated code. They only help to explain
what is taking place in the example.

The local auto variables i, j, and k are all stored on the stack. To
reference them, their address is camputed by adding an offset to the address
contained in the stack frame pointer (BC). Recall that this offset is
recorded in the information field of the symbol table entry for each local
auto variable.

When Q/C needs to retrieve an auto variable, it first canputes the
address and then calls a campiler support routine to do the actual load. In
the example i is the first local variable so its offset is zero fram the
beginning of the stack frame. The addresses of j and k are canputed, and
since they are integers, a call is generated to the routine ?g which loads a
16 bit integer fram the address contained in the HL register pair and places
it in HL. Once the variables j and k are in the proper location, a call is
made to ?2mlt which multiplies DE (containing j) by HL (containing k) and
places the result in HL. Finally, the assigmment to i is done. The POP D
loads the address of i (which was saved by the PUSH B instruction earlier).
Then the assigrment is done by calling ?p which stores the contents of HL
(3 ®* x) at the address contained in IE.

The 280 version can do this with less code by using the index register IX
to access the variables. - In this case the code generated is:

L, IX+2 ;load the value of j
H, IX+3
;put the value of j in [E
L, IX+4 ;load the value of k
H, IX+5
fmult ;multiply HL by DE placing the result in HL
IX+0,L :;store the result in i
IX+l,H

BGEE‘GEBB

This discussion cannot begin to describe all the possible code generation
situations. The major features of code generation will be covered however.
In this discussion the following terms will be used:

unary operator - an operator with one operand (like * in *p)
binary operator = an operator with two operands (like + in a + b)
left operand - first operand of a binary operator (a in a + b)
(abbreviated lop in camments in the campiler)
right operand ~ right operand of a binary operator (b in a + b)

(abbreviated rop in camments in the campiler)
the register pair HL (abbreviated preg)
the register pair [E (abbreviated sreg)

primary register
secordary register

Whenever a variable is referenced either it or its address is loaded into
the primary register. Each of the four storage classes are handled
differently. Table 6-2 summarized the information which is retained in the
symbol table so each type of variable can be located.

136 Compiler Internals

Aato Variables

As you saw in the earlier example, auto variables are loaded by using
their offset fram the stack frame pointer to campute their address. Then a
campiler support routine is called to do an indirect load using the address in
the primary register in the case of 8080 code. The routine ?gc retrieves the
character at the address in the primary register and sign extends to 16 bits
in the primary register. The routine ?g retrieves the 16 bit integer at the
address in the primary register and loads it into the primary register.
Similarly, the routine ?p stores an integer. 280 code loads and stores the
variables directly using the indexed load instructions.

Static Variables

Iocal variables whose storage class is static are assigned an intermal
label number and have storage reserved and initialized to zero like this:

?1: B 0 ;this is a character variable
?22: oW 0 sthis is an integer variable

To retrieve these the code generated is

IDA ?21 1load the character into A
CALL ?2sxt ; and sign extend into HL
LHLD 22 ;load the integer into HL

Storing is done by

MoV AL sput low-order byte of expression into A
STA 21 ; and store the character
SHLD 22 H

Reqgister Variables

Local variables whose storage class is register are held in special
"register" areas defined in the ocampiler support library. These are five
two-byte variables called r?1? through r252. They are oconsidered register
variables because of the speed and small amount of code needed to load or
store them. The code to load them is simply

IHLD ?1? sload a register variable
and storing is

SHLD r?l? :store a register variable
The function vwhich called this function may be using the “registers" also, and
those variables must be available upon returning fram this function. To

handle this, the "registers" are saved by pushing them onto the stack when the
function is entered and then restored by popping them back off the stack when

6.10 Code Generation 137

leaving the function.
Global Variables

Global variables have storage reserved in the program but outside of any
function. Their name in the assembler output is just their C name (or at
least the first 8 characters) with a question mark appended to keep the name
from colliding with assembler reserved words. Thus the code to reserve space
for an integer variable named xi, load it, and store it is

PBLIC <a? smake xi known outside this file
xi?: DW 0 ;define a global integer variable xi

LHLD xi? ;load the global xi

SHLD xi? ;store the global xi

For a character variable (xc), the code is

PUBLIC xc? ;make xc known outside this file

XC?: s 0 ;define a global character variable xc
DA xc? ;load xc into A
CALL ?2sxt ; and sign extend into HL
MoV AL :1load low-order byte of expression into A
STA xc? 7 and store into xc

If the global variable is defined with storage class static, the PUBLIC
directive is not generated which makes this name known only within the current
file.

Register Usage
As any expression is evaluated the code generated normally places the
current value of the expression in the primary register. Unary operators

expect their operand to be in the primary register, and they place the result
of applying the operand in the primary register.

Binary operators load their left operand in the primary register. If the
right operand is a simple scalar variable (meaning no subscripts or other
higher priority operator expressions), the left operand will be switched to
the secondary register and the right operand loaded in the primary register.
Then a oompiler support library routine is called to perform the operation.
The result is placed in the primary register for any lower priority operator
which might be using this expression as its operard.

register. Now the left operand is popped into the secondary register and the
library routine which performs this operation is called as before.

All of the camwpiler support routines work this way. Unary operators
expect their operand in the primary register and place the result in the

138 Compiler Internmals

primary register. Binary operators place their right operand in the primary
register and their left operand either on the stack 'or in the secondary
register. Each binary operator library routine has two entry points. One
entry pops the left operand into the secondary register; the other expects it
to be there already.

The statement parsing routines in OC3.C and the expression parsing
routines in OC4.C call on a number of functions in 006.C and OC7.C to do the
actual assembler code generation.

6.11 Code Optimization

Q/C uses a nuwber of techniques to improve the speed and shorten the
length of the code generated. The five main areas are stack space management,
logical tests, register usage, recognition of special cases, and peephole
optimization.

Stack Space Management

The allocation and freeing of stack space for local variables is’
simplified by the Q/C requirement that all local variables be declared at the
beginning of a function. This allows the campiler to parse all local
declarations and determine how much local space is needed. It then generates
a call to a library entry routine which reserves the space for all auto
variables, preserves the Q/C "registers" if they are needed, preserves the
calling routine's stack frame pointer, and sets the new stack frame pointer.

Since all the locals are declared at one time, the campiler always frees
the same amount of space when you return fram a function. This allows the
campiler to generate a single call to a library exit routine at the end of the
function. All return statements jump to this cammon code.

Iogical Tests

Whenever a C statement such as if or while requires that an expression be
tested, the expression is tested to see if it is true (non-zero) or false
(zero). Since the result of an expression is placed in the primary register,
this test can be done with the code

MOV AH
CRA L
JzZ falselabel

The test in assembler code is based on the setting of the Z flag. If Z is on,
the result is zero or false. If it is off, the result is non-zero or true. A
very simple example is the C statement :

if (1 > 5)
function();

which calls function if i is greater than 5 and does nothing otherwise. This

6.11 Code Optimization 139

could be translated as

IHLD i

XCHG

ILXI H,5

CALL gt stest IE >HL and set HLto Oor 1
MoV AH

CRA L

Jz 21 ;bypass the call if test was false

CALL function
?1:

The comparison operators (==, >, etc.) and the logical operators (&&, etc.)
all retun TRUE (1) or FAISE (0) as their result. In this case the campiler
support routine 2gt is called to see if DE is greater than HL. The test after
the call determines whether 2gt found the expression to be true or false.

To improve code generation, Q/C ensures that all of the operators
mentionedabovesettheZﬂagaswellasplacingtheOorlintheprmary
register. This allows the code to be shortened to

IHD i
XCHG

LXT H,5
CALL ?gt
JZ 21

CALL function
?1:

In general, if one of these operators has just been done, the campiler
remambers it and skips the two unnecessary assembler statements MW A,H and
GBA L.

Register Usage

Q/C typically does not load a variable until it finds out how it is being
used. In the example above, the add operation is parsed by the function
heirl2. 'mediscussmoftherecursivedescentparserinsectionSQS}md
that after heirl2 recognizes the partial expression i +, it calls the routines
which parse higher priority operators to get its right operand. When these
routines retwrn to heirl2 and tell it that the right operand is j, heirl2
knows that no higher priority operators were found following j. This means
that it can now generate the code to do i + j regardless of what follows J.

Since i1 does not need to be preserved after the addition is done, the code can
be shortened to

140 Compiler Intermals
A further improvement can be made when the right operand is a oconstant.
The expression
i+5

could be translated very much like the previous example as

LHLD i
XCHG

LXT H,5
DAD D

i
Since addition is commutative, however, it can be camputed as either i + S or

5 + i (Notice that Kernighan & Ritchie explicitly allows this in Appendix A,
section 7). This allows the code to be shortened to

LHLD i
LXI D,5
DAD D

For operators which are not ocammtative, 1like division, the first fom
including the XCHG instruction must be used to preserve the order of the
operards. Thus

i/5

must be translated by

IHLD i
XCHG
LXI H,5

CALL ?2div ;library routine to do HL = DE / HL
since i / 5 is not the same as 5 / i.
Special Cases

We'll loock at one example of special cases —— addition and subtraction of

a oonstant <= 3. This is improved over the example using constants given
above by using the INX and DCX instructions. The expression

i+l
is translated

LHLD i
INX H

All of the above improvements in doing addition also help in accessing
the elements of an array since arraylsubscript] is equivalent to
*(array + subscript) and in accessing the members of a structure since the

6.11 Code Optimization 141

member's address is the address of the structure plus the offset of the
member.

Peephole Optimizati

Peephole optimization is a technique which locks at a small portion of
the generated assembler code for patterns of instructions which can be
replaced by a more efficient group of instructions. This allows the parsing
and code generation to be less camplicated while still producing reasonably
good code.

Normally the generated assembler code is held in a buffer, and this
buffer is scanned for patterns to be replaced. Q/C uses a simpler scheme (at
least, simpler for the few patterns it is locking for). Whenever an assembler
instruction is generated which is the beginning of a pattern, the global
variable peepflag is set to indicate which pattern. The generated code is
held in a special buffer called peegbuf. If the following instructions
camplete the pattern, the replacement assembler code is written on the output
file. If an instruction is generated which is not part of the pattern, the
instructions in peepbuf are written on the output file and campilation
continues.

The simplest pattern which Q/C recognizes is multiple unconditional
Jumnps :

JMP 2?1
JMP 22

This pattern may be appear because of the way code is generated for if...else
and switch statements. Since the second and subsequent junps can never be
reached, they are dropped. Notice that this means that jumps which are
dropped-cannot have a label. Otherwise they might be reached fram samewhere
else in the program.

This is generally true of any pattern. There cannot be any labels in the
middle of the pattern, or the entire pattern might not be executed every time.
Then the replacement pattern would not do the same thing as the original code.

The second pattern typically arises fram C code like this

X =y;
if(x...)

where a global, static or register variable is referenced in successive lines.
In the pattern

SHID name
I.HI.Dngne

ﬂleminstrmtioncanbedroppedbecausemisalreadyinm..

142 Compiler Internals

The third pattern typically cames fram C code like “this

if (test)
break/continue/return

This generates the assembler code

(test)

JZ ?21

JMP 22
ccls: o

This can be improved by reversing the test and doing the jump for the bweek,
continue, or return statement directly. The replacement pattern is

(test)
JNZ ?2

The constant stack frame pointer makes it easier to access the first auto’
variable defined in a function. Since BC contains the address of the
beginning of the local variable space, the peephole optimizer can often
improve the generated code significantly.

For example, if a function starts like this:
func()
{ char array(80];
register char *p;

then an assigmment which generates the code

;7 P = array:;
IXx H,0
DAD B
SHLD r?l?

becanes

MoV L,B
MOV H,C
SHLD ?l?

Also, if array is used as an argument to a function the code

; puts(array);
X H,O0
DAD B
PUSH H
CALL puts?
becanes
PUSH B

CALL puts?

Appendix A

How Q/C Differs from Standard C

Appendix A in Kernighan & Ritchie's book The C Programming Langquage is
the official reference manual for the C language. Besides giving a camplete
description of the C language, it also describes the implementation dependent
details of various C campilers.

Since Q/C is a proper subset of standard C, Appendix A of Kernighan &
Ritchie describes Q/C as well. A few features are missing, however, so this
appendix is a supplement to Appendix A in Kernighan & Ritchie. The missing
features are listed here, and implementation dependent details of Q/C are
documented. The section mumbering is the same as Kernighan & Ritchie, but
only those sections which are different are included here.

Here is a summary of the major differences between Q/C and standard: C.
The current release of Q/C does not support:

1. variable types long, float and double

2. parameterized #define cammands

3. initialization of auto or register variables

4. local declarations in campound statements

5. bit fields
1. Introduction

Q/C is Quality Computer Systems' implementation of C for 8080/Z80 CP/M
systems. It campiles C programs into assambler language for input to Digital
Research’'s RMAC assembler, Microsoft's MACRO-80 (MSO) assembler, and The Code
Works' CWA Z80 assembler.
2. Identifiers (Mames)

The restrictions on external names (function names and external
variables) are:

RMAC 6 characters, 1 case
M80 6 characters, 1 case
WA 6 characters, 1 case

143

144 Appendix A
The CWA assembler can be reset to recognize up to 8 characters and to

distinguish between upper and lower case.

2.3 Keywords
The following names are reserved as keywords:

. auto emm short
hreak extern sizeof
case float static
char for struct
continue goto switch
defanlt if typedef
do int union
double long unsigned
else reqgister void
vhile entry return

If you declare one of these as a variable name, use cne as a statement label,
or redefine one with #define you will get an error message.
2.4.2 Explicit long constants
No longs.
2.4.4 Floating oconstants
No floats.
2.6 Hardware characteristics
Qurrently Q/C on the 8080/Z80 uses the following sizes:

char ASCII 8 bits
int 16 bits
short 16 bits

4. ¥hat's in a name?

Q/C recognizes all four storage classes, but it requires all local
variables to be declared at the beginning of a function. Thus, the concept of
a block does not exist. All automatic, static, and register variables
declared in a function exist throughout that function.

Types long, float, and double are not implemented. This means that all
arithmetic types are integral types.

How Q/C Differs fram Standard C 145

6.1 Characters and integers
Characters are always sign—extended when they are converted to integers,

so they act the same as the description for the PDP-11. For example, the
value of a character variable is in the range -128 to +127.

6.2 Float and double
No floating types.
6.3 Floating and integral
No floating types.
6.6 Arithmetic conversions
The "usual arithmetic conversions" reduce to:
First, any operands of type char are converted to int.
Then, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

Otherwise, both operands must be int, and that is the type of the
result. _

7. Expressions

The result of division by zero and mod by zero is zero.
7.1 Primary expressions

All constants are of type int.

Argument passing is handled just as described except that there are no
floats or doubles.

7.5 Shift operators

Right shifts are logical (0-fill) if El is unsigned. Otherwise, right
shifts are arithmetic (sign bit is copied into vacated bits).

8.1 Storage class specifiers
Formal parameters and local variables may be declared as register, but

only variables declared as int or as pointers will be put in registers. Also,
only the first five register declarations in a function will be effective.

8.2 Type specifiers

Types float, and double are not available. If you declare a variable to
be long int, you will get a warning, and it will be campiled as a 16 bit int.

146 Appendix A

8.3 Declarators

The only restriction here is that when you declare a function there must

be only one set of parentheses showing the location of an argument list, and
it must appear last. This means, for example, that the declaration

int *(*apfpil3][3]1)();

will successfully declare apfpi to be a 3 by 3 array of pointers to functions
returning pointers to integers. On the other hand, the declaration

int (*fpfi())();

will fail +to declare fpfi to be a function returning a pointer to a function
which returns an integer. 1In general, you cannot declare a function which
returns a pointer to a function or a pointer to an array.

8.5 Structure and union declarations
Bit fields are not implemented.

8.6 Initialization

External and static variables can be initialized when they are declared.
If you do not explicitly initialize them, they will be set to zero if they are
less than 129 bytes long. This restriction keeps the size of .OM files
manageable. If you want large arrays to start at zero, use the campiler
switch -I.

You cannot initialize auto and register variables. Since initialization
is done each time the function is entered, you can get the same effect by
writing assigrment statements at the beginning of the function.

8.7 Type names

»
Type names are available with the same restriction on functions described
in Section 8.3 "Declarators."

9.2 Cowpound statement, ar block

Local variables may be declared only at the beginning of a function, not

at the beginning of any campound statement. This means that the concept of a
block does not exist in Q/C. The syntax of campound statements reduces to:

campourd-statement : }
statement-list
{ opt
statement-list:
statement
statement statement-list

How Q/C Differs fram Standard C 147

Since local variables cannot be declared, no initialization is needed.

9.7 Switch statement

No check is made to insure that the cases are unique. If there is more
than one statement with the same case value, the last one will be selected.
The default case is checked to ensure that there is only one, however.

9.10 Return statement

Since all functions in Q/C return a two-byte value, a character variable
will be sign-extended ‘4 an integer if it appears as the expression in a
return statement.

10.1 Extermal fimction definitions

The function-declarator must meet the restriction given in Section 8.3
"Declarators."” Basically, this means that a function cannot return a pointer
to a function or to an array.

11.1 Lexical scope

Local identifiers may be declared only at the beginning of the block
constituting a function.

12.1 Token replacement
The parameterized #define is not implemented.
12.2 File inclusion

filename must be a CP/M unambiguous file name. As usual, it may include
a drive name.

12.5 Assembler Code Inclusion (new section not in Kernighan & Ritchie)

Q/C allows you to include assembler code in your C program by surrounding
it with the #asm and #endasm preprocessor cammands. Anything between these
cawmands is ocopied directly to the output file. The only change is that -
assembler comments are stripped to reduce the size of the output file. You
can use the #include cammand inside of this construction, but #define cammands
will not be recognized, and no text replacement will take place.

#famm has an optional argument "8080" which allows you to embed 8080
assembler code in your program and have it work correctly with either the 8080
ar Z80 version of Q/C. When you say #asm 8080, the 8080 version simply
ignores this argument since 8080 code is being generated anyway. The 280
version, however, inserts a .8080 pseudo-op ahead of your code and a .280
after it. Notice that this only works with the MSO assembler, not with The
Code Works CWA assembler which can only assemble Zilog memonics.

148 Appendix A

The assambler code is essentially invisible to the campiler. If you want
to use assembler code where the campiler is expecting a C statement, you will
have to surround it with braces or put a semicolon (mull statement) after it.

An example is

while (*s++) { /* send string to port 5 */
#asm
MOV AL
ouT 5

]

This feature has two uses. You can use it to commmicate directly with
hardware or machine software, and you can write heavily-used functions in
assembler for speed. An example of the second use is the functions streq and
astreq in the campiler. If you are concerned about portability, this feature
should not be used.

#endasm

14.4 Explicit pointer conversions

In this implementation for the 8080/280, pointers are represented as 16
bit unsigned integers. There are no aligrment requirements for chars or ints.

15. Constant expressions

Q/C will usually recognize constant expressions in statements and
evaluate the constant expression at campile time. To insure that a constant
expression will be recognized just enclose it in parentheses. For example

retun (c + ('a' - 'A'));
will campile the same as

return (c + 32);
16. Portability considerations

In Q/C the order of evaluation of function arguments is left to right.
Multi-character constants are assigned to a word left to right.

17. Anachronisms

Q/C does not support any obsolete features. In particular, =op for
assigmment operators is not recognized. The example given

x=-]

will assign -1 to x rather than decrement it. The other cbeolete assigrment
operators produce an "Invalid expression" message.

Appendix B

Q/C Error Messages

This appendix lists all of the Q/C error messages alphabetically and
gives a short explanation and possible causes.

The campiler sametimes has a hard time recovering when it does find an
error, so you may get a group of messages for one error. If you see a cluster
of messages which doesn't seem to make sense, try correcting the problem
indicated in the first message and see if you get a good campile.

The symbol name has already been declared. The declaration is ignored.
Notice that an ordinary variable can have the same name as a structure or
union tag or member. However, a tag and a member cannot have the same name.

Argument can't be that type

Structures, unions, and functions cannot be passed as an argument. A pointer
to any of these types is valid, however.

Can only initialize global and static variables
If this is an extern declaration, the variables declared cannot be initialized

because no storage is reserved here. Initialization must be done where the
variables are defined. This release of Q/C cannot initialize local auto and

register variables.
Can't add pointers

The only thing that can be added to a pointer is a scalar.
Can‘t be a member

A member of a structure or union cannot be a function or an instance of
itself. Notice that a pointer to the type being defined is valid.

149

150 Appendix B

Can't close cutput file

An error has occwrred while writing the output file. Most likely the disk is
full.

Can't initialize unions
The C language definition does not allow unions to be initialized.
Can't pass structures or unions

s
Structures and unions cannot be passed as arguments to a function. Q/C
assunes you meant to pass a pointer and campiles the argument as if it were
preceded by the address operator (&).
Can't subtract pointer from scalar
A pointer cannot be subtracted fram a scalar. Subtracting a scalar from a
pointer or subtracting a pointer fram the same type of pointer are the only)
allowed carbinations. :
Can't subtract unlike pointers
Two pointers can be subtracted only if they point to cbjects of the same type.
Can't open: filename
The file name specified can't be opened. Campilation is ended at this point.
The most common cause of this error is misspelling the file name. Other
possible causes are running out of memory space to allocate a buffer for the

file and trying to create a file on a disk with no more available directory
entries.

Can't subscript

You can only subscript a variable if it has been declared as an array or a
pointer.

Can't fundef - not defined

The name you are trying to #undef is not currently defined. Either it never
appeared in a #define statement or it was undefined in a previous #undef
statement.

char camnot hold address

Since char variables are only 8 bits long, they cannot hold a 16 bit address.
If this were a pointer- » it would be a legal initialization.

Q/C Error Messages 151

else not matched with if

There is no if statement active to match with this else. You may have
forgotten to put braces ({}) around the statements making up the canpound
statement in the last if.

Expected

The only punctuation allowed between names is the camma .

Function can't return aggregate

A function can only return a scalar or a pointer to more canplicated types.
#if nested too deeply

Q/C currently supports six levels of nested #if preprocessor camnands.

Illegal address

You are trying to find the address of samething that does not have an address.

Only lvalues have addresses. If the lvalue is a register variable, you cannot
take its address because machine registers normally do not have an address.

Illegal function or declaration
At this level the campiler is expecting either function definitions or

external declarations. This is neither a valid symbol name nor a valid
declaration specifier.

Illegal symbol name

The campiler is expecting a valid symbol name which starts with a letter or an
underscore (_) and consists only of letters, underscores, and numbers.

Il1legal use of a keyword: keyword

The keyword shown after the colon is being used improperly. Keywords cannot
be used as variable names, statement labels, or #define macro names. Notice
that the #define replacement text can be a keyword however.

Illegal use of label: name

The name "shown has been declared a label. The only valid uses of label names

are in goto statements or as the label on a statement. If this is a statement
label, you may have forgotten the colon (:) which must follow the label name.

#include nested too deeply
Q/C currently supports three levels of nested include files.

152 Appendix B

Inoonsistent declaration: name

This external name was previously declared with a different type (like int
before and char now), or it is an entirely different kind of variable (like
using an external variable name as the name of a function as well).

Inconsistent use of pointers in conditional expression

In a conditional expression (?:), if one result expression is a pointer the
other must be a pointer to the same type of cbject or it must be NULL (0).

Initializer must be constant expression
An initializer must be a constant expression as defined in Appendix A, section
15 of Kernighan and Ritchie.

Invalid expression

The canpiler was expecting a variable name or a constant, but it found
samething else. It may be an invalid name. Names must start with a letter or °
an underscore (_) and consist only of letters, underscores, and numbers.

Invalid storage class

You have either specified a storage class which is not allowed for external
variables (only locals can be auto or register), or you have specified more
than one storage class in the same declaration statement.

Invalid type

You have given an illegal cambination of type specifiers in this declaration.
The only types allowed are char, short, int, unsigned, short int, and

unsigned int.

#line mmber must be decimal

The constant following #line must be a decimal mumber.
Line too long

After exparding any #define replacement text, the input line is longer than
the size of the buffer. The size can be increased by changing the symbolic
constant LINESTZE in CSTDDEF.H and recawpiling the campiler.

Macro (#define) pool is full

The space allocated for holding #define names and their replacement text is
exhausted. The macro pool can be enlarged by ruming ORESET which is
described in section 1.5. If you don't have enough memory for a larger macro
pool, you will have to reduce the number or size of your definitions. If you
have definitions which are only used in certain parts of the program, it may

Q/C Exrror Messages 153

be possible to split your program into separately campiled parts with smaller
sets of definitions in each part.

Member can't have storage class

When you define a structure the storage class is given to the entire
structure. Only the type (like int) of the members can be specified. The
storage class specification is ignored.

Member has another meaning

This member has all ready been defined a different way. When a member is
declared in more than one structure, its type (like int or pointer to char)
and its offset fram the beginning of the structure must be the same. Another
possibility is that the name being declared has already been defined as a
structure ar union tag.

Member table full

The space allocated for keeping track of structure members is full. : The
member table can be enlarged by running QRESET which is described in section
1'5.

Missing apostrophe

The character constant does not end with an apostrophe. The end of the line
is considered the end of the constant.

Missing delimiter: * or <

The filename in an #include statement must be enclosed in quotes "® or angle
brackets <>.

Missing fendif

The end of your program was reached without finding a #endif to match the last
#if, #ifdef, or #ifindef.

Missing punctuation — assumed present: punctuation

The campiler was expecting the punctuation character shown. The campilation
is continued as if the punctuation were given.

Missing quote
The string constant has no ending quote. The end of the line is considered

the end of the string. If you are trying to continue the string from one line
to another, the last character on the first line must be a backslash \.

154 Appendix B

Missing semicolon

This statement must end with a semicolon.
Missing while in dowhile

The do ... vhile statement is missing its while condition.
Maltiple default cases

A defanlt case has already been defined for this switch statement.

Must be constant expression

This is one of the places where C requires a constant expression as defined in
Apperdix A, section 15. A bad array size is set to 1. A bad case value
causes the case to be ignored. A #if will be campiled as if the constant
expression evaluated to zero.

Mist be lvalue

The expression requires an lvalue in the location indicated. If this is
unclear, review sections 5 and 7 in Appendix A of Kernighan & Ritchie.

Muast match a #if comsand
A #else or fendif must be preceded by an #if, #ifdef, or #ifndef.
Name not in argument list

The lastsymbolfotmdin’theargumtdeclarationsisananemt included in
the argument ligt.

Need explicit size

The size of the array must be given when an external array is declared without
the storage class extern. A size of 1 is assumed.

Negative array size illegal

The size given for an array must be positivé. The absolute value of the size
specified is used.

No active loop statement

The contimue statement must appear within one of the loop statements while,
do ... vhile, or for since it means to start the next time around the loop.

Q/C Error Messages 155

No active switch statement

case statements must be inside a switch statement. You may have forgotten the
braces ({}) surrounding multiple case statements.

No active switches or loops

The break statement must occur inside of a switch statement or one of the loop
statements while, do ... while, or for. Otherwise there is nothing to break

out of.
No active switches or loops to delete

This is an internal error in the campiler. It is trying to finish up a switch
statement or a loop, and the switch/loop table is empty. If you have made
changes to the part of the campiler which handles switches or loops, check

your logic.

No arrays of functions)
Arrays of functions are not allowed. Perhaps you meant to declare an arr;y of
pointers to functions.

No entry in case table to delete

This is an internal compiler error. The campiler is finishing a switch
statement and it finds fewer entries than it expects in the switch case table.
If you have changed this part of the campiler, check your logic.

No long integers

This release of Q/C does not support long integers. The variables declared as
long will be campiled as int.

No template

A structure is being declared but you haven't said what it looks like. You
must either specify the tag of a previously declared structure or a template
defining this type of structure.

Not a function

It loocks 1like you are tryi.ngtonakeaftmctimcall,butthetypeofthe
expression preceding the left parenthesis is not "function".

Not a pointer

The indirection operator (*) can only be applied to an expression with type
pointer. For example, *0x80 is not a legal way to refer to the contents of
location 8(H because the type of the expression 0x80 is int.

156 Appendix B

Not a structure or wnion member

The name following the operator -> or . has not been declared as a member of
a structure or union.

Not enough table space

There is not enough free memory space available for the campiler to allocate
its tables. Decrease the size of the tables using QRESET described in Section
1.5 ard try again.

Only aggregates can be initialized this way

The use of nested braces ({}) in an initializer is allowed only when wvou
initialize arrays or structures.

Only ane #else allowed
A second #else was found with no #if, #ifdef, or #ifndef preceding it.

Out of memory

The campiler found that the stack has overrun the memory allocated for
campiler tables. Since memory has already been corrupted in unpredictable
ways, you may get other errors. You should reboot CP/M in case it was
changed, and then use (RESET described in Section 1.5 to decrease the size of

the campiler tables before you try campiling again.
Size unknown

The camwpiler needs to know how big one of these things is, but it can't tell.
One way to get this message is attempting to add an offset to a function.
Since a reference to a function is treated as a pointer-to-function, the
offset must be scaled by the size of the thing pointed to. The size is
assuned to be zero.

String is bigger than array

The string specified to initialize the array is longer that the declared size
of the array. You may have forgotten to count the null character ('\0') which
terminates the string.

String space full

The space allocated for holding strings (called the literal pool) is full.
The literal pool can be enlarged by running QRESET which is described in
section 1.5. Q/C dumpe the literal pool to the assembler output file each
time it finds a new function definition. This means that you can also cure
this problem by splitting a function with many string constants into several
functions.

Q/C Error Messages 157

Symbol table full

There is no roam in the symbol table to add the variable just declared. The
easiest way to fix this is to increase the size of the symbol table using the
QRESET program described in section 1.5. If you don't have enough memory left
to do this, you can split your program up into more source files.

This type is too amate

The type you are declaring is too camplex for Q/C. For example, declaring a
pointer with more than 30 ievels of indirection will cause this error.

Too many active switches or loops

The campiler holds the 1label information necessary for doing break and
continee statements in a table. You have nested your switch and/or loop
statements so deeply that the table has overflowed. Increase the size of the
switch/loop table using QRESET described in section 1.5.

Too many command line args

This message will only be given when you run a program. The library function
which parses the CP/M cammand line found more arguments than it could hold in
argv. If you need this many arguments, increase the dimension of argv in
_ghell and rshell, and recampile the library routines.

Too many different types in use

You have exceeded the capacity of the type table. Use QRESET described in
Section 1.5 to increase the size of this table.

You have given more initializers for this variable than its declared size.

Too many switch cases

You have exceeded the number of case statements which the campiler can hold in
the switch case table. Each case statement value counts as one entry even if
several appear on a single C statement. When switch statements are nested,

the switch case table holds an entry for every active case. QRESET, described
in section 1.5, can be used to increase the size of the switch case table.

Unbalanced braces

The end of the program was reachedandt.henmtberofcpeningarxiclosing
braces ({}) was not equal.

158 Appendix B

Unclosed comment

The end of the program was reached without finding an "*/" to close the last
camment. .

Undeclared tag: name

The tag shown has never been defined. You must specify what the structure or
union locks like before you can define one using this tag because Q/C needs to
know how big it is. You can define a pointer using a tag before the tag is
defined, but the definition of the tag has to appear before the end of the
source file if it is a global tag or before the end of the function if it is a

local tag.
Undefined label: name

'Ihenamesl'mnvasusedinag)bostatenentrinﬂuis function, but it never
appeared as the label on a statement.

Undefined variable: name

The name shown has never been declared. This may be a spelling error. Q/C
will declare name to attempt to eliminate further error messages. If name is
followed by a [, it will be declared as pointer to int. Otherwise it will be
declared plain int.

Unknown #preprocessor command

The line started with a #, but it is not a preprocessor cammand that Q/C
recognizes. You may have spelled it wrong.

Usage:cc infile ... -acdilmortv -sxxxx outfile

You typed the command line wrong. If you can't see what you have done wrong
by locking at the general form shown above, review Chapter 2.

Appendix C

Sample Compiler Output

'misameniixs}myouwhatthecanpileroutwtlooks like when you use
the -C option to get a fully cammented listing. The C program being campiled
is:

/* sample - demonstrate the -C campiler option */
int externi;
sample(){

static int stati;
register int regi;
auto int autoi:;

externi = Q;
stati = 0Q;
regi = O;
é}xutoi = Q3

'mecmpileroutputforthisprogranvdththe-Copdmisshomm the next
page. The camments on the right side of the page (which are preceded by the
arrow <——) are not part of the campiler output. They are added to point out
various features.

159

160 Appendix C

:Campiled by Q/C V3.x
;/* sample -~ damwonstrate the -C campiler option */

;int externi; <= Your C program is shown as coamments
DSEG
PUBLIC externi? <¢=— Your external name is used with the ?
externi?: W 0 added to avoid conflicts with assembler
;sample() reserved words
CSEG
PUBLIC sample?
sample?:{
H s
H static int stati;
DSEG
22 W 0 <-— gtati is given the internal name 22

register int regi;
auto int autoi:;

-y wo we

externi = 0;

CSEG

CALL ?ensr <=— The library routine reserves 2 bytes

W -2 on the stack for autol and saves

LXI H,0 the registers

SHLD externi? <-— Your external name is used
: stati = O;

X1 H,0

SHLD 2 ;stati <-— Q/C stores your local variable stati
H regi = O;

LXI H,0

SHID r?1? ;regi <— Q/C stores your register variable regi
: autoi = 0; .

MoV L,C

MOV H,B ;autoi <-— Q/C loads the address of your local

MVI M,0 variable autoi

INX H

b}NI M0

CALL ?exrs <=— The library routine frees the 2 bytes

o 0'f 2 on the stack and restores registers

EXTRN r?1? <-— Q/C informs the assembler that the

EXTRN 1?2? registers and library routines will

EXTRN r?23? be found elsewhere

EXTRN r?4?

EXTRN r?5?

EXTRN ?gc,?sxt,?9cs,?q,?g8,?p,?0,?x,?a,?e,?ne,?gt
EXTRN ?1t,?le,?ge,?ugt,?ult,?ule,?uge,?asr,?asrl, ?asl
EXTRN ?asll,?lsr,?lsrl, ?s,?neg,?cam,?n,?milt,?div
EXTRN 2udiv,?sw,?enr,?en,?ensr,?ens, ?exr,?exrs, ?exs

Appendix D

Compiling the Compiler

For all you brave people (masochists?) who want to change the campiler
and recampile it, here goes. The first thing you must do is use QRESET
(described in Section 1.5) to change the campiler table sizes to the following
values:

Symbol table: 250 entries
Literal pool: 300 characters
Macro pool: 1300 characters

Ramning the EXPAND Program

The source code for the campiler is in the files CSTIDEF.HX, OGLBIEF.CX,
OGLBOECL.CX, and the nine files OCl.CX through OC9.CX. The “X" in the type
means that these filesareincmpressedfomandmstbeexpandedbeforethey
can be used. The expansion program is run like this:

A>EXPAND CCl.CX CCl.C

The first file name OCl.CX is expanded and written to the second file name
QCl.C. Of course, disk drive specifiers are legal in these names.

Several simplifications are possible. If you do not specify an output
file, EXPAND will supply a name based on the input file name like this:

* ,CX becames *.C

* HX becames *.H
* MX becanes *.MAC

For example
A>EXPAND CSTDDEF.HX

will create the expanded file CSTDDEF.H. If you specify only an output drive,
the created filename will be on that drive. This means that saying

A>EXPAND OGLBLDEF.CX B:

will create B:CGLBDEF.C. Fram this point on, I will only mention the names of
the expanded files.

161

162 Appendix D

Compiling the Compiler

The first time you will have to canpile and assemble all nine pieces. If
you save all of the .REL files produced by the assembler, however, you will
only need to compile and assemble those parts of the program which actually
change in the future. The o0ld and new .REL files are then linked to make a
new .COM file.

NOTE: The version of Q/C that comes on your distribution disk was linked with
PLINK-II described below. If you link with Digital Research's LINK or
Microsoft's L80, COC.OM will be the same size but it will use about 1K
more mamory at execution time. For the explanation, see the section
"Using PLINK-II."

After you've got a new campiler there are several stages of testing you
will want to do. First try it on a simple program just to see that it still
can campile at all. Then write same programs to test the new features that
you have added to the campiler. :

When you are satisfied that your changes are doing what you intended, you
will want to see that the new canp:.ler is "fertile" -- that it can reproduce
itself. Call the original version of the campiler the parent and the new
version of the camwpiler that you just created the child. Now use the child to
to canpile the campiler once again and create a new version called the
grandchild. If everything is still working you can campile the parts of the
campiler (OC1.C through OC9.C) one at a time with the child and the
grandchild. Use the program OOMPARE included on your Q/C disk to campare the
two assanbler files generated by the child and grandchild and be sure that
they are identical. If they are not, start checking to see why the campiler
is not generating the same assembler code each time and correct it. Wwhen the
child and the grandchild both produce identical code, you can safely erase the
parent (or perhaps more safely, put it away for a while and then erase it).
Notice that you haven't proved that the campiler is 100% correct — just that
it can cawpile itself correctly. '

Now that you have a new fertile campiler, you can change the campiler to
actually use the new features. Then you can repeat the whole process and
finally end up with a new improved cawpiler which will do more or better or
both. By using as many of the features as possible in the campiler, you also
make it a good test program for itself.

No doubt you will came up with your own procedure for campiling the
campiler, but the following discussion should help get you started.

If you are using 8" single density disks or 5" disks, you will need two
drives. The disk in drive A should have the new cmpiler source files CCl.C
through CC9.C, the header files QSTDIO.H and CSTIIEF.H, the global declaration
files CGLBIEF.C and OGLBINCL.C, the old version of cx:.cnl, your assenbler and
linker, and the run-time library CRIMLIB.REL. The disk in drive B should be
pretty much empty. Further juggling of files will probably be necessary if
you are using 5" disks.

Compiling the Compiler 163

Using REAC

If you use RMAC, start by changing the default assembler to RMAC. This
is done by changing the definition of DEFASM in the header file CSTIDEF.H to

#define [EFASM ‘a’
Next camwpile and assemble each part of the campiler like this

A>QC CC1 -AD B:
(campiler messages)
A>RMAC B:CCl1 $PZ-S
(assembler messages)
A>ERA B:CCl.MAC

This will produce the file OCl.REL on drive B. When you have campiled all the
parts you need, you can link the pieces together by saying

A>LINK B:C&B:(xll,B:CI!2,B:CC3,B:CIZ4,B:CI!5,B:C!26,B:@,B:CDB,B:@,&
LINK 1.3

*CRUNLIB(S,A, $IB, $52]

(linker messages)

giving you a new version of the campiler OC.OM on drive B. The original
campiler will still be on drive A. The Additional Memory (A) switch must be
usedinaSGKCP/MsystenorLINKrunsmtofmnryspace. The $I switch is
then used to tell LINK to store its buffers in temporary files on drive B.

Using MBO

If you use MB0 you cannot link Q/C on a 56K CP/M system. I estimate that
it would take at least a 60K system. One way around this is to use PLINK-IT
which is described in the next section.

Compile and assemble each part of the campiler like this

ACC OC1 -0 B:
(canpller messages)
A>MB0 =B:CCl
(assembler messages)
A>ERA B:XC1.MAC

This will produce the file OC1.REL on drive B.
When all parts are campiled, you link them by saying

A>B:

B>A:180 oc1,ccz,oca,cc4,oc5,ocs,cc7,oce,cc9,mcmm.m[s,oc@@
(linker messages

164 Appendix D

giving you a new version of the campiler OC.O0M on drive B. The original
campiler will still be on drive A.

Using PLINK-II

The PLINK-II linker fram Phoenix Software Associates Ltd. has (at least)
two advantages over the linkers previously described. It can link any size
.OM file up to the limit of 64K, and it allows you to reuse one-time
initialization code as part of the free space. The functions in QC9.C are
used only when the campiler starts. Using the FREEMEMORY statement places
this module after the address which the linker says is the start of free
memory space. Then as long as no allocated memory is stored into before the
functions in OC9.C finish, the space they occupy can be reclaimed.

I use a file called CC.INK defined as follows:

FILE B:CCl,B:CC2,B:CC3,B:CC4,B:CC5,B:CC6,B:CC7,B:CC8
LIB CRINLIB

FREEMEMORY

FILE B:CC9

OUT B:CC;

Then when all the .REL files are ready, I give the cammand

A>PLINK-II @CC

and a new version of Q/C is produced on drive B.
PLINK-II is available fram:

lifeboat Associates
1651 Third Ave.
New York, NY 10028
(212) 860-0300

Effect on QRESET

All of the locations changed by QRESET are global variables defined in
OGLBLEF.C. These variables are forced into the code segment by a CSEG
directive so they will all be located at the beginning of CC.OM. C(RESET
finds them by locating the campiler sign-on message which is Jjust ahead of
them. As long as you don't change the order or location of these global
definitions QRESET should continue to work correctly.

Appendix E

Maintaining the Function Library

This appendix describes the design details of the Q/C function 1library
and then tells you how to build a new library if you want to make changes or
additions.

Design of the Q/C Function Library

The design goal for the Q/C function library is to be as close as
possible to the standard C library. The entire function library other than
the CP/M and MP/M system calls, the non-local jump routines setjmp and
longjmp, and the 8080/Z280 port I/0 routines in and out are written in C.
Whenever the campiler is changed to generate better code, the I/0 library* can
be recampiled to take advantage of the improvements.

Same of the library routines are also provided in assembly language. In
these cases, the portable C version can be selected by defining the symbolic
constant FORTABLE as discussed in the camments at the beginning of the library
routines. If you are using The Code Works CWA assembler, you must campile the
C versions because OWA can only assemble Zilog mnemonics.

The following discussion starts with the low=level I/O routines which
interact directly with CP/M, and continues with the character (buffered)
routines. These routines deal only with the low-level library functions, not
with CP/M itself. The discussion ends with the routines which use the
standard input/output files and how these files are redirected.

Low-level (System) I/O

At this level, everything is done with CP/M system calls using the
function bdosl in the campiler support library. For each file that is open, a
file control block (fcb) is maintained. It comtains a 36 byte CP/M fcb which
allows use of the CP/M 2.2 randam access functions, a one-byte status flag and
a two-byte unsigned integer to hold the current last record number.

Q/C uses individual bits in the status flag to indicate the following
conditions about the file:

165

166 Appendix E

#define READ 0l /*
#define WRITE 02 /*
#define APPEND 04 /* output and append new data */
#define BINARY 010 * treat data as text */

#define BUF 020 /* a buffer has been allocated */

#define USERBUF 040 /* a user-supplied buffer is being used */
#define FEOF 0100 /* an input file has reached end-of-file */
#define FERR 0200 /* an error has occurred on this file */

open for input */
open for output */
open for
don't

Recording the last record mumber allows the read function to know where the
end—of—fileisevenbeforeywcloseafileopenedﬁorreadj_ngandwriting.

Space for the Q/C fcb's is obtained by calling the library function sbrk.
The pointer returned fram sbrk is stored in an array of pointers to fcb
structures like this

#define NFIIES 10 /* you can change this number */

struct fcb {

char flag;

unsigned file size;

struct cpufcb {
char drive;
char filename(8];
char filetype[3];
char extent ;
int reserved;
char rec ont;
char dirl16];
char curr_rec;

The name _fcb is one that C programs do not normally need to be aware of, so
it starts with "_" to avoid oolliding with your external names.

Just as in standard C, when you opem or creat a file you get back a file
descriptor (fd) which is a small positive integer. These mumbers range fram 6
to NFIIES + 5. This is done to avoid the INIX fd's 0 (stdin), 1 (stdout), and
2 (stdexr), and also fd 5 which is used for the CP/M IST: device (the
printer). So, if the library is campiled with NFIIES = 10 allowing ten files
to be open at once, the fd's will range fram 6 to 15. The fcb associated with
each file will begin at the address in _fib[fd — 6]. Your program does not
need to be aware of anything but the file descriptor, of course, since it is
what you use to tell read, write, seekr, and close which file to work with.

Character (Buffered) I/O

At this level the I/0O is done with individual characters or strings of
characters terminated as usual with a null ('\0') character. These routines

l\h.inbainixgthennctiml.ihary 167

all use the low-level functions open, creat, read, write, and cloee to do
their work, so they are nearly independent of CP/M.

The main dependencies are that they recognize the CP/M end-of-file
character OxlA (“Z), and they change CR/LF character cambinations indicating
CP/M end of line to the C convention of a single newline character ‘'\n' (0OxQA)
at the end of each line. 'IhisallcnmyoutowriteyourQ/Cprogransusingthe
standard C conventions and still be campatible with CP/M text file conventions
sO you can edit files produced by a Q/C program, for example. This tampering
can be eliminated by opening the files for binary 1/0.

Other dependencies are that the CP/M CONBUF function #10 is used by gets
and fgets when you read fram stdin. Also, you can access the CP/M IST: device
(the printer) by opening "lst:" with fopen.

To allow your program to read and write any mumber of characters and
still do the actual I/O in 128 byte records, the character I/0 routines hold
the data in buffers. The size of these buffers is controlled by the symbolic
parameter NSECTS in the disk I/0 library. It is just the mumber of CP/M 128
byte records (disk sectors) that the character I/0 routines will buffer and
will read or write at one time. In fact, to increagse the efficiency of disk
1/0, you will typically want to set NSECTS equal to 4 or 8. This is
particularly helpful if your input and output files are on the same drive
since this will minimize the number of times the read/write head must move
back and forth.

To allow the character I/0 functions to manage these buffers, the library

has an I/O block (iob) for each buffered file. The definitions for using
buffered files appear in the standard header file QSTDIO.H:

#define FILE struct _iob

struct _iob { .
char flag; /* status flag for this file */
char ¥ pch; /*poirrtertormrtdaracterinbuffer*/
int ont; /* number of bytes left in buffer */
char ¥ puf; /* pointer to buffer for this file */
int _Bufsize; /* size of buffer for this file */
char _f4; /* the file descriptor for this file */

Lo

Q/C holds the 1/0 blocks in an array of structures defined as
FILE _ico[NFILES];

When you open a file for buffered I/0O by calling fopen you get back a
pointer (fp) which is actually a pointer to (the address of) the iob
being used for this file. fopen calls open or creat to open the file for
mpatormtputandsavestheﬁdintheiobﬁortheoﬂxercharacterﬂo
ons. other fields in the icb are set to their initial values. This

all be seen in the listing of fopen.

h
3

Eg'

168 Appendix E

The buffer is not allocated until the first time the file is read or
written. Until this time, you can supply your own buffer by using the library
functions setbuf and setbsize. If you do not supply a buffer, the storage
allocator sbrk is called to obtain space for the buffer.

When you call routines like getc and fgets you are actually being handed
characters fram the buffer most of the time. These routines change the-
pointer to the next character in the buffer and decrease the count of
characters remaining each time. When the buffer is empty, it gets filled by
calling the low-level routine read which reads the required number (NSECTS) of
CP/M 128 byte records directly into the buffer.

The output routines putc and fputs work in a similar fashion. When the
buffer for an output file is filled, they call write to write the buffer to
disk. Iook at the library programs to see the details of how all this is
accamplished.

The one big difference in handling input and output files cames at close .
time. In both cases, fclose zeros all the bits in the status flag except
"buffer allocated" to indicate that this iob is no longer in use. This frees
the iob so that another file can be opened. For an input file, this is all
that is done. ’

If the file is open for output, however, the last buffer must be written,
and a CP/M close must be done to record the fcb information permanently on the
disk. If the file is open for normal (text) output, fclose first adds a CP/M
EOF character Oxl1A (°Z) to the end of the data in the buffer. For text or
binary files, it then calls fflush. f£flush figures out how many CP/M records
need to be written to flush out the partially filled buffer, and then calls
write to write them. fclose then calls close to do the CP/M close.

Standard I/0 Files and Redirection

Under WNIX, the shell handles the redirection of files, but no camparable
capability exists in CP/M. In Q/C there is a library routine called _rshell
which is called before your main function. It parses the CP/M cammand line to
build arge and argv, and it also looks for instructions to redirect stdin and
stdout. If you request redirection, _rshell will open the files you specified
and set stdin and stdout to the file pointers returned by fopen.

The files stdin, stdout, and stderr are normally associated with the CP/M
ON: device which is your terminal. You can call any of the buffered I/0
routines with the names stdin, stdout, or stderr and the appropriate file will
be used. In fact, the functions which do I/0 using the standard I/O files are
defined in terms of the buffered I/0 functions. For example, putchar locks
like this:

Maintaining the Function Library 169

putchar(C{!)
return putc(c, stdout);
}

Q/C adds the ability to write to the CP/M IST: device which is normally
your printer. You can use the buffered I/O output routines by opening lst:
like this

FIIE *fplst, *fopen();
fplst = fO!En("lSt:", llwll)7
and using fplst as the file pointer to the other functions.

Also, cammand line redirection recognizes lst: as a request to direct the
standard output file stdout to the printer. For example, if copy copies stdin
to stdout, you can print the disk file USERMAN.TXT by typing the underlined
cammand

A>QOPY <USERMAN.TXT >LST:

If you make changes to the function library you will have to recampile
and assemble it to get CRINLIB.REL. The source for the function library is in
the four files CDISKLIB.CX, CUTILIB.CX, CASMLIB.CX, and CRINTIME.MX. These
files are all campressed and must be expanded as described in the section
"Running the EXPAND Program" in Appendix D. CDISKLIB.C contains all of the
I/0 and memory allocation functions. CUPILIB.C contains the string and
character handling functions. CASMLIB.C contains the functions which are
provided only in assembly language and CRINTIME.MAC contains the cawpiler
support routines. Because of the large number of files involved, you will
probably want to have a separate disk with little or nothing else on it to
hold all the intermediate assembler and .REL files.

CDISKLIB.C, CUFILIB.C and CASMLIB.C must be campiled with the Q/C library
generation option (-L). This option campiles all global definitions at the
begimning of the C source program into the normal output file. Each C
function is compiled into a separate assembler file named function.ext where
function is the C function name and .ext is the file extension appropriate for
your assembler. There is one peculiarity in this process. CP/M does not
accept the underscore (_) character in its file names, and MBO will not accept
file names with any special characters in them. Because of this, Q/c
translates the underscore character to the digit 1 when it creates the
assembler file. As an example, the library file _exit will be placed in the
file called 1EXIT.MAC for MBO and (WA or IEXTT.ASM for RMAC. These files must
all be assambled separately.

170 Appendix E

Two important considerations when building the library are:
(1) putting the global variables in a place where they will always be loaded,
and
(2) ordering the functions in the library so all references are forward
references.
The first item is handled as follows. All global variables used by the
lJ.braxy functions are defined in CDESKLIB.C. Assuming your source files are
in drive A and your work disk iz in drive B, campile CDESKLIB.C like this

A>CC CDISKLIB -LO B:STDIN

This causes the global variables to be placed in B:STDIN.MAC or B:STDIN.ASM.
You assemble this with the cammand

A>MBO =B:STDIN
or
A>RMAC B:STDIN $PZ-S

giving B:STDIN.REL. Since this module is included in CRINLIB.REL, as - STDIN,
any program which references stdin will cause this module to be loaded.
Including QSTDIO.H in all your programs thus insures that the library global
variables will be loaded.)

The camwpiler support routines must then be assembled. If you are using
M80, simply say:

A>MBO =CRUNTIME

If you are using RMAC, you should first change the EQUate at the beginning of
CRINTIME.MRAC tO read:

RMAC BEQU TRUE
Then assemble this file by saying:

A>RMAC CRINTIME.MAC $PZ-S

In either case you will end up with the file CRINTIME.REL.

IMPORTANT NOTE FOR RMAC USERS:)
Once you rebuild the library using RMAC, it is NOT usable with L80 or
PLINK-II. RMAC cannot assemble the MB0 end-of-memory symbol $MEMRY,
so the Q/C memory allocator will no longer work.

Maintaining the Function Lilwary 171

To make all references in the library forward references, the individual
modules must be ordered as follows: ‘

1. First, modules from CDISKLIB.C: 1RSHELL, 1SHELL, CANTOPEN, EXIT, GETS,
PUTS, SCANF, FSCANF, 1SCAN, QPRINTF, PRINTF, FPRINTF, GETCHAR,
PUTCHAR, FOPEN, FCILOSE, FGETS, FPUTS, FREAD, FWRITE, GETW, PUIW, GEIC,
1IFILL, UNGETC, PUTC, FFLUSH, 1CHKBUF, SETBUF, SETBSIZE, FEOF, FERROR,
CLEARERR, FILENO, OPEN, CREAT, RFAD, WRITE, CLOSE, SEEKR, TELLR,
UNLINK, 1GFD, 1GFCB, 1EXIT, MAKFCB, CALLOC, MALIOC, FREE, SBRK,
MAXSBRK, MOAT, GETKEY, STDIN.

2. Second, modules fram CUTILIB.C: SSCANF, SPRINTF, 1CAT, 1FMT, ITOB,
ATOI, 1ATOI, STRCAT, STRCPY, STRNCAT, STRNCPY, STRMOV, STRLEN, STROMP,
STRNCMP, CHUPPER, CHLOWER, ISPUNCT, ISCNTRL, ISALNIM, ISALPHA,
ISUPPER, ISLOWER, ISDIGIT, ISSPACE, ISASCII, ISPRINT, INDEX, RINDEX,
TOUPPER, TOLOWER, IMIN, IMAX, PEEK, POKE, WPEEK, WPOKE.

3. Third, modules from CASMLIB: IN, OUT, SETJMP, LONGJMP, BDOS, BDOS1,
MEM. .

4. last, from CRINTIME.MAC: everything is pulled in at once as one module
called "CRINTIME".

This ordering ensures that the linkers will load all functions needed with a
single pass through the function library.

Once you have all the individual .REL files, the library is built using
the Microsoft or Digital Research LIB program or the The OCode Works CWLIB
program. All of the modules are simply included in the new library in the
order they appear in the three lists above.

Since the library is already set up, any maintenance you do will
typically involve anly ane or a few functions. In this case you can build the
new library fram the old one and just substitute the new modules in the
correct location. As an example of how this is done, suppose you are changing
the functions fprintf and putc which are in CDISKIIB.C. It is easiest to
cmpileﬂnuttirelibraryarﬁthenassenblemlytheﬁmctimsbeing
replaced. Assuming that the source files are on drive A and the work disk is
on drive B, give the cammands

A>CC CDISKLIB -I0 B:STDIN
(compiler messages)

A>@ or A>RMAC B:PRINTF $P2-S
*=B : FPRINTF (assembler messages)
No Fatal error(s) A>RMAC B:PUTC $PZ~-S
*aB: PUTC (assembler messages)
No Fatal error(s) A>

*h

C
A>

Now you can build your new library for M80 on drive B, and leave the

172 Apperdix E

original library unchanged on drive A by saying

<o AYREN C:RUNOLD RELF(‘RUNLIB REL Cs
ALIB .
*B:CHI CRUNLIB=CHJBDLD<1RSHEL..PRINI‘F> B:FPRINTF
*CRUNOLD<GETCHA . .UNGETC> ,B: PUTC CRUbDLD<FFI.USI—I..CRINI‘I>/E
A>

orforRV!AC

ca A>LIB B: CRUNLIB=CRIM.IB(1RSHEL~PRINI'F) B:FPRINTF
ETEE . A>LIB B:CRUNLIB=B:CRUNLIB,CRUNLIB(GETCHA-UNGEIC) ,B: PUTC
A>LIB B:CRUNLIB=B:CRUNLIB,CRUNLIB (FFLUSH~CRUNTI)

You have .included all the modules fram the criginal library except FPRINIF and
‘POTC. These were loaded from the .REL files you just created on drive B.
. Notice " that only the first six characters of a module name are retained, so
you must specify only the first six characters of long module names. In the
example the module names 1RSHELL, GETCHAR, and CRINTIME were shortened.to
1RSHEL, GETCHA, AND CRINTI. <heoﬂierhandBmml’fREL:Ls a CP/M file
-name so-it is given in full.

" For nore information on do:l.ng llbrary malntenance, see the manual for the
assembler and library manager you are using.

Appendlx F

Q/C on CP/M-Compatlble Systems

As I stated in Chapter 1, Q/C should run on CP/M-campatible systems, but
this is not guaranteed. If you have problems, I will give you what assistance
I can. Since the vast najcrity of users have CP/M, however, this is where the
main support will be. . :

wWhen youer/ConaCP/M—canpatiblesystem,theproblansstanftanthe
way values are returned fram operating system calls. When a BDOS service is
needed, thef\mtionnunberisloaiedmintheCregisterarﬁanyaddltimal
paraneterisloadedinm..'menaCAI.LisdaxetolocatimSH.: -

Unfortunately, the CP/M Interface Guide does not clearly specify how
values are returned. For CP/M 2.2 it says that single byte values are
returned in A and double byte values are returned in HL. For campatibility
with earlier versions, CP/M 2.2 returna L=A and B=B. It does not state what
is in B when the value retwrned iz a single byte, however. .On the CP/M
systems I have seen, B=H=0 for single byte returns. On CP/M-cawpatible
systems this is not always true.

Q/C puts its function return values in HL. To satisfy everybody it
provides two functions to do CP/M BDOS calls. bdosl takes the single byte
returned by CP/M in the A register and moves it to L. It then loads 2zero in
the H register. bdos simply returns the two byte value which CP/M puts in the
HL register pair. AllBlDScallsintheQ/Clibraryexpectsinglebyteretxxn
values, so they use the bdosl function.

Although this technique makes Q/C and QRESET work on other systems, you
may still have a problem with the programs you write. If you make any direct
BDOS calls using the Q/C library routines, be sure to call bdosl when you
expect a single byte return value and bdos when you expect a double byte.

173

