

MicroTools

UNIX-Like Utilities for CP/M

MicroToo1s Software
PO Box 12

Napervi11e, IL 60540

January 1983
1

COPYRIGHT NOTICE

Copyright (c) 1983 by Donald Graft. All rights reserved. No
part of this publication may be reproduced for commercial
purposes without written permission of Donald Graft.

TRADEMARKS

The following trademarks are referenced in this publication:

CP/M Digital Research, Inc.
UNIX Bell Laboratories
Wordstar MicroPro International, Inc.
MicroShell New Generation Systems, Inc.

January 1983 1

CONTENTS

Overview . 1
Command Syntax. 3
 General Command Format 4
 Options 5
 File Specification 6
 Redirection 8
Pipelines . 10
Microshell Compatibility 12
Command Descriptions. 14

(c) copyright 1983 Donald Graft
all rights reserved

MicroTools Overview

Overview

MicroTools are UNIX-like utilities for CP/M that provide
features absent in similar programs from other sources. For
example, many listing programs lack a means for offsetting
the output from the left margin to allow room for punching
holes (PIP also lacks this option). The MicroTool pr provides
this option and others seldom found in listing programs. The
MicroTools employ syntax similar to that of the UNIX
operating system. They have logical option defaults, and
support input/output redirection, which allows a program's
input and output to be specified on the command line that
invokes the program.

MicroTools that can operate on a list of files (such as pr
and wc) accept wildcards (ambiguous file references) similar
to CP/M wildcards. The MicroTool wildcards, however, also
allow exclusion of files.

The MicroTools are compatible with New Generation Systems'
MicroShell (New Generation Systems, Inc., 2153 Golf Course
Drive, Reston, VA 22091). Although not required for operation
of the MicroTools, MicroShell is recommended for the
following reasons:

o It supports multiple CP/M commands per line,
input/output redirection, and pipelines.

o It contains an automatic disk-search mechanism that

makes most disk-drive prefixes unnecessary and allows
the MicroTools to be placed only in user area 0 yet be
accessed from all user areas.

o It contains a command file mechanism that is

significantly more powerful than the CP/M SUBMIT
program.

January 1983 1

MicroTools Overview

o It allows lowercase command-line arguments to be

passed to programs.

The MicroTools require CP/M 2.2 with 32K of main memory. They
are most effective in environments that have enough mass
storage so that they may be kept online at all times,
although such an environment is not mandatory.

The documentation supplied with the MicroTools consists of a
general information section that describes command syntax,
options, wildcards, input/output redirection,
and pipelines, and an individual description for each
MicroTool. The individual descriptions contain examples to
guide the user and to suggest possible applications.

January 1983 2

MicroTools Command Descriptions

Command Syntax

Application programs can be designed with either of two user-
interface philosophies: (i) a verbose, menu-driven
philosophy, or (ii) a terse, single-command-line philosophy.
Both have advantages and disadvantages. Advocates of the
first philosophy feel that users should not need to learn
command syntax or consult a manual to use a program; hence,
programs should be menu-driven. Advocates of the second
philosophy counter that humans are intelligent creatures that
learn quickly; therefore, syntax and often-used options are
soon committed to memory, after which terseness becomes a
valuable attribute. These are human-factors concerns that can
be argued almost without end. There is a practical
consideration, however, that tends to shift the balance in
favor of the second philosophy (at least for the kind of task
for which the MicroTools are intended): the need to
interconnect general-purpose programs to produce more
specific tools.

In discussing UNIX (Datamation, November 1981), Michael Lesk
of Bell Laboratories writes:

UNIX is undoubtedly near an extreme of terseness,
partly because it was originally designed for slow
hardcopy terminals. However, the terseness is very
valuable when connecting processes (programs). If
the command that lists the logged-on users prints a
heading above the list, you can't tell how many
users are on by feeding the command output to a
line counter. If the editor types acknowledgements
now and then, its output may not be directly usable
as input somewhere else. Of course, you could feed
it through something which strips off the extra
remarks, but presumably that program would add its
own chatty messages.

January 1983 3

MicroTools Command Syntax

Another point to consider is that the interactiveness of
menu-driven programs can be a burden when interconnecting
programs. Suppose a user creates a pipeline (pipelines are
described in the in next section), in which the output of
program 1 is the input to program 2, whose output, in turn,
is the input to program 3. In UNIX, this is denoted as
follows:

program 1 | program 2 | program 3

In practice, the user wants to regard the pipeline as a new
command and so will probably use a command file or alias to
invoke the pipeline with a short mnemonic. The user will want
to be able to invoke the pipeline and have it run to
completion without stopping at each intermediate program to
prompt for inputs. Therefore, the syntax must be based on the
terse, single-command-line philosophy.

Because the MicroTools are general-purpose programs designed
to be interconnected (either via MicroShell's pipeline
mechanism or via the MicroTool p, a pipeline processor), the
terse, single-command-line philosophy is used. The syntax is
sufficiently straightforward that unsophisticated users can
master it in a short time. Users familiar with UNIX will be
able to use the MicroTools immediately.

General Command Format

The general format for the MicroTools (with some exceptions
as detailed in the individual command descriptions) is the
command mnemonic followed by options, file-specification, and
redirection sections, as follows (brackets indicate that the
sections are optional--the brackets are not part of the
command line):

command [options] file(s) [redirection]

For example, the following command prints double-spaced
listings of the files text1 and text2 and saves the output in
a file named log:

pr -d text1 text2 >log

The command mnemonic is "pr" (for "print"); the options
section is "-d"; the file-specification section is "text1
text2"; the redirection section is ">log".

January 1983 4

MicroTools Command Syntax

The options and redirection sections are optional and can be
omitted. If the options section is omitted, the program's
default options are used (option defaults are given in the
individual command descriptions). If the redirection section
is omitted, the program takes its input from the named
file(s) and sends its output to the named output file (or to
the console if an output file is not specified).

The options, file-specification, and redirection sections
each have their own syntax, as described below. Common to
all three, however, is the concept of an "argument." An
argument is a string of characters delimited by blanks
(spaces or tabs). For example, the following command consists
of six arguments:

col -x -q -c4 text >output

The arguments are "Col", "-x", "-q", "-c4", "text", and
">output". The concept of an argument is used in the syntax
descriptions below and in the individual command
descriptions.

Note that a brief help message can be obtained for each
MicroTool by simply typing the command name without any
following arguments.

Options

The options section is used to select command options, which
are detailed in the individual command descriptions. An
option is selected via one or more arguments, the first of
which always begins with a character followed by a single
letter that identifies the option. For example, the following
command contains a single-argument option (-c5) that
instructs col to print the file named infile in five-column
format:

col -c5 infile

The following command contains a two-argument option (-h
hello) that instructs pr to print "hello" as the header
string:

pr -h hello infile

January 1983 5

MicroTools Command Syntax

To specify more than one option, simply list them; for
example, the following command prints infile double-spaced (-
d), with numbered lines (-n), with a page length of 55 (-
155), and with the header string "goodbye" (-h goodbye):

pr -d -n -155 -h goodbye infi1e

A useful shorthand is provided that allows sing1eargument
options to be concatenated into a single argument. For
example, the following two commands are identical:

pr -d -n -155 -f infile
pr -dn155f infile

A multi-argument option can also be concatenated, but further
options must start with a - character. Thus, the following
command is leqal:

pr -dn155fh goodbye -08m366 infile

while the following command is illeqal:

pr -dn155fh goodbye 08m366 infile

Invalid option identifiers are not accepted and an
appropriate error message is printed. Some mistakes, however,
are detected but are reported inappropriately. For example,
consider the following command:

pr -h infile

The user omitted the second argument of the -h option and pr
assumes that infile is the required argument. Therefore, an
input file has not been specified so pr prints a "no input
file" error message.

File Specification

The file-specification section defines a command's input and
output. Files are specified by their directory file names;
explicit drive designations can be used. The MicroTools allow
direct input to a command from the console by specifying the
file con:. This is, however, a questionable procedure because
the input is lost. It is generally preferable that input be
contained in files. When inputting directly from the console,

January 1983 6

MicroTools Command Syntax

terminate input with a control-z (CP/M end of file) on a line
of its own followed by a carriage return.

There are two types of file-specification section (the
particular type used by a command is given in the USAGE
section of its individual description): (i) infile-outfile,
and (ii) list. The infile-outfile type consists of one or two
arguments that specify the input file or console (con:) and
optional output file or device (con: or 1st:) as follows
(brackets indicate optional arguments--the brackets are not
part of the command line):

command infile [outfile]

If an output file or device is not specified, output is sent
to the console. An example of the infile-outfile
specification type follows:

col list table

This command prints the file list in multicolumn format and
saves the result in the file table.

The list file-specification type consists of one or more
arguments that specify input files, as follows:

command infile1 infile2 infile3 ...(etc)

An output file cannot be specified in a list specification;
the output is always sent to console. To collect the output
in a file, output redirection must be used, as follows:

command infile1 infile2 infile3 >outfile

For both types of file-specification section, an appropriate
error message is printed if a specified input file cannot be
opened. If a specified output file is already present, it is
overwritten.

Commands that accept a list specification also accept
wildcards (ambiguous file references) similar to CP/M
wildcards. The MicroTool wildcards, however, also allow
exclusion of files via a @ prefix. For example, the following
command prints all files except .com files:

pr *.* @*.com

January 1983 7

MicroTools Command Syntax

Note that if the first wildcard argument is an exclusion
wildcard, *.* is assumed; therefore, *.* is superfluous in
the example above.

In @ specifiers, the ? character never matches a space. Thus,
for example, "@help?" does not match "help". The normal CP/M
? character matches a space at the end of a file name or
extension; thus, "help?" matches "help".

If a wildcard is given that does not match any files, a "no
input file" error message is printed.

When using pr to print a batch of files specified by
wildcards, it is useful to be able to verify that the
wildcard expansion is as desired before beginning printing.
This can be done with the -w option of find. For example, the
following command lists all files that have a .man extension:

find -w *.man

Redirection

When the MicroTools are used under MicroShell, both input and
output redirection are supported. For example, the following
command causes pr to take its input from infile and send its
output to outfile:

pr <infile _outfile

Input redirection is invoked by a < character followed by a
file name. Either one or two arguments may be used; thus, the
following two commands are equivalent:

pr <infile
pr < infile

When the MicroTools are used at CP/M prompt level (not under
MicroShell), the < operator is not supported (the reason for
this is highly technical). This is not, however, a serious
limitation; because an input file specification is always
accepted, the < operator is superfluous, that is, the
following commands are identical:

pr infile
pr <infile

January 1983 8

MicroTools Command Syntax

Output redirection is invoked by a > character followed by a
file name. Either one or two arguments can be used; thus, the
following two commands are equivalent:

pr infile >outfile
pr infile >outfile

Output redirection is used primarily when the output of a
command that operates on a list of input files must be saved
in a file or sent to the list device (the file-specification
section of list-type commands does not accept an output file
specification).

For example, a user may want to generate listings of all .c
files and save them in one file for archival purposes. The
following command might be used:

pr *.c >archive

When the MicroTools are used at CP/M prompt level, output is
redirected to the list device as follows:

prog file >lst:

When the MicroTools are used under MicroShell, output is
redirected to the list device as follows (although MicroShell
can be patched to accept user-defined syntax):

prog file >$p

It is nonsense to specify both an output file and output
redirection.

For input redirection, an appropriate error message is
printed if a specified file cannot be opened. For output
redirection, if a specified file already exists, it is
overwritten.

January 1983 9

MicroTools Command Descriptions

Pipe1ines

A pipeline is a mechanism for interconnecting programs. The
usual notation is as follows:

programl | program2 | program3

This command connects the output of programl to the input of
program2 and connects the output of program2 to the input of
program3. The value of a pipeline mechanism is succinctly
stated by Kernighan and Plauger in Software Tools:

A consideration in favor of the pipeline is that it
encourages the construction of smaller programs to
do simpler functions. These smaller programs are
much easier to write, debug, document, maintain,
and improve independently than they would be if
combined into a single monster. And of course
separate programs can be combined in novel ways,
something which is hardly possible if they have
already been combined in some "obvious" way....
Many jobs will not get done at all unless they can
be done quickly. Efficiency is hardly of importance
for a temporary hookup meant to be used only a few
times. Should a particular organization of tools
prove so useful that it begins to consume
significant resources, then you can consider
replacing it with a more efficient version.

Pipelines are ideally implemented by executing the programs
as concurrent processes. CP/M lacks resources to support
concurrent processes. However, pipelines can be simulated
under CP/M by using temporary files to communicate between

January 1983 10

MicroTools MicroShell Compatibility

programs. For example, the pipeline "programl | program2 |
program3" can be simulated as follows:

program | >temp0
program2 <temp0 >temp1
program3 <temp1
era tempo
era tempI

MicroShell supports pipelines directly and transparently
through use of its input/output redirection mechanism and
temporary files as shown above. At CP/M prompt level,
however, the < operator is not supported. The simulated
pipeline will run correctly if the < characters are removed
(recall that an input file is always accepted).

As can be seen from the above example, the simulated pipeline
is not as clean and direct as the | pipeline notation;
considerable work is required to manually convert a pipeline
to its simulated form and the conversion is error-prone (the
temporary files must be correctly aligned). To remove this
burden from the MicroTools user working at CP/M prompt level,
a pipeline-processor, p, is included with the MicroTools. p
converts a pipeline specification given in standard notation
to its simulated form, saves the results in a file, and
executes the file via CP/M's SUBMIT program. p is fully
described in its individual command description. (p is not
necessary under MicroShell.)

January 1983 11

MicroTools MicroShell Compatibility

MicroShell Compatibility

New Generation Systems' MicroShell is a command interpreter
that adds UNIX-like features to CP/M (some of these features
are listed in the MicroTools Overview). MicroShell loads as a
transient command (.com file) and relocates itself to high
memory, overwriting the console command processor (CCP) and
replacing and extending its functions. Because MicroShell
occupies about 8K bytes of memory at the top of the transient
program area, the available memory must be 32K + 8K = 40K.

Required settings for MicroShell are as follows:

G = off (to disable MicroShell's line-feed
 gobbling)
M = off (for UNIX mode)
T = off (to let MicroShell process special
 characters)
D 4 = 0 (to disable the input ignore feature)

In addition, the following settings are recommended:

F = on (to enable file search)
U = off (to allow lowercase letters to be

 passed via the command line)
V = off (to disable command echo)

The MicroShell syntax for output redirection to the list
device is:

command >$p

This differs from the syntax for MicroTools at the CP/M
prompt level (not under MicroShell):

command >lst:

January 1983 12

MicroTools MicroShell Compatibility

As an alternative to >$p, MicroShell can be configured to
accept >lst:. The remainder of this manual assumes that this
reconfiguration has been made.

The MicroTools cannot properly handle double-quoted argument
strings under MicroShell because double-quote characters (")
are MicroShell special characters. To avoid this problem,
either use single quotes or escape the double quotes to allow
the MicroTools' intrinsic argument processing to handle the
double quotes, as shown in the following example:

pr -h \"user header" infile

In either case, MicroShell parses extra blank space between
arguments to a single space. This means multiple spaces
cannot be passed to programs on the command line.

Direct console input does not work properly when output is
redirected (for example, "pr -t con: >file") due to a
conflict between the MicroShell and MicroTool redirection
mechanisms. To achieve the desired effect, backslash the>
character to allow the MicroTool to handle the redirection,
as follows:

prog con: \>file

January 1983 13

MicroTools Command Descriptions

Command Descriptions

This section contains individual command descriptions for the
MicroTools. The description for each MicroTool consists of a
few pages that adhere to a standard format:

PROGRAM Gives the command name.
USAGE Summarizes the command's syntax.
DESCRIPTION Describes the function of the command and

its options.
EXAMPLES Gives typical applications and examples

to illustrate fine points.
CAVEATS Lists possible pitfalls to avoid.

The command descriptions are arranged alphabetically by
command name. There is no overall page numbering for
this section to allow insertion of additional command
descriptions.

January 1983 14

MicroTools col

PROGRAM

col -- print file in multicolumn format

USAGE

col [options] infile [outfile] [redirection]

DESCRIPTION

col prints the named infile to the named outfile. If outfile
is not given, output is sent to the console. By default, the
output is in four-column format with vertical scanning and a
page length of 20. Typing control-c aborts printing.

Various options are available to alter the output format.
Options may appear singly or combined in any order. The
options are as follows (substitute desired numbers for
characters not in boldface):

-a Print multicolumn across the page (horizontal

scanning). This option works by setting the page
length to 1. Therefore, do not reset the page length
via the -1 option when using this option. The -a
option is not compatible with the -r option.

-cn Produce n columns of output (default is 4).

-en Expand input tabs with spaces to character positions

n+1, 2n+1, 3n+l, etc. n may not be omitted or O. By
default, tabs are expanded with n equal to 8.

-ln Set page length for vertical-scanning mode (-a option

not selected) to n (default is 20).

-pn Pad n blank lines between pages.

-q Do not equalize column lengths on final page.

-rn Enable record mode. The input is treated as multiline

records delimited by blank lines. Records are printed
in multicolumn format without breaking them across
column boundaries. The records can be of different
lengths. n should be set to the maximum record length.
Undefined results are obtained if the page length is

January 1983 Col-1

MicroTools col

set to a value less than the maximum record length.
This option is not compatible with the -a option.

-s Use the next argument as a column-delimiter string. If

the string contains blanks or tabs, it must be
enclosed in single or double quotes.

-wn Set the line width to n (default is 80).

-x Add page cut marks.

EXAMPLES

Consider a file named list containing the numbers to 20, with
one number per line. The command:

col -w40 list

produces the following vertically-scanned output:

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

The command:

col -w40a list

produces the following horizontally-scanned output:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

Print file in five-column format with a page length of 60:

col -c5l60 file

Print file in three-column across-the-page format with the
string " * " delimiting the columns:

col -c3as II " * " file

January 1983 Col-2

MicroTools col

Print file of address records (maximum record length of 5) in
4-column format with a page length of 60:

col -160r5 file

Print the same file of address records in the same format on
the list device, but paginate the output using pr (pr's
header and footer space by default consists of 13 lines;
therefore, the col page length is set to 13 less than the pr
page length [default 66]):

col -153r5 file temp
pr temp >lst:

or:

col -153r5 file | pr >lst:

To print a file of address records on label stock, set the
page length to the number of lines on a label, set the line
width to align the records horizontally on the labels, set
the padding between pages to the number of lines (vertically)
between labels (if any), use the record mode, and select the
appropriate number of columns. A typical example for three-
across labels is:

col -18w132r6c3 file 1st:

CAVEATS

Input lines that are too long to fit within a column are
silently truncated.

Because the -a option works by setting the page length to 1,
the -x option is not very useful with the -a option.

January 1983 Col-3

MicroTools cut

PROGRAM

cut -- cut character or field columns from a file

USAGE

cut [options] infile [outfile] [redirection]

DESCRIPTION

cut prints specified character columns or field columns. If
outfile is not given, output is sent to the console.

Various options are available to alter the behavior of cut.
Options may appear singly or combined in any order. The
options are as follows (substitute desired values for
characters not in boldface):

-cs Cut the character columns specified by the list s. The

specification s consists of comma-separated numbers
that specify the columns to be cut. For example, "cut
-c1, 2, 3 file" cuts columns 1 to 3. A range may be
specified instead of a number; thus, "cut -c5,8,10
20,50 file" cuts columns 5, 8, 10 through 20, and 50.
By default, cut columns are flushed to the left.

-dc Take the delimiter for the -f option to be the

character c (default delimiter is the : character).

-fs Cut the field columns specified by the list s. A field

is defined as the characters between two delimiter
characters. The nth field is the field beginning after
the nth delimiter character. When a field is cut, the
leading delimiter character is retained. The syntax
for s is identical to that described for the -c option
except that the numbers refer to fields rather than
columns. Cut fields are always flushed to the left.

-r Retain original column positions under the –c option

(do not flush left).

-x Cut columns or fields not specified.

January 1983 Cut-1

MicroTools cut

EXAMPLES

File test is as follows:

123456789
123456789
abcdefghi
123456789
123456789

Cut columns 1 through 3, 7, and 9 from the file test:

cut -cl-3,7,9 test

The output is as follows:

12379
12379
abcgi
12379
12379

Perform the same function, but retain the original spacing:

cut -rcl-3,7,9 test

The output is as follows:

123 7 9
123 7 9
abc g i
123 7 9
123 7 9

The file people contains the following:

:Bonaparte,Napolean:Emperor:France
:Antoinette, Marie:Queen:France
:Franklin, Ben:Scientist:USA
:Thatcher, Margaret:Prime Minister:England

Print only the names people and countries from the file
people:

cut -f1,3 people

January 1983 Cut-2

MicroTools cut

The output is as follows:

:Bonaparte, Napolean:France
:Antoinette, Marie:France
:Franklin, Ben:USA
:Thatcher,Margaret:England

January 1983 Cut-3

MicroTools crypt

PROGRAM

crypt -- encrypt and decrypt files

USAGE

crypt [-d] key infile [outfile] [redirection]

DESCRIPTION

crypt encrypts and decrypts files based on a variable user-
specified key. For encryption, the -d option is omitted.
decryption, For decryption, the -d option is included. If
outfile not given, output is sent to the console.

EXAMPLES

Encrypt the file named salaries using the key "insideout" and
save the results in a file named secret:

crypt insideout salaries secret
era salaries

Decrypt the file secret from the previous example:

crypt -d insideout secret salaries

CAVEATS

The standard caveats relating to key selection and
safeguarding apply here. Choose keys that are "unobvious"
(there is a tradeoff between difficulty of guessing for a
would-be intruder and ease of recall for the user). Do not
leave keys lying around. Do not leave any clear text in
proximity to its encrypted output.

To make breaking the program a little harder, no details are
given here on the algorithm used. It suffices to say that
repeated sequences in the clear text will not cause repeated
appearances of the transformed key.

If you forget your key, you're in big trouble!

January 1983 crypt-1

MicroTools deform

PROGRAM

deform -- deformat a file

USAGE

deform [options] infile [outfile] [redirection]

DESCRIPTION

deform removes text formatter control lines (lines that begin
with a special character--by default, a period) from the
named infile and sends the results to the named out file.
Optionally, deform can also remove in-line commands (two-
character sequences beginning with a special character--by
default, a \ character) and control-character commands (such
as those used by Wordstar). For in-line commands, double
backslashes (\\) are retained as one backslash (\). For
control-character commands, control-o is mapped to a space
and control-underscore (_) is mapped to a hyphen; all other
control characters except line feeds, tabs, and carriage
returns are discarded. If outfile is not given, output is
sent to the console.

Various options are available to alter the behavior of
deform. Options may appear singly or combined in any order.
The options are as follows (substitute desired characters for
characters not in boldface):

-ec Take the key for an in-line command to be the

character c instead of a backslash (,). Two character
sequences beginning with the character c are removed.
Double c characters are retained as one c character.
Nonpaddable spaces (character c followed by a space)
are retained as spaces.

-fc Take the key for a control line to be the character c

instead of a period. All lines with the character c in
the first position are removed.

-i Enable in-line command stripping; backslashes (or

alternative specified characters) get special
treatment as described above.

-n Under the -wand -x options, retain numbers as valid

word components (for example, "test55" is considered
to be a word).

January 1983 deform-1

MicroTools deform

-r Reverse the behavior of deform (retain control lines

in the output and discard noncontrol lines).

-s Enable control-character command stripping; control

characters get special treatment as described above.
(For use with Wordstar files.)

-w Generate a list of the words in the file, with one

word per line. A "word" is a string of characters
containing only letters or apostrophes. Uppercase
letters are mapped to lowercase.

-x Same as the -y option but uppercase letters are not

mapped to lowercase.

EXAMPLES

Remove control lines and in-line commands from the file named
text and save the results in a file named clean:

deform text clean

Remove all lines from the file text that contain a :
character in the first position:

deform -f: text

Generate a list of the words used in the file text:

deform -w text

Print all lines in the file text that begin with character
the character *:

deform -rf* text

Count the total number of different words used in the file
text and print the result:

deform -w text | sort | uniq | wc -1

January 1983 deform-2

MicroTools diff

PROGRAM

diff -- compare text files

USAGE

diff file1 file2

DESCRIPTION

diff performs a line-by-line comparison of two text files and
reports any differences found. High bits are stripped from
all files for Wordstar compatibility. The difference report
consists of lines of the following form:

n1an2,n3 (or n1,n2an3)
n1,n2dn3 (or n1dn2,n3)
n1,n2cn3,n4

The letter a denotes text that has been appended; d denotes
deleted; c denotes changed. Numbers (n1...n4) before the
letter (a, d, or c) refer to file1; those after the letter
refer to file2. For example, 17a8,12" indicates that 5 lines
(8 through 12 in file2) are appended after line 7 in file1.
After each line of this form, the affected lines in file1 are
printed flagged with a < character followed by the affected
lines in file2 flagged by a > character.

EXAMPLES

Compare the files named old and .new:

diff old new

Under MicroShell, the difference report can be saved as
follows:

diff old new >report

January 1983 diff-1

MicroTools echo

PROGRAM

echo -- echo arguments

USAGE

echo [options] arguments [redirection]

DESCRIPTION

echo prints its arguments on the console, terminating them
with a CR-LF. If the -n option is included, the CR-LF is
suppressed.

EXAMPLES

Print the message "compilation complete" by including the
following command within a submit file:

echo compilation complete

Suppose a user wishes to keep a log of the number of times a
particular submit file has been executed. The following
command is placed in the submit file:

echo -n + >log

To get a count, the user types:

wc -c log

Create a one-line file without loading the editor:

echo This is a test file. >test

CAVEATS

Under MicroShell, the %print command is available, so echo is
not necessary.

January 1983 echo-1

MicroTools find

PROGRAM

find -- find pattern in files

USAGE

find [options] file_list [redirection]

DESCRIPTION

If the -p option is not selected, find prompts for a pattern
(character string), searches for the pattern in the specified
files, and prints the lines containing the pattern on the
console. Wildcard file references are accepted. If more than
one file is specified, or if wildcards are specified, find
identifies the input files in which the pattern occurrences
are found. If the -p option is selected, the pattern is taken
from the command line (as described below) and find does not
prompt for a pattern.

Various options are available to alter the behavior of find.
Options may appear singly or combined in any order. The
options are as follows:

-a Include patterns split across line boundaries (raw

mode). For example, the pattern 110123456" matches
the following two lines:

The first seven numbers are 0123
456.

When a split occurrence is found, both lines are
printed. The -a option is not compatible with the -x
option.

-b Include patterns split across line boundaries (text

mode). For example, the pattern limy friendly cat"
matches the following two lines:

Please say hello to my friendly cat.

When a split occurrence is found, both lines are
printed. "Words" (that is, character strings not
containing blanks, tabs, or newlines) that are split
across a line boundary must be hyphenated in the input
file.

January 1983 find-1

MicroTools find

If a pattern is split after a period, the pattern
specification must contain two spaces after the
period. If a pattern is split after any other
punctuation mark (except a hyphen), the specified
pattern must contain one space after the punctuation
mark. The -b option is not compatible with the -x
option.

-i Enable identifier mode. An occurrence of a pattern in

an input file is found only if the character
immediately before the occurrence and the character
immediately after the occurrence are not letters,
numbers, or the underscore character. Thus, for
example, the pattern "cat" would not be found in the
string "vacate" but would be found in the string limy
cat is good."

-n Precede each output line with its line number in the

input file.

-p Take the next argument to be the search pattern. All

letters (whether given as uppercase or lowercase) are
taken to be lowercase; to specify a letter as
uppercase, precede it with a ~ character. If the
pattern contains blanks or tabs, it must be enclosed
in single or double quotes. This option is provided
for using find with output redirection and within
pipelines.

-w Verify wildcard expansions. The names of files that

match the wildcard specifications given on the command
line are printed. Pattern searching is not performed.

-x Print all lines except those containing the specified

pattern.

EXAMPLES

Find occurrences of the pattern "cat" in the file named text
(find’s prompt is in italics):

find text
find what pattern? cat

Find occurrences of the identifier "line" in all .c (C-
language) files and give the line number of each occurrence:

January 1983 find-2

MicroTools find

find -ni *.c
find what pattern? line

Find occurrences of the pattern "Yes, master" in the file
text, including occurrences split across line boundaries:

find -b text
find what pattern? Yes, master

Print lines in the file text that do not contain the string
"REM":

find -x text
find what pattern? REM

Verify expansion of the wildcard "text??man":

find -w text??man

Print all words the in file text that contain the pattern
"ing":

deform -w text | sort | uniq | find -p ing

CAVEATS

The dual pattern-specification mechanism used by find is made
necessary by the fact that CP/M always maps lowercase command
lines to uppercase. The recommended usage for find is to omit
the -p option and let find prompt for the pattern. In this
case, the pattern can be typed directly in uppercase and
lowercase without delimiting the pattern with single or
double quotes. However, when the output of find is
redirected, the pattern prompt is also redirected. The -p
option should be used in this case. The-p option is also
required when find is used in a pipeline.

The *, ?, and @ characters cannot be specified in arguments
other than wildcard file references because they confuse the
wildcard expansion code.

Note that the MicroTool wildcards differ slightly from
standard CP/M wildcards; refer to the Command Syntax
description for details.

January 1983 find-3

MicroTools p

PROGRAM

p -- implement pipeline at CP/M prompt level

USAGE

p [options] pipeline_specification

DESCRIPTION

p converts a UNIX-like pipeline specification to a file
called pype.sub that simulates the pipeline and then
automatically invokes the CP/M SUBMIT program (which must
reside on drive a:) to execute the pipeline. Either a | or a
! character can be used to denote a pipe. Pipeline output is
sent to the console unless overridden by the -o option. p may
reside on any drive and pipelines can be executed while
logged onto any disk. Redirection is not allowed.

Various options are available to alter the behavior of p.
Options may appear singly or combined in any order. The
options are as follows:

-o Save the final output from the pipeline in the file

given by the next argument. The list device (lst:) may
be specified.

-s Save the generated pipeline simulation in the file

given by the next argument. This option automatically
invokes the -x option.

-x Do not execute the generated .sub file.

EXAMPLES

Print file in four-column format and paginate the results:

P col -153 file | pr

Perform the same function but send the output to the list
device:

p -o 1st: col -153 file | pr

January 1983 p-1

MicroTools p

Count the total number of different words used in the file
named text and print the result:

p deform -w text | sort | uniq | wc -1

Generate a word-frequency table sorted by words for the file
text (these tables can be used to detect overused words and
variant spellings):

p deform -w text | sort | uniq -n | col

Perform the same function as the above example but sort by
count:

p deform -w text | sort | uniq -n | sort -nr | col

Pipelines can include parameter substitution. Consider the
following command:

p -s a:column.sub col -153 $1 | pr

This saves a .sub file on drive a: named column. sub that can
be used to produce a four-column paginated printout of a
file, as follows:

submit column file

Digital Research, Inc. will provide upon request a patch to
SUBMIT that allows nested submit files. The patched SUBMIT
allows p-generated .sub files to be invoked within other p-
generated .sub files.

CAVEATS

The programs used within p pipelines must support output
redirection (as do the MicroTools).

Because MicroShell provides a built-in pipeline mechanism, p
is not necessary (and, in fact, does not work) under
MicroShell.

January 1983 p-2

MicroTools paste

PROGRAM

paste -- concatenate files horizontally

USAGE

paste [options] file_list [redirection}

DESCRIPTION

paste concatenates the named files (at least two must be
specified) horizontally in the order in which the files are
specified. Up to six files may be specified. To input from
the console at an arbitrary point in the order, use the
explicit device name con:.

Various options are available to alter the behavior of paste.
Options may appear singly or combined in any order. The
options are as follows (substitute desired numbers for
characters not in boldface):

-cn Paste each file in a separate column using a column

width of n. Lines that are too long to fit in a column
are silently truncated.

-d Take the next argument as the delimiter string between

files. If the string contains blanks or tabs, it must
be enclosed in single or double quotes. The default
delimiter string is a single tab character.

-p Paste a prefix. The next argument is pasted onto the

beginning of each output line. If only one file is
specified, an error message will not be printed. If
the prefix string contains blanks or tabs, it must be
enclosed in single or double quotes.

-s Paste a suffix. The next argument is pasted onto the

end of each output line. If only one file is
specified, an error message will not be printed. If
the prefix string contains blanks or tabs, it must be
enclosed in single or double quotes.

January 1983 paste-1

MicroTools paste

EXAMPLES

File a is as follows:

a
aaa
a
aaaaaaaaaa a
aa
a
aaa

File b is as follows:

bbb
b
bbb
bbbbb
b
b
bb
b
bbb
b

Paste files a and b using the default tab delimiter:

paste a b

The output of the above command is as follows:

a bbb
aaa b
a bbb
aaaaaaaaaa bbbbb
a b
aa b
a bb
aaa b
bbb
b

Paste files a and b in 15-character-wide columns and save the
results in a file called save:

paste –c15 a b >save

January 1983 paste-2

MicroTools paste

The file save is now as follows:

a bbb
aaa b
a bbb
aaaaaaaaaa bbbbb
a b
aa b
a bb
aaa b
 bbb
 b

Paste the prefix "=+=" onto file a:

paste -p =+= a

The output is as follows:

=+=a
=+=aaa
=+=a
=+=aaaaaaaaaa
=+=a
=+=aa
=+=a
=+=aaa

CAVEATS

Tabs in the input files disturb columniation with the -c
option. Use "pr -t file" as a filter to expand tabs.

paste does not accept wildcard file specification because the
file list resulting from wildcard expansion is in an
arbitrary order.

January 1983 paste-3

MicroTools pr

PROGRAM

pr -- print files

USAGE

pr [options] file_list [redirection]

DESCRIPTION

Pr prints the named files on the console. Wildcard file
references are accepted. By default, the listing is paginated
with a header at the top of each page containing the file
name and page number. Typing control-c aborts the listing.

Various options are available to alter the appearance of the
listing. Options may appear singly or combined in any order.
The options are as follows (substitute desired characters or
numbers, as appropriate, for characters not in boldface):

-bc Enable break processing. When the specified character

c is encountered in the first position of a line, pr
breaks to the next page without printing the line. By
default, break processing is disabled.

-cn Produce n copies of the output. By default, n is 1.

-d Double space the output.

-en Expand input tabs with spaces to character positions

n+1, 2n+1, 3n+1, etc. If n is omitted or 0, input tabs
are not expanded. By default, tabs are expanded with n
equal to 8.

-f Use form-feed characters to move to new pages instead

of a sequence of CR-LF's. This option is useful when
output is sent to the console; 'after a partial last
page is printed, the output does not scroll off the
screen.

-g "Display on glass." This option is equivalent to

setting the following options individually: -t -p -
123.

January 1983

January 1983 pr-1

MicroTools pr

-h Use the next argument as the header to be printed

instead of the file name. If the header string
contains blanks or tabs, it must be enclosed in single
or double quotes.

-i Use the next argument as a secondary header to be

printed to the right of the file name or user-
specified header (normally used as a date field). If
the secondary header string contains blanks or tabs,
it must be enclosed in single or double quotes.

-kn Begin page numbering at n (default is 1).

-ln Set page length to n lines (default is 66).

-mxyz Set the space above the header to x lines; the space

below header to y lines; space at bottom of page to z
lines. x, y, and z must all be in the range 0 to 9.
The defaults are x = 3, y = 3, and z = 7.

-n Add 5-digit line numbers to the beginning of each

line. Two spaces separate the number from the
beginning of the line.

-on Offset each line n character positions from the left

margin.

-p Pause between pages. pr waits for any character to be

typed after printing each page. This option does not
work when input redirection is in effect.

-s Suppress the header line (but do not suppress

pagination).

-t Suppress pagination.

-u Map output to uppercase.

-x Send the following decimal arguments to the output

device before printing. This option is useful for
sending printer control codes to the list device. If
there are no arguments after the final decimal
argument, pr terminates immediately.

January 1983 pr-2

MicroTools pr

EXAMPLES

Print file without pagination (equivalent to CP/M's "type
file"):

pr -t file

Concatenate filel and file2 to produce file3 (equivalent to
CP/M's "pip file3=filel,file2"):

pr -t filel file2 >file3

Produce paginated hard-copy listings of filel and file2 with
line numbering, lO-character offset from the left margin, and
the date (8-5-82) in the header:

pr –nol0i 8-5-82 filel file2 >lst:

Perform the same function as the previous example but print
all .c files and send the decimal code 6 to the list device
before printing:

pr –nol0i 8-5-82 -x 6 *.c >lst:

Print file on a printer that accepts only single sheets; the
pause option is used to give time to feed the sheets and the
space above the header is set to zero so that the paper may
be inserted with the desired header position under the
printhead (it is difficult to position single sheets so that
the top of the page is under the printhead):

pr -pmO37 file >lst:

CAVEATS

The -p and -g options do not work when input redirection is
in effect. Because an input file specification can always be
used instead of input redirection, this is only significant
within pipelines. A temporary output file can be used to
achieve the desired effect; for example, use:

programl | program2 >temp
pr -g temp

instead of:

programl | program2 | pr -g

January 1983 pr-3

MicroTools pr

The *, ?, and @ characters cannot be specified in arguments
other than wildcard file references because they confuse the
wildcard expansion code.

Note that the MicroTool wildcards differ slightly from
standard CP/M wildcards; refer to the Command Syntax section
for details.

January 1983 pr-4

MicroTools rec

PROGRAM

rec -- reformat record lines

USAGE

rec [options] infile [outfile] [redirection]

DESCRIPTION

rec reformats single-line multifield records into multiple-
line records. By default, rec performs the following
functions: (1) replaces each delimiter character (default
delimiter is the: character) by a CR-LF, except for the first
delimiter in the file, which is simply deleted, and (2) adds
an extra CR-LF after each record. If outfile is not given,
output is sent to the console.

Various options are available to alter the behavior of rec.
Options may appear singly or combined in any order. The
options are as follows (substitute desired characters for
those not in boldface):

-dc Take the delimiter to be the character c (default

delimiter is the: character).

-n Perform a "name swap" on the first field of each input

line; fields of the form "lastname, firstname" are
converted to "firstname lastname".

-s Suppress the extra CR-LF between records.

EXAMPLES

Suppose that a mailing list is maintained as a file of
multifield lines in the file named list, as follows:

:Smith, John:2345 W. Armitage Rd.:Lisle, IL 60532:H8/H17/H19
:Jones, Dorothy:651 E. Main St.:Naperville, IL 60540:TRS-80
:Brown, Leroy:4689 S. First Ave.:Frankfort, IL 60423:Apple II+

The first field contains the names arranged with the last
name first to allow sorting. The second field contains the
street address. The third field contains the city, state, and
zip code. The fourth field contains information on the
computer system owned. Suppose now that a mailing list must

January 1983 spl-1

MicroTools rec

be generated from these records. The following commands
generate a file suitable for input to col for label printing:

cut -fl-3 list temp
rec -n temp final
era temp

or:

cut -fl-3 list | rec -n >final

The file final is now as follows:

John Smith
2345 W. Armitage Rd. Lisle, IL 60532

Dorothy Jones
651 E. Main St. Naperville, IL 60540

Leroy Brown
4689 S. First Ave. Frankfort, IL 60423

find can be used as a preprocessor to select only those
people who own a particular computer, live in a particular
state, etc.

January 1983 spl-2

MicroTools sort

PROGRAM

sort -- sort file

USAGE

sort [options] infile [outfile] [redirection]

DESCRIPTION

sort sorts lines of the named infile and sends the results to
the named outfile (infile and outfile may be the same file).
If outfile is not given, output is sent to the console. By
default, the ordering is lexicographic based on entire lines.

Various options are available to alter the ordering. Options
may appear singly or combined in any order. The options are
as follows (substitute desired characters or numbers, as
appropriate, for characters not in boldface):

-b Ignore leading white space (blanks and tabs) for

lexicographic comparisons.

-dc Take the delimiter for the -f option to be the

character c.

-fn Enable field mode. The sort keys on the nth field. A

field is defined as the characters between two
delimiter characters (default delimiter is the :
character). The nth field is the field beginning after
the nth delimiter character.

-m Map uppercase to lowercase for comparisons (uppercase

and lowercase sort together).

-n Sort lines first keying arithmetically on an initial

numeric string and then keying lexicographically on
the remainder of the line or field. Leading white
space before the numeric string is ignored and + and -
signs are interpreted.

-r Reverse the order of sorting.

January 1983 spl-1

MicroTools sort

EXAMPLES

Sort a file named list and save the results in a file named
newlist:

sort list newlist

Suppose the file named records contains the following lines:

:Bonaparte,Napolean:France
:Franklin, Benjamin:USA
:Livingstone, David:Scotland
:Antoinette, Marie:France
:Thatcher, Margaret:England
:De Gaulle, Charles:France

Sort the file records so that the lines are grouped by
country of residence, and sorted by name within each group:

sort -fl records records
sort -f2 records records

The result is:

:Thatcher, Margaret:England
:Antoinette, Marie:France
:Bonaparte, Napolean:France
:De Gaulle, Charles:France
:Livingstone; David:Scotland
:Franklin, Benjamin:USA

Note that this sort is "stable" (a fancy way of saying that
if two lines are judged equal by the comparison code, their
prior order is not disturbed). Thus, successive sorts based
on different fields give a great deal of flexibility, as
shown by the example above.

Generate a word-frequency table sorted by words for the file
text (these tables can be used to detect overused words and
variant spellings):

deform -w text | sort | uniq –n | col

Perform the same function as the above example but sort by
count:

deform -w text | sort | uniq –n | sort -nr | col

January 1983 spl-2

MicroTools sort

CAVEATS

sort uses the Shell-sort algorithm and is thus not one of the
fastest sorts for large files. On large files, the disk
drives may time out while sort is working on memory, giving
the appearance that sort has locked up--be patient.

sort loads the entire file into memory; thus, the size of
files that can be sorted is limited by available memory.
Also, sort contains a pointer array that allows it to sort
files containing up to 5000 lines. To sort a file containing
more than 5000 lines, the file should be split using spl,
each chunk should be sorted individually using sort, and the
resulting chunks should be merged. The MicroTool merge is in
preparation and will be supplied in an update.

January 1983 spl-3

MicroTools spl

PROGRAM

spl -- split file into chunks

USAGE

spl [options] file

DESCRIPTION

spl splits the named file into chunks and saves each chunk in
a file. Options allow chunks to contain a fixed number of
either lines or characters; the default behavior is to split
the input file into 100line chunks. By default, the chunk
files are named x0, xl, x2, etc., but x can be replaced with
a user specified name.

Various options are available to alter the behavior of spl.
Options may appear singly or combined in any order. The
options are as follows (substitute desired numbers for
characters not in boldface):

-cn Chunk by characters with n characters per chunk. CR-LF

pairs are not split and count as one character.

-In Chunk by lines with n lines per chunk.

-n Use the next argument for chunk names. For example, "-

n chunk" generates chunks named chunk0, chunk 1 ,
chunk2, etc. The name may not contain blanks or tabs
and must produce valid CP/M file names.

EXAMPLES

Split the file named text into chunks that each contain 100
lines:

spl text

Split the file named text into chunks that each contain 1000
characters:

spl -c1000 text

January 1983 spl-1

MicroTools spl

Split the file named text into chunks that each contain 50
lines and name the chunks bunch0, bunchl, bunch2, etc.:

spl -150n bunch text

CAVEATS

The maximum number of lines or characters per chunk is 64000.

January 1983 spl-2

MicroTools str

PROGRAM

str -- display printable strings

USAGE

str [options] infile [outfile] [redirection]

DESCRIPTION

str searches the specified file (usually a *.com file) for
strings containing at least four printable characters with at
least one letter and terminated with either a CR-LF, a null
(0), or a $ character and prints the strings. If outfile is
not given, output is sent to the console. str can be used to
identify unknown object files, to print all possible error
messages, etc.

Various options are available to alter the behavior of str.
Options may appear singly or combined in any order. The
options are as follows:

-a Precede each string with the address in hex at which

the string begins (assumes a *.com file loaded at
100H).

-o Precede each string with the offset in hex of the

string from the beginning of the file.

-r Enable raw mode. A string of 3 or more printable

characters is printed without requiring any specific
terminator.

EXAMPLES

Find all strings in the file pip.com that are terminated in
LF-CR, CR-LF, null, or $ (this prints all of pip.com's error
messages):

str pip.com

Find all strings in pip.com regardless of terminator:

str -r pip.com

January 1983 str-1

MicroTools str

Perform the same function as the above example, but precede
each string with its address and save the results in a file
named messages:

str -ra pip.com messages

CAVEAT$

Some object files store strings without specific terminators.
Therefore, use the -r option to ensure that significant
strings are not overlooked.

The string-finding algorithm is fairly primitive. Too much
output is produced rather than too little.

January 1983 str-2

MicroTools tee

PROGRAM

tee -- save pipeline intermediate results (pipefitting)

USAGE

tee file

DESCRIPTION

tee saves intermediate results within a pipeline in a named
file, but is otherwise transparent to data flow through the
pipeline.

EXAMPLES

Generate two word-frequency tables for the file text, one
sorted by words (saved in the file wtable) and the other
sorted by count (saved in the file ctable):

deform -w text | sort | uniq -n | tee temp |
 sort -nr | col >ctable

col temp wtable

Note that the pipeline command above is typed on one line (it
is shown on two lines only because it won't fit within the
page margins).

CAVEATS

tee works only under MicroShell.

January 1983 tee-1

MicroTools uniq

PROGRAM

uniq -- filter duplicate lines

USAGE

uniq [options] infile [outfile] [redirection]

DESCRIPTION

uniq reads the named infile and compares adjacent lines. By
default, uniq writes unduplicated lines and the first copy of
duplicated lines to the named outfile. If outfile is not
given, output is sent to the console. Duplicated lines must
be adjacent to be detected (use the MicroTool sort to bring
separated duplicates together).

Various options are available to alter the behavior of uniq
Options may appear singly or combined in any order. The
options are as follows:

-d Output only the first copy of duplicated lines;

unduplicated lines are suppressed.

-n Precede each output line with a count of the number of

occurrences of the line.

-u Output only unduplicated lines; all duplicated lines

 (including the first copies) are suppressed.

EXAMPLES

Strip duplicate lines from the sorted file named list and
save the results in a file named newlist:

uniq list newlist

Report duplicated lines in the sorted file list:

uniq -d list

January 1983 uniq-1

MicroTools uniq

Generate a word-frequency table sorted by words for the file
text (these tables can be used to detect. overused words and
variant spellings):

deform -w text | sort | uniq -n | col

Perform the same function as the above example but sort by
count:

deform -w text | sort | uniq -n | sort -nr | col

CAVEATS

Selecting both the -d option and the -u option is nonsense;
all lines are suppressed.

January 1983 uniq-2

MicroTools wc

PROGRAM

wc -- count lines, words, and characters

USAGE

wc [options] file_list [redirection]

DESCRIPTION

wc counts lines, words, and characters in the named files,
and sends the results to the console. If more than one file
is specified, count totals are printed. Wildcard file
references are accepted.

Various options are available to alter the behavior of wc.
Options may appear singly or combined in any order. The
options are as follows (substitute desired characters for
characters not in boldface):

-c Count characters only. Carriage returns and line feeds

are not included in the count. If this option is
combined with the –l or –w option, the last-selected
option determines what is counted.

-f Include text formatter control lines ("dot commands").

By default, wc ignores control lines.

-gc Take the key for a control line to be the character c

instead of a period ("dot"). Lines with the character
c in the first position are excluded from the counts.

-l Count lines only. If this option is combined with the

-c or -w option, the last-selected option determines
what is counted.

-w Count words only. If this option is combined with the

-c or -l option, the last-selected option determines
what is counted.

January 1983 wc-1

MicroTools wc

EXAMPLES

Count lines, words,. and characters in the file named text
and ignore text processor control lines:

wc text

Count lines, words, and characters in the files textl, text2,
and text3 and include text processor control lines ("dot
commands"):

wc -f textl text2 text3

Count the total number of different words used in the file
text and print the result:

deform -w text | sort | uniq | wc -l

CAVEATS

The * , ? , and @ characters cannot be specified in
arguments other than wildcard file references because they
confuse the wildcard expansion code.

Note that the MicroTool wildcards differ slightly from
standard CP/M wildcards refer to the Command Syntax section
for details.

When printing the output on a list device that cannot process
tab characters, expand tabs by filtering the output with "pr
-t"

January 1983 wc-2

	MicroTools
	Overview
	General Command Format
	Options
	File Specification
	Redirection

	Pipe1ines
	MicroShell Compatibility
	Command Descriptions

