Chapter 4

COMMANDS AND FUNCTIONS

This Chapter describes the commands, statements, and functions used with PX-8
BASIC.

Commands and statements are words in the BASIC language which control oper-
ation of the computer or which set up parameters which are manipulated dur-
ing computer operation. The distinction between commands and statements is
as follows.

Commands — Generally executed in the direct mode, and used in manipulat-
ing BASIC program files. The LOAD command, which is used to bring a pro-
gram into memory from external storage, is an example of a command.

Statements — Instructions which are included in a program to control opera-
tion of a computer or establish parameters which are manipulated during pro-
gram operation. For example, execution of the GOTO statement causes
execution to branch from one part of a program to another.

In practice, most commands and statements can be executed in either the direct
mode or the indirect (program execute) mode, so the distinction between them
is more traditional than qualitative.

Functions are procedures built into the BASIC language which return specific
results for given data. Functions differ from commands and statements in that
the former controls operation of the computer, while the latter produces a result
and passes it to the program. An example is the SIN function, which returns
the sine of a specified value. Functions may be used at any time, either from
within a program or in the direct mode; there is no need for definition on the
part of the user.

The following format is used in describing commands, statements, and func-
tions in this Chapter.

Ilustrates the general format for specification of the statement
or function concerned. Meanings of the symbols used in the for-
mat descriptions are described in ‘‘Format Notations’’ below.

Explains the purpose of the statement or function.
Gives detailed instructions for using the statement or function.
Refers the reader to descriptions of other statements or func-

tions whose operation is related in some way to that of the state-
ment or function being described.

Gives examples of use of the statement or function in programs.

NOTE:
Outlines precautions which should be observed when using the statement/func-
tion, or presents other related information.

Format Notations

The following rules apply to specification of commands, statements, and
functions.

(1) Items shown in capital letters are BASIC reserved words, and must be in-
put letter for letter exactly as shown. Any combination of upper- or lower-
case letters can be used to enter reserved words; BASIC automatically
converts lowercase letters to uppercase except when they are included be-
tween quotation marks or in a remark statement.

e.g. CLS PRINT STEP
PRINT
STEP
(2) Angle brackets ‘‘< >’ indicate items which must be specified by the user.

(3) Items in square brackets ‘[]*’ are optional.

4-2

In either case the brackets themselves have no meaning except as format nota-
tion, and should NOT be included when the statement/function is entered. If
angle brackets are included inside square brackets, this means optional items
to be specified by the user.

e.g. PSET [STEP] (X,Y) , <function code>

might be typed to appear with various values as follows. These are particular
cases, to show what is actually typed.

PSET (19,10)
is the minimum format for plotting a point at position (10,10) on the screen.

PSET (16,10), 1
plots the same point, but with <function code> having a value of 1.

PSET STEP (10,10)
plots a point relative to the last plotted point.

PSET STEP (10,10),7
plots the point relative to the last plotted point, with < function code> set to 7.

ALARM [<date >, <time >, <string> [,W]]

means that it is optional to input the <date>, <time> and a <string>;
however, if it is required to use one or other of these three options, the others
must be typed in as well. It is optional to use the ‘““W’’ extension, but this op-
tion cannot be used without the other three options. Examples of the three valid
types of statement are

ALARM
ALARM ““* % /% % /% % ‘“% % :13:00"’, LUNCH TIME”’
ALARM, “# x/% % /% %> “x % :09:30°°,“APPOINTMENT ”’,W

(4) All punctuation marks (commas, parentheses, semicolons, hyphens, equal
signs, and so forth) must be entered exactly as shown.
When round brackets () are included they MUST be typed in as shown.

(5) Where a set of full stops *‘...”" is included, the items may be repeated any
number of times, provided the length of the logical line is not exceeded.

e.g. CLOSE [[# <filenumber >][, # < filenumber >]....]
means that any number of files can be closed. Valid examples are

CLOSE
CLOSE #4
CLOSE #1, #3, #4

(6) Items included between vertical bars are mutually exclusive; and only one
of the items shown can be included when the statement is executed.

e.g. STOP KEY jON
OFF

The following abbreviations are used in explaining the arguments or parameters
of commands, statements, and functions.

XorY......... Represent any numeric expressions.
JorK........... Represent integer expressions.
X$ or YS........ Represent string expressions.

With functions, any floating point value specified as an argument will be auto-
matically rounded to the nearest integer value if the function in question only
works with integer values.

4-4

ABS

ABS(X)

Returns the absolute value of expression X.

Any numeric expression may be specified for X.

"VARIABLE", "VALUE", "ABRSOLUTE VALUE"

19 CLS

20 A = 2

e B = =25

40 C = 2.54%5

54 D = —-2.545

b FRINT

7¢ PRINT "A",A,ABS (A)
86 FRINT "R",B,ABS(E)
?¢ PRINT "C",C,ABS(C)

100 FRINT

VARIABLE
A

E

[

D

Ok

“D",D,ARS (D)

VALUE
25

-25
2.545

-2.545

ABSOLUTE VALUE

ALARM

Remarks

ALARM [<date>, <time>,<string>[,W]]

Specifies the alarm or wake time. Only one of these can be set
at a time.

USING THE ALARM COMMAND IN ALARM MODE

Executing the ALARM statement without the W option sets the
alarm time. When the alarm time is reached, the power goes on,
the speaker generates a warbling sound, and a screen similar to
the one below is displayed. If a program is being executed, it will
be interrupted.

<ALARM TIME> ©1/04 ©3:35 <ALARM MSG> Time to get up!'

Press ESC key

Pressing the [ESC]key at this point returns the PX-8 to the state
it was in when the alarm time was reached; if the key is
not pressed, the PX-8 automatically returns to its previous state
after about 50 seconds have elapsed.

The alarm date is specified in <date> in the same format as with
the DATES statement, and the alarm time is specified in <time>
in the same manner as with the TIMES statement. They are thus
both strings.

< string> must be specified as a string expression whose length
is not greater than 40 characters; this string is displayed next to
the message statement when the alarm time is reached.

Asterisks can be specified as wildcard characters for any of the
digits in <date> or <time>. When asterisks are specified, those
positions in <date> and/or <time> will be regarded as always
matching the corresponding digit in the DATES$ or TIMES$ sys-
tem variable. For example, executing the following statement will
result in alarm operation every day at ten minute intervals from
8.00 am to 8.50 am.

ALARM ““sk % /% % /% %> “@G8: % @:0%° A$

4-6

Note that the two year digits are always handled as if they were
specified as asterisks. They must be specified even if only as aster-
isks. The second digit of the seconds value is always handled as
Zero.

The use of wildcards does not allow complete flexibility of oper-
ation. The alarm can only be set with this option to go off at in-
tervals of one minute, ten minutes, one hour, ten hours or
twenty-four hours. As shown in the above example, this can be
within a time band. If more flexibility is required, a BASIC pro-
gram has to change the ALARM strings continually. An exam-
ple of this is shown in the program below. Examples of using the
wildcard options are as follows; in all cases A$ denotes the mes-
sage string to be printed with the alarm time.

ALARM ““sx/% % /% %> ““x x:% *:45”, A$ will sound the
alarm at one minute intervals when the seconds change to ‘‘40’’,
since the second digit is always treated as a zero.

ALARM ““Hx /% % /% x> “* x:% % :00°, A$ will sound the
alarm as the minute changes.

ALARM ““x /% % /% % “16: % *:00°°, A$ will sound the
alarm as the minute changes, but only when the hour matches
““16”’ i.e. from 16.00 to 16.59.

ALARM ““* /% */% %” “* x:%x5:0*%>’, AS will sound the
alarm every ten minutes, i.e. at 5, 15, 25 etc minutes past the hour,
as this is when the ¢‘5”’ of the minutes will match.

ALARM ““s % /% % /% % ““% %:32:00°°, A$ will sound the
alarm every hour at 32 minutes past the hour on the minute.

NOTE HOWEVER:

ALARM ““® % /% % /% %> “*x %:32:% *>°, A$ will sound the
alarm whenever the ¢‘32’’ minutes matches. It will sound first at
32 minutes past the hour. If the[Esc]key is not pressed, after 50
seconds the program will either continue or the power will be
switched off again. If the[ESC]key is pressed before the 50 sec-

4-7

onds is up, the power will go off or the program will continue,
but since the “32°’ minutes still matches when the next 10,20,30,
etc. seconds is reached, the alarm will sound again.

ALARM ““s % /% /% %, ,“x9:30:00°°, A$ will sound the
alarm at 9.30 am and 19.30.

ALARM ““x % /% % /% %, ““09:30:00°, A$ will sound the
alarm daily at 9.30 am.

USING THE ALARM FUNCTION IN WAKE MODE

Executing the ALARM statement with the W option sets the wake
time. If the wake time is reached while the power is on, opera-
tion is the same as when the alarm time is reached. However, if
the wake time is reached while the power is off, the string expres-
sion specified in <string> is assumed as an auto start string-and
not a message. The auto start string behaves as if a command was
typed in at the keyboard. This means that the equivalent of press-
ing the key must be included in the string. This is
achieved by adding the ASCII code for a carriage return using
the CHR$() function, i.e. by adding CHR$(13) to the end of the
string.

The time setting is carried out in the same format as for simply
producing an alarm message, including the use of wildcards. See
above for a detailed description.

The form of the auto start string will depend on whether BASIC
is resident in memory, and whether the BASIC program it is re-
quired to run is also in memory.

If the MENU is not active the string would then have to specify
that BASIC is loaded, and the appropriate BASIC program loaded
and run. The extensions listed in Chapter 3 may need to be used
in some cases. The following examples show various possibilities:

ALARM ““x % /% % /% % ‘§9:15:00>°,‘C:BASIC
A:MORNING”’ + CHR$(13), W will load BASIC from drive C:

and then run the BASIC program with the name ‘“MORNING”’
which is located in drive A: and since no program area has been
specified, it will be executed in program area 1. The time setting,
with wildcard options for the date, will execute this sequence ev-
ery day at 9.15 am.

ALARM ““x % /% ® /% %> ““% x:30:00”,

““C:BASIC A:HOURLY /F:5 /R:3”’+CHRS$(13), W will
run the BASIC program ‘“HOURLY”’ in program area 3 after
setting the maximum number of files which can be opened to 5.
The program will run once an hour on the half hour.

The MENU is not used when the AUTOSTART or WAKE string
is invoked on power up. This means that if BASIC is already resi-
dent, it is not possible to start up a BASIC program by loading
it directly, or to run a program already in one of the program
areas. However, it is possible to use a trick to overcome this
problem.

First go to the CP/M command line and type

SAVE #§ A:GO.COM

This saves a special file onto the RAM disk. Details are given un-
der the SAVE command in the PX-8 User’s Manual.

In order to have an AUTOSTART or WAKE string run a pro-
gram in one of the BASIC program areas, the program ‘“GO”’
can be used instead of the BASIC interpreter program. For ex-
ample if the PX-8 is set up so that BASIC is in memory the previ-
ous two examples would have the format:

ALARM ““x % /% x /% %, “§9:15:00”’,
“A:GO A:MORNING”’ + CHR$(13),W

ALARM ““sk x/% % /% x /7, ““x % :30:00°,
“A:GO A:HOURLY” /F:5/R:3’ + CHR$(13),W

To run a program which is already resident in one of the pro-
.gram areas, it is necessary to use the /R extension to BASIC
together with the program area number. For example to run the

NOTE:

program in area 4 every hour at 10 minutes past the hour the fol-
lowing format would be required. It is still necessary to invoke
the “GO” file.

ALARM ““* /% % /% %> “% x:10:00",
“A:GO /R:4” + CHR$(13),W

To run the program in the first program area, simply use the above
expression without the extension ‘‘/R:4”’

When the wake time is reached while the power is off, the power
goes on and stays on during execution of the program. After pro-
gram execution is completed, whether and how long the power
stays on is as determined by the last previously executed POW-
ER statement.

An alarm or wake time set with the ALARM statement is the same
as one specified from the System Display; execution of an
ALARM statement will cancel any alarm or wake time setting
made from the System Display, and vice versa.

It is not possible to set both an alarm and wake time simultaneously.

See also

The alarm or wake time setting can be cleared by executing the
ALARM statement without specifying any parameters.

ALARMS, AUTO START, POWER

The following program illustrates the use of a BASIC program
to control the PX-8 so that it can switch itself on and off at fixed
times. This could be used for monitoring a signal through the A/D
port, or sending and receiving data through the RS232 port at
specific times. Normally it is necessary to leave a computer run-
ning continually, even though the time it is required to function
may only be minutes. The program is meant as a demonstration.
Thus the time is deliberately altered at the beginning of the pro-
gram, and will need to be reset to the correct time; TIMES$ can
be used to carry this out. Also, short intervals have been used
so that the full effect can be shown in a convenient time. Differ-
ent actions are taken each time the power is switched on.

4-10

1@ TIME$="11:59:Za"

20 SCREEN ©,0,0

T CLS

43 LOCATE 25,1:FRINT"Fower Control of the FX-8"
50 GOSUE 190

66 FOR X=1 TO 1oo

7a LOCATE 10,2, 0:PRINT"The time is :"iTIME$

80 NEXT

e GOSUR 190

1060 FRINT"Fower switched on again”

11¢ GOSUR 1906

124 PRINT"Today’ s date is :"iDATES$

130 GOSUEB 190

140 FPRINT"Here we can count from 1 to 100 "j
150 FOR X=1 TO 100:LOCATE 40,5,0:PRINT Xi:NEXT
166 GOSUR 19@

17¢ "Repeat all the above

180 GATO 3o

190 FOR DLY=1 TO 1000:NEXT

200 READ WSTS

210 IF WST$="End" THEN 250

220 ALARM "xx/%%x/%%" UWSTH, """, W

270 FOWER OFF, RESUME

246 RETURN

250 CLS:PRINT"Press any key to turn the power off
completely !'!"

260 PRINT "Remember to reset the time using times"
27¢ AS=INPUT$(1)

289 FOWER OFF

DATA "12:06:00"

DATA "12:01:00"

DATA "12:01:20"

240 DATA "12:01: 40"

ITO DATA "12:02:00"

T40 DATA "12:02:1a"

50 DATA "End"

4-11

ALARMS

See also

ALARMS (< function>)

Returns information regarding the setting made by the alarm
statement.

< function> is specified as an integer expression whose value is
from O to 3. The value returned by the ALARMS function varies
according to < function> as follows.

0:

Returns the status of the setting made by the ALARM state-
ment as a l-character string. Characters returned and their
meanings are as follows.

“N” — No alarm setting has been made.

“B” — An alarm setting has been made, but the specified time
has not yet been reached.

“P” — An alarm setting has been made and the specified time
has been reached.

: Returns the date set by the ALARM statement in the same for-

mat as the date returned by the DATE$ function.

: Returns the time set by the ALARM statement in the same for-

mat as the time returned by the TIMES$ function.

: Returns the message set by the ALARM statement as a charac-

ter string.

NOTE:
Once “P” has been returned by executing ALARM$(), “B” is
returned when ALARMS3W) is subsequently executed.

ALARM, AUTO START, POWER.

4-12

>

SC

Remarks

See also
Example

ASC(X$)

Returns the numeric value which is the ASCII code for the first
character of string X$. (See Appendix F for the ASCII codes.)

X$ must be a string expression. An “Illegal function call” error
will occur is X$ is a null string (a string variable which contains
no data, or a pair of quotation marks without any intervening
characters or spaces).

CHRS$

16 CLS

20 A% = "A"
I B$ = "BOO"
43 C$ = "12374"
S0 D = "¢

6o PRINT "STRING", "ASCII value of first letter"”
79 FRINT A%, ASC(A%)
80 FRINT B$, ASC(E$)
960 PRINT C%, ASC(C%)
1aa PRINT D%, ASC(D$)

STRING ASCII value of first letter
A &5
BEOO b6
12724 49

Illegal function call in 160
Ok

4-13

ATN
ATN(X)

Returns the arc tangent in radians of X.

This function returns an angle in radians for expression X as a
value from — n/2 to w/2. The angle will be returned as a double
precision number if X is a double precision number, and as a sin-
gle precision number if X is a single precision number or an in-
teger. ATN(X) can also be used to derive a value for the constant
PI. From elementary trigonometry PI=43% ATN(1).

As PI times radius equals 180 degrees, conversion of radians to
degrees, is a matter of simple proportion. Lines 100 and 110 in
Example 1 show how to obtain angles in degrees.

Example 1

1o CLS

20 INPUT "Type in the tangent of an angle" 3 T

IO Y = ATN(T)

44 FRINT "The angle whose tangent is"iT "is"iYi"RADIANS"
160 FI = 4 ¥ ATN(1)

119 Z = Y*180/P1

120 PRINT "The angle whose tangent is";T "is":iZ;"DEGREES"

Type in the tangent of an angle? ©.7071

The angle whose tangent is .7071 is .615475 RADIANS
The angle whose tangent is .7071 is 3I5.2641 DEGREES
Ok

4-14

Example 2

10
20
0
40
50
&0
70
80
90
100
110
120
1760
140
156
160
176

*Graphic representation of angles whose tangents
‘range from -99 to 106. Range of angles is from
*—-1.5607 radians to +1.5608 radians.

SCREEN 3, ,9:CLS

LINE (100,0)-(100,62)

LINE (&,32)-(200,32)

LOCATE 1,6:PRINT"ANGLE"
ILOCATE 13, 1:PRINT"TAN"

I=-100

X=I+100

Y=6Z-(ATN(I)+1.5708) 20,3718
PSET (X, Y)

FOR I=-99 TO 100 STEP 1
X=I+100

Y=63- (ATN(I) +1.5708) *20
LINE —(X,Y)
NEXT

ARG

LE 4

4-15

AUTO

Remarks

Example 1

Example 2

AUTO [<line number> J[,[<increment >]]

Entered in the direct mode to initiate automatic program line num-
ber generation during program entry.

Executing this command causes program line numbers to be gener-
ated each time the[RETURN]key is pressed to complete the input
of a program line. Numbering starts at <line number >, and sub-
sequent line numbers differ by the value specified for
<increment>. If either <line number> or <increment> is
omitted, 10 is assumed as the default value; however, if a com-
ma is specified following <line number> but no <increment >
is specified, the increment specified for the last previous AUTO
command is assumed.

If the currently selected program area already contains a line
whose line number is the same as one generated by AUTO num-
bering, an asterisk (*) is displayed immediately following the
number to warn the user that that line contains statements. If the
key is pressed without entering any characters, the line
is skipped without affecting its current contents; if any charac-
ters are entered before the [RETURN]key is pressed, the former
contents of the line are replaced with the characters entered.

AUTO line number generation is terminated and BASIC returned

to the command level by pressing and or the[STOP |
key; the contents of the last line number displayed at this time
are not stored in the program area.

AUTO 109,50
Generates line numbers in increments of 50, starting with line
number 100. (100, 150, 200 ...)

AUTO

Generates line numbers in increments of 10, starting with line number
10. (10, 20, 30...)

4-16

AUTO START

AUTO START < auto start string >
Sets the auto start string.

< auto start string > must be specified as a string expression whose
length is not greater than 40 characters. When the PX-8’s power
is turned on, this string is handled as if it were typed in from the
keyboard. If the power is turned on as a result of the wake time
being reached, the string declared in the wake string will override
the <auto start string>.

There must be a space between AUTO and START.

The form of the < auto start string > will depend on whether BAS-
IC is resident in memory, and whether the BASIC program it is
required to run is also in memory.

If the MENU screen is switched off, the string would have to specify
loading and execution of both BASIC and the appropriate BASIC
program. The extensions listed in Chapter 3 may need to be used
in some cases. The following examples show various possibilities:

AUTO START “C:BASIC A:UPANDGO” + CHRS$(13)

will load BASIC from drive C: and then run the BASIC program
with the name “UPANDGO” which is located in drive A:. Since
no program area has been specified, it will be executed in pro-
gram area 1.

AUTO START “C:BASIC A:FIRST /F:5 /R:3”+ CHR$(13)

will run the BASIC program “FIRST” in program area 3 after
setting the maximum number of files which can be opened to 5.

The MENU is not used when the AUTOSTART or WAKE string
is invoked on power up. This means that if BASIC is already resi-
dent, it is not possible to start up a BASIC program by loading
it directly, or to run a program already in one of the program areas.

4-17

See also

However, it is possible to use a trick to overcome this problem.
First go to the CP/M command line and type

SAVE § A:GO.COM

This saves a special file onto the RAM disk. Details are given un-
der the SAVE command in the PX-8 User’s Manual.

In order to have an AUTOSTART or WAKE string run a program
in one of the BASIC program areas, the program “GO” can be
used instead of the BASIC interpreter program. For example if
the PX-8 is set up so that BASIC is in memory the previous two
examples would have the format:

AUTOSTART “A:GO A:UPANDGO” + CHR$(13)
AUTOSTART “A:GO A:FIRST /F:5 /R:3”+CHR$(13)

To run a program which is already resident in one of the program
areas, it is necessary to use the /R extension to BASIC together
with the program area number. For example to run the program
in area 4 every hour at 10 minutes past the hour the following for-
mat would be required. It is still necessary to invoke the “GO” file.

AUTOSTART “A:GO /R:4”+CHR$(13)

The AUTO START string can be cancelled by executing the
AUTO START statement with a null string (‘‘ *”) specified for
the <auto start string>.

The <auto start string > specified from BASIC using the AUTO
START command, will appear in the appropriate area of the sys-
tem display.

ALARM, ALARMS$, POWER

4-18

P

Format
Purpose
Remarks

See -also
Example

BEEP < duration>
Sounds the PX-8’s built-in speaker.

This statement causes the speaker built into the PX-8 to make
a beeping sound. The length of the sound is determined by the
numeric value specified in < duration>. The value specified must
be in the range from 15 to 255, and the length of the sound gener-
ated is equal to approx. <duration> X 10 msec. The frequency
of the sound generated is approximately 1000 Hz.

SOUND

BEEP 160
Generates a tone with a duration of one second.

4-19

CALL

Purpose
Remarks

Example

CALL <variable name > [(<argument list>)]
Calls a machine language subroutine.

The CALL statement is one method of transferring BASIC pro-
gram execution to a machine language subroutine. (See also the
discussion of the USR function.) <variable name > is the name
of a variable which indicates the machine language subroutine’s
starting address in memory. The starting address must be speci-
fied as a variable (not as a numeric expression), and the variable
name specified must not be an element of an array. <argument
list > is the list of parameters which is passed to the machine lan-
guage subroutine by the calling program. See Appendix D for fur-
ther details on use of the CALL statement.

USR, Appendix D

The following program is an example of the use of the CALL
function. It simply increments by one the number in location
&HCO009, and then displays the new value found by the PEEK
function in line 140.

CoRe A 09 CO LD A, (COA9) :Load register A with contents of
location %HCO@9 which has been
FOKEd in by a BASIC program.

Coaz C4 01t ADD A, O1H sAdd 1 to it.

Ceps =2 @9 Co LD (Coo?), A iMove the contents of register A
back to location %HCQQ<?.

coes C9 RET sRETURN to BASIC.

Coo? 00 NOP :The value obtained by the EASIC
program and the location used for it.

10 CLS

20 CLEAR (%HEFFF

9 ADRS = YHCOOO

4a FOR J = & TO 9

50 READ A

b@ FOKE ADRS+J, A

79 NEXT J

7@ DATA %hIa, %ha9, %hco, Yhcs, Hhol, %h32, ¥he9, %hcd, %hc9

s Hhoo

119 INFUT "Type in a number in the range 1 to 254"iH

1260 POKE %HCOO09,H

126 CALL ADRS

146 C = FEEK (&HC®®9)

156 FRINT B
Type in an
99 + 1
(o]

e =g

C

umber in the range 1 to 2547 99

106

4-20

CDBL

CDBL(X)

Converts numeric expression X to a double precision number.

This function converts the values of integer or single precision
numeric expressions to double precision numbers. Significant
decimal places added to converted numbers will contain random
numbers.

1@ CLS

20 INPUT "TYPE IN TWO NUMBERS "§$X,Y

30 PRINT "THE VALUE OF X multiplied by Y is "jXx*Y

49 PRINT "CONVERTED TO DOUBLE PRECISION IT IS "i CDEL(X*Y)

X

run

TYFE IN TWO NUMEBERS 7 2.45,7.141597

THE VALUE OF X multiplied by Y is 19.8385

CONVERTED TO DOUERLE FRECISION IT IS 10.838509559457135
Ok

4-21

CHAIN

Purpose

Remarks

CHAIN [MERGE] < filename > [,[< line number exp >][,ALL]
[,DELETE < range >]]

Calls the BASIC program designated by < filename > and passes
variables to it from the program currently being executed.

The CHAIN statement makes it possible for one BASIC program
to call (load and execute) another one. < filename> is the name
of the program being called by this statement. The program called
may be stored on floppy disk, in RAM disk, or on microcassette
tape. However, the program called must be one which is not con-
tained in program memory (in another program area).

If the MERGE option is not specified, the program called replaces
the calling program in the program area from which the call is
made. If the MERGE option is specified, the program called is
brought into program memory as an overlay; statements in pro-
gram lines of the calling program are replaced by similarly num-
bered lines in the program called. In this case, the program called
must be an ASCII file (see the explanation of the SAVE com-
mand). Since it is usually desirable to ensure that the range of pro-
gram line numbers in the two programs are mutually exclusive,
the DELETE option may be used to delete unneeded lines in the
calling program.

<line number exp > is a variable or constant indicating the line
number at which execution of the called program is to begin. If
omitted, execution begins with the first line of the program called.

If the ALL option is specified, all variables being used by the call-
ing program are passed to the program called. If the ALL option
is omitted, the calling program must contain a COMMON state-
ment to list variables that are to be passed. (See the explanation
of the COMMON statement.)

Note that user defined functions and variable type definitions
made with the DEFINT, DEFSNG, DEFDBL, or DEFSTR state-

4-22

ments are not preserved if the MERGE option is omitted. There-
fore, these statements must be restated in the program called that
program is to use the corresponding variables ‘or functions.

COMMON, MERGE, SAVE

FEINIEME The first example shows how the chained program can replace the
calling program but still preserve the variables.

156 "prog 2

166 X = X * X

170 FRINT "The values of X,Y, and Z from the chained program

are - "

180 PRINT X,Y,Z

Save the above lines to the RAM disk using SAVE “A: PROG2”,A.
Delete them then type in and execute the following.

59 "The first program to be run

166 READ ¥ , Z

119 X = Y + 2

120 PRINT "The value of X,Y and Z from the first program
are:—"

130 PRINT X,Y,Z

140 DATA 2, S

150 CHAIN "prog2",,ALL

run
The value of X,Y and Z from the first program are:-
7 2 5

The values of X,Y, and Z from the chained program are :-
49 2 5
Ol

4-23

The second example shows how lines can be merged and lines of
the original calling progam deleted. The line number from which
the chained program is executed is also included in this example.

80 FRINT "This line is printed after line 106"
F6 RETURN

10 FRINT "**¥ This is the chained program xxx'
116 GOSUER 8¢

Save the above lines to the RAM disk using SAVE“A: SUB”, A.
Delete them then type in and execute the following.

2060 PRINT "*%¥% This is the first program %%x ": PRINT
210 CHAIN MERGE "SUB", 100,DELETE 200-210

Ok
run
*#%% This is the first program xx%x

*%% This is the chained program %%%

This line is printed after line 109
Ok

4-24

CHRS
CHRS$(J)

Returns the character whose ASCII code equals the value of in-
teger expression J. (See Appendix F for the ASCII codes.)

The CHRS function is frequently used to send special characters
to terminal equipment such as the console or printer. For exam-
ple, executing PRINT CHR$(12) clears the entire virtual screen
and returns the cursor to the home position; executing PRINT
CHRS$(7) causes the speaker to beep; and executing PRINT
CHRS$(11) moves the cursor to the home position (the upper left
corner of the virtual screen) without clearing the screen. See the
description of the ASC function for conversion of ASCII charac-
ters to numeric values.

It is also easier to program using numbers, so that often manipu-
lations with ASCII codes are used in programs instead of using
the actual alphabetic characters.

19 PRINT CHR®% (12) rTclear screen

20 FOR J = 65 TO 9@ :"Display characters A-Z
TG PRINT CHR$ (J) 3

40 NEXT J

56 FRIMT

6o FOR J = 97 TO 122 :"Display characters a-:z
70 PRINT CHR$(J) 3§

8o NEXT J

9a "

1260 PRINT CHR%(7) : Tsound buzzer

ARCDEFGHIJELMNOFORSTUVWXYZ
abcdefghijklmnopgrstuvaiysz
Ok

4-25

CINT

Remarks

CINT(X)

Rounds the decimal portion of numeric expression (X) to the
nearest whole number and returns the equivalent integer value.

X must be a numeric expression which, when rounded, is within
the range from -32768 to + 32767; otherwise, an ‘‘Overflow’’ er-
ror will occur.

See the descriptions of the FIX and INT functions for other
methods of converting numbers to integers.

See the descriptions of the CDBL and CSNG functions for con-
version of numeric expressions to double and single precision
numbers.

NOTE:
Differences between the CINT, FIX, and INT functions are as
JSollows.

CINT(X) Rounds X to the nearest integer value.

FIX(X) Truncates the decimal fraction of X.

INT(X) Returns the integer value which is less than or equal

to X.
Number Result of Function
CINT | FIX | INT
-1.6 -2 -1 -2
-1.2 -1 -1 -2
1.2 1 1 1
1.6 2 1 1

Although numbers are printed to the screen as you would expect,
they are not always stored as such in the computer. This can lead
to erroneous results with INT(X) and FIX(X) as the following
program shows:

4-26

13 CLS

20 K1 = 2.6 1 E2 = .2

IOOPRINT "X, "X "INTOX) ", "FIX (X)) ", "CINT (X)) "
49 N = 2 : GOSUR 100

6 N = 12: GOSUB 1606

L@ PRINT :FRINT "The value of X — INT(X) is "3 X — INT (X)
8o END

9@ °

959 "subroutine to print values

1oo X = K1 * N - kK2

114 X% = K1 * N — K2

120 PRINT X, X%, INT(X),FIX{(X),CINT(X)
130 RETURN

X X7 INT(X) FIX(X) CINT (X)
5 5 =} S S
31 1 30 30 1

The value of X - INT(X) is .999998
Ol

The values of INT(X) and FIX(X) are apparently wrong since sim-
ple mental arithmetic will show that 12 X 2.6 — 0.2 = 31.
However, the output from line 60 shows that X is stored in the
computer as 30.999998 and so the functions INT (X) and FIX
(X) are returning logically correct values. The error is due to the
fact that numbers are converted to and handled as binary num-
bers by the computer. Such rounding errors are overcome by ad-
ding a small number to the answer before executing INT (X) or
FIX (X) — eg: if line 120 is altered to:

120 PRINT X, X%, INT (X + 0.0005), FIX (X +0.0005), CINT (X)

all values would be correct.

4-27

gc)
4
50
[=Y5)
=1%]
E4%]
95
166
11
12
176

S

[

The
(WIS

CLS
K1 = 2.6

FRINT "X","X%"

: K2

N = 2 : GOSUR
N = 12: GOSUE 100
FRINT :FRINT

END

— -

166

"The value of X - INT(X) is

"subroutine to print values
X = K1 * N - k2
X7 = K1 * N - k2
FRINT X, X%, INT(X +

RETURN

value of

INT (X)

. Q0a5) FIX (X +

INT (X)
5
31
1s .999998

4-28

SUINTOXY ", "FIXC(X) ", "CINT(X) "

"

X

= INT (X)

- 9005) ,CINT (X)

FIX(X)

5

31

CINT (X)

S

1

CLEAR

Remarks

CLEAR [[< dummy >][,[< upper memory limit >][, < stack area
size >1]]

Resets all numeric variables to 0 and all string variables to null.
When <upper memory limit > is specified, it also reserves an area
in memory for machine language programs; this is done by set-
ting an upper boundary in memory which defines the highest ad-
dress (<upper memory limit> — 1) which can be used by BASIC.

The CLEAR command destroys all variables including definitions
made with the DEF statements (DEFINT, DEFSNG, DEFDBL,
and DEFSTR) and closes all files which are currently open.
CLEAR will also clear the BASIC stack, so that if CLEAR is used
in any subroutine, the program will not be able to return.

<stack area size> specifies the number of bytes of memory to
be reserved as stack space. The stack space is used for purposes
such as storing return addresses during execution of GOSUB state-
ments. When BASIC is started, 256 bytes are reserved as stack
space. If more stack size is required, it can be increased using the
stack area size option.

For example CLEAR,, 512 will set the stack area to 512 bytes.

<dummy> is included to provide compatibility with other ver-
sions of BASIC, and has no purpose in BASIC for the PX-8.

Apart from being used for clearing variables, the main use of
CLEAR is to enable space to be reserved into which to POKE
machine code programs. This is done by moving down the highest
memory location BASIC can use for variables, etc. To move the
highest memory limit down to &HC@ the expression would be:

CLEAR, &HC@60
With the PX-8, the programmer needs to know where the start

of BDOS etc lies, since the machine code area reserved is below
this. This can change depending on how the system is configured.

4-29

Example

The RAM disk and user BIOS area in particular will affect the
location of the start of BDOS. Programs should determine this
from page zero (locations 6 and 7) and set the start of the machine
code area a suitable number of bytes below it, rather than use
absolute values in a program. If an attempt is made to reserve
memory above the start of BDOS, an ‘‘Out of memory’’ error
message will be generated.

The second example shows how to set the memory limit in the
correct position below BDOS.

Having set the upper memory limit, the program would normal-
ly start at that location. For example, CLEAR, &HC@33 would
allow the program to start at &HC@09,

The first example illustrates that variables are destroyed by
CLEAR.

B =33 : A% = "ARBRC"

20 FRINT A,B,A%

19 A = 55 :
Zé CLEAR
46

Sets A and B to zero and
A% to null

Sa FPRINT A.B,A%

ul

5
(5]
Ok

I3 ARC
(2]

4-30

The second example shows how to reserve space for a machine
code program, both using an absolute address and relative to the
start of BDOS.

10 CLEAR , YHAFFF ,512 1" Clears space for machine code
20 7 from HBE®OO and sets stack to
RICIN 512 bytes

4% FPRINT FRE (&) :” Frints available memory
Se 7

68 MT = FPEEK (4) + PEEK (7) * 255 :7 Find start of BDOS
79 CLEAR , MT - 100 :" Clear 100 bytes of
ga memory for Machine
96 code beneath EDOS
19a °

119 FRINT FRE (&) :* Frint the available
120 7 memory

rur

7895

15531
Ok

4-31

CLOSE

Purpose
Remarks

See also

CLOSE][#] < file number > [,[#] < file number>...]]
Executing this statement terminates access to device files.

This statement terminates access to files opened previously un-
der specified file numbers. If no file numbers are specified, this
statement closes all files which are currently open.

Once opened, a file must be closed before it can be reopened un-
der a different file number or in a different mode, or before the
file number under which that file was opened can be used to open
a different file. A ‘‘File already open”’ error will occur if an at-
tempt is made to open a file which is already open, or if an at-
tempt is made to open a different file using the file number
assigned to a file which is already open; a ‘‘Bad file mode’’ error
will occur if an attempt is made to use a different file number
to open a file which is already open.

Executing this statement to close a random file or a sequential
file which has been opened in the output mode causes the con-
tents of the output buffer to be written to the file’s end. There-
fore, be sure to close any disk or microcassette files which are
open for output before removing the medium from the drive;
otherwise, data stored in the file will not be usable, and there is
a possibility that the contents of other files may be destroyed when
a CLOSE statement is executed if another disk or magnetic tape
is inserted in that drive.

All files are closed automatically upon execution of an END,
CLEAR, or NEW statement.

END, OPEN, Chapters S and 6

4-32

Example

1006
11¢

140
150

160

OFEN "O",.#1, "A:TEST.DAT"

FOR J = 65 TO 90

FRINT #1, CHR$(J) 3

NEXT J

CLOSE #1

OPEN "I" ,#1, "A:TEST.DAT"
IF EOF (1) THEN 160

A% = INPUT$(2,1)
FRINT A% : GOTO 100

END

run

AR

EF
GH

Opens the file "TEST"
for output on drive A:

:? Writes letters A to 7
to the file
Closes file "A:TEST.DAT"

Opens file for input

Checks whether End of File

marker of file 1 has been

reached, and if so goes to 16@.
Inputs two characters from file #1

:” Prints the characters input
from the file and returns for more.
Ends program, Closing file

4-33

CLS
CLS

Clears the LCD screen.

The CLS statement clears the currently selected virtual screen. This
statement performs the same function as PRINT CHR$(12).

4-34

COMMON

Remarks

See also
Example

COMMON <list of variables>

Passes variables to a program executed with the CHAIN
statement.

The COMMON statement is one method of passing variables from
one program to another when execution of programs is chained
with the CHAIN statement, the other being to specify the ALL
option in the CHAIN statement of the calling program. The
COMMON statement may be included anywhere in the calling
program, but is usually placed near its beginning. More than one
COMMON statement may be specified in a program, but the same
variables cannot be specified in more than one COMMON state-
ment. Array variables are specified by appending ‘“()”’ to the ar-
ray name.

CHAIN

10 FRINT "Main program"
20 A% = "Tom"

o B = "Dicl"

4 Ce = "Harry"

5S¢ COMMON
69 CHAIN

19 PRINT
ogram"
20 PRINT
IO PRINT
40 FRINT
56 END

A$,B$,C$
“A: COMMONZ2"

"The COMMON statement passes 3 variables to this pr

"The first is "iA%
"The second is ";B$
"The third is ";C%

Main program
The COMMON statement passes I variables to this program

The first

is Tom

The second is Dick

The third
Ok

is Harry

4-35

CONT

Remarks

CONT

Resumes execution of a program which has been interrupted by
a STOP or END statement, or by pressing + or
the key.

This command causes program execution to resume at the point
at which it was interrupted. If execution was interrupted while
a prompt (“‘?”’ or a user-defined prompt string) was being dis-
played by an INPUT statement, the prompt is displayed again
when program execution resumes.

The CONT command is often used together with the STOP com-
mand or the key during programming debugging. When
execution is interrupted by the STOP statement or the key,
statements can be executed in the direct mode to examine or
change intermediate values, then execution can be resumed by ex-
ecuting CONT (or by executing a GOTO statement in the direct
mode to resume execution at a different line number). The CONT
statement can also be used to resume execution of a program
which has been interrupted by an error; however, program exe-
cution cannot be resumed if any changes are made in the pro-
gram while execution is stopped.

1o CLS

20 FOR J = 1 TO Soe

I X = J * 3

44 LOCATE 40,7 @ FRINT X
SO NEXT J

79
Break in 40
Ok
print x
79
Ok
cont

4-36

COPY
COPY

Outputs the contents of the display to the printer.

The COPY statement outputs the contents of the PX-8’s LCD
screen to a dot-matrix printer. In screen modes 0, 1, and 2, this
statement outputs the contents of the screen window to the printer
in ASCII format. In screen mode 3, it outputs the contents of
the real screen to the printer in bit image format. Pressing
and will perform the same function, interrupting the pro-
gram to do so.

10 SCREEN =

20 FOR N = 33 TO 159

@ FPRINT CHR# (N) 3

40 IF N = 75 OR N = 117 THEN PRINT:PRINT
9@ NEXT N

6@ COFY

7@ END

PRGSO - B ET4EE TR £ <=2 TERECOEFGHT JK
LMNOFQRSTUMEYZO] . *abedefahid dk Imnorar stu
gz X Vet b o el SRR g gyt o

4-37

COS
COS(X)

Returns the cosine of angle X, where X is in radians.

The cosine of angle X is calculated to the precision of the type
of numeric expression specified for X.

PRINT COS (1.5)
H797371

NOTE:

The value returned by this function will not be correct if (1) X is a single preci-
sion value which is greater than or equal to 2.7E7, or (2) if X is a double preci-
sion value which is greater than or equal to 1.2D17.

4-38

CSNG

Format
Purpose

Remarks

Example

CSNG(X)

Returns the single precision number obtained by conversion of
the value of numeric expression X.

See the descriptions of the CDBL and CINT functions for con-
version of numeric values to double precision or integer type
numbers.

PRINT CSNG(5.123456789 #)
5.12346

4-39

CSRLIN

Purpose

Remarks

CSRLIN [(< function >)]

Returns the number corresponding to the current vertical posi-
tion of the cursor in the virtual screen or the vertical position of
the first line of the screen window in the virtual screen.

The value of function must be in the range 0 to 255.

The CSRLIN function returns the line of the virtual screen on
which the cursor lies when the function is called. The lines of the
virtual screens are numbered as follows:

Screen modes @, 1, and 2: 1 to the maximum number of virtual
screen lines specified in the SCREEN
or WIDTH statement.

Screen mode 3: 1to 8.

If CSRLIN or CSRLIN (@) is executed, the value returned is the
vertical position of the cursor in the virtual screen.

If CSRLIN (X) is executed, where X is in the range 1-255, the
position of the first line of the screen window in the virtual screen
is returned.

The meaning and range of values are the same as in the LOCATE
statement.

The following program illustrates this dynamically by printing out

the positions of the cursor and window, for whichever combina-
tion of screen display you choose.

4-40

Example

1@ CLS

26 INPUT "TYPE IN SCREEN NUMBER (@-3)" 3
36 INPUT "TYPE IN VIRTUAL SCREEN NUMBER

II;VS
40 INPUT "FUNCTION KEY DISPLAY (@ =
5@ SCREEN SC,VS,FK

60 CLS
70 FOR J = 1 TO 10 : PRINT J : NEXT
80 C = CSRLIN : D = CSRLIN(L)

off,

sC
€]

1

1]

"e

9@ LOCATE S,6 : PRINT "Cursor virtual screen pos"s

100 LOCATE G5,
110 LOCATE 1

(Screen 0, virtual screen 1, function key display off)

4

=

g Cursor virtual screen pos 11
g Window virtual screen pos 4
9

10
n

(Screen 1, virtual screen 1, function key display off)

Cursor virtual screen pos 11
Window virtual screen pos 1

ONO PRI

(Screen 2, virtual screen 1, function key display off)

4
S
6 Cursor virtual screen pos 11
g Window virtual screen pos 4
7,
1¢

n

NOTE:

7 : PRINT "Window virtual screen pos"i;D
.C : PRINT CHR$(149)::G60T0 11

Line 110 places a graphics character on the screen where the cursor was before
the text was printed to illustrate the results indicated by line 80.

4-41

CVI/CVS/CVD

Purpose

Remarks

See also
Example

CVI (< 2-byte string>)
CVS (<4-byte string>)
CVD (< 8-byte string>)

These functions are used to convert string values into numeric
values.

Numeric values must be converted to string values for storage in
random access files. This is done using the MKI$, MKS$, or
MKDS$ functions depending on whether the numeric value being
converted is an integer, single precision number, or double preci-
sion number. When such strings are then read back in from the
file, they must be converted back into numeric values for display
or use as operands in numeric operations. This is done using the
CVI, CVS and CVD functions.

CVI returns an integer for a 2-byte string, CVS returns a single
precision number for a 4-byte string, and CVD returns a double
precision number for an 8-byte string.

MKI$/MKS$/MKDS$, Chapter 5

at=mki$ (12849)
Ok
?a%
12
Ok
?cvi (a$)
12849
Ok

DATA

Format
Purpose

Remarks

DATA <list of constants>

Lists numeric and/or string constants which are substituted into
variables by the READ statement. (See the explanation of the
READ statement.)

DATA statements are non-executable, and may be located any-
where in the program. Constants included in the list must be sepa-
rated from each other by commas, and are substituted into
variables upon execution of READ statements in the order in
which they appear in the list. A program may include any num-
ber of DATA statements.

When more than one DATA statement is included in a program,
they are accessed by READ statements in the order in which they
appear (in program line number order); therefore, the lists of cons-
tants specified in DATA statements can be thought of as con-
stituting one continuous list, regardless of the number of constants
on each individual line or where the lines appear in the program.

Constants of any type (numeric or string) may be included in <list
of constants>; however, the types of the constants must be the
same as the types of variables into which they are to be substitut-
ed by the READ statements.

Numeric DATA statements can contain negative numbers but no
operators. String constants must be enclosed in quotation marks
if they include commas, colons or significant leading or trailing
spaces; otherwise, quotation marks are not required.

Once the <list of constants> of a DATA statement has been
read, it cannot be read again until a RESTORE statement has

been executed.

READ, RESTORE

4-43

10 CLS
POFOR J =1 T0 5

3@ READ Af,B

40 PRINT A%,E

S50 NEXT

69 END

7@ DATA "ANGELA:ANGIE",1Z," ERIAN",-20,CHARLIE,Z9,DIANA,
~16,ERIC, T4

ANGELA: ANGIE 12

BRIAN -20
CHARLIE 9
DIANA -16
ERIC 4

Ok

4-44

DATES

Purpose

Remarks

See also

As a statement
DATES=“<MM>/<DD>/<YY>"

As a variable
X$=DATES$

DATES is a system variable which contains the date of the PX-8’s
built-in calendar clock.

As a statement, DATES is used to set the date of the PX-8’s calen-
dar clock. <MM> is a number from 01 to 12 which indicates
the month, <DD> is a number from 01 to 31 which indicates
the day, and <YY > is a number from 00 to 99 which indicates
the year. As a variable, DATES returns the date of the built-in
clock in “MM/DD/YY”’ format.

DATE, DAY

4-45

DAY

Format

Purpose

Remarks

Example

As a statement
DAY=<W>

As a variable
X% =DAY

DAY is a system variable which maintains the day of the week
of the PX-8’s built-in calendar clock.

As a variable, DAY returns the day of the week of the PX-8’s
calendar clock as a number from 0 to 6. Sunday is represented
by 0, 6 is used to represent Saturday, and so forth.

The day can be set independently of the value assigned as the
calendar date (by the DATES statement); therefore, as a state-
ment DAY can be used to assign any number from 0 to 6 to the
current day of the week. However, if the current day of the week
is altered from the above representation, the System Display and
other software will print out the day incorrectly. For example if
you choose to assign the first day of January 1985 as 6, the sys-
tem display will show Saturday when it should in fact be a Sunday.

1o PRINT "Day is ";DAY

260 DAY=3

I@ PRINT "Day is now";DAY
4G END

run
Day is S
Day is now 3
Ok

4-46

DEF FN

Purpose
Remarks

DEF FN < name > (< parameter list >) = <function definition >

Used to define and name user-written functions.

A user defined function is a numeric or string expression which
can be executed by BASIC programs in the same manner as in-
trinsic functions (e.g., TAN or SIN). When such a function is
called, the variables specified as its arguments (either in the func-
tion definition or in the parameter list of the calling statement)
are substituted into the expression and the equivalent value is
returned as the result of the function.

< parameter list > comprises those variables in the function defi-
nition that are to be replaced when the function is called. The
items in the list are separated by commas.

If a <parameter list> is included in the < function definition>,
then a list with a corresponding number of parameters must be
specified in the statement calling the function; the values of vari-
ables specified in the calling statement’s parameter list are then
substituted into the < parameter list> of the function definition
on a one-to-one basis.

< function definition> is an expression that performs the oper-
ation of the function. It is limited to one program line. Variable
names that appear in this expression serve only to define the func-
tion; they do not affect program variables that have the same
name.

A variable name used in a function definition may or may not
appear in the parameter list. If it does, the value of the parameter
is supplied when the function is called. Otherwise, the current
value of the variable is used.

If a type is specified in the function name, the value of the ex-
pression is forced to that type before it is returned to the calling
statement. If a type is specified in the function name and the ar-

gument type does not match, a ‘‘Type mismatch’’ error occurs.

The DEF FN statement must be executed before the correspond-
ing user function can be called: otherwise, an ‘‘Undefined user
function’’ error will occur.

DEF FN statements cannot be executed in the direct mode.
Examples showing extensive use of the DEF FN command are

shown in the example programs in the appendices. The follow-
ing programs outline simpler applications.

10 DEF FN SR((X) = X % X : ' define the function S0 to give
20 7 the square of a number
IQ FRINT FN SGE(() print the square of 9

40 X = 12 1’ set the variable X equal to 12
S0 PRINT FN S@((X) : ' and print the square of X

60 Y = 10

70 FRINT FN S@((Y) : ' use the value of the variable Y
80 - as a substitute for X

90 -

120 FRINT:FRINT
110 DEF FN NM(X,Y) = X ¥ X + Y:’ ' define a function NM to give

120 a function of two numbers
170 FRINT FN NM(10,20) :’ print the value using 10 and 20
1400 X =5 1 ¥ = &
150 FRINT FN NM(X,Y) :’ Frint the value of the function
160 7 using the variables X and Y
170 FRINT FN NM(Y,X) :’ The values of the variables are
180 - used according to position and
190 NOT VARIABLE NAME
run

81

144

106

120

31

41
Ok

4-48

The only inverse trigonometric function available is ARC TAN.
DEF FN is useful to provide functions for ARC COS etc.,and
the formulae for obtaining such functions are listed in Appendix
E.

The following program illustrates the use with ARC SIN, and also
in converting from radians to degrees. (See ATN for this compu-
tation.)

1@ DEF FN ARCSIN(X) = ATN (X / SOR (1-X * X)) :’° Defines &

20 function to give the angle from its SINE
k1]

4@ DEF FM DEG (X) = X ¥ 45 / ATN(1) :’° function to convert
50 radians to degrees
60 CLS

70 INFUT "Type in SINE of angle "; X

80 R = FN ARCSIN (X) = D = FN DEG (R) : Find the values of
the angle

9@ PRINT "The angle whose SINE is "3 X ;3 " is " i R 3

"Radians

Type in SINE of angle 7? .95
The angle whose SINE is .9

Ok

or

s D 3 "Degrees"

ey e

is 323399 Radians or 20 Degrees

4-49

DEFINT/SNG/DBL/STR

Purpose

RETNETL

NOTE:

DEFINT <range(s) of letters >
DEFSNG <range(s) of letters>
DEFDBL <range(s) of letters>
DEFSTR <range(s) of letters>

Declares the type of variables specified in <range(s) of letters>.

DEFINT as an INTEGER variable

DEFSNG as a SINGLE PRECISION variable
DEFDBL as a DOUBLE PRECISION variable, and
DEF STR as a STRING variable

This statement defines the type of the specified variable or ranges
of variables, making it unnecessary to indicate their type by ap-
pending the type definition characters (%, !, #, and $). Type
declarations made using this statement apply to all variable names
which begin with the letters included in <range(s) of letters>.
For example, execution of DEFSTR A-C declares all variables
whose names begin with the letters A, B, and C as string varia-
bles even though the declaration character $ is not appended to
their names. Variable types specified in DEF statements do not
become effective until those DEF statements have been executed;
therefore, the BASIC interpreter assumes that all variables without
type declaration characters are single precision variables until a
type definition statement is encountered. When a DEF statement
is encountered, variables without type definition characters are
cleared if the first letter of their names is specified in that
statement.

Note that trying to assign a numerical value to R when it has been declared as
a string variable results in a “Type mismatch error’.

4-50

DEF USR

Remarks

See also

NOTE:

DEF USR[< digit>]= <integer expression>

Specifies the starting address in memory of a user-written machine
language program.

Machine language programs whose starting addresses are defined
with the DEF USR statement can be used as functions in BASIC
programs. This is done using the USR function; see the explana-
tion of the USR function and Appendix D for more information.
<digit > is a number from 0 to 9 by which the machine language
program is identified when called with the USR function. If
<digit> is not specified, 0 is assumed.

<integer expression> is the starting address of the machine lan-
guage program. Up to 10 starting addresses (USRO to USR9) may
be concurrently defined; if more addresses are required, additional
DEF USR statements may be executed to redefine starting ad-
dresses for any of USRO to USRO.

Machine language programs used as subroutines by BASIC pro-
grams must be written into memory before they can be called;
further, the starting address of the area into which machine lan-
guage programs are written must be specified with the CLEAR
statement.

USR, CALL

Appendix D describes how to use DEF USR.

4-51

DELETE

Remarks

DELETE [<line number 1>][-<line number 2>]

Deletes specified lines of the program in the currently logged in
BASIC program area.

If both <line number 1> and <line number 2> are present,
all the lines from <line number 1> to <line number 2> inclu-
sive will be deleted. If the second parameter is omitted, only the
line specified in <line number 1> is deleted. If the first parameter
is omitted, all lines from the beginning of the program to <line
number 2> will be omitted.

An ““Illegal function call’’ error will result if a specified line num-
ber does not exist or if a hyphen is specified without specifying
the second line number.

Although DELETE can be used in a BASIC program, control
always returns to the command level after execution.

If you wish to delete the last lines of a program, you cannot specify
a line number greater than that of the last line of the program,
otherwise an “‘Illegal function call’’ error will be printed and no
action will be taken. Thus, if the last line number in a program
is 190 and you wish to delete lines greater than 100, DELETE
101-199 is correct but DELETE 101-20¢ will generate an error.
However, line 101 does not have to exist.

DELETE 18 will remove line 10.

DELETE 16— 96 will remove lines 10 to 90.
DELETE -96 will remove lines up to line 90.

4-52

Format
Purpose

Remarks

Example 1

Example 2

Example 3

DIM <Iist of subscripted variables >

Specifies the maximum range of array subscripts and allocates
space for storage of array variables.

The DIM statement defines the extent of each dimension of vari-
able arrays by specifying the maximum value which can be used
as a subscript for each dimension; it also clears all variables in
the specified array(s). For example, DIM A(25,50) defines a two-
dimensional array whose individual variables are designated as
A(N1,N2), where the maximum value of N1 is 25 and the maxi-
mum value of N2 is 50. Since the minimum value of a subscript
is 0 (unless otherwise specified with the OPTION BASE state-
ment), this array includes 26 X 51 = 1346 individual variables.
Any attempt to access an array element with subscripts greater
than those specified in the DIM statement for that array will result
in a “Subscript out of range” error; if no DIM statement is speci-
fied, the maximum value which can be used for subscripts is 10.
Once an array has been dimensioned with the DIM statement it
cannot be redimensioned until it has been erased by a CLEAR
or ERASE statement.

ERASE, OPTION BASE, CLEAR

10 DIM A(20, 15)

Defines two-dimensional array A and specifies 20 and 15 as its
maximum subscript values. Unless otherwise specified by a DEF
<type> statement, BASIC will handle this as a single precision
numeric array.

10 DIM AS$(30)
Defines one-dimensional string array A$ and specifies 30 as its
maximum subscript value.

10 DIM G%(25), F%(25)
Defines one-dimensional arrays G and F and specifies 25 as the
maximum values of their subscripts.

4-53

DSKF

‘Remarks

DSKF(< drive name >)

Returns the amount of space available for storage of files or pro-
grams in the disk device specified by <drive name>.

This function returns the amount of unused space in the disk
device specified by <drive name> as an integer which indicates
the amount of free space in kilobytes. The <drive name> must
be specified as a string expression from ‘‘A:’’ to *“‘F:”’. However,
note that a ‘‘Device unavailable’’ error will occur if the specified
device is not connected; further, the value returned for the
microcassette drive (usually drive ‘‘H:’’) has no meaning.

PRINT DSKF (‘‘A:’’) will return the amount of space available
for drive A:.

4-54

EDIT

Purpose

Remarks

EDIT [<line number>]

Places BASIC in the edit mode for editing of the program in the
program area which is currently logged.

The EDIT command is used in direct mode to place the currently
selected virtual screen in the edit mode. If <line number> is
specified, BASIC clears the screen and prints the specified pro-
gram line with the cursor positioned on the first character of the
line; an error message will be displayed if the line does not exist.
If no line number is specified the edit mode will be entered at the
first line of the program.

The edit mode is an enhanced form of the normal screen editor.
The cursor keys in combination with the[CTRL Jkey allow the wole
of the program to be scrolled regardless of the number of lines
in the virtual screen. This prevents continually having to list suces-
sive portions of the program and is particularly useful if the edit-
ing is being attempted in screen mode 3. If an attempt is made
to enter the edit mode when the screen is in screen mode 2 and
the width of the screen in which the cursor lies is less than 38
columns, an “‘Illegal function error’’ will be generated.

When the EDIT command is executed while in screen modes 0,
1 or 2, the edit mode is only entered on the current screen. The
other virtual screen remains in the normal screen editor mode.
By changing the screen using + [+] or + [¢]
and executing the EDIT command on the other virtual screen both
screens can be used in the edit mode. If the edit mode is termi-
nated on one screen using [ESC|, [CLR] or [CTRL | + , it
will not be terminated on the other screen. However, if a direct
command (other than EDIT) is used it will be terminated on both
virtual screens.

To exit the edit mode, use the key and clear the screen
with [CLR] or [CTRL | + , or execute any direct mode com-
mand other than EDIT. The PX-8 remains in the edit mode if
the virtual screens are switched using + or
+[e] .

4-55

Chapter 2 Section 2.5 for an extensive explanation of using the
Screen Editor and EDIT.

4-56

END
END

Stops program execution, closes all files and returns BASIC to
the command level.

END statements may be included anywhere in a program to stop
execution. However, it is not necessary to place an END state-
ment in the last line of the program if the last program line is
always the last line executed.

The END statement is often used together with the IF ... THEN
... ELSE statement to terminate program execution under specific
conditions.

As with the STOP statement, program execution terminated by
the END statement can be resumed by executing a CONT com-
mand. However, the END statement does not result in display
of a BREAK message.

It often happens that subroutines are placed at the end of a pro-
gram. An END command is often placed before the first such
subroutine so that the program does not continue into the subrou-
tine when the main part of the program has been completed. The
following example illustrates this.

STOP

1@ GOSUE S6

20 FRINT "Having executed the subroutine at line 50"

Z@ PRINT "this program halts at the END statement on line 4@"
49 END

5@ FRINT "The program is now executing the subroutine at line
S

6@ PRINT

7@ RETURN

run

The program is now executing the subroutine at line 56

Having executed the subroutine at line 5@
this program halts at the END statement on line 4@
Ok

4-57

EOF

EOF (< file number>)

Returns a value indicating whether the end of a sequential file

has been reached during sequential input.

During input from a sequential file, an ‘“‘Input past end”’ error

will occur if INPUT # statements are executed against that file
after the end of the file has been reached. This can be prevented
by testing whether the end of file has been reached with the EOF
function.

<file number > is the number under which the file was opened.
The function will return ¢“false’’ (0) if the end of file has not been
reached, and ‘‘true”’ (—1) if the end of file has been reached.

Example

1o
20
=0
40
5
66
7
8o

99

196
116

OFEN "O",#1,"TEST"
FOR J = 1 TO S
FRINT #1,J

NEXT
CLOSE #1

OFEN "I",#1,"TEST"
IF EOF (1) THEN 11¢
INFUT #1,J

FRINT J,

GOTO 79

FRINT "The end of the file has been reached"

120 CLOSE #1

run

1

2 3 4

4}

The end of the file has been reached

Ok

4-58

ERASE

Format
Purpose
Remarks

See also

ERASE <list of variables >

Cancels array definitions made with the DIM statement.

The ERASE statement erases the specified variable arrays from
memory, allowing them to be redimensioned and freeing the

memory they occupied for other purposes.

An “Illegal function call error” will result if an attempt is made
to erase a non-existent array.

It is not possible to redimension an array without destroying it
completely using ERASE.

DIM

4-59

ERL

Remarks

See also
Example

ERL
Used in an error processing routine to return the line number of

the program line at which an error occurred during command or
statement execution.

The ERL function returns the line number of the command/state-
ment causing an error during program execution.

If an error occurs during execution of a command or statement
in the direct mode, this function returns the number 65535 as the
line number.

The ERL function is normally used with IF ... THEN statements
in an error processing routine to control the flow of program ex-
ecution when an error occurs.

ERROR, ON ERROR GOTO, RESUME, ERR

See under ERROR.

4-60

ERROR

Remarks

Example 1

ERROR <integer expression>

Simulates the occurrence of a BASIC error. Also allows error
codes to be defined by the user.

The value of <integer expression> must be greater than 0 and
less than 255. If the value specified equals one of the error codes
which is used by BASIC (see Appendix A), occurrence of that
error is simulated and the corresponding error message is dis-
played. If the value specified is not defined in BASIC, the mes-
sage ‘“‘Unprintable error’’ is displayed.

You can also use the ERROR statement to define your own error
messages; this is illustrated in the example below. When using the
ERROR statement for this purpose the value of <integer
expression > must be a number which does not correspond to any
error code which is defined in BASIC. Such user-defined error
codes can then be handled in an error processing routine.

ERR, ERL, ON ERROR GOTO, RESUME

16 ON ERROR GOTO 86

20 X = "FRED"

IO X$(20) = 27

49 ERROR 199

S50 PRINT

62 FRINT "There are no more errors to demonstrate"

760 END

8@ IF ERR = 13 THEN FRINT "There is a Type Mismatch in line
20" :RESUME 2o

9@ IF ERL = 3@ THEN PRINT "There is a Subscript error in lin
e I0":RESUME 40

laa IF ERR = 199 THEN PRINT "I defined this error number 199
mysel f":RESUME S@

There is a
There is a

Type Mismatch in line 26
Subscript error in line Z6

I defined this error number 199 myself

There are
Ok

no more errors to demonstrate

4-61

ERR

Format.
Purpose

Remarks

See also
Example

ERR

Used in an error processing routine to return the code of an error
occurring during program execution.

The ERR function returns the code of errors occurring during
command or statement execution.

As with the ERL function, the ERR function is normally used
with IF ... THEN statements in an error processing routine to
control the flow of program execution when an error occurs. An
example of program control using the ERR function is shown
below.

ERL, ON ERROR GOTO, RESUME
See under ERROR
IF ERR =11 THEN RESUME 1680
When included in an error processing routine, this line causes pro-

gram execution to resume at line 1000 if the error being processed
is a “‘Division by zero’’ error.

4-62

EXP

Purpose
Remarks

See also
Example

EXP(X)
Returns the value of the natural base e to the power of X.

The value specified for X must not be greater than 87.3365; other-
wise an ‘‘Overflow’’ error will occur.

To raise another number to a power use the operator “‘A”’. See
the program below for an example.
EXP can also be used to obtain antilogarithms.

LOG

1o FOR J = @ TO 8¢ STEF 1
20 LPRINT "e™":iJi"="3;EXP(J)
3o NEXT

40 LPRINT

S50 LPRINT "The cube of 2 is:

]

I

e” o =1

e” 10 = 22026.5

e™ 20 = 4,85165E+08
e I = 1.06865E+13
e™ 40 = 2,.35285E+17
e™ 39 = 5.1847E+21
e” 60 = 1.142E+26
e 79 = 2,.51544E+30
e” 80 = 5.54063E+34

The cube of 2 is: =)

FIELD

FIELD[#] < file number>, <field width> AS <string varia-
ble>, <field width> AS <string variable>, ...

Assigns string variables to specific positions in a random file
buffer.

When a random access file is opened, a buffer is automatically
reserved in memory which is used for temporary storage of data
while it is being transferred between the storage medium (RAM
disk or other disk device) and the computer’s memory. Data is
read into this buffer from the storage medium during input, and
is written from the buffer to the storage medium during output.
During input, data is read into the buffer upon execution of a
GET statement, and is output to the buffer upon execution of
a PUT statement.

However, before any GET or PUT statement can be executed,
a FIELD statement must be executed to assign positions in the
file access buffer to specific variables. Doing this causes data sub-
stituted into that variable by a PUT statement to be stored in as-
signed positions in the file access buffer, rather than in normal
string space. Conversely, items brought into the buffer from the
file by a GET statement are accessed by checking the contents
of variables to which positions in the buffer have been assigned.
See Chapter 5 for a detailed description of procedures for access-
ing random access files.

The < file number> which is specified in the FIELD statement
is that under which the file was opened. < field width> specifies
the number of positions which is to be allocated to the specified
<string variable >. For example:

FIELD 1,20 AS N$,16 AS ID$,46 AS ADDS$

assigns the first 20 positions of the buffer to string variable N§,
the next 10 positions to ID$, and the next 40 positions to ADDS.

The total number of positions assigned to variables by the FIELD

4-64

See also

1o OFEN

20 7

Ia

statement cannot exceed the record length that was specified when
the file was opened; otherwise, a ‘“‘FIELD overflow’’ error will
occur (the default record length is 128 bytes).

If necessary, any number of FIELD statements may be executed
for the same file. If more than one such statement is executed,
all assignments made are effective concurrently.

GET, LSET/RSET, OPEN, PUT
For full details of use of the FIELD command see Chapter 5.

"R",#1,"E:EMFDAT.DAT"
Opens file "EMPDAT.DAT" in drive E: as a random
access file.

40 FIELD #1,6 AS NO%,2 AS DP%,120 AS RES$

S50

NOTE:

Assigns the first six bytes of file buffer #1 to
variable NO%, the second two bytes to variable
DF$, and the last 120 bytes to variable RE$.

Data can now be placed in the buffer with the
LSET/RSET statement, then stored in the file with
the FUT statement. Or, data can be brought into
the buffer from the file with the GET statement,
after which the contents of the buffer variables
can be displayed with the FRINT statement or

used for other processing.

Once a variable name has been specified in a FIELD statement, only use RSET
or LSET to store data in that variable. FIELDing a variable name assigns it to
specific positions in the random file buffer; using an INPUT or LET statement
to store values to FIELDed variables will cancel this assignment and reassign
the names to normal string space.

4-65

FILES

Purpose

Remarks

Example 1

Example 2

FILES[< ambiguous file name >]

Displays the names of files satisfying the <ambiguous file
name>.

If <ambiguous file name> is omitted, this command displays
the names of all files in the disk device which is the currently select-
ed drive.

When specified, <ambiguous file name> is composed of the fol-
lowing elements.

[<drive name > :][< file name > [< .extension > 1]

In this case, the FILES command lists the names of all files which
satisfy the <ambiguous file name>. An ambiguous file name
is used to find files whose file names and/or extensions include
common character strings. The form for specifying ambiguous
file names is similar to that used for normal file descriptors, ex-
cept that the question mark (?) can be used as a wild card charac-
ter to indicate any character in a particular position, and the
asterisk (*) can be used as a wild card character to indicate any
combination of characters for a file name or extension. Some ex-
amples of ambiguous file names are shown below.

If there are no files on a particular disk, the ‘‘File not found”’
message will be displayed.

FILES ““A:L???.BAS”’
Displays all files on disk drive A: whose file names begin with
L, are up to four characters long and are also BASIC files.

Displays the names of all files on the currently active disk device
whose file names begin with the letter L and whose extensions
are ‘“‘.BAS”’, because all possible character positions are used with
the “?” wild card.

4-66

Example 3

Example 4

Example 5

FILES “D:*.%”’ or FILES “D:”
Displays the names of all files on the disk in drive D.

FILES “D:D???.%”’
Displays the names of all files on the disk in drive D which begin
with the letter D and which include not more than four charac-
ters in the file name.

FILES “D:*.COM”’
Displays all the files on disk drive D: which have .COM as their
extension.

PRINTING FILE NAMES FROM BASIC

In order to print the directory of a disk from BASIC, a screen
dump must be carried out. If there are more files than the screen
will show at one time, scroll the screen using the cursor keys and
perform multiple screen dumps. Screen 0 is the best screen to use
for screen dumps of files because it can be scrolled, and will hold
the greatest number of file names at any one time.

4-67

FIX

Format
Purpose
Remarks

FIX(X)
Returns the integer portion of numeric expression X.

The value returned by FIX(X) is equal to the sign of X times the
integer portion of the absolute value of X. Thus —1 is returned
for — 1.5, —2 is returned for —2.33333 and so forth. Compare
with the INT function, which returns the largest integer which is
less than or equal to X.

See CINT for an explanation and comparison of CINT, FIX and
INT, and also other problems associated with their use.

4-68

FOR...NEXT

Remarks

FOR < variable> = <expression 1> TO < expression 2> [STEP
< expression 3>]

NEXT [< variable>][, < variable>...]

The FOR...NEXT statement allows the series of instructions be-
tween FOR and NEXT to be repeated a specific number of times.

This statement causes program execution to loop through the ser-
ies of instructions between FOR and NEXT a specific number
of times. The number of repetitions is determined by the values
specified following FOR for <expression 1>, <expression 2>,
and <expression 3>.

<variable> is used as a counter for keeping track of the num-
ber of loops which have been made. The initial value of this coun-
ter is that specified by <expression 1>. The ending value of the
counter is that specified by <expression 2>. Program lines fol-
lowing FOR are executed until the NEXT statement is encoun-
tered, then the counter is incremented by the amount specified
by <expression 3>. An increment of 1 is assumed if STEP
< expression 3> is not specified; however, a negative value must
be specified following STEP if the value of <expression 2> is
less than that of <expression 1>.

Next, a check is made to see if the value of the counter is greater
than the value specified by <expression 2> . If not, execution
branches back to the statement following the FOR statement and
the sequence is repeated. If the value is greater, execution con-
tinues with the statement following NEXT. Otherwise statements
in the loop are skipped and execution resumes with the first state-
ment following NEXT.

FOR...NEXT loops may be nested; that is, one FOR...NEXT loop

may be included within the body of another one. When loops are
nested, different variable names must be specified for < variable >

4-69

at the beginning of each loop. Further, the NEXT statement for
inner loops must appear before those for outer ones.

If nested loops end at the same point, a single NEXT statement
may be used for all of them. In this case, the variable names must
be specified following NEXT in reverse order to that in which
they appear in the FOR statements of the nested loops; in other
words, the first variable name following NEXT must be that which
is specified in the nearest preceding FOR statement, the second
variable name following NEXT must be that which is specified
in the next nearest preceding FOR statement, and so forth.

If a NEXT statement is encountered before its corresponding FOR
statement, a ‘“NEXT without FOR”’ message is displayed and ex-
ecution is aborted. If a FOR statement without a corresponding
NEXT statement is encountered, a ‘‘FOR without NEXT’’ mes-
sage is displayed and execution is aborted.

WHILE...WEND

4-70

Example

1@ FRINT "1. Single loop incremented in steps of 2"

20 FOR 3 = 1 TO 9 STEP 2

3@ PRINT J,

4@ NEXT

SO FOR L = 1 TO 100:NEXT

60 PRINT:PRINT "2. Single loop with default increment of 1"

70 FOR K. = 1 TO S

80 FRINT k.,

2@ NEXT

100 FOR L = 1 TO 10@:NEXT

110 FRINT:FRINT "3, Nested loop with two NEXT statements"

120 FOR J = 1 TO S

170 FOR k£ = 1 TO =

14@ PRINT J3;"/";ik,

158 NEXT:NEXT

140 FOR L = 1 TO 100@:NEXT-

170 FPRINT:PRINT "4, Nested loop with one NEXT statement
specifying both variable

180 FOR J = 1 TO S

1990 FOR Kk = 1 TO 3

2090 FRINT Jg"/";k,

210 NEXT k,J

-
.

Single loop incremented in steps of 2
1 = S 7 9

rJ

-

Single loop with default increment of 1
2 3 4

(2]

. Nested loop with two NEXT statements

1 /71 1 /7 2 1 /7 = 271 2/ 2
2/ 3 T/ 1 T/ 2 /3 4 /7 1
4 /7 2 4 / = S /71 S /7 2 S /7 3

4. Nested loop with one NEXT statement specifying both
variables

171 17 2 1 /7 = 271 27 2
27/ 3 /71 /2 I/ 3 4 /1
4 /7 2 4 / = S /71 S/ 2 S/ =

4-71

FRE

FRE(X)
FRE(X$)

Returns the number of bytes of memory which are not being used
by BASIC.

The value returned by this function provides an indication of the
number of bytes of memory which are available for use as string
variables, numeric variables or BASIC program text. However,
the value returned also includes a work area which is used by
BASIC during program execution and thus does not provide a
direct indication of the number of unused bytes which are avail-
able for this purpose.

The arguments of this function have no meaning; FRE returns
the same value regardless of whether a string expression or a nu-
meric expression is specified as the argument.

When a FRE(X$) function is executed, the BASIC interpreter has
to perform ‘garbage collection’. When strings are defined BASIC
stores them in memory; they are often changed frequently as the
program is executed. Every so often BASIC has to collect the
values of the strings which are still valid and erase the unwanted
ones, otherwise there will be no space for more strings to be stored.
If a program executes a great deal of string handling there can
be times while the program is running that it appears to halt be-
cause it is carrying out this ‘garbage collection’. By executing
FRE(X$), BASIC is forced to carry out this operation. A line
which checks the free memory is often placed throughout a BASIC
program so that by forcing garbage collection in small steps rather
than one big one the long gap can be avoided.

FRE(X) carries out garbage collection for numerical variables in
a manner similar to that in which FRE(X$) performs garbage col-

lection for string variables.

The following program shows how assigning a value to a varia-
ble decreases the amount of free memory available.

4-72

Note that when the program is run, line 10 shows there are 23665
bytes of memory. When line 20 has allocated a value to variable
B, available memory is reduced to 23657 bytes. After string
manipulation, line 70 shows the memory is reduced a great deal
further. In executing the FRE(X$) command, much of this
memory can be retrieved.

10 PRINT "Free memory for programs and variables using FRE (X)
is"iFRE (X)

20 B= 10

I FPRINT "Free memory for programs and variables using FRE (X)
is"sFRE(X)

49 FOR J = 65 TO 75

S0 At = A% + CHR$(J)

& NEXT J

74 PRINT "Free memory for programs and variables using FRE(X)
is"iFRE(X)

80 FPRINT "and using FRE(X$) is "iFRE(X$)

run
Free memory for programs and variables using FRE(X) is 23665
Free memory for programs and variables using FRE(X) is 23657
Free memory for programs and variables using FRE(X) is 23865
and using FRE(X$) is 23631

Ql

4-73

ET

Purpose

Remarks

See also

Example

19

40

60

GET|[#]< file number > [, <record number>]

The GET statement reads a record into a random file access buffer
from a random disk file.

This statement reads a record into a random file access buffer
from the corresponding random access file. < file number> is
the number under which the file was opened and <record
number > is the number of the record which is to be read into
the random file buffer. Both <file number> and <record
number > must be specified as integer expressions.

If <record number> is omitted the record read is that follow-
ing the one read by the preceding GET statement. The highest
possible record number is 32767.

Note that records must be read sequentially if the file being ac-
cessed is a microcassette file. Also note that the FIELD statement
must be executed to assign space in the random file buffer to vari-
ables prior to executing a GET statement.

FIELD, LSET/RSET, OPEN, PUT
For full details of use of the FIELD command see Chapter 5.

‘Lines 20-89 create a random data file with 5 records.
20 OPEN"R",#1,"A: TESTDAT", 10

30 FIELD#1,10 AS A%

FOR I=1 TO S

5@ PRINT"Type 1-10® characters for record";Is:INPUT B%

LSET

A$=B%

70 PUT#1,I

80

99

120
110
120
130
140

NEXT

’Lines 110 to read specified records from the file.
INPUT"Enter record no.(1-35)"3R

GET#1,R

PRINT A%

GOTO 11o

4-74

run
Type
Type
Type
Type 1-16
Type 1-10

1-1
1-10
1-16

characters
characters
characters
characters
characters

for
for
for
for
for

Enter record

Enter record
Edward

Enter record
Dean

Enter record
Charlie
Enter record
Betty

Enter record
Alfie
Enter record

no. (1-5)7?

no. (1-5)7?

no. (1-3)7

no. (1-5)7?

no. (1-5)7

no. (1-5)7

no. (1-5) 7

record
record
record
record
record

4-75

[- O N

“J J -J -J -J

Alfie
Betty
Charlie
Dean
Edward

GOSUB...RETURN

GOSUB < line number >

.

RETURN

The GOSUB and RETURN statements are used to branch to and
return from subroutines.

The GOSUB statement transfers execution to the program line
number specified in <line number>. When a RETURN state-
ment is encountered, execution then returns to the statement fol-
lowing the one which called the subroutine, either on the same
line or the next one. Subroutines may be located anywhere in a
program; however, it is recommended that they be made readily
distinguishable from the main routine. Since a “RETURN without
GOSUB?” error will occur if a RETURN statement is encountered
without a corresponding GOSUB statement, care must be taken
to ensure that execution does not move into a subroutine without
it having been called. This can be avoided with the STOP, END
or GOTO statements; the STOP and END statements halt execu-
tion when encountered, while the GOTO statement can be used
to route execution around the subroutine.

Subroutines may include more than one RETURN statement if
the program logic dictates a return from different points in the
subroutine. Further, a subroutine may be called any number of
times in a program, and one subroutine may be called by another.
Nesting of subroutines in this manner is limited only by the amount
of stack space available for storing return addresses. An “Out of
memory” error will occur if the stack space is exceeded. The stack
space size may be changed with the CLEAR statement if it is in-
sufficient to accomodate the number of levels of subroutine nest-
ing used by a program, but this must be executed at the beginning
of the program outside the subroutines as CLEAR destroys all
references to RETURN line numbers on the stack and you will
not be able to RETURN from a subroutine if CLEAR is used
within it.

4-76

CLEAR

10 GOSUR 7é

20 PRINT "Resuming execution after returning from subroutine
at line 70"

30 GOsSUR 69

4¢ FRINT "Resuming execution after return from the nested
subroutines startin at line S©"

Sa END

66 GOSUER 70:RETURN

74 PRINT "Now executing the subroutine at line 7@"

860 RETURN

run
Now executing the subroutine at line 70

Resuming execution after returning from subroutine at line 70
Now executing the subroutine at line 70

Resuming erxecution after return from the nested subroutines st
arting at line 50

Ok

4-71

GOTO or GO TO

Remarks

GOTO <line number >
GO TO <line number >

Unconditionally transfers program execution to the program line
specified by <line number>.

This statement is used to make unconditional “jumps” from one
point in a program to another. If the first statement on the line
specified by <line number> is an executable statement (other
than a REM or DATA statement), execution resumes with that
statement; otherwise, execution resumes with the first executable
statement encountered following <line number>.

It is also possible to leave out the GOTO in conditional statements,
e.g., line 20 in the following program.

An “Undefined line number” error will occur if <line number >
refers to a non-existent line.

GOTO can also be used in direct mode. In this case, variables are
not destroyed (unlike RUN <line number > which does destroy
variables), and can in fact be assigned from the command line
in the direct mode.

1@ READ A,.B:’Reads numbers into A and B from line 7@
20 IF A=0 AND B=0 THEN 80:°Jumps to line 80 if A and B

=
25 7

both equal .

30 PRINT "A=";A,"B=";B

49 S=A%*B

50 PRINT "Product is"3S
69 GOTO 1o :"Jumps to line 10.
79 DATA 12,5,8,3,9,0,0,9
80 END

run

A= 12 B= 5
Product is 60

A= B8 B= 3
Product is 24

A= 9 B= ©

Product is ©

Ok

4-78

HEXS
HEX$(X)

Returns a character string which represents the hexadecimal value
of X.

The value of the numeric expression specified in the argument must
be a number in the range from — 32768 to 65535. If the value of
the expression includes a decimal fraction, it is rounded to the
nearest integer before the string representing the hexadecimal value
is returned.

To convert from hexadecimal to decimal use &H before the hex-
adecimal value. This will give a numerical constant.

HEXS is a string.
&H is a numeric.

OCT$

1o CLS

2¢0 LOCATE 1,1: PRINT "Convert Hex to Decimal (H) or ":
FRINT "Decimal to Hex (D))"

I INPUT C¢

49 IF C$¢ = "H" OR C% = "h" THEN GOSUER 19& ELSE IF C$% =
"D" OR C$ = "d" THEN GOSUB 200 ELSE 20

So INFUT "Any more (yes/no) "i YN$

60 IF LEFT®(YNS,1) < "y" AND LEFT$(YN$,1) <> "Y" THEN
END ELSE RUN

1aa INFUT "Type in number in hexadecimal "iH$

116 Vv = VAL ("&H" + H%$)

20 FRINT V

130 RETURN

200 INFUT "Type in number in decimal "i D

219 V¢ = HEX$ (D)

220 FRINT V$

236 RETURN

4-719

run

Convert Hex to Decimal (H) or
Decimal to Hex (D)

? h

Type in number in hexadecimal 7 4d
77

Any more (yes/no) ?

Convert Hex to Decimal (H) or
Decimal to Hex (D)

?d

Type in number in decimal ? Z4
22

Any more (yes/no) ?

4-80

IF...THEN [...ELSEJ/IF..GOTO

Remarks

Possible alternatives are

IF <logical expression > THEN < statement > [ELSE
< statement >]

JIF <logical expression >THEN < line No. > [ELSE < line No.>]
IF <logical expression>THEN < statement > [ELSE < line No.>]
IF <logical expression > THEN < line No. > [ELSE < statement > |
IF <logical expression > GOTO < line No. > [ELSE < statement >]
IF <logical expression > GOTO <line No. > [ELSE <line No. >]

Changes the flow of program execution according to the results
of a logical expression.

The THEN or GOTO clause following <logical expression> is
executed if the result of <logical expression> is true (— 1). Other-
wise, the THEN or GOTO clause is ignored and the ELSE clause
(if any) is executed; execution then proceeds with the next executa-
ble statement.

When a THEN clause is specified, THEN may be followed by
either a line number or one or more statements. Specifying a line
number following THEN causes program execution to branch to
that program line in the same manner as with GOTO. When a
GOTO clause is specified, GOTO is always followed by a line
number.

IF..THEN...ELSE statements may be nested by including one such

statement as a clause in another. Such nesting is limited only by
the maximum length of the program line.

4-81

For example, the following is a correctly nested IF.THEN
statement

20 IF X>Y THEN PRINT “X IS LARGER THAN Y” ELSE
IF Y>X THEN PRINT “X IS SMALLER THAN Y” ELSE
PRINT “X EQUALS Y”

Because of the logical structure of the line only one of the strings
can be printed.

If a statement contains more THEN than ELSE clauses, each
ELSE clause is matched with the nearest preceding THEN clause.
For example, the following statement displays “A=C" when A=B
and B=C. If A=B and B< >C it will display “A< >C”. And
if A< >B, it displays nothing at all.

IF A=B THEN IF B=C THEN PRINT “A=C” ELSE PRINT
“A<>C”

It is also possible to have a number of statements where
< statement > occurs in the above format expressions. For exam-
ple it is common to have a line such as:

IF A=2 THEN B=3:C=7:A$=‘“ORANGE”

Only if A has the value 2 will B be set equal to 3. The value of
C will also only be set equal to 7 and A$ given the value
“ORANGE?” if A=2. If the expression “A=2" is false then all
the rest of the line will be ignored.

This also applies if the sequence of statements exist in a line such
as the following:

IF A =2 THEN PRINT “TRUE”:B=5:A$ = ‘“‘APPLES”:GOTO
200 ELSE PRINT “FALSE”’:B="7:A$ = “PEARS”’:GOTO 300

In this case if A has the value 2 the expression “A =2" is true and
the variable B is made equal to 5, the value “APPLES” is assigned
to A$ and the program branches to line 200. However, if A does
not have the value 2, the expression “A=2" is false and the com-
mands following ELSE are executed; B is set equal to 7, A$ is as-

4-82

3 SCREEN ©,0,0:CLS
RANDOMIZE VAL (RIGHT$(TIME$,2))

-,

E RN R
55 9

o

pw}

90

100
116
120
1370
140
156
166
LSE

signed the value “PEARS” and the program will branch to line
300.

When using IF together with a relational expresion which tests
for equality, remember that the results of arithmetic operations
are not always exact values. For example, the result of the rela-
tional expression SIN(1.5708)=1 is false even though “1” is dis-
played if PRINT SIN(1.5708) is executed. Therefore, the relational
expression should be written in such a way that computed values
are tested over the range within which the accuracy of such values
may vary. For example, if you are testing for equality between
SIN(1.5708) and 1, the following form is recommended:

IF ABS(1-SIN(1.5708)) <1.0E — 6 THEN...

This relational expession returns “true”.

Reinitializes the sequence of numbers returned
by the RND function

PRINT "Guess what number I am thinking of."

N=INT (RND (1) ¥9999)

Generates a random 4-digit number between
© and 9999 and stores it in variable N

INPUT"Enter your guess";
I=I+1

keeps track of the number of guesses

IF G=N THEN PRINT "That's just right--in";I;"guesses!":E
IF G<N THEN PRINT "You're too low' Try again.":G0TO 1220:

ELSE PRINT "Sorry--you're too high! Try again.":G0T0O 120

170
186
196
200
210
220

230

Displays the first message and the number
of guesses you have made if you correctly
guess the number generated on line 40; if
your guess is too low, displays the second
message and branches to line 50; if your
guess is too high, displays the third
message and branches to line 5@

4-83

INKEYS
INKEYS$

Checks the keyboard buffer during program execution and returns
a null string if no key has been pressed.

INKEYS$ returns a null string if the keyboard buffer is empty. If
any key whose code is included in the ASCII code table has been
pressed, INKEYS$ reads that character from the keyboard buffer
and returns it to the program. Characters read from the keyboard
buffer by INKEY$ are not displayed on the screen.

INKEY$ simply examines the keyboard buffer. If does not wait
for a key to be pressed. If this function is required, use INPUTS$(1).

INPUTS

19 SCREEN ©,6,0

29 WIDTH 86,8:CLS

Te X=1:Y=1:LOCATE X,Y:FRINT "*"{i:"Displays an asterisk
4¢ 7 in the upper left

5o 7 corner of the screen.
LG T

79 A%=INEEY$: IF As="" THEN 7@

8o 7 Checks for input from the keyboard: repeats

9o 7 until input is detected.

1o -°

119 ON INSTR(CHR$ (Z0) +CHRE (I1) +CHR$ (29) +CHR$ (28) , A%) GOSUR 2
56, 200, 750, 400

v Checks whether the key pressed is one of the
? cursor control keys: if so, goes to the
! corresponding subroutine. Otherwise,
? continues to the GOTO statement on the line
) below.
170 °
186 GOTO 7¢: Transfers execution to line 70.
1960 *

200 "The fouwr subroutines below move the asterisk
*in the direction indicated by the arrow on
"the applicable cursor key.

"Move asterisk up

4-84

256
260
LSE
27
280
290
Z00
Il

Y=Y-1:1IF Y<1 THEN Y=8

LOCATE X,Y:PRINT "#"3i:IF Y=8 THEN LOCATE X,1:PRINT " ":E
LOCATE X,Y+1:FRINT "

RETURN

"Move asterisk down
Y=Y+1:IF Y>8 THEN Y=1
LOCATE X,Y:PRINT "#"3:IF Y=1 THEN LOCATE X,8:FRINT "

ELSE LOCATE X,Y-1:FRINT " "

320
330
T4
350
369

RETURN

"Move asterisk left

X=X-1:IF X<1 THEN X=80

LOCATE X,Y:PRINT "*"3:IF X=8& THEN LOCATE 1,Y:FRINT " "3

tELSE LOCATE X+1,Y:FRINT " 3§

376
=860
90
400
410

RETURN

"Move asterisk right
X=X+1:IF X:>80 THEN X=1
LOCATE X,Y:FPRINT "#"3:IF X=1 THEN LOCATE 8@,Y:FRINT " "3

:ELSE LOCATE X—1,Y:PRINT " "%

420

RETURN

4-85

INP

Purpose

Remarks

INP 3)

Returns one byte of data from machine port J.

The machine port number specified for J must be an integer ex-
pression in the range from 0 to 255.

The full use of this command is beyond the scope of this manual.
Please see the OS Reference Manual for details of the ports.

ouT

10
20
40
50

(=15]

‘See 1/0 port
A=INF (&H2)

LED=A AND %H4
IF LED=6 GOTO 60

END
ouT

QH2 .

4H4

“HO2 if LED is ON

4-86

H

"See BIT 2 status
*1f LED is OFF, set LED

:"Set LED

INPUT

INPUT[; “ < prompt string> "]

<list of variables >

.
’

’

Makes it possible to substitute values into variables from the key-
board during program execution.

Program execution pauses when an INPUT statement is encoun-
tered to allow data to be substituted into variables from the key-
board. One data item must be typed in for each variable name
specified in <list of variables>, and each item typed in must be
separated from the following one by a comma. If any commas
are to be included in a string substituted into a given variable, that
string must be enclosed in quotation marks when it is typed in
from the keyboard. The same applies to leading and trailing spaces;
leading and trailing spaces are not substituted into a string varia-
ble by the INPUT statement unless the string is enclosed in quo-
tation marks.

If the number or type of items entered is incorrect, the message
“IRedo from start” is displayed, followed by the prompt string
(if any). When this occurs, all the data items must be re-entered.
No values are substituted into variables until a correct response
has been made to all the items of the list.

When BASIC executes the line a question mark prompt is displayed
if no prompt string is specified. However, if a prompt string is
specified, the string is displayed, but whether a question mark is
displayed depends on the character before the list of variables. It
is possible to enter a comma or a semi-colon before the list of
variables. In the latter case, a question mark will be displayed.
If the prompt string is followed by a comma, the question mark
is suppressed. If no prompt string is given it is not possible to sup-
press the question mark.

The optional semicolon following INPUT prevents the cursor from
advancing to the next line when the user types a[RETURN Jon com-
pletion of entry of the data. The next PRINT statement or error
statement will be printed directly after the last character input by

the user before pressing [RETURN |.
4-87

1o INPUT A

20
39
40

S50 INPUTS R

60
70
80

99 INPUT"Enter C",C

100
116
126

1726 INFUT"Enter D,E"iD,E

140
150
166

170 INFUT: "Enter F,G"iF,G

186
19a

When more than one variable name is specifed in <list of varia-
bles >, each variable name must be separated from the following
one by a comma. Items entered in response to an INPUT state-
ment are substituted into the variables specified in <list of varia-
bles >when the[RETURN |key is pressed. The user must input each
variable and separate it from the following one by a comma. If
the user tries to press| RETURN |after each variable,a‘““?Redo from
start” message will be printed, and the user will have to begin at
the first item of the list of variables. The values entered are only
substituted into the variables when the[RETURN |key is pressed at
the end of the list.

When the key is pressed for a single item or for the
last item of a list, the variable is set to a null string if it is a
string variable and to zero if it is a numeric variable.

*Inputs value from keyboard
*into A, then moves cursor
*to next line.

*Inputs value into B and
keeps cursor on current
*line.

‘Displays prompt without
*question mark and inputs
‘value into C.

‘Displays prompt and
*question mark and inputs
*values into D and E.
‘Displays prompt, inputs
*values into F and G, and
keeps cursor on current line.

200 PRINT "END"

4-88

INPUT #

Purpose

REIMETS

See also

INPUT# <file number>, <variable list>

This statement is used to read items from a sequential disk file
in a similar way to that in which the INPUT statement reads data
from the keyboard.

The sequential file from which data is to be read with this state-
ment must have been previously opened for input by executing
an OPEN statement. < file number> is the number under which
the file was opened.

As with INPUT, <variable list> specifies the names of varia-
bles into which items of data are to be read when the INPUT #
statement is executed. Variables specified must be of the same type
as data items which are read. Otherwise, a “Type mismatch” er-
ror will occur.

Upon execution of this statement, data items are read in from the
file in sequence until one item has been assigned to each variable
in <variable list>. When the file is read with this statement, the
first character encountered which is not a space is assumed to be
the start of a data item. With string items, the end of one item
is assumed when the following character is a comma or a carriage
return, however, individual string items may include commas and
carriage returns if they are enclosed in quotation marks when they
were saved to the file. The end of a data item is also assumed if
255 characters are read without encountering a comma or car-
riage return.

With numeric items, the end of each item is assumed when a space,
comma, or carriage return is encountered. Therefore, care must
be taken to ensure that proper delimiters are used when the file
is written to the disk file with the PRINT # statement.

Examples of use of the INPUT # statement are shown in the pro-
gram below.

INPUT, LINE INPUT, LINE INPUT#, OPEN, PRINT#,
WRITE, WRITE #

Chapter 5 489

Example

19 OFEN
20 FOR I
a7

40 FPRINT
S0 NEXT
63 FRINT
70 7 S
ga 7 a
Qo 7 b
190 FRIN
116 7
120
170 7
140 -7
156 7
168 PRIN
17é 7
186 °
19 7

200 7
219 °

226 7
270
240 CLOS
250 DIM

260 OFEN
2764 FOR

286 INFU
298 NEXT
06 FOR

I1e PRIN
NEXT
FRIN
40 INFU
3560 FRIN
66 CLOS

320

"O"L.#1,"astestl.dat"

=1 TO 16:°7 Saves numeric data items "1"
to "16" to file "astestl.dat"

#1,1

I
#1,"a"siCHR$(13) i "b"
aves "a" and "b" to file "a:testl.dat"
s separate data items. Items are separated
y a carriage return code (CHR$(13)).
T#1,CHR$(Z4) +"c,d,e"+CHR$ (34)
Saves '"c,d,e" to file "a:rtestl.dat" as one
data item. This is regarded as one item because
it is enclosed in quotation marks (CHR$(3Z4))
to indicate that the commas are part of the
string, and not delimiting characters.
T#1,"f,g"
Saves "f,g" to file "a:testl.dat" as separate
data items. The reason for this is that commas
are regarded as delimiters unless quotation marks
are saved to the disk to indicate that the commas
are part of a string. CGuotation marks are saved
to a file by specifying their ASCII codes with
the CHR$ function as shown above with "c,d,e".
E
ACLS)

"I".#1,"artesti.dat"

I=a TO 15
T#1,A(CI)

I

I=0 TO 1S5
T AL

T
T#1,A%,B%,0%,D%,E4

T A$:PRINT E$:PRINT C$:FRINT D$:FRINT E$
E

INPUTS

Remarks

INPUTS(XL,[#1 < file number >])

Reads a string of X characiers from the keyboard buffer or the
file opened under < file number>.

INPUTS$(X) reads the number of characters specified by X from
the keyboard buffer and returns a string consisting of those charac-
ters to the program. If the keyboard buffer does not contain the
specified number of characters, INPUTS$ reads those characters
which are present and waits for other keys to be pressed. Charac-
ters read are not displayed on the screen.

Unlike the INPUT and LINE INPUT statements, INPUTS$ can
be used to pass control characters such as RETURN (character
code 13) to the program.

INPUTS$(X,[#] < file number >) reads the number of characters
specified by X from a sequential file opened under the specified
file number. As with the first format, characters which would be
recognized as delimiters between items by the INPUT # or LINE
INPUT # statements are returned as part of the character string.

Execution of the INPUTS$ function can be terminated by press-

ing the key.

The BASIC statement
AS$=INPUTS$(1)

is useful for waiting for a single key to be pressed, in contrast to
100 A$=INKEYS : IF INKEY$=“ "THEN 100

whereas INKEY$ can scan the keyboard buffer simply to test if
a key has been pressed without waiting for it to be pressed.

4-91

1o OPEN"Q",#1, "test"

20 FRINT#1, "ABCDEFGHIJKELMNOFORSTUVWXYZ"
3@ CLOSE

40 OFEN"I",#1,"test"

1

66 7

100 AS=INFUT$(10,#1) : " Inputs 16 characters into

110 :"A% from sequential file opened
1260 :under file number 1.

125 PRINT A%

1360 His

1460 BHE=INFUT$ (1) :"Inputs 1% characters into B$
1560 :"from keyboard.

166 FRINT EBE$

run
ABRCDEFGHIJ
qwertyuiop
Ok

4-92

INSTR

INSTR([J,IXS,YS$)

Searches for the first occurrence of string Y$ in string X$ and

returns the position at which a match is found.

If J is specified, the search for string Y$ begins at position J in

string X$. J must be specified as an integer expression in the range
from 1 to 255; otherwise, an “Illegal function call” error will oc-
cur. If a null string is specified for Y$, INSTR returns the value
which is equal to that specified for J. A value of ‘‘0”’ is returned
if J is greater than the length of X$, if X$ is a null string, or if
Y$ cannot be found. Both X$ and Y$ may be specified as string
variables, string expressions or string literals.

Example
[Example |

16é
20
0
4¢
56
[=1%]
VL)
a0
P

106
116
120

run

"Example of using INSTR with ON...GOTO to control
flow of program execution.
INFUT"Enter a,b,or c"iX$
ON INSTR(1,"abc",X$) GOTO 70,960,110
FRINT"Illegal entry, try again.":G0TO 40
FRINT"Character entered is "ijCHR$(Z4);i"a."iCHR$(34)
END
FRINT"Character entered is "iCHR$%$(34):"b."iCHR%(Z4)
END
PRINT"Character entered is "iCHR%(34)3§"c."iCHR$(I4)
END

Enter a,b,or c? a

Character entered is "a.

Ol

4-93

INT

Format

Purpose
Remarks
See also

INT(X)
Returns the largest integer which is less than or equal to X.
Any numeric expression may be specified for X.

CINT, FIX

The explanation of CINT also contains information on the differ-
ences between CINT, FIX and INT and describes why some
problems arise from conversion and storage of numbers in con-
nection with these functions.

1 PRINT "I, "INTC(I)"
20 FOR I=-5 TO S STEP .8
I PRINT I,INTC(I)

4¢ NEXT I
I INTA(I)
-9 -9
—-4.2 -5
-Z. 4 -4
-2.6 -3
-1.8 -2
-1 -1
-.2 -1
) (%)
1.4 1
2.2 2
.8 3
4.6 4

4-94

KEYNn/KEY LIST/KEY LLIST

Purpose

Remarks

KEY <n>,<X$>
KEY LIST
KEY LLIST

Used to define or list the functions of the programmable func-
tion keys.

The statement KEY <n>,<X$> is used to define or list the
functions of the programmable function keys. Here, <n> is an
integer from 1 to 10 which indicates the number of the function
key being defined (with numbers 6 to 10 denoting keys to
with the[SHIFT]key pressed), and <X$> is a character
string of up to 15 characters which is to be assigned to that key.
For example,

KEY 1, “LIST”
assigns the LIST function to programmable function key [PF1].

A control code can be included in the character string assigned
to a programmable function key by adding + CHR$(J) to XS,
where J is the ASCII code for that control character.

For example,

KEY 1,LIST”’ + CHR$(13)

assigns the character string “LIST” plus a return code to program-

mable function key[PF1] ; subsequently, pressing will list
the entire contents of any program contained in the currently

logged in program area.

The KEYn statement is useful for changing the definitions of
programmable function keys in BASIC application programs.

KEY LIST and KEY LLIST output a list of the current program-
mable function key definitions to the display and printer. For ex-
ample KEY LIST will show the following if the keys have not been
changed after entering BASIC.

4-95

FF1 auto

FF2 list
FFZ edit
FF4 stat
FFS run™Mm
FF& load"
FF7 save'
FF8 system
FF9 menu™M
FF1e login

Where a control character has been added such as the carriage
return with PF5 and PF9 it will be shown as the circumflex charac-
ter “\” followed by the letter associated with the control charac-
ter. Thus in these examples the carriage return (ASCII code 13)
is shown as AM.

4-96

KILL

KILL <file descriptor>

Used to delete files from a disk device.

The KILL command can be used to delete any type of disk file.
The full file descriptor must be specified if the file to be deleted
is in a drive other than that which is currently selected. Other-
wise, only the file name and extension need to be specified.

KILL “A:GRAPH.BAS”

This will delete the file in drive A: “GRAPH” which has the ex-
tension “.BAS”.

NOTE:

Operation of the KILL command is not assured if it is issued against a file which
is currently OPEN.

4-97

LEFTS

Remarks

See also

Example 1

Example. 2

LEFT$(X$,J)

Returns a string composed of the J characters making up the left
end of string X8$.

The value specified for J must be in the range from 0 to 255. If
J is greater than the length of string X$, the entire string will be
returned. If J is zero, a null string of zero length will be returned.

MID$, RIGHTS

A$=LEFT$(‘“CARROT”’,3) will return ‘“‘CAR’’ to be stored in
AS.

1@ A% = "EPSON"

20 FOR J = 1 TO &
@ FRINT LEFT$(AF,d)
4@ NEXT

EF
EFS
EFS0
EFSON
EFSON

4-98

L

m
2

Format

Purpose

Remarks

LEN(X$)

Returns the number of characters in string X§$.

The number returned by this function also indicates any blanks
or non-printable characters included in the string (such as the
return and cursor control codes).

1o CLS

20 INPUT "Type in a word or phrase'"iA$
Z¢ PRINT "The length of :- "

49 FRINT A%

50 PRINT "is"i LEN(A%): '"characters"”

66 GOTO 20

Type in a word or
The length of :1-
FRED

is 4 characters
Type in a word or

Type in a word or
The length of :-
CHARLIE IS SUFER
is 146 characters
Type in a word or

phrase? FRED

phrase?

phrase? CHARLIE IS SUFER

phrase?

4-99

LET

Purpose-

Remarks

Example

[LET] < variable > = <expression>

Assigns the value of <expression> to <variable>.

Note that the word LET is optional. Thus, in the example below,
the variables A$ and B$ give the same result when printed, as do
A and B.

10
20
Ry%)
46
50
LG
70
aa

CLS
LET A% = "THIS IS A STRING"
B = "THIS IS A STRING"

FRINT A%
PRINT B%
LET A = 3
B=3I=*4
FRINT A,R

THIS IS A STRING
THIS IS A STRING

12 12

Ok

4-100

LINE

Purpose
Remarks

LINE[[STEP] (X1,Y1)] - [STEP]}(X2,Y2)[,] < function code>]
LIBIFII, <line style>]1]

Draws a line between two specified points.

This statement is a graphics command which can only be used
in screen mode 3. It draws a straight line between two specified
points on the graphic screen. The coordinates of the first point
are specified as (X1, Y1) and those of the second point are speci-
fied as (X2, Y2).

If STEP is omitted, (X1, Y1) and (X2, Y2) are absolute screen
coordinates; if STEP is specified, (X1, Y1) indicate coordinates
in relation to the last dot specified by the last graphic display state-
ment executed (PSET, PRESET or LINE). The coordinates of
the last previously specified dot are maintained by a pointer
referred to as the last reference pointer (LRP); this pointer is up-
dated automatically whenever a PSET, PRESET, or LINE state-
ment is executed.

For example

LINE (0,0) — (479,63)
draws a line diagonally from the top left hand corner to the bot-
tom right hand corner.

LINE - (100,50)
draws a line from the last plotted point (i.e. the LRP) to the point
(100,50).

LINE (10,10)— STEP (100,50)
draws a line from point (10,10) to a point 100 points to the right
and 50 down from point (10,10); i.e., to point (110,160).

LINE —-STEP (100,50)

draws a line 100 points to the right and 50 points down from the
coordinates of the LRP.

4-101

LINE STEP (10,10) — (100,50)
draws a line from a point 10 to the right and 10 down from the
LRP to the absolute point (100,50).

LINE STEP (10,10) - STEP (100,50)

draws a line from a point 10 to the right and 10 down from the
LRP. The LRP is then updated and the line drawn 100 points
to the right and 50 down from the first end point of the line. Thus
if the last point plotted before this command was executed was
(5,3), the line would be drawn from the point (15,13) to (115,63).

< function code> is a number from 0 to 7 which specifies the
line function. If O is specified, the LINE statement resets (turns
off) dots along the line between the specified coordinates. If a
number from 1 to 7 is specified, dots along the line are set (turned
on) when the statement is executed. If no <function code> is
specified, 7 is assumed.

Specifying ‘‘B”’ causes the LINE statement to draw a rectangle
whose diagonal dimension is defined by the two points specified.
If the F option is specified together with the B option, the rec-
tangle is filled in. However, the BF option cannot be specified
together with <line style>, although simply using B will allow
rectangles to be drawn using different line types.

If you want to use the B or BF function without using the
< function code>, a comma must be used as separator.

For example

LINE (0,0) — (20,15) ,,BF
will fill a box 20 points wide and 15 points high in the top left
hand corner of the screen.

The <line style> option is a parameter which determines the type
of line drawn between the two specified points. The line style is
specified as any number which can be represented with 16 binary
digits; i.e., the line style can be specified as any number from 0
to 65535 (in hexadecimal notation, from &HO to &HFFFF). There
is a one-to-one correspondence between the settings of the binary

4-102

digits of <line style> and the settings of each 16-dot segment
of the line drawn when the statement is executed. When the
< function code> is 1 to 7 or defaults to 7 because no value is
inserted, all points corresponding to ““1°’ bits are set (i.e., plot-
ted). When the < function code > is specified as 0, all points cor-
responding to ‘‘1°’ bits are reset (i.e., erased). This is illustrated
in the second example program below. In both cases where dots
correspond to “‘0”’ bits no action is taken. When the length of
the line is greater than 16 dots, the pattern is repeated for each
16-dot segment.

For example, dot settings are as follows when <line style > is speci-
fied as 1, 43690, and 61680.

<line style> Binary equivalent
1 (&H1) 0000000000000001
--------------- * Dot settings
(*for on, — for off)

1010101010101010
* -k -%-%-%-%-%-x- Dot settings
43690 (X HAAAA)

61680 (&kHFOF0) 1111000011110000
xk%k%k----xx%%---- Dot settings

The LINE statement can only be executed during display in the
graphic mode (screen mode 3).

PRESET, PSET

4-103

Example

10
15
20
25
26
40
41
45
56
&0
T
8o
Qi

SCREEN Z,0,60 :"Set Graphics screen

CLS

LINE (9,@)— (479,63),,B,%HFOF9 :"Draw a dotted border to the screen
LINE - (240,d) :"Draw a line from the LRP to the top
: right hand corner

LINE STEF(9,63)- (479,06) :"Move vertically and draw to top
) right hand corner

FSET (9,9) :"Move LRP to top left corner

FOR J = 1 TO 3 :*Draw lines in a zig zag by

LINE ~-STEF (40,67) :"moving across and up or down
LINE -STEF (40,-673)

NEXT

IF INEEY$ = "" THEN 90 :"Wait until a key is pressed

1o 7
110 7

otherwise end of program will
destroy part of graphics

The following program illustrates the use of <function codes>
with <line style>. A line is drawn in full and then a dashed line
is drawn on top of it, using the <line style> to make it dashed.
This is repeated, but with the < function code> changed to 0.
The dashed line is also drawn below each of the complete lines,
for comparison. In the first case with the <function code> set
to 7, the dashed line is visible, below the complete line, because
where the bits are set to “1” they are plotted. Also they reinforce
the complete line when plotted on top of this line. The bits set
to “0” cause no change and so the line remains unchanged. When
the < function code > is set to “0”, and the process repeated, the
complete line is converted to a dashed line. Where bits are “1”,
the points of the complete line are erased. Where they are “0” no
action is taken and the points previously plotted remain. The at-
tempt to plot the line below the complete line (i.e. program line
70) gives no visible result because where the bits are “1” erasure
of a blank line results in no plotted points. Where the bits are “0”,
no action is taken, so line 70 appears to do nothing.

4104

10
20
30
4¢)
S50
66
79
8¢
99
106

e

SCREEN 2,0,0:CLS

LINE
LINE
LINE

LINE
LINE

LINE

(@, 40)
(0,42)
(9,40)

(9,52)
(0,52)

(9,50)

- (300, 40)
- (300,42),7, , %HFF00
- (300,40),7, ,%HFFOO

- (300,50)
- (300,52),0,, 4 HFF0O

- (300,50),0, , 4HFFOO

:"Set up graphics screen and clear it
‘Draw a complete line

‘Draw a dashed line below the first line
'Draw the dashed line on top of the
first line with <function code> = 1
*Draw another line lower down

‘Draw a dashed line below this line

with <function code> = @

:’Draw this dashed line on top of the
second line

o e w

4-105

LINE INPUT

See also

LINE INPUTI;]l < prompt string > ;] <string variable >

Used to substitute string data including all punctuation into string
variables from the keyboard during program execution.

The LINE INPUT statement is similar to the INPUT statement
in that it is used to substitute values into variables from the key-
board during program execution.

However, whereas the INPUT statement can be used to input both
numeric and string values, the LINE INPUT statement can only
be used for input of string values. Further, only one such string
can be input each time the LINE INPUT statement is executed.
It is not possible to specify a list of variables separated by com-
mas as is the case with the INPUT statement, because commas
are accepted as part of the string.

INPUT allows commas to be entered if the first character typed
is the quotation marks character. Quotation marks can be entered
as long as they are not input as the first character. LINE INPUT
on the other hand allows all characters to be substituted into the
specified variable exactly as entered. Further, no question mark
is displayed when a LINE INPUT statement is executed unless
one has been included in <prompt string> by the user.

As with the INPUT statement, a semicolon immediately follow-
ing LINE INPUT suppresses the carriage return typed by the user.
The cursor is positioned after the last character entered by the

user before pressing [RETURN | .
INPUT

4-106

Example

S CLS

19 LINE INPUT "TYFE IN SOME CHARACTERS ":;A%
15 PRINT " This is on the next line"

20 PRINT "The characters were ";As$

Z9 LINE INPUT:"AND SOME MORE ";B%

4@ PRINT " This is on the same line"

S® FRINT "The characters were ";E$

TYFE IN SOME CHARACTERS CHARLIE IS MY DARLING
This is on the next line
The characters were CHARLIE IS MY DARLING
AND SOME MORE OVER THE SEA TO SKYE This is on the same line

The characters were OVER THE SEA TO SKYE
Ok

4-107

LINE INPUT #

Remarks

Example

LINE INPUT# <file number >, <string variable >

Used to read data into string variables from a sequential access
file, in the same way that LINE INPUT is used to read strings
from the keyboard.

The LINE INPUT # statement is similar to the INPUT # state-
ment in that it is used to read data into variables from a sequen-
tial access file. The value of < file number > is the number under
which the file was opened, and <string variable> is the name
of the variable into which data is read when the statement is ex-
ecuted.

Whereas the INPUT # statement can be used to read both numeric
and string values, the LINE INPUT # statement can only be used
to read character strings. Further, only one such string can be read
each time the LINE INPUT # statement is executed. It is not pos-
sible to specify a list of variables, as is possible with the INPUT #
statement.

Another difference between the INPUT # and LINE INPUT #
statements is that whereas the former recognizes both commas and
carriage returns as delimiters between data items, the LINE
INPUT # statement regards all characters up to a carriage return
(up to a maximum of 255 characters) as one data item. Any com-
mas encountered are regarded as part of the string being read. The
carriage return code itself is skipped, so the next LINE INPUT #
statement begins reading data at the character following the car-
riage return.

This statement can be used to read all values written by a PRINT #
statement into one variable. It also allows lines of a BASIC pro-
gram which has been saved in ASCII format to be input as data
by another program.

INPUT #

See Chapter 6

4-108

LIST

Remarks

LIST [*][<line number >][— <line number>]

LIST [*][<file descriptor>,][<line number>][- <line
number >]

Lists all or part of a BASIC program on the display screen.

Executing the LIST command without specifying line numbers
or a file descriptor causes the lines of the program in the current-
ly logged in program area to be displayed on the LCD screen.

For other formats, program lines listed and the device to which
the list is output are as follows.

LIST <line number> — <line number >

Lists the program in the currently logged in program area on the
LCD screen, starting with the first <line number> and ending
with the second.

LIST <line number> —
Lists the program in the currently logged in program area on the
LCD screen, starting with the specified line and ending with the
last line of the program.

LIST — <line number >
Lists all lines of the program from the first line to that specified
in <line number>.

LIST <line number >
Lists the program line specified in <line number > .

LIST <file descriptor >

Outputs the program in memory to the device specified in < file
descriptor > in ASCII format. (This is the same as using the SAVE
statement with the A option to output a program to the specified
device in ASCII format.) Devices which can be specified include
the LCD screen, the RS-232C interface, RAM disk, external flop-
py disk drives, and a printer. If line numbers are specified, only
the specified lines are output.

4-109

Example 1

5

Example 6

Example 7

When a program is being listed, the listing can be terminated be-
fore execution of the command is completed by pressing the STOP
key or CTRL and C. BASIC always returns to the command level
after execution of a LIST command.

LIST
Displays a listing of the program in the currently logged in pro-
gram area.

LIST *
Same as above, but displays program lines without line numbers.

LIST 500
Displays program line 500.

LIST 150 -
Displays all program lines from line 150 to the end of the program.

LIST - 1000
Displays all lines from the beginning of the program to line 1000
(inclusive).

LIST 150-1000
Displays program lines from 150 to 1000 (inclusive).

LIST “A:CARROT”

Saves the program in the currently logged in area to drive A: in
ASCII format.

4-110

LLIST

Format

Purpose

Remarks

See also

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

LLIST[*][<line number >][— <line number >]

Lists all or part of the lines of the program in the currently logged
in program area to a printer.

The LLIST command is used in the same manner as LIST, but
output is always directed to the printer connected to the PX-8.
BASIC always returns to the command level after execution of
a LLIST command.

LIST

LLIST
Prints all lines of the program in the currently logged in program
area.

LLIST*
Same as above, but prints program lines without line numbers.

LLIST 500
Prints program line 500.

LLIST 150-
Prints all program lines from line 150 to the end of the program.

LLIST -1000
Prints all lines from the beginning of the program to line 1000
(inclusive).

LLIST 150-1000
Prints program lines from 150 to 1000 (inclusive).

4111

LOAD

Remarks

See also

LOAD < file descriptor>[,R]

Loads a program into memory from a disk drive, RAM disk, the
RS-232C interface, or the microcassette drive.

Specify the device name, file name, and extension under which
the program was saved in < file descriptor > . If the device name
is omitted, the currently selected drive is assumed; if the file name
extension is omitted, “.BAS” is assumed.

When a LOAD command is executed without specifying the “R”
option, all files which are open are closed, all variables are cleared,
and all lines of any program in the currently logged in program
area are cleared; after loading is completed, BASIC returns to the
command level.

However, if the “R” is specified, any files which are currently open
remain open and program execution begins as soon as loading has
been completed. Thus, LOAD with the “R” option may be used
to chain execution of programs which use the same data files.
The following restrictions must be noted when using LOAD with
the “R” option to chain execution of programs.

e All variables are cleared by execution of the LOAD command,
regardless of whether the “R” option is specified. Further, the
COMMON statement cannot be used to pass variables to the
program called. Therefore, some other provision must be made
for passing data to the program called (for example, intermedi-
ate data could be saved in a file in RAM disk).

¢ All assignments of variables to positions in random file buffers
are cancelled even though the random access files to which the
buffers belong remain open. Therefore, the FIELD statement
must be executed in the called program to remake these as-
signments.

CHAIN, MERGE, RUN, SAVE

LOAD“A : PROG1.BAS”

4-112

(Example of program call using LOAD)

1o CLS

20 FPRINT "This is the calling program, sometimes called the
loader"

30 FRINT "It will now load the program LOAD2.BAS...."
49 LOAD "A:LOAD2.BAS",R

This is the calling program, sometimes called the loader
It will now load the program LOAD2.BAS....

(Example of program called by Example 2)

10 PRINT

20 PRINT"This is the program called LOAD2.BAS which has been
loaded by the loading program LOAD1.BAS"
36 END

This is the program called LOAD2.BAS which has been loaded b
y the loading program LOAD!.BAS
Ok

4-113

	BRM_04_0001
	BRM_04_0002
	BRM_04_0003
	BRM_04_0004
	BRM_04_0005
	BRM_04_0006
	BRM_04_0007
	BRM_04_0008
	BRM_04_0009
	BRM_04_0010
	BRM_04_0011
	BRM_04_0012
	BRM_04_0013
	BRM_04_0014
	BRM_04_0015
	BRM_04_0016
	BRM_04_0017
	BRM_04_0018
	BRM_04_0019
	BRM_04_0020
	BRM_04_0021
	BRM_04_0022
	BRM_04_0023
	BRM_04_0024
	BRM_04_0025
	BRM_04_0026
	BRM_04_0027
	BRM_04_0028
	BRM_04_0029
	BRM_04_0030
	BRM_04_0031
	BRM_04_0032
	BRM_04_0033
	BRM_04_0034
	BRM_04_0035
	BRM_04_0036
	BRM_04_0037
	BRM_04_0038
	BRM_04_0039
	BRM_04_0040
	BRM_04_0041
	BRM_04_0042
	BRM_04_0043
	BRM_04_0044
	BRM_04_0045
	BRM_04_0046
	BRM_04_0047
	BRM_04_0048
	BRM_04_0049
	BRM_04_0050
	BRM_04_0051
	BRM_04_0052
	BRM_04_0053
	BRM_04_0054
	BRM_04_0055
	BRM_04_0056
	BRM_04_0057
	BRM_04_0058
	BRM_04_0059
	BRM_04_0060
	BRM_04_0061
	BRM_04_0062
	BRM_04_0063
	BRM_04_0064
	BRM_04_0065
	BRM_04_0066
	BRM_04_0067
	BRM_04_0068
	BRM_04_0069
	BRM_04_0070
	BRM_04_0071
	BRM_04_0072
	BRM_04_0073
	BRM_04_0074
	BRM_04_0075
	BRM_04_0076
	BRM_04_0077
	BRM_04_0078
	BRM_04_0079
	BRM_04_0080
	BRM_04_0081
	BRM_04_0082
	BRM_04_0083
	BRM_04_0084
	BRM_04_0085
	BRM_04_0086
	BRM_04_0087
	BRM_04_0088
	BRM_04_0089
	BRM_04_0090
	BRM_04_0091
	BRM_04_0092
	BRM_04_0093
	BRM_04_0094
	BRM_04_0095
	BRM_04_0096
	BRM_04_0097
	BRM_04_0098
	BRM_04_0099
	BRM_04_0100
	BRM_04_0101
	BRM_04_0102
	BRM_04_0103
	BRM_04_0104
	BRM_04_0105
	BRM_04_0106
	BRM_04_0107
	BRM_04_0108
	BRM_04_0109
	BRM_04_0110
	BRM_04_0111
	BRM_04_0112
	BRM_04_0113

