SSB-MPF SPEECH SYNTHESIZER BOARD OPERATION MANUAL

TABLE OF CONTENTS

SECTION TITLE PAGE
INTRODUCTION 5
FEATURES 7
FUNCTIONAL DESCRIPTION 11
I NSTALLATION PROCEDURES 13
OPERATION PROCEDURES 15
VOICE VOLUME AND PITCH
ADJUSTMENT 17
SPECIFICATIONS 19
APPENDICES 21
SCHEMATIC 23
TIME-CLOCK PROGRAM 25
TMS5200 VOICE SYNTHESIS PROCESSOR
DATA MANUAL 41
SPEECH PROGRAM UTILITY 59
SPEECH VOCABULARY LIbRARY 63

CONGRATULATIONS

Your SSB-MPF will help you discover the mystery of speech synthesis. Unpacking your SSB-MPF package, you will find:

1) The SSB-MPF board, a complete speech synthesis system
2) Operation Manual
3) A 40-pin double-head female cable connector
4) An audio jumper wire
5) A two-pin male connector
6) A 9V, 200 mA power adaptor

I .INTRODUCTION

SSB-MPF is a Speech Synthesizer Board especially designed to be used with MPF-I. It is a low-cost, programmable printed circuit board based on Texas Instruments Voice Synthesis Processor TMS5200 or TMS5220. However, SSB-MPF itself is a complete speech synthesis system.

Before we go into detalls of our SSB-MPF, we would like to introduce briefiy the principles on how speech synthesis system works and what is a speech synthesis system.

The diagram below shows a speech synthesis system. Varying air pressure of sound and voices, after being received by the microphone, is transformed into varying voltages and frequency. Varying electrical voltages frequencies are further converted through a converter to digital signals which afterwards go through the digital speech analyzer and a coding process, and are eventually stored in the Read Only Memory (ROM). To reproduce the sound signals stored in the ROM, the data in the ROM should go through a decoding process, a digital speech synthesizer before being converted into analog electrical voltages and frequencies which activate a speaker.

Figure 1-1 Process of Speech Synthesis

In short, a speech synthesis board is a printed circuit board which can reproduce different voices and sounds. The Multitech SSB-MPF is a typical speech synthesis board with these functions.

Users can easily operate the SSB-MPF after connecting the SSB-MPF to MPF-I with a flat 40-pin female double-head cable.

The technology of speech synthesis, first commercially introduced by TI for use on automobile gadgetry, has been used for applications on modern dally life for some time. The Multetich SSB-MPF speech board will lead you discover the interesting and mysterious world of "speaking" boards at the lowest possible cost.

II . FEATURES

The most outstanding feature of SSB-MPF is that it is a basic as well as complete speech synthesis system. Therefore, a beginner can use the system with ease to understand every aspect about speech synthesis systems. Yet, the simplicity in design of the SSB-MPF makes the machine highly reliable and cost-efficient. The major features of the $S S B-M P F$ are as follows:
A. Structure: (See Figure 2-1)

Figure 2-1
B. System Control Unit

> 1) TI's TMS 5200 or TMS 5220 Voice synthesis Processor is the speech synthesizer of the speech synthesis system.
2) The host controller of the system (SSB-MPF) is the $Z-80 \mathrm{CPU}$ on MPF-I.
C. Memory: featuring strong vocabulary expansion ability.

1) The memory chip TMS 2532 on the board is used to store speech data and utility programs for demonstration purpose.

PROG 1 : Time-clock program
CHECK-CODE: For self-test purpose. Press Key (ADDR) 51DC and Key (GO), you will hear the system "speak" all the vocabulary stored in it.
PROG 2 : Speech program utility
BLANK : Storage area for users' data or program
DATA : Speech vocabulary
2) The two sockets, U3 and U4, are reserved for two optional memory chips of TMS2532 to expand SSB-MPF vocabulary.
3) A socket (U7) is reserved for TMS6125, the 32 K bits ROM, which functions as the advanced Voice Synthesis Memory (VSM) for storing speech data.
D. System input/output devices:

1) The data input device of the speech synthesis. system is the keyboard of the MPF-I.
2) The data output devices of the system are the - speaker and a six-digit display panel above the keyboard.
3) An external speaker can be connected to the SSB-MPF with audio jumper wire, Jumper 2 .
E. System power supply: It only needs 5 V , 200 mA to operate.
F. System interface: Two $40-\mathrm{pin}$ male dorble-head cable connectors are used for any possible external connection such as interfacing with MPF-I or with our EPB-MPF (EPROM Programmer Board).

III.FUNCTIONAL DESCRIPTION

The major functional units of the SSB-MPF are shown in figure 3-1 and described below:

Figure 3-1 Block Diagram of SSB-MPF
\therefore

1) Voice Synthesis Processor:
a) TI's solid state speech chip (TMS 5200 or TMS5220) is used as VSP of the unit. It can fetch speech data and prograns stored in memory chips such as TMS 2532 , and reproduce or synthesize human voice through filter/amplifier and speaker.
b) The TMS 5200 or TMS 5220 VSP operates on Linear Predictive Coding (LPC) method, which converts anislog speech data to digital data that are suitable for processing by VSP. The TMS5200 can access LPC-encoded data stored, in memo:y and convert the data into sound signal of specific pitch and amplitude.
2) Speech Data EPROM: The maximum memory capacity of the system can be expanded to 12 K bytes by adding two more additional TMS2532 memory chips to the system. The speech data is encoded in LPC which provides a speech quality comparable to that of voices generated by Pulse-Coded Modulation (PCM) system. Furthermore, it only takes 1200 bits to memorize the speech data that is produced in one second in the LPC system. In the PCM system, it takes 64,000 bits to memorize the speech data that is produced in one second.
3) System Z-80 Controller: The Z-80 CPU on the MPF-I is used as speech synthesis system controller. It accepts the commands from MPF-I keyboard and fetches the speech programs.
4) Filter: A low-pass filter is used to generate smooth and clear speech signal.
5) Amplifier: An audio amplifier is used to drive the 8 Ohm speaker.

IV.INSTALLATION PROCEDURES

1) Make sure that the $S S B-M P F$ and $M P F-I$ are not plugged to electricity power sources before connecting the $S S B-M P F$ and MPF-I.
2) Connect the SSB-MPF to MPF-I with a 40-pin female double-head cable connector.
3) Connection of the speech synthesis system with audio data output devices should be done in the following steps:
A. If the system is to use the speaker of the MPF-I: Scratch out the printed circuit of Jumper 2 at the back of the MPF-I, and then plug the jumper wire of the system. Both ends of the jumper wire are fitted with a two-pin female double-head plastic socket. Plug one end of the jumper wire to the two pins in the upper right corner of the SSB-MPF and the other end to the two pins marked with Jumper 2 in the upper left corner of the MPF-I.

B. If the system is to use an external speaker: Connect the audio jumper wire of SSB-MPF to the external speaker.
4) Connect the SSB-MPF and MPF-I to power sources:
A. An adaptor $(9 \mathrm{~V}, 600 \mathrm{~mA}, 0 u t p u t)$ is plugged to the power socket in the upper right corner of MPF-I.
B. An adaptor. (9V, $200 \mathrm{~mA}, 0 \mathrm{Otput}$) is, then, plugged to the power socket in the upper left corner of the SSB-MPF.
Note: The power source for the SSB-MPF can ONLY be connected after the power source for MPF-I has been connected.

Now, we have completed the installation procedures, and will proceed to test our speech synthesis system, S SB-MPF.

V. OPERATION PROCEDURES

Once your SSB-MPF have been interfaced, the system is ready for test run. To test run the system, our Time-clock Program is used for you to familiarize with the operations of the system. The running of our Time-clock Program is as easy as adjusting the time of a digital watch.

Before running the Time-crock Program on the system, you have to set the time of the system to the current time. After you have keyed in the time, press key (ADDR) 5000 and key (GO). The system will start displaying time on its six-digit display panel, and it will announce the time in English in an interval of one minute. For example, if the display panel of the systen shows 09:21:58, the system will announce in English "Nine, twenty-two" after two seconds, while the display panel showing 09:22:00. A full sentence --"It is X o'clock AM (or PM)"--will be heard each hour as long as the Time-clock Program is kept on.

If the current. time is $9: 53$ a.m., the steps you have to follow in executing the Time-clock Program are as follows:

```
Step 1: Set SECOND: (ADDR) 1A00 (DATA) 00
Step 2: Set MINUTE: (ADDR) 1A01 (DATA) 53
Step 3: Set HOUR: (ADDR) 1A02 (DATA) 09
Step 4: Set (AM/PM):(ADDR) 1A11 (DATA) 00
Step 5: Press Key (ADDR) 5000 and Key (GO) for program
    execution
Note: We use bit 0 of memory chip address lAll for AM/
        PM. If bit 0 is 0, it indicates AM; otherwise,
        it indicates PM.
```

You will be amazed at how the system works. If it doesn't work, please check if the SSB-MPF is operated correctly and try again.

VI. VOICE VOLUME AND PITCH ADJUSTMENT

Sound reproduced by the system can be easily adjusted for desirable effects.
A. the Adjustment of VR-1:

1) To lower the voice pitch, turn the adjusting screw of $V R-1$ (variable resistor-l) clockwise.
2) To increase the voice pitch, turn the adjusting screw of VR-1 counterclockwise. This may require more than one or two turns, depending on the efficiency of the speaker used.
B. The Adjustment of VR-2:
3) To lower the voice volume, turn the adjusting
screw of VR-2 clockwise.
4) To increase the voice volume, turn the adjusting screw of VR-2 counterclockwise.

This also may require more than one or two turns, depending on the efficiency of the speaker used.

VII. SPECIFICATIONS

1) Power Requirement:
$+5 \mathrm{~V}, \pm 5 \%, 200 \mathrm{~mA}$
2) Connector
3) Size
: Width -10.9 cm
Length - 15.8 cm
4) Environment
: Operating temperature $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Storage temperature $125^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Relative Humidity Noncondensing up to 90%

VIII. APPENDICES

I. SCHEMATIC

1) Standard vocabulary: A memory chip, TMS2532, with standard vocabulary is installed in the system which is a standard memory device.
2) Optional Vocabulary:
a) A total of eight optional EPROM memory chips available in eight standard packages is offered by Multitech.
b) The optional memory chips are offered for your vocabulary expansion.
c) You can acquire these optional memory chips from local Multitech distributors.

2. TIME-CLOCK PROGRAM

LOC OBJ CODE M STMT SOURCE | CLOCK ENGLISH |
| :--- |
| STATEMENT |\quad PAGE 4

CLOCK-ENGLISH.S
Flowchart

Time Buffer Update Flowchart

Update Display Buffer Flowchart

Speech Routine
Flowchart

AM. PM. Decision Flowchart

Count MINUTE Buffer Flowchart

search the high order data of MINUTE Buffer

Save the speech Data TO TLKMIN1. and TLKMIN2

Tell Time Routine Flowchart
GO \& GO1

SUBROUTINE START is the same as DEMO-SUBROUTINE.S

3. TMS5200 VOICE SYNTHESIS PROCESSOR
 DATA MANUAL

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Scope 45
1.2 Key Features 45
1.3 Device Operation 45
2. SYSTEM CLOCK
45
3. CPU INTERFACE
3.1 RS andW'S 45
3.2 Ready 46
3.3 Interrupts 47
4. VOICE SYNTHESIS MEMORY 47
5. I/O STRUCTURE
5.1 Command Register 49
5.2 FIFO Buffer 49
5.3 Data Register 49
5.4 Status Register 496. DESCRIPTION OF COMMANDS6.1 Read Byte50
6.2 Read and Branch 50
6.3 Load Address 50
6.4 Speak 50
6.5 Speak External 51
6.6 Reset 51
5.17. POWER-UP CLEAR
6. SPEECH SYNTHESIS
8.1 Coded Speech Parameters 51
8.2 D/A Conversion 52
8.3 Audio Output 53
7. ELECTRICAL CHARACTERISTICS
9.1. Absolute Maximum Ratings 54
9.2 Recommended Operating Conditions 54
9.3 Electrical Characteristics Over Full Range of Recommended Operating Conditions 5.4
9.4 Static Discharge Protection 55
8. ENVIRONMENTAL
10.1 Temperature Range 55
10.2 Humidity 55
9. MECHANICAL DATA
11.1 28-Pin 600-Mil Plastic Packages 56
11.2 Pin Assignment and Functions 56
11.3 Terminal Assignments 57

APPENDICES

A System Clocks 58
LIST OF ILLUSTRATIONS
Figure 1
Figure 2 Read and Write Cycles to the VSP 46
Figure 3
Figure 4
Figure 5
Synthesizer Block Diagram 48
Figura A. 1 52
Frame Data String Lengths 53
TMS 5200/TMS 5210/20 Oscillator Options 58
LIST OF TABLES
Table 1 $\overline{\mathrm{RS}}$ and $\overline{\mathrm{WS}}$ Function 46
Table 2 VSP Commands and Command Format 52
Table 3 Parameter Coding 54
Table 4 Digital-To-Analog Converter Output

Digital-To-Anaiog Converter Output

1. INTTRODUCTION

1.1 SCOPE

This manual describes in detail the functional characteristics of : linear predictive coding (LPC) speech synthesis devise, the TMS 5200. In addition to this document, the user may wish to refer to the TMS 6100128 K bit ROM electrical specification.

1.2 KEY FEATURES

- High-quality voice communication from a microcomputer system
- Low-data-rate LPC encoding
- Low cost P-channel MOS technology
- $\quad+5 \mathrm{~V}$ and -5 V supplies only
- Interrupt-based service requests
- TTL compatible

1.3 DEVICE OPERATION

The TMS 5200 Voice Synthesis Processor (VSP) enables verbal communication with a microcomputer based systers. The VSP is fabricated using P-channel MOS technology and is TTL compatible.

Speech data that has been compressed using pitch-excited linear predictive coding (LPC), is supplied to the VS' either by the CPU or by direct serial access of a Voice Synthesis Memory (VSM). The VSP decodes this data to corstruct a time-varying digital filter model of the vocal tract. This model is excited with a digital representation of either glottal air impulses (voiced sounds) or the rush of air (unvoiced sounds). The output of this model is passed through an eightstage digital-to-analog converter to produce a synthetic speech waveform

The VSP has been designed to minimize the data rate required to produce synthetic speech and to simplify the interface with the host CPU. The CPU may service the device either in a polled fashion, by monitoring device status, or by responding to interrupt service requests generated by the VSP. A simplified block diagram of the VSP is shown in Figure : .

2. SYSTEM CLOCK

This manual describes all VSP timing based on an $8-\mathrm{kHz}$ sample rate (limiting the output frequency to 4 kHz) and a $40-\mathrm{Hz}$ frame rate (the rate at which new speech data is fetched and processed). This requires the internal RC oscillator in the VSP to run at 640 kHz . The user has the mask-programmable option of balancing the internal oscillator with a resistor (completing the RC network) or with a ceramic resonator (see Appendix A). 1

The $640-\mathrm{kHz}$ clock is divided by four to produce two major phases, PHI-1 and PHI-2, with corresponding precharge clocks, PHI-3 and PHI-4 (see Appendix A). All control and timing operations within the VSP occur on one of the two 6.25 -microsecond major phases. Twenty of these 6.25 -micrasecond bit times comprise each sample period $\mathbf{~} 8 \mathbf{8} \mathbf{- k H z}$ sample rate). Twenty-five of these $\mathbf{1 2 5 - m i c r o s e c o n d ~ s a m p l e ~ p e r i o d s ~ m a k e ~ u p ~ o n e ~} \mathbf{3 . 2 5}$ millisecond interpolation interval, eight of which (ICO-IC7) make up the $25-$ millisecond frame period. During ICO, new speech data is transferred to the Synthesizer, at a $40-\mathrm{Hz}$ frame rate.

3. CPU INTERFACE

The CPU interface consists of an eight-bit bidirectional data bus (DO-D7), separate selects for read operations and write operations ($\overline{\mathrm{RS}} \& \overline{\mathrm{WS}}$), a ready line for synchronization ($\overline{\mathrm{READY}}$) and an interrupt line ($\overline{\mathrm{INT}}$) to indicate a status change on the VSP that requires CPU attention.

[^0]

FIGURE 1 - VOICE SYNTHESIS PROCESSOR BLOCK DIAGRAM

2.1 $\overline{R S}$ AND $\overline{W S}$

VSP activity on the memory data bus is controlled by the select lines as shown below.

TABLE 1 - $\overline{\mathbf{R S}}$ AND $\overline{W S}$ FUNCTION

$\overline{\text { RS }}$	$\overline{\text { WS }}$	BUFFER CONDITION
H	H	High impedance state Input to VSP. Some other device must be H
L	Ouving the bus (typically the CPU)	
L	H	be driving the bus at this time. Illegal condition. Results not predictable.

It is important to note that no device can successfully complete a Read cycle (from the VSP) while \bar{W} S is active (low) nor carr a successful Write cycle (to the VSP) be carried out while $\overline{\operatorname{RS}}$ is active (low).

3.2 $\overline{\text { READY }}$

The VSP is a "Slow Memory" 2 device requiring wait states from the CPU to successfully complete a memory cycle. The effect of inserting wait states into memory access cycles is to extend the minimum allowable access time by one clock period from each wait state. The VSP controls the number of wait states executed by the CPU with the Ready signal. The logic timing for typical read and write cycles to the VSP is shown in Figure 2.

$\overline{\mathrm{RS}}$

ws

$\overline{\text { READY }}$

DATA BUS

FIGURE 2-READ \& WRITE CYCLES TO THE VSP

The $\overline{\text { Ready }}$ line on the VSP goes high immediately when $\overline{\mathrm{RS}}$ or $\overline{\mathrm{WS}}$ goes active (low) to let the CPU know that the data transfer cycle cannot yet be completed. When the VSP has established stable data on the data bus (in the case of $\overline{\mathrm{RS}}$) or has completed latching data in from the data bus (in the case of $\overline{\mathrm{WS}}$), the Ready line will go low indicating that the CPU may complete the data transfer cycle.

3.3 INTERRUPTS

The interrupt line ($\overline{\mathrm{INT}}$) indicates changes in the status of the VSP that may require CPU attention. INT goes active (low) when any of the following occur:

- Talk Status (TS) makes a one-to-zero transition indicating the end of speech processing.
- Buffer Low (BL) makes a zero-to-one transition indicating that more phrase data needs to be supplied to the FIFO for Speak External Command.
- Buffer Empty (BE) makes a zero-to-one transition indicating that the CPU failed to supply data fast enough for a Speak External Command. 3
$\overline{\text { INT }}$ goes inactive (high) when the Status Register is read, or if the Reset instruction is executed.

4. VOICE SYNTHESIS MEMORY (VSM) - (TMS 6100)

In addition to receiving speech data from the CPU, the VSP may directly access up to 16 TMS 6100's (128 K -bit serial ROM) with no external hardwere required. This is accomplished with a four-bit parallel bus (ADD8,4,2,1), (ADD8 is multiplexed as the Data Out line), two control linẹs (MO. M1), and a synchronizing clock (ROMCLK).

[^1]The TMS 6100 is a mask programmable 128 K -bit-Read-Only Memory internally organized as 16 K words of eight bits; externally it appears as $128 \mathrm{~K} \times 1$. Once the 20 -bit address (14 bits to select a byte within the device, four chip select bits, two bits ignored) is loaded through ADD1, ADD2, ADD4, and ADD8 in five Load Address sequences, data is read out bit-wise by toggling a control pin (MO). The ROM contains an on-chip address counter which is incremented every eight bits (eight toggles of MO). The four internal chip select bits are a mask programmable option, and allow parallel connection of up to 16 ROM (about 30 minutes of speech) without the need of external select circuitry.

Mo	M1	FUNCTION
L	L	Idie - The passive NOP state of TMS 610C
L	H	Load Address - The four bits of data on ADD8,4,2,1 are loaded to the internal address register it the tocation indicated by the TMS 6100 Load Pointer. After each Load Address function. the Load Pointer is advanced to the left by four bit positions to allow the next most-significant nibble of the address to be properly loaded. The first read function ${ }^{4}$, following a Load Address function, resets the Load Pointer to the LS bit and initiates a ROM access to. fetch the address data byte. This is the only function of this "Dummy Read". No data is transferred out of VSM until the second read function following a Load Address.
H	L	Read - When the addressed data byte has been fetched and stored in the VSM Data Register, it is ready to serially transferred out starting with the MSB. Each successive read function causes the next least-significant bit to be driven on the Data Out line of the VSM that is currently selected. The next data byte is being fetched at the same time the serial transfer is taking place so that when the last bit of the current byte is transferred, the VSM Data Register can be reloadedwithout delay. When the Read function immediately follows a Load Address function, it is treated as a "Dummy Read". No data is transferred, but the Load Pointer is reset and ROM access is
H	H	initiated. Read $\&$ Branch - Starting at the current address, two bytes are fetched from ROM to form a 16 -bit word. The 14 low-order bits of this word replace the 14 low-order bits of the Address Register. The Load Pointer is then reset and a ROM access initiated to fetch the byte at this new address."

Figure 3 shows a typical sequence of loading the Address Register and reading two data bits back. For more critical timing constraints, consult the TMS 6100 Electrical Specification.

NOTE: $\mathbf{A O}$ is the LSB in 6100 eddress.

FIGURE 3 -- TMS 6100 FUNCTICN TIMING

[^2]
5. I/O STRUCTURE

The VSP has two input holding registers, a Command Register and a 128 -bit FIFO Buffer, and two output holding registers, the Data Register and the Status Register. On a Write cycle from the CPU, when $\overline{W S}$ becomes active fuw). the control logic of the VSP routes data from the Memory Data Bus to either the FIFO Buffer lif a Speak External command is executing) or the Command Register (all other cases). Once this data has been latched in, the VSP signals completion of the data transfer to the CPU by lowering the Ready Line to its active (low) condition. Similarly, on a Read cycle, when $\overline{\mathrm{RS}}$ goes active (low), the VSP puts either the contents of the Data Register on the bus (if the preced ing command was a Read Byte command) or the contents of the Status Register (all other cases).

5.1 COMMAND REGISTER

The Command Register receives command data from the Memory Data Bus and holds it for the Controller to interpret and execute. The VSP behaves as an attached processor to the host CPU and performs its synthesis tasks when appropriate commands are sent by the host CPU. For details on available commands and format, see Section 6.

5.2 FIFO BUFFER

The 128 -bit FIFO Buffer is organized as a 16 -byte parallel-in, serial-out buffer. This buffer is used to hold speech data passed from the CPU to be processed by a Speak External command in the VSP. As required by the synthesis section, data is shifted out serially starting with the LSB from the "First-In" byte. When this byte has been exhausted, the stack ripples down one byte and begins shifting out bits from the new "First-In" byte. A Stack Pointer keeps track of the location of the "Last-In" byte and data from the CPU is always loaded just above this location. When the stack becomes less than half full (i.e., eight byte locations are void of data), the buffer-low status condition (BL) becomes true. This signals the CPU that more data should be provided to the VSP. Under worst-case conditions, the buffer will be completely empty in two more frame periods (50 milliseconds), and invalid Jata will be processed as external speech data. As a Fail-Safe measure, if the buffer does reach such a condition, the buffer empty status (BE) becomes true and the Talk Status Latch is reset causing speech to terminate immediately. To resume speech with data provided by the CPU, another Speak External command must be issued.

5.3 DATA REGISTER

The eight bit Data Register is organized as a serial-in, parallel out Holding Register. This register is used bV the VSP to formulate a byte of data from serial data fetched from the VSM during the execution of a Read Byte command. Data is loaded to the Data Register so that the last bit loaded is in the least-significant bit location (07). When the Data Register has been loaded and $\overline{R S}$ goes active (low), this byte is transferred to the Memory Data Bus ($D 0=$ MSB). The $\overline{\text { Ready }}$ Line goes low when the data is stable.

5.4 STATUS REGISTER

The three bits of the Status Register provide up-to-date information to the CPU on the state of the VSP. The Status Register may be read a: any time except immediately after passing a Read Byte commland to the VSP. When $\overline{\mathrm{RS}}$ goes active (low) the VSP soutes the status data to the Memory Data Bus ($D 0=T S$: $1=B L ; D 2=B E$) and lowers the Ready Line to indicate the data is stable.

TS - Talk Status is ackive (high) when the VSP is processing speech data. Talk Status goes active at the initiation of a Speak command or after nine bytes of data are loaded into the FIFO following a Speak External command. It goes inactive (low) when the stop code (Energy $=1111$) is processed, or immediately by a buffer empty condition or a reset command. Audio output is interpolating to zero during this frame and is terminated on the next frame boundary.

BL - Buffer Low is active (high) when the FIFO Buffer is more than half empty. Buffer Low is set when the "Last-In" byte is shifted down past the half-full boundary (becomes the eight data byte) of the stack Buffer Low is cleared when data is loaded to the stack so that the "Last-In" byte lies above the halffull boundary and becomes the ninth data byte of the stack.

BE - Buffer Empty is active (high) when the FIFO Buffer has run out of data while executing a Speak External. ${ }^{\text {. }}$ command. Buffer Empty is set when the last bit of the "Last-In" byte is shifted out to the Synthesis Section. This causes Talk Status to be cleared. Speech is terminated at some abnormal point and the Speak External command execution is terminated. Data from the Memory Data Bus is once again routed to the Command Register.

6. DESCRIPTION OF COMMANDS

The VSP operates under the control of the CPU to a minimal degree. The CPU passes commands to the VSP which initiate an activity but the CPU is not involved in carrying out that activity. Commands available to the CPU and the format for commands are shown below:

TABLE 2 - VSP COMMANDS \& COMMAND FORMAT

DATA BUS COMMAND CODE (DO.D7)*	OPERATION
XOOO $\times \times \times X$	NOP
X001 $X X X X$	READ BYTE
X010XXXX	NOP
X110XXXX	SPEAK EXTERNAL
X011XXXX	READ \& BRANCH
X100AAAA	LOAD ADDRESS
X101XXXX	SPEAK
X111XXXX	RESET

- A = Address
 $X=$ Don't Care

When $\overline{W S}$ becomes active (low), assuming a Speak External command is not presently executing, the data on the memory data bus is latched into the command register. Once the transfer has been completed, the VSP activates (low level) the Ready line to release the CPU and begins interpreting and executing the command. Command execution for each instruction is described below.

If the user tries to pass a command to the VSP while another command is executing, the new command will not be accepted until the previous command is completed. The VSP keeps the CPU executing wait states until it is ready to accept a new command. Appendix G lists execution times for each command.

6.1 READ BYTE

The Read Byte command allows the CPU to access data stored in the TMS 6100 VSM. Read Byte causes the next eight bits to be read from the VSM (ignoring byte boundaries). These bits are packed into the data register so that the last bit read from VSM is in the least-significant-bit position (D7). When $\overline{R S}$ goes active (low), and before initiation of a new instruction, this data byte is placed on DO-D7.

Tr.is eight-bit transfer from the VSM requires 80 microseconds. If $\overline{\mathrm{RS}}$ should become active before the data register is completely loaded and ready to be transferred, the VSP keeps the CPU executing wait states (by not lowering the Ready line) until the data transfer from VSM is complete and the Data Byte is stable on the Memory Data Bus. At this time the Ready line is activated and the CPU may accept the Data Byte to complete the memory cycle.

5.2 READ AND BRANCH

The Read \& Branch command causes the VSP to initiate a Read and Branch function on the VSM (see VSM description). The VSP is not able to access the VSM for 240 microseconds after executing this command.

f. 3 LOAD ADDRESS

The Load Address command allows the CPU to alter the Address Register of the TMS 6100 to point to new speech deta. Load Address causes the VSP to load the four address bits from the VSP Address Register to one nibble of the VSM Address Register by initiating a VSM Load Address function (see VSM description). If the next command following is a Read Byte, Speak, or Reset command, a dummy Read function is passed to the VSM before that next command is executed. Bit D7 is loaded into ADD1 which is the LSB of the VSM address. Bit D4 is loaded into ADD8.

The Speak command allows speech to be generated from phrase data stored in the VSM. The Speak command generates an internal signal that immediately causes Talk Status to be set and initiates speech synthesis calculations using the next available data from the VSM. Audio output begins on the following frame boundary. The VSP continues to fetch data from the VSM and generates speech output until a stop code (Energy $=1111$) is received and recognized. At such time the audio output begins to interpolate down to the zero energy level. On the next frame boundary, speech has ended and the Talk Status is cleared. This completes execution of the Speak command. Execution of the Speak command may also be halted by the execution of Reset command. This causes audio output to halt immediately (without waiting for a frame boundary) and Talk Status to be cleared.

6.5 SPEAK EXTERNAL

The Speak External command allows the CPU to supply speech data to the VSP from some memory ottrer than the VSM. Upon receipt of a Speak External command, the VSP purges the FIFO buffer (BL and BE becomes active thigh)) and directs data written to the VSP to this buffer. The VSP idles waiting for the CPU to fill the buffer before speech begins. When the buffer low status becomes false (by the CPU loading a minimum of nine bytes to the FIFO). Talk Status is set and speech synthesis calculations begin using data from the FIFO. Data continues to be taken from the FIFO until a stop code is encountered or the buffer empty abnormal termination occurs. While the Speak External command is executing, all data written to the VSP is routed to the FIFO Buffer. A Reset command is not recognized as a command.

6.6 RESET

The Reset command allows the CPU to halt the Speak command and to put the VSP into a known state. Reset clears Talk Status, Malting speech activity immediately. The 128 bit FIFO Buffer is purged (BL and BE become active (high]) and the I/O paths are set to their default condition (Memory Data Bus \rightarrow Command Register; Status Register \rightarrow Memory Data Bus). A Load Address function is given to the VSM (using dummy address data) followed by a "Dummy Read" function.

The Reset command cannot halt the Speak External command. Flow diagrams for each instruction are given in Appendix B. System timing diagrams may be found in Appendix C.

7. POWER-UP CLEAR

The VSP contains internal circuitry to ensure a clear condition 95 percent of the time upon power up. provided the $V_{S S}-V_{D D}$ rise time to +10 volts is less than 2 milliseconds. The Power-Up Clear sequence is finished 15 milliseconds after $V_{S S}-V_{D D}$ reaches +10 volts. The events caused by the Power-Uin Clear sequence are similar to the Reset Command and are noted below:

- Talk Status is cleared and any speech activity is halted.
- The T State Counter is Reset.
- The FIFO is purged (BL \& BE go active (high]) possibly causing the $\overline{\mathrm{NT}}$ line to become active (low).
- I/O multiplexers are set to allow data to be written to the Command Register, and Data Read from the Status Register.
- The TMS 6100 assumes a known state by issuing a Load Address (using arbitary address data) followed by a "Dummy Read"

If the user requires higher reliahility in securing initialization, he should execute his own initialization sequence. A 100 percent assurance can be giver, wat the VSP is in a clear state by writing eight bytes of all "ones" to the VSP. followed by a Reset command.

8. SPEECH SYNTHESIS

As previously mentioned, speech data fed to to the VSP is encoded using pitched excited LPC. The process of recovering this data is described briefly here and in more detail in the following sections. (This intormation is intended solely for the reader's information. Proper application of the VSP does not depend on a thorough understandirig of the process). A simplified block diagram of the speech synthesis element of the VSP is given in Figure 4.

Coded speech parameter data is fed serially from either the VSM or the FIFO buffer to the Parameter Input Register. Here the Controller unpacks the data and performs various tests (i.e., is the repeat bit set, is pitch zero, is energy zero). Once unpacked the coded parameter data is stored in RAM to be used as the index value to select the appropriate value from the Parameter Look-Up ROM. The outputs of the Parameter Look-Up ROM are the target values for the interpolation logic to reach in this frame period. During each of the eight interpolation periods the interpolation logic sends new pitch and energy parameters to the signal generator which produces the filter excitation sequence, and new K-parameter values to the LPC lattice network. So, at the end of each sample period there is a new value of digitized synthetic speech available to the D/A converter.

8.1 CODED SPEECH PARAMETERS

The 12 synthesis parameters (pitch, anergy and reflection coefficients K1-K10), are stored in the VSM in coded form. Each parameter occupies between 3-6 bits. These coded values select a 10 -bit actual parameter from the parameter Look.Up ROM. Depending on the influence of each parameter on speech quality, between 8 and 64 possible values are stored in the Look-Up ROM for decocing and use in synthesis calculations. Table 3 summarizes parameter coding for the TMS 5200 .

TABLE 3 - PARAMETER CODING

PARAMETER	LEVELS	CODE BITS
ENERGY	15	4
PITCH	64	6
K1	32	5
K2	32	5
K3	16	4
K4	16	4
K5	16	4
K6	16	4
K7	16	4
K8	8	3
K9	8	3
K10	8	3
12	247	$49+$ REPEAT $=50$ BITS

A full set of coded parameters for each frame would require a data rate' of $40 \mathrm{~Hz} \times 50$ bits $=2900$ bits per second. Three special cases, in which a full frame is not necessary, allow the data rate to be considerably reduced:
(1) Since the vocal tract changes shape relatively slowly, it is often possible to repeat previous reflection coefficient data. To facilitate the repeat feature, a control bit has been added to each frame lan additional oit following energy). If the repeat bit is 1 , only energy and pitch data are accessed from the VSM and the previous K1-K10 values are retained.
(2) Unvoiced speech requires fewer filter reflection coefficients. When Pitch $=0$, only K1-K4 are fetched from the VSM and stored in the Parameter RAM. K5-K10 are zeroed.
(3) When Energy $=0$, no other data is required. Energy $=0$ during interword or intersyllable pauses. The combination of these ihree cases has reduced average data rate for male speech to approximately 1200 bits per second.

Figure 5 shows the four possibilities of frame data string lengths.

FIGURE 5 - FRAME DATA STRING LENGTHS

One complete set of parameters (12), used as target values during interpolation, is stored in coded form in the synthesizer. The storage medium is a 50 -bit RAM of variable word length, eg., six bits for pitch, three bits for K10. Data is supplied to the RAM via the parallel outputs of a serial shift register which accepts data from some VSM. The Parameter RAM outputs are used as inputs for the Parameter ROM.

8.2 D/A CONVERSION

The VSP contains an eight-bit digital-to-analog converter with $1 / 2$ tSB resolution. Every 100 microseconds the mostsignificant 10 bits of the 14 -bit lattice filter output are sampled. From this sample, the seven low order bits and the sign bit (MSB) are sent to the D/A converter. The remaining two bits are combined logicaily with the sign bit and usea to clip the driver to either a full ON or full OFF condition. Table 4 shows the analog outnut from the D/A converter for various inputs from the lattice filter.

TABLE 4 - DIGITAL-TO-ANALOG CONVERTER OUTPUT

. NO.	Y LATCH OUTPUT				D/A INPUT	ANALOG OUTPUT ($\mu \mathrm{A}$)
	$\mathrm{Y}_{\text {L13 }}$	$\mathrm{Y}_{\text {L12 }}$	$\mathrm{Y}_{\text {L11 }}$	$Y_{\text {L10 }}-Y_{\text {L4 }}$		
$>+127$	0	1	1	X	11111111	0
	0	1	0	x	11111111	0
	0	0	1	X	11111111	0
127126	0	0	0	1111111	11111111	0
	0	0	0	1111110	11111110	5.86
			-			
			-			
+10	0	0	0	0000001	10000001	738
	0	0	0	0000000	10000000.	744
+1-2	1	1	1	1111111	01111111	750
	1	1	1	1111110	01111110	755.8
-2			-			
			-			
-128<-128	1	1	1	0000000	00000000	1500
	1	1	0	X	00000000	1500
	1	0	1	X	. 00000000	1500
	1	0	0	X	00000000	1500

- No output, resting level.

8.3 AUDIO OUTPUT

The output of the D/A converter (see Table 4) is a current source designed to deliver 0 to 1.5 milliampere with resolution to 5.9 microamperes. This output has been optimized to drive the EXT AUD input of the SN76489AN sound generator chip. With a 1.8 -kilohm resistor in series, the VSP delivers 3 volts $(I=1.5$ milliamperes) when the Y latch output is less than -128 . When the Y latch output is greater than +127 , the audio output is clipped to zero volts. When no speech generation is taking place, the Y latch output is -1 making the audio output drive 750 microamperes. (Speaker output must be ac-coupled to audio amplifier.)

9. ELECTRICAL CHARACTERISTICS

9.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)*

$$
\begin{aligned}
& \text { Supply voltage, VDD . - } 20 \text { to +0.3 V } \\
& \text { Supply voltage VSS . } 20 \text { to +0.3 V }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Storage temperature range . } 30^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\
& \text { Power Dissipation } \\
& 600 \mathrm{~mW}
\end{aligned}
$$

Stresses beyond those listed under "Absolute Maximum Ratings" mav cause permenent damage to the device. This is astreas rating only and functional operation of the device at these or eny other conditions beyond those indicated in the "Recommenddd Operating Conditions" eection of this epecification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

9.2 RFCOMMENDED OPERATING CONDITIONS

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage. VSS	4.5	5	5.5	V
Supply voltage, VREF	-0.8	0	+0.6	v
Supply voltage, VDD	-4.5	-5	-5.5	v
High level it nut voltage, $\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {SS }}-0.6$		$V_{\text {SS }}$	v
Low level input voltage. $\mathrm{V}_{1 \mathrm{~L}}$ (see Note 1)		0	$\mathrm{V}_{\text {SS }}{ }^{-4}$	\checkmark
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	0		70	${ }^{\circ} \mathrm{C}$

[^3]
9.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

	PARAMETER	MIN	TYP	MAX	UNIT
V OH	High level ouiput voltage, $11 \mathrm{OH}=-0.4 \mathrm{~mA}$)	2.4		\checkmark SS	\checkmark
VOL	Low level output voltage. ${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$)	(VREF-0.5)	0	$\left(V_{\text {REF }}+0.5\right)$	\checkmark
'REF	Supply current trom $\mathrm{V}_{\text {REF }}$		3	5	mA
IDD	Supply current from $V_{\text {DO }}$		10	35	mA
C_{i}	Input capacitance, lexcept data bus)		15		pF
C_{0}	Output capacitance, (except data bus)		15		DF
C_{db}	Data bus load capacitance	25		300	DF

9.4 STATIC DISCHARGE PROTECTION

All inputs and outputs are guarded against electrostatic damage by state-of the art protection devices incorporated on the chip.
10. ENVIRONMENTAL

10.1 TEMPERATURE RANGE

Operating:	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage:	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

10.2 HUMIDITY

Operating:	85% Relative Humidity at $35^{\circ} \mathrm{C}$
Storage:	95% Relative Humidity at $55^{\circ} \mathrm{C}$

11. MECHANICAL DATA
11.1 28-PIN 600-MIL PLASTIC PACKAGE (100-MIL PIN SPACING)

NOTES: a. Each pin centerline is located within 0.010 inch (0.26 millimeters) of its true longitudinal position.
b. All linear dimensions are shown in inches (and parenthetically in millimeters for reference only). Inch dimensions govern.
11.2 PIN ASSIGNMENTS AND FUNCTIONS

PIN	NAME	IN/OUT	FUNCTION
1	DBUS 7	1/O	Memory data bus (LSB)
2	ADD1	0	Address bus to VSM (LSB)
3	ROMCLK	0	Clock to VSM
4	VDD	1	Drain supply voltage (-5 V NOM)
5	VSS	1	Substrate supply voltage (+5 V NOM)
6	OSC	1	Oscillator input
7	T11		Sync
8	SPEAKER	0	Audio output
9	1/O	0	Serial data out
10	TEST		Testing use only
11	VREF	1	Ground reference voitage (0 V NOM)
12	DBUS 2	1/0	Memory data bus
13	DBUS 1	1/0	Memory data bus
14	DBUS 0	1/0	Memory data bus (MSB)
15	MO	0	Command bit 0 to VSM
16	M1	0	Command bit 1 to VSM
17	INT	0	Interrupt (active low)
18	$\overline{\text { READY }}$	0	Transfer cycle W/CPU complete
19	DBUS 3	1/0	Memory data bus
20	TEST		Testing use only
21	ADD8/DATA	1/0	Address to VSM \& serial data in (MSB)
22	DBUS 4	1/0	Memory data bus
23	ADD 4	0	Address bus to VSM
24	DBUS 5	1/0	Memory data bus
25	ADD 2	0	Address bus to VSM
26	DBUS 6	1/0	Memory data bus
27	WS	1	Write select (active low)
28	$\overline{\mathrm{RS}}$	1	Read select (active low)

11.3 TERMINAL ASSIGNMENTS

APPENDIX A

SYSTEM CLOCKS

TYPICAL VALUES:

SAMPLE FREQUENCY

10 kHz
 8 kHz

R
$R=80.100 \mathrm{ks}$
$R=120.200 \mathrm{k} \Omega$

CERAMIC RESONATOR
$C R=400 \mathrm{kHz}$
$C R=320 \mathrm{kHz}$

FIGUREA.1 - TMS 5200 OSCILLATOR OPTIONS

4. SPEECH PROGAM UTILITY

5. SPEECH VOCABULARY LIBRARY

I. Speech Vocabulary Library for Standard Menory Chip

VOCABULARY	ADDRESS
ONE	54001
TWO	54.58 H
THREE	56E8H
FOUR	5498H
FIVE	5528 H
SIX	54 E 8 H
SEVEN	55 AOH
EIGHT	5.5 FOH
NINE	5620 H
TEN	56 AOH
ELEVEN	58B8H
TWELVE	5868H
THIRTEEN	57381
FOURTEEN	59181
FIFTEEN	$59 \mathrm{B8II}$
SIXTEEN	5 C 20 H
SEVENTEEN	5B88H
EIGHTEEN	$5 \mathrm{B2OH}$
NINETEEN	5AA8H
TWENTY	5810 H
THIRTY	57DOH
FORTY	5A18H
FIFTY	$5 \mathrm{A6OH}$
IT	5 ELOH
IS	5 E 48 H
AM	$5 \mathrm{CA8H}$
PM	5CFSH
0^{\prime} Cluck	513604
OH	5DEOH
GOOD	$5 \mathrm{E9OH}$
MORNING	ЈEBBH
AFTERNOON	5F28:
PAUSE	5FBOH
NULL	$5 \mathrm{FB8H}$

II. Speech Vocabulary Library for Optional Memory Chips

FILE NAME : SSB-EI

ADDRESS	WORD	ADDRESS	WORD	ADDRESS	WORD
000	0	54 B	ALI.	9DE	CONSOLE
046	1	574	AM	A27	CONNECTED
099	2	5 BA	AN	A 8 F	COMPUTER
OD 7	3	5F0	A ND	AE6	COMPLETED
124	4	657	ASSUME	B4D	COMPLETE
16 E	5	694	AT	BA 9	CYAN
1E5	6	6 B 1	B	BEC	COURSE
225	7	6D 3	BACK	C 2 A	D
274	8	6FE	BASE	C 63	DEVICE
2 Al	9	74 D	BE	CCC	DECIDE
321	A	76 F	BETWEEN	D 35	DATA
33 D	A 1	7D 8	BLACK	D 80	DOI NG
351	ABOUT	81 B	blue	DE 1	DOES
3A6	AFter	847	BOTH	E18	DO
3E2	AGAIN	87 B	COMES	E4B	DISKETTE
444	A NSWER	8 D 2	COME	E9E	DIFFERENT
493	ANY	905	COMMA ND	F07	DID
4D 8	ARE	95 C	COMMA	F65	DOW
50 A	AS	999	CORRECT	FA4	DOUBLE

FILE NAME : SSB-E2

ADDRESS	WORD	ADDRESS	WORD	ADDRESS	WORD
000	DONE	52 E	FIFTEEN	A 91	GAMES
05 B	DRAWI NG	589	FINISH	AF5	GO
OBE	DRAW	5 C 2	FINE	B 2 A	GIVES
114	E	5 FF	FIND	B99	GIVE
139	E ND	646	FIT	BEE	GOOD
1 AA	ELSE	670	FIRST	C12	GOING
1 E 9	ELEVEN	6 AD	FINISHED	C6F	GOES
246	EIGHTY	6F0	FORTY	CB 7	GOT
27 C	EIGHT	731	FOR	CE 8	GOODB YE
2 A 9	EACH	77 B	FIVE	D3F	\#GOOD WORK\#
2 DC	ERROR	7F2	FOURTH	D 8E	GUESS
324	E NTER	84D	FOURTEEN	DD 0	GREEN
366	E NDS	8E7	FOUR	E 31	GRAY
3 AD	EXACTLY	931	FRONT	E 7D	HA ND
415	EYE	960	FROM	EC 3	HAD
451	F	9A 8	G	FOD	H
474	FIGURE	9E5	getting	F3C	HAVE
4EB	FIFTY	A 63	GET	F7E	HAS

FILE NAME : SSB-E3

PILE NAME: SSB-E4

ADDRESS	WORD	ADDRESS	WORD	ADDRESS	WORD
000	MEAN	55 F	*NICE TRY\#	A 40	OTHER
048	ME	608	NEXT	A 8 A	ORDER
088	MaKE	654	NOT	AEO	PARTS
OD 7	MODULE	683	NO	B30	P
13 A	MIGHT	6C 3	NI NETY	B69	OVER
186	MIDDLE	720	0	BC 5	PLAYS
1 C 8	MOVE	75D	OF	C2 B	PLAY
226	MOST	7B6	NUMBER	C 73	PERIOD
272	MORE	813	NOW	CD 7	PRINT
2 C 3	NAME	859	ON	D 14	PRESS
336	N	8A 3	OH	D 50	POSITIVE
370	MUST	8E0	OFF	DCE	POSITION
3 B 9	NEGATIVE	91 E	OR	E39	POINT
436	NEED	966	O NLY	E95	PLEASE
492	NEAR	9 B 7	ONE	EEE	PROBLEMS
4DF	NI NE	A0A	OUT	F7C	PROBLEM

FILE NAME : SSB-E 5

ADDRESS	WORD	ADDRESS	WORD	ADDRESS	WORD
000	PRINTER	5 F 5	REMEMBER	B 27	SEVEN
04F	PUTTING	663	S	B 76	SHORT
0 C 5	PUT	6AA	ROUND	B B F	SHIFT
0 F 8	PROGRAM	742	RIGHT	BF4	SHAPES
181	RA NDOMLY	797	SAY	C3D	SIXTY
233	R	7D 4	SAVE	C 93	SIX
265	Q	84A	SAID	CD 3	SIDES
2 B 3	$\begin{aligned} & \text { \#READY TO } \\ & \text { START\# } \end{aligned}$	898	SECOND	D2 5	SIDE
345	READ 1	8FB	SCREEN	D 80	SHOULD
385	READ	95 B	SAYS	DC 9	SHORTER
3 E 6	REFER	9 B 5	SET	E48	SMALLEST
446	RED	9 EA	SEE	EAA	SMALLER
486	RECORDER	A 3D	SEES	EED	SMALL
502	REWIND	A 99	SHAPE	F2 B	SPACE
58 A	RETURN	AD 2	SEVENTY	F62	SORRY

FILE NAME : SSB-E6


```
FILE NAME : SSB-E7
```

ADDRESS	WORD	AUDRESS	WORD	ADDRESS	WORD
000	TWENTY	5 A 8	WANTS	B 71	Z
057	UPPER	604	WHEN	BAC	YOUR
097	UP	63 A	\#WHAT WAS	BF 8	\#YOU WIN\#
			THAT\#		
OBB	UNTIL	6C 6	WHAT	C 6A	YOU
12 B	UNDERSTAND	6F3	WHO	CA 0	YET
1 BD	UNDER	73 E	WHITE	CE2	Cassette
215	U	783	WHICH	D 19	CENTER
24 B	WA NT	7B 3	WHERE	D 54	CHECK
28 D	W	7FC	WON	D 74	CHOICE
30 A	VERY	84 F	WITH	DB8	Clear
360	VARY	88 F	WILL	DF 2	COLOR
3A 3	V	8E 9	WHY	E 26	BOTTOM
3 El	USE	946	YELLOW	E5C	BUT
427	WERE	9 A 6	Y	E 84	BUY
487	WELL	9 EC	X	EC2	BY
4 CC	WEIGHT	A 11	WRITE	F 00	BYE
50 E	WE	A 66	\#TEXAS	F5E	C
			I NSTRUMEN		
541	WAY	B 2 B	ZERO		

FILE NAME : SSB-E 8

ADDRESS	WORD A	ADDRESS	WORD	ADDRESS	WORD
000	\#LEON THINKS	9C2	B I G	CBD	MONKEY
	IT ABNORHAL				
	TO ROLL ON				
	THE GROUND\#				
38 E	\#YOU'RE	9FA	CAKE	D 13	CLOWN
	RIGHT\#				
401	\#LOOK AGAIN\#	A 39	CAN ${ }^{\text {c }}$ T	DB 7	COW
4 A 2	ROMEO	A 79	CANNOT	DD4	DOG
565	TWENTY	AEA	CAR	E2 B	DRUM
5DE	ZEBRA	B 3 E	CHILDREN	E 77	DUCK
800	A NIMALS	BA 1	CHOOSE	Eb 7	EATS
85A	ASTRONAUT	BF9	FUNNY	EEF	ELEPHANT
900	SEES	C6A	BAR	F69	FAST
967	BEFORE				

Renarks:
A!ove are SSB-MPF's SPEECH vocabulary library, available in January 1982.

宏基電腦股份有限公司 MULTITEGH INUUSTRIAL CORPORATION

OFFICE： 977 MIN SHEN E．ROAD，TAIPEI， 105 TAIWAN，R．O．C． TELEX：＂19162 MULTIIC＂and＂23756 MULTIIC＂ TEL：（02）769－1225（10 LINES）
FACTORY：5，TECHNOLOGY ROAD III， HSINCHU SCIENCE－BASED INDUSTRIAL PARK． HSINCHU，TAIWAN，300，R．O．C．TEL：（035） 775102 （3 LINES

[^0]: ${ }^{\text {TWhen using a ceramic resonator, the internal oscillator runs ar one half the.rate of the RC Network. A divide-by-two instead of e divide-by-four }}$ RC Network is used to generate system clock signals.

[^1]: Stow Memory devices ore those devices that cannot properly respond to svstem memory evcles within the minimum access time as deter mined by the CPU clock rate.
 $3^{\text {An }}$ interrupt will be generated at the initiation of a Speak External Instruction if ee was previously low.

[^2]: 4A minimum of two Loed Address instructions are required to change the VSM address.

 - Aeed a Brench will not work with multiple VSM systems. Bus contention will occur.

[^3]: NOTE 1: The algebraic convention where the more positive (less negative) limit is designated as maximum, is used in this date sheet for logic
 voltages levels onty. volteges levels only.

