Baud Rate Generator

Part Number	Description	Features	Power Supplies	Package	Page
COM 5016	Dual Baud Rate Generator	On-chip oscillator or external frequency input (use 8116 for new designs)	$+5,+12$	18 DIP	265-266
COM 5016T ${ }^{(1)}$	Dual Baud Rate Generator	External frequency input	+5, +12	18 DIP	265-266
COM 5026	Single Baud Rate Generator	On-chip oscillator or external frequency input (use 8126 for new designs)	+5, +12	14 DIP	267-272
COM 5026T ${ }^{(1)}$	Single Baud Rate Generator	External frequency input	$+5,+12$	14 DIP	267-272
COM 5036	Dual Baud Rate Generator	COM 5016 with additional output of input frequency $\div 4$ (use 8136 or 81 C36 for new designs)	$+5,+12$	18 DIP	265-266
COM 5036T ${ }^{\text {(1) }}$	Dual Baud Rate Generator	COM 5016T with additional output of input frequency $\div 4$	$+5,+12$	18 DIP	265-266
COM 5046	Single Baud Rate Generator	COM 5026 with additional output of input frequency $\div 4$ (use 8146 for new designs)	$+5,+12$	14 DIP	267-272
COM 5046T ${ }^{\text {² }}$	Single Baud Rate Generator	COM 5026T with additional output of input frequency $\div 4$	$+5,+12$	14 DIP	267-272
COM 8046	Single Baud Rate Generator	32 baud rates; 1X, 16X, 32X clock outputs; single +5 volt supply	+5	16 DIP	273-274
COM 8046T ${ }^{\text {² }}$	Single Baud Rate Generator	COM 8046 with external frequency input only	$+5$	16 DIP	273-274
COM 8116	Dual Baud Rate Generator	Single + 5 volt version of COM 5016	$+5$	18 DIP	275-276
COM 8116T ${ }^{1+}$	Dual Baud Rate Generator	Single +5 volt version of COM 5016 T	$+5$	18 DIP	275-276
COM 8126	Single Baud Rate Generator	Single +5 volt version of COM 5026	$+5$	14 DIP	277-284
COM 8126T ${ }^{(1)}$	Single Baud Rate Generator	Single +5 volt version of COM 5026T	$+5$	14 DIP	277-284
COM 8136	Dual Baud Rate Generator	Single +5 volt version of COM 5036	+ 5	18 DIP	275-276
COM 8136T ${ }^{\text {T }}$	Dual Baud Rate Generator	Single +5 volt version of COM 5036T	+5	18 DIP	275-276
COM 8146	Single Baud Rate Generator	Single +5 volt version of COM 5046	$+5$	14 DIP	277-284
COM $8146 \mathrm{~T}^{+1}$	Single Baud Rate Generator	Single +5 volt version of COM 50465	+5	14 DIP	277-284
COM 8156	Dual Baud Rate Generator	High-frequency clock input version of COM 8116 with additional outputs of input frequency $\div 2$ and $\div 8$	$+5$	18 DIP	285-288
COM $8156 \mathrm{~T}^{17}$	Dual Baud Rate Generator	External clock input version of COM 8156	$+5$	18 DIP	285-288
COM $81 \mathrm{Cb6}^{(8)}$	Timer/Clock Generator	CMOS User Programmable Clock and Timer	$+5$	16 DIP	289-290
C0M $81 \mathrm{Cb6T}^{(2)}$	Timer/Clock Generator	External Frequency Input version of COM 8166T	$+5$	16 DIP	289-290

[^0]
Dual Baud Rate Generator
 Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputChoice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDIRECT UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityHigh frequency reference output*TTL, MOS compatibilityPIN CONFIGURATION

| XTAL/EXT1 | 1 |
| ---: | ---: | ---: | :--- |
| +5 | 2 |
| f_{R} | 3 |

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 5016/COM 5036 Dual Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 32 externally selectable frequencies.

The COM 5016/COM 5036 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs, on each of the independent dividers, as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs on each divider section may be strobe (150ns) or DC loaded. As the COM 5016/COM 5036 is a dual baud rate generator, full duplex (independent receive and transmit frequencies) operation is possible.

The COM 5016/COM 5036 is basically a programmable 15-stage feedback shift register capable of dividing any modulo up to $\left(2^{15}-1\right)$.

By using one of the frequency outputs it is possible to generate additional divisions of the master clock frequency by cascading COM 5016/COM 5036's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5016/COM 5036 can be driven by either an external crystal or TTL logic level inputs; COM 5016T/COM 5036T is driven by TTL logic level inputs only.

The COM 5036 provides a high frequency reference output at one-quarter $(1 / 4)$ the XTAL/EXT input frequency.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V_{CC}	Power Supply	+ 5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($R_{A}, R_{B}, R_{C}, R_{D}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	$V_{\text {D }}$	Power Sup	+ 12 volt supply
10	$\mathrm{f}_{\mathrm{x}} / 4^{*}$	f_{X}	$1 / 4$ crystal/clock frequency reference output.
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$\mathrm{T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$	TransmitterDivider Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

COM 5026

COM 5026T
COM 5046
COM 5046T

Baud Rate Generator

Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputChoice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityHigh frequency reference output*TTL, MOS compatibilityPIN CONFIGURATION

BLOCK DIAGRAM

GENERAL DESCRIPTION

The Standard Microsystems COM 5026/COM 5046 Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 16 externally selectable frequencies.

The COM 5026/COM 5046 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs; as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs may be strobe (150ns) or DC loaded.

The COM 5026/COM 5046 is basically a programmable 15-stage feedback shift register capable of dividing any modulo up to ($2^{15}-1$).

By using the frequency output, it is possible to generate additional divisions of the master clock frequency by cascading COM 5026/COM 5046's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5026/COM 5046 can be driven by either an external crystal or TTL logic level inputs COM 5026T/COM 5046T is driven by TTL logic level inputs only.

THE COM 5046 provides a high frequency reference output at one-quarter (1/4) the XTAL/EXT input frequency.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1 Crystal or External Input 2 Power Supply	This input is either one pin of the crystal package or one polarity of the external input. This input is either the other pin of the crystal package or the other polarity of the external input. +5 volt Supply.
3	XTAL/EXT2		

ELECTRICAL CHARACTERISTICS COM5016, COM5016T, COM5026, COM5026T, COM5036, COM5036T, COM5046, COM5046T

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.$)$	$325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground	-18.0V
Negative Voltage on any Pin, with respect to ground	V

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=+12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL			0.8	V	excluding XTAL inputs
High-level, V_{1}	2.0		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{ma}$
			0.5	V	$1 \mathrm{l}=3.2 \mathrm{ma}$
High-level, V OH	$\mathrm{Vcc}-1.5$	4.0		V	$\mathrm{loH}=100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IIL			0.3	mA	$\mathrm{V}_{\mathrm{IN}}=$ = GND, excluding XTAL inputs
INPUT CAPACITANCE					
All inputs, CIn		5	10	pf	$V_{\text {IN }}=$ GND, excluding XTAL inputs
EXT INPUT LOAD		8	10		Series 7400 unit loads
POWER SUPPLY CURRENT					
Icc		28	45	mA	
Ido		12	22	mA	
A.C. CHARACTERISTICS					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY		5.0688		MHz	XTAL, EXT
PULSE WIDTH					
Clock Strobe	150		DC	ns	See Note 1.
INPUT SET-UP TIME					
Address	50			ns	See Note 1.
INPUT HOLD TIME					
Address	50			ns	
STROBE TO NEW FREQUENCY DELAY			3.5	$\mu \mathrm{S}$	$=1 / \mathrm{f}_{\mathrm{IN}}(18)$

Note 1: Input set-up time can be decreased to $\geqslant 0$ ns by increasing the minimum strobe width by 50 ns to a total of 200 ns .

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies.

The ROM programming is automatically generated.

Crystal Specifications

User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U
Frequency - 5.0688 MHz , AT cut
Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$ or as required

Crystal manufacturers (Partial List) Northern Engineering Laboratories 357 Beloit Street Burlington, Wisconsin 53105 (414) 763-3591

Bulova Frequency Control Products 61-20 Woodside Avenue Woodside, New York 11377 (212) 335-6000

CTS Knights Inc. 101 East Church Street Sandwich, Illinois 60548 (815) 786-8411 Crystek Crystals Corporation 1000 Crystal Drive Fort Myers, Florida 33901 (813) 936-2109

APPLICATIONS INFORMATION

Baud Rate Generator Output Frequency Options

D				CRYSTA	$\begin{array}{r} \text { Tabl } \\ \text { L FREQUE } \end{array}$	le 1. $\mathrm{NCY}=5.0$	88 MHz	(16X	lock)
			A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	0.8 KHz	0.8 KHz	-	50/50	6336
0	0	0	1	75	1.2	1.2	-	50/50	4224
0	0	1	0	110	1.76	1.76	0.	50/50	2880
0	0	1	1	134.5	2.152	2.1523	0.016	50/50	2355
0	1	0	0	150	2.4	2.4	-	50/50	2112
0	1	0	1	300	4.8	4.8	-	50/50	1056
0	1	1	0	600	9.6	9.6	-	50/50	528
0	1	1	1	1200	19.2	19.2	-	50/50	264
1	0	0	0	1800	28.8	28.8	-	50/50	176
1	0	0	1	2000	32.0	32.081	0.253	50/50	158
1	0	1	0	2400	38.4	38.4	-	50/50	132
1	0	1	1	3600	57.6	57.6	-	50/50	88
1	1	0	0	4800	76.8	76.8	-	50/50	66
1	1	0	1	7200	115.2	115.2	-	50/50	44
1	1	1	0	9600	153.6	153.6	,	48/52	33
1	1	1	1	19.200	307.2	316.8	3.125	50/50	16

(16X clock)									
CRYSTAL FREQUENCY $=4.9152 \mathrm{MHz}$									
D	mit/R Add C	Rece ress B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	0.8 KHz	0.8 KHz	-	50/50	6144
0	0	0	1	75	1.2	1.2	-	50/50	4096
0	0	1	0	110	1.76	1.7589	-0.01	*	2793
0	0	1	1	134.5	2.152	2.152	-	50/50	2284
0	1	0	0	150	2.4	2.4	-	50/50	2048
0	1	0	1	300	4.8	4.8	-	50/50	1024
0	1	1	0	600	9.6	9.6	-	50/50	512
0	1	1	1	1200	19.2	19.2	-	50/50	256
1	0	0	0	1800	28.8	28.7438	-0.19	*	171
1	0	0	1	2000	32.0	31.9168	-0.26	50/50	154
1	0	1	0	2400	38.4	38.4	-	50/50	128
1	0	1	1	3600	57.6	57.8258	0.39		85
1	1	0	0	4800	76.8	76.8	-	50/50	64
1	1	0	1	7200	115.2	114.306	-0.77	*	43
1	1	1	0	9600	153.6	153.6		50/50	32
1	1	1	1	19,200	307.2	307.2	-	50/50	16

(32X clock)									
CRYSTAL FREQUENCY $=5.0688 \mathrm{MHz}$									
D	Add	Bece	A	Baud Rate	Theoretical Frequency 32X Clock	Actual Frequency 32X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	1.6 KHz	1.6 KHz	-	50/50	3168
0	0	0	1	75	2.4	2.4	-	50/50	2112
0	0	1	0	110	3.52	3.52	-	50/50	1440
0	0	1	1	134.5	4.304	4.306	. 06	*	1177
0	1	0	0	150	4.8	4.8	-	50/50	1056
0	1	0	1	200	6.4	6.4	-	50/50	792
0	1	1	0	300	9.6	9.6	-	50/50	528
0	1	1	1	600	19.2	19.2	-	50/50	264
1	0	0	0	1200	38.4	38.4	-	50/50	132
1	0	0	1	1800	57.6	57.6	-	50/50	88
1	0	1	0	2400	76.8	76.8	-	50/50	66
1	0	1	1	3600	115.2	115.2	-	50/50	44
1	1	0	0	4800	153.6	153.6	-	*	33
1	1	0	1	7200	230.4	230.4	-	50/50	22
1	1	1	0	9600	307.2	316.8	3.125	50/50	16
1	1	1	1	19,200	614.4	633.6	3.125	50/50	8

OUTPUT FREQUENCY OPTIONS			
Part No.		sh Numb	
	Table 1	Table 2	Table 3
5016/5016T	STD		
5026/5026T	STD	-5	-6
5036/5036T	STD	N/A	N/A
5046/5046T	STD	N/A	N/A

Baud Rate Generator
 Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency input
\square
Single +5 v power supplyChoice of 32 output frequencies32 asynchronous/synchronous baud rates
\square Direct UART/USRT/ASTRO/USYNRT compatibilityRe-programmable ROM via CLASP® technology allows generation of other frequencies
TTL, MOS compatible1X Clock via fo / 16 outputCrystal frequency output via fx and $\mathrm{fx} / 4$ outputsOutput disable via FENA

PIN CONFIGURATION

| XTAL/EXT1 | 1 |
| ---: | ---: | ---: |
| XTAL/EXT2 | 2 |
| +5 v | 3 |
| fx | 4 |
| GND | 5 |
| fo/16 | 6 |
| FENA | 7 |
| E | 8 |

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 8046 is an enhanced version of the COM 5046 Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single $+5 v$ supply.
The standard COM 8046 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 1X, 16X and 32X UART/USRT/ASTRO/USYNRT devices.
The COM 8046 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8046T. TTL outputs used to drive the COM 8046 or COM $8046 T$ should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The reference frequency (fx) is used to provide two high frequency outputs: one at fx and the other at $f x / 4$. The $\mathrm{fx} / 4$ output will drive one standard 7400 load, while the fx output will drive two 74LS loads.
The output of the oscillator/buffer is applied to the divider for generation of the output frequency f_{0}. The divider is capable of dividing by any integer from 6
to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period. The output of the divider is also divided internally by 16 and made available at the $\mathrm{f}_{\mathrm{O}} / 16$ output pin. The $\mathrm{f}_{\mathrm{O}} / 16$ output will drive one and the f_{0} output will drive two standard 7400 TTL loads. Both the f_{O} and $f_{o} / 16$ outputs can be disabled by supplying a low logic level to the FENA input pin. Note that the FENA input has an internal pull-up which will cause the pin to rise to approximately V_{CC} if left unconnected.
The divisor ROM contains 32 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\circledR}$ technology. This process permits reduction of turn-around-time for ROM patterns.
The five divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the five divisor select bits; strobe activity is not required. This feature may be disabled through a CLASP ${ }^{\circledR}$ programming option causing new frequency initiation to be delayed until the end of the current f_{0} half-cycle All five data inputs have pull-ups identical to that of the FENA input, while the strobe input has no pull-up.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	V_{cc}	Power Supply	+5 volt supply
4	f_{x}	f_{x}	Crystal/clock frequency reference output
5	GND	Ground	Ground
6	$\mathrm{f}_{0} / 16$	$\mathrm{f}_{0} / 16$	1X clock output
7	FENA	Enable	A low level at this input causes the f_{0} and $f_{0} / 16$ outputs to be held high. An open or a high level at the FENA input enables the f_{O} and $\mathrm{f}_{\mathrm{O}} / 16$ outputs.
8	E	E	Most significant divisor select data bit. An open at this input is equivalent to a logic high.
9	NC	NC	No connection
10	$\mathrm{f}_{\mathrm{x}} / 4$	$\mathrm{f}_{\mathrm{x}} / 4$	$1 / 4$ crystal/clock frequency reference output.
11	ST	Strobe	Divisor select data strobe. Data is sampled when this input is high, preserved when this input is low.
12-15	D, C,B,A	D, C,B,A	Divisor select data bits. $A=L S B$. An open circuit at these inputs is equivalent to a logic high.
16	f_{0}	f_{0}	16X clock output

For electrical characteristics, see page 231.

Dual Baud Rate Generator Programmable Divider

FEATURES

On chip crystal oscillator or external frequency input
\square Single +5 v power supplyChoice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityHigh frequency reference output*
\square Re-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5016/COM 5036

PIN CONFIGURATION

	$\left\{\begin{array}{l} 18 \mathrm{XTAL} / \mathrm{EXT} 2 \\ 17 \mathrm{f}_{\mathrm{T}} \\ 16 \mathrm{~T}_{\wedge} \\ 15 \mathrm{~T}_{\mathrm{B}} \\ 14 \mathrm{~T}_{\mathrm{C}} \\ 13 \mathrm{~T}_{\mathrm{D}} \\ 12 \mathrm{STT} \\ 11 \mathrm{GND} \\ 10 \mathrm{fx} / 4^{*} \end{array}\right.$

BLOCK DIAGRAM

General Description

The Standard Microsystem's COM 8116/COM 8136 is an enhanced version of the COM 5016/COM 5036 Dual Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply.

The standard COM $8116 /$ COM 8136 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.

The COM 8116/COM 8136 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 18. Parts suitable for use only with an external TTL reference are marked COM 8116T/COM 8136T. TTL outputs used to drive the COM 8116/COM 8136 or COM $8116 T /$ COM 8136T XTAL/EXT inputs,should not be used to drive
other TTL inputs, as noise immunity may be compromised due to excessive loading.
The output of the oscillator/buffer is applied to the dividers for generation of the output frequencies f_{T}, f_{R}. The dividers are capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.
The reference frequency (fx) is used to provide a high frequency output at $\mathrm{fx} / 4$ on the COM 8136/T.
Each of the two divisor ROMs contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP® ${ }^{\circledR}$ technology allowing up to 32 different divisors on custom parts. This process permits reduction of turn-around time for ROM patterns. Each group of four divisor select bits is held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the four divisor select bits (strobe activity is not required). The divisor select inputs have pull-up resistors; the strobe inputs do not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V	Power Supply	+ 5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($R_{A}, R_{B}, R_{C}, R_{D}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	NC	No Connection	
10	$\mathrm{f}_{\mathrm{x}} / 4^{\text {* }}$	f_{x}	1/4 crystal/clock frequency reference output.
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$\mathrm{T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$	TransmitterDivider Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

COM 8126
 COM 8126T
 COM 8146
 COM 8146T

Baud Rate Generator
 Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency inputSingle $+5 v$ power supply
Choice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityHigh frequency reference output*
Re-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5026/COM 5046

PIN CONFIGURATION

BLOCK DIAGRAM

General Description

The Standard Microsystem's COM 8126/COM 8146 is an enhanced version of the COM 5026/COM 5046 Baud Rate Generator. It is fabricated using SMC's patended COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply.
The standard COM $8126 /$ COM 8146 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.
The COM 8126/COM 8146 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8126T/COM 8146T. TTL outputs used to drive the COM $8126 /$ COM 8146 or COM 8126 T/COM $8146 T$ XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The output of the oscillator/buffer is applied to the divider for generation of the output frequency. The divider is capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.

The reference frequency (fx) is used to provide a high frequency output at $\mathrm{fx} / 4$ on the COM 8146/T.

The divisor ROM contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\oplus}$ technology. This process permits reduction of turnaround time for ROM patterns. The four divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is affected within $3.5 \mu \mathrm{~s}$ of a change in any of the four divisor select bits (strobe activity is not required). This feature may be disabled through a CLASP ${ }^{\circledR}$ programming option causing new frequency initiation to be delayed until the end of the current $\mathrm{f}_{\text {out }}$ half-cycle. The divisor select inputs have pull-up resistors; the strobe input does not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input,
2	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	V_{cc}	Power Supply	+ 5 volt supply
4,6,7	NC	No Connection	
5	GND	Ground	Ground
8	$f_{x} / 4$ *	$\mathrm{f}_{\mathrm{x}} / 4$	1/4 crystal/clock frequency reference output.
9	ST	Strobe	A high level strobe loads the input data (A, B, C, D) into the input divisor select register. This input may be strobed or hard-wired to a high level.
10-13	D, C,B,A	Divisor Select Data Bits	The logic level on these inputs as shown in Table 1, selects the output frequency.
14	$\mathrm{f}_{\text {OUt }}$	Output Frequency	This output runs at a frequency selected by the divisor select data bits.

ELECTRICAL CHARACTERISTICS COM8046, COM8046T, COM8116, COM8116T, COM8126, COM8126T, COM8136, COM8136T, COM8146, COM8146T
 MAXIMUM GUARANTEED RATINGS

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.$)$	$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground	OV
Negative Voltage on any Pin. with respect to ground	

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.
ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{C}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, VI	2.0		0.8	V V	excluding XTAL inputs
					excluding XTAL inputs
Low-level, Vo			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$, for $\mathrm{f}_{\mathrm{x}} / 4, \mathrm{f}_{\mathrm{O}} / 16$
			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$, for $\mathrm{f}_{\mathrm{O}}, \mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{T}}$
			0.4	V	$\mathrm{I}_{\mathrm{OL}}=0.8 \mathrm{~mA}$, for f_{X}
INPUT CURRENT Low-level, IIL			-0.1	mA	$\mathrm{V}_{10}=\mathrm{GND}$, excluding XTAL inputs
INPUT CAPACITANCE All inputs, C_{IN}		5	10	pF	$\mathrm{V}_{10}=\mathrm{GND}$, excluding XTAL inputs
CLOCK FREQUENCY, f_{N}	0.01		7.0	MHz	XTAL/EXT, 50\% Duty Cycle $\pm 5 \%$ COM 8046, COM 8126, COM 8146
	0.01		5.1	MHz	XTAL/EXT, 50% Duty Cycle $\pm 5 \%$ COM 8116, COM 8136
STROBE PULSE WIDTH, $\mathrm{t}_{\mathrm{pw}} \quad 150$			DC	ns	
INPUT SET-UP TIME					
INPUT HOLD TIME toh	50			ns	
STROBE TO NEW FREQUENCY DELAY			3.5	$\mu \mathrm{S}$	@ $\mathrm{f}_{\mathrm{x}}=5.0 \mathrm{MHz}$

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies. The ROM programming is automatically generated.

Crystal Specifications
User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U
Frequency - 5.0688 MHz , AT cut
Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$ or as required

Crystal manufacturers (Partial List) Northern Engineering Laboratories 357 Beloit Street
Burlington, Wisconsin 53105
(414) 763-3591

Bulova Frequency Control Products
61-20 Woodside Avenue
Woodside, New York 11377
(212) 335-6000

CTS Knights Inc.
101 East Church Street
Sandwich, Illinois 60548
(815) 786-8411

Crystek Crystals Corporation
1000 Crystal Drive
Fort Myers, Florida 33901
(813) 936-2109

COM 8046 COM 8046T

Table 2
REFERENCE FREQUENCY $=5.068800 \mathrm{MHz}$

Divisor Select EDCBA	$\begin{aligned} & \text { Desired } \\ & \text { Baud } \\ & \text { Rate } \end{aligned}$	Clock Factor	Desired Frequency (KHz)	Divisor	Actual Baud Rate	Actual Frequency (KHz)	Deviation
00000	50.00	32X	1.60000	3168	50.00	1.600000	0.0000\%
00001	75.00	32X	2.40000	2112	75.00	2.400000	0.0000\%
00010	110.00	32 X	3.52000	1440	110.00	3.520000	0.0000\%
00011	134.50	32 X	4.30400	1177	134.58	4.306542	0.0591\%
00100	150.00	32X	4.80000	1056	150.00	4.800000	0.0000\%
00101	200.00	32 X	6.40000	792	200.00	6.400000	0.0000\%
00110	300.00	32 X	9.60000	528	300.00	9.600000	0.0000\%
00111	600.00	32 X	19.20000	264	600.00	19.200000	0.0000\%
01000	1200.00	32 X	38.40000	132	1200.00	38.400000	0.0000\%
01001	1800.00	32 X	57.60000	88	1800.00	57.600000	0.0000\%
01010	2400.00	32 X	76.80000	66	2400.00	76.800000	0.0000\%
01011	3600.00	32 X	115.20000	44	3600.00	115.200000	0.0000\%
01100	4800.00	32X	153.60000	33	4800.00	153.600000	0.0000\%
01101	7200.00	32 X	230.40000	22	7200.00	230.400000	0.0000\%
01110	9600.00	32 X	307.20000	16	9900.00	316.800000	3.1250\%
01111	19200.00	32 X	614.40000	8	19800.00	633.600000	3.1250\%
10000	50.00	16X	0.80000	6336	50.00	0.800000	0.0000\%
10001	75.00	16X	1.20000	4224	75.00	1.200000	0.0000\%
10010	110.00	16X	1.76000	2880	110.00	1.760000	0.0000\%
10011	134.50	16X	2.15200	2355	134.52	2.152357	0.0166\%
10100	150.00	16X	2.40000	2112	150.00	2.400000	0.0000\%
10101	300.00	16X	4.80000	1056	300.00	4.800000	0.0000\%
10110	600.00	16X	9.60000	528	600.00	9.600000	0.0000\%
10111	1200.00	16X	19.20000	264	1200.00	19.200000	0.0000\%
11000	1800.00	16X	28.80000	176	1800.00	28.800000	0.0000\%
11001	2000.00	16X	32.00000	158	2005.06	32.081013	0.2532\%
11010	2400.00	16X	38.40000	132	2400.00	38.400000	0.0000\%
11011	3600.00	16X	57.60000	88	3600.00	57.600000	0.0000\%
11100	4800.00	16X	76.80000	66	4800.00	76.800000	0.0000\%
11101	7200.00	16X	115.20000	44	7200.00	115.200000	0.0000\%
11110	9600.00	16X	153.60000	33	9600.00	153.600000	0.0000\%
11111	19200.00	16X	307.20000	16	19800.00	316.800000	3.1250\%

Baud Rate Generator Output Frequency Options

Table 2. CRYSTAL FREQUENCY$=4.9152 \mathrm{MHz}$								
			A $\begin{gathered}\text { Baud } \\ \text { Rate }\end{gathered}$	$\begin{gathered} \text { Theoretical } \\ \substack{\text { Freatencal } \\ \text { 16xClock }} \end{gathered}$	$\begin{gathered} \text { Actual } \\ \substack{\text { Frequency } \\ 16 \mathrm{XClock}} \end{gathered}$	Percent Error	$\begin{gathered} \text { Duty } \\ \text { Cycle } \\ \% \end{gathered}$	Divisor
0	0		50	0.8 K	0.8 K	-		
0	0		75 110	1.2	1.2 1.7589	-0.01		4096 2793
0	0		134.5	2.152	2.152	. 01		${ }_{2284}^{2793}$
0			${ }^{150}$	2.4	${ }^{2} 8$	-	50/50	2088
0			300	4.8	4.8		50/50	1024
	1		1200	-9.6	9.6		50,50	212
	0		1800	28.8	28.7438	-0.19	5	171
1	0		2000	32.0 38.4	${ }_{38.4}^{31.9168}$	-0.26	50/50	154 128 128
1	O		3600	57.6	57.8258	$\overline{0.39}$	50,	85
1	1	0	4800 7200	76.8 115.2	114.306	-0.77	50/50	64 43 48
1	1	1	O 9600 1 1	153.6 3072	153.6 3072		$50 / 50$ $50 / 50$	32 16
1	1	1	19,200	307.2	307.2	-	50/50	16

Table 3					(32X clock)	
CRYSTAL FREQUENCY $=5.0688 \mathrm{MHz}$						
	$\begin{aligned} & \text { Tr'mit/Receive } \\ & \text { Addaresss }_{B}^{A} \end{aligned}$	${ }_{\substack{\text { Baud } \\ \text { Rate }}}^{\text {a }}$	Theoretical Frequency 32x Clock	Actual $\begin{array}{c}\text { Frequency } \\ \text { 32XClock }\end{array}$		$\begin{gathered} \text { Duty } \\ \text { Cycie } \\ \text { \%ivisor } \end{gathered}$
0	000	50	1.6 KHz	1.6 KHz	-	$50 / 503168$
	$0{ }^{0} 1$	75	2.4	2.4	-	50,50 2112 $50 / 50$ 1440
	011	${ }_{134.5}$	${ }_{4}{ }^{3.304}$	${ }_{4} 3.306$	06	50/50 11407
	${ }^{0} 0$	150	${ }^{4.8}$	4.8	-	(50/50 1056
	10	300	9.6	9.6		50/50 528
0	1	${ }^{600}$	19.2 38.4	19.2 38.4		$50 / 50$ 50 $50 / 50$ 132
1	1	1800	57.6	57.6	-	50/50 88
1	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1 \\ 0\end{array}$	2400 3600	76.8 115.2	76.8 115.2	-	$50 / 50$ $50 / 50$ 68
1	0	4800	153.6	153.6	-	${ }^{33}$
1	$1{ }^{1} 101$	7200 9600	230.4 3072	230.4 316.8		50/50
	111	19,200	614.4	633.6	${ }_{3} 3.125$	50/50 ${ }^{\text {cos }}$

Baud Rate Generator Output Frequency Options

COM 8116T-013									
D	Tran Rec Add C	mit// ive ess B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	0.8 KHz	0.8 KHz	0	50/50	3456
0	0	0	1	75	1.2	1.2	0	50/50	2304
0	0	1	0	110	1.76	1.76	-. 006	50/50	1571
0	0	1	1	134.5	2.152	2.152	-. 019	50/50	1285
0	1	0	0	150	2.4	2.4	0	50/50	1152
0	1	0	1	200	3.2	3.2	0	50/50	864
0	1	1	0	300	4.8	4.8	0	50/50	576
0	1	1	1	600	9.6	9.6	0	50/50	288
1	0	0	0	1200	19.2	19.2	0	50/50	144
1	0	0	1	1800	28.8	28.8	0	50/50	96
1	0	1	0	2000	32.0	32.149	$+.465$	50/50	86
1	0	1	1	2400	38.4	38.4	0	50/50	72
1	1	0	0	3600	57.6	57.6	0	50/50	48
1	1	0	1	4800	76.8	76.8	0	50/50	36
1	1	1	0	9600	153.6	153.6	0	50/50	18
1	1	1	1	19,200	307.2	307.2	0	44/56	9

CRYSTAL FREQUENCIES $=6.01835 \mathrm{MHz}$									
D	Trans Rece Addr C	mit// ese B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	0.8 KHz	799.9 Hz	0	50/50	7523
0	0	0	1	75	1.2	1200.0	0	50/50	5015
0	0	1	0	110	1.76	1759.7	0	50/50	3420
0	0	1	1	134.5	2.152	2151.7	0	50/50	2797
0	1	0	0	150	2.4	2399.6	0	50/50	2508
0	1	0	1	200	3.2	3199.5	0	50/50	1881
0	1	1	0	300	4.8	4799.3	0	50/50	1254
0	1	1	1	600	9.6	9598.6	0	50/50	627
1	0	0	0	1200	19.2	19227.9	$+0.14$	50/50	313
1	0	0	1	1800	28.8	28795.9	0	50/50	209
1	0	1	0	2000	32.0	32012.5	0	50/50	188
1	0	1	1	2400	38.4	38333.4	-0.17	50/50	157
1	1	0	0	3600	57.6	57868.7	$+0.46$	50/50	104
1	1	0	1	4800	76.8	77158.3	$+0.46$	50/50	78
1	1	1	0	9600	153.6	154316.6	$+0.46$	50/50	39
1	1	1	1	19,200	307.2	300917.5	2.04	50/50	20

COM 8116T-013A									
CRYSTAL FREQUENCY - 5.52960 MHz									
D	Tran Rec Add C	mit// ive ess B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	100	1.6 KHz	1.6 KHz	0	50/50	3456
0	0	0	1	150	2.4	2.4	0	50/50	2304
0	0	1	0	220	3.52	3.5197	$-.006$	50/50	1571
0	0	1	1	269	4.304	4.3032	-. 019	50/50	1285
0	1	0	0	300	4.8	4.8	0	50/50	1152
0	1	0	1	400	6.4	6.4	0	50/50	864
0	1	1	0	600	9.6	9.6	0	50/50	576
0	1	1	1	1200	19.2	19.2	0	50/50	288
1	0	0	0	2400	38.4	38.4	0	50/50	144
1	0	0	1	3600	57.6	57.6	0	50/50	96
1	0	1	0	4000	64.0	64.298	$+.466$	50/50	86
1	0	1	1	4800	76.8	76.8	0	50/50	72
1	1	0	0	7200	115.2	115.2	0	50/50	48
1	1	0	1	9600	153.6	153.6	0	50/50	36
1	1	1	0	19,200	307.2	307.2	0	50/50	18
1	1	1	1	38,400	614.8	614.8	0	44/56	9

Typical UART-Dual Baud Rate Generator Configuration Full Duplex-Split Speed

Dual Baud Rate Generator Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency inputHigh crystal/clock frequency operationChoice of 2×16 output frequencies16 asynchronous/synchronous baud ratesHigh frequency reference outputsDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityN -channel silicon gate technologySingle $+5_{v}$ power supplyTTL, MOS compatibilityRe-programmable ROM technology allows generation of other frequencies

PIN CONFIGURATION

Rb	1	18	Ra
Rc	2	17	f_{F}
Rd	3	16	Vcc
STR	4	15	XTAL,
XTAL ${ }_{2}$	5	14	fo
fo/4	6	13	f_{T}
GND	7	12	Ta
STT	8	11	Tb
Td	9	10	Tc

BLOCK DIAGRAM

GENERAL DESCRIPTION

The Standard Microsystem's COM8156 is a dual baud rate generator that operates at twice the crystal/clock frequency of the COM8116/36. It is fabricated using SMC's patented COPLAMOS ${ }^{\text {'" }}$ technology and employs depletion mode loads allowing operation from a single +5 V supply.
The standard COM8156 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1 X and 32 X ASTRO/USYNRT devices.
The COM8156 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 9 . Parts suitable for use only with an external TTL reference are marked COM 8156T. TTL outputs used to drive the COM8156 or COM8156T XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The output of the oscillator/buffer is applied to the dividers for generation of the output frequencies f_{T}, f_{R}. The dividers are capable of dividing by an integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer that it is low by one f_{o} clock period.
The crystal frequency is divided by two to give (f_{0}) and again by four to give ($\mathrm{f}_{\mathrm{O}, 4}$). The transmit $\left(\mathrm{f}_{\mathrm{T}}\right)$ and receive (f_{R}) frequencies are obtained by dividing (f_{o}) by N . Up to 32 different divisors can be mask-programmed on custom parts to accommodate different crystal frequencies and divider schemes. Each group of four divisor select bits is held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within 3.5 us of a change in any of the four divisor select bits (strobe activity is not required). The divisor select bits (strobe activity is not required). The divisor select inputs and the strobe inputs have pull-up resistors.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
15	XTAL/EXT 1	Crystal	This input receives one pin of the crystal package.
16	$V_{c c}$	Power Supply	+5 Volt Supply.
17	f_{B}	Receiver Output	This output runs at a frequency selected by the Receiver Address Inputs.
$\begin{gathered} 18 \\ 1-3 \end{gathered}$	$\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{c}}, \mathrm{R}_{\mathrm{d}}$	Receiver Divisor Select Address	The logic level on these inputs as shown in Table 1, selects the receiver output frequency, f_{R}.
4	STR	Strobe-Receiver Address	A high-level input strobe loads the receiver address (R_{a}, R_{b}, R_{c}, R_{d}) into the receiver address register. This input may be strobed or hard wired to +5 V .
5	XTAL/EXT 2	Crystal	This input receives one pin of the crystal package.
6	$\mathrm{f}_{0,4}$	Oscillator Output	This output runs at a frequency selected by the crystal $\div 8$.
7	GND	Ground	Ground
8	STT	Strobe-Transmitter Address	A high-level input strobe loads the transmitter address (T_{a}, T_{b}, T_{c}, T_{d}) into the transmitter address register. This input may be strobed or hard wired to +5 V .
9-12	$\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{c}}, \mathrm{T}_{\mathrm{b}} \mathrm{T}_{\mathrm{a}}$	Transmitter Divisor Select Address	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, \mathfrak{f}_{\top}.
13	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter Address inputs.
14	$\mathrm{f}_{\text {。 }}$	Oscillator Output Frequency	This output runs at a frequency selected by the crystal $\div 2$.

ELECTRICAL CHARACTERISTICS

maximum guaranteed ratings*

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	55° to +150
Lead Temperature (soldering, 10 sec.)	
Positive Voltage on any Pin, with respect to ground.	
Negative Voltage on any Pin, with respect to ground	

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS input Voltage levels Low Level ${ }^{\prime \prime}$ High Level V_{1+}	2.0		0.8	$\stackrel{v}{v}$	excluding XTAL inputs
OUTPUT VOLTAGE LEVELS Low Level V_{ol} High Level $\mathrm{V}_{\text {OH }}$	2.4		$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \\ & \hline \end{aligned}$	
INPUT CURRENT Low-level, I_{1}			-0.1	mA	$\mathrm{V}_{\text {IN }}=$ GND, excluding XTAL inputs
INPUT CAPACITANCE All inputs, $\mathrm{C}_{\text {w }}$		5	10	pF	$\mathrm{V}_{\mathrm{IN}}=$ GND, excluding XTAL inputs
EXT INPUT LOAD		8	10		Series 7400 equivalent loads
POWER SUPPLY CURRENT I_{cc}			60	mA	
AC CHARACTERISTICS CLOCK FREQUENCY, f_{w}	5.0		11.0	MHz	XTAL/EXT, 50\% Duty Cycle $\pm 5 \%$
STROBE PULSE WIDTH, $\mathrm{t}_{\text {pw }}$	150		DC	ns	
INPUT SET-UP TIME t_{os}	50			ns	
INPUT HOLD TIME T_{DH}	50			ns	
STROBE TO NEW FREQ. DELAY			3.5	$\mu \mathrm{s}$	
OUTPUT CLOCKS DUTY CYCLE $\underset{\substack{f_{0} \\ f_{04} \\ f_{i} \\ f_{5}}}{ }$ $\mathrm{f}_{\mathrm{R},} \mathrm{f}_{\mathrm{T}}$	$\begin{aligned} & 40 \\ & 45 \\ & 48 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 55 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$	(a 1.5 V LEVEL (a 1.5 V LEVEL (1 1.5V LEVEL
CRYSTAL CHARACTERISTICS Series Crystal Resistance Crystal Shunt Capacitance	2	$\begin{gathered} 30 \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} 70 \\ 10 \\ \hline \end{array}$	pf	(1) Resonance

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies.

The ROM programming is automatically generated.

Crystal Specifications

User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U Frequency: 10.1376 MHz , AT cut Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Series resistance < 50Ω
Series Resonant
Overall tolerance $\pm .01 \%$ or as required

Crystal manufacturers (Partial List) Northern Engineering Laboratories 357 Beloit Street
Burlington, Wisconsin 53105 (414) 763-3591

Bulova Frequency Control Products 61-20 Woodside Avenue Woodside, New York 11377 (212) 335-6000

CTS Knights Inc.
101 East Church Street
Sandwich, Illinois 60548
(815) 786-8411

Crystek Crystals Corporation
1000 Crystal Drive
Fort Myers, Florida 33901
(813) 936-2109

Universal Rate Generator \& Timer

FEATURES

Three independent 32 bit programmable counters
Clock input from DC to 16 MHz
\square Low power CMOS
$\square 8 / 16$-pin Dual-In-Line package
\square Uses a crystal or a TTL signal as frequency source
Single +5 Volt power supply

PIN CONFIGURATION

PACKAGE: 16-pin D.I.P.

GENERAL DESCRIPTION

The TIMER chip is a device designed to provide a convenient and inexpensive solution to applications requiring programmable multiple clock divider sources. The source frequency can be either an integrated crystal controlled oscillator, or an external TTL signal. The TIMER consists of a data input portion, a register addressing block and three counter blocks.

The counter blocks are accessed and programmed independently and they can be configured to operate in various modes simultaneously.
The TIMER chip serves a broad range of applications some of which are: Programmable rate generations, pulse generation, motor control, real time clock, interrupt applications and others.

[^0]: ${ }^{(1)}$ May be custom mask programmed ${ }^{2}$ For future release

