Document Nbr: CSI426/kayproII-RS2.06 Date: December 5, 1998 Copy Nbr: _____

REQUIREMENTS SPECIFICATION DOCUMENT

FOR THE

CSI426/KAYPRO II EMULATOR

NOTICE

This document contains. Proprietary or Confidential information. DO NOT DESTROY OR REPRODUCE THIS DOCUMENT. Return to Procedures Staff for proper execution.

PROPRIETARY & CONFIDENTIAL

Distribution List

<u>Name</u>

Organization

<u>Signature</u>

Dr. Charles Howerton

Metropolitan State College

Table of Contents

1.	INTR	ODUCTION	. 5
1	l.1 C	Overview	. 5
1	1.2 S	SCOPE	. 5
2	GAZOT		_
2.	5121	EM REQUIREMENTS	. ว
2	2.1 S	System Definition	. 6
	2.1.1	Concept of Operations	6
	2.1.2	Assumptions and Constraints	. 7
2	2.2 F	Functional Requirements	. 8
	2.2.1	Function	. 8
	2.2.2	Expandability	. 8
	2.2.3	Platform	. 8
	2.2.4	Z-80 CPU Emulation	. 9
	2.2.	4.1 Z-80 Features	. 9
	2.2.	4.2 Z-80 Instruction Set	.9
	2.2.	4.4 7-80 Addressing modes	10
	2.2.	4.5 Main Registers	10
	2.2.	4.6 Special Purpose Registers	10
	2.2.	4.7 Non-maskable Interrupts	11
	2.2.	4.8 Maskable Interrupts	11
	2.2.	4.9 Reset	11
	2.2.	4.10 Bus filming and Signals	11 12
	2.2.5	Port Emulation	13
	2.2.0	Memory Emulation	15
	2.2.7	7.1 Video and Memory	16
	2.2.8	User Interface	18
	2.2.	8.1 Debug On/Off	19
	2.2.	8.2 Fast Mode/ Real Mode	19
	2.2.	8.3 Reset button	19
	2.2.	8.4 Change Disk A and B	19
	2.2.	8.5 Storage	19
	2.2.	8.6 Step and Run Mode	21
	2.2.	8.7 Set Dicarpoint	$\frac{21}{21}$
	2.2.	8.9 Memory Dump	21
	2.2.	8.10 View options	21
	2.2.9	Devices	22
	2.2.	9.1 Serial I/O	22
	2.2.	9.2 Floppy Emulation	26
	2.2.	9.3 Keyboard Functions	28 28
	2.2.	9.5 Baud Rate Port	20 30
	2.2.10) Miscellaneous Ports	30
	2.2.11	Bootstrap Loader	31
	2.2.12	2 Operating system	31
•	DDO		~~
5.	PROJ	IEUI DELIVEKABLES	52
3	3.1 F	IARDWARE	32
2	3.2 S	SOFTWARE	32
3	3.3 Т	FRAINING	32
	3.4 F	PROJECT DOCUMENTATION	32
	3.4.1	Project Development Documentation	32
	3.4.2	Customer/Operations Documentation	32

October 17, 1998

4. APPLI	CABLE DOCUMENTS, REFERENCE, AND GLOSSARY	
4.1 Re	FERENCES	
4.2 AF	PENDIX A, Z-80 OPCODES	
4.2.1	8 bit Load Group	
4.2.2	16 bit Load Group	
4.2.3	Exchange, Block Transfer and Search Groups	
4.2.4	8 bit Arithmetic and Logical Group	
4.2.5	16 bit Arithmetic Group	
4.2.6	General Purpose Arithmetic and CPU Control Groups	40
4.2.7	Rotate and Shift Group	
4.2.8	Bit Manipulation Group	
4.2.9	Input and Output Groups	43
4.2.10	Jump Group	44
4.2.11	Call and Return Group	
4.3 GI	OSSARY	

Tables and Figures

Figure 1, Kaypro II Overview	6
Figure 2 Kaypro II Emulator Java Applet Transfer	8
Figure 3 Kaypro II functional View	12
Figure 4, Port Emulation	13
Figure 5 Kaypro II Bank Switching	15
Figure 6, Memory Mapped Video	16
Figure 7, Logical Vs. Physical Screen Mapping	17
Figure 8, User Interface with Debug Off	18
Figure 9, User Interface with Debug On	20
Figure 10, View Options	22
Figure 11, SIO Indexing Scheme	24

Figure 1, Kaypro II Overview	6
Figure 2 Kaypro II Emulator Java Applet Transfer	8
Figure 3 Kaypro II functional View	12
Figure 4, Port Emulation	13
Figure 5 Kaypro II Bank Switching	15
Figure 6, Memory Mapped Video	16
Figure 7, Logical Vs. Physical Screen Mapping	17
Figure 8, User Interface with Debug Off	18
Figure 9, User Interface with Debug On	20
Figure 10, View Options	22
Figure 11, SIO Indexing Scheme	24

1. Introduction

This section contains the overview, system identification, and scope of the Requirements Document.

1.1 Overview

This document describes the software specification for the Kaypro II emulator.

This document presents an overview of the Kaypro II emulator. The emulator is a Java based implementation of a Kaypro II computer system. Java is a language that allows remote programs to be executed on a client computer via the World Wide Web. The Kaypro II emulator resides on a remote host machine. The user may run the emulation on a compatible browser from their own computer system.

The implementation features a number of convenient and useful features, including:

- Printer port simulation
- Debugging:
 - Hardware style breakpoints Opcode level debugging CPU register display
- Memory dump utilities
- Dual virtual diskette drives with CP/M pre-loaded
- Real and fast mode video options

In addition to the above, the system shall be coded in such a way that it is expandable. This expandability requires changes to the source code. The modular nature of the implementation allows easy modification.

1.2 Scope

The Kaypro II emulator utility shall be a new development effort.

2. System Requirements

2.1 System Definition

Figure 1, Kaypro II Overview

2.1.1 Concept of Operations

The Kaypro II is a Z-80 based computer system. It contains dual floppy drives, serial I/O, a monochrome screen, keyboard, a printer port, memory and control logic.

The Z-80 processor executes pre-programmed instructions read from memory. Serial I/O provides an interface to serial devices. Serial I/O also provides interface to the built-in keyboard and system speaker.

The Kaypro II contains a monochrome screen. The screen has no real graphic capability, but can display inverse characters.

The Kaypro II includes two built-in floppy disk drives.

The printer port enables communication with a Centronics compatible printer. A secondary printer port acts as an interface for controlling internal functions such as:

- Floppy disk selection
- Floppy drive motor control
- RAM/ROM/video RAM bank selection
- Printer control signals

The Kaypro II supported 64K of RAM. In addition, the system also included a system ROM and memory mapped video.

The Kaypro II control logic included a dual baud-rate generator for serial data rate adjustments, a character generator ROM, and other discrete control logic.

2.1.2 Assumptions and Constraints

The Kaypro II emulation project focuses on the internal function of the Kaypro II hardware. The goal of the project is to provide a working emulation of an actual Kaypro II computer system. The emulator will be capable of running most Kaypro II software.

- It is assumed that the user of the system is familiar with the CPM operating system.
- It is assumed the user is familiar with the operation of a Kaypro II computer.
- It is assumed that the user is familiar with common debugging techniques.
- It is assumed that the user is familiar with Windows 95, NT 4.0, or similar GUI's.
- It is assumed that the Java browser is JDK 1.1.6 or above

2.2 Functional Requirements

2.2.1 Function

- The emulation program shall emulate the Kaypro II model of the Kaypro product line
- The user shall manipulate the emulated version just as they would the original
- The emulation shall contain debugging features, in addition to the original functionality

2.2.2 Expandability

The system shall be expandable. That is, it's design shall be easily upgraded. This allows improvements, variations and upgrades to be easily coded and implemented.

- The Kaypro II emulation shall be coded in such a way as to facilitate easy additions and expansions to the system.
- The emulation shall be coded in a modular way; such as logical Java classes

2.2.3 Platform

Figure 2 Kaypro II Emulator Java Applet Transfer

The Kaypro II emulation shall be implemented as a Java applet. Java applets reside on remote servers (see Figure 2). When a user browses an HTML web page containing reference to the emulator applet, the applet byte code is transferred to the User's computer and executed¹.

- The Kaypro II emulation shall be implemented in Java
- The implementation shall be pure Java (e.g. No Microsoft extensions).
- The Kaypro II emulation shall be implemented as an applet.
- The Kaypro II emulation shall be made available via the world wide web
- The Java interface shall be kept minimal, to afford quicker load times
- The Implementation shall use JDK 1.1.6

¹ See Sun Micro's description of the Java environment and language.

2.2.4 Z-80 CPU Emulation

- The Kaypro II utilizes the Z-80 Processor. The CPU emulated shall be the Z-80
- The CPU instruction set shall conform to those presented in the Zilog Z80 Microprocessor Family User's Manual, Part number Q1/95 DC 8309-1.
- The RLA command as documented in the Zilog user's manual contains an error in the rotate diagram. The emulation shall support shift left, whereas the manual depicts shift right.

2.2.4.1 Z-80 Features

The Z-80 CPU contains a number of notable features. These include:

- One 8-bit Accumulator
- One 8-bit flags register
- Six 8-bit general purpose register, that can be mapped to three 16-bit registers
- An alternate register set
- An interrupt vector register
- Two 16-bit index registers
- One stack pointer
- One program counter

2.2.4.2 Z-80 Instruction Set

The Z-80 instructions are a superset of the 8080. A summary of the Z-80 instruction set is included in appendix A.

The Z-80 instruction set consists of the following groups of operations:

- Load and exchange
- Block transfer and search
- Arithmetic and Logical
- Rotate and shift
- Bit Manipulation
- Jump, Call and return
- Input and Output
- CPU Control (NOP, HALT, etc)

2.2.4.3 Z-80 Arithmetic Logic Unit (ALU)

The Z-80 ALU supplies the following functions:

- Add
- Subtract
- Logical AND
- Logical OR
- Logical Exclusive OR
- Compare
- Shift and rotate
- Increment and decrement
- Bit operations
- The ALU shall be implemented as a function of the CPU. It may not be implemented separately.

2.2.4.4 Z-80 Addressing modes

The Z-80 CPU shall support the following addressing modes:

- Immediate, where data is explicitly specified within the instruction (8 bit)
- Immediate extended, where data is specified within the instruction (16 bit)
- Zero page, where a single byte instruction may call one of eight zero-page locations
- Relative, where the following byte specifies a relative address
- Extended, where a 16 bit value specifies the location of an indirect address
- Indexed, where an index register and an offset specify an absolute address
- Register addressing, where a particular register specifies an address location
- Implied addressing, where the opcode automatically implies a CPU register
- Register indirect addressing, where the register contains an indirect address reference
- Bit addressing, where memory or registers may directly manipulate individual bits

2.2.4.5 Main Registers

The Z-80 emulation shall include the following main registers. These registers shall be contained within the processor, and be accessible to the CPU instructions. The alternate instructions are accessible via a Z-80 swap command. This command swaps the main and alternate register sets. Unless swapped, the alternate register set is not accessible to the Z-80 instructions.

Main Register Set		Alternate Register Set		
Accumulator A	Flags F	Accumulator A'	Flags F'	
В	С	B'	C'	
D	Е	D'	E'	
Н	L	H'	L'	

Table 1, Z-80 Primary Register Set

2.2.4.6 Special Purpose Registers

Z-80 special purpose registers shall be included in the emulation. These registers assist in indirect addressing via Z-80 instructions, specifically, the IX and IY index registers. The program counter controls program execution, while the stack pointer register controls stack operations. The Z-80 CPU includes instructions for stack manipulation.

Special Purpose Registers					
Interrupt	Memory				
Vector I	Refresh				
	Register R				
Index Register IX					
Index Register IY					
Stack Pointer SP					
Program Cour	nter PC				

Table 2, Z-80 Special Purpose Register Set

- The Interrupt vector, I, is used for mode 2 interrupts (described below). It shall be implemented.
- The Memory refresh register is used for dynamic memory refresh. It is incremented each time an instruction is executed. Dynamic memory is a function of hardware implementation, and is not needed. The memory refresh register, R, shall not be implemented.

2.2.4.7 Non-maskable Interrupts

The Z-80 supports one non-maskable interrupt. This interrupt is executed when the NMI line of the CPU is activated. The NMI interrupt forces a CPU restart (call) to location 0x66 upon the completion of the current instruction.

• The non-maskable interrupt may not be disabled.

2.2.4.8 Maskable Interrupts

The Z-80 CPU supports 3 modes of maskable interrupts: mode 0, mode 1, and mode2

• Maskable interrupts may be disabled via CPU instruction.

2.2.4.8.1 Mode 0

An interrupt is executed when the INT line of the CPU is activated. The INT mode 0 interrupt forces execution of the instruction placed on the bus by the interrupting device. The execution of the device-supplied instruction takes place upon the completion of the current instruction.

• Mode 0 shall be implemented.

2.2.4.8.2 Mode 1

An interrupt is executed when the INT line of the CPU is activated. The INT mode 1 interrupt forces a CPU restart (call) to location 0x38 upon the completion of the current instruction.

• Mode 1 shall be implemented.

2.2.4.8.3 Mode 2

An interrupt is executed when the INT line of the CPU is activated. The INT mode 2 requires that the programmer setup a table of 16 bit service routine addresses. When an interrupt is generated, a 16 bit address is created. This address points to an element in the table.

The upper 8-bits of the address is specified by the programmer, and stored in the I register. The lower 8bits are supplied by the interrupting device. This address is used by the CPU to index into the programmersupplied table. The index points to the address of the interrupt service routine.

The execution of the interrupt service routine takes place upon the completion of the current instruction.

• Mode 2 shall be implemented.

2.2.4.9 Reset

The Z-80 CPU shall support implementation of the RESET line. When this line is activated, the CPU shall force a jump to location 0x00 upon completion of the current command.

2.2.4.10 Bus Timing and Signals

Bus timing and associated signals shall not be implemented. Only the function of the CPU shall be implemented. Exact CPU speed shall not be governed, except within the limits of the executing hardware and software.

Figure 3 Kaypro II functional View

2.2.5 Hardware Emulation

Figure 3, Kaypro II functional view, shows the Kaypro II architecture. Central to the architecture is the hardware. The hardware represents the communication mechanism between the various system components. The hardware represents discrete chips and connection logic within the actual Kaypro II. The hardware shall be a link from the CPU to all the other devices. The hardware connects the following devices.

- Keyboard
- Screen
- Memory (Ram/Video/RAM)
- Bank switching
- I/O Ports
- Disk Drives
- Motor control, indicator lights, etc

The hardware passes the following signals (messages):

- User action
- NMI
- INT
- Reset
- Read memory
- Write memory
- Port commands

2.2.6 Port Emulation

Figure 4, Port Emulation

An important feature of the bus is the implementation of ports. Ports allow the Z-80 to communicate programmatically with external hardware devices.

Figure 4, port emulation, illustrates the logical port operation of a Z-80 OUT command. In Figure 4, a Z-80 OUT command is sending data contained within the accumulator (A) register to a physical device labeled B. Note that device B is physically connected to port 1. The device would receive the value contained within the accumulator. The Z-80 IN command can retrieve data from a physical device in a similar manner.

IN and OUT commands allow data to be transferred to external devices. Examples of Kaypro II external devices include:

- Floppy disk controller/Drive
- Serial I/O
- Keyboard
- Beeper
- Parallel port/printer
- Baud rate generators

The Z-80 supports numerous ports (up to 256 ports are available). The hardware designer maps ports to physical devices. The following ports are utilized within the Kaypro II:

Usage	Kaypro Name	Port
Baud rate Generator A, baud rate for Kaypro external serial port	Baud rate port	0x00
Serial port A, Kaypro external serial port	Bit port	0x04
Serial Port B, Keyboard	Bit port	0x05
Serial port A, Control register	Bit port	0x06
Serial Port B, Control register	Bit port	0x07
PIO A, Data register (write to printer, used to send data to printer)	Bit port	0x08
PIO A, Control register (write to PIO, used to program PIO)	Bit port	0x09
System PIO, Data (not used)	Bit port	0x0A
System PIO, Control (not used)	Bit port	0x0B
Baud Rate Generator B, baud rate for keyboard	Baud rate port	0x0C
Floppy controller, Status/Command register	Floppy port	0x10
Floppy controller, Track register	Floppy port	0x11
Floppy controller, Sector register	Floppy port	0x12
Floppy controller, Data register	Floppy port	0x13
PIO A, Data register	Bit port	0x1C
PIO A, PIO control register	Bit port	0x1D
System PIO, Data register (not used)	Bit port	0x1E
System PIO, PIO control register (not used)	Bit port	0x1F

 Table 3, Kaypro II Port Usage

2.2.7 Memory Emulation

Figure 5 Kaypro II Bank Switching

The Kaypro II utilizes two banks of memory. Bank 0 contains 64K of linear RAM. Bank 1 contains the video and system ROM. Notice from Figure 5 that bank 0 and bank 1 share high memory.

One way to understand the Kaypro II banking scheme is to visualize a switch (see Figure 5). The CPU executes instructions from memory. The memory that the CPU sees is determined by the bank switch. Depending on the position of the bank switch, the CPU will operate on data from either bank 0 or bank 1. The bank switch is thrown electronically. This allows the Kaypro II to support 64K programs, while still supporting memory mapped video, and bootstrap ROM.

Note that the upper portion of bank 0 and bank 1 share bank 0's RAM. This allows a single program to operate in both memory domains.

Bank 1 contains ROM as well as video. The ROM, referred to as the "System ROM," is contained within a 2716 EPROM. This EPROM is pre-programmed with utility routines, as well as a bootstrap loader. When

kayprospec.doc

the system is reset, bank 1 is selected, and code from within the System ROM is executed. This code loads the operating system from floppy and initializes the system. The complete memory map for the Kaypro II is shown in Table 4.

Bank	Туре	Range
0	System RAM	0x0000 - 0xFFFF
1	System ROM (2716)	0x0000 - 0x2FFF
1	Video RAM	0x3000 – 0x3FFF
1	System RAM ²	0x4000 – 0xFFFF

Table 4.	Kavpro	II Memory	Map
1		II INTOMOL 7	1 mp

- The emulated RAM shall be 64K bytes.
- The emulated ROM shall be 4K Bytes (although 12K of address space is reserved)
- The emulated Video RAM shall be 4K Bytes.
- System ROM shall be extracted from the original Kaypro II 2716 EPROM, converted to programmatic form, and inserted into the emulator code.

*Note: Video and System ROM actually occupy only 4K. There is a void above each of these areas. This area can be occupied by larger ROM, for example. The Kaypro II has a jumper that allows upgrading the base unit to a 2732 ROM. It has been reported that some Kaypro systems mirror System ROM (duplicate electronically). That is, System ROM repeats within the void space.

2.2.7.1 Video and Memory

Figure 6, Memory Mapped Video

 $^{^{2}}$ As noted in the text, bank 1 system RAM is physically the same as bank 0 system RAM. They are logically and electronically the same.

Bank 1 contains "memory mapped video." Memory mapped video associates one byte in memory to one byte on the video screen. To display a character to the Kaypro II screen, the CPU switches to bank 1, and writes to the memory mapped video RAM. Each byte in video RAM associates to a character position on the video screen.

For example, location 0 in video RAM may associate to screen character location 0,0. Location 1 in video RAM may associate to screen character location 1,0 etc.

The physical screen is automatically updated by the Kaypro II hardware at regular intervals. Values stored in the memory-mapped video RAM are displayed as ASCII values on the Kaypro II screen. Figure 6 is an example of memory mapped video.

- The emulated video RAM shall be 4K bytes
- The emulator shall support an 80 character per line by 24 line text screen
- The emulator shall support memory-mapped video RAM banking

2.2.7.1.1 Logical and Physical Screen Mapping

As mentioned above, the screen video is memory mapped. That is, the video RAM has a one-to-one relation to the video screen. The mapping is somewhat different that would be expected (see Figure 7).

Figure 7, Logical Vs. Physical Screen Mapping

The Kaypro II video RAM area devotes 128 Bytes for each horizontal screen line (see Figure 7). Only the first 80 bytes are actually displayed, with the rest being unused. One reason for the wasted space may be the nature of the Kaypro II's discrete character generation circuitry. The extra 48 bytes may have been used to compensate for horizontal retrace.

• The Kaypro II emulation shall mimic the logical and physical screen mappings of the Kaypro II.

2.2.7.1.2 Fast and Real Mode Display

The characters displayed on the Kaypro II screen are generated by a 2716 character generator EPROM. This ROM defines the dot grid for each character displayed. The Kaypro II emulator shall provide two methods of display: fast mode, and real mode.

- Fast mode will use a typical Java text box to display characters. Fast mode will not attempt to emulate the exact Kaypro II character generator ROM.
- Real mode will display characters as they are defined in the Kaypro II character generator ROM. Real mode will require extracting data from the character generator ROM, converting it to programmatic form, and inserting it in the emulator.

2.2.8 User Interface

KAYPRO II 64k CP/M vers 2.2		
A>		
	Change Disk B	Change Disk B
Debug Off Fast Mode		

Figure 8, User Interface with Debug Off

The interface for the Kaypro II emulation shall allow the user to operate the Kaypro II emulation in a manner that closely resembles that of the original Kaypro II.

kayprospec.doc

The user shall have the ability to select debugging options and control functions of the Kaypro II computer (i.e. changing disks, resetting). The interface shall have a screen that allows the user to input data and receive data from the Kaypro II emulation.

• The final screen viewing shall be acceptable on a 640 x 480 screen. The goal shall be to fit the entire display on such a display.

The basic interface is shown in Figure 8. This interface shall be displayed when the emulation is started. It shall contain a number of buttons that perform the following functions:

- Toggle Debug Mode On/Debug Mode Off
- Toggle Fast Mode/Real Mode
- Reset the emulation
- Change the virtual disk A
- Change the virtual disk B

2.2.8.1 Debug On/Off

The Debug Mode On/Debug Mode Off allows the user to toggle between debug mode, and normal system operation. When debug mode is on, additional buttons will appear (Figure 9). These buttons allow the user to manipulate the emulation in a low-level debug mode.

• The Debug Mode Off is default when the emulator is started.

2.2.8.2 Fast Mode/ Real Mode

The Fast Mode/Real Mode button toggles between fast output mode or real output mode. In fast mode the emulator shall output text using an available font to a text area. In real mode the output of the emulator shall be generated graphically using scan lines and a character ROM.

• The fast mode is default when the emulator is started.

2.2.8.3 Reset button

The Reset emulation button resets the emulation. This button has the same function as the button on the back of the Kaypro II computer. The reset button activates the RESET line of the Z-80 CPU.

2.2.8.4 Change Disk A and B

The Change Disk A button shall prompt the user for the location of the virtual disk image file that shall be used in virtual disk drive A.

The Change Disk B button shall prompt the user for the location of the virtual disk image file that shall be used in virtual disk drive B.

2.2.8.5 Storage

The Kaypro II emulator shall store virtual diskettes to a specified server.

Kaypro II Emulator	
KAYPRO II 64k CP/M vers 2.2	
A>_	
Dobug Op East Mode	Change Disk B Change Disk B
Debug	Reset
Step Mode	
Set Break Point	
Memory Dump	
Options	
Generate Int	
Additional De	bug
Options	

Figure 9, User Interface with Debug On

The user may also select a debug mode. This mode is selected by pressing the Debug on/off button. When the debug mode is on, an additional set of buttons are displayed. This screen is shown in Figure 9. This mode allows the user to set breakpoints, view opcodes, view memory, and step through machine code. In addition to the default mode of operation (Figure 8) the following buttons are displayed:

- Toggle Step Mode/Run Mode
- Single Step
- Set Breakpoint
- Generate Interrupt (NMI)

- Dump Memory
- Options

2.2.8.6 Step and Run Mode

The Step Mode/Run Mode button toggles between stepping manually through the emulation and running the emulation at full speed. When in step mode, the user may single-step through the emulation by pressing the step button. One instruction is executed each time the step button is pressed.

When in run mode, the step button becomes inactive, and the system is run at full speed.

2.2.8.7 Set Breakpoint

The Set Breakpoint button shall prompt the user at what location in memory the user wants the emulation to stop executing and set the Step Mode On.

2.2.8.8 Generate NMI Interrupt

The Generate NMI button shall generate a non-maskable interrupt. This is done to test the interrupt handling of the emulator. The CPU NMI line is activated when this button is pressed.

2.2.8.9 Memory Dump

The Memory Dump button prompts the user for a memory area to display. A separate window displays the area selected.

- The memory dump display shall be within a separate window
- The memory dump shall display in hexadecimal
- The memory dump shall include addresses
- The memory dump window can remain displayed, minimized, or closed.

2.2.8.10 View options

When single-stepping through the emulation, the user may wish to view the opcodes and/or CPU flags. Because the display screen size may be limited, the user may wish to eliminate display of either flags or opcodes. This shall be accomplished via the View Options menu. An example screen is shown in Figure 10.

When the View Options button is pressed a dialog box shall appear. The View Options dialog shall allow the user to enable or disable display of opcodes or CPU flags.

The default action shall be:

- Enable flags
- Enable opcode display.

KA A>	YPRO II 64} -					
	bebug On	Fast Mode	Char	nge Disk B	Change Disk B	1
	Step Mode Set Break Po Display Memo	☐ View Z-80 Registers ☐ View Z-80 Opcodes			Reset	
4	Generate NA Options	Single Step				

Figure 10, View Options

2.2.9 Devices

As mentioned before, many devices map to specific ports. Those devices are:

- Floppy drive
- Serial I/O
- Keyboard/Beep
- Parallel/Printer
- Baud Rate
- Misc. control

2.2.9.1 Serial I/O

The serial port in the Kaypro II is based on the 3884 SIO (Serial Input/output). The 3884 is a dual channel serial communication chip. It combines two serial ports on a single chip. Serial port A is utilized as a

kayprospec.doc

standard external serial input/output. Port B is used to communicate with the keyboard and system beep signal.

2.2.9.1.1 Summary

The SIO obtains timing from a dual baud rate generator (described below). The SIO communicates with the Z-80 via a control register and a data register pair.

- The SIO can be set in asynchronous, or synchronous modes.
- The SIO is capable of implementing interrupt-driven functions.
- The SIO utilizes maskable interrupts (the INT line on the Z-80 CPU)
- A single interrupt line is utilized for channel A and channel B serial devices.

2.2.9.1.2 Interrupts

The SIO is capable of daisy chaining interrupts. This allows it to coordinate function with other interrupt driven devices. The SIO is the highest priority device (see interrupts).

The SIO shall have priority over all other devices if it attempts to assert an interrupt.

2.2.9.1.3 Registers and Addressing

The SIO chip is programmed via four registers, two for each channel. These registers are shown in Table 5.

Register Name	Function	Port
SIO Channel A Data	Passes data to and from	0x04
	SIO A	
SIO Channel B Data	Passes data to and from	0x05
	SIO A	
SIO Channel A Control	Used as further index to	0x06
	internal register	
SIO Channel B Control	Used as further index to	0x07
	internal register	

Table 5, SIO Interface Registers

The SIO interface registers act as an indirect address to a set of eight internal registers. The Z-80 selects an internal register to address via an output to an associated control channel. Reading or writing to a specific internal register is a two-step process. First, the register is selected (or indexed) via the associated control register. Next, the data is read or written to/from the port via the associated SIO data register.

Figure 11 shows an example of this addressing scheme. Here, the Z-80 delivers an index to the SIO chip via the SIO control port. Next, the index is used to reference into the internal SIO register set. Data can then be read/written to the indexed internal register. Until the index within the SIO is re-written, or the SIO is reset, the index value remains. That means that subsequent data reads and writes need not re-specify an index if it already exists.

Figure 11, SIO Indexing Scheme

The SIO contains 8 internal registers. The registers may be read from or written to. Register 0 is unique, in that it duplicates the function of the SIO control register (Figure 11, SIO Indexing Scheme).

Each register has a set of unique functions. The registers may contain data parameters, return data parameters or status, or serve as command registers. These registers are shown in Table 6 and Table 7.

- The SIO chip channel B provides for keyboard input and speaker output. These functions shall be implemented on a function level. That is, specific configuration of the SIO channel A shall be ignored, except where it influences functional operation.
- SIO baud rate may be programmed via command and data registers. The Kaypro II emulation shall accept all values for baud rate, parity, start word, and stop words, but shall operate at system speed. That is, these values shall be ignored.
- Synchronous mode shall not be supported.

WR0 Command Register, CRC reset and register pointer - Null Command - Reset external/status interrupt - Reset external/status interrupt - Reset external/status interrupt on next receive character - Reset the transmitter due to pending interrupt WR1 Interrupt enable and wait/ready modes - External/status interrupt on ext receive character - Reset the transmitter due to pending interrupt WR1 Interrupt enable and wait/ready modes - External/status interrupt enable - Transmitter interrupt disabled. - Receive interrupt enable - Receive interrupts enabled, parity error Special Receive - Receive interrupts enabled, parity error Special Receive WR2 Interrupt vector address pointer Associated Values Normal Condition: - Half Address pointer to ISR. WR3 Receiver logic control and parameters - Receive enable - Channel b transmit buffer empty - Channel b sectional/ status change - Channel b sectional/ status change - Channel b sectional/ - Receive enable - St bit per character transfer - 6 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 9 bits - 2 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - The enublated WR4 shall not support x clock rate stepping. <td< th=""><th>Write Register</th><th>Summary</th><th>Commands and Status</th></td<>	Write Register	Summary	Commands and Status
and register pointer- Reset external/status interrupt - Channel reset - Enable interrupt on next receive character - Reset the transmitter due to pending interrupt - Error reset - Reset the transmitter due to pending interrupt - Beror reset - Reset the transmitter due to pending interrupt - Reset interrupt enable - Status affects for ISR vector. - Transmitter interrupt disabled. - Receive interrupts enabled, parity error Special Receive - Receive and the special receive condition: - Half Address pointer to ISR.WR2Interrupt vector address pointer - Channel b transmit buffer empty - Channel b receive character available - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - S bit per character transfer - 6 bit per character transfer - 8 bit per character transfer 	WR0	Command Register, CRC reset	- Null Command
WR1Interrupt enable and wait/ready modes- Channel reset - Rabue interrupt on next receive character - Reset the transmitter due to pending interrupt - Error reset - Return from interrupt.WR1Interrupt enable and wait/ready modes- External/status interrupt enable - Transmitter interrupt enable - Status affects for ISR vector. - Transmitter therrupt disabled. - Receive interrupts enabled, parity error Special Receive - Receive interrupts enabled, parity error Special Receive - Receive interrupts enabled, parity error - Special Receive - Receive interrupts enabled, parity error - Special Receive - Receive interrupts enabled, parity error - Special Receive - Channel b transmit buffer empty - Channel b special receive condition: - Half Address pointer to ISR.WR2Interrupt vector address pointer - Channel b special receive condition (Parity - From RD overrun).WR3Receiver logic control and parameters- Receiver enable - 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 5 bit per character transfer - 8 bit per character transfer - 5 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. -		and register pointer	- Reset external/status interrupt
WR1Interrupt enable and wait/ready modes- Enable interrupt on next receive character - Recet the transmitter due to pending interrupt - Error reset - Return from interrupt.WR1Interrupt enable and wait/ready modes- External/status interrupt enable - Transmitter interrupt enable - Status affects for ISR vector. - Transmitter interrupt siabled. - Receive interrupts disabled. - Receive interrupts enabled, parity error Special Receive interrupts and condition: - Haif Address pointer to ISR.WR2Interrupt vector address pointerAssociated Values Normal Condition: - Haif Address pointer to ISR.WR3Receiver logic control and parameters- Receiver nable - Channel b external/status change - Channel b external/status change - Channel b external/status change - Sti per character transfer - 6 bit per character transfer - 8 bit per character transfer - 5 bit p			- Channel reset
WR1Interrupt enable and wait/ready modes- Reset the transmitter due to pending interrupt - Error reset - Return from interrupt.WR1Interrupt enable and wait/ready modes- External/status interrupt enable - Transmitter interrupt enable - Status affects for ISR vector. - Transmitter interrupt disabled - Receive interrupts disabled - Receive interrupt sisabled, parity error Special Receive - Receive interrupts enabled, parity error - Special Receive - Receive nearble - Channel b transmit buffer empty - Channel b special receive condition (Parity error, RD overnun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 15 stop bits. - 2 stop bits. - 2 stop bits. - 15 stop bits - 2 stop bits -			- Enable interrupt on next receive character
WR1Interrupt enable and wait/ready modes- Error reset - Return from interrupt.WR1Interrupt enable and wait/ready modes- External/status interrupt enable - Transmitter interrupt disable - Receive interrupts disabled. - Receive interrupts enabled, parity error Special Receive - Receive interrupts enabled, parity error Special Receive interrupts enabled, parity error special - Receive interrupts enabled, parity error special - Receive interrupts enabled, parity error special - Receive value - Channel b transmit buffer empty - Channel b receive character available - Channel b receive character available - Channel b receive character available - Channel b receive condition (Parity error, RD overnu).WR3Receiver logic control and parameters- Receiver enable - Auto enable - S bit per character transfer - 5 bit per character transfer - 8 bit per bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 3 stop bit - 1.5 stop bits. - 2 stop bits. - 1.5 stop bits - 1.5 stop bits. - 2 stop bits. -			- Reset the transmitter due to pending interrupt
WR1Interrupt enable and wait/ready modes- Return from interrupt.WR1Interrupt enable and wait/ready modes- Status affects for ISR vector. - Transmitter interrupt disable - Receive interrupts disabled. - Receive interrupt anabled, parity error Special Receive - Receive interrupts enabled, parity error Special - Channel b stransmit buffer empty - Channel b transmit buffer empty - Channel b receive character available - Channel b receive condition (Parity error, RD overun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 1 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 1 bit per character transfer - 2 stop bits. - 5 bit per character transfer - 7 bit per character transfer - 7 bit per character transfer - 7 bit per c			- Error reset
WR1Interrupt enable and wait/ready modesExternal/status interrupt enable - External/status interrupt enable - Status affects for ISR vector. - Transmitter interrupt disable - Receive interrupts enabled, parity error Special Receive - Receive interrupts enabled, parity error - Special Receive - Receive interrupts enabled, parity error - Receive interrupt senabled, parity error - Special Receive - Receive interrupt enable - Receive relation - Receive relation (Parity error, RD overrun),WR3Receiver logic control and parameters- Receiver enable - Auto enable - Succentranafer - 6 bit per character transfer - 7 bit per character transfer - 7 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 15 stop bits. - 2 stop bits. - 2 stop bit			- Return from interrupt.
modes- Transmitter interrupt enable - Status affects for ISR vector. - Transmitter interrupt disable - Receive interrupts disabled. - Receive interrupts disabled. - Receive interrupts disabled. - Receive interrupts enabled, parity error Special Receive. - Receive interrupts enabled, parity error on- specialWR2Interrupt vector address pointerAssociated Values Normal Condition: - Half Address pointer to ISR.WR3Receive logic control and parameters- Channel b transmit buffer empty - Channel b treatsmit buffer empty - Channel b treatsmit prevent available - Channel b special receive condition (Parity error, RD overrun).WR4Control bits for use with transmit and receive- Receiver interrupts enable - S bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 1 stop bit - 1.5 stop bits. - 2 st	WR1	Interrupt enable and wait/ready	- External/status interrupt enable
Status affects for ISR vector. 		modes	- Transmitter interrupt enable
Image: Second			- Status affects for ISR vector.
Provide the second state of th			- Transmitter interrupt disable
Provide the second se			- Receive interrupts disabled.
Image: Second			- Receive interrupt on first char only
Special Receive - Receive interrupts enabled, parity err non- specialWR2Interrupt vector address pointerAssociated Values Normal Condition: - Half Address pointer to ISR.WR2Interrupt vector address pointerAssociated Values if WR1 has Status Affects Vector value - Channel b transmit buffer empty - Channel b external/ status change - Channel b external/ status change - Channel b precive character available - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 1 bit per character transfer - 2 stop bit.WR4Control bits for use with transmit and receive- Enable Parity - Parity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 1 the emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per chara to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization - characterWR7SDLC receive synchronization			- Receive interrupts enabled, parity error
WR2Interrupt vector address pointerAssociated Values Normal Condition: - Half Address pointer to ISR.WR2Interrupt vector address pointerAssociated Values Normal Condition: - Half Address pointer to ISR.Associated Values if WR1 has Status Affects Vector value - Channel b transmit buffer empty - Channel b receive character available - Channel b receive character available - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 1.5 stop bits. - 2 stop bits. - 1 ber emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization character			Special Receive
WR2Interrupt vector address pointerAssociated Values Normal Condition: - Half Address pointer to ISR.Associated Values if WR1 has Status Affects Vector value - Channel b transmit buffer empty - Channel b transmit buffer empty - Channel b traceive character available - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - 5 bit per character transfer - 6 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 2 stop bits. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per character - Bits per character transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization character			- Receive interrupts enabled, parity err non-
WR2Interrupt vector address pointerAssociated Values Normal Condition: - Half Address pointer to ISR.Associated Values if WR1 has Status Affects Vector value - Channel b transmit buffer empty - Channel b transmit buffer empty - Channel b external/ status change - Channel b external/ status change - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 1 stop bit - 1.5 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC receive synchronizationWR7SDLC receive synchronizationStorage for SDLC receive synchronization	WD2	Interment weather address resinter	special
WR3Receiver logic control and parameters- Receiver enable - Channel b trasmit buffer empty - Channel b pecial receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 8 bit per character transfer - 9 arity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterWR7SDLC receive synchronization - Storage for SDLC receive synchronization	WK2	interrupt vector address pointer	Associated values Normal Condition: Helf Address pointer to ISP
WR3Receiver logic control and parameters- Receiver enable - Channel b special receive condition (Parity error, RD overrun).WR4Control bits for use with transmit 			- Hall Address pointer to ISK.
WR4Control bits for use with transmit- Channel b transmit buffer empty - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 2 bit per character - 2 bit per character - 2 bit per character transfer - 2 bit per character - 2 b			Associated Values if WP1 has Status Affects
WR3Receiver logic control and parameters- Channel b transmit buffer empty - Channel b transmit buffer empty - Channel b transmit buffer empty - Channel b transmit status change - Channel b special receive condition (Parity error, RD overun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 2 stop bits. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 3 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 3 stop bit - 1.5 stop bits. - 3 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 3 stop bit - 1.5 stop bits. - 3 stop bit - 1.5 stop bit <th></th> <th></th> <th>Vector value</th>			Vector value
WR3Receiver logic control and parameters- Channel b external/ status change - Channel b receive character available - Channel b special receive condition (Parity 			- Channel b transmit buffer empty
WR3Receiver logic control and parameters- Channel b receive character available - Channel b special receive condition (Parity error, RD overrun).WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 7 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 9 parity even - 5 stop bits. - 2 stop bits. - 1 stop bit - 1 stop bit - 1 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per chara to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization character			- Channel b external/ status change
WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 2 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 7 the emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterWR7SDLC receive synchronization			- Channel b receive character available
WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 9 arity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC receive synchronization character			- Channel b special receive condition (Parity
WR3Receiver logic control and parameters- Receiver enable - Auto enable - 5 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 9 arity even - 5 sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterWR7SDLC receive synchronization			error, RD overrun).
parameters- Auto enable - 5 bit per character transfer - 6 bit per character transfer - 7 bit per character transfer - 8 bit per character transfer - 8 bit per character transferWR4Control bits for use with transmit and receive- Enable Parity - Parity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - SDLC transmit synchronization character- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization character	WR3	Receiver logic control and	- Receiver enable
WR4Control bits for use with transmit and receive- 5 bit per character transfer - 6 bit per character transfer - 8 bit per character transfer - 8 bit per character transferWR4Control bits for use with transmit and receive- Enable Parity - Parity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization		parameters	- Auto enable
- 6 bit per character transfer- 7 bit per character transfer- 8 bit per character transferWR4Control bits for use with transmit and receive- 8 bit per character transfer- 9 Parity even- 9 Sync command on 1 stop bit- 1.5 stop bits 2 stop bits 7 bit per character transmit enable- 8 bit per character transfer- 9 Parity even- 9 Sync command on 1 stop bit- 1.5 stop bits 2 stop bits 7 bit per character transmission- 7 bit per characterWR6SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronizationStorage for SDLC receive synchronization		-	- 5 bit per character transfer
WR4Control bits for use with transmit and receive- 7 bit per character transfer - 8 bit per character transferWR4Control bits for use with transmit and receive- Enable Parity - Parity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization character			- 6 bit per character transfer
WR4Control bits for use with transmit and receive- 8 bit per character transferWR4Control bits for use with transmit and receive- Enable Parity - Parity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization			- 7 bit per character transfer
WR4Control bits for use with transmit and receive- Enable Parity - Parity even - Sync command on. - 1 stop bit - 1.5 stop bits. - 2 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization			- 8 bit per character transfer
and receive- Parity evenSync command on 1 stop bit1 stop bit- 1.5 stop bits 2 stop bits 2 stop bits The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmissionWR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterWR7SDLC receive synchronization synchronization	WR4	Control bits for use with transmit	- Enable Parity
Sync command on 1 stop bit- 1 stop bit- 1 stop bit- 1 stop bit- 1 stop bits 2 stop bits The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission- Transmit enable- Send break- Bits per char to transmit 5,7,6,8- RTS output- DTR outputWR6SDLC transmit synchronization characterWR7SDLC receive synchronization		and receive	- Parity even
- 1 stop bit- 1.5 stop bits 2 stop bits 2 stop bits The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterWR7SDLC receive synchronization synchronization			- Sync command on.
WR5Control bits for transmission- 1.5 stop bits. - 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization storage for SDLC receive synchronization			- 1 stop bit
- 2 stop bits. - The emulated WR4 shall not support x clock rate stepping.WR5Control bits for transmission - Send break - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronizationStorage for SDLC receive synchronization Storage for SDLC receive synchronization			- 1.5 stop bits.
WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronization			- 2 stop bits.
WR5Control bits for transmission- Transmit enable - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR outputWR6SDLC transmit synchronization characterStorage for SDLC transmit synchronization characterWR7SDLC receive synchronization characterStorage for SDLC receive synchronization character			- The emulated WR4 shall not support x clock
WRS Control bits for transmission - Transmit enable - Send break - Send break - Bits per char to transmit 5,7,6,8 - RTS output - DTR output - DTR output WR6 SDLC transmit synchronization character Storage for SDLC transmit synchronization character WR7 SDLC receive synchronization Storage for SDLC receive synchronization	ND 7		rate stepping.
WR6 SDLC transmit synchronization character Storage for SDLC transmit synchronization character WR7 SDLC receive synchronization Storage for SDLC receive synchronization	WR5	Control bits for transmission	- Transmit enable
WR6 SDLC transmit synchronization character Storage for SDLC transmit synchronization character WR7 SDLC receive synchronization Storage for SDLC receive synchronization			- Send break
WR6 SDLC transmit synchronization character Storage for SDLC transmit synchronization character WR7 SDLC receive synchronization Storage for SDLC receive synchronization			- Bits per char to transmit 5,7,6,8
WR6 SDLC transmit synchronization character Storage for SDLC transmit synchronization character WR7 SDLC receive synchronization Storage for SDLC receive synchronization			- KIS output
WR7 SDLC transmit synchronization character Storage for SDLC transmit synchronization character WR7 SDLC receive synchronization Storage for SDLC receive synchronization	WD6	SDLC transmit symphonization	- DIR Oulpul Storage for SDLC transmit symphronization
WR7SDLC receive synchronizationStorage for SDLC receive synchronization	WKO	spice transmit synchronization	character
Storage for SDLC receive synchronization	WP7	SDIC receive synchronization	Storage for SDLC receive super-
L character character		character	character

Table 6, SIO Internal (Write) Registers

Read Register	Summary	Commands and Status
0	General receive and transmit status	- Receive character available
		- Interrupt pending
		- Transmit buffer empty
		- sync/hunt
		- DCD input
		- CTS input
		- Transmit under-run end of memory
		- Break/ abort status
1	Special receive conditions and residue	- Parity error
	codes	- Rx overrun error
		- Framing error.
2	Interrupt vector address/pointer (channel	- Interrupt vector address/pointer
	B only)	
3	N/A	N/A
4	N/A	N/A
5	N/A	N/A
6	N/A	N/A
7	N/A	N/A

Table 7, SIO Internal (Read Registers)

2.2.9.2 Floppy Emulation

2.2.9.2.1 Summary

The Kaypro II included two 5 ¹/₄" floppy disk drives. Each floppy was capable of holding up to 195K bytes of information. Typically the CP/M operating system took 4K, leaving 191K bytes for user storage. The floppy disks specifications were as follows.

- Double density
- 40 tracks per diskette
- 10 sectors per track
- 512 bytes per sector

Disk drive control shall be emulated at the hardware level with virtual machine translation for a non-CP/M, DOS formatted diskettes, or RAM drives holding a virtual image of the CP/M operating system. This will allow the maximum compatibility between actual media, and emulated media.

- The emulation shall contain two virtual floppy disk drives.
- Electronic copies of actual disks shall be obtained and translated into emulator format
- Disk data shall be copies of individual sector data
- Track and sector numbering shall be maintained
- Data alignment shall be maintained
- All unused bytes contained within the virtual floppy shall contain the value: 0xE5.

2.2.9.2.2 1792 Floppy Controller (FDC)

The 1791 floppy controller chip from Synertek was used to control the floppy hardware. It provides a programmatic interface between the software and the physical floppy transport.

2.2.9.2.3 Interrupts

- NMI interrupts shall be supported as generated by the 1791 floppy disk controller.
- The 1791 generates NMI interrupts (see interrupts). These NMI interrupts indicate when the 1791 has read or written a single byte of data to the floppy diskette.
- The 1791 generates an NMI interrupt at the completion of each command
- The 1791 generates two NMI interrupts when a command and data operation is requested at the same time (one for command completion, and one for read/write of data).

2.2.9.2.4 Registers and Addressing

The FDC chip is programmed via six registers. These registers are shown in Table 8 and Table 9.

Read Register	Summary	Commands and Status	Port
Command/status	Holds current	Read current status	0x10
register	command/status for		
	1791 FDC		
Track register	Holds current track	Read current track selection	0x11
	being read		
Sector register	Holds current sector	Read current sector selection	0x12
	being read		
Data	Holds data that was	Read data stored on floppy disk, a byte at a	0x13
	read from floppy	time (for Kaypro II)	

 Table 8, FDC Registers (Read)

Write Register	Summary	Commands and Status	Port
Command/status register	Holds current command for 1791 FDC	 Restore Seek Step (step in same direction as last command) STEP IN (STEP IN TRACK+1) Step out (step out track-1) Read sector (execute a read sector) Write sector (execute a write sector) Read address (read next ID field) Read track (executes a read track) Write track (executes a write track) Force interrupt (force termination of current command) 	0x10
Track register	Holds current track to write	Write current track selection	0x11
Sector register	Holds current sector to write	Write current sector selection	0x12
Data	Holds data to be written to floppy	Present data to be stored on floppy disk, a byte at a time (for Kaypro II)	0x13

Table 9, FDC Registers (Write)

2.2.9.2.5 FDC Read Write Scenario

The FDC commands are typically used to read and write data to and from a floppy diskette. The Kaypro II executes the following sequence when reading or writing diskette (typically a sector read).

- 1. Send track to be read/written to track register
- 2. NMI marks end of command
- 3. Send sector to be read/written to sector register
- 4. NMI marks end of command
- 5. Execute a read or write command
- 6. NMI marks end of command
- 7. CPU executes a HALT
- 8. FDC pulls NMI line, indicating one byte of data retrieval
- 9. CPU wakes from halt when it receives the NMI
- 10. CPU reads from data port
- 11. If all data is read, it exits read/write loop
- 12. Else, it goes back to step 7

2.2.9.2.6 Other Floppy Operations

Other floppy operations include:

- Disk motor control
- Floppy drive select (A or B)
- Floppy side select (side of dual density floppy to read)

These operations are handled by the PIO port (below).

2.2.9.3 Keyboard Functions

The keyboard functions are supported through the second serial port. All keystrokes are handled by SIO port B. This port may not be configured any other way. It is important to emulate this functionality as closely as possible. The user will type directly into the emulation. That is, there will be no external windows for entry into the system.

- Keyboard input shall be made directly into the Java page. The user shall be able to type directly into the emulated Kaypro II
- The keyboard input shall be emulated via the B SIO port

2.2.9.4 Parallel/Printer Port

The parallel ports in the Kaypro II are based on two 3881 PIO's (Parallel Input/output). The 3881 PIO is a dual channel parallel communication controller. It combines two parallel interfaces on a single chip (A and B). Unlike the serial chip, only one parallel interface is utilized per chip (A). The Kaypro II utilizes two parallel interfaces. That means that two separate PIO chips were required. Perhaps this is because only one interface on each dual controller supports bi-directional data flow.

Parallel interface 1 is used as a standard externally accessible parallel port. This interface terminates on the back of the Kaypro II cabinet. It is typically used to connect a Centronics compatible printer to the Kaypro II. Parallel interface 2 is used to communicate with the internal system functions. It is used to drive various devices within the Kaypro II itself. These devices are described below.

2.2.9.4.1 Summary

The PIO pair (1 and 2) communicate with the Z-80 via a control register and a data register pair.

- The PIO is capable of byte, I/O, bi-directional operation, and bit control mode.
- The PIO is capable of implementing interrupt-driven functions.
- The PIO utilizes maskable interrupts (the INT line on the Z-80 CPU)

• A single interrupt line is utilized for all parallel serial devices.

2.2.9.4.2 Interrupts

The PIO is capable of daisy chaining interrupts. This allows it to coordinate function with other interrupt driven devices. The two PIO's are the lowest priority devices (see interrupts).

- The PIO port 1 (external connection) shall have the lowest priority
- PIO port 2 (internal operations) shall have a higher priority than port 1, but less than SIO
- The PIO shall communicate utilizing mode 2 interrupts

2.2.9.4.3 Registers and Addressing

The PIO chip is programmed via four registers, two for each channel. These registers are shown in Table 10, PIO Interface Registers.

Register Name	Function	Port
PIO 1 Channel A Data	Passes data to and from PIO A (printer	0x08
	interface)	
PIO 1 Channel A Control	Used as further index to internal register	0x09
	(printer interface)	
PIO 1 Channel B Data	Not used	0x0A
PIO 1 Channel B Control	Not Used	0x0B
PIO 2 Channel A Data	Passes data to and from PIO A (internal	0x1C
	device interface)	
PIO 2 Channel A Control	Used as further index to internal register	0x1D
	(internal device interface)	
PIO 2 Channel B Data	Not Used	0x1E
PIO 2 Channel B Control	Not Used	0x1F

Table 10, PIO Interface Registers

The control registers send commands to the PIO itself. These registers are used to program the operation of the PIO. The data registers are used to read and write data to/from the PIO. This is illustrated in Table 11.

Register	Command	Actions
Control	Load interrupt vector	- Load interrupt vector into PIO
Control	Set interrupt control word	- Enable/disable interrupts
		- And/OR
		- High/Low
		- Mask follows
Control	Select operating mode	- Output
		- Input
		- Bi-directional
		- Control
Data	NA	Read or write data to/from PIO

Table 11, PIO Register Functions

- The PIO shall support only output mode. The Kaypro II is hard-wired for printer operation.
- PIO 1 shall act as the printer port. It shall accept output via its data channel, and print the data to a separate window as ASCII text. The size of the printer buffer shall be limited only by the Java control used.
- Configuration commands sent to PIO 1 shall be accepted but ignored. Instead, PIO 1 shall always function as a printer port.
- PIO 2 shall function as an interface to internal and external devices. Although output to these devices shall be supported, some may not be needed for emulation operation. These devices include:
 - Disk motor control
 - Printer strobe
 - Printer busy
 - Floppy drive select (A or B)
 - Floppy side select (side of dual density floppy to read or write)

2.2.9.5 Baud Rate Port

The 8116 dual baud rate chip used in the Kaypro II shall accept output from the Z-80 CPU. Typically the baud rates supported by the Kaypro II are:

- 110 baud
- 300 baud
- 1200 baud
- 2400 baud
- 4800 baud
- 9600 baud
- 19.2k baud
- These baud rates shall be accepted by the emulation. However, their values will be disregarded.
- The SIO shall operate at system speed (as fast as the environment will allow).

The port definitions for the baud rate generators are specified in Table 12.

Port	Usage
0x00	Baud rate generator A
0x0C	Baud rate generator B

Table 12, Baud Rate Port Assignments

2.2.10 Miscellaneous Ports

• The emulator shall not crash due to writes to unsupported functionality. Specifically reads or writes to serial and parallel ports

2.2.11 Bootstrap Loader

The Kaypro II utilizes a unique way of loading the CP/M operating system. Older systems required manually loading the bootstrap code.

The Kaypro II. Uses an internal ROM. This ROM contains the startup code needed to bring CP/M into memory.

Typical CP/M diskettes contained a short bootstrap program on the lowest track and sector. The Kaypro II stores the location to load CP/M and length of the CP/M operating system in this area instead. This should be noted. This should not be a problem for the emulator if the CP/M floppy diskettes are faithfully duplicated.

2.2.12 Operating system

The operating system shall be supported on disk images. The disk images shall contain CP/M 2.2. The operating system shall be read from a valid Kaypro II diskette, and transferred electronically into a form recognizable by the Kaypro II emulator. Once inside the emulator, the disk images shall be loaded via one of two virtual floppy disk drives.

- CP/M 2.2 shall be supported
- CP/M OS shall be supplied on track 1 of each virtual floppy disk.
- The emulator shall support loading of the OS from floppy drive A
- The CP/M operating system shall actually be run at the software level via an obtained copy of the CP/M operating system

3. Project Deliverables

This section identifies all deliverable components of the project including hardware, software, training, and documentation.

3.1 Hardware

No hardware shall be delivered

3.2 Software

All Kaypro II software shall be delivered. All source code shall be delivered. All associated build or make files shall be delivered

3.3 Training

No training shall be provided.

3.4 Project Documentation

There are two categories of documents: project development documents, such as the project plan and design specification, and customer documents, such as the user's guide. These documents are delivered according to the project schedule.

3.4.1 Project Development Documentation

Requirements design documents shall be provided Requirements specifications document shall be provided Design documents shall be provided

3.4.2 Customer/Operations Documentation

A user guide shall be provided

4. Applicable Documents, Reference, and Glossary

This section contains title, author, and publication information for documents referred to or having an impact on the requirements for this project. It also contains a comprehensive glossary of applicable terms and acronyms.

4.1 References

Requirements Definition For The CSI426/Kaypro II Emulator Zilog Z80 Microprocessor Family User's Manual, Part number Q1/95 DC 8309-1 Z80.DOC, opcode reference, compiled by Sean Young (<u>syoung@cs.vu.nl</u>) Synertek Data Book, 1983

4.2 Appendix A, Z-80 Opcodes

	Symbolic				Fl	ags	6			Opcode		No. of	No. of M	No. of T	
Mnemonic	Operation	S	Ζ	F5	Η	F3	P/V	'N	С	76 543 210	Hex	Bytes	Cycles	States	Comments
LD r, r'	r ← r'	•	•	•	•	•	•	•	•	01 r r'		1	1	4	<u>r, r'Reg.</u>
LD p, p'*	p ← p'	•	•	•	•	•	•	•	•	11 011 101	DD	2	2	8	000 B
	a (a'					•	•		•	01 p p ⁻	ED	2	2	0	001 C
LD Y, Y	$q \leftarrow q$	•	•	•	•	•	•	•	•		FD	2	2	0	010 D 011 E
IDr.n	r ← n	•	•	•	•	•	•	•	•	00 r 110		2	2	7	100 H
,										\leftarrow n \rightarrow		-	-	•	101 L
LD p, n*	p ← n	•	•	•	•	•	•	•	•	11 011 101	DD	3	3	11	111 A
	•									00 p 110					
										$\leftarrow \ n \ \rightarrow$					<u>p, p'Reg.</u>
LD q, n*	$q \gets n$	•	•	•	•	•	•	•	•	11 111 101	FD	3	3	11	000 B
										00 q 110					001 C
	. (111)							•		\leftarrow n \rightarrow		1	2	7	010 D 011 E
$LDI, (\Pi L)$	$f \leftarrow (HL)$									11 011 101	חח	2	2	10	
LD I, $(IX + U)$	$r \leftarrow (iX + a)$	•	•	•	•	•	•	•	•	01 r 110	UU	3	5	19	100 IXH 101 IX
										\leftarrow d \rightarrow					101 IX
LD r. (IY + d)	$r \leftarrow (IY + d)$	•	•	•	•	•	•	•	•	11 111 101	FD	3	5	19	
, , ,	(01 r 110		-	-	-	<u>a, a' Rea.</u>
										$\leftarrow d \to$					000 B
LD (HL), r	$(HL) \leftarrow r$	•	٠	٠	٠	•	•	٠	•	01 110 r		1	2	7	001 C
LD (IX + d), r	$(IX + d) \leftarrow r$	•	•	•	•	•	•	٠	•	11 011 101	DD	3	5	19	010 D
										01 110 r					011 E
										$\leftarrow d \rightarrow$			-	10	100 IY _н
LD (IY + d), r	$(IY + d) \leftarrow r$	•	•	•	•	•	•	•	•	11 111 101	FD	3	5	19	101 IY∟
										01110 r					111 A
ID (HI) n	(UI) / n									\leftarrow 0 \rightarrow 00 110 110	36	2	3	10	
	(11∟) ← 11	•	•	•	•	•	•	•	•	\leftarrow n \rightarrow	50	2	5	10	
LD (IX + d). n	(IX + d) ← n	•	•	•	•	•	•	•	•	11 011 101	DD	4	5	19	
((),(),(),(),(),(),(),(),(),(),(),(),(),(00 110 110	36		-		
										$\leftarrow d \to$					
										$\leftarrow \ n \ \rightarrow$					
LD (IY + d), n	$(IY + d) \gets n$	•	•	•	•	•	•	•	•	11 111 101	FD	4	5	19	
										00 110 110	36				
										\leftarrow d \rightarrow					
	A (DO)									\leftarrow n \rightarrow	0.4	4	2	7	
	$A \leftarrow (BC)$	•				•	•		•		0A 1 A	1	2	7	
LDA, (DE)	$A \leftarrow (DE)$:		:	:			:	:		1A 3A	3	2	/ 13	
	$A \leftarrow (IIII)$	•	•	•	•	•	•	•	•	\leftarrow n \rightarrow	34	5	4	15	
										\leftarrow n \rightarrow					
LD (BC). A	$(BC) \leftarrow A$	•	•	•	•	•	•	•	•	00 000 010	02	1	2	7	
LD (DE), A	$(DE) \leftarrow A$	•	•	•	•	•	•	•	•	00 010 010	12	1	2	7	
LD (nn), A	$(nn) \leftarrow A$	•	•	•	•	•	•	•	•	00 110 010	32	3	4	13	
	()									\leftarrow n \rightarrow					
										$\leftarrow \ n \ \rightarrow$					
LD A, I	$A \gets I$	\updownarrow	\updownarrow	\updownarrow	0	\updownarrow	IFF	2 0	•	11 101 101	ED	2	2	9	
										01 010 111	57				
LD A, R	$A \leftarrow R$	\uparrow	\uparrow	\uparrow	0	\uparrow	IFF	2 0	•	11 101 101	ED	2	2	9	R is read after it
										11 101 101	or FD	2	2	٥	is increased.
	ı ← A	•		5	5	•	•	5	-	01 000 111	47	2	۷	3	
LD R, A	R ← A	•	•	•	•	•	•	•	•	11 101 101	ED	2	2	9	R is written after i
										01 001 111	4F				is increased.
Notes:	r r' mear	าร อ	nv	of th	e re	ais	ters	A F	3 C						

4.2.1 8 bit Load Group

r, r' means any of the registers A, B, C, D, E, H, L. p, p' means any of the registers A, B, C, D, E, IX_H, IX_L. q, q' means any of the registers A, B, C, D, E, IY_H, IY_L. dd_L, dd_H refer to high order and low order eight bits of the register respectively.

kayprospec.doc

	* means unofficial instruction.
Flag Notation:	 = flag is not affected, 0 = flag is reset, 1 = flag is set,
	\uparrow = flag is set according to the result of the operation, IFF ₂ = the interrupt flip-flop 2 is copied.

4.2.2 16 bit Load Group

Mnemonic	Symbolic Operation	S	7	F5	FI	ags F3	PΛ	/ N	C	Opcode 76 543 210	Hey	No. of Bytes	No. of M	No. of T States	Com	ments
I D dd nn	$dd \leftarrow nn$	•	•	•	•	•	•	•	•	00 dd0 001	TICA	3	3	10	dd	Pair
20 00, 111	uu (— IIII									\leftarrow n \rightarrow		U	0	10	00	BC
LD IX, nn	$IX \gets nn$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 11 & 011 & 101 \\ 00 & 110 & 001 \\ \leftarrow & n & \rightarrow \end{array}$	DD 21	4	4	14	01 02 03	DE HL SP
LD IY, nn	$IY \gets nn$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 11 & 111 & 101 \\ 00 & 110 & 001 \\ \leftarrow & n & \rightarrow \end{array}$	FD 21	4	4	14		
LD HL, (nn)	$L \leftarrow (nn)$ H $\leftarrow (nn+1)$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 00 & 101 & 010 \\ \leftarrow & n & \rightarrow \\ \end{array}$	2A	3	5	16		
LD dd, (nn)	dd _L ← (nn) dd _H ← (nn+1)	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & \Pi & \rightarrow \\ 11 & 101 & 101 \\ 01 & dd1 & 011 \\ \leftarrow & n & \rightarrow \end{array}$	ED	4	6	20		
LD IX, (nn)	$\begin{array}{l} \text{IX}_{\text{L}} \leftarrow (\text{nn}) \\ \text{IX}_{\text{H}} \leftarrow (\text{nn+1}) \end{array}$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 11 & 011 & 101 \\ 00 & 101 & 010 \\ \leftarrow & n & \rightarrow \end{array}$	DD 2A	4	6	20		
LD IY, (nn)	$IY_L \leftarrow (nn)$ $IY_H \leftarrow (nn+1)$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 11 & 111 & 101 \\ 00 & 101 & 010 \\ \leftarrow & n & \rightarrow \end{array}$	FD 2A	4	6	20		
LD (nn), HL	(nn) ← L (nn+1) ← H	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 00 & 100 & 010 \\ \leftarrow & n & \rightarrow \end{array}$	22	3	5	16		
LD (nn), dd	(nn) ← dd∟ (nn+1) ← dd _H	•	•	•	•	•	•	•	•	$\begin{array}{ccc}\leftarrow & n & \rightarrow \\ 11 & 101 & 101 \\ 01 & dd0 & 011 \\ \leftarrow & n & \rightarrow \end{array}$	DD	4	6	20		
LD (nn), IX	$(nn) \leftarrow IX_L \\ (nn+1) \leftarrow IX_H$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 11 & 011 & 101 \\ 00 & 100 & 010 \\ \leftarrow & n & \rightarrow \end{array}$	DD 22	4	6	20		
LD (nn), IY	$(nn) \leftarrow IY_L \\ (nn+1) \leftarrow IY_H$	•	•	•	•	•	•	•	•	$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ 11 & 111 & 101 \\ 00 & 100 & 010 \\ \leftarrow & n & \rightarrow \end{array}$	FD 22	4	6	20		
	0.5									\leftarrow n \rightarrow	ГО	4	4	c		
LD SP, IX	$SP \leftarrow HL$ $SP \leftarrow IX$	•	•	•	•	•	•	•	•	11 011 101	DD	2	2	10		
LD SP. IY	SP ← IY	•	•	•	•	•	•	•	•	11 111 001 11 111 101	F9 FD	2	2	10		
,										11 111 001	F9		_			
PUSH qq	$SP \leftarrow SP - 1$ $(SP) \leftarrow qq_H$ $SP \leftarrow SP - 1$ $(SP) \leftarrow qq$	•	•	•	•	•	•	•	•	11 qq0 101		1	3	11	<u>qq</u> 00 01 10	<u>Pair</u> BC DE HL
PUSH IX	$(SP) \leftarrow qq_L$ $SP \leftarrow SP - 1$ $(SP) \leftarrow IX_H$ $SP \leftarrow SP - 1$	•	•	•	•	•	•	•	•	11 011 101 11 100 101	DD E5	2	4	15	11	AF
PUSHIY	$\begin{array}{l} (SP) \leftarrow IX_L\\ SP \leftarrow SP - 1\\ (SP) \leftarrow IY_H\\ SP \leftarrow SP - 1\\ (SP) \leftarrow IY_L \end{array}$	•	•	•	•	•	•	•	•	11 111 101 11 100 101	FD E5	2	4	15		

POP qq	$(SP) \leftarrow qq_L$ $SP \leftarrow SP + 1$ $(SP) \leftarrow qq_H$ $SP \leftarrow SP + 1$	••	••	••	••	11 qq0 00′	I	1	3	10		
POP IX	$(SP) \leftarrow IX_L$ $SP \leftarrow SP + 1$ $(SP) \leftarrow IX_H$ $SP \leftarrow SP + 1$	••	••	••	••	11 011 10 [,] 11 100 00 [,]	1 DD 1 E1	2	4	14		
POP IY	$\begin{array}{l} (SP) \leftarrow IY_L\\ SP \leftarrow SP + 1\\ (SP) \leftarrow IY_H\\ SP \leftarrow SP + 1 \end{array}$	••	••	••	••	11 111 10 ⁷ 11 100 00 ⁷	I FD I E1	2	4	14		
Notes:	dd is any	dd is any of the register pair BC, DE, HL, SP.										
Flag Notation:	• = flag is	qq is any of the register pair BC, DE, HL, AF. • = flag is not affected, 0 = flag is reset, 1 = flag is set, ↑ = flag is set according to the result of the operation.										

Maaaaaia	Symbolic	~	7	Fc	Fla	ags			~	Opcode		No.of	No.of M	No.of T	Commente
		3	2	FD		гз	P/V			11 101 011		Bytes		States	Comments
EX DE, HL EX AF AF'	$DE \leftrightarrow \Pi L$									00 001 000	08	1	1	4 1	
EX AI, AI	$AF \leftrightarrow AF$ BC \land BC'	•	•	•	•	•	•	•	•	11 011 001	00 P9	1	1	4	
LAA										11 011 001	05	I	1	-	
	$D \in \leftrightarrow D \in$ $H \downarrow \land H \downarrow'$														
										11 100 011	E3	1	5	10	
	$(SF + I) \leftrightarrow I$	•	•	•	•	•	•	•	•	11 100 011	LJ		5	15	
	$(SF) \leftrightarrow L$									11 011 101	חח	2	6	23	
	(3F∓I) ↔ IX	-	-	-	-	-	-	-	-	11 100 011	E3	2	0	20	
										11 100 011	LU				
EX (SP) IY		•	•		•	•	•	•	•	11 111 101	FD	2	6	23	
EX (01), 11	(SI + I) ↔									11 100 011	F3	2	0	20	
	$(SP) \hookrightarrow IY$									11 100 011	20				
וחו	$(DE) \leftarrow (HL)$			<u></u> ↑1	Δ	<u></u> ↑2	<u></u> ↑3	Δ		11 101 101	FD	2	4	16	
	$DE \leftarrow DE +$	-	-	\downarrow	0	\downarrow	\checkmark	0	-	10 100 000	A0	-	·		
	1														
	HI ← HI + 1														
	$BC \leftarrow BC - 1$														
LDIR	$(DE) \leftarrow (HL)$	•	•	↑ ¹	0	<u></u> ↑ ²	0	0	•	11 101 101	ED	2	5	21	if BC ≠ 0
	$DE \leftarrow DE +$			¥	Ũ	¥	Ũ	Ũ		10 110 000	B0	2	4	16	if $BC = 0$
	1														
	$HL \leftarrow HL + 1$														
	$BC \leftarrow BC - 1$														
	repeat until:														
	BC = 0														
LDD	$(DE) \leftarrow (HL)$	•	•	\uparrow^1	0	‡²	\$ ³	0	•	11 101 101	ED	2	4	16	
	$DE \leftarrow DE - 1$									10 101 000	A8				
	$HL \gets HL - 1$														
	$BC \gets BC \text{ - } 1$														
LDDR	$(DE) \leftarrow (HL)$	•	•	\uparrow^1	0	\$ ²	0	0	•	11 101 101	ED	2	5	21	if BC ≠ 0
	$DE \leftarrow DE - 1$									10 111 000	B8	2	4	16	if $BC = 0$
	$HL \leftarrow HL - 1$														
	$BC \leftarrow BC - 1$														
	repeat until:														
	BC = 0		1.4	. 5	. 1	. 6	. 3					0		40	
CPI	A - (HL)	1	' ‡*	Ĵ	\uparrow	Ĵ	Ĵ	1	•	11 101 101	ED	2	4	16	
	$HL \leftarrow HL + 1$									10 100 001	AI				
	$BC \leftarrow BC - 1$	<u>م</u>	1 ~4			6	3			11 101 101	ED	2	F	21	if DC / 0 and
CFIR		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	1	•	10 110 001	ED B1	2	5	21	II BC \neq 0 and
	$\Pi L \leftarrow \Pi L + 1$									10 110 001	ы	2	4	16	$A \neq (HL).$
	BC ← BC -1 Repeat until:											2	-	10	A = (HI)
	$A = (HI) \circ r$														A = (IIL)
	BC = 0														
CPD	A - (HL)	1	¹ ↑ ⁴	↑ ⁵	\uparrow^4	↑ ⁶	<u></u> ↑ ³	1	•	11 101 101	ED	2	4	16	
	$HL \leftarrow HL - 1$	¥	¥	¥	¥	\mathbf{V}	¥	•		10 101 001	A9				
	$BC \leftarrow BC - 1$														
CPDR	A - (HL)	.↑'	¹ ↑⁴	↑ ⁵		↑ ⁶	1 ,3	1	•	11 101 101	ED	2	5	21	if BC ≠ 0 and
	$HL \leftarrow HL - 1$	¥	¥	¥	¥	¥	¥			10 111 001	B9				A ≠ (HL).
	$BC \leftarrow BC - 1$											2	4	16	if $BC = 0$ or
	Repeat until:														A = (HL)
	A = (HL) or														
	BC = 0														
Notes:	' F5 is a	сор	y of	bit	1 of	A +	last	tra	nsfe	rred byte, thus	s (A + (HL))1			
	⁻ F3 is a	сор	y of	bit	3 of	A +	last	tra	nste	rred byte, thus	s (A + (HL))3			
	4 Those 4	JIS		ne i	esu	in Of	BC י/יםי	ר - וב	= 0,	otherwise P/	v = 1.				
	⁵ E5 is cc	ays	ofhi	= 50 i+ 1	ιαS of Δ	. 10	,⊏ (I st ov	ı∟) nmr	arec	addrass - U	thus (A _ (ні)-ну на	s as in Fafto	r the compo	rison
	⁶ F3 is co	vPy VOV	of hi	it 3	of A	- 1a	st co	omp	arec	address - H,	thus $(A - (A $	HI) - H) - H i	s as in Fafte	r the compa	rison
Flag Notation:	• = flag is	not	affe	cter	1.0	= fla	na is	res	set 1	= flag is set	$\uparrow = flan is$	set according	a to the resul	t of the one	ration.
0	- 109 13		5.10		., 0		.9 13		, I		v 110915				

4.2.3 Exchange, Block Transfer and Search Groups

Maamania	Symbolic	<u>د</u>	7	E E	Fl	ags		/ NI	<u> </u>	Opcode	Llov	No.of	No.of M	No.of	Commonto
winemonic	Operation	5	Ζ	F5	н	F3	P/V	' IN	U	76 543 210	Hex	Bytes	Cycles	T States	Comments
ADD A, r	$A \leftarrow A + r$	\uparrow	\uparrow	\updownarrow	\updownarrow	\updownarrow	V	0	\updownarrow	10 <u>000</u> r		1	1	4	<u>r Reg. p F</u>
ADD A, p*	$A \leftarrow A + p$	\$	\updownarrow	\updownarrow	\updownarrow	\$	V	0	\updownarrow	11 011 101 10 <u>000</u> р	DD	2	2	8	000 B 000 E 001 C 001 C
ADD A, q*	$A \gets A + q$	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	V	0	\updownarrow	11 111 101 10 000 g	FD	2	2	8	010 D 010 D 011 E 011 E
ADD A, n	$A \gets A + n$	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	V	0	\updownarrow	11 000 110 ← n →		2	2	8	100 H 100 L 101 L 101 L
ADD A. (HL)	$A \leftarrow A + (HI)$	\uparrow	↑	↑	↑	\uparrow	V	0	↑	10 000 110		1	2	7	111 A 111 A
ADD A, (IX + d)	$A \leftarrow A + (IX + d)$	ţ	ţ	Ť	ţ	¢	v	0	Ť	11 011 101 10 <u>000</u> 110	DD	3	5	19	
ADD A, (IY + d)	$A \gets A + (IY + d)$	\$	\$	\$	\$	\$	V	0	\$	$\begin{array}{ccc} \leftarrow & \mathbf{d} & \rightarrow \\ 11 & 111 & 101 \\ 10 & \underline{000} & 110 \\ \leftarrow & \mathbf{d} & \rightarrow \end{array}$	FD	3	5	19	
ADC A, s SUB A, s SBC A, s AND s OR s	$\begin{array}{l} A \leftarrow A + s + CY \\ A \leftarrow A - s \\ A \leftarrow A - s - CY \\ A \leftarrow A - AND s \\ A \leftarrow A OR s \end{array}$	$\begin{array}{c} \uparrow \\ \uparrow $	$\begin{array}{c} \uparrow \\ \uparrow $	$\begin{array}{c} \uparrow \\ \uparrow $	↓ ↓ ↓ 1	$\begin{array}{c} \updownarrow \\ \updownarrow \\ \downarrow \\$	V V P P	0 1 1 0 0	↓ ↓ ↓ 0	001 010 011 100 110					s is any of r, n, (HL (IX+d), (IY+d), p, c as shown for the A instruction. The underlined bits replace
XOR s CP s	$A \leftarrow A XOR s$ A - s	\uparrow	€	↓ ↓¹	0 ↓	↓ ↓¹	P V	0 1	0 ≎	$\frac{101}{111}$		4	4	4	the underlined bits the ADD set.
INC r	$r \leftarrow r + 1$	Ţ	Ţ	Ţ	Ţ	Ţ	V	0	•	00 r <u>100</u>		1	1	4	-
INC p*	p ← p + 1	1	\$	\$	1	1	V	0	•	11 011 101 00 p <u>100</u>		2	2	8	<u>q Reg.</u> 000 B
INC q [*]	q ← q + 1	€	€	€	€	€	V	0	•	11 111 101 00 q <u>100</u>	FD	2	2	8	001 C 010 D
INC (HL)	$(HL) \leftarrow (HL) + 1$	\updownarrow	\updownarrow	\updownarrow	\updownarrow	\updownarrow	V	0	•	00 110 <u>100</u>		1	3	11	011 E
INC (IX + d)	(IX + d) ← (IX + d) + 1	\$	\$	\$	\$	€	V	0	•	11 011 101 00 110 <u>100</u>	DD	3	6	23	100 IY _H 101 IY _L 111 A
INC (IY + d)	(IY + d) ← (IY + d) + 1	\$	€	€	↕	€	V	0	•	$\begin{array}{c} & u \\ 11 \\ 11 \\ 00 \\ 110 \\ \underline{100} \\ 10 \\ 10 \\ 10 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 $	FD	3	6	23	
DEC m	m ← m - 1	\$	\$	\$	\$	\$	V	1	•	← u → <u>101</u>					m is any of r, p, q, (HL), (IX+d), (IY+d) as shown for the IN instruction. DEC same format and states as INC. Replace <u>100</u> with <u>1</u> in opcode.
Notes:	¹ F5 and F3 are The V symbol ir indicates parity. r means any of p means any of q means any of	the r the the the the	P/\ P/\ regis regis regi	fror / fla sters ster ster	m th g cc s A, s A, s A,	e op blum B, C B, (Dera In in C, D C, D C, D	nd (dica , E,), E,), E,	(s), n ates H, L IX _H , IY _H ,	ot from the resu that the P/V flag IX _L . IY _L .	Ilt of (A - s is contains). the overf	low of the o	peration. S	Similarly the P symbol

4.2.4	8 bit	Arithmetic	and	Logical	Group
-------	-------	------------	-----	---------	-------

 d_{L} , d_{H} refer to high order and low order eight bits of the register respectively. CY means the carry flip-flop. * means unofficial instruction.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, \uparrow = flag is set according to the result of the operation.

	Symbolic	Flags							Opcode		No.of	No.of M	No.of T		
Mnemonic	Operation	SΖ	F5	Н	F3	P/V	/ N	С	76 543 210	Hex	Bytes	Cycles	States	Con	nments
ADD HL, ss	$HL \gets HL + ss$	• •	‡²	' ‡²	² ‡²	•	0	\uparrow^1	00 ss1 001		1	3	11	SS	Reg.
ADC HL, ss	$HL \gets HL + ss + CY$	$\uparrow^1 \uparrow^1$		² <u>↑</u> ²	² ∱²	V^1	0		11 101 101	ED	2	4	15	00	BC
		• •	•	•	•			•	01 ss1 010					01	DE
SBC HL, ss	$HL \gets HL \text{ - } ss \text{ - } CY$	$\uparrow^1 \uparrow^1$	2 ²	' ↑²	² <u></u>	V^1	1	1	11 101 101	ED	2	4	15	10	HL
			•	•	•			•	01 ss0 010					11	SP
ADD IX, pp	IX ← IX + pp	• •	\$ ²	' ‡²	² ‡²	•	0	\uparrow^1	11 011 101	DD	2	4	15		
									00 pp1 001					рр	Reg.
ADD IY, rr	$IY \leftarrow IY + rr$	• •	\uparrow^2	' ‡²	² ‡²	•	0	\uparrow^1	11 111 101	FD	2	4	15	00	BC
									00 rr1 001					01	DE
INC ss	ss ← ss + 1	• •	•	•	•	•	•	•	00 ss0 011		1	1	6	10	IX
INC IX	$IX \leftarrow IX + 1$	• •	•	•	•	•	•	•	11 011 101	DD	2	2	10	11	SP
									00 100 011	23		_			_
INC IY	$IY \leftarrow IY + 1$	• •	•	•	•	•	•	•	11 111 101	FD	2	2	10	rr	Reg.
									00 100 011	23				00	BC
DEC ss	ss ← ss - 1	• •	•	•	•	•	•	•	00 ss1 011		1	1	6	01	DE
DEC IX	$IX \leftarrow IX - 1$	• •	•	•	•	•	•	•	11 011 101	DD	2	2	10	10	IY
									00 101 011	2B				11	SP
DEC IY	$IY \leftarrow IY - 1$	• •	•	•	•	•	•	•	11 111 101	FD	2	2	10		
									00 101 011	2B					
Notes:	The V symbol in th	e P/V f	lag	colu	mn i	indio	cate	s tha	t the P/V flags o	contains t	he overflow	v of the ope	ration.		
	ss means any of th	e regis	ters	BC	, DE	, HL	_, S	Ρ.							
	pp means any of th	ne regis	sters	s BC	;, DE	Ξ, ΙΧ	í, Sf	·.							
	rr means any of the	e regist	ers	BC,	DE,	IY,	SP								
	16 bit additions are	e perfor	mec	d by	first	add	ding	the t	wo low order eig	ght bits, a	and then th	e two high o	order eight b	oits.	
	¹ Indicates the flag is affected by the 16 bit result of the operation.														
	² Indicates the flag is affected by the 8 bit addition of the high order eight bits.														
	CY means the carr	y flip-fl	op.												
Flag Notation:	 = flag is not affec 	ted, 0 =	= fla	g is	rese	et, 1	= flat	ag is	set, 1 = flag is s	set accor	ding to the	result of the	operation.		

4.2.5 16 bit Arithmetic Group

	Symbolic Flags									Opcode		No.of	No.of	No.of T	
Mnemonic	Operation	S	6 Z	F5	Н	F3	Ρ/	V N	С	76 543 210	Hex	Bytes	M Cycles	States	Comments
DAA	Converts A into packed BCD following add or subtract with BCD operands.	1	1	\$	\$	\$	Ρ	•	\$	00 100 111	27	1	1	4	
CPL	$A \leftarrow \overline{A}$			↑	¹ 1	↑	1 •	1	•	00 101 111	2F	1	1	4	One's complement.
NEG ⁴	$A \leftarrow 0 - A$	1	_ ↑ 1	· ↑	` ↑	\uparrow	V	1	1	11 101 101	ED	2	2	8	Two's complement.
				\downarrow	\checkmark	\checkmark	v		\checkmark	01 000 100	44			-	
CCF	$CY \leftarrow \overline{CY}$	•	•	\updownarrow	1 ↓	² \$	¹ •	0	\updownarrow	00 111 111	3F	1	1	4	Complement carry flag.
SCF	$CY \leftarrow 1$	•	•	1	¹ 0	1	¹ •	0	1	00 110 111	37	1	1	4	0
NOP	No operations	•	•	•	•	•	•	•	•	00 000 000	00	1	1	4	
HALT	CPU halted	•	•	•	٠	٠	٠	•	•	01 110 110	76	1	1	4	
DI°	$IFF_1 \leftarrow 0$	•	•	•	•	•	•	•	•	11 110 011	F3	1	1	4	
3	$IFF_2 \leftarrow 0$														
El	$IFF_1 \leftarrow 1$ $IFF_2 \leftarrow 1$	•	•	•	•	•	•	•	•	11 111 011	FB	1	1	4	
$IM 0^4$	Set interrupt	•	•	•	٠	٠	٠	•	•	11 101 101	ED	2	2	8	
	mode 0									01 000 110	46				
IM 1 ⁴	Set interrupt	•	•	•	•	•	•	•	•	11 101 101	ED	2	2	8	
$\mathbf{M} \mathbf{O}^4$	mode 1		-	_			_	_	_	01 010 110	56	0	0	0	
IIVI Z	Set Interrupt	•	•	•	•	•	•	•	•	01 011 101	5E	2	2	8	
Notes:	The V symbo	ol in	the	PΛ	/ flag	n co	lum	n ind	dicat	es that the P/V	flags cont	tains the ove	rflow of the	operation	Similarly the P symbol
10000	indicates par	itv.	the		nα	y 00	lain		alout		nago oon			operation.	Cirinally the rosymov
	¹ F5 and F3	are	a	copy	of b	oit 5	anc	130	f reg	ister A					
	² H contains the previous carry state (after instruction $H \leftrightarrow C$)														
	³ No interrupts are issued directly after a DI or EI.														
	⁴ This instruction has other unofficial opcodes, see Opcodes list.														
	CY means th	e c	arry	flip	flop	•									
Flag Notation:	 = flag is not 	aff	ecte	ed, C) = f	lag i	s re	set,	1 = 1	lag is set,	lag is set	according to	the result of	of the opera	ation.

4.2.6 General Purpose Arithmetic and CPU Control Groups

Mnemonic	Symbolic Operation	s	z	F5	F H	lags F3	, Р/\	/ N	С	Opcode 76 543	Hex	No. of Bytes	No. of M	No. of T States	Comments
RLCA	C∑I+[Z+-]]+	•	•	↑	0	\uparrow	•	0	↑	210 00 000	07	1	Cycles 1	4	
				*	0	*			*	111	47	4	4	4	
RLA	4 <u>CY</u>)+[7 <u>+−0</u> + ¹	•	•	Ţ	0	Ţ	•	0	Ţ	111	17	1	1	4	
RRCA	4 <u>7→0</u> 1+CY	•	•	\updownarrow	0	\updownarrow	•	0	\updownarrow	00 001 111	0F	1	1	4	
RRA	4 <u>7→0</u> →CY	•	•	\updownarrow	0	\updownarrow	•	0	\updownarrow	00 011	1F	1	1	4	
RLC r	CY+ [[] 7←0+ []]	\$	€	€	0	€	Ρ	0	€	11 001 011	СВ	2	2	8	<u>r Reg.</u> 000 B
RLC (HL)	CY+17+0+	\$	\$	\$	0	€	Ρ	0	\$	00 <u>000</u> 1 11 001 011 00 <u>000</u> 110	СВ	2	4	15	001 C 010 D
RLC (IX + d)	<u>CY</u> ↓ <u>(7←0</u> +	\$	\$	\$	0	\$	Ρ	0	\$	$11 011$ 101 $11 001$ 011 $\leftarrow d \rightarrow$ $00 000$ 110	DD CB	4	6	23	011 E 100 H 101 L 111 A
RLC (IY + d)	€A† <u>t⊶</u> 0+	\$	\$	\$	0	\$	Ρ	0	\$	$ \begin{array}{c} 110 \\ 11 \ 111 \\ 101 \\ 11 \ 001 \\ 011 \\ \leftarrow d \rightarrow \\ 00 \ 000 \\ 110 \end{array} $	FD CB	4	6	23	
LD r,RLC (IX + d)*	$r \leftarrow (IX + d)$ RLC r (IX + d) \leftarrow r	\$	\$	\$	0	\$	Ρ	0	€	110 11 011 101 11 001 011 \leftarrow d \rightarrow	DD CB	4	6	23	
LD r,RLC (IY + d)*	$r \leftarrow (IY + d)$ RLC r (IY + d) \leftarrow r	\$	\$	\$	0	\$	Ρ	0	\$	00 <u>000</u> r 11 111 101 11 001 011	FD CB	4	6	23	
RL m RRC m RR m SLA m SLL m* SRA m SRL m	$\begin{array}{c} (\Box) \leftarrow [\overline{T} \leftarrow 0] \leftarrow 0\\ (\Box) \leftarrow 0\\ ($	$\begin{array}{c} \leftrightarrow \leftrightarrow$	$\begin{array}{c} \uparrow \\ \uparrow $	$\Leftrightarrow \Leftrightarrow $	0 0 0 0 0	$\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$	P P P P P P P	0 0 0 0 0	$\begin{array}{c} \updownarrow \\ \uparrow \\$	00 <u>000</u> r <u>010</u> 001 011 100 110 101 111					Instruction format and states are the same as RLC. Replace <u>000</u> with new number.
RLD	031477 031477 A (HL)	¢	¢	¢	0	¢	P	0	•	11 101 101 01 101	ED 6F	2	5	18	
RRD	0347 0347 A (HL)	\$	\$	\$	0	\$	Ρ	0	•	11 101 101 01 100 111	ED 67	2	5	18	
Notes:	111 Notes: The P symbol in the P/V flag column indicates that the P/V flags contains the parity of the result. r means any of the registers A, B, C, D, E, H, L. * means unofficial instruction.														
Flag Notation:	• = flag is	not	affe	ecte	d, 0	= fl	ag is	s res	set, 1	= flag is set, ‡	= flag is s	et accordin	g to the res	ult of the op	eration.

kayprospec.doc

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mnemonic	Symbolic Operation	S 7	F5	Flag H F	s 3 P/\	/ N	С	Opcode 76 543 210	Hex	No. of Bytes	No. of M	No. of T States	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Winemonio	operation	02	10		017	/ 13	Ŭ	10 040 210	TICX	Dyteo	Cycles	Olaloo	Comments
$\begin{array}{c} \text{BIT b, (HL)} \\ \text{BIT b, (IX + d)^5} \\ \hline Z \leftarrow (HL)_{b} \\ Z \leftarrow (X + d)_{b} \\ \hline Z $	BIT b, r	7 / r	1^1	\uparrow^2	1 1	$a^3 \uparrow^4$	0	•	11 001 011 01 b r	СВ	2	2	8	<u>r Reg.</u> 000 B
$ \begin{array}{c} BiT b, (IX + d)^3 & \sum \left((IL, b)_{b} & \mathbb{C}^1 \updownarrow \ \mathbb{C}^2 \ 1 \ \mathbb{C}^3 \ \mathbb{C}^4 \ 0 & \cdot & III \ OIII \ OID & DD & d & 5 & 20 & OIII \ E \\ & IIO \ OIII \ L \\ & IIOII \ OIII \ CB & C & C & C \\ & IIIII \ A & C & C & C & C \\ & IIIII \ A & C & C & C & C & C \\ & IIIII \ OIIII \ CB & C & C & C & C \\ & IIIII \ A & C & C & C & C \\ & IIIIII \ A & C & C & C & C & C \\ & IIIIII \ A & C & C & C & C & C \\ & IIIIII \ A & C & C & C & C & C \\ & C & C & C & C & C \\ & C & C & C & C & C \\ & C & C & C & C \\ & C & C & C & C \\ & C & C & C & C \\ $	BIT b, (HL)	$Z \leftarrow I_b$	$\uparrow^1 \uparrow$	\updownarrow^2	1 1	³ ↓ ⁴	0	•	11 001 011 01 b 110	СВ	2	3	12	001 C
$\begin{array}{c} \text{BiT b, (IY + d)^{5}} \\ \text{BiT b, (IY + d)^{5}} \\ \text{Z} \leftarrow (\overline{\text{IY} + d)_{b}} \\ \text{Z} \leftarrow (\overline{\text{IY} + d)_{b}} \\ \text{SET b, r } \\ \text{SET b, (HL)} \\ \text{(HL)_{b} \leftarrow 1 } \\ \text{(HL)_{b} \leftarrow 1 } \\ \text{(IX + d)_{c} \leftarrow 1 } \\ \text{SET b, (IX + d)} \\ \text{(IX + d)_{b} \leftarrow 1 } \\ \text{(IX + d)_{c} \leftarrow 1 } \\ \text{(IY + d)_{c} \leftarrow 1 } \\ \text{(IY + d)_{c} \leftarrow 1 } \\ \text{(IY + d)_{c} \leftarrow 1 \\ \text{(IY + d)_{c} \leftarrow 1 } \\ \text{(IY + d)_{c} \leftarrow 1 } \\ \text{(IY + d)_{c} \leftarrow 1 \\$	BIT b, $(IX + d)^5$	$Z \leftarrow (\Pi L)_b$ $Z \leftarrow (IX + d)_b$	$\operatorname{\textup{p}}^1\operatorname{\textup{p}}$	\$ ²	1 1	x ³ ↓ ⁴	0	•	11 011 101 11 001 011	DD CB	4	5	20	011 E 100 H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BIT b, (IY + d) ⁵	$Z \leftarrow (\overline{IY + d})_b$	1^1	\$ ²	1 (2 ³ ↓ ⁴	0	•	$\begin{array}{ccc} \leftarrow & d & \rightarrow \\ 01 & b & 110 \\ 11 & 111 & 101 \\ 11 & 001 & 011 \\ \leftarrow & d & \rightarrow \end{array}$	FD CB	4	5	20	101 L 111 A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SET b, r	$r_b \leftarrow 1$	••	•	•••	•	•	•	01 b 110 11 001 011 <u>11</u> b r	СВ	2	2	8	<u>b Bit.</u> 000 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SET b, (HL)	$(HL)_{\tt b} \gets 1$	••	•	•••	•	•	•	11 001 011 11 b 110	СВ	2	4	15	001 1 010 2 011 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SET b, (IX + d)	$(IX+d)_b \gets 1$	••	•	••	•	•	•	11 011 101 11 001 011	DD CB	4	6	23	100 4 101 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SET b, (IY + d)	$(IY + d)_b \gets 1$	••	•	•••	•	•	•	$\begin{array}{ccc} \leftarrow & d \rightarrow \\ \underline{11} & b & 110 \\ 11 & 111 & 101 \\ 11 & 001 & 011 \\ \leftarrow & d \rightarrow \end{array}$	FD CB	4	6	23	110 6 111 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LD r,SET b, (IX + d)*	$\begin{split} r &\leftarrow (IX + d) \\ r_b &\leftarrow 1 \\ (IX + d) &\leftarrow r \end{split}$	••	•	•••	•	•	•	$\begin{array}{c} \leftarrow \mathbf{u} \rightarrow \\ \underline{11} \mathbf{b} 110 \\ 11 011 101 \\ 11 001 011 \\ \mathbf{\leftarrow} \mathbf{d} \rightarrow \end{array}$	DD CB	4	6	23	
RES b, m $m_b \leftarrow 0$ To form new opcode replace 11 of SET b, s with 10 . Flags and states are the same. Notes: The notation m_b indicates bit b (0 to 7) of location m. BIT instructions are performed by an bitwise AND. ¹ S is set if b = 7 and Z = 0 ² F5 is set if b = 5 and Z = 0 ³ F3 is set if b = 3 and Z = 0 ⁴ P/V is set like the Z flag ⁵ This instruction has other unofficial opcodes	LD r,SET b, (IY + d)*	$r \leftarrow (IY + d)$ $r_b \leftarrow 1$ $(IY + d) \leftarrow r$	••	•	••	•	•	•	$\begin{array}{cccc} \frac{11}{11} & b & r \\ 11 & 111 & 101 \\ 11 & 001 & 011 \\ \leftarrow & d & \rightarrow \end{array}$	FD CB	4	6	23	
Notes:The notation m_b indicates bit b (0 to 7) of location m.BIT instructions are performed by an bitwise AND. 1 S is set if b = 7 and Z = 0 2 F5 is set if b = 5 and Z = 0 3 F3 is set if b = 3 and Z = 0 4 P/V is set like the Z flag 5 This instruction has other unofficial opcodes.	RES b, m	$ \begin{array}{l} m_b \leftarrow 0 \\ m \equiv r, (HL), (IX+d), \\ (IY+d) \end{array} $	••	•	••	•	•	•	<u>11</u> b r <u>10</u>					To form new opcode replace <u>11</u> of SET b, s with <u>10</u> . Flags and states are the same.
Flag Notation: Flag Notation: $\bullet = flag is not affected. 0 = flag is reset. 1 = flag is set \uparrow = flag is set according to the result of the operation$	Notes: Flag Notation:													

4.2.8 Bit Manipulation Group

	Symbolic			Fla	igs			Opcode		No.of	No.of M	No.of T	
Mnemonic	Operation	SΖ	F5	H	-3 P	/V N	С	76 543 210	Hex	Bytes	Cycles	States	Comments
IN A, (n)	$A \leftarrow (n)$	• •	•	•	• •	•	•	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	DB	2	3	11	<u>r Reg.</u> 000 B
IN r, (C)	$r \gets (C)$	1 1	\updownarrow	0	\$ F	o	•	11 101 101	ED	2	3	12	001 C
IN (C)* or	Just affects flags,	\$\$	€	0	‡ F	o	•	11 101 101	ED	2	3	12	010 D 011 E
IN F, (C)*	value is lost.		1		. 1		o . o	01 110 000	70				100 H
INI	$(HL) \leftarrow (C)$	\$'\$	'\$'	¢°	(∖`	(2 ↓°	11 101 101	ED	2	4	16	101 L 111 A
	$HL \leftarrow HL + 1$							10 100 010	AZ				
INIR	$(HL) \leftarrow (C)$	0 1	0	∱ 3	0 3	(↑	² ↑ ³	11 101 101	FD	2	5	21	if B ≠ 0
	$HL \leftarrow HL + 1$	0 1	U	\checkmark	0 /	• •	\checkmark	10 110 010	B2	2	4	16	if $B = 0$
	B ← B - 1												
	Repeat until												
	$\mathbf{B} = 0$	<u>م1</u> م1	1		<u>1</u>	/ ^	2 14	11 101 101	ED	2	٨	16	
IND	$(\sqcap \llcorner) \leftarrow (\bigcirc)$	$\downarrow \downarrow$	\downarrow	\downarrow	↓ <i>/</i>	< ↓	\downarrow	10 101 010	AA	2	4	10	
	$B \leftarrow B - 1$												
INDR	$(HL) \leftarrow (C)$	0 1	0	\$⁴	0 >	<	² ‡ ⁴	11 101 101	ED	2	5	21	if B≠0
	$HL \leftarrow HL - 1$					-		10 111 010	BA	2	4	16	if B = 0
	B ← B - 1												
	Repeat until												
OUT (n), A	$(n) \leftarrow A$	• •	•	•	• •	•	•	11 010 011	D3	2	3	11	
	(,							\leftarrow n \rightarrow					
OUT (C), r	$(C) \gets r$	••	•	•	• •	•	•	11 101 101	ED	2	3	12	
	(\mathbf{C}) (\mathbf{C})		•				•	01 r 001	ED	2	2	10	
OOT(C), 0	$(\mathbf{U}) \leftarrow \mathbf{U}$	•••	•	•	•••	•	•	01 110 001	71	Z	5	12	
OUTI	$(C) \leftarrow (HL)$	1 1 1	'	Х	(¹)	κх	Х	11 101 101	ED	2	4	16	
	$HL \leftarrow HL + 1$	• •	•		•			10 100 011	A3				
0710	B ← B - 1		~	v	<u> </u>	, .,	V				_		
OTIR	$(C) \leftarrow (HL)$	01	0	Х	0)	(X	Х	11 101 101	ED B2	2	5	21 16	if B≠0 if P=0
	$HL \leftarrow HL + 1$ $B \leftarrow B - 1$							10 110 011	53	Z	4	10	$\Pi D = 0$
	Repeat until												
	B = 0												
OUTD	$(C) \leftarrow (HL)$	$\uparrow^1 \uparrow^1$	'	Х		X	Х	11 101 101	ED	2	4	16	
	$HL \leftarrow HL - 1$							10 101 011	AB				
OTDR	$B \leftarrow B - 1$	0 1	0	x	0 >	x	x	11 101 101	FD	2	5	21	if B → 0
OTDIC	(C) ← (HL) HI ← HI - 1	0 1	U	~	0 /		~	10 111 011	BB	2	4	16	if $B = 0$
	B ← B - 1												-
	Repeat until												
N1 /	$\mathbf{B} = 0$				<u> </u>						<i>(</i>		
Notes:	The V symbol in th	e P/V t	lag c	olum	in inc	licate	es that	the P/V flags of	contains th	ne overflow	of the ope	ration. Simil	arly the P symbol
	r means any of the	e reaist	ters A	. В.	C. D	. E. I	H. L.						
	¹ flag is affected b	y the re	esult	of B	<i>←</i> B	- 1 a	as in D	EC B.					
	² N is a copy bit 7 of the last value from the input (C).												
	³ this flag contains the carry of (((C + 1) AND 255) + (C)) ⁴ this flag contains the carry of (((C + 1) AND 255) + (C))												
	 trus nag contains * means unofficial 	instruc	arry 0 ction	u (((U - ') AN	10 255) + (C))					
Flag Notation:	 = flag is not affect 	ed, 0 =	= flaa	is re	eset.	1 = f	lag is	set, X = flag is i	unknown.				
0	↑ – flag is set acco	rdina t	o the	resi	ult of	the o	perati	on	,				

4.2.9 Input and Output Groups

Masaa	Symbolic	_		55	FI	ags		/ NI	~	Opcode		No.of	No.of M	No.of T	Commente
Ivinemonic	Operation	2		F5	H	F3	P/V	/ N	C	76 543 210	Hex	Bytes	Cycles	States	Comments
JP nn	PC ← nn	•	•	•	•	•	•	•	•	11 000 011	C3	3	3	10	
										\leftarrow n \rightarrow					
										\leftarrow n \rightarrow		_	_		
JP cc, nn	if cc is true,	•	•	•	•	•	•	•	•	11 ccc 010		3	3	10	ccc Condition
	PC ← nn									\leftarrow n \rightarrow					000 NZ
										\leftarrow n \rightarrow					001 Z
															010 NC
															100 FC
															110 P
JR e	$PC \leftarrow PC +$	•	•	•	•	•	•	•	•	00 011 000	18	2	3	12	111 M
	e									$\leftarrow e - 2 \rightarrow$	-		-		
JR ss, e	if ss is true	•	•	•	•	•	•	•	•	00 ss 000		2	3	12	if ss is true
	$PC \leftarrow PC +$									\leftarrow e - 2 \rightarrow		2	2	7	if ss is false
	е														
JP HL	$PC \gets HL$	•	٠	•	٠	٠	•	•	•	11 101 001	E9	1	1	4	
JP IX	$PC \gets IX$	•	٠	•	•	٠	•	•	•	11 011 101	DD	2	2	8	ss Condition
										11 101 001	E9				111 C
															110 NC
JP IY	$PC \leftarrow IY$	•	•	•	•	•	•	•	•	11 111 101	FD	2	2	8	101 Z
										11 101 001	E9	_	_	_	100 NZ
DJNZ e	B ← B - 1	•	•	•	•	•	•	•	•	00 010 000	10	2	2	8	if $B = 0$
	if B ≠ 0									\leftarrow e -2 \rightarrow		2	3	13	if B ≠ 0
	$PC \gets PC +$														
	е														
Notes:	e is a sigi	ned	two	0-00	nple	eme	nt n	umb	er in	the range <-12	26, 129>				
	e - 2 in th	e o	рсо	de p	rovi	des	ane	effec	ctive	number of PC	+ e as PC	incremented	by 2 prior to	o the addition	on of e.
Flag Notation:	• = flag is	no	t aff	ecte	d, 0	= fl	ag is	s res	set, 1	= flag is set, () = flag is s	et according	to the resul	t of the ope	eration.

4.2.10 Jump Group

Mnomonic	Symbolic	S 7 55	Flags	Opcode	Hoy	No.of	No.of M	No.of T	Commonte
				11 001 101		3	5	17	Comments
	$(SP) \leftarrow PC_{ii}$			\leftarrow n \rightarrow	CD	5	5	17	
	$SP \leftarrow SP - 1$			\leftarrow n \rightarrow					
	$(SP) \leftarrow PC_1$								
	$PC \leftarrow nn$								
CALL cc, nn	if cc is true,	• • •	• • • • •	11 ccc 100		3	3	10	if cc is false
	$SP \leftarrow SP$ - 1			$\leftarrow \ n \ \rightarrow$		3	5	17	if cc is true
	$(SP) \leftarrow PC_{H}$			$\leftarrow \ n \ \rightarrow$					
	$SP \gets SP \text{ - } 1$								
	$(SP) \leftarrow PC_L$								
5	PC ← nn				00			10	
REI	$PC_{L} \leftarrow (SP)$	• • •	• • • • •	11 001 001	C9	1	3	10	
	$SP \leftarrow SP + 1$								
	$PC_{H} \leftarrow (SP)$								
RFT cc	$3F \leftarrow 3F + 1$			11 ccc 000		1	1	5	if cc is false
INET 00	$PC_{i} \leftarrow (SP)$			11 000 000		1	3	11	if cc is true
	$SP \leftarrow SP + 1$								
	$PC_{H} \leftarrow (SP)$								
	$SP \leftarrow SP + 1$								
RETI ²	$PC_L \gets (SP)$	• • •	• • • • •	11 101 101	ED	2	4	14	cc Condition
	$SP \gets SP + 1$			01 001 101	4D				000 NZ
	$PC_{H} \leftarrow (SP)$								001 Z
	$SP \leftarrow SP + 1$								010 NC
RETN ^{1,2}	$PC_{l} \leftarrow (SP)$	• • •		11 101 101	ED	2	4	14	100 PO
	$SP \leftarrow SP + 1$			01 000 101	45				101 PE
	$PC_{H} \leftarrow (SP)$								110 P
	$SP \leftarrow SP + 1$								111 M
	$IFF_1 \gets IFF_2$								
RST p	$SP \leftarrow SP$ - 1	• • •	• • • • •	11 t 111		1	3	11	<u>t p</u>
	$(SP) \leftarrow PC_H$								000 0h
	$SP \leftarrow SP - 1$								001 8n 010 10b
	$(SP) \leftarrow PC_{L}$								010 1011 011 18h
	PC ← p								100 20h
									101 28h
									110 30h
	1				1 11 /				111 38h
Notes:	² Instruct	truction ha	s other unofficial opc	odes, see Opco	de list.				
Flag Notation:	• = flag is	not affecte	ed. 0 = flag is reset. 1	= flag is set. ∴	= flag is se	et according	to the resul	t of the ope	ration.

• = flag is not affected, 0 = flag is reset, 1 = flag is set, \uparrow = flag is set according to the result of the operation.

4.3 Glossary

Applet	- An internet application that runs inside an internet browser.
Bank	- A Computer science term used to describe a specific chunk of Random Access Memory (See Random Access Memory).
BIOS	- Basic Input and Output System. A set of programs, addresses or routines inside RAM (See Random Access Memory) that provide certiain functionality for the computer system.
Bit	- The smallest value used to represent computer data or memory in a base 2 binary numbering system having a value of 1 or 0.
Buad Rate Buffer	A term used to describe the ability of two devices ports (See Port) to establish a communication between them at a certain speed of data transfer.A permanent or temporary area of storage used to hold data.
Byte	- A standard unit of measurement for computer data or RAM (See Random Access Memory)
CPU	- The Central Processing Unit.
DOS	- Disk Operating System.
<i>I/O</i>	- Input and Output.
Interrupt	- A term used to describe the need for a device or software program that must send a message to the Processor (See CPU) in order to gain its attention for useage.
Java	- A programming language with internet and platform independent capibility.
Memory	- Term used to describe an area of storage in a computer system. (See Random Access Memory, Bank, Buffer)
Memory Mapped	- A term used to describe how a computer system connects it I/O (See I/O) to RAM (See Random Access Memory).
OP Code	- The basic unit of instruction in a computer system. This is what is executed when a computer program is running.
Operating system	- The software program that manages low level hardwareand software management inside a computer system.
Parallel	- Data transmission that occurs in a side by side manor using multiple data lines to transmit data across a specific line.
Port	- A term used to describe the means for I/O (See I/O) internally and externally in a computer system.
RAM	- See Random Access Memory.

Random Access Memory	- The second fastest form of storage used inside a computer system commonly used for application execution and data storage.
Register	- The fastest form a storage inside a computer system usually constrained to a finite size depending on a particular system.
ROM	- Read Only Memory. Usually contains useful programs or data for Operating System (See Operating System), hardware and program useage.
Serial	- A term used to describe inline communication or data that is sent one after another either interanally or externally.
Virtual Machine	- A term used to describe a software or hardware program that emulates a given environment in which its executing applications are thought to be running.