
Document Nbr: CSI426/kayproII-RD2.06
Date: December 5, 1998
Copy Nbr: ____

DESIGN DOCUMENT

FOR THE

CSI426/KAYPRO II EMULATOR

NOTICE
This document contains. Proprietary or Confidential information.
DO NOT DESTROY OR REPRODUCE THIS DOCUMENT.

Return to Procedures Staff for proper execution.

PROPRIETARY & CONFIDENTIAL

Requirements Document

__
kayprodes.doc October 17, 1998

i
Proprietary and Confidential

Distribution List

Name Organization Signature

Dr. Charles Howerton Metropolitan State College

Requirements Document

__
kayprodes.doc October 17, 1998

ii
Proprietary and Confidential

Table of Contents

1. INTRODUCTION .. 5

1.1 OVERVIEW .. 5
1.2 SCOPE ... 5

2. SYSTEM REQUIREMENTS... 5

2.1 SYSTEM OVERVIEW ... 5
2.1.1 Concept of Operations ... 7
2.1.2 Base Objects.. 7

2.2 FUNCTIONAL REQUIREMENTS... 8
2.2.1 Function.. 8
2.2.2 Expandability .. 8
2.2.3 Platform.. 8
2.2.4 User Interface ... 9

User Interface Members.. 9
2.2.4.2 Methods ...14

2.2.5 ImageCanvas extends Canvas .. 16
2.2.5.1 ImageCanvas Members...16
2.2.5.2 ImageCanvas Methods..16

2.2.6 LogoCanvas extends Canvas.. 17
2.2.6.1 LogoCanvas Members ..17
2.2.6.2 LogoCanvas Methods ...17

2.2.7 OutCanvas extends Canvas.. 17
2.2.7.1 OutCanvas Members ..17
2.2.7.2 OutCanvas Methods..18

2.2.8 Z-80 CPU Emulation ... 19
2.2.8.1 Z-80 Features ...19
2.2.8.2 Z-80 Instruction Set ..19
2.2.8.3 Z-80 Arithmetic Logic Unit (ALU)..20
2.2.8.4 Z-80 Addressing modes ..20
2.2.8.5 Main Registers ...20
2.2.8.6 Special Purpose Registers ...21
2.2.8.7 Bus Timing and Signals ..21
2.2.8.8 CPU Object ..21
2.2.8.9 Opcode Object..27

2.2.9 Object Hardware ... 29
2.2.9.1 Memory Emulation...30
2.2.9.2 Hardware Members ..31
2.2.9.3 Hardware Members ..32

2.2.10 SIO/PIO Design... 33
2.2.10.1 Object Method Description tables ...34
2.2.10.2 SIOPort Object Method Description table..35

2.2.11 Keyboard Object Method Description table.. 36
2.2.12 SIO Object Member description tables ... 37

2.2.12.1 WR0 Register Description table ..38
2.2.12.2 WR1 Register Description table ..38
2.2.12.3 WR2 Register Description table ..38
2.2.12.4 WR3 Register Description table ..38
2.2.12.5 WR4 Register Description table ..38
2.2.12.6 WR5 Register Description table ..38
2.2.12.7 WR6 Register Description table ..38
2.2.12.8 WR7 Register Description table ..39
2.2.12.9 RD0 Register Description table ...39
2.2.12.10 RD1 Register Description table ...39

2.2.13 SIO Object Members.. 39
2.2.14 Keyboard Object Members .. 40

Requirements Document

__
kayprodes.doc October 17, 1998

iii
Proprietary and Confidential

2.2.15 PIO Design ... 42
2.2.15.1 Object Method Description table ...42
2.2.15.2 PIO Port Method Description table..43
2.2.15.3 SysPIO Method Description table ...44
2.2.15.4 Object Member Description tables ..45
2.2.15.5 PIOPort Member Description table..45
2.2.15.6 FDC Floppy Disk Controller Methods...46
2.2.15.7 FDC Floppy Disk Controller Members..47
2.2.15.8 Related Members from other objects ...48

2.2.16 Bootstrap Loader... 49
2.2.17 Operating system... 49

3. PROJECT DELIVERABLES .. 50

3.1 HARDWARE ... 50
3.2 SOFTWARE .. 50
3.3 TRAINING .. 50
3.4 PROJECT DOCUMENTATION .. 50

3.4.1 Project Development Documentation ... 50
3.4.2 Customer/Operations Documentation .. 50

4. APPLICABLE DOCUMENTS, REFERENCE, AND GLOSSARY.. 51

4.1 REFERENCES.. 51
4.2 APPENDIX A, Z-80 OPCODES.. 52

4.2.1 8 bit Load Group ... 52
4.2.2 16 bit Load Group ... 53
4.2.3 Exchange, Block Transfer and Search Groups.. 55
4.2.4 8 bit Arithmetic and Logical Group.. 56
4.2.5 16 bit Arithmetic Group... 57
4.2.6 General Purpose Arithmetic and CPU Control Groups .. 58
4.2.7 Rotate and Shift Group .. 59
4.2.8 Bit Manipulation Group... 60
4.2.9 Input and Output Groups ... 61
4.2.10 Jump Group .. 62
4.2.11 Call and Return Group .. 63

4.3 GLOSSARY... 64

Requirements Document

__
kayprodes.doc October 17, 1998

iv
Proprietary and Confidential

Tables and Figures

Figure 1 Kaypro II Functional View.. 6
Figure 2 Kaypro II Emulator Java Applet Transfer .. 8
Figure 3, User Interface Example.. 9
Figure 4 Output Screen Example .. 19
Figure 5, CPU and Opcodes.. 21
Figure 6, Opcode Object... 27
Figure 7, Port Emulation... 29
Figure 8 Kaypro II Bank Switching .. 30
Figure 9, SIO/PIO Model.. 34
Figure 10, Hardware Port Connectivity ... 40

Figure 1 Kaypro II Functional View.. 6
Figure 2 Kaypro II Emulator Java Applet Transfer .. 8
Figure 3, User Interface Example.. 9
Figure 4 Output Screen Example .. 19
Figure 5, CPU and Opcodes.. 21
Figure 6, Opcode Object... 27
Figure 7, Port Emulation... 29
Figure 8 Kaypro II Bank Switching .. 30
Figure 9, SIO/PIO Model.. 34
Figure 10, Hardware Port Connectivity ... 40

__
kayprodes.doc

5
Proprietary and Confidential

1. Introduction
This section contains the overview, system identification, and scope of the Design Document.

1.1 Overview
This document describes the software design for the Kaypro II emulator.

This document presents an overview of the Kaypro II emulator design. The emulator is a Java based
implementation of a Kaypro II computer system. Java is a language that allows remote programs to be
executed on a client computer via the World Wide Web. The Kaypro II emulator resides on a remote host
machine. The user may run the emulation on a compatible browser from their own computer system.

The implementation features a number of convenient and useful features, including:

• Printer port simulation
• Debugging:

 Hardware style breakpoints
 Opcode level debugging
 CPU register display

• Memory dump utilities
• Dual virtual diskette drives with CP/M pre-loaded
• Real and fast mode video options

 In addition to the above, the system shall be coded in such a way that it is expandable. This
expandability requires changes to the source code. The modular nature of the implementation allows
easy modification.

1.2 Scope
 The Kaypro II emulator utility shall be a new development effort.

2. System Requirements

2.1 System Overview

__
kayprodes.doc

6
Proprietary and Confidential

Figure 1 Kaypro II Functional View

Port 0x10

Hardware

Port 0x11

Port 0x12

Port 0x13

Port 0x00

Port 0x0C

Port 0x04

Port 0x06

Port 0x05

Port 0x07

Port 0x08

Port 0x09

Port 0x1C

Port 0x1D

Port 0x14

Port 0x0A

Port 0x0B

Port 0x1E

Port 0x1F

Floppy
Controller

Baud Rate A

Baud Rate B

SIO A

SIO B

Parallel PIO

SYS
PIO

Scroll Register
Not Used

CPU
NMI

Reset

INT

Bank 2
ROM

Bank 2
Video

Bank 1
RAM

Bank 1/2 RAM

Read

Write

Bank
Select

Memory

Display

Read bank 2 Video

Floppy
Device

Serial Device
A

Keyboard
System Beep

Parallel Device

Printer Control

NMI

User Input

Reset

INT

INT

INT

INT Bank Select

Floppy Control

Port
I/O

__
kayprodes.doc

7
Proprietary and Confidential

2.1.1 Concept of Operations
The Kaypro II is a Z-80 based computer system. It contains dual floppy drives, serial I/O, a monochrome
screen, keyboard, a printer port, memory and control logic.

The Z-80 processor executes pre-programmed instructions read from memory. Serial I/O provides an
interface to serial devices. Serial I/O also provides interface to the built-in keyboard and system speaker.

The Kaypro II contains a monochrome screen. The screen has no real graphic capability, but can display
inverse characters.

The Kaypro II includes two built-in floppy disk drives.

The printer port enables communication with a Centronics compatible printer. A secondary printer port
acts as an interface for controlling internal functions such as:
• Floppy disk selection
• Floppy drive motor control
• RAM/ROM/video RAM bank selection
• Printer control signals

The Kaypro II supported 64K of RAM. In addition, the system also included a system ROM and memory
mapped video.

The Kaypro II control logic included a dual baud-rate generator for serial data rate adjustments, a character
generator ROM, and other discrete control logic.

2.1.2 Base Objects
The Kaypro II emulator will consist of 4 main objects

• The User Interface (UI). This is the user entry system. It allows the user to manipulate the emulation.
• The CPU. This is an emulation of the Z-80 microprocessor
• The SIO. This is the serial I/O
• The PIO. The parallel I/0
• The hardware. This object contains the main memory. It also acts as a communicator between the

other objects.
These objects will be describe in greater detail later.

__
kayprodes.doc

8
Proprietary and Confidential

2.2 Functional Requirements

2.2.1 Function
• The emulation program shall emulate the Kaypro II model of the Kaypro product line
• The user shall manipulate the emulated version just as they would the original
• The emulation shall contain debugging features, in addition to the original functionality

2.2.2 Expandability
The system shall be expandable. That is, its design shall be easily upgraded. This allows improvements,
variations and upgrades to be easily coded and implemented.

• The Kaypro II emulation shall be coded in such a way as to facilitate easy additions and expansions to
the system.

• The emulation shall be coded in a modular way; such as logical Java classes

2.2.3 Platform

Figure 2 Kaypro II Emulator Java Applet Transfer

The Kaypro II emulation shall be implemented as a Java applet. Java applets reside on remote servers (see
Figure 2). When a user browses an HTML web page containing reference to the emulator applet, the applet
byte code is transferred to the User’s computer and executed1.

• The Kaypro II emulation shall be implemented in Java
• The implementation shall be pure Java (e.g. No Microsoft extensions).
• The Kaypro II emulation shall be implemented as an applet.
• The Kaypro II emulation shall be made available via the world wide web
• The Java interface shall be kept minimal, to afford quicker load times
• The Implementation shall use JDK 1.1.6

1 See Sun Micro’s description of the Java environment and language.

User Computer

Web Server

Kaypro II Java Applet

__
kayprodes.doc

9
Proprietary and Confidential

2.2.4 User Interface
Class Kaypro is a Task

Figure 3, User Interface Example

2.2.4.1 User Interface Members

Member Scope Description Type
cpu Public Instantiation of the cpu object. CPU
hardware Public Instantiaiton of the hardware object. HARDWARE
screen Public Instantiation of the screen object. Screen
floppy Public Instantiation of the floppy object. Floppy
sio Public Instantiation of the sio object. SIO

Kaypro II Emulator

KAYPRO II 64k CP/M vers 2.2

A>_

Debug On Fast Mode Change Disk B

Reset

Change Disk B

Step Mode

Set Break Point

Generate NMI

Display Memory

Options

Debug

Single Step

Options

View Z-80 Registers

View Z-80 Opcodes

OK Cancel

__
kayprodes.doc

10
Proprietary and Confidential

pio Public Instantiation of the pio object. PIO
printer Public Instantiation of the printer. Printer
syspio Public Instantiation of the syspio. SysPIO
uimonitor Public Instantiation of the uimonitor. UIMonitor
tracker Public Instantiation of the mediatracker. MediaTracker
KayproCanvas Public Instantiation of the ImageCanvas.

Used for the spinning Kaypro.
ImageCanvas

Logo Public Instantiation of the LogoCanvas.
Used for the Kaypro II Logo.

LogoCanvas

OutputCanvas Public Instansiation of the OutCanvas.
Used for the real mode output.

OutCanvas

MainScreen Private Main panel that holds all of the
buttons and debug panel.

Panel

BDebugMode Private Button that toggles the debug mode
on or off.

Button

BFastMode Private Button that toggles between the fast
and real graphics mode.

Button

BReset Private Button that resets the Kaypro II
emulation.

Button

BChangeA Private Button that brings up a dialog box
that asks for the new virtual disk for
drive A.

Button

BChangeB Private Button that bring up a dialog box
that asks for the new virtual disk for
drive B.

Button

Debug Private Panel that holds the debug buttons.
Belongs to MainScreen panel.

Panel

Ldebug Private Label for the debug mode panel. Label
BStepMode Private Button that toggles between step

and run modes.
Button

BBreakpoint Private Button that brings up a dialog box
that asks the user what the
breakpoint should be.

Button

BMemoryDump Private Button that brings up a dialog box
that asks the user what memory
they want to view.

Button

BInterrupt Private Button that sends a NMI interrupt
to the hardware object.

Button

BOptions Private Button that brings up a dialog box
that asks the user if they want to
view Registers and/or Opcodes in
debug mode.

Button

BSingleStep Private Button that sends a step command
to the cpu object.

Button

OptionDialog Private Panel for a dialog box that asks the
user for the view options.

Panel

LOptionDialog Private Label for the option dialog panel. Label
CViewReg Private Checkbox that sets the view

registers flag to see the registers
when debugging.

Checkbox

CViewOp Private Checkbox that sets the view
opcodes flag to see the opcodes
when debugging.

Checkbox

__
kayprodes.doc

11
Proprietary and Confidential

BOptionsOK Private Button that exits the OptionDialog
panel and sets the view registers
and view opcodes flags
accordingly.

Button

BOptionsCancel Private Button that exits the OptionsDialog
panel without changing the view
registers and view opcodes flags.

Button

ChangeDialogA Private Panel for the dialog box that asks
the user for the location of the
virtual disk for virtual disk drive A.

Panel

LChangeDialogA Private Label for the Change Disk A panel. Label
TChangeA Private The textbox that the user type in the

location and name of the virtual
disk being loaded.

Textbox

LChangeA Private Label: “Location of the virtual
disk:”

Label

BChangeAOK Private Button that exits the
ChangeDialogA panel changing the
virtual disk A to the selected virtual
disk in the TChangeA textbox.

Button

BChangeACancel Private Button that exits the
ChangeDialogA panel without
changing the virtual disk A.

Button

ChangeDialogB Private Panel for the dialog box that asks
the user for the location of the
virtual disk for virtual disk drive B.

Panel

LChangeDialogB Private Label for the Change Disk B panel. Label
TChangeB Private The textbox that the user type in the

location and name of the virtual
disk being loaded.

Textbox

LChangeB Private Label: “Location of the virtual
disk:”

Label

BChangeBOK Private Button that exits the
ChangeDialogB panel changing the
virtual disk B to the selected virtual
disk in the TChangeB textbox.

Button

BChangeBCancel Private Button that exits the
ChangeDialogB panel without
changing the virtual disk B.

Button

Breakpoint Private Panel for the dialog box that asks
the user for the breakpoint.

Panel

LBreakpointD Private Label for the breakpoint panel. Label
TBreakpoint Private The textbox that the user types in

the location in memory they want
the emulation to break at.

Textbox

LBreakpoint Private Label: “Location in memory to
break at:”

Label

BBreakpointOK Private Button that exits the Breakpoint
dialog box and set the breakpoint
that is in the TBreakpoint textbox.

Button

BRemoveBreak Private Button that exits the Breakpoint
dialog box and removes the current
breakpoint from the CPU.

Button

BBreakpointCancel Private Button that exits the Breakpoint Button

__
kayprodes.doc

12
Proprietary and Confidential

dialog box without setting a
breakpoint.

MemoryDump Private Panel for the dialog box that asks
the user the start and end location
for a memory dump.

Panel

LMemoryDump Private Label for the memory dump panel. Label
TStartDump Private Textbox that the user inputs the

start location of the memory dump.
Textbox

LStartDump Private Label: “Start location of the
memory dump:”

Label

TEndDump Private Textbox that the user inputs the end
location of the memory dump.

Textbox

LEndDump Private Label: “End location of the memory
dump:”

Label

LMemoryBank Private Label: “Select memory bank:” Label
CBGMemoryBank Private This is a checkbox group for the

user to select a memory dump from
RAM, ROM, or Video memory.

CheckboxGroup

CRAM Private When selected the RAM is
displayed for the memory dump.
Part of CBGMemoryBank
CheckboxGroup.

Checkbox

CROM Private When selected the ROM is
displayed for the memory dump.
Part of CBGMemoryBank
CheckboxGroup.

Checkbox

CVideo Private When selected the Video memory
is displayed for the memory dump.
Part of CBGMemoryBank
CheckboxGroup.

Checkbox

BDumpOK Private Button that exits the MemoryDump
dialog box showing the memory
from the value in the TStartDump
textbox to the TEndDump textbox.

Button

BDumpCancel Private Button that exits the MemoryDump
dialog box without showing any
memory locations.

Button

ErrorPanel Private Panel for the error dialog box.
Used when the user puts in wrong
values into textboxes.

Panel

LError Private Label: “Error in input: please re-
enter value.”

Label

BErrorOK Private Button that exits the ErrorPanel. Button
LVersion Private Label that shows the version of the

emulator.
Label

FPrinterScreen Private Frame for the printer output. Frame
TAPrinter Private TextArea for the output from the

PIO chip.
TextArea

FViewRegOp Private Frame for the registers and opcodes
output.

Frame

TARegOp Private TextArea for the registers and
opcodes output from the cpu.

TextArea

FMemory Private Frame for the memory dump. Frame

__
kayprodes.doc

13
Proprietary and Confidential

TADump Private TextArea for the memory dump. TextArea

ViewRegisters Private Used to determine if the registers
should be output. TRUE means
output registers, FALSE means
don’t output registers.

boolean

ViewOpcodes Private Used to determine if the opcodes
should be output. TRUE means
output opcodes, FALSE means
don’t output opcodes.

boolean

VirtualLocation Private String variable to hold the user
input in the Change Disk A and
Change Disk B dialog boxes.

String

MemoryStart Private String variable to hold the user
input for the start location of a
memory dump. Used for the
memory dump dialog.

String

MemoryEnd Private String variable to hold the user
input for the end location of a
memory dump. Used for the
memory dump dialog.

String

MemoryBank Private Variable to hold the memory bank
selected for a memory dump. 0
means dump the RAM, 1 means
dump the ROM, and 2 means dump
the Video RAM.

int

DrawMode Private Variable to hold the drawing mode.
0 means draw in fast mode, and 1
means draw in real mode.

int

SetBreakpoint Private String variable to hold the input
from the user in the Breakpoint
dialog. This is the location for the
breakpoint.

String

DialogUp Private Variable to hold the state of the
dialog panels that are being shown.
This makes the panels modal, so
buttons below the panel cannot be
pressed.

boolean

ErrorDialogUp Private Variable to hold the state of the
error dialog that is shown. This
makes the error panel modal, so
buttons below the panel cannot be
pressed.

boolean

image Private Variable to hold the Kaypro logo
image.

Image[]

KEYPORTDATA Private Holds the port for keyboard data
input.

short

KEYPORTCONTROL Private Holds the port for keyboard control
input.

short

__
kayprodes.doc

14
Proprietary and Confidential

2.2.4.2 Methods

Method Scope Parameter
Values

Return Values Description

main Public String[] void Creates the main applet frame.
init, jbInit Public void void Initializes the emulation;

instantiates CPU and
Hardware objects and all GUI
objects.

start Public void void Starts the emulation applet.
stop Public void void Destorys and cleans up the

applet.
run Public void void Runs the Kaypro II emulation.
paint Public Graphics g void Repaints the screen in real

mode or fast mode according
to the mode.

destroy Public void void Set the visibility of all frames
to false.

getAppletInfo Public void String Returns the name of the
applet.

getParameterInfo Public void String[] Returns the parameter
information sent to the applet.

getParameter Public String, String String Sets and returns the
parameters sent to applet.

BDebugMode_actionPer
formed

Private ActionEvent e void Handles the debug mode
button click.

BFastMode_actionPerfo
rmed

Private ActionEvent e void Handles the fast/real mode
button click.

BReset_actionPerforme
d

Private ActionEvent e void Handles the reset button click.

BChangeA_actionPerfor
med

Private ActionEvent e void Handles the change a button
click.

BChangeB_actionPerfor
med

Private ActionEvent e void Handles the change b button
click.

BStepMode_actionPerfo
rmed

Private ActionEvent e void Handles the step mode button
click.

BBreakpoint_actionPerf
ormed

Private ActionEvent e void Handles the set breakpoint
button click.

__
kayprodes.doc

15
Proprietary and Confidential

BMemoryDump_action
Performed

Private ActionEvent e void Handles the memory dump
button click.

BInterrupt_actionPerfor
med

Private ActionEvent e void Handles the generate interrupt
button click.

BOptions_actionPerfor
med

Private ActionEvent e void Handles the view options
button click.

BSingleStep_actionPerf
ormed

Private ActionEvent e void Handles the single step button
click.

BDumpOK_actionPerfo
rmed

Private ActionEvent e void Handles the OK button click
in the MemoryDump dialog.

BDumpCancel_actionPe
rformed

Private ActionEvent e void Handles the Cancel button
click in the MemoryDump
dialog.

BBreakpointOK_action
Performed

Private ActionEvent e void Handles the OK button click
in the Breakpoint dialog.

BBreakpointCancel_acti
onPerformed

Private ActionEvent e void Handles the Cancel button
click in the Breakpoint dialog.

BOptionsOK_actionPerf
ormed

Private ActionEvent e void Handles the OK button click
in the OptionDialog dialog.

BOptionsCancel_action
Performed

Private ActionEvent e void Handles the Cancel button
click in the OptionDialog
dialog.

BChangeAOK_actionPe
rformed

Private ActionEvent e void Handles the OK button click
in the ChangeDialogA dialog.

BChangeACancel_actio
nPerformed

Private ActionEvent e void Handles the Cancel button
click in the ChangeDialogA
dialog.

BChangeBOK_actionPe
rformed

Private ActionEvent e void Handles the OK button click
in the ChangeDialogB dialog.

BChangeBCancel_actio
nPerformed

Private ActionEvent e void Handles the Cancel button
click in the ChangeDialogB
dialog.

BErrorOK_actionPerfor
med

Private ActionEvent e void Handles the OK button click
in the Error dialog.

__
kayprodes.doc

16
Proprietary and Confidential

BRemoveBreak_actionP
erformed

Private ActionEvent e void Handles the Remove button
click in the Breakpoint dialog.

OutputPanel_keyTyped Private KeyEvent e void Handles the key typed event in
the OutputPanel. This is were
all keyboard input is captured
by the emulator.

2.2.5 ImageCanvas extends Canvas
Image canvas provides a canvas on which a spinning picture of the Kaypro II computer is loaded. The
images allow the user to view a 3-D rotation of an actual Kaypro II computer.

2.2.5.1 ImageCanvas Members

Member Scope Description Type
kaimages Private Images used for the animation. Image[]
thread Private Thread object to make this object a

thread.
Thread

tracker Private MediaTracker object to track the
loading of the images.

MediaTracker

currentimg Private Variable to hold the current image
to be shown.

int

2.2.5.2 ImageCanvas Methods

Method Scope Parameter
Values

Return Values Description

init Public void void Initializes all objects needed
for this object. Also loads the
images into the MediaTracker.

paint Public Graphics g void Paint method for this object to
paint the images onto the
canvas object.

run Public void void This method runs this thread.
As soon as the images are
loaded the images are cycled
forever.

start Public void void Starts the thread so this object
will run with the rest of the
emulation.

stop Public void void Stop the thread.

__
kayprodes.doc

17
Proprietary and Confidential

2.2.6 LogoCanvas extends Canvas

2.2.6.1 LogoCanvas Members
The logo canvas provides an object on which the Kaypro II logo is located. The Kaypro II logo was
scanned from the original Kaypro II, and stored as a bitmap. The bitmap is loaded when the emulation is
started.

Member Scope Description Type
image Private Image to be sent to this object and

shown.
Image

clear Private Variable to tell this object to clear
the Canvas before drawing the
image.

boolean

2.2.6.2 LogoCanvas Methods

Method Scope Parameter
Values

Return Values Description

Paint Public Graphics g void Paint method for this object to
paint the image onto the
canvas object.

SetImage Public Image image void Sets the image to be shown
onto the canvas.

Update Public Graphics g void Calls the paint method each
time this object is called or the
screen needs to repainted.

2.2.7 OutCanvas extends Canvas

2.2.7.1 OutCanvas Members
Out Canvas holds the Real mode image. The real mode image allows the user to view the actual character
set of the original Kaypro II computer.

Member Scope Description Type
Image Private Image to be shown using

MemoryImageSource. Image will
be rendered using this object.

Image

Hardware Private Hardware object pointer to get the
video RAM.

HARDWARE

CharSet Private Array that holds the character rom
from the original Kaypro II
computer.

Byte[]

ColorModel Private This object holds the color to be
used when rendering the image.

ColorModel

Pixels Private Array that holds the pixels that are Byte[]

__
kayprodes.doc

18
Proprietary and Confidential

turned on or off when the image is
rendered.

Rscreen Private MemoryImageSource that will
render the image used.

MemoryImageSource

2.2.7.2 OutCanvas Methods

Method Scope Parameter
Values

Return Values Description

Paint Public Graphics g void Paint method for this object to
paint the image onto the
canvas object.

Update Public Graphics g void Calls the paint method each
time this object is called or a
repaint is needed.

realUpdate Public Graphics g void This method is called
externally to speed up the
drawing. The drawing faster
by eliminating the call to
paint.

generateColorModel Public void void This method creates the color
model used by the
MemoryImageSource. Only
two colors are needed because
the Kaypro II screen is
monochrome.

generatePixels Public void void This method mathematically
fills the pixels array to render
the image.

MakeScreenImage Public void void This method creates the
MemoryImageSource and sets
it to an animated
MemoryImageSource.

__
kayprodes.doc

19
Proprietary and Confidential

Figure 4 Output Screen Example

2.2.8 Z-80 CPU Emulation
• The Kaypro II utilizes the Z-80 Processor. The CPU emulated shall be the Z-80
• The CPU instruction set shall conform to those presented in the Zilog Z80 Microprocessor Family

User’s Manual, Part number Q1/95 DC 8309-1.

2.2.8.1 Z-80 Features
 The Z-80 CPU contains a number of notable features. These include:
• One 8-bit Accumulator
• One 8-bit flags register
• Six 8-bit general purpose register, that can be mapped to three 16-bit registers
• An alternate register set
• An interrupt vector register
• Two 16-bit index registers
• One stack pointer
• One program counter

2.2.8.2 Z-80 Instruction Set
The Z-80 instructions are a superset of the 8080.
 A summary of the Z-80 instruction set is included in appendix A.

 The Z-80 instruction set consists of the following groups of operations:
• Load and exchange
• Block transfer and search
• Arithmetic and Logical
• Rotate and shift

Printer Output

__
kayprodes.doc

20
Proprietary and Confidential

• Bit Manipulation
• Jump, Call and return
• Input and Output
• CPU Control (NOP, HALT, etc)
• The RLA command as documented in the Zilog user’s manual contains an error in the rotate diagram.

The emulation shall support shift left, whereas the manual depicts shift right.

2.2.8.3 Z-80 Arithmetic Logic Unit (ALU)
The Z-80 ALU supplies the following functions:
• Add
• Subtract
• Logical AND
• Logical OR
• Logical Exclusive OR
• Compare
• Shift and rotate
• Increment and decrement
• Bit operations

• The ALU shall be implemented as a function of the CPU. It may not be implemented separately.

2.2.8.4 Z-80 Addressing modes
The Z-80 CPU shall support the following addressing modes:
• Immediate, where data is explicitly specified within the instruction (8 bit)
• Immediate extended, where data is specified within the instruction (16 bit)
• Zero page, where a single byte instruction may call one of eight zero-page locations
• Relative, where the following byte specifies a relative address
• Extended, where a 16 bit value specifies the location of an indirect address
• Indexed, where an index register and an offset specify an absolute address
• Register addressing, where a particular register specifies an address location
• Implied addressing, where the opcode automatically implies a CPU register
• Register indirect addressing, where the register contains an indirect address reference
• Bit addressing, where memory or registers may directly manipulate individual bits

2.2.8.5 Main Registers
The Z-80 emulation shall include the following main registers. These registers shall be contained within
the processor, and be accessible to the CPU instructions. The alternate instructions are accessible via a Z-
80 swap command. This command swaps the main and alternate register sets. Unless swapped, the
alternate register set is not accessible to the Z-80 instructions.

 Main Register Set Alternate Register Set
 Accumulator A Flags F Accumulator A’ Flags F’
 B C B’ C’
 D E D’ E’
 H L H’ L’

Table 1, Z-80 Primary Register Set

__
kayprodes.doc

21
Proprietary and Confidential

2.2.8.6 Special Purpose Registers
 Z-80 special purpose registers shall be included in the emulation. These registers assist in indirect
addressing via Z-80 instructions, specifically, the IX and IY index registers. The program counter controls
program execution, while the stack pointer register controls stack operations. The Z-80 CPU includes
instructions for stack manipulation.

 Special Purpose Registers
 Interrupt
Vector I

 Memory
Refresh
Register R

 Index Register IX
 Index Register IY
 Stack Pointer SP
 Program Counter PC

Table 2, Z-80 Special Purpose Register Set

• The Interrupt vector, I, is used for mode 2 interrupts (described below). It shall be implemented.
• The Memory refresh register is used for dynamic memory refresh. It is incremented each time an

instruction is executed. Dynamic memory is a function of hardware implementation, and is not needed.
The memory refresh register, R, shall not be implemented.

2.2.8.7 Bus Timing and Signals
Bus timing and associated signals shall not be implemented. Only the function of the CPU shall be
implemented. Exact CPU speed shall not be governed, except within the limits of the executing hardware
and software.

2.2.8.8 CPU Object
CPU Object is a Task

Figure 5, CPU and Opcodes

Opcode Array Element 0

Opcode Array Element 1

Opcode Array Element 2

Opcode Array Element 3

Execute
[opcode]

Opcode Array Element n

.

.

.

Opcode
Function 1

Opcode
Function 2

Opcode
Function 3

Opcode
Function n

.

.

.

CPU Object

Fetch
opcode

External
Functions

__
kayprodes.doc

22
Proprietary and Confidential

The CPU shall be implemented as an object. It shall have access via member functions. The CPU object
shall contain an array of opcode references. The CPU shall fetch an opcode, and use that value as an index
into the array of object references.

• The Z-80 CPU shall be implemented as an object.
• Each instruction may be implemented as a separate object or as one of a group of objects
• Each instruction may be accessed via an array of opcode references contained within the CPU object
• The Z-80 object shall be implemented as a Java class
• The Z-80 object shall be implemented as a Java thread
• The CPU object shall contain certain necessary private variables and public functions. The variables

shall serve as internal registers, flags, etc.
• The public functions shall allow external objects to access the internal CPU operations.

__
kayprodes.doc

23
Proprietary and Confidential

2.2.8.8.1 CPU Object Data Members

Name Scope Type Description
StepMode Private Boolean The CPU shall be capable of operating in two

modes: debug and run. In debug mode, the CPU
shall execute one instruction at a time. The
StepMode variable shall control the CPU mode.

0=step mode off, 1=step mode on
hHardware Private Hardware The CPU shall have access to the hardware object.

The hardware variable shall be a reference to the
hardware object.

Reference to hardware object. Needed to read and
write data to/from object

SP Private Short Stack pointer
PC Private Short Program Counter
IX Private Short Index register
IY Private Short Index register
A Private Short A register
B Private Short B register
C Private Short C register
D Private Short D register
E Private Short E register
H Private Short H register
L Private Short L register
A1 Private Short A register (alternate set)
B1 Private Short B register (alternate set)
C1 Private Short C register (alternate set)
D1 Private Short D register (alternate set)
E1 Private Short E register (alternate set)
H1 Private Short H register (alternate set)
L1 Private Short L register (alternate set)
R Private Short Memory refresh register
I Private Short Interrupt control vector
IFF Private Boolean Interrupt enable
Halt Private Boolean The CPU contains a command to halt the processor.

When the CPU is in halt state, the Halt variable
shall indicate its state.

State of processor (0=running, 1=halted)
Reset Private Boolean The CPU may be reset. The Reset variable contains

the current reset state of the CPU

State of processor (0=running, 1=reset)
Break Private Int A breakpoint may be set. This indicates at what

address the CPU will break. The break address is
held in the Break variable.

PC of breakpoint
Cmd[] Private Opcode Array of opcode objects. Each points to a single Z-

80 opcode. See opcode object.

Table 3, CPU data Members

__
kayprodes.doc

24
Proprietary and Confidential

2.2.8.8.2 CPU Member Function Summary

Member Scope Parameters Return Value Description
SetBreakPoint Public Short

Address (0-0xffff)
Short
0 = Breakpoint set
1 = Breakpoint error

Sets a CPU breakpoint

GetStepMode Public None boolean
false = Run mode
true = Step Mode

Returns the current status of
Step/Mode

SetStepMode Public boolean
true = Run Mode
false = Step Mode

None Sets step mode to run or
step

Registers2String Public None String
Text string
containing current
register status

Returns text string
containing CPU register
status. Used for debugging

Flags2String Public None String
Text string
containing current
flag status

Returns text string
containing CPU flag status.
Used for debugging

Opcode2String Public None String
Text String
containing current
opcode mnemonic
an parameters

Returns text string
containing CPU opcode
mnemonic. Used for
debugging

Step Public None Void Single steps CPU one
instruction. CPU must be in
step mode

Start Public Hardware
Reference to
hardware object

Void Starts the CPU thread

Busy Public None Boolean
True=Executing step
False=Waiting for
step (ok to read
opcodes, registers or
flags)

Valid when in step mode
only. Returns state of CPU.
True if CPU is busy, False if
CPU is idle. External
routines should not try to
read flags opcodes, or
registers while CPU is busy.
erroneous results may occur.

CPU Public None Void CPU Constructor

Table 4, CPU Public Functions

2.2.8.8.3 CPU Public Member Function Descriptions

2.2.8.8.3.1 SetBreakPoint Public Member Function
The CPU object supports a single breakpoint. The SetBreakPoint function sets the address on which the
CPU will enter a break mode. The CPU shall break when an opcode is fetched from the given address. A
break will not be performed on a data read or write.

When the CPU encounters a breakpoint, it will place itself in step mode, and stop executing commands.

__
kayprodes.doc

25
Proprietary and Confidential

2.2.8.8.3.2 GetStepMode Public Member Function
The GetStepMode function returns the current state of the CPU. Possible states are:
• Step mode
• Run Mode

2.2.8.8.3.3 SetStepMode Public Member Function
The SetStepMode function allows external entities to manually set the mode of the CPU. Possible modes
are:
• Step mode
• Run Mode

2.2.8.8.3.4 RegisterDisplay Public Member Function
The register display function returns a string containing the current register status. An example would be:

PC=579 A=0 BC=7f DE=e406 HL=2d IX=0 IY=0 SP=fbfc

2.2.8.8.3.5 OpcodeDisplay Public Member Function
The register display function returns a string containing the current register status. An example would be:

JR Z,57d

2.2.8.8.3.6 FlagDisplay Public Member Function
The register display function returns a string containing the current register status. An example would be:

S=0 Z=1 H=1 PV=1 N=0 C=0

2.2.8.8.3.7 Step Public Member Function
Active only when CPU is in step mode. Executes one complete instruction.

2.2.8.8.3.8 Start Public Member Function

2.2.8.8.4 External Hardware Object Access
The CPU objects shall have access to public functions and public data within the hardware object. The
CPU shall be able to perform the following functions on the hardware object:

2.2.8.8.4.1 Short Readport (short port)
Reads a byte from a specific hardware port. The port is passed as the only parameter.

2.2.8.8.4.2 Void Writeport (short port, short data)
Writes a byte to a specific hardware port. The port number is passed as the first parameter, while the data
is passed as the second parameter.

2.2.8.8.4.3 Int ReadWord (int address)
Reads a word from memory. The address to read from is the only parameter. The read is context
dependent. That is, the read will occur from the currently selected bank.

The return value is expected to be in the proper order. The Z-80 stores the LSB first, and the MSB second.
Thus, the return value is expected to be LSB+MSB*256.

2.2.8.8.4.4 Void WriteWord (int address, int data)
Writes a word to memory. The address to read from is the first parameter, while the data to be written is the
second parameter. The write is context dependent. That is, the write will occur from the currently selected
bank.

__
kayprodes.doc

26
Proprietary and Confidential

The value is expected to be stored in the proper order. The Z-80 stores the LSB first, and the MSB second.
Thus, the stored value is expected to be LSB+MSB*256.

2.2.8.8.4.5 Short ReadByte (int address)
Reads a byte from memory. The address to read from is the only parameter. The read is context dependent.
That is, the read will occur from the currently selected bank.

2.2.8.8.4.6 Void WriteByte (int address, int data)
Writes a byte to memory. The address to read from is the first parameter, while the data to be written is the
second parameter. The write is context dependent. That is, the write will occur from the currently selected
bank.

2.2.8.8.4.7 boolean ResetStatus ()
Reads reset state from hardware object.
The Z-80 CPU shall support implementation of the RESET function. When reset, the CPU shall force a
jump to location 0x00 upon completion of the current command.

2.2.8.8.4.8 boolean NMIStatus()
Reads NMI state from hardware object
The Z-80 supports one non-maskable interrupt. This interrupt is executed when the NMI function of the
hardware object returns true. The NMI interrupt forces a CPU restart (call) to location 0x66 upon the
completion of the current instruction.

• The non-maskable interrupt may not be disabled.

2.2.8.8.4.9 boolean IntStatus ()
 The Z-80 CPU supports 3 modes of maskable interrupts: mode 0, mode 1, and mode2. The int function
accepts a value from the hardware object. This value is used as an offset for modes 0 and 2. This value is
not implemented in mode 1.
• Maskable interrupts may be disabled via CPU instruction.

2.2.8.8.4.9.1 Mode 0
An interrupt is executed when the INT line of the CPU is activated. The INT mode 0 interrupt forces
execution of the instruction placed on the bus by the interrupting device. The execution of the device-
supplied instruction takes place upon the completion of the current instruction.

• Mode 0 shall be implemented.

2.2.8.8.4.9.2 Mode 1
An interrupt is executed when the INT line of the CPU is activated. The INT mode 1 interrupt forces a
CPU restart (call) to location 0x38 upon the completion of the current instruction.

• Mode 1 shall be implemented.

2.2.8.8.4.9.3 Mode 2
An interrupt is executed when the INT line of the CPU is activated. The INT mode 2 requires that the
programmer setup a table of 16 bit service routine addresses. When an interrupt is generated, a 16 bit
address is created. This address points to an element in the table.

__
kayprodes.doc

27
Proprietary and Confidential

The upper 8-bits of the address is specified by the programmer, and stored in the I register. The lower 8-
bits are supplied by the interrupting device. This address is used by the CPU to index into the programmer-
supplied table. The index points to the address of the interrupt service routine.

The execution of the interrupt service routine takes place upon the completion of the current instruction.

• Mode 2 shall be implemented.

2.2.8.8.4.10 Int GetINTVector ()
Returns the vector from the INT (modes 0 and 2)

2.2.8.9 Opcode Object

Figure 6, Opcode Object

The opcode object is a virtual base class. Its purpose is to allow additional classes to inherit its two basic
functions.

The opcode base class contains two virtual functions.
• Execute
• Log

Opcode
Virtual

Base Class

Instruction 1 Instruction 2 Instruction n

inherits
inherits

inherits

. . .

__
kayprodes.doc

28
Proprietary and Confidential

The rules of inheritance allow opcodes to point to instructions. For example, the following code would be
implemented for each instruction (or groups of instructions).

class instruction1 extends opcode{
public void log(){

//Log operation
}

public void execute(){
//Execute command

}
}

The instruction1 class would extend the functionality of the base class. It would supply the functionality
for the log and execute functions. Each instruction, or group of instructions will have a similar definition.

Within the CPU class, the following code would be implemented.

private opcode cmd[] = new opcode[maxopcodes];
opcode[0] = new instruction1();
opcode[1] = new instruction2();
opcode[2] = new instruction3();

This code allows each instruction to be referenced via an array index. Executing an instruction is then quite
simple. It would be accomplished as follows.

While(true){
Index=fetch();
Opcode[Index].execute();
Opcode[Index].log();

}

The CPU object simply fetches the next opcode, then uses that opcode as an index into an array of opcode
pointers. It uses the pointer to execute the correct opcodes member function(s).

2.2.8.9.1 Opcode Object Data Members
There are no required opcode data members

2.2.8.9.2 Opcode Member Function Summary

Function Parameters Return Value Description
Log None String containing opcode

string
Returns a string containing text of
the command executed. For
example, the return string may
contain: JR Z, 57d

This function is provided for
debugging purposes.

Execute None None Executes the current instruction,
and sets the PC to the next
instruction.

2.2.8.9.3 External CPU Object Access

__
kayprodes.doc

29
Proprietary and Confidential

The opcode object shall have access to functions and data within the CPU object. Because the two are
intimately tied to each other they shall be friend functions.

2.2.9 Object Hardware
Hardware is a Task

Figure 7, Port Emulation, Kaypro II functional view, shows the Kaypro II architecture. Central to the
architecture is the hardware. The hardware represents the communication mechanism between the various
system components. The hardware represents discrete chips and connection logic within the actual Kaypro
II. The hardware shall be a link from the CPU to all the other devices. The hardware connects the
following devices.
• Keyboard
• Screen
• Memory (Ram/Video/RAM)
• Bank switching
• I/O Ports
• Disk Drives
• Motor control, indicator lights, etc

 The hardware passes the following signals (messages):
• User action
• NMI
• INT
• Reset
• Read memory
• Write memory
• Port commands

Figure 7, Port Emulation

Out (01), A

CPU Hardware

Port 0

Port 1

Port 2

Port 3

Port n

Device A

Device B

Device D

Device C

Device ...

Physical Devices

__
kayprodes.doc

30
Proprietary and Confidential

2.2.9.1 Memory Emulation

Figure 8 Kaypro II Bank Switching

The Kaypro II utilizes two banks of memory. Bank 0 contains 64K of linear RAM. Bank 1 contains the
video and system ROM. Notice from Figure 8 that bank 0 and bank 1 share high memory.

One way to understand the Kaypro II banking scheme is to visualize a switch (see Figure 8). The CPU
executes instructions from memory. The memory that the CPU sees is determined by the bank switch.
Depending on the position of the bank switch, the CPU will operate on data from either bank 0 or bank 1.
The bank switch is thrown electronically. This allows the Kaypro II to support 64K programs, while still
supporting memory mapped video, and bootstrap ROM.

Note that the upper portion of bank 0 and bank 1 share bank 0’s RAM. This allows a single program to
operate in both memory domains.

Bank 1 contains ROM as well as video. The ROM, referred to as the “System ROM,” is contained within a
2716 EPROM. This EPROM is pre-programmed with utility routines, as well as a bootstrap loader. When

Bank 0 RAM

Bank 1 System ROM

Bank 1 Video RAM

Kaypro II Bank Switching

CPU
Bank

Switch

Bank 0 AND 1 RAMSame

__
kayprodes.doc

31
Proprietary and Confidential

the system is reset, bank 1 is selected, and code from within the System ROM is executed. This code loads
the operating system from floppy and initializes the system. The complete memory map for the Kaypro II
is shown in Table 5.

Bank Type Range
0 System RAM 0x0000 - 0xFFFF
1 System ROM (2716) 0x0000 – 0x2FFF
1 Video RAM 0x3000 – 0x3FFF
1 System RAM2 0x4000 – 0xFFFF

Table 5, Kaypro II Memory Map

• The emulated RAM shall be 64K bytes.
• The emulated ROM shall be 4K Bytes
• The emulated Video RAM shall be 4K Bytes.
• System ROM shall be extracted from the original Kaypro II 2716 EPROM, converted to programmatic

form, and inserted into the emulator code.

*Note: Video and System ROM actually occupy only 4K. There is a void above each of these areas. This
area can be occupied by larger ROM, for example. The Kaypro II has a jumper that allows upgrading the
base unit to a 2732 ROM. It has been reported that some Kaypro systems mirror System ROM (duplicate
electronically). That is, System ROM repeats within the void space.

2.2.9.2 Hardware Members

Hardware Object Data Members
Member Scope Type Description
cpu Private CPU Object for CPU.
screen Private Screen Object for Screen.
sMemory[0X10000] Private Short Memory allocation.
bBank Private Boolean Switch to set memory bank.

True=Rom/video selected.
False=RAM.

bNMIStatus Private Boolean Determines the NMI line status. Initially
set at false.

sNMICount Private Short Determines the number of loops that
NMI has remained. Initially set at 0.
Must receive 20 consecutive NMI to
avoid race conditions.

d[256] Private Device Devices (ports) connected to the
hardware. Allocated with 256 devices
initally, but not defined.

bKeyAvail Private Boolean Determine if a the character is available.
True if character is available. Initially
set as false.

sDrive Private Short Determine the if the floppy drive is
active. Active floppy drive. Initially set
at 0.

cKeyBuff[10] Private Char The Keyboard character buffer

2 As noted in the text, bank 1 system RAM is physically the same as bank 0 system RAM. They are
logically and electronically the same.

__
kayprodes.doc

32
Proprietary and Confidential

sHead Private Short Head pointer for character buffer.
sTail Private Short Tail pointer for character buffer.
COLUMNP Public Final

Short
Physical line length. Maximum of
length is 128. Used for Calculating the
screens for formatting purposes

COLUMNS Public Final
Short

Screen line Length. Maximum of length
is 80. Used for Calculating the screens
for formatting purposes

ROWS Public Final
Short

Number of rows on screen. Maximum
length of 24.

cVideo[ROWS][COLUMNP] Global Char Video Memory. 24 X 128
cVideoX[ROWS][COLUMNP] Global Char Video memory, translated into printable.

24 X 128

2.2.9.3 Hardware Members

Hardware Public Member Methods Summary
Methods Scope Parameters Return Value Description
Constructor Null Null
Start Public CPU c

Screen s
Null Get references to the

screen and cpu objects.
Run Public Null Null Suspends.
setBank Public Boolean b None Switches the RAM or

ROM bank.
True = Rom/Video bank.
False = RAM.

Adddev Public Device din
Short sPort

None Add a device to a port.

In Public Short sPortIn Short
If not null
Return nothing

Handles CPU IN
commands. Returns the a
port or a 0.

Out Public Short
SportOut
sDataOut

None Handles CPU OUT
commands.
Passes in a port number.

Read Public Int iLocation Synchronized short
Actual memory RAM.
Actual memory for the video.
Actual memory for the ROM.

Handles a read request
from memory as a single.
Returns the memory
location.

ReadWord Public int iLocation Synchronized short
read(iLocation) *256 +sTemp

Handles a read request
from memory as a word.
Returns the memory
location.

Write Public int iLocation
short sData

None Handles a write request
from memory as a single.
Passes in a memory
location and the memory
data as a short(single).

WriteWord Public int iLocation
int iData

None Handles a write request
from memory as a word.
Passes in a memory
location and the memory
data as an int(word).

SetNMI Public None None Set Interrupt

__
kayprodes.doc

33
Proprietary and Confidential

GetNMI Public None Synchronized boolean (true or
false)

Returns status of NMI
line. Must read 20
consecutive NMI’s. This
eliminates a race
condition, where an NMI
is actually generated too
quickly. This can happen
in the disk drive task.

NMIReset Public None None Reset the NMI line.
NMIAssert Public None None Assert the NMI line.
PutKey Public Char c None Inserts a key into the

beginning of the input
buffer.

GetKey Public None Char cTemp Get a key form the input
buffer.

KeyAvail Public None Boolean bKeyAvail Set an input key to true as
available.

GetDrive Public None Short sDrive Get the active drive.
SetDrive Public Short s None Set the active drive.
SetInt Public Int offset None Set Interrupt
GetInt Public None Int offset Returns status of Interrupt

line. Must read 20
consecutive Interrupt.
This eliminates a race
condition, where an
Interrupt is actually
generated too quickly.
This can happen in the
disk drive task.

SetReset Public None None Set Reset line.
GetReset Public None None Sends a flag to reset the

kaypro.
ReadROM Public Int iLocation Short byte Retrieves a memory

location from ROM and
returns the data within
that location.

ReadVideo Public Int iLocation Short byte Retrieves a memory
location from Video and
returns the data within
that location.

ReadRAM Public Int iLocation Short byte Retrieves a memory
location from RAM and
returns the data within
that location.

2.2.10 SIO/PIO Design

__
kayprodes.doc

34
Proprietary and Confidential

Figure 9, SIO/PIO Model

2.2.10.1 Object Method Description tables
SIO Object Method description table

Method Description Parameter Values Return Value
Write Writes the given bit pattern to

the given instance of SIOPort A
or B using the hex value to
determine whether it's control or
data. Calls SIOPort::Write
passing the byte to it as well as
CONTROL /DATA. SIOPort A

Port Values:
0x05 for Write data to SIO B
0x07 for Write control to SIO B

The following ports will be
opened but have no affect.
0x04 for Write data to SIO A

No return.

Port Object

PIO Object

SIO Object

SIOPort Object A

PIOPort Object B

Keyboard Object

FDC Control
Object

Floppy drive
Object

Inherits

PIOPort Object A

Instance

SIO Port Object B
Instance

Ptr Instance

Ptr Instance

Printer UI Object
Ptr Instnace

Hardware Object

Array Instance

Not Used

SysPIO Object

Inherits

Ptr Instance for Port A
bitport

PIOPort A

PIOPort B

Instnace

NUll

Inherits

Inherits

__
kayprodes.doc

35
Proprietary and Confidential

or B determines where to put the
byte. Port B is used for the
keyboard.

0x06 for Write control to SIO A

Read Returns the value from
calling SIOPort::Read (C/D)

Port B is used for the keyboard.

0x05 for Read data from SIO B
0x07 for Read control from
SIO B.

The following ports will be
opened but have no affect.
0x04 for data from SIO A
0x06 for data from SIO A

Returns short,
Contents from SIOPort
See (SIOPort methods)

SetHardware Sets pointer to hardware object.
For Int useage.

Pointer to hardware object. null

GetSIO Returns a this ptr to this SIO
Object

null Returns a SIO Object

Reset Calls SIOPorts A and B::Reset in
order to reset the SIO chip.

none null

Constructor Calls SIOA.Reset and
SIOB.Reset

Instantiates Keyboard object and
passes an SIOPortB object ptr to
Keyboard Calling
Keyboard.SetPortObject(SIOPort
B)

null null

2.2.10.2 SIOPort Object Method Description table

Method Description Parameters Return Value
Reset WR0 Points to itself

WR1 is cleared and bit 3
is set.

WR2 bit 7 cleared
RD0 bit 0 is cleared
RD0 bit 2 is set

Buffer is cleared.
WR2 is copied into RD2

None null

__
kayprodes.doc

36
Proprietary and Confidential

Reset causes the first
byte written to this port
to be written into WR0,
WR0 is also set to point
to itself.

Write Uses WR0 to determine
which register receives
the given bit pattern if
2nd param is control.

Writes byte to it internal
buffer if 2nd param is
data. (This will be done
by keyboard)

short byte
Value to be written

short port
States Control or Data

If Port is data, Transmit
buffer char avail is set
(See RD1) and buffer
empty is reset (See
RD1). and char is
written to buffer, buffer
size increases.

If Port is control, Byte is
written to the Register
pointed to by WR0

null

Read Uses WR0 to determine
which RDx register is
returned if Param is
CONTROL.

Returns the next byte
form buffer if param is
DATA and decreases
buffer size.

short byte that
determines whether
control or data is being
requested.

Returns contents of RDx
pointed to by WR0 if
param is CONTROL. Or
next byte from buffer if
param is DATA.

Constructor Construction Sequence:
1) Reset is Called.

null null

SetPortID Sets the string value of
what port this instance
of PIOPort is for Later

String PortID
'A' or 'B'

null

GetPortID Return what port this is null Returns 'A' or 'B'
essentialy returning
MyPortID member.

SetPortObject Connects a port object
up to this port. Writes
and reads for data from
this port are redirected
to the Connect
PortObject

Object ptr that Inherits
from Port

null

2.2.11 Keyboard Object Method Description table

Function Description Parameters Return Value
GetKeys Constantly polls the

keyboard for input keys
and places them into

__
kayprodes.doc

37
Proprietary and Confidential

SIOPort B's
SetPortObject Connects the keyboard

to the given port Object.
Port inherited object null

2.2.12 SIO Object Member description tables
SIOPort Members

Member Scope Description Type
CONTROL Public CONTROL is a const

value that is written to
an SIOPort object
from SIO chip to tell
SIOPort that the byte
passed in is a control
byte.

Short

DATA Public DATA is a const value
that is written to an
SIOPort object
from SIO chip object to
tell SIOPort that the
byte passed in is a data
byte.

Short

Hardware Pointer Private Pointer to hardware for
callback needs

Hardware Object

Buffer Private Holds upto 255 typed
transmitted characters
from keyboard.
when buffer is empty
sets bit 2 of RD0. (See
RD0 Register)

String Array

__
kayprodes.doc

38
Proprietary and Confidential

2.2.12.1 WR0 Register Description table
Description - Pointer register and command register.

Bit value meanings
bits 0 - 2 form a pointer to the read or write
register to receive the incomming byte.
bits 3 - 5 form command bits for WR0 command bits my not need be implemented as they are used in serial
I/O not Keyboard input.
bits 6 - 7 CRC bits

2.2.12.2 WR1 Register Description table
Description - Contains control bits for the various
interrupt and Wait/Ready modes.
This register will act as a ghost taking values that will be neglected.

Bit value meanings
bit 2 status affects vector. If bit is 0, WR2 is
returned from WR2 in an Int Acknowledge
sequence.
bit 3 - Interrupt mode 0
bit 4 - Interrupt mode 1

2.2.12.3 WR2 Register Description table
Description - Interrupt vector register.

Bit Value meanings
bits 0 - 7 are the ISR vector
bits 4 - 7 and 0 are always returned exactly as
written
bits 1 - 3 are returned as written if bit 2 in WR1 is 0.

2.2.12.4 WR3 Register Description table
Description - Receiver logic/ control bits/ parameters
May not need to be implemented.

2.2.12.5 WR4 Register Description table
Description - Receiver and Transmitter control
May not need to be implemented.

2.2.12.6 WR5 Register Description table
Description - Transmitter control bits.
May not need to be implemented

2.2.12.7 WR6 Register Description table
Description - SDLC character for sync mode.
May not need to be implemented

__
kayprodes.doc

39
Proprietary and Confidential

2.2.12.8 WR7 Register Description table
Description - SDLC character for sync mode
May not need to be implemented

2.2.12.9 RD0 Register Description table
Description - Contains status of receive and transmit buffers

Bit Value Meanings
bit - 0 is set when a new character is available.
bit - 2 is set when buffer is empty.

2.2.12.10 RD1 Register Description table
Description - Special receive conditions/ status bits / resudue codes
May not need to be implmented

Description - ISR vector set in WR2 for non status affects..
May not need to be implemented using WR2.

2.2.13 SIO Object Members

Member Scope Description Type
SIOPort A Private SIOPort A instantiation,

controls data and control
signals for
the serial input and
output port A.

SIOPort

SIOPort B Private - SIOPort B controls
data and control signals
for the
serial input and output
port B.

SIOPort

Keyboard Private This is an instance of the
keyboard object that bill
be
attachted to SIO Port B

Keyboard

__
kayprodes.doc

40
Proprietary and Confidential

2.2.14 Keyboard Object Members
Member Scope Description Type
SIOPort Pointer Private This is a ptr to SIOPort

B. This port's write
functions are called
by keybard to place
characters into SIOPort
B's buffer.

SIOPort

SIO Detailed functionality notes:

-- Hardware Connectivity The hardware object connects
to the SIO chip by instantiating it within an array of a base object
called Port. The Hardware object will determine if the SIO write
or read is within the base address of the SIO and just pass the port
value and the byte to be written.

Example

 Port Byte to be written

 SIO address range in hardware

CPU Command
 SIO::Write(0x3,byte)

Figure 10, Hardware Port Connectivity

hardware must determine whether the port is in the SIO base address range and can call any of the Write()
functions for the ports but must pass the port number and the byte to be written to the port.

0x4

0x5

0x6

0x7

Out 0x3, byte

__
kayprodes.doc

41
Proprietary and Confidential

Keyboard Detailed Functionality Notes

-- Keyboard SIO Port B is hooked up to the keyboard by passing an instance ptr of SIOPort
to keyboard. The keyboard then calls the port objects Write functions to fill the buffer with keys pressed.
Keyboard input is placed into the 255 character array until it is full.
when new char is available see Register RD0. When buffer is empty see RD0.

- Initialization
SIO Instantiates the Keyboard Object.
SIO calls Keyboard.SetPortObject(SIOPort B) connecting the keyboard to Port B.
Keyboard calls GetKeys which constantly reads keys while buffer is not full.

- Example exectuion from system.
SIO.Reset() -> SIOPortsB.Reset(), SIOPortA.Reset();
SIO.Write(char) <- byte written into SIO WR0. WR0 pts to itself

Assuming user programs WR0 to point to RD0.
Keyboard.ReadKeys() Enters char.
so SIOPort B buffer has something in it.

Hardware calls SIO.Read(0x07) <- Port is control B so Return Port B RD0

User program checks to see if key in buffer by testing bit 0 of RD0.

Char is available so user calls
SIO.Read(0x05) <- Port is data B so Return next byte from buffer.
Buffer is empty now so SIO Port B RD0 bit 0 is cleared bit 2 is set.

- Example exectuion of keyboard
Keyboard object polls keyboard.
If character from keyboard, keyboard calls its ptr to SIOB.Write(char, 0x05)
SIOB adds key to buffer and incs buffer size. Then sets bit 0 of RD0 and clears bit 2 or RD0

__
kayprodes.doc

42
Proprietary and Confidential

2.2.15 PIO Design

2.2.15.1 Object Method Description table
PIO Method Description table

Function Description Parameters Return Value
Write Writes a byte to the

given Port A or B of
PIO. PIO port A will be
used for printer output
Port B is not used.

Calls PIOPort
A/B.Write Passing
Control or data and the
byte.

short port
0x09 PIOA control
0x08 PIOA data
0x0B PIOB control
0x0A PIOB data

None

Read Reads a byte from the
given port A or B.
calling
PIOPort::A/B.Read (
C/D)

short Port
0x09 PIOA control
0x08 PIOA data
0x0B PIOB control
0x0A PIOB data

Constructor Instantitaes PIOPort A
and B.

null null

GetPIO Returns a ptr to this PIO
object

null Returns a this ptr to PIO
object for hardware use.

SetPortObject Sets the data port of the
given port A or B to the
passed in object that
derives from Port.
This will be called by
Hardware or UI to
connect the Print Screen
to the PIOPort

String Port 'A' or 'B'
Port inherited object.
Object to connect to the
given port data stream.
that inherits from Port.

null

__
kayprodes.doc

43
Proprietary and Confidential

2.2.15.2 PIO Port Method Description table

Function Description Parametrs Return Value
Read Reads from this port. If

a read is Data, if this
object has a Port Object
hooked up it reads from
that object.

short C/D

Parameter can be control
or data

If Parameter is
CONTROL then returns
the contents of bitport

If parameter is DATA
returns null.

Write Writes to this port. If
this object has a Port
Object Hooked up to it it
writes to that object.

Short C/D
Short byte

If CONTROL writes the
given byte to bitport.

If DATA writes the
given byte to the
connected port object if
a printer is connected.

If connected Port
Object ptr is null ie. data
port is null does nothing.
(No Printer connected
for our use)

null

(SYSPIO only)
SetPrinterReady

Sets the printerready bit
of bitport (See bitport

null null

(SYSPIO only)
SetStrobe

Sets the printer stobe bit
of bitport (See bitport
member)

null null

GetBit Returns the bit value of
the requested bit from
bitport register

short bit
valid ranges are 7 -0

boolean value of
requested bit

SetBit Sets the requested bit in
the bitport register.

short bit
valid ranges are 7 - 0

void

SetPortObject Sets the PIOPort object
ptr to the passed in
object and all reads or
writes to and from data
are sent to this objects
.Write(), .Read()

Object that inherits from
Port.

void

__
kayprodes.doc

44
Proprietary and Confidential

2.2.15.3 SysPIO Method Description table

Function Description Parameters Return Value
Constructor SYSPIO Clears out both

ports bitport registers
and.

For Both SysPIO
PIOPorts A and B ->
Sets bit 0 of bitport
Sets bit 3 of bitport
Sets bit 5 of bitport
Sets bit 7 of bitport

null null

Read PIO A is the system
bitport
0x1C is port A data
0x1D is port A control
0x1E is port B data
0x1F is port B control

short port

If port is A or B data
does nothing

If Port is A or B control
returns the contents of
bitport by calling
PIOPort
A/B.Read(CONTROL).

Returns
 PIOPortA/B.Read
(DATA) if port is data
for A or B.
Returns
PIOPortA/B.Read(CON
TROL) if port is control
for A or B.

Write PIO A is sytem bitport
0x1C is port A data
0x1D is port A control
0x1E is port B data
0x1F is port B control

short port
short byte

If Port is A control then
writes byte to bitport
register

Calls
PIOPortA.Write(CONT
ROL,byte)

If Port is B control then
writes the byte to B's
bitport register. (WHich
does nothing)
Calls
PIOPortB.Write(CONT
ROL,byte)

If Port is data a or b then
does nothing. Calls
PIOPort::A/B.WRite(D
ATA,byte)

null

GetBank Returns Memory bank
conditions

Null Returns value of system
bitport used to set the
memory bank
Calls SysPIO::A.GetBit(
7) (See Bitport
member)

GetSysPIO Returns a ptr to this
SYSPIo object

null Returns Ptr to pio
object.

__
kayprodes.doc

45
Proprietary and Confidential

2.2.15.4 Object Member Description tables
PIO Member Description tables

Member Scope Description Type
PIOPort A Private - Contains functionality

of port A
Connects to printer and
is used for sending
characters to printer
screen. See PIOPort A
for how PrinterScreen is
connected.

PIOPort

PIOPort B Private Port is not Used PIOPort
KayproII instance ptr Public Instance of KayproII

that has the PrinterPort
Function (See Printer)

KayProII

2.2.15.5 PIOPort Member Description table
Member Scope Description Type
Bitport Private Contains status of

printer, printer stobe
floppy disk selection
and memory bank
selection for SysPIO
Port
A only (Port B will have
similar Functionality but
won't be used by the
system).

Short

2.2.15.5.1 Bitport member bit patterns

Bit Value Meanings
bit 0 is Disk drive A select
bit 1 is Disk drive B select
bit 2 not used
bit 3 is printer ready flag
bit 4 is centronics data strobe
bit 5 double density select
bit 6 disk drive motor on
bit 7 memory bank select (See Hung for values)

__
kayprodes.doc

46
Proprietary and Confidential

Port Object Inherited Object An object that inherits
from Port and has a
Read and Write
function Reads and
writes for data are
redirected to this object
if it is not null. The UI
or Hardware will
call
PIO::SetPortObject('A',
PrinterScreen) to
connect the printer to
this port.

Port

-PIOPort Functionality Description

 PIOPort will have a Port Object that is instantiaed to null. Writes to data of PIOPort are sent to
its Object.

-- PIOPort Write Example
-Initialization
Hardware calls PIO.SetPortObject('A',PrinterScreen)
PIO calls PIOPort A.SetPortObject(PrinterScreen)
-Sample printing
Hardware calls PIO.Write(0x08,'a')
PIO Calls PIOPortA.Write('a');
PIOPortA calls it's ptr instance to the connected object s.Write('a') (this will be the printer UI
screen)
the printer UI Screen receives the given character.

2.2.15.6 FDC Floppy Disk Controller Methods

Method Scope Parameter values Return Values Description
SetSysPIO Public PIOPort Object Null Sets a pointer of

the SystemPioPort
A for checking
working drive
letter

__
kayprodes.doc

47
Proprietary and Confidential

2.2.15.7 FDC Floppy Disk Controller Members

Member Scope Description Type
PIOPort pointer Private A Pointer instance to the

SysPIOPort A. Used in
accessing which Drive is
the FDC working with

PIOPort

DataRegister Private Holds Data that is either
read from the floppy
dirve or to be the floppy
drive.
Port 0x13

Short

TrackRegister Private Holds track number of
the Current Read or
write position in the
floppy drive.
Port 0x11

Short

SectorRegister Private Holds the address of the
desired read or write
sector.
Port 0x12

Short

CommandRegister Private Write only register that
holds the current
command
Port 0x10

Bit Patterns are

Short

StatusRegister Private Holds status bits of the
disk Drive (busy bit
used only)

Short

2.2.15.7.1 Status Register Bits

Bit Description
0 Busy Bit. Is set when reading

Cleared when not.

2.2.15.7.2 Command Register Bit Patterns

Command Bit Pattern
Read Sector 100
Write Sector 001

__
kayprodes.doc

48
Proprietary and Confidential

2.2.15.8 Related Members from other objects

Object Method Description Params ReturnValues
Hardware Int Interrupt method

called by SIO
short Byte,
contents of WR2
or RD2 which is a
half address ISR
Vector.

Iei Possibly

UI GetPrinterScreen Returns a ptr
object to the
printer screen

void UI::PrinterScreen
object ptr.

Printer PdataOut(byte) Kaypro::Printer
screen write
function

short byte Null

__
kayprodes.doc

49
Proprietary and Confidential

2.2.16 Bootstrap Loader
The Kaypro II utilizes a unique way of loading the CP/M operating system. Older systems required
manually loading the bootstrap code.

The Kaypro II. Uses an internal ROM. This ROM contains the startup code needed to bring CP/M into
memory.

Typical CP/M diskettes contained a short bootstrap program on the lowest track and sector. The Kaypro II
stores the location to load CP/M and length of the CP/M operating system in this area instead. This should
be noted. This should not be a problem for the emulator if the CP/M floppy diskettes are faithfully
duplicated.

2.2.17 Operating system
 The operating system shall be supported on disk images. The disk images shall contain CP/M 2.2. The
operating system shall be read from a valid Kaypro II diskette, and transferred electronically into a form
recognizable by the Kaypro II emulator. Once inside the emulator, the disk images shall be loaded via one
of two virtual floppy disk drives.

• CP/M 2.2 shall be supported
• CP/M OS shall be supplied on track 1 of each virtual floppy disk.
• The emulator shall support loading of the OS from floppy drive A
• The CP/M operating system shall actually be run at the software level via an obtained copy of the

CP/M operating system

__
kayprodes.doc

50
Proprietary and Confidential

3. Project Deliverables
This section identifies all deliverable components of the project including hardware, software, training, and
documentation.

3.1 Hardware
No hardware shall be delivered

3.2 Software
All Kaypro II software shall be delivered.
All source code shall be delivered.
All associated build or make files shall be delivered

3.3 Training
No training shall be provided.

3.4 Project Documentation
There are two categories of documents: project development documents, such as the project plan and
design specification, and customer documents, such as the user’s guide. These documents are delivered
according to the project schedule.

3.4.1 Project Development Documentation
Requirements design documents shall be provided
Requirements specifications document shall be provided
Design documents shall be provided

3.4.2 Customer/Operations Documentation
A user guide shall be provided

__
kayprodes.doc

51
Proprietary and Confidential

4. Applicable Documents, Reference, and Glossary
This section contains title, author, and publication information for documents referred to or having an
impact on the requirements for this project. It also contains a comprehensive glossary of applicable terms
and acronyms.

4.1 References
Requirements Definition For The CSI426/Kaypro II Emulator
Zilog Z80 Microprocessor Family User’s Manual, Part number Q1/95 DC 8309-1
Z80.DOC, opcode reference, compiled by Sean Young (syoung@cs.vu.nl)
Synertek Data Book, 1983

__
kayprodes.doc

52
Proprietary and Confidential

4.2 Appendix A, Z-80 Opcodes

4.2.1 8 bit Load Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No. of
Bytes

No. of M
Cycles

No. of T
States Comments

LD r, r’ r ← r’ • • • • • • • • 01 r r’ 1 1 4 r, r’ Reg.
LD p, p’* p ← p’ • • • • • • • • 11 011 101

01 p p’
DD 2 2 8 000 B

001 C
LD q, q’* q ← q’ • • • • • • • • 11 111 101

01 q q’
FD 2 2 8 010 D

011 E
LD r, n r ← n • • • • • • • • 00 r 110

← n →
2 2 7 100 H

101 L
LD p, n* p ← n • • • • • • • • 11 011 101

00 p 110
← n →

DD 3 3 11 111 A

p, p’ Reg.
LD q, n* q ← n • • • • • • • • 11 111 101

00 q 110
← n →

FD 3 3 11 000 B
001 C
010 D

LD r, (HL) r ← (HL) • • • • • • • • 01 r 110 1 2 7 011 E
LD r, (IX + d) r ← (IX + d) • • • • • • • • 11 011 101

01 r 110
← d →

DD 3 5 19 100 IXH

101 IXL

111 A
LD r, (IY + d) r ← (IY + d) • • • • • • • • 11 111 101

01 r 110
← d →

FD 3 5 19
q, q’ Req.
000 B

LD (HL), r (HL) ← r • • • • • • • • 01 110 r 1 2 7 001 C
LD (IX + d), r (IX + d) ← r • • • • • • • • 11 011 101

01 110 r
← d →

DD 3 5 19 010 D
011 E
100 IYH

LD (IY + d), r (IY + d) ← r • • • • • • • • 11 111 101
01 110 r
← d →

FD 3 5 19 101 IYL

111 A

LD (HL), n (HL) ← n • • • • • • • • 00 110 110
← n →

36 2 3 10

LD (IX + d), n (IX + d) ← n • • • • • • • • 11 011 101
00 110 110
← d →
← n →

DD
36

4 5 19

LD (IY + d), n (IY + d) ← n • • • • • • • • 11 111 101
00 110 110
← d →
← n →

FD
36

4 5 19

LD A, (BC) A ← (BC) • • • • • • • • 00 001 010 0A 1 2 7
LD A, (DE) A ← (DE) • • • • • • • • 00 011 010 1A 1 2 7
LD A, (nn) A ← (nn) • • • • • • • • 00 111 010

← n →
← n →

3A 3 4 13

LD (BC), A (BC) ← A • • • • • • • • 00 000 010 02 1 2 7
LD (DE), A (DE) ← A • • • • • • • • 00 010 010 12 1 2 7
LD (nn), A (nn) ← A • • • • • • • • 00 110 010

← n →
← n →

32 3 4 13

LD A, I A ← I b b b 0 b IFF2 0 • 11 101 101
01 010 111

ED
57

2 2 9

LD A, R A ← R b b b 0 b IFF2 0 • 11 101 101
01 011 111

ED
5F

2 2 9 R is read after it
is increased.

LD I, A I ← A • • • • • • • • 11 101 101
01 000 111

ED
47

2 2 9

LD R, A R ← A • • • • • • • • 11 101 101
01 001 111

ED
4F

2 2 9 R is written after it
is increased.

Notes: r, r’ means any of the registers A, B, C, D, E, H, L.
p, p’ means any of the registers A, B, C, D, E, IXH, IXL.
q, q’ means any of the registers A, B, C, D, E, IYH, IYL.
ddL, ddH refer to high order and low order eight bits of the register respectively.

__
kayprodes.doc

53
Proprietary and Confidential

* means unofficial instruction.
Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set,

b = flag is set according to the result of the operation, IFF2 = the interrupt flip-flop 2 is copied.

4.2.2 16 bit Load Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No. of
Bytes

No. of M
Cycles

No. of T
States Comments

LD dd, nn dd ← nn • • • • • • • • 00 dd0 001
← n →
← n →

3 3 10 dd Pair
00 BC
01 DE

LD IX, nn IX ← nn • • • • • • • • 11 011 101
00 110 001
← n →
← n →

DD
21

4 4 14 02 HL
03 SP

LD IY, nn IY ← nn • • • • • • • • 11 111 101
00 110 001
← n →
← n →

FD
21

4 4 14

LD HL, (nn) L ← (nn)
H ← (nn+1)

• • • • • • • • 00 101 010
← n →
← n →

2A 3 5 16

LD dd, (nn) ddL ← (nn)
ddH ←
(nn+1)

• • • • • • • • 11 101 101
01 dd1 011
← n →
← n →

ED 4 6 20

LD IX, (nn) IXL ← (nn)
IXH ← (nn+1)

• • • • • • • • 11 011 101
00 101 010
← n →
← n →

DD
2A

4 6 20

LD IY, (nn) IYL ← (nn)
IYH ← (nn+1)

• • • • • • • • 11 111 101
00 101 010
← n →
← n →

FD
2A

4 6 20

LD (nn), HL (nn) ← L
(nn+1) ← H

• • • • • • • • 00 100 010
← n →
← n →

22 3 5 16

LD (nn), dd (nn) ← ddL

(nn+1) ←
ddH

• • • • • • • • 11 101 101
01 dd0 011
← n →
← n →

DD 4 6 20

LD (nn), IX (nn) ← IXL

(nn+1) ← IXH

• • • • • • • • 11 011 101
00 100 010
← n →
← n →

DD
22

4 6 20

LD (nn), IY (nn) ← IYL

(nn+1) ← IYH

• • • • • • • • 11 111 101
00 100 010
← n →
← n →

FD
22

4 6 20

LD SP, HL SP ← HL • • • • • • • • 11 111 001 F9 1 1 6
LD SP, IX SP ← IX • • • • • • • • 11 011 101

11 111 001
DD
F9

2 2 10

LD SP, IY SP ← IY • • • • • • • • 11 111 101
11 111 001

FD
F9

2 2 10

PUSH qq SP ← SP - 1
(SP) ← qqH

SP ← SP - 1
(SP) ← qqL

• • • • • • • • 11 qq0 101 1 3 11 qq Pair
00 BC
01 DE
10 HL

PUSH IX SP ← SP - 1
(SP) ← IXH

SP ← SP - 1
(SP) ← IXL

• • • • • • • • 11 011 101
11 100 101

DD
E5

2 4 15 11 AF

PUSH IY SP ← SP - 1
(SP) ← IYH

SP ← SP - 1
(SP) ← IYL

• • • • • • • • 11 111 101
11 100 101

FD
E5

2 4 15

__
kayprodes.doc

54
Proprietary and Confidential

POP qq (SP) ← qqL

SP ← SP + 1
(SP) ← qqH

SP ← SP + 1

• • • • • • • • 11 qq0 001 1 3 10

POP IX (SP) ← IXL

SP ← SP + 1
(SP) ← IXH

SP ← SP + 1

• • • • • • • • 11 011 101
11 100 001

DD
E1

2 4 14

POP IY (SP) ← IYL

SP ← SP + 1
(SP) ← IYH

SP ← SP + 1

• • • • • • • • 11 111 101
11 100 001

FD
E1

2 4 14

Notes: dd is any of the register pair BC, DE, HL, SP.
qq is any of the register pair BC, DE, HL, AF.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

55
Proprietary and Confidential

4.2.3 Exchange, Block Transfer and Search Groups

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of M
Cycles

No.of T
States Comments

EX DE, HL DE ↔ HL • • • • • • • • 11 101 011 EB 1 1 4
EX AF, AF’ AF ↔ AF’ • • • • • • • • 00 001 000 08 1 1 4
EXX BC ↔ BC’

DE ↔ DE’
HL ↔ HL’

• • • • • • • • 11 011 001 D9 1 1 4

EX (SP), HL (SP+1) ↔ H
(SP) ↔ L

• • • • • • • • 11 100 011 E3 1 5 19

EX (SP), IX (SP+1) ↔
IXH

(SP) ↔ IXL

• • • • • • • • 11 011 101
11 100 011

DD
E3

2 6 23

EX (SP), IY (SP+1) ↔
IYH

(SP) ↔ IYL

• • • • • • • • 11 111 101
11 100 011

FD
E3

2 6 23

LDI (DE) ← (HL)
DE ← DE +
1
HL ← HL + 1
BC ← BC - 1

• • b
1 0 b

2
b

3 0 • 11 101 101
10 100 000

ED
A0

2 4 16

LDIR (DE) ← (HL)
DE ← DE +
1
HL ← HL + 1
BC ← BC - 1
repeat until:
BC = 0

• • b
1 0 b

2 0 0 • 11 101 101
10 110 000

ED
B0

2
2

5
4

21
16

if BC ≠ 0
if BC = 0

LDD (DE) ← (HL)
DE ← DE - 1
HL ← HL - 1
BC ← BC - 1

• • b
1 0 b

2
b

3 0 • 11 101 101
10 101 000

ED
A8

2 4 16

LDDR (DE) ← (HL)
DE ← DE - 1
HL ← HL - 1
BC ← BC - 1
repeat until:
BC = 0

• • b
1 0 b

2 0 0 • 11 101 101
10 111 000

ED
B8

2
2

5
4

21
16

if BC ≠ 0
if BC = 0

CPI A - (HL)
HL ← HL + 1
BC ← BC -1

b
4

b
4

b
5

b
4

b
6

b
3 1 • 11 101 101

10 100 001
ED
A1

2 4 16

CPIR A - (HL)
HL ← HL + 1
BC ← BC -1
Repeat until:
A = (HL) or
BC = 0

b
4

b
4

b
5

b
4

b
6

b
3 1 • 11 101 101

10 110 001
ED
B1

2

2

5

4

21

16

if BC ≠ 0 and
 A ≠ (HL).
if BC = 0 or
 A = (HL)

CPD A - (HL)
HL ← HL - 1
BC ← BC -1

b
4

b
4

b
5

b
4

b
6

b
3 1 • 11 101 101

10 101 001
ED
A9

2 4 16

CPDR A - (HL)
HL ← HL - 1
BC ← BC -1
Repeat until:
A = (HL) or
BC = 0

b
4

b
4

b
5

b
4

b
6

b
3 1 • 11 101 101

10 111 001
ED
B9

2

2

5

4

21

16

if BC ≠ 0 and
 A ≠ (HL).
if BC = 0 or
 A = (HL)

Notes: 1 F5 is a copy of bit 1 of A + last transferred byte, thus (A + (HL))1
2 F3 is a copy of bit 3 of A + last transferred byte, thus (A + (HL))3
3 P/V flag is 0 if the result of BC - 1 = 0, otherwise P/V = 1.
4 These flags are set as in CP (HL)
5 F5 is copy of bit 1 of A - last compared address - H, thus (A - (HL) - H)1. H is as in F after the comparison.
6 F3 is copy of bit 3 of A - last compared address - H, thus (A - (HL) - H)3. H is as in F after the comparison.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

56
Proprietary and Confidential

4.2.4 8 bit Arithmetic and Logical Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of M
Cycles

No.of
T
States

Comments

ADD A, r A ← A + r b b b b b V 0 b 10 000 r 1 1 4 r Reg. p Reg.
ADD A, p* A ← A + p b b b b b V 0 b 11 011 101

10 000 p
DD 2 2 8 000 B 000 B

001 C 001 C
ADD A, q* A ← A + q b b b b b V 0 b 11 111 101

10 000 q
FD 2 2 8 010 D 010 D

011 E 011 E
ADD A, n A ← A + n b b b b b V 0 b 11 000 110

← n →
2 2 8 100 H 100 IXH

101 L 101 IXH

ADD A, (HL) A ← A + (HL) b b b b b V 0 b 10 000 110 1 2 7 111 A 111 A
ADD A, (IX + d) A ← A + (IX + d) b b b b b V 0 b 11 011 101

10 000 110
← d →

DD 3 5 19

ADD A, (IY + d) A ← A + (IY + d) b b b b b V 0 b 11 111 101
10 000 110
← d →

FD 3 5 19

ADC A, s A ← A + s + CY b b b b b V 0 b 001 s is any of r, n, (HL),
SUB A, s A ← A - s b b b b b V 1 b 010 (IX+d), (IY+d), p, q
SBC A, s A ← A - s - CY b b b b b V 1 b 011 as shown for the ADD
AND s A ← A AND s b b b 1 b P 0 0 100 instruction. The
OR s A ← A OR s b b b 0 b P 0 0 110 underlined bits

replace
XOR s A ← A XOR s b b b 0 b P 0 0 101 the underlined bits in
CP s A - s b b b

1
b b

1 V 1 b 111 the ADD set.
INC r r ← r + 1 b b b b b V 0 • 00 r 100 1 1 4
INC p* p ← p + 1 b b b b b V 0 • 11 011 101

00 p 100
DD 2 2 8 q Reg.

000 B
INC q* q ← q + 1 b b b b b V 0 • 11 111 101

00 q 100
FD 2 2 8 001 C

010 D
INC (HL) (HL) ← (HL) + 1 b b b b b V 0 • 00 110 100 1 3 11 011 E
INC (IX + d) (IX + d) ←

(IX + d) + 1
b b b b b V 0 • 11 011 101

00 110 100
← d →

DD 3 6 23 100 IYH

101 IYL

111 A
INC (IY + d) (IY + d) ←

(IY + d) + 1
b b b b b V 0 • 11 111 101

00 110 100
← d →

FD 3 6 23

DEC m m ← m - 1 b b b b b V 1 • 101 m is any of r, p, q,
(HL), (IX+d), (IY+d),
as shown for the INC
instruction. DEC
same format and
states as INC.
Replace 100 with 101
in opcode.

Notes: 1 F5 and F3 are copied from the operand (s), not from the result of (A - s).
The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation. Similarly the P symbol
indicates parity.
r means any of the registers A, B, C, D, E, H, L.
p means any of the registers A, B, C, D, E, IXH, IXL.
q means any of the registers A, B, C, D, E, IYH, IYL.
ddL, ddH refer to high order and low order eight bits of the register respectively.
CY means the carry flip-flop.
* means unofficial instruction.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

57
Proprietary and Confidential

4.2.5 16 bit Arithmetic Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of M
Cycles

No.of T
States Comments

ADD HL, ss HL ← HL + ss • • b
2

b
2

b
2 • 0 b

1 00 ss1 001 1 3 11 ss Reg.
ADC HL, ss HL ← HL + ss + CY b

1
b

1
b

2
b

2
b

2 V1 0 b
1 11 101 101

01 ss1 010
ED 2 4 15 00 BC

01 DE
SBC HL, ss HL ← HL - ss - CY b

1
b

1
b

2
b

2
b

2 V1 1 b
1 11 101 101

01 ss0 010
ED 2 4 15 10 HL

11 SP
ADD IX, pp IX ← IX + pp • • b

2
b

2
b

2 • 0 b
1 11 011 101

00 pp1 001
DD 2 4 15

pp Reg.
ADD IY, rr IY ← IY + rr • • b

2
b

2
b

2 • 0 b
1 11 111 101

00 rr1 001
FD 2 4 15 00 BC

01 DE
INC ss ss ← ss + 1 • • • • • • • • 00 ss0 011 1 1 6 10 IX
INC IX IX ← IX + 1 • • • • • • • • 11 011 101

00 100 011
DD
23

2 2 10 11 SP

INC IY IY ← IY + 1 • • • • • • • • 11 111 101
00 100 011

FD
23

2 2 10 rr Reg.
00 BC

DEC ss ss ← ss - 1 • • • • • • • • 00 ss1 011 1 1 6 01 DE
DEC IX IX ← IX - 1 • • • • • • • • 11 011 101

00 101 011
DD
2B

2 2 10 10 IY
11 SP

DEC IY IY ← IY - 1 • • • • • • • • 11 111 101
00 101 011

FD
2B

2 2 10

Notes: The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation.
ss means any of the registers BC, DE, HL, SP.
pp means any of the registers BC, DE, IX, SP.
rr means any of the registers BC, DE, IY, SP.
16 bit additions are performed by first adding the two low order eight bits, and then the two high order eight bits.
1 Indicates the flag is affected by the 16 bit result of the operation.
2 Indicates the flag is affected by the 8 bit addition of the high order eight bits.
CY means the carry flip-flop.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

58
Proprietary and Confidential

4.2.6 General Purpose Arithmetic and CPU Control Groups

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of
M
Cycles

No.of T
States Comments

DAA Converts A into
packed BCD
following add or
subtract with
BCD operands.
 __

b b b b b P • b 00 100 111 27 1 1 4

CPL A ← A • • b
1 1 b

1 • 1 • 00 101 111 2F 1 1 4 One’s complement.
NEG4

A ← 0 - A
 __

b b b b b V 1 b 11 101 101
01 000 100

ED
44

2 2 8 Two’s complement.

CCF CY ← CY • • b
1

b
2

b
1 • 0 b 00 111 111 3F 1 1 4 Complement carry

flag.
SCF CY ← 1 • • b

1 0 b
1 • 0 1 00 110 111 37 1 1 4

NOP No operations • • • • • • • • 00 000 000 00 1 1 4
HALT CPU halted • • • • • • • • 01 110 110 76 1 1 4
DI3 IFF1 ← 0

IFF2 ← 0
• • • • • • • • 11 110 011 F3 1 1 4

EI3 IFF1 ← 1
IFF2 ← 1

• • • • • • • • 11 111 011 FB 1 1 4

IM 04 Set interrupt
mode 0

• • • • • • • • 11 101 101
01 000 110

ED
46

2 2 8

IM 14 Set interrupt
mode 1

• • • • • • • • 11 101 101
01 010 110

ED
56

2 2 8

IM 24 Set interrupt
mode 2

• • • • • • • • 11 101 101
01 011 110

ED
5E

2 2 8

Notes: The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation. Similarly the P symbol
indicates parity.
1 F5 and F3 are a copy of bit 5 and 3 of register A _
2 H contains the previous carry state (after instruction H ↔ C)
3 No interrupts are issued directly after a DI or EI.
4 This instruction has other unofficial opcodes, see Opcodes list.
CY means the carry flip-flop.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

59
Proprietary and Confidential

4.2.7 Rotate and Shift Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543
210

Hex
No. of
Bytes

No. of
M
Cycles

No. of T
States Comments

RLCA • • b 0 b • 0 b 00 000
111

07 1 1 4

RLA • • b 0 b • 0 b 00 010
111

17 1 1 4

RRCA • • b 0 b • 0 b 00 001
111

0F 1 1 4

RRA • • b 0 b • 0 b 00 011
111

1F 1 1 4

RLC r b b b 0 b P 0 b 11 001
011
00 000 r

CB 2 2 8 r Reg.
000 B

RLC (HL) b b b 0 b P 0 b 11 001
011
00 000
110

CB 2 4 15 001 C
010 D

RLC (IX + d) b b b 0 b P 0 b 11 011
101
11 001
011
← d →
00 000
110

DD
CB

4 6 23 011 E
100 H
101 L
111 A

RLC (IY + d) b b b 0 b P 0 b 11 111
101
11 001
011
← d →
00 000
110

FD
CB

4 6 23

LD r,RLC (IX + d)* r ← (IX + d)
RLC r
(IX + d) ← r

b b b 0 b P 0 b 11 011
101
11 001
011
← d →
00 000 r

DD
CB

4 6 23

LD r,RLC (IY + d)* r ← (IY + d)
RLC r
(IY + d) ← r

b b b 0 b P 0 b 11 111
101
11 001
011
← d →
00 000 r

FD
CB

4 6 23

RL m b b b 0 b P 0 b 010 Instruction format
RRC m b b b 0 b P 0 b 001 and states are the
RR m b b b 0 b P 0 b 011 same as RLC.
SLA m b b b 0 b P 0 b 100 Replace 000 with

SLL m* b b b 0 b P 0 b 110 new number.
SRA m b b b 0 b P 0 b 101
SRL m b b b 0 b P 0 b 111

RLD b b b 0 b P 0 • 11 101
101
01 101
111

ED
6F

2 5 18

RRD b b b 0 b P 0 • 11 101
101
01 100
111

ED
67

2 5 18

Notes: The P symbol in the P/V flag column indicates that the P/V flags contains the parity of the result.
r means any of the registers A, B, C, D, E, H, L.
* means unofficial instruction.
CY means the carry flip-flop.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

60
Proprietary and Confidential

4.2.8 Bit Manipulation Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No. of
Bytes

No. of
M
Cycles

No. of T
States Comments

BIT b, r _
Z ← rb

b
1

b b
2 1 b

3
b

4 0 • 11 001 011
01 b r

CB 2 2 8 r Reg.
000 B

BIT b, (HL) ___
Z ← (HL)b

b
1

b b
2 1 b

3
b

4 0 • 11 001 011
01 b 110

CB 2 3 12 001 C
010 D

BIT b, (IX + d)5 _____
Z ← (IX + d)b

b
1

b b
2 1 b

3
b

4 0 • 11 011 101
11 001 011
← d →
01 b 110

DD
CB

4 5 20 011 E
100 H
101 L
111 A

BIT b, (IY + d)5 _____
Z ← (IY + d)b

b
1

b b
2 1 b

3
b

4 0 • 11 111 101
11 001 011
← d →
01 b 110

FD
CB

4 5 20

SET b, r rb ← 1 • • • • • • • • 11 001 011
11 b r

CB 2 2 8 b Bit.
000 0
001 1

SET b, (HL) (HL)b ← 1 • • • • • • • • 11 001 011
11 b 110

CB 2 4 15 010 2
011 3

SET b, (IX + d) (IX + d)b ← 1 • • • • • • • • 11 011 101
11 001 011
← d →
11 b 110

DD
CB

4 6 23 100 4
101 5
110 6
111 7

SET b, (IY + d) (IY + d)b ← 1 • • • • • • • • 11 111 101
11 001 011
← d →
11 b 110

FD
CB

4 6 23

LD r,SET b, (IX +
d)*

r ← (IX + d)
rb ← 1
(IX + d) ← r

• • • • • • • • 11 011 101
11 001 011
← d →
11 b r

DD
CB

4 6 23

LD r,SET b, (IY +
d)*

r ← (IY + d)
rb ← 1
(IY + d) ← r

• • • • • • • • 11 111 101
11 001 011
← d →
11 b r

FD
CB

4 6 23

RES b, m mb ← 0
m ≡ r, (HL), (IX+d),
 (IY+d)

• • • • • • • • 10 To form new
opcode replace
11 of SET b, s
with 10. Flags
and states are
the same.

Notes: The notation mb indicates bit b (0 to 7) of location m.
BIT instructions are performed by an bitwise AND.
1 S is set if b = 7 and Z = 0
2 F5 is set if b = 5 and Z = 0
3 F3 is set if b = 3 and Z = 0
4 P/V is set like the Z flag
5 This instruction has other unofficial opcodes
* means unofficial instruction.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

61
Proprietary and Confidential

4.2.9 Input and Output Groups

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of M
Cycles

No.of T
States Comments

IN A, (n) A ← (n) • • • • • • • • 11 011 011
← n →

DB 2 3 11 r Reg.
000 B

IN r, (C) r ← (C) b b b 0 b P 0 • 11 101 101
01 r 000

ED 2 3 12 001 C
010 D

IN (C)* or
IN F, (C)*

Just affects flags,
value is lost.

b b b 0 b P 0 • 11 101 101
01 110 000

ED
70

2 3 12 011 E
100 H

INI (HL) ← (C)
HL ← HL + 1
B ← B - 1

b
1

b
1

b
1

b
3

b
1 X b

2
b

3 11 101 101
10 100 010

ED
A2

2 4 16 101 L
111 A

INIR (HL) ← (C)
HL ← HL + 1
B ← B - 1
Repeat until
B = 0

0 1 0 b
3 0 X b

2
b

3 11 101 101
10 110 010

ED
B2

2
2

5
4

21
16

if B ≠ 0
if B = 0

IND (HL) ← (C)
HL ← HL - 1
B ← B - 1

b
1

b
1

b
1

b
4

b
1 X b

2
b

4 11 101 101
10 101 010

ED
AA

2 4 16

INDR (HL) ← (C)
HL ← HL - 1
B ← B - 1
Repeat until
B = 0

0 1 0 b
4 0 X b

2
b

4 11 101 101
10 111 010

ED
BA

2
2

5
4

21
16

if B ≠ 0
if B = 0

OUT (n), A (n) ← A • • • • • • • • 11 010 011
← n →

D3 2 3 11

OUT (C), r (C) ← r • • • • • • • • 11 101 101
01 r 001

ED 2 3 12

OUT (C), 0* (C) ← 0 • • • • • • • • 11 101 101
01 110 001

ED
71

2 3 12

OUTI (C) ← (HL)
HL ← HL + 1
B ← B - 1

b
1

b
1

b
1 X b

1 X X X 11 101 101
10 100 011

ED
A3

2 4 16

OTIR (C) ← (HL)
HL ← HL + 1
B ← B - 1
Repeat until
B = 0

0 1 0 X 0 X X X 11 101 101
10 110 011

ED
B3

2
2

5
4

21
16

if B ≠ 0
if B = 0

OUTD (C) ← (HL)
HL ← HL - 1
B ← B - 1

b
1

b
1

b
1 X b

1 X X X 11 101 101
10 101 011

ED
AB

2 4 16

OTDR (C) ← (HL)
HL ← HL - 1
B ← B - 1
Repeat until
B = 0

0 1 0 X 0 X X X 11 101 101
10 111 011

ED
BB

2
2

5
4

21
16

if B ≠ 0
if B = 0

Notes: The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation. Similarly the P symbol
indicates parity.
r means any of the registers A, B, C, D, E, H, L.
1 flag is affected by the result of B ← B - 1 as in DEC B.
2 N is a copy bit 7 of the last value from the input (C).
3 this flag contains the carry of (((C + 1) AND 255) + (C))
4 this flag contains the carry of (((C - 1) AND 255) + (C))
* means unofficial instruction.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, X = flag is unknown,
b = flag is set according to the result of the operation.

__
kayprodes.doc

62
Proprietary and Confidential

4.2.10 Jump Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of M
Cycles

No.of T
States Comments

JP nn PC ← nn • • • • • • • • 11 000 011
← n →
← n →

C3 3 3 10

JP cc, nn if cc is true,
PC ← nn

• • • • • • • • 11 ccc 010
← n →
← n →

3 3 10 ccc Condition
000 NZ
001 Z
010 NC
011 C
100 PO
101 PE
110 P

JR e PC ← PC +
e

• • • • • • • • 00 011 000
← e - 2 →

18 2 3 12 111 M

JR ss, e if ss is true
PC ← PC +
e

• • • • • • • • 00 ss 000
← e - 2 →

2
2

3
2

12
7

if ss is true
if ss is false

JP HL PC ← HL • • • • • • • • 11 101 001 E9 1 1 4
JP IX PC ← IX • • • • • • • • 11 011 101

11 101 001
DD
E9

2 2 8 ss Condition
111 C
110 NC

JP IY PC ← IY • • • • • • • • 11 111 101
11 101 001

FD
E9

2 2 8 101 Z
100 NZ

DJNZ e B ← B - 1
if B ≠ 0
PC ← PC +
e

• • • • • • • • 00 010 000
← e - 2 →

10 2
2

2
3

8
13

if B = 0
if B ≠ 0

Notes: e is a signed two-complement number in the range <-126, 129>
e - 2 in the opcode provides an effective number of PC + e as PC incremented by 2 prior to the addition of e.

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

63
Proprietary and Confidential

4.2.11 Call and Return Group

Mnemonic
Symbolic
Operation

Flags
S Z F5 H F3 P/V N C

Opcode
76 543 210 Hex

No.of
Bytes

No.of M
Cycles

No.of T
States Comments

CALL nn SP ← SP - 1
(SP) ← PCH

SP ← SP - 1
(SP) ← PCL

PC ← nn

• • • • • • • • 11 001 101
← n →
← n →

CD 3 5 17

CALL cc, nn if cc is true,
SP ← SP - 1
(SP) ← PCH

SP ← SP - 1
(SP) ← PCL

PC ← nn

• • • • • • • • 11 ccc 100
← n →
← n →

3
3

3
5

10
17

if cc is false
if cc is true

RET PCL ← (SP)
SP ← SP + 1
PCH ← (SP)
SP ← SP + 1

• • • • • • • • 11 001 001 C9 1 3 10

RET cc if cc is true,
PCL ← (SP)
SP ← SP + 1
PCH ← (SP)
SP ← SP + 1

• • • • • • • • 11 ccc 000 1
1

1
3

5
11

if cc is false
if cc is true

RETI2 PCL ← (SP)
SP ← SP + 1
PCH ← (SP)
SP ← SP + 1

• • • • • • • • 11 101 101
01 001 101

ED
4D

2 4 14 cc Condition
000 NZ
001 Z
010 NC
011 C

RETN1,2
PCL ← (SP)
SP ← SP + 1
PCH ← (SP)
SP ← SP + 1
IFF1 ← IFF2

• • • • • • • • 11 101 101
01 000 101

ED
45

2 4 14 100 PO
101 PE
110 P
111 M

RST p SP ← SP - 1
(SP) ← PCH

SP ← SP - 1
(SP) ← PCL

PC ← p

• • • • • • • • 11 t 111 1 3 11 t p
000 0h
001 8h
010 10h
011 18h
100 20h
101 28h
110 30h
111 38h

Notes: 1 This instruction has other unofficial opcodes, see Opcode list.
2 Instruction also IFF1 ← IFF2

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, b = flag is set according to the result of the operation.

__
kayprodes.doc

64
Proprietary and Confidential

4.3 Glossary

Applet - An internet application that runs inside an internet browser.

Bank - A Computer science term used to describe a specific chunk of Random
Access Memory (See Random Access Memory).

BIOS - Basic Input and Output System. A set of programs, addresses or routines
inside RAM (See Random Access Memory) that provide certiain functionality
for the computer system.

Bit - The smallest value used to represent computer data or memory in a base 2
binary numbering system having a value of 1 or 0.

Buad Rate - A term used to describe the ability of two devices ports (See Port) to establish
a communication between them at a certain speed of data transfer.

Buffer - A permanent or temporary area of storage used to hold data.

Byte - A standard unit of measurement for computer data or RAM (See Random
Access Memory)

CPU - The Central Processing Unit.

DOS - Disk Operating System.

I/O - Input and Output.

Interrupt - A term used to describe the need for a device or software program that must
send a message to the Processor (See CPU) in order to gain its attention for
useage.

Java - A programming language with internet and platform independent capibility.

Memory - Term used to describe an area of storage in a computer system. (See Random
Access Memory, Bank, Buffer)

Memory Mapped - A term used to describe how a computer system connects it I/O (See I/O) to
RAM (See Random Access Memory).

OP Code - The basic unit of instruction in a computer system. This is what is executed
when a computer program is running.

Operating system - The software program that manages low level hardwareand software
management inside a computer system.

Parallel - Data transmission that occurs in a side by side manor using multiple data lines
to transmit data across a specific line.

Port - A term used to describe the means for I/O (See I/O) internally and externally
in a computer system.

RAM - See Random Access Memory.

__
kayprodes.doc

65
Proprietary and Confidential

Random Access Memory - The second fastest form of storage used inside a computer system
commonly used for application execution and data storage.

Register - The fastest form a storage inside a computer system usually constrained to a
finite size depending on a particular system.

ROM - Read Only Memory. Usually contains useful programs or data for Operating
System (See Operating System), hardware and program useage.

Serial - A term used to describe inline communication or data that is sent one after
another either interanally or externally.

Virtual Machine - A term used to describe a software or hardware program that emulates a given
environment in which its executing applications are thought to be running.

