Section III Z3LIB REFERENCE

ZCPR3: THE LIBRARIES

A Reference Manual and User's Guide for SYSLIB, Z3LIB, and VLIB
Written by Richard Conn

Copyright 1986 Richard Conn

This Page Left Blank

ZCPR3: The Libraries
Z3LIB Introduction

[image: image1.png]
[image: image2.png]
13. INTRODUCTION TO Z3LIB
Z3LIB contains a host of support utilities which provide access to ZCPR3-specific features and capabilities.

Z3LIB routines can be divided into four categories:

1. ZCPR3 Environment Access

— Those utilities which allow the programmer to easily extract data from the Z3 Environment Descriptor and modify certain Z3 environment parameters

2. ZCPR3 Flow Control

— Those utilities which permit the programmer to easily manipulate the flow control environment of ZCPR3, enabling him to raise the level or lower the level of the current IF condition and to toggle the current IF condition as desired

3. ZCPR3 Messages

—~ Those utilities providing access to the ZCPR3 messages, allowing the program to read and write messages from and to the system

4. ZCPR3 Utilities

— Useful utilities which relieve the programmer from constantly reprogramming some commonly-used ZCPR3 features

[image: image3.png]
13-1

ZCPR3: The Libraries
Z3LIB
Introduction

NOTES:
[image: image4.png]
[image: image5.png]
13-2
[image: image6.png]
ZCPR3: The Libraries
Z3LIB
Environment Access 1

[image: image7.png]
14. ENVIRONMENT ACCESS 1
CHAPTER OUTLINE
[image: image8.png]
Command Line APPCL CLRCL
GETCL1, GETCL2 PUTCL
CRT/Printer Data
GETCRT, PUTCRT GETPRT, PUTPRT
DU/Max DU
GETDUOK, PUTDUOK GETMDISK, PUTMDISK GETMUSER, PUTMUSER
External FCB GETEFCB
Environment of ZCPR3 GETENV GETVID
FCP Address GETFCP
File Names
GETFN1, GETFN2 GETFNX, PUTFNX
Initialize Z3INIT
Introduction to IOP Concepts
IOP
GETION, GETIOP, GETIOS
IOMATCH
PUTIOD
IOP Recording
IORCOPF, IORCON IORLOFF, IORLON
[image: image9.png]
14-1
ZCPR3; The Libraries
Z3LIB
Environment Access 1
[image: image10.png]
Environment Access 1
Any program running under ZCPR3 is within what can be called a ZCPR3 environment. A host of facilities and data is available to this program which a normal CP/M program does not have. For instance, a program running under the ZCPR3 environment:

. can find out what name it was invoked by . can access a set of messages from ZCPR3 which

tell it a number of things about how it was

invoked . can send messages to ZCPR3 and programs which

run after it completes . can find out many things about its environment,

such as the processor speed, CRT and printer

characteristics, maximum number of disks . can determine what characteristics the user's
terminal has and make use of these to employ

cursor addressing and other such functions

All of the information outlined above and more is available to any running program thru the ZCPR3 Environment Descriptor. This is a block of memory (256 bytes) which contains addresses and other data in a precisely-defined format. At installation time, the ZCPR3 utilities can be set up to internally contain an Environment Descriptor or they can be installed with a pointer to an Environment Descriptor which resides at some fixed location in memory (this is the preferred approach). Once the routines in Z3LIB have been initialized with knowledge of the address of this environment descriptor, they can extract specific information from it for use in the application program.

The following information is contained within a ZCPR3 Environment Descriptor:

address of External Path address of RCP address of FCP address of IOP address of Named Dir address of Command Line address of Env Descriptor address of Shell Stack address of Z3 Messages address of External FCB address of Wheel Byte processor speed maximum disk allowed data on CRT two reserved file names

size of External Path

size of RCP

size of FCP

size of IOP

size of Named Dir

size of Command Line

size of Env Descriptor

size of Shell Stack

size of Stack Entries

address of External Stk
quiet flag

DU approval flag

maximum user allowed

data on Printer

ZCPR3 TERMCAP (Z3TCAP)
[image: image11.png]
14-2
ZCPR3: The Libraries
Z3LIB
Environment Access 1
[image: image12.png]
The purpose of Z3LIB is to provide the programmer with easy access to the information in the ZCPR3 Environment Descriptor and to allow him to easily make use of this information. To illustrate, the some Z3LIB routines are:

. GETPRT - return data on the width, number of

lines, and form feed ability of the

printer . GETCL2 - return the address of the first char

of the next command to be run, if any . GETEFCB - return the address of the external

FCB so the program can determine its

name

. SHPUSH - push a command line on the shell stack . SHPOP - pop a command line from the shell stk . IFT - invoke the next IF level and make it T . IFEND - back up to previous IF level

This chapter describes those Z3LIB routines which provide access to the ZCPR3 Environment Descriptor data. Many of these routines are of the general name:

GETxxxxx
where the mnemonic following the GET prefix alludes to what information is being obtained.

[image: image13.png]
14.1. Command Line

Routine: APPCL
Function: APPCL appends the command string (ending in null) pled to by HL to the end of the ZCPR3 command line buffer for execution. A leading semicolon is prepended to allow this line to execute after the last line in the buffer. The command line buffer contents are repacked to avert overflow in roost cases.

PUTCL inserts the command line as the next command in the buffer, while APPCL appends the command line as the last command in the buffer. This is the difference between APPCL and PUTCL.

Error flag is returned, indicating overrun of buffer. If buffer is overrun, original command line is not changed.

Inputs: HL = address of command string to append

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if command line buffer overflows (no change to command line) or no command line buffer A=OFFH and NZ if append is complete

Registers Affected: PSW
Side Effects: Command Line buffer is changed

Special Error Conditions: None

[image: image14.png]
14-3

ZCPR3: The Libraries
Z3LIB
Environment Access 1
[image: image15.png]
Routine; CLRCL
Function: CLRCL clears the command line buffer, setting it to empty. Any remaining commands in the buffer will not be executed when control is returned to ZCPR3. Inputs: None Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if no command line

buffer (no problem, anyway) A=OFFH and NZ if command line cleared Registers Affected: PSW
Side Effects: Command line buffer cleared Special Error Conditions: None

Routine; GETCLl
Function: Returns the address of the Command Line Buffer in HL and its size (in byte) in A. The Command Line Buffer is structured as follows:

cindline:
dw <address of next char to process>
db <size of buffer>

db <dummy used for BDOS READLN function>
db <characters in command line>

db 0

GETCL1 returns the address of CMDLINE in HL and the size (at CMDLINE+2) in A.

Inputs: None

Outputs: HL=addreas of CMDLINE, A=size

Registers Affected: HL, PSW

Side Effects: None

Special Error Conditions: HL = 0 if there is no command line buffer

Routine: GETCL2
Function: Returns the address of the first character of the next command to be executed in the Command Line Buffer in HL and the first character of the next command in A. A=0 and the Zero Flag is Set (Z) if there are no further characters in the line.

The Command Line Buffer is structured as follows;

crndline:
dw <address of next char to process>
db <size of buffer>

db <dummy used for BDOS READLN function>
db <characters in command line>

db 0

GETCL2 returns the address contained in the first DW at the label CMDLINE in HL and the char at this address in A. Inputs: None

Outputs; HL=address of next command, A=first char Registers Affected: HL, PSW Side Effects: None

14-4

ZCPR3: The Libraries
Z3LIB
Environment Access 1

[image: image16.png]
Special Error Conditions: HL = 0 if there is no Command Line Buffer.

Routine: PDTCL
Function: PUTCL stores a command line as a prefix in the ZCPR3 command line buffer. The buffer contents are repacked so that an overflow is averted in most cases. If a command already exists in the buffer, the new line is postfixed with a semicolon so continuation is enabled.

Inputs: HL = Address of command line (ending in 0)

Outputs: A=0 and Zero Flag Set <Z) if overflow <no change to command line in this case) A = OFFH and NZ if OK

Registers Affected: PSW
Side Effects: Command Line Buffer is modified

Special Error Conditions: None

[image: image17.png]
14.2. CRT/Printer Data

Routine: GETCBT
Function: Return the address of the CRT data record in HL. This record is structured as follows:

crtdata:
db <width of the CRT in characters>
db <number of lines on CRT screen>
db <number of text lines on CRT screen>
For example, a conventional CRT would look like:

db 80 80 cols

db 24 24 lines

db 22 22 text lines

The number of text lines should be two less than the total number of lines. It may be made 3 or 4 less if the user wants to see wider overlap on his screen. The purpose of this record element is to tell utilities like PAGE how many lines to output before pausing to allow the user to read the screen, and this can be reduced (go to 20 or 18 lines) to allow the user to see more of the last screen he was viewing.

Inputs: None

Outputs: HL contains the address of the CRT record

Registers Affected: HL

Side Effects: None

Special Error Conditions: None

14-5

ZCPR3: The Libraries
Z3LIB
Environment Access 1

Routine; POTORT
Function: PUTCRT stores the selection (0 or 1) in the CRT selection buffer of the ZCPR3 Environment Descriptor. An error code is returned and no change to the buffer is made if the input selection is out of range (not 0..1).

Inputs: A = CRT Selection value (0 or 1)

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if invid sel (not 0 or 1) A=OFFH and NZ if OK

Registers Affected: PSW
Side Effects: CRT Selection flag in Env .Desc is set

Special Error Conditions: None

Routine; GETPKT
Function: Return the address of the Printer data record in HL. This record is structured as follows:

prtdata:
db <width of printer in characters> db <number of lines on printer page> db <number of text lines on printer page> db <forro feed flag <0=printer can't FF»
For example, a typical printer data record would be;

db 80 ; 80 columns

db 66 ; 66 lines

db 58 ; 58 text lines (4 up/4 dn margin)

db 1 ; printer can form feed

Using the third byte (number of text lines per page), the printer page margins are selected as the difference between the total number of lines and the number of text lines.

When routines like PRINT run, they print the number of text lines and then, if the printer can form feed, they issue a form feed character. If the printer can't form feed, the send out the proper number of blank lines to advance to the next page.

Inputs: None

Outputs: HL is address of printer data buffer

Registers Affected: HL

Side Effects: None

Special Error Conditions: None

Routine: PDTPKT
Function: PUTPRT stores the selection (0 to 3) in the PRT selection buffer of the ZCPR3 Environment Descriptor. An error code is returned and no change to the buffer is made if the input selection is out of range (not 0..3).

Inputs: A = PRT (Printer) Selection value (0 to 3)

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if invid sel (not 0 to 3) A=OFFH and NZ if OK

Registers Affected: PSW

Side Effects: PRT Selection flag in Env Desc is set

Special Error Conditions: None

14-6

ZCPR3: The Libraries
Z3LIB
Environment Access 1
[image: image18.png]
[image: image19.png]
[image: image20.png]
14.3. DU/Max DU
Routine: GETDDOK
Function: Return the DUOK flag in A with the Zero Flag Set (Z) if A=0. DUOK is a flag which tells the program if it is to permit the user to specify the DU: prefix to change disk and user area. A ZCPR3 utility can always specify a DIR: prefix (named directory) in identifying the disk and user area to examine, but in some "secure" applications it is not desirable to allow the user to employ the DU: prefix to access ANY disk/user area. This flag (DUOK) tells the utility if it is OK for the user to employ the DU: prefix.

Inputs: None

Outputs: A=0 and Zero Flag Set (Z) if NOT OK to use DU:

A=OFFH and Zero Flag Clear (NZ) if OK to use DU:

Registers Affected: PSW
Side Effects; None

Special Error Conditions: None

Routine: PDTDDOK
Function: PUTDUOK sets the DU OK byte from A. If A=0, DUOK is false (using DU is NOT OK), and if AOO (OFFH is preferred), DUOK is true (using DU is OK) . No registers affected or error codes returned.

Inputs: A = DUOK value (0=DU NOT OK, OFFH = DU OK)

Outputs: None

Registers Affected: None

Side Effects: DUOK flag is set

Special Error Conditions; None

Routine: GETMDISK
Function: Return the number of the maximum disk in A. This number is in the range from 1 to 16, where 1 means disk A is the maximum disk on the system and 16 means disk P is.

The ZCPR3 Environment Descriptor may be used to restrict access to certain parts of the system. For instance, a "normal user" may be denied access to disks C and D and to any user area beyond 10. A "priveleged user" who has the power to change the ZCPR3 Environment Descriptor can gain access to any disk or user area he desires.

Inputs; None

Outputs: A = disk number (disk A = 1)

Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

Routine: PDTMDISK
Function: PUTMDISK sets the maximum disk, as indicated by the A register (A=l sets disk A: as max, A=2 sets disk B:, etc). No error conditions are returned (no validity check of input argument is made), and no registers are affected.
Inputs: A = Maximum Disk number (disk A; =1)

Outputs: None

Registers Affected: None

Side Effects: MDISK flag in Environment Descriptor is set

Special Error Conditions: None

14-7

ZCPR3: The Libraries
Z3LIB
Environment Access 1
[image: image21.png]
Routine: GETMDSER
Function: Return the number of the maximum user area in A. This number is in the range from 0 to 31.

The ZCPR3 Environment Descriptor may be used to restrict access to certain parts of the system. For instance, a "normal user" may be denied access to disks C and D and to any user area beyond 10. A "priveleged user" who has the power to change the ZCPR3 Environment Descriptor can gain access to any disk or user area he desires.

Inputs: None

Outputs: A = maximum user area which may be accessed

Registers Affected: PSM
Side Effects: None

Special Error Conditions: None

Routine: PUTMDSER
Function: PUTMUSER sets the maximum user area, as indicated by the A register. No error conditions are returned (no validity check of input argument is made), and no registers are affected.

Inputs: A = Maximum User number (user 0=0)

Outputs: None

Registers Affected: None

Side Effects: Max User flag in Environment Descriptor set

Special Error Conditions: None

[image: image22.png]
14.4. External FCB
Routine; GETEFCB
Function: Returns the address of the ZCPR3 External FCB in HL. Returns with HL=0 and Zero Flag Set (Z) if there is no External PCB.
Under ZCPR3, a program can find out what name it was invoked by through the External FCB. Bytes 1-8 of the External FCB (first byte is 0) contain the name of the program just executed by ZCPR3.

This feature is particularly useful for programs like Shells which have to push their name and operational parameters onto the Shell Stack in order to be reinvoked when a command line completes. A Shell can use the data in the External FCB to determine what its name is without having to assume that it has a particular name at all times.

Inputs: None
Outputs: HL = address of External FCB, A=0 and Z if none

Registers Affected: HL, PSW
Side Effects: None

Special Error Conditions: None

[image: image23.png]
14-8
ZCPR3: The Libraries
Z3LIB
Environment Access 1

[image: image24.png]
[image: image25.png]
14.5. Environment

Routine: GETENV
Function: Return the address of the ZCPR3 Environment Descriptor in HL.
This function is useful for those programs which need to modify the ZCPR3 Environment Descriptor. Most of the routines in Z3LIB which access the environment descriptor do so in a R/0 mode (they do not allow the program to change data in it). Some programs may need to do this, so GENENV is provided. Z3LDR, for example, loads a new Environment Descriptor from a file on disk, and it uses GETENV to find out where to load the file.

Inputs: None

Outputs: HL = address of Environment Descriptor

Registers Affected: HL

Side Effects: None

Special Error Conditions: None

Routine: GETVID
Function: Return the address of the ZCPR3 TCAP (Z3TCAP) Buffer in HL. Indicate if this buffer contains a TCAP entry.

This function is useful for those programs which need to modify the ZCPR3 TCAP Buffer and those programs which need to determine if the TCAP is loaded. It may be desirable to call this routine before a screen-oriented utility is executed in order to insure that a TCAP is available.

Return with A=0 and Zero Flag Set <Z) if no Z3TCAP entry exists within the buffer.

Inputs: None

Outputs: HL = address of Z3TCAP Buffer

A=0 and Zero Flag Set (Z) if no entry in buffer

Registers Affected: HL, PSW
Side Effects: None

Special Error Conditions: None

[image: image26.png]
14.6. FCP Address

Routine; GETFCP
Function: Return the address of the flow command package buffer in HL and the size of the buffer in terms of 128-byte blocks in A. If there is no FCP buffer, A=0 and Zero Flag Set (Z) .
GETFCP simply returns details on the FCP buffer address and size, but it does not say if an FCP is resident within it. To find this out, look at the first byte of the FCP buffer, and, if it is zero, then there is no FCP present. Example:

ext getfcp ;reference

call getfcp ;obtain data jz nofcpbuf ;no FCP buffer is available mov a,m ;get first byte of buffer ora a ;set zero flag accordingly jz nofcpload ;no FCP is in the buffer

14-9

ZCPR3: The Libraries
Z3LIB
Environment Access 1
[image: image27.png]
[image: image28.png]
Inputs: None

Outputs: HL = address of FCP buffer

A=0 and Zero Flag Set (Z) if no buffer, else A=size of buffer in 128-byte blocks and NZ
Registers Affected: HL, PSW
Side Effects: None

Special Error Conditions: None

14.7. File Names

Routine: GETFN1/GETFN2
Function: These routines return the address in HL of the shell variable filename (GETFNl) and the first filename of the four System Pile Names (GETFN2) in the ZCPR3 Environment Descriptor. Each filename entry is 11 bytes long, matching the filename and filetype fields of the CP/M FCB.
These names are used to pass names of special files to programs for later use. Their exact definition is not presented and left to the installer. One application of these is to allow GETFNl to return the name of the master HLP file (HELP.HLP) which is to be used to index into the Help System.

Inputs: None

Outputs: HL is address of the selected file name

Registers Affected: HL

Side Effects: None

Special Error Conditions: None

Routine: GETFNX
Function: GETFNX returns the address of the nth file name in the ZCPR3 Environment Descriptor. There are four system files, numbered 1 to 4, and they are structured like the FN.FT fields of an FCB (11 bytes each).

On input, A=1..4 to indicate the file name. On output, HL pts to the first byte. A validity check is done on the value of A (MUST be 1..4).

Inputs: A = 1 to 4 (file name number) Outputs:
HL = address of first byte of indicated file A = Error Code

A=0 and Zero Flag Set (Z) if input was not in

the range from 1 to 4 A=OFFH and NZ if OK Registers Affected: HL, PSW Side Effects: None Special Error Conditions: None

Routine; PUTFSX
Function: PUTFNX sets the nth (1..4) file name in the ZCPR3 Environment Descriptor to the PCB-entry pointed to by HL (FCB+1, or the FN field, is pointed to by HL). A is used to identify the file name.

Inputs:
A = 1 to 4 (file name number) HL = address of FCB+1 of the new file name value

14-10

ZCPR3: The Libraries
Z3LIB
Environment Access 1
[image: image29.png]
Outputs: A = Error code

A=0 and Zero Flag Set (Z) if selected file not in range (input A was not in 1..4)
A=OFFH and NZ if OK Registers Affected: PSW Side Effects: File name is loaded Special Error Conditions: None

14.8. Initialize

Routine: Z3INIT
Function: Obtain the address of the ZCPR3 Environment Descriptor from the calling program and set it in a global buffer for future use by the Z3LIB routines.

Z3INIT is called as follows:

ext z3init ;reference

Ixi h,z3env ;address of ZCPR3 Environment Desc call z3init ;perform function

[image: image30.png]
Inputs: HL = address of ZCPR3 Environment Descriptor

Outputs: None

Registers Affected: None

Side Effects: None

Special Error Conditions; None

[image: image31.png]
14.9. Introduction to IOP Concepts

This set of routines provide access to the system I/O Package (IOP). The devices in an IOP are identified by a logical ID (referring to the generic CON, RDR, PUN, and LST devices) and a physical ID (referring to the specific device under the generic). By convention, the routines in this collection always pass the logical ID in the B register and the physical ID in the C register. The following table shows the assignments:

Logical ID (B Reg) Device 0 CON:

1 RDR:

2 PUN:
3 LST:
The IOP status table, which is contained in every IOP, returns information on the physical IDs. It tells how many physical devices (PID) are available for each logical ID, and it

14-11
ZCPR3: The Libraries
Z3LIB
Environment Access 1
tells the current assignment (0 to PID-1). This table is structured as follows:

Offset Number of Current

3ytes Device Devices Assignment 0-1 CON: Byte 0 Byte 1 2-3 RDR: Byte 2 Byte 3 4-5 PUN: Byte 4 Byte 5 6-7 LST: Byte 6 Byte 7

For example, if byte 0 (number of physical consoles) is 5, then byte 1 (current physical console assignment) can only be in the range from 0 to 4. The GETIOS routine returns the address of this table.

The routines in the IOP collection are as follows:

GETION Return a string giving the name of

the device identified by a logical ID and a physical ID

GETIOP Return the address and size of the IOP GETIOS Return a pointer to the IOP status table

IOMATCH Searches for a physical device name

associated with a particular logical ID

PUTIOD Select and IOP device by logical ID and physical ID

14.10. IOP Address

Routine: GETION
Function: GETION (Get 10 Name) returns a pointer (in HL) to the string describing the device whose logical ID (0 to 3, where CON=0, RDR=1, PUN=2, and LST=3) is in B and physical ID is in C. A is error flag. Inputs:
B = Logical device ID (0..3) C = Physical ID Outputs:
HL = address of string naming the indicated device A = Error Flag

A=0 and Zero Flag Set (Z) if no IOP or range error A=OPFH and NZ if no error Registers Affected: PSW, HL Side Effects; None Special Error Conditions: None

Routine; GETIOP
Function: Return the address of the input/output package buffer in HL and the size of the buffer in terms of 12 8-byte blocks in A. If there is no IOP buffer, A=0 and Zero Flag Set (Z) .
GETIOP returns details on the IOP buffer address and size, but it does not say if an IOP is resident within it. To find

14-12

ZCPR3: The Libraries
Z3LIB
Environment Access 1

this out, look at the first byte of the IOP buffer, and, if it is zero, then there is no IOP present. Example:

ext getiop
• • •
call getiop j z noiopbuf mov a,ro ora a jz noiopload
;reference

;obtain data

;no IOP buffer is available ;get first byte of buffer ;set zero flag accordingly ;no IOP is in the buffer

Inputs: None

Outputs:
HL = address of IOP buffer

A=0 and Zero Flag Set (Z) if no buffer, else

A=size of buffer in 128-byte blocks and NZ
Registers Affected; HL, PSW
Side Effects: None

Special Error Conditions: None
Routine: GETIOS
Function: GETIOS returns a pointer to the I/O Package status table in HL. This table is structured as follows:
Offset Bytes
0-1

2-3

4-5

6-7

Device CON:

RDR:
PUN:
LST:
Number of Devices Byte 0 Byte 2 Byte 4 Byte 6

Current Assignment Byte 1 Byte 3 Byte 5 Byte 7

Notes: Error code is returned in A. Inputs: None Outputs:
HL = address of IOP status table

A = Error Code

A=0 and Zero Flag Set (Z) if no IOP loaded A=OFFH and NZ if OK Registers Affected: PSW, HL Side Effects: None Special Error Conditions: None

Routine: IOMATCH
Function: IOMATCH searches for the name (pointed to by HL) of a physical device associated with a particular logical ID < in B). This name is a string terminated by a null or any character less than or equal to a space. The name is capitalized internally. If found, C is returned containing the physical ID of the device. Example:

LXI H,MYCON MVI B,0 CALL IOMATCH JZ ERROR
;pointer to string ;select CON device

MYCON:
DS
'CRT1',0
;C=physical ID of MYCON ;name of desired CON device

14-13
ZCPR3: The Libraries
Z3LIB
Environment Access 1

Inputs:

HL B
Outputs:
C A

address of string name to look for Logical ID (CON=0, RDR=1, PUN=2, LST=3)

Physical ID

Error Code

A=0 and Zero Flag Set if not found or no IOP

A=OFFH and NZ if OK Registers Affected: PSW, C Side Effects: None Special Error Conditions; None

Routine: PDTIOD
Function: PUTIOD selects the IOP device indicated by the logical ID in B and the physical ID in C. Logical ID numbers are in the range from 0 to 3, where CON = 0, RDR = 1, PUN = 2, and LST = 3. See the introductory section on lOPs for more details. Inputs:

B = Logical ID (CON=0, RDR=1, PUN=2, LST=3) C = Physical ID Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if no IOP or range error

(physical or logical ID number invalid) A=OFFH and NZ if OK Registers Affected: PSW Side Effects; Device selection is made Special Error Conditions: None

14.11. IOP Recording

Routine: IORCON, IORCOFF, IORLON, IORLOFF
Function: IORCON turns on the Console I/O Recording facility in the current I/O Package. On input, HL points to an FCB which identifies the file to record into (this is a ZCPR3 standard FCB, where offset 0 contains the disk and offset 13 the user data) . A particular IOP may or may not pay attention to this FCB pointer, depending on implementation.

IORCOFF turns off the Console I/O Recording facility in the current I/O Package.

IORLON and IORLOFF perform the same functions for the List I/O Recording facility.

On exit, A returns an error code indicating success or failure.

Inputs: HL = address of ZCPR3 FCB identifying file to record into for IORCON and IORLON

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if no IOP available or

IOP does not support I/O Recording A=OFFH and NZ if OK

Registers Affected: PSW

Side Effects: I/O Recording is turned on or off

Special Error Conditions: None

14-14

ZCPR3: The Libraries
Z3LIB
Environment Access 2

15. ENVIRONMENT ACCESS 2
CHAPTER OUTLINE
Messages
GETMSG GETSHM, PUTSHM
Named Directories ADDNDR DIRNDR DUNDR GETNDR SUBNDR
Path
GETPATH
Processor Speed
GETSPEED, PUTSPEED
Quiet Flag
GETQUIET, PUTQUIET
RCP Address GETRCP
Shell Stack
GETSH1, GETSH2
Wheel Byte
GETWHL, PUTWHL
15-1

ZCPR3: The Libraries
Z3LIB
Environment Access 2

15.1. Messages

Routine; GETMSG
Function; Return the address of the ZCPR3 Message Buffer in HL. A=0 and Zero Flag Set (Z) if there is no ZCPR3 Message Buffer.
See the Z3LIB information sections on ZCPR3 Messages.

Inputs: None

Outputs:
HL = address of ZCPR3 Message Buffer A = 0 and Zero Flag Set (Z) if there is none

Registers Affected: HL, PSW
Side Effects: None

Special Error Conditions: None

Routine; GETSHH
Function: GETSHM returns the value of the shell message whose number is specified in B. There are three shell messages, soO<=B<=2 (the programmer must be sure a valid value is presented).
Inputs: B = Message Number (0, 1, 2)
Outputs: A = Message Value (Zero Flag Set Accordingly)

Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

Routine; PCTSHM
Function: PUTSHM sets the value of the shell message whose number is given in B. The message value is in A. There are only three shell messages, so B = 0, 1, or 2.

Inputs: A = Message Value, B = Message Number = 0,1,2

Outputs: None

Registers Affected: None

Side Effects: Message Value is Set

Special Error Conditions: None

15.2. Named Directories

Routine; ADONDR
Function: ADDNDR adds a directory name to the named directory buffer, if possible. HL points to a ZCPR3 FCB (disk is at offset 0, with current disk = 0 and disk A = 1, and user number is at offset 13) which contains the disk name in the FN field of the FCB. DE optionally points to an 8-character buffer containing the password. Both FN and the 8-char password buffer are space-filled on the right. On input, if A=0 then the DE pointer is ignored and the password is set empty (all spaces).

ADDNDR capitalizes the disk name and password. It also sorts the named directory buffer to insure that it is properly ordered by DU. No check is made for duplicate names or duplicate DU references.

If there is no named directory buffer or if the buffer is full, ADDNDR returns with A=0 and Zero Flag Set. If ADDNDR succeeded, A=OFFH and NZ.
15-2
ZCPR3: The Libraries
Z3LIB
Environment Access 2
Inputs:
A = Password flag:

if A=0, set password to all spaces (no password) if AOO, set password from buffer pted to by DE HL = address of FCB containing DU and disk name DE = address of password buffer (8 chars) Outputs: A = Return code:

A=0 and Zero Flag Set (Z) if no named directory
buffer or directory buffer full AOO and NZ if success Registers Affected: PSW
Side Effects; Named directory buffer is changed Special Error Conditions: None

Routine; DIRNDR
Function: DIRNDR searches through the current named directory for the name whose buffer is pointed to by HL. This name is automatically capitalized, and HL points to an 8-character buffer (space fill on right) containing the name to search for. If found, BC = DU (disk A = 1) associated with the name, and HL points to the 18-byte entry, which is structured as follows:

DB DB DS DS
DISK ;A=1

USER

8 ;Name (caps) with space fill

8 ;Password (caps) with space fill

If no NDR buffer or not found, A=0 and Zero Flag Set. Inputs: HL = address of 8-char buffer containing name

to search for (space fill on right) Outputs:
BC = DU (disk A = 1) if found HL = address of NDR entry if found A = Error Code

A=0 and Zero Flag Set (Z) if no NDR buffer or

name not found A=OFFH and NZ if name found Registers Affected: BC, HL, PSW Side Effects: None Special Error Conditions: None

Routine; DONDR
Function: DUNDR searches through the current named directory for the DU (disk/user) contained in BC (disk A = 1).

If found, HL points to the 18-byte entry, which is structured as follows:

DB DISK ;A=1

DB USER

DS 8 ;Name (caps) with space fill

DS 8 ;Password (caps) with space fill

If no NDR buffer or not found, A=0 and Zero Flag Set, Inputs: BC = DU to search for (disk A = 1)

15-3
ZCPR3: The Libraries
Z3LIB
Environment Access 2

Outputs:
HL = address of NDR entry if found A = Error Code

A=0 and Zero Flag Set (Z) if no NDR buffer or

name not found A=OFFH and NZ if name found Registers Affected: HL, PSW Side Effects: None Special Error Conditions: None

Routine: GETNDR
Function: Return the address of the named directory buffer in HL and the size of the buffer in terms of 128-byte blocks in A. If there is no NDR buffer, A=0 and Zero Flag Set (Z).

GETNDR simply returns details on the NDR buffer address and size, but it does not say if an NDR is resident within it. To find this out, look at the first byte of the NDR buffer, and, if it is zero, then there is no NDR present. Example:

ext getndr
call getndr jz nondrbuf mov a,m ora a jz nondrload
;reference

;obtain data

;no NDR buffer is available ;get first byte of buffer ;set zero flag accordingly fno NDR is in the buffer

Inputs: None

Outputs:
HL = address of NDR buffer
A=0 and Zero Flag Set (Z) if no buffer, else

A=size of buffer in 128-byte blocks and NZ

Registers Affected: HL, PSW

Side Effects: None

Special Error Conditions: None

Routine: SDBNDR
Function: SUBNDR subtracts (removes) a directory name from the named directory buffer, if possible. HL points to the 8-character buffer containing the name to delete (space fill on right). SCBNDR capitalizes this name and removes it from the named directory buffer if it is present, repacking the buffer.

If there is no named directory buffer or the name is not found in the buffer, SUBNDR returns with A=0 and Zero Flag Set (Z). If success, SUBNDR returns with AOO and NZ.

Inputs: HL = address of 8-char buffer containing name to delete

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if no NDR or name not found AOO and NZ if success

Registers Affected: PSW

Side Effects: Named directory buffer is changed

Special Error Conditions: None

15-4

ZCPR3: The Libraries
Z3LIB
Environment Access 2

[image: image32.png]
[image: image33.png]
15.3. Path

Routine: GETPATH
Function: Return the address of the ZCPR3 Command-Search Path in HL. A=0 and Zero Flag Set (Z) if there is no ZCPR3 Path. If there is a ZCPR3 Path, A = number of two-byte path elements allowed in it.

A ZCPR3 Path Element is structured as follows:

Byte 1: Disk ID

Disk A = 1, B = 2, etc

Current Disk = '$' Byte 2: User ID

Number from 0 to 31

A ZCPR3 Path is terminated by a Disk ID of 0. Example:

path:

db '$',1 ;current disk, user 1 db 1,'$' ;disk A, current user db 1,15 ;disk A, user 15 db 0 ;end of path

Inputs: None Outputs:
HL = address of ZCPR3 Path

A = 0 and Zero Flag Set (Z) if there is none Registers Affected: HL, PSW Side Effects: None Special Error Conditions: None

[image: image34.png]
15.4. Processor Speed

Routine: GETSPEED
Function: Return the speed of the processor in A. This one-byte value is to represent the processor speed in MHz, so A=l means 1 MHz, A = 4 means 4 MHz, etc.

This function is useful for software timing loops.

Inputs: None

Outputs: A = processor speed

Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

Routine: PUTSPEED
Function: PUTSPEED sets the processor speed (passed in A) . A=l for 1 MHz, 2 for 2 MHz, etc.

No error messages are returned (no validity check is made). No registers are affected.

Inputs: A = Processor Speed in MHz

Outputs: None

Registers Affected: None

Side Effects: Processor Speed in Env Desc is set

Special Error Conditions: None

15-5

ZCPR3: The Libraries
Z3LIB
Environment Access 2

[image: image35.png]
15.5. Quiet Flag

Routine: GETQDIET
Function: Return the Quiet Flag in A. A= 0 and Zero Flag Set <Z) if the program is NOT to run quietly, A=OFPH and NZ if the program is to run quietly.

By quiet operation, the program is not to display any informative messages.

Inputs: None

Outputs: A = Quiet Flag (0=not quiet) and Zero Flag set accordingly

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

Routine: POTQOIET
Function: PUTQUIET sets the quiet flag with the value in A (A=0 for NOT QUIET, A 0 0 tOFFH preferred] for quiet). No error messages, and no registers affected.

Inputs: A = Quiet flag value (0=NOT QUIET, OFFH=QUIET)

Outputs: None

Registers Affected: None

Side Effects: Quiet flag in Env Desc is set

Special Error Conditions: None

[image: image36.png]
15.6. RCP Address

Routine; GETRCP
Function: Return the address of the resident command package buffer in HL and the size of the buffer in terms of 128-byte blocks in A. If there is no RCP buffer, A=0 and Zero Flag Set < Z).
GETRCP simply returns details on the RCP buffer address and size, but it does not say if an RCP is resident within it. To find this out, look at the first byte of the RCP buffer, and, if it is zero, then there is no RCP present. Example:

ext getrcp ;reference

call getrcp ;obtain data jz norcpbuf ;no RCP buffer is available mov a,m ;get first byte of buffer ora a yset zero flag accordingly jz norcpload ;no RCP is in the buffer

Inputs: None

Outputs:
HL = address of RCP buffer

A=0 and Zero Flag Set (Z) if no buffer, else

A=size of buffer in 128-byte blocks and NZ

Registers Affected: HL, PSW

Side Effects: None

Special Error Conditions: None

15-6

ZCPR3: The Libraries
Z3LIB
Environment Access 2

[image: image37.png]
[image: image38.png]
15.7. Shell Stack

Routine: GETSH1
Function: Return the address of the shell stack in HL, the size of each shell stack entry in B, and the number of entries possible in the shell stack in A. A=0 and Zero Flag Set (Z) if there is no shell stack.

See the SHPCSH and SHPOP routines for detail on other facilities for dealing with shell stacks provided by Z3LIB. GETSH1 serves mainly to provide data. Inputs: None Outputs:
HL = address of Shell Stack

B = number of bytes in each shell stack entry A = number of entries possible in the stack A = 0 and Zero Flag Set <Z) if no stack Registers Affected: HL, B, PSW Side Effects: None Special Error Conditions: None

Routine: GETSH2

Function: Return the address of the shell stack in HL, the size of each shell stack entry in DE, and the number of entries possible in the shell stack in both A and B. A=0 and Zero Flag Set (Z) if there is no shell stack.

See the SHPUSH and SHPOP routines for other Z3LIB capabilities wrt shells. GETSH2 serves mainly to provide data in a form that is more usable for certain applications than GETSH1. Inputs: None Outputs:
HL = address of Shell Stack

DE = number of bytes in each shell stack entry A,B = number of entries possible in the stack A = 0 and Zero Flag Set <Z) if no stack Registers Affected: HL, DE, B, PSW Side Effects: None Special Error Conditions: None

[image: image39.png]
15.8. Wheel Byte

Routine: GETWHL
Function: Return the Wheel Byte in A. A= 0 and Zero Flag Set (Z) if the program is NOT to give Wheel powers, A=OFFH and NZ if the program is to run in a priveleged mode.

By wheel operation, the program is not to prohibit the user from performing any function. For instance, allowing the user to change the PATH should be a Wheel function so that the "normal" user is not allowed to change his environment while a "priveleged" user is.

Inputs: None

Outputs: A = Wheel Byte (0=not wheel) and Zero Flag set accordingly
Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

15-7
ZCPR3: The Libraries
Z3LIB
Environment Access 2

Routine: PUTWHL
Function: Set the Wheel Byte in A. A= 0 and Zero Flag Set <Z) if the program is NOT to give Wheel powers, A=OFFH and NZ if the program is to run in a priveleged mode.

Inputs: A=Wheel Byte Value

Outputs: None

Registers Affected: None

Side Effects: Wheel Byte is Set

Special Error Conditions: None

15-8

ZCPR3: The Libraries
Z3LIB
Flow and ZEX Control

[image: image40.png]
16. FLOW AND ZEX CONTROL
CHAPTER OUTLINE
Flow Control

[image: image41.png]
End IF
IFEND
Raise IF
IFT, IFF
Test IF
IFTEST
Toggle IF
IFELSE
ZEX Access and Control
ZEX Data
GETZFC
GETZNC, PUTZNC GETZRUN, PUTZRUN
ZEX Status and Control GETZEX, PUTZEX HALTZEX STOPZEX STRTZEX
[image: image42.png]
16-1
ZCPR3: The Libraries
Z3LIB
Flow and ZEX Control
16.1. Flow Control

[image: image43.png]
Defintion of Plow Control:
All command sequences issued under ZCPR3 can be thought to execute within a TRUE flow control state. That is, whenever a command is executed under ZCPR3, the state of flow control is TRUE. If the state of flow control is FALSE then no commands except flow commands will be executed until the state of flow control becomes TRUE.

Background;
When ZCPR3 first cornea up, the state of flow control is always TRUE. Any command issued will be executed. If a Flow Command Package is installed which supports the IF/ELSE/FI (End IF) commands, then the state of flow control can be changed by user commands. For example, the following terminal session illustrates;

SCR>; any command will execute now
SCR>era *.bak
No Piles
SCR>dir
MYFILE .TXT ; OBJECT .BIN
SCR>; we can set a flow control state to be false
SCR>IF F
IF F
SCR>; no command will execute now SCR>dir SCR>else
IF T SCR>dir
MYFILE .TXT ! OBJECT .BIN SCR>FI
No IF SCR>
When any command is executed, before the execution actually begins, ZCPR3 will look to see if the state of the flow control is TRUE. Such is the case when we are not within an IF condition or when we are within one or more IF conditions, all of which are TRUE.

ZCPR3 allows the user to be nested into IFs up to eight (8) levels deep. That is, the structure of his command sequences can take the form of something like the following which can be nested into 8 levels of IPs:

16-2

ZCPR3; The Libraries
Z3LIB
Plow and ZEX Control
<set of commands> IF T
<set of commands> IF T

<set of commands> IF T

<set of commands> FI
<set of commands> ELSE

<set of non-executed commands> IF T

<set of non-executed commands> FI FI ELSE

<set of non-executed commands> PI

[image: image44.png]
Command structures like those presented above are now possible under ZCPR3. Essentially, ZCPR3 commands can now take the form of a programming language in their own right.

The set of routines available in this part of Z3LIB are used to provide the programmer a simple interface to control the flow control within (and outside) his program. He can, under his own control, issue commands to:
. enter the next IF level in a TRUE or FALSE condition, . toggle the state of the current IF level, . drop down to the previous IF level, . determine the current IF level number, . or multiples of the above

[image: image45.png]
16.1.1. End IF

Routine: IFEND
Function: Drop to the previous IF level. If the program is currently within one or more IFs, IFEND will drop it to the next IF level down, terminating the current IF level.

For a transient to be executing, there is currently either no IF level or there is a TRUE flow control state (all preceeding IPs are TRUE). If we are at some IF level, calling IFEND drops us into the proceeding one.

Inputs: None

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if no IF level A=OFFH and NZ if IFEND is successful

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

16-3

ZCPR3: The Libraries
Z3LIB
Flow and ZEX Control

[image: image46.png]
16.1.2. Raise IF

Routine; IFT, IFF
Function: Raise the flow control state into the next level of IF. IFT raises the state into the next level and sets it to TRUE, while IFF raises the state into the next level and sets it to FALSE.

The flow control state can support eight (8) levels of IPs, and IFT and IFF return error codes indicating if an overflow (and subsequent failure to enter the next state) occurred.

Inputs: None

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if IF level overflow A=OFFH and NZ if IF level OK

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

16.1.3. Test IF

Routine: IFTEST
Function: To determine the current IF level. IFTEST returns a value from 0 to 8 in the A register, indicating the current IF level. If A=0, there is no current IF. The Zero Flag is set accordingly, so the following can be done:

ext IFTEST

call if test ;get IF level

jz noif process if not any IF level

cpi 8 test for max IF level

jz atmax process if at max IF level

Inputs: None Outputs: A = number of current IF level. Zero Flag set

accordingly Registers Affected: PSW Side Effects: None Special Error Conditions: None

16.1.4. Toggle IF

Routine: IFELSE
Function: Toggle the TRUE/FALSE state of the current IF level. IF the program is currently within an IF level (then it MUST be within a TRUE IF level), calling IFELSE (an odd number of times) toggles the IF level to FALSE. Two calls to IFELSE (any even number of calls) result in the IF level remaining at TRUE.

Inputs: None

Outputs: A = Error Code

A=0 and Zero Flag Set (Z) if no current IF A=OFFH and NZ if successful

Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

16-4

ZCPR3; The Libraries
Z3LIB
Flow and ZEX Control

16.2. ZEX Access and Control

The ZEX Command Pile Facility (under ZCPR3 onlyl) can be controlled by this set of Z3LIB routines. ZEX intercepts all BIOS calls for input, and, when in intercept mode, it provides input from text contained in its memory-based text buffer rather than allowing the user to input characters from the keyboard. These routines are used to query the status of ZEX and to instruct ZEX to continue intercepting characters or to stop intercepting characters and allow user input.

This set of routines provides access to the ZEX memory-based command file processor and its environment. The programmer can take control of ZEX through these routines.

Summary of Routines:

GETZEX - Get the ZEX Control Message GETZFC - Get the first character in ZEX buffer GETZNC - Get the next character to be returned GETZRUN - Get ZEX Running Flag

HALTZEX - Terminate the ZEX processor

[image: image47.png]
PUTZEX PUTZNC PUTZRUN
STOPZEX STRTZEX
16.2.1. ZEX Data
Set the ZEX Control Message

Set the next character to be returned

Set ZEX Running Flag

Suspend ZEX Execution Resume ZEX Execution from a STOPZEX

[image: image48.png]
Routine: GETZFC
Function: GETZFC (Get ZEX First Character) returns the address in HL of the first character in the ZEX text buffer. Carry Flag is set if data is not available. Inputs: None Outputs:
HL = Address of First Character
A = Character
Carry Flag Set (0 if No Data Registers Affected: HL, PSW Side Effects: None Special Error Conditions: None
Routine; GETZNC
Function: GETZNC (Get ZEX Next Character) returns the address in HL of the next character which ZEX will return. Carry Flag is Set if no data. Reg A contains the character. Inputs; None Outputs:
HL = Address of Next Character in ZEX Text Buffer
A = Next Character in ZEX Text Buffer
Carry Flag Set (C) if no data Registers Affected: HL, PSW Side Effects: None Special Error Conditions: None
16-5
ZCPR3; The Libraries
Z3LIB
Flow and ZEX Control
[image: image49.png]
Routine: PUTZNC
Function: PUTZNC sets the address of the next character which ZEX will return to that contained in HL. This routine provides a GOTO function for ZEX control.
Inputs: HL = address of next character ZEX will return

Outputs: Carry Flag Set <C) if data not available (Message Buffers not available)

Registers Affected: PSW
Side Effects: ZEX Next Character Address Message is set

Special Error Conditions: None

Routine: GETZRUN
Function: GETZRUN returns the ZEX Run Message Byte in A. Zero Flag is set accordingly. Carry Flag is Set if no message available. This message indicates if ZEX is running or not (A=0 if not running).
Inputs: None
Outputs: A = ZEX Run Message

Carry Flag Set (0 if no data

Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

Routine; PDTZRON
Function: PUTZRON sets the ZEX Running Message byte to the value in the A register. Carry Flag is Set upon return if no messages are supported. This message indicates if. ZEX is running, and A=0 if ZEX is not running.

Inputs: A=Value of ZEX Running Message Byte

Outputs: Carry Flag Set if no message buffers

Registers Affected: PSW

Side Effects: ZEX Running Message Byte is set

Special Error Conditions: None

[image: image50.png]
16.2.2. ZEX Status and Control

Routine: GETZEX
Function: Returns the ZEX control message byte in A. This allows the program to find out the current state that ZEX is in. This control message byte takes on one of three values:

0 - "normal" - ZEX is running and intercepting BIOS calls

1 - "ZCPR3 Prompt" - ZEX is allowed to run and

intercept BIOS calls but ZEX thinks that it is providing input to the ZCPR3 command Processor directly (ZEX is not providing input to any program)

2 - "ZEX suspended" - ZEX is not intercepting BIOS calls and user input is allowed

The code of 1 should never be seen by any program since it is set by ZCPR3 and cleared to 0 after ZEX has completed the command line input.

16-6

ZCPR3: The Libraries
Z3LIB
Flow and ZEX Control

Any ZEX control message is reset upon execution of ZCPR3 to 0 when ZCPR3 is entered and then to 1 when the ZCPR3 prompt appears (ZCPR3 input). When ZCPR3 completes its input, it resets the ZEX control message to 0. Inputs: None

Outputs: A = ZEX Control Message and Zero Flag set accordingly
A = 0 if ZEX is intercepting chars A = 1 if ZCPR3 input is engaged and ZEX is

intercepting chars

A = 2 if ZEX is not intercepting chars Registers Affected: PSW Side Effects: None Special Error Conditions: None

[image: image51.png]
Routine; POTZEX
Function: Sets the ZEX control message byte in A. This allows the program to set the state that ZEX is in. This control message byte must take on one of three values:

0 - "normal" - ZEX is running and intercepting BIOS calls

1 - "ZCPR3 Prompt" - ZEX is allowed to run and

intercept BIOS calls but ZEX thinks that it is providing input to the ZCPR3 command Processor directly (ZEX is not providing input to any program)

2 - "ZEX suspended" - ZEX is not intercepting BIOS calls and user input is allowed

It is the responsibility of the programmer that A contains one of these three values upon entry to PUTZEX.
The code of 1 may be set by any program if it wants ZEX to "think" that it is providing input to ZCPR3. If ZEX was previously suspended, it advances to the beginning of the next line and resumes when it sees this code.

Any ZEX control message is reset upon execution of ZCPR3 to 0 when ZCPR3 is entered and then to 1 when the ZCPR3 prompt appears <ZCPR3 input). When ZCPR3 completes its input, it resets the ZEX control message to 0.

Inputs: A = ZEX Control Message

A = 0 if ZEX is intercepting chars A = 1 if ZCPR3 input is engaged and ZEX is

intercepting chars

A = 2 if ZEX is not intercepting chars Outputs: None

Registers Affected: None

Side Effects: ZEX Control Message Byte is Set Special Error Conditions: None

[image: image52.png]
16-7

ZCPR3; The Libraries
Z3LIB
Flow and ZEX Control
[image: image53.png]
Routine: HALTZEX
Function: HALTZEX terminates execution of the ZEX processor. STOPZEX suspends execution of ZEX (and STRTZEX can resume it), but HALTZEX causes ZEX to terminate itself completely. It does this by setting the next character ZEX will process to OFFH (the termination character).
Inputs: None

Outputs: A = Error Code

A=0 and Zero Flag Set <Z) if ZEX not running A=OFFH and NZ if ZEX halted

Registers Affected: PSW
Side Effects: ZEX is halted if running

Special Error Conditions: None

Routine; STOPZEX
Function: Stop ZEX from intercepting BIOS calls and allow the user to input characters.

This is a shorthand to placing the 2 control code into the ZEX Control Message Byte.

Inputs: None

Outputs: None

Registers Affected: None

Side Effects: ZEX Control Message Byte is set to 2

Special Error Conditions: None

Routine: STRTZEX
Function: Allow ZEX to intercept BIOS calls and don't allow the user to input characters.

This is a shorthand to placing the 0 control code into the ZEX Control Message Byte.

Inputs: None

Outputs: None

Registers Affected: None

Side Effects: ZEX Control Message Byte is set to 0

Special Error Conditions: None

[image: image54.png]
16-8

ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3

17. MESSAGES OF ZCPR3
CHAPTER OUTLINE
Command Status Messages GETCST, PUTCST QERROR QSHELL
Error Flag and Error Command ERRADR
GETER1, PUTER1 GETERC, PUTERC
Inter-Transient Error Code GETER2, PUTER2
Register Access
GETREG, PUTREG
17-1
ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3

Messages of ZCPR3
ZCPR3 offers many features not found under CP/M, ZCPR1, or ZCPR2. One such feature is that of ZCPR3 Command Processor Messages«
ZCPR3 supports the ability to have a ZCPR3 Message Buffer which contains a number of messages which can be passed from one transient program to another or between ZCPR3 itself and all transient programs which run under ZCPR3. Commands can be given directly to ZCPR3, status information can be passed from ZCPR3 to the transients, and both status and commands can be passed from one transient to another through these messages.

These message can be divided into six basic classes:

. messages which command ZCPR3

. status messages sent by ZCPR3

. ZEX command messages

. status and command messages sent by one program

to another which are ignored by ZCPR3 . user-defined messages . reserved messages

Before using any of the Z3LIB routines to access these messages, the program should check to ensure that the ZCPR3 Message Buffer is available to it. This can be easily done by calling the GETMSG routine (see the second on the ZCPR3 environment). GETMSG returns with Zero Flag Set < Z) if no ZCPR3 Message Buffer exists. Hence:

ext getinsg ; reference

call getmsg ;get message buffer status jz noZ3msgs ;no messages to read

This chapter summarizes the facilities available through the ZCPR3 Message Buffer.

Messages which Command ZCPR3
Some of the messages in the ZCPR3 Message Buffer are set by external programs (transients or command packages) and are read and interpreted by ZCPR3. These messages are:

. current IF level and active (T/F) status of

all IF levels . whether an error handler is available and what

the command line to invoke it is

17-2

ZCPR3: The Libraries Z3LIB Messages of ZCPR3

Status Messages Sent by ZCPR3
Some of the messages in the ZCPR3 Message Buffer are set only by ZCPR3 or a ZCPR3 Shell and are intended to be used as R/0 messages by transients. These messages are:

. ZCPR3 Command Status

- the transient loaded is/is not a shell

- the transient loaded is/is not an error

handler . Error Address

- if the transient loaded is an error

handler, this is the address of the first character of the command line which was in error

ZEX Command Messages
One message in the ZCPR3 Message Buffers is intended to directly send commands to the ZEX memory-based command file processor. This message byte tells ZEX three different things:

. to run normally - ZEX is to intercept the

Input calls and provide characters in place

of console input . ZCPR3 is prompting - ZEX is providing input

directly to the Command Processor ZCPR3 . suspend intercept - ZEX is to stop intercepting

console input and to allow input from the

console until normal execution or the ZCPR3

prompt message appears

Messages Ignored by ZCPR3
Two pre-defined messages are ignored by ZCPR3. The first message is the Program Error Code. This byte can be set by any program under ZCPR3 to indicate a return status to the next program. The convention has been adopted that if this byte is 0, then the program completed successfully. If it is non-zero, the program failed for one reason or another and the value of this code indicates that reason to a following program.

The second message is the register buffer. Ten 1-byte registers are available and can be tested by the flow command package. Conditions like "IF 05" (IF Register 0=5) can be tested for and processed by the flow command package, and other programs, either transients or resident command packages, can manipulate these register values.

17-3
ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3
[image: image55.png]
User-Defined Messages
A set of 16 messages is available for user definition. Each message is one byte long, and routines in Z3LIB are provided to place values into these messages and query them.

[image: image56.png]
Reserved Messages
A set of 16 one-byte messages is reserved for future use in the ZCPR3 system and should not be used by applications programmers. Z3LIB does not provide access to these messages.

17.1. Command Status Messages

These messages return the status of the current transient as set by ZCPR3. Any transient has been invoked in one of three possible states:

. as a "normal" transient, executed at the

request of the user or another program . as a "shell", invoked by ZCPR3 itself . as an "error handler", invoked by ZCPR3 itself

when it cannot process the current command

line (cannot find a matching COM file or

CMDRON facility)

Routine: GETCST
Function: Return the ZCPR3 Command Status Message. This message is one byte long and can have one of three values:

0 - this is a "normal" transient

1 - this is a "shell"

2 - this is an "error handler"

This message is always set by ZCPR3 and not intended to be set by any program. Inputs: None

Outputs: A = message code (Zero Flag set accordingly) Registers Affected: PSW Side Effects: None Special Error Conditions: None

Routine: PDTCST
Function: Set the ZCPR3 Command Status Message. This message is one byte long and can have one of three values:

0 - this is a "normal" transient

1 - this is a "shell"

2 - this is an "error handler"

This message is always set by ZCPR3 and not intended to be set by any program, with the exception of a ZCPR3 Shell. PUTCST allows a ZCPR3 Shell easy access to set this message byte.

Inputs: A = ZCPR3 Command Status Message value (0, 1, or 2)

17-4

ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3
[image: image57.png]
[image: image58.png]
[image: image59.png]
Outputs: None

Registers Affected: None

Side Effects: None

Special Error Conditions: None

Routine: QERROR
Function: Test to see if the ZCPR3 Command Status Message indicates that the current transient is an error handler. The ZCPR3 Command Status Message is read and tested against the Error Handler code value. Zero Flag is Set if the current transient is an Error Handler.

Inputs: None

Outputs: A = message code
Zero Flag is Set if transient is an Error Handler

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

Routine; QSHELL
Function: Test to see if the ZCPR3 Command Status Message indicates that the current transient is a shell. The ZCPR3 Command Status Message is read and tested against the Shell code value. Zero Flag is Set if the current transient is a Shell.

Inputs: None

Outputs: A = message code

Zero Flag is Set if transient is a Shell

Registers Affected: PSW

Side Effects: None

Special Error Conditions; None

17.2. Error Flag and Error Command

This set of routines performs the following functions:

ERRADR - returns the address of the first

character of the command line in error GETER1 - returns the error flag PUTER1 - sets the error flag GETERC - returns the address of the first

character of the error handler command line PUTERC - set the error handler command line

Routine; ERRADR
Function: Assuming that the current transient is an error handler (a call to QERROR returns with Zero Flag Set), this routine returns the address of the first character of the command line which was in error. For example, if the command:

XXX params;DIR

was issued and XXX.COM could not be found, ERRADR returns the address of the first character of the string:
db 'XXX params;DIR',0 Inputs: None

17-5

ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3
[image: image60.png]
Outputs: HL = address of first character of error line

Registers Affected: HL

Side Effects: None

Special Error Conditions: None

Routine: GETER1
Function: Return the error flag in A. GETER1 allows the program to find out if an error handler is currently installed. A=0 and Zero Flag is Set (Z) if there is no error handler installed.

Inputs: None

Outputs; A=0 and Z if no error handler installed AOO and NZ if error handler installed

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

Routine; PDTER1
Function: Set the error handler installed flag. PUTER1 allows the program to explictly set the error handler installed flag. If this flag is set to 0, the current error handler (if any) is disabled. If this flag is set to non-zero, the current error handler (defined by the error handler command line message - see GETERC/PUTERC) is enabled for later use.

Inputs: A = error handler engaged flag

(A=0 if error handler is to be disabled, AOO if error hander is to be enabled)

Outputs: None

Registers Affected: None

Side Effects: Error Handler Enable Message is Set

Special Error Conditions: None

Routine: GETERC
Function: Return the address of the first character of the command line used to invoke the current error handler.

If the error handler is to be invoked by the command:

ERROR params then the address of the first character of this string:

db 'ERROR pararos',0

is returned.

If there is no error string, on exit A=0 and Zero Flag is Set (Z). Otherwise, A=first character of error string and NZ.
Inputs: None

Outputs: HL = address of first char

A=0 and Zero Flag Set if string is empty

Registers Affected: HL, PSW

Side Effects: None

Special Error Conditions: None

Routine; PDTERC
Function; Set the error handler command line. On input, HL points to a string which is to be the command line executed to invoke an error handler. For example:

17-6

ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3
[image: image61.png]
ext puterc

ixi h,erstr ;pt to string

call puterc

jnz OK ;string was accepted

• • •
erstr:
db 'ERROR NOOPT*,0

The error string, including the ending 0, must be 32 bytes long or less. If it is more than 32 bytes long, PUTERC returns with A=0 and Zero Flag Set (Z).
Inputs: HL = address of first character of error handler command line

Outputs; A=0 and Zero Flag Set (Z) if command line too long (more than 32 bytes)

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

[image: image62.png]
17.3. Inter-Transient Error Code

The inter-transient error code is a one-byte message which any program can set to indicate its completion success. The convention is adopted that if this message byte is set to 0, then the program completed successfully. If this message byte is not 0, then the program had an error in one form or another and the value of this message byte indicates the error.

GETER2 allows a program to determine the value of this inter-transient error code and PUTER2 allows a program to set the value of the inter-transient error code.

Routine: GETER2
Function: Return the value of the inter-transient error code in A. A=0 and Zero Flag Set (Z) if no error. Inputs: None Outputs: A=error code and Zero Flag set accordingly
A=0 and Zero Flag Set (Z) if no error Registers Affected: PSW Side Effects: None Special Error Conditions: None

[image: image63.png]
17-7

ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3
Routine; PDTER2
Function: Set the value of the inter-transient error code. If A=0, the program is indicating that no error occurred. Inputs: A=error code (A=0 if no error) Outputs: None

Registers Affected: None Side Effects: Error Code Message is Set Special Error Conditions: None

17.4. Register Access

The ZCPR3 Message Buffer provides ten one-byte messages which are used as one-byte registers. The GETREG and PUTREG routines allow a program to obtain and set a value in any one of the ten registers.

Routine; GETREG
Function: Obtain the value (in A) of the register whose number is in B <B=0 to 9). On entry, B=register number, and on exit, A=value in register.

GETREG performs no check on the validity of the value in B, using it as an offset into the register buffer. It is the responsibility of the programmer to ensure that B contains a valid register number (0 to 9).

Example of use:

ext getreg
mvi b,5 ;get the value of Register 5

call getreg

jz r5eq0 ;process special case of reg 5=0

Inputs: B s register number of register to access Outputs: A = value of register and Zero Flag is set

accordingly Registers Affected; PSW Side Effects: None Special Error Conditions; None

17-8

ZCPR3: The Libraries
Z3LIB
Messages of ZCPR3

Routine: PUTREG
Function: Set the value (contained in A) into a register (whose number is contained in B).
No check is made to ensure that B contains a valid register number. It is the responsibility of the programmer to ensure that B contains a value from 0 to 9.

Example of use:

ext putreg
mvi b,9 ;set register 9 mvi a, 20 ;to 20 call putreg

Inputs: B = register number (0 to 9)

A = register value (0 to 255) Outputs: None

Registers Affected: None Side Effects: Register Value is Set Special Error Conditions: None

17-9

[image: image64.png]
ZCPR3: The Libraries Z3LIB Messages of ZCPR3 NOTES:

17-10
ZCPR3: The Libraries
Z3LIB Utilities
18. UTILITIES
CHAPTER OUTLINE
Locate ROOT Directory in Path ROOT

Log into ZCPR3 FCB DP Z3LOG

Named Directory and Disk User Conversion DIRTDU DUTDIR
Output Routines Based on the Quiet Flag Qxxx
Parse Command Line PARSER

Parse Token 2PRSFN ZFNAME
Pause Execution waits
Program Loader (Chain) PRGLOAD
Resolve Directory References DNSCAN DUSCAN DIRSCAN
Search for File Along Path PFIND
Shell Stack Manipulation SHxxx
Z3LIB Version Number Z3LVER

Initialize Z3LIB Z3INIT

18-1
ZCPR3: The Libraries
Z3LIB
Utilities

Utilities
These utilities provide a number of convenient functions for the ZCPR3 System Programmer. Access to directories, conversion from text string names to directory reference values, command and command line parsing, quiet output routines, shell stack manipulation, delay routines, and other ZCPR3-specific functions are provided.

18.1. Log into ZCPR3 FCB DU
Routine; Z3LOG
Function: Z3LOG logs into the DU contained in a ZCPR3 FCB. This FCB contains the disk reference in Byte 0 and the User Area in Byte 13 (Sl). This is the standard format used by ZCPR3 to store a complete DU reference in an FCB.

Inputs: DE = First Byte of FCB

Outputs: None

Registers Affected: None

Side Effects: Directory is logged into

Special Error Conditions: None

18.2. Locate ROOT Directory in Path

Routine; ROOT
Function: ROOT returns the DU in BC (disk A = 0) of the last directory in the command search path. No path optimization is performed. This routine provides a convenient way to find the ROOT directory, where this directory is the last directory referenced in a path expression.

This routine is sometimes not consistent with the ZCPR3 CP if the MINPATH (Minimize Path Expression) option is selected. ROOT advances to the last referenced directory in the path without minimization, which ZCPR3 minimizes the search and may resolve a path to terminate (with duplication) at a directory other than the physically last directory in the path.

Inputs: None

Outputs: BC = DU (Disk A = 0)

Registers Affected: BC, PSW
Side Effects: None

Special Error Conditions; None

18-2

ZCPR3: The Libraries
Z3LIB Utilities

18.3. Named Directory and Disk Oser Conversion

Routine: DIKTDU
Function: DIRTDU converts the DIR name pointed to by HL into its DU equivalent. The DIR name is a string of up to eight ASCII characters, and its end is denoted by a delimiter which is any ASCII character that is not a digit or a letter.

Inputs: HL = address of first character of DIR name Outputs: If match found, BC = DU (disk A = 0) and NZ If no match, A=0 and Zero Flag Set (Z) HL always points to the delimiter at the end of

name

Registers Affected: HL, BC, PSW Side Effects: None Special Error Conditions: None

Routine; DUTU1K
Function: DUTDIR searches the named directory for the DU given in BC (B=disk with disk A = 0, C=user). If an entry exists for the corresponding DU, DUTDIR returns a pointer in HL to the 8-character name (followed by an 8-character password).

Inputs: BC = DU (disk A = 0)

Outputs: If found, A^OFFH and NZ and HL = pointer to name If not found, A=0 and Zero Flag is Set

Registers Affected: HL and PSW

Side Effects: None

Special Error Conditions: None

18.4. Output Routines Based on the Quiet Flag

These routines output their values only if the Quiet Flag is clear (0). If the Quiet Flag is TRUE (not 0), then no values are output.
This class of routines includes the following:

QCOUT Console Character Output with Control

QCRLF New Line

QOUT Console Character Output

QPRINT String Output (Return Address)

QPSTR String Output (HL)

Routine; QCODT
Function: QCOUT outputs the character in A with control character processing (1 outputs as "A) if the Quiet Flag is OFF (0).

Inputs: A=Character

Outputs: None

Registers Affected: None

Side Effects: Character(s) is printed

Special Error Conditions: None

18-3

ZCPR3: The Libraries
Z3LIB
Utilities
Routine; QCRLF
Function; QCRLF outputs a New Line (CR LF pair) if the Quiet Flag is OFF (0). Inputs: None Outputs: None

Registers Affected: None Side Effects: CRLF is Output Special Error Conditions: None

Routine; QODT
Function: QOUT outputs the character in A without control character processing (1 outputs as 1) if the Quiet Flag is OFF (0).

Inputs: A=character to output

Outputs: None

Registers Affected: None

Side Effects: Character is output

Special Error Conditions: None

Routine: QPRINT
Function; QPRINT outputs the string, terminated by a binary 0, at the return address if the Quiet Flag is OFF (0). Control is returned to the byte following the string.

Inputs: None (String at Return Address)

Outputs: None

Registers Affected: None

Side Effects: String is output

Special Error Conditions: None

Routine; QPSTR
Function: QPSTR outputs the string, terminated by a binary 0, pted to by HL if the Quiet Flag is OFF (0).
Inputs: HL = address of first character of the string

Outputs: None

Registers Affected: None

Side Effects: String is output

Special Error Conditions: None

18.5. Parse Command Line
Routine; PARSER
Function: PARSER performs a complete parse of the command pointed to by HL (the command is a string terminated by a binary 0 or an MCL delimiter, a semicolon I;]). All elements of the command line are parsed as though the ZCPR3 CP were parsing the line.

The following buffers are initialized as per the ZCPR3 CP conventions:
FCB1 (at 5CH) FCB2 (at 6CH) TBUFF (at 8 OH)

18-4
ZCPR3: The Libraries
Z3LIB Utilities

[image: image65.png]
The command name is returned in an FCB pted to by DE. Inputs: HL = address of command

A = 0 if DIR form scanned before DU A 0 0 if DU form scanned before DIR Outputs:
HL = address of next command (0 or leading ;) DE = address of FCB with command name

(verb.COM) A = Flag:

A=0 and Zero Flag Set <Z) if OK A=nurober of question marks and NZ if

verb contains one or more ? chars Registers Affected: HL, DE, PSW Side Effects: Buffers Altered Special Error Conditions; None

[image: image66.png]
18.6. Parse Token

Routine: ZPRSFN, ZFNAME

Function: ZPRSFN is a complete FCB token parser in the sense of the ZCPR3 CP (see PARSER, which is related). On input, HL points to a token, like 'dir:filename.typ', *du:filename.typ', 'filename.typ', etc, and a ZCPR3-identical parse is performed on the token. The resulting FCB contains the filename and typ and a proper DU reference.

ZFNAME is a literal interpretation of the code within the ZCPR3 CP. ZPRSFN is a more efficient body of code but uses more buffer space.

Inputs:
HL = address of first char of token

DE = address of 36-byte FCB

A = Flag:

A = 0 if scan for DIR form before DU A = 1 if scan for DU form before DIR

Outputs:
HL = address of char after token A = number of question marks in filename, typ and Zero Flag set accordingly

Registers Affected: HL, PSW

Side Effects; PCB is loaded

Special Error Conditions: None

[image: image67.png]
18.7. Pause Execution

The following routines provide a software delay based upon the processor speed value in the ZCPR3 Environment Descriptor. These routines simply delay for the indicated period of time (approximately) and then return. No registers are affected.

The routines are:

WAIT1S - delay for 1 second WAIT1MS - delay for 0.001 second WAITP1S - delay for 0.1 second

18-5

[image: image68.png]
ZCPR3: The Libraries
Z3LIB
Utilities
Routine: WAIT1S
Function: WAIT1S delays for approximately 1 second.

Inputs: None

Outputs: None

Registers Affected: None

Side Effects: A 1-second delay takes place

Special Error Conditions: None

Routine; WAIT1MS
Function: WAIT1MS delays for approximately 1 millisecond (0.001 second). Inputs: None Outputs: None

Registers Affected: None

Side Effects: A 1-millisecond delay takes place Special Error Conditions: None

Routine: WAITP1S
Function: WAITP1S delays for approximately one tenth (0.1) of a second.

Inputs: None

Outputs: None

Registers Affected: None

Side Effects: A 0.1-second delay takes place

Special Error Conditions: None

18.8. Program Loader (Chain)

Routine: PRGLQAD
Function: PRGLOAD loads the program indicated by the first 12 bytes pointed to by DE into memory at 100H and transfers control to it. It is a chain function. The loader and FCB used for the load are relocated to just under the CP after PRGLOAD begins execution, so the TPA is free for the load. Care should be taken to ensure that the system stack (located out of the TPA in a safe area) is used instead of some stack in the TPA which may be overwritten during the load.
If PRGLOAD returns from being called, an error in loading occurred. If all goes well, the loaded program executes successfully.
Inputs: DE pts to first 12 bytes of FCB

Outputs: None

Registers Affected; All (if PRGLOAD returns, load was a failure)

Side Effects: None

Special Error Conditions: None

18-6

ZCPR3: The Libraries
Z3LIB Utilities
[image: image69.png]
[image: image70.png]
18.9. Resolve Directory References

Routine: DNSCAN
Function: DNSCAN scans for a resolution of the directory name pted to by HL. The disk name is at roost eight characters long and, if less than eight characters, is terminated by a delimiter such as a space, a character less than space, a comma, a period, a dash, etc. If found, the DU is returned in BC. Both DIR and DU forms are resolved by this routine.

Inputs: HL = address of first character of directory name A = Flag;

A=0 if scan DU before DIR AOO if scan DIR before DU Outputs: BC = DU (disk A = 0) if found A = Return Code:

A=0 and Zero Flag Set (Z) if not valid A=OFFH and NZ if valid and BC=DU Registers Affected: BC, PSW Side Effects: None Special Error Conditions: None

Routine; DUSCAN
Function: DUSCAN resolves the DU form pted to by HL. The DU string is stored in a buffer up to eight characters long, and it is terminated by a delimiter, which may be any of the following bytes:

a character of value space or less

an equal sign (=)
an underscore <_)
a period <.)
a colon (:)
a comma <,)
a less-than sign (<)
a greater-than sign (>)
Inputs: HL = address of first char Outputs: A=OPFH, NZ, and BC==DU (disk A = 0) if valid

A=0 and Zero Flag Set (Z) if not valid Registers Affected: BC, PSW Side Effects: None Special Error Conditions: None

Routine; DIRSCAN
Function: DIRSCAN resolves the DIR form pted to by HL. The DIR string is stored in a buffer up to eight characters long, and it is terminated by a delimiter if it is under eight characters long, which may be any of the following bytes:

[image: image71.png]
18-7

[image: image72.png]
ZCPR3: The Libraries
Z3LIB
Utilities

a character of value space or less

an equal sign (=)
an underscore (_)
a period (.)
a colon (:)
a comma (,)
a less-than sign (<)
a greater-than sign (>)
Inputs: HL = address of first char Outputs: A=OFFH, NZ, and BODU (disk A = 0) if valid

A=0 and Zero Flag Set (Z) if not valid Registers Affected: BC, PSW Side Effects: None Special Error Conditions: None

18.10. Search for File Along Path

Routine: PFIND
Function: PFIND searches for the file specified in the target FCB along the ZCPR3 command search path. If found, the DU it is located in is returned.

Inputs: DE = Address of FCB

A=0 if do not search current directory AOO if search of current directory Outputs: BC = DU (disk A = 0)

A=0 and Zero Flag Set (Z) if not found A=OFFH and NZ if found Registers Affected: BC, PSW Side Effects: FCB is affected Special Error Conditions: None

18.11. Shell Stack Manipulation

This set of routines supports Shell Stack manipulation. The following routines are provided:

SHEMPTY - test to see if Shell Stack is empty SHFULL - test to see if Shell Stack is full SHPOP - pop top string off of Shell Stack SHPUSH - push string onto Shell Stack

A Shell Stack is implemented as a series of strings (recommended size is 32 bytes/string, and the stack should contain at least four of these strings). The top element of a Shell Stack specifies the command line to be executed as a Shell by the ZCPR3 CP. This command line is copied into the Multiple Command Line Buffer for execution.

18-8
ZCPR3: The Libraries
Z3LIB Utilities

Routine: SHEMPTY
Function: SHEMPTY determines if the shell stack is empty. If it is empty or no shell stack is available, A=0; if not empty, AOO.
Inputs: None

Outputs: A=0 and Zero Flag Set (Z) if empty or none AOO and NZ if not empty

Registers Affected: PSW
Side Effects: None

Special Error Conditions: None

Routine: SHPOLL
Function; SHFULL determines if the shell stack is full. If the stack is full or not available, A=0; else, if the stack is not full, AOO.

Inputs: None

Outputs: A=0 and Zero Flag Set <Z) if stack full or none AOO if stack not full

Registers Affected: PSW

Side Effects: None

Special Error Conditions: None

Routine: SHPOP
Function: SHPOP pops the top element off of the Shell Stack and discards it if possible. SHPOP returns with A=0 if pop was successful, else AOO. The following error codes are returned:

A=l if no Shell Stack available A=2 if Shell Stack is empty

Inputs: None

Outputs: A=Code:
A=0 if success (and Zero Flag Set - Z) A=l if no Shell Stack available (NZ) A=2 if Shell Stack empty (NZ)

Registers Affected: PSW

Side Effects: String is popped from Shell Stack

Special Error Conditions: None

Routine: SHPDSH
Function: SHPUSH pushes the string (including the ending 0) pted to by HL onto the Shell Stack if possible. SHPUSH returns with A=0 if successful, else AOO.

Inputs: HL = string to push onto Shell Stack (end in 0) Outputs: A=Return Code:
A=0 if successful and no error <Z) A=l if no Shell Stack available <NZ) A=2 if Shell Stack is full (NZ) A=3 if string is too long for Shell Stack

entry <NZ) Registers Affected: PSW

Side Effects: String is pushed onto Shell Stack Special Error Conditions: None

18-9

ZCPR3: The Libraries
Z3LIB
Utilities

18.12. Z3LIB Version Number
Routine: Z3LVER
Function: Return Version Number of Z3LIB.REL. H=Major Version, L = Minor Version. Numbers are in pure binary. Inputs: None

Outputs: HL = Version Number (H=Major, L=Minor) Registers Affected: HL Side Effects: None Special Error Conditions: None

18.13. Initialize Z3LIB

Routine; Z3INIT
Function: Set the address of the ZCPR3 Environment Descriptor for use by Z3LIB routines.

Inputs: HL = address of ZCPR3 Environment Descriptor

Outputs: None

Registers Affected: None

Side Effects: Internal address buffer is loaded

Special Error Conditions: None

18-10

