Section II SYSLIB REFERENCE
ZCPR3: THE LIBRARIES
A Reference Manual and User's Guide for SYSLIB, Z3LIB, and VLIB
Written by Richard Conn

Copyright 1986 Richard Conn

This Page Left Blank

ZCPR3: The Libraries
SYSLIB
Introduction

2. INTRODUCTION TO SYSLIB
SYSLIB is an integrated tool set which is designed to assist the assembly language programmer in writing his application. It is intended to place him at a higher level of abstraction that allows him to concentrate on the problem at hand without having to concern himself with the low-level implementation details of the operating system interface, input/output, text parsing and evaluation, math, and sorting.

To illustrate this point, consider an assembly language programmer who needs to access a disk directory. The application he is writing is one which displays a sorted disk directory to the user.

Without SYSLIB or a library like it, the programmer would have to write a relatively sophisticated body to code to access the directory, load it into memory, sort it, and display it to the user.

With SYSLIB, the programmer has a host of tools he can call on to perform some of the more tedious functions. One of these tools, DIRF, loads the elements of a disk directory which match a file spec into a memory buffer for him.

But more than just providing a set of tools, SYSLIB was designed with structured programming and software engineering in mind. The basic goal in software design is that the programs meet the stated requirements. In applying software engineering, we want more than just this. Among other things, we want the program to be:
o Modifiable o Efficient o Reliable o Understandable

SYSLIB offers a significant set of facilities which can help to achieve these goals.

2-1

ZCPR3: The Libraries
SYSLIB
Introduction
NOTES:
2-2
ZCPR3: The Libraries
SYSLIB
Character Input/Output

3. CHARACTER INPUT/OUTPUT
CHAPTER OUTLINE
Character Input CIN, RIN BIN CAPIN, CAPINE
Conditional Input CONDIN
Character Output
COUT, LOUT, POUT, SOUT
BOUT
CCOUT, CLOUT, CPOUT, CSOUT
New line Output
CRLF, LCRLF, SCRLF
Console Status
CST BIST
3-1
ZCPR3: The Libraries
SYSLIB
Character Input/Output

Character Input/Output
This set of routines provides character-oriented I/O functions for the Console (CON:), List (LST:), Reader (RDR:), and Punch (PUN:) logical devices. There are no side effects on any registers. Direct BIOS calls are used on all routines except for BIN, BIST, and BOUT, so user controls such as "P (which are implemented by the BDOS) will not work.

The functions provided by these routines include:

Character Input from Console and Reader Character Output to Console, Printer, and Punch Character Output to Console, Printer, and Punch

with Control-Character Processing Console Input Status Conditional Input New Line (CRLF) Output Capitalized Character Input

Switched Output is provided in this set of routines as the S-series of routines (S-series routines use S as the first letter of their names). The S-series is different from the other series in that the S-series uses an external data byte to determine where the output is to be routed. This byte is referred to as SCTLFL <S Control Flag), and its switching function is illustrated in the following table:

——— SCTLFL

Binary OOOOOOOOB 00000001B 10000000B 10000001B

Hex OOH 01H 80H 81H

Outputs to
Nothing

Console

Printer

Console and Printer

If the programmer does not initialize the SCTLFL variable before he uses an S-routine, output will go to the console (default value of SCTLPL is 01H).

An example of code using S-routines is;

EXT
SCTLFL,SOUT
MVI A,81h STA SCTLFL
MVI
A, 'A'
CALL SOUT
MVI A,80H STA SCTLFL MVI A,'a' CALL SOUT
; SCTLFL flag, SOUT routine ; enable printer and console ; print character 'A'
; enable printer only ; print character 'a*
3-2
ZCPR3; The Libraries
SYSLIB
Character Input/Output

3.1. Character Input

Routine: CIN, RIN
Function: Input character from CON; (CIN) or RDR: (RIN) in Register A.

Inputs: None

Outputs: A = Character input from CON: or RDR:

Registers Affected: PSW
SYSLIB Routines Called: None

Special Error Conditions: None

Routine: BIN
Function: Input character from CON: in Register A via BDOS.
Inputs: None

Outputs: A = Character input from CON:

Registers Affected: PSW SYSLIB Routines Called: None Special Error Conditions: None

Routine: CftPIN, CAPINE
Function: Input character from CON: and capitalize it. CAPIN returns this character in A, and CAPINE echoes this character and then returns it in A.

Inputs: None

Outputs: A = Capitalization of Char Input from CON:

Registers Affected: PSW

SYSLIB Routines Called: None

Special Error Conditions: None

3.2. Conditional Input

Routine: OONDIN
Function: Input a character from CON; if one is available. Otherwise, return a flag stating that a character is not available on CON:.
Inputs: None

Outputs; A = character typed at CON: (if available) Zero Flag is set (Z) if no char available Zero Flag is reset (NZ) if char available

Registers Affected: PSW

SYSLIB Routines Called: CIN, CST
Special Error Conditions; None

3.3. Character Output

Routine; COOT, LOOT, FOOT, SOOT
Function: Output character in Register A to CON: (COUT), LST: (LOUT), PUN: (POUT), or switched output (SOUT). Inputs: A = Character to output Outputs; None (Character is output) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

3-3

ZCPR3: The Libraries
SYSLIB
Character Input/Output

Routine: BOOT

Function; Output character in Register A to CON: via BOOS.

Inputs: A = Character to Output to CON:

Outputs: None Registers Affected; None SYSLIB Routines Called: None Special Error Conditions: None

Routine: CCOOTr CLOOT, CPODT, CSOOT
Function; Output character in Register A to CON: (COUT), LST: (LOUT), PUN: (POUT), or switched output (CSOUT) with control character processing. All characters with ASCII codes less than <SP> (space = 20H) in value except <NCLL>, <BEL>, <BS>, <LF>, and <CR> are output as an uparrow (") followed by the corresponding letter generated by adding 40H to the character value (i.e., 1 outputs as "~A", 2 as ""B", etc.). The characters less than <SP> in value NOT output in this manner are —

<NULL> <BEL> <BS> <LF> <CR>

Any character of value greater than <SP> is output normally. Inputs: A = Character to output Outputs: None (Character/Code is output) Registers Affected: PSW (only the Flags;

Register A is NOT affected) SYSLIB Routines Called: COUT (for CCOUT);
LOUT (for CLOUT);

POUT (for CPOUT);
SOUT (for CSOUT) Special Error Conditions: None

3.4. Newline Output

Routine; CRLF, LCRLF, SCRLF
Function: Print <CR> and <LF> on CON: (CRLF), LST: (LCRLF), or switched output (SCRLP). Inputs: None

Outputs: None «CR> <LF> is printed) Registers Affected: None SYSLIB Routines Called: LOUT (for LCRLF);

POUT (for CRLF);

SOUT (for SCRLF) Special Error Conditions: None

3.5. Console Status Routine; CST
Function: Input the status on CON: in Register A. If Read Data Available, A=0; otherwise, A=l. Inputs: None Outputs: A = Console Status

0 --> Read Data Available (RDA) 1 —> Read Data Not Available (Not RDA) Zero Flag is Affected <Z set if RDA, NZ if

not RDA) Registers Affected: PSW SYSLIB Routines Called: None Special Error Conditions: None

3-4

ZCPR3: The Libraries
SYSLIB
Character Input/Output

Routine; BIST
Function: Return the console input character status for CON: via BDOS in Register A (Zero Flag Set). A=0 and Zero Flag Set if no character available; A=OFFH and NZ if char available.

Inputs: None

Outputs: A=0 and Z if No Char; A=OFFH and NZ if Char

Registers Affected: PSW
SYSLIB Routines Called: None

Special Error Conditions: None

3-5

ZCPR3: The Libraries
SYSLIB
Character Input/Output

NOTES:
3-6
ZCPR3: The Libraries
SYSLIB
String Input/Output
4. STRING INPUT/OUTPUT
CHAPTER OUTLINE
String Print
PRINT, EPRINT, LPRINT, SPRINT PSTR, EPSTR, LPSTR, SPSTR
File Name Output
LFNn, PFNn, SFNn MFNn
Input Line Editors BBLINE BLINE INLINE
4-1
ZCPR3: The Libraries
SYSLIB
String Input/Output

String Input/Output
This set of routines provides for the input and output of strings of characters. In the SYSLIB terminology, a string is a sequence of bytes terminated by a binary 0. When phrases such as "HL points to a string" are used, the reference is to the address of the first byte in a string.

Note on Switched Output

The Switched Output series of routines (denoted by routine names beginning with the letter "S") is different from the other routines in that the Switched Output series uses an external data byte to determine where the output is to be routed. This byte is referred to as SCTLFL (S Control Flag), and its switching function is illustrated below:

-—— SCTLFL

Binary OOOOOOOOB 00000001B 10000000B 10000001B

Hex OOH 01H 80H 81H
Outputs to
Nothing

Console

Printer

Console and Printer

If the programmer does not initialize the SCTLFL variable before he uses an S-routine, output will go to the console (default value of SCTLFL is 01H).
An example of code using S-routines is:

EXT SCTLFL,SADC ; SCTLFL flag, SADC routine ; enable printer and console ; print number 32

MVI A,81h STA SCTLFL MVI A, 32 CALL SADC
MVI A,80H STA SCTLFL MVI A,150 CALL SADC
; enable printer only ; print number 150

4-2

ZCPR3: The Libraries
SYSLIB
String Input/Output

4.1. String Print

Routine; PRINT, EPRINT, LPRINT, SPRINT
Function: Print string pointed to by the return address on CON: (PRINT and EPRINT), LST: <LPRINT), or switched output (SPRINT). String is terminated by a binary 0. Control is returned to byte following string. PRINT and LPRINT interpret control characters, sending them to the CON:/LST: devices as '"~c" sequences. EPRINT (for Exact Print) only expands tabs, sending all other characters as-is.
Inputs: Return Address = pointer to string to be printed Outputs: HL points to byte after string

(string is printed on CON: or LST:) Registers Affected: HL SYSLIB Routines Called: PSTR (for PRINT);

EPSTR (for EPRINT);

LPSTR (for LPRINT);

SPSTR (for SPRINT) Special Error Conditions:
The string MUST be terminated by a binary 0111
Routine; PSTR, EPSTR, LPSTR, SPSTR
Function: Print string pointed to by HL on CON: (PSTR and EPSTR), LST: (LPSTR), or switched output < SPSTR). String is terminated by a binary 0. HL points to byte following string on exit. PSTR and LPSTR interpret control characters, sending them to the CON:/LST: devices as ""c" sequences. EPSTR (for Exact Print) only expands tabs, sending all other characters as-is. Inputs: HL = pointer to string to be printed Outputs: HL pts to the byte following the terminating 0

(string is printed on CON: or LST:) Registers Affected: HL SYSLIB Routines Called: CCOUT, COOT (for PSTR);

COUT (for EPSTR) ;
CLOUT, LOUT (for LPSTR);

CSOUT, SOUT (for SPSTR) Special Error Conditions:

The string MUST be terminated by a binary 0111

4.2. File Name Output

The file name output routines described here are used to output the file name and type stored in an FCB in a variety of forms. These forms are illustrated as follows:

Example 1. Example 2^ Comment
MYFILE_.TYP T_____.T_ 12-char field, embedded spaces

MYFILE.TYP_ T.T_______ 12-char field, trailing spaces

MYFILE.TYP T.T N-char field, no spaces

In addition, each of these routines has a prefix to their names: L, M, P, or S. These prefixes indicate where the output is going to. L indicates the LST: device (or printer), M indicates memory, P indicates the console (print the output), and S indicates a switched output to nothing, the console, the printer, or both.

For example,

4-3

ZCPR3: The Libraries
SYSLIB
String Input/Output

PFN1 sends the file name and type pointed to by DE in a 12-character field with embedded spaces to the console, while LFNl sends the file name and type pointed to by DE in a 12-character field with embedded spaces to the printer.

Sample File Name Outputs

The following tables illustrate how values will be output by the various routines. The underscore character (_) indicates a space.
CB Name/Type FILENAMETYP MYFILE TXT R R S
T

xFNl
FILENAME.TYP MYFILE__.TXT
R______.R_
S______.___
.T

xFN2
FILENAME.TYP MYFILE.TXT R.R S. .T

XFN3
FILENAME.TYP MYFILE.TXT__
R.R________
S._________
.T
as in "xFNl", may be any one of:

Letter Example Outputs To
L LFNl LST: Device (printer) M MFN1 Memory pted to by HL P PFN1 CON: Device (console) S SFN1 Switched Output

Routine; LFNn, PFNn, SFNn
Function: Print FCB File Name and Type pointed to by DE (FCB+1 is address in DE) to CON: (PFNn), LST: (LFNn), or Switched Output (SFNn). The various values of n are 1 to 3, where 1 outputs with embedded spaces, 2 outputs with no spaces, and 3 outputs with trailing spaces (ie, PFN1, PFN2, and PFN3).

Inputs: DE = Address of FCB+1

Outputs: None (Value is printed)

Registers Affected: None

SYSLIB Routines Called: LOUT (for LFNn);

COUT (for PFNn) ;
SOUT (for SFNn)

Special Error Conditions: None

Routine: MFNn
Store appropriate output into memory at buffer FCB+1 is pointed to by DE on input. For MFN1 For

Function:

pointed to by HL.

and MFN3, the number of characters stored will always be 12. MFN2, the number of characters stored is varying, but will never exceed 12.

Inputs: DE pts to FCB+1

HL pts to memory buffer

Outputs: None (Characters are stored in memory buffer)

Registers Affected: None

SYSUB Routines Called: None

Special Error Conditions: None

Notes:
1. Use of MFN1 and MFN3 is quite straight-forward since they always fill exactly 12 bytes of memory. Advancing to the next byte after the last byte is quite simple, as the following

4-4
ZCPR3: The Libraries
SYSLIB
String Input/Output

code illustrates:

LXI D,FCB+1
; pt to FN field
LXI H,BUFFER
; pt to buffer
CALL MPN1
; store name
LXI B,12
; skip to after last byte
DAD B
; by adding 12 to HL
2. Use of MFN2 is not quite as straight-forward since it fills at most 12 bytes, but could fill less than this. This problem can be eliminated by using the FILLB and SKNSP routines, as illustrated:

LXI H,BUFFER ; pt to buffer
MVI B,13 ; fill following 13 bytes with

MVI A,' ' ; spaces
CALL FILLB

LXI D,FCB+1 ; pt to FN field

CALL MFN2 ; store name

CALL SKNSP ; skip over non-spaces (HL now

; points to after last character)

4.3. Input Line Editors

An Input Line Editor is used to accept a line of text from the user, allowing him to issue commands like backspace and Ctrl-X (erase all of line typed so far) to edit his text as he inputs it. Once the text has been entered, the user strikes the RETURN key (which generates the <CR> character) and the Input Line Editor returns to the calling program with the user's text stored in a buffer. This text is terminated by a binary 0.

Two of the Input Line Editors in SYSLIB use the BDOS to provide the line editor function. They preserve the registers during the function call and store the terminating zero at the end of the text. These routines occupy less space than the third Input Line Editor, INLINE.

The third Input Line Editor, INLINE, is used when security is important. Unlike the other two, when typing a Ctrl-C to INLINE, the Input Line Editor and calling program are not aborted and control returned to the operating system. Instead, the Ctrl-C character is stored in the user's line. Also, unlike the other two, INLINE can be instructed to echo or not echo the input characters. This feature is useful for programs which input a password. INLINE can be instructed not to echo the password, but it will still provide the line editing functions for the user so that he can correct mistakes.

Routine; BBLINE
Function: BBLINE provides an interface to the BDOS for input line editor functions. It contains its own internal buffer for storage of the input line (200 bytes allocated), and it returns a pointer to the first byte of the line upon return. The line stored in this buffer is terminated by a binary zero (0).

4-5
ZCPR3: The Libraries
SYSLIB
String Input/Output

BBLINE is called with a capitalization flag stored in the A Register. If A = 0, BBLINE does not capitalize the input line characters. If A <> 0, BBLINE capitalizes the input line characters before returning to the caller.

No error codes are returned by BBLINE. On return, HL points to the first byte of the input line and A contains a count of the number of characters in that line (not counting the ending zero).

Inputs: A=0 to Not Capitalize Line, AOO to Capitalize

Outputs: HL pts to first char in the line

A is number of characters in the line (not counting the ending zero)

Registers Affected: PSW, HL

SYSLIB Routines Called: CAPS

Special Error Conditions; None

Routine: BLINE
Function: BLINE provides an interface to the BDOS for input line editor functions. It performs the same type of function as BBLINE, but it does not contain an internal buffer. The programmer is expected to provide such a buffer, which is structured as follows;

SIZE: DB <Size of Buffer>

CCNT: DS 1

LINE: DS <Size of Buffer + 1>

BLINE returns a pointer to the first byte of the line (LINE) upon return. The line stored in this buffer is terminated by a binary zero < 0).
BLINE is called with a pointer to the buffer in HL and a capitalization flag stored in the A Register. If A = 0, BLINE does not capitalize the input line characters. If A 0 0, BLINE capitalizes the input line characters before returning to the caller.

No error codes are returned by BLINE. On return, HL points to the first byte of the input line and A contains a count of the number of characters in that line (not counting the ending zero).

Inputs: A=0 to Not Capitalize Line, AOO to Capitalize HL pts to first byte of user-supplied buffer

Outputs: HL pts to first char in the line

A is number of characters in the line (not counting the ending zero)

Registers Affected: PSW, HL

SYSLIB Routines Called: CAPS

Special Error Conditions: None

4-6

ZCPR3: The Libraries
SYSLIB
String Input/Output
Routine: INLINE
Function: INLINE allows the user to input a line of text from CON: into the buffer pointed to by HL. The user is allowed to edit the text as he types it, and INLINE responds to the following editor commands:

Key Command Function

<BS> Delete previous character and back up cursor Delete previous character and echo it <CR> Input complete — return to calling program <LF> Skip down to next physical line and insert a

<CR> <LF> into buffer <TAB> Tabulate to next tab stop (every 8) Ctrl-11, Erase current line (clear buffer) and restart

Ctrl-X input Ctrl-R Retype current line Ctrl-E Skip down to next physical line; insert

nothing into buffer

On exit, the buffer contains the text entered followed by a <NULL> (binary 0); the <CR> typed to end the input is NOT placed in the buffer.

Inputs: HL = pointer to input line buffer

A = Echo Flag <A=0 Means Don't Echo Input)

Outputs: None (Input line buffer contains text typed by user)

Registers Affected: None

SYSLIB Routines Called: CCOUT, CIN, COUT, CRLF
Special Error Conditions:

<BEL> (Beep at CON;) is output if attempt is made to delete character «BS> or <DEL» before beginning of line. No limit or error checking is done on the size of the input line buffer (buffer overflow is possible, so it is recommended that buffer is made arbitrarily large). Hash mark (#) is printed in response to Ctrl-R, Ctrl-U, and Ctrl-X.

Notes: INLINE offers two features not found in BLINE and BBLINE. First, it cannot be aborted by a Ctrl-C. This is useful in "secure" programs without fear of the user breaking out of the program. Second, it can be made to echo or not echo the input. This provides some protection for inputting sensitive information, like a password.

INLINE provides all of the conventional input line editor functions. It is somewhat more flexible than BLINE and BBLINE, but the tradeoff is that INLINE takes up more space than either BLINE or BBLINE. If security is not required, it is recommended that the programmer employ BLINE or BBLINE instead of INLINE.

4-7

ZCPR3: The Libraries
SYSLIB
String Input/Output

NOTES:
4-8
ZCPR3: The Libraries
SYSLIB
Numeric Input/Output

5. NUMERIC INPDT/ODTPOT
CHAPTER OUTLINE
Numeric Output
Hexadecimal Output of Register A LA2HC, PA2HC, SA2HC MA2HC
Decimal Output of Register A LA3DC, PA3DC, SA3DC MA3DC
LADC, PADC, SADC MADC
LAFDC, PAFDC, SAFDC MAFDC
Hexadecimal Output of Register Pair HL LHL4HC, PHL4HC, SHL4HC MHL4HC
Decimal Output of Register Pair HL LHL5DC, PHL5DC, SHL5DC MHL5DC
LHLDC, PHLDC, SHLDC MHLDC
LHLFDC, PHLFDC, SHLFDC MHLFDC
Numeric String Evaluation
EVAL . EVAL16 EVAL10 EVAL8 EVAL2
5-1
ZCPR3; The Libraries
SYSLIB
Numeric Input/Output
5.1. Numeric Output

The L, M, P, and S Output Routines

The numeric output routines described here are used to output either the HL register pair or the A register in a variety of forms. These forms are as hexadecimal characters, as decimal characters, as decimal characters with leading spaces, and as decimal characters with no leading zeroes or spaces.

In addition, each of these routines has a prefix to their names: L, M, P, or S. These prefixes indicate where the output is going to. L indicates the LST: device (or printer), M indicates memory, P indicates the console (print the output), and S indicates a switched output to nothing, the console, the printer, or both.

For example,

PADC sends A as decimal characters with leading spaces to the console, while LADC sends A as decimal characters with leading spaces to the printer.

The S-series of routines is different from the other series in that the S-series uses an external data byte to determine where the output is to be routed. This byte is referred to as SCTLFL <S Control Flag), and its switching function is illustrated in the following table:

——— SCTLFL .———
Binary Hex Outputs to OOOOOOOOB OOH Nothing 00000001B 01H Console 10000000B 80H Printer 10000001B 81H Console and Printer

If the programmer does not initialize the SCTLFL variable before he uses an S-routine, output will go to the console (default value of SCTLFL is 01H).
An example of code using S-routines is:

EXT SCTLFL,SADC ; SCTLFL flag, SADC routine

MVI A,81h ; enable printer and console

STA SCTLFL

MVI A,32 ; print number 32

CALL SADC

MVI A,80H ; enable printer only STA SCTLFL
MVI A,150 ; print number 150 CALL SADC
5-2
ZCPR3: The Libraries
SYSLIB
Numeric Input/Output

Sample Outputs

The following tables illustrate how values will be output by the various routines. The underscore character <_) indicates a space.

Value 0 10 255

Value 0 10 100 1000 65535

XAFDC 0
10 255
XHLFDC
0
10
100
1000
65535
	XA2HC

	XA3DC

	xADC

	00

	000

	0

	OA

	010

	10

	FF

	255

	255

	XHL4HC

	XHL5DC

	xHLDC

	0000

	00000

	0

	OOOA

	00010

	10

	0064

	00100

	100

	03E8

	01000

	1000

	FFFF

	65535

	65535

5.1.1. Hexadecimal Output of Register A Routine: LA2HC, PA2HC, SA2HC
Function: Print A as two (2) hexadecimal characters on LST:
(LA2HC), CON: (PA2HC), or switched output (SA2HC). Inputs; A = value to be printed Outputs: None (Value is printed) Registers Affected: None SYSLIB Routines Called: EN (for all);

LOUT (for LA2HC);

COUT (for PA2HC);

SOUT (for SA2HC) Special Error Conditions: None

Routine:
MA2HC
Store A as two

Function: Store A as two (2) hexadecimal characters in the 2-byte memory buffer pointed to by DE. On return, DE points to byte after buffer.

Inputs: A = value to be converted and stored DE points to 2-byte buffer

Outputs: DE points to byte after this buffer

Registers Affected: DE

SYSLIB Routines Called: EN

Special Error Conditions: None

5.1.2. Decimal Output of Register A Routine; LA3DC, PA3DC, SA3DC
Function: Print A as three (3) decimal characters on LST:

(LA3DC), CON: (PA3DC), or switched output (SA3DC). Inputs: A = value to be printed Outputs: None (Value is printed) Registers Affected: None SYSLIB Routines Called: LOUT (for LA3DC);

COUT < for PA3DC);
SOUT (for SA3DC) Special Error Conditions: None

5-3
ZCPR3: The Libraries SYSLIB Numeric Input/Output
Routine; MA3DC
Function: Store A as three (3) decimal characters in the 3- | byte memory buffer pointed to by DE. On return, DE points to the byte after the buffer.

Inputs: A = value to be converted and stored DE points to the 3-byte buffer

Outputs: DE points to the byte after the buffer

Registers Affected: DE

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; LADC, PADC, SADC
Function: Print A as up to three (3) decimal characters with leading spaces «SP» on LST; (LADC), CON: (PADC), or switched output (SADC).
Inputs: A = value to be printed

Outputs: None (Value is printed)

Registers Affected: None

SYSLIB Routines Called: LOOT (for LADC);

COUT (for PADC);

SOUT (for SADC)
Special Error Conditions: None

Routine; HADC
Function: Store A as up to three (3) decimal characters with leading spaces in the 3-byte memory buffer pointed to by DE. On return, DE points to the byte after the buffer.

Inputs: A = value to be converted and stored I DE points to the 3-byte memory buffer

Outputs: DE points to the byte after the buffer

Registers Affected: DE

SYSLIB Routines Called: None

Special Error Conditions: None

Routine: LAFDC, PAFDC, SAFDC
Function: Print A as three up to (3) decimal characters with no leading spaces on LST: (LAFDC), CON: (PAFDC), or switched output < SAFDC).
Inputs: A = value to be printed

Outputs: None (Value is printed)

Registers Affected: None

SYSLIB Routines Called: LOOT (for LAFDC);

COUT (for PAFDC);
SOUT (for SAFDC)

Special Error Conditions: None

Routine: MAFDC
Function: Store A as up to three (3) decimal characters in the 3-byte memory buffer pointed to by DE. On return, DE points to the byte after the last decimal character in the buffer.

Inputs: A = value to be converted and stored DE points to the 3-byte buffer

Outputs: DE points to the byte after the buffer

Registers Affected: DE i
SYSLIB Routines Called: None '
Special Error Conditions: None

5-4
ZCPR3: The Libraries SYSLIB Numeric Input/Output
5.1.3. Hexadecimal Output of Register Pair HL Routine; LHL4HC, PHL4HC, SHL4HC
Function: Print HL as four <4) hexadecimal characters on LST: (LHL4HC), CON: (PHL4HC), or switched output (SHL4HC). Inputs: HL = value to be printed Outputs: None (Value is printed) Registers Affected: None SYSLIB Routines Called: LA2HC (for LHL4HC);

PA2HC (for PHL4HC);
SA2HC (for SHL4HC) Special Error Conditions: None

Routine: MHL4HC
Function: Store HL as four (4) hexadecimal characters in the 4-byte memory buffer pointed to by DE. On return, DE points to the byte following this buffer.

Inputs: HL = value to be converted and stored DE points to 4-byte buffer

Outputs: DE points to byte after buffer

Registers Affected: DE

SYSLIB Routines Called: MA2HC

Special Error Conditions: None

5.1.4. Decimal Output of Register Pair HL Routine; LHL5DC, PHL5DC, SHL5DC
Function: Print HL as five (5) decimal characters on LST:

<LHL5DC), CON: (PHL5DC), or switched output (SHL5DC). Inputs: HL = value to be printed Outputs: None (Value is printed) Registers Affected: None SYSLIB Routines Called: LOUT (for LHL5DC);

COUT (for PHL5DC);

SOUT (for SHL5DC) Special Error Conditions: None

Routine; MHL5DC
Function: Store HL at five (5) decimal characters in memory in the 5-byte buffer pointed to by DE. On return, DE points to the byte after this buffer.

Inputs: HL = value to be converted and stored DE points to a 5-byte buffer

Outputs: DE points to the byte following the buffer

Registers Affected: DE

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; LHLDC, PHLDC, SHLDC
Function: Print HL as up to five (5) decimal characters with leading spaces «SP» on LST: (LHLDC), CON: < PHLDC), or switched output < SHLDC).
Inputs: HL = value to be printed

Outputs: None (Value is printed)

Registers Affected: None

SYSLIB Routines Called: LOUT (for LHLDC);

COUT (for PHLDC);

SOUT (for SHLDC)
Special Error Conditions: None
5-5
ZCPR3: The Libraries
SYSLIB
Numeric Input/Output

Routine: ffflLDC
Function: Store HL as up to five (5) decimal characters with leading spaces in the 5-byte memory buffer pointed to by DE. Inputs: HL = value to be converted and printed

DE points to the 5-byte buffer Outputs: DE points to the byte after the buffer Registers Affected: DE SYSLIB Routines Called: None Special Error Conditions: None

Routine; LHLFDC, PHLFDC, SBLFDC
Function: Print HL as up to five (5) decimal characters with no leading spaces on LST: (LHLFDC), CON: < PHLFDC), or switched output (SHLFDC).
Inputs: HL = value to be printed

Outputs: None (Value is printed)

Registers Affected: None

SYSLIB Routines Called: LOUT (for LHLFDC);

COCT (for PHLPDC);
SOUT (for SHLFDC)
Special Error Conditions: None

Routine: MHLFDC
Function: Store HL at up to five (5) decimal characters in memory in the 5-byte buffer pointed to by DE. On return, DE points to the byte after the last character stored.

Inputs: HL = value to be converted and stored DE points to a 5-byte buffer

Outputs: DE points to the byte following the buffer

Registers Affected: DE

SYSLIB Routines Called; None

Special Error Conditions: None

5.2. Numeric String Evaluation

Routine; EVAL
Function: This routine converts the character string pointed to by HL into the 16-bit binary number represented by it. EVAL performs the conversion until a non-hexadecimal character is encountered, at which time it looks at the last character and the previous character to determine if the string is representing a binary, octal, decimal, or hexadecimal number. Input string characters may be upper- or lower-case. Valid formats for the input string are —

bbbbbbbbbbbbbbbbB — b=0 or b=l; Binary string ttttt or tttttD — 0<=t<=9; Decimal string hhhhH or hhhhX — 0<=h<=F; Hexadecimal string oooooooO or oooooooQ — 0<=o<=7; Octal string

5-6

ZCPR3; The Libraries
SYSLIB
Numeric Input/Output

Inputs: HL points to the first byte of the string to convert; string is loaded in a buffer

Outputs: HL points to next character after converted string DE contains 16-bit value A = E CARRY Flag Set means an error was encountered in

string format Registers Affected: PSW, DE, HL

SYSLIB Routines Called: CAPS, EVAL16, EVAL10, EVAL8, EVAL2 Special Error Conditions:

CARRY Flag Set indicates that an error was encountered in the evaluation of the string; if so, HL points to the offending character.
Routine; EVAL16
Function: EVAL16 converts the string of ASCII hexadecimal characters pointed to by HL into a 16-bit binary value. Conversion progresses until an invalid hexadecimal digit (0-9, A-P) is encountered.

Inputs: HL points to the first byte of the string to convert; string is loaded in a buffer

Outputs: HL points to the offending character DE contains the 16-bit value A = E

Registers Affected: PSW, DE, HL

SYSLIB Routines Called: CAPS

Special Error Conditions: None

Routine: EVAL10
Function: EVAL10 converts the string of ASCII decimal characters pointed to by HL into a 16-bit binary value. Conversion progresses until an invalid decimal digit (0-9) is encountered.
Inputs: HL points to the first byte of the string to convert; string is loaded in a buffer

Outputs: HL points to the offending character DE contains the 16-bit value A = E

Registers Affected: PSW, DE, HL

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; EVAL8
Function: EVAL8 converts the string of ASCII octal characters pointed to by HL into a 16-bit binary value. Conversion progresses until an invalid octal digit (0-7) is encountered.
Inputs: HL points to the first byte of the string to convert; string is loaded in a buffer

Outputs: HL points to the offending character DE contains the 16-bit value A = E

Registers Affected: PSW, DE, HL

SYSLIB Routines Called: None

Special Error Conditions: None

Routine: EVAL2
Function: EVAL2 converts the string of ASCII binary

5-7
ZCPR3: The Libraries
SYSLIB
Numeric Input/Output

characters pointed to by HL into a 16-bit binary value. Conversion progresses until an invalid binary digit (0-1) is encountered.
Inputs: HL points to the first byte of the string to convert; string is loaded in a buffer

Outputs: HL points to the offending character DE contains the 16-bit value A = E
Registers Affected: PSW, DE, HL

SYSLIB Routines Called: None

Special Error Conditions: None

5-8

ZCPR3: The Libraries
SYSLIB
File Manipulation

6. FILE MANIPULATION
CHAPTER OUTLINE
File Input/Output
P$APPEND, F$APPL
P$CLOSE
F$DELETE
F$EXIST
F$MAKE
F$OPEN, F$MOPEN
P$READ, F$WRITE
F$RENAME
P$SIZE
GETRR, GETRR1
GETFS, GETFS1
GFA
R$READ, R$WRITE
SCFA, SFA
Byte-Oriented File Input/Output FIn$OPEN, FOn$OPEN FIn$CLOSE, FOn$CLOSE FnGET, FnPUT
Byte-Oriented File I/O with Variable Buffers FXI$OPEN, FXO$OPEN FXI$CLOSE, FXO$CLOSE FXGET, FXPUT
Byte-Oriented File I/O with UNGET FYI$OPEN, FYO$OPEN FYI$CLOSE, FYO$CLOSE FYGET, FYUNGET, FY$PUT
Library Files LUINIT LUDIR LUOPEN, LUREAD, LUCLOSE
Mi see 11aneous FNAME INITFCB SETDMA
6-1
ZCPR3: The Libraries
SYSLIB
File Manipulation
6.1. File Input/Output
The following routines are general-purpose file I/O routines which interface to the operating system through the Entry Point at location 5. They preserve BC, DE, and HL, and they return with the standard CP/M error codes for the corresponding routines. These routines are:

F$CLOSE F$DELETE F$EXIST F$MAKE F$OPEN F$MOPEN F$READ P$RENAME P$SIZE F$WRITE R$READ R$MRITE
These routines assume the DMA address (TBUFF) to be set at 80H unless otherwise specified.

The routines GFA, SCFA, and SFA all deal with getting (GFA) and setting (SCFA and SFA) the attributes of files whose FCBs are pointed to by DE.

The following routines allow the programmer to append to the end of an existing file conveniently. They return unique error codes.
F$APPEND F$APPL GETRR GETRR1 GETFS GETFS1

6.1.1. Append to a File

Routine: P$APPEND
Function: Open the file for appending. The FCB is pointed to by DE. If the file is found and not empty, F$APPEND returns with A=0 and the Zero Flag Set (Z) to indicate no error. Various error conditions can occur, and are returned with A=error code and NZ. Error 3 is a note that the file is empty and is not fatal (processing can continue).
If the APPEND is successful, TBUFF contains the last record in the file. The next sequential write (call F$WRITE) will write to the record after the last record in the file. See the documentation on the companion routine, F$APPL, for more details;

F$APPL writes starting on the last record of the file.

Inputs: DE = pointer to FCB

Outputs; A = Error Code and PSW Flags Set (Zero Flag) 0 —> No Error (Z is set)

1 —> File Not Found (NZ)

2 —> File is Full (no more room) (NZ)

3 —> File Found but Empty (NZ) TBUFF contains last record of file if A=0 Registers Affected: PSW SYSLIB Routines Called: INITFCB Special Error Conditions: As indicated

Routine: P$APPL
Function: Open the file for appending. The FCB is pointed to by DE. If the file is found and not empty, F$APPEND returns with A=0 and the Zero Flag Set (Z) to indicate no error. Various error conditions can occur, and are returned with A=error code and NZ. Error 3 is a note that the file is empty and is not fatal (processing can continue).
6-2

ZCPR3: The Libraries
SYSLIB
File Manipulation
If the APPL is successful, TBUFF contains the last record in the file. The next sequential write (call F$WRITE) will write back over the last record in the file. See the documentation on the companion routine, F$APPEND, for more details; F$APPEND writes starting after the last record of the file.

Inputs; DE = pointer to FCB
Outputs: A = Error Code and PSW Flags Set (Zero Flag)

—> No Error (Z is set)

—> File Not Found (NZ)
—> File is Full (no more room)

(NZ)
—-> File Found but Empty <NZ) TBUFF contains last record of file if A=0 Registers Affected: PSW SYSLIB Routines Called: INITFCB Special Error Conditions: As indicated Append Use: The following code segment illustrates the intended usage for the two file append routines.

With F$APPEND:
LXI D,FCB CALL F$APPEND
<Prepare next record>

With F$APPL:
LXI D,FCB CALL F$APPL
<Modify last record>
LXI D,FCB CALL F$WRITE
LXi D,FCB CALL F$CLOSE
;after last

;close file

LXI D,FCB CALL F$WRITE
LXI D,FCB CALL F$CLOSE
;on last
6.1.2. Close a File

Routine; F$CLOSE
Function: Close the file whose FCB is pointed to by DE.

Inputs: DE = pointer to FCB

Outputs: A = Error Code

0 —> No Error OFFH --> Error in closing file

Registers Affected: PSW

SYSLIB Routines Called: BDOS
Special Error Conditions: None

6.1.3. Delete a File

Routine; P$DELETE
Function: Delete the file whose FCB is pointed to by DE. If file does not exist, nothing happens (no error message or code is given).
Inputs: DE = pointer to FCB

Outputs: None

Registers Affected: PSW

SYSLIB Routines Called: BDOS

Special Error Conditions: None

6-3
ZCPR3: The Libraries
SYSLIB
File Manipulation
6.1.4. Test of Existence of a File

Routine; FSEXIST
Function: F$EXIST tests for the presence of the file whose FCB is pted to by DE in the current disk/user area. If this file does not exist in this area, F$EXIST returns with the Zero Flag Set (Z); if this file does exist, F$EXIST returns with NZ.
Inputs: DE pts to FCB of file to test for

Outputs: Zero Flag Set (Z) means file not found; NZ means file found

Registers Affected: PSW
SYSLIB Routines Called: BDOS
Special Error Conditions: None

6.1.5. Create a File Routine; FSMAKE
Function: Create the file whose PCB is pointed to by DE. Inputs; DE = pointer to FCB Outputs: A = Error Code

OFFH —-> No directory space available Not OFFH —> No Error; Value is byte address in TBUFF (80H-OFFH) of directory entry allocated to the FCB Registers Affected: PSW SYSLIB Routines Called: BDOS, F$DELETE Special Error Conditions: None

6.1.6. Open a File

Routine: FSOPEN
Function: Open the file specified by the PCB pointed to by DE. If file not found, F$OPEN returns with an error code in A (OFFH) and Zero Flag Clear (NZ).

Inputs: DE = pointer to FCB

Outputs: A = Error Code and PSW Flags Set (Zero Flag) 0 —> No Error OFFH --> File not opened

Registers Affected: PSW

SYSLIB Routines Called: BDOS, CAPS, CIN, COOT, CRLF, PRINT

Special Error Conditions: None

Routine: PSMOPEN
Function: Open the file specified by the FCB pointed to by DE. If file is not found, F$MOPEN tries to create one. It returns the error code of OFFH in A if there was not enough room in the disk directory to create the directory entry.

Inputs: DE = pointer to FCB

Outputs: A = Error Code and PSW Flags (Zero Flag) Set 0 —> No Error OFFH —> File not opened

Registers Affected: PSW

SYSLIB Routines Called: BDOS, CAPS, CIN, COUT, CRLF, PRINT

Special Error Conditions: None

6-4

ZCPR3: The Libraries
SYSLIB
File Manipulation

6.1.7. Read and Write a Block

Routine: F$READ
Function: Read next block (128 bytes) from the opened file whose FCB is pointed to by DE into TBUFF (buffer at 80H - OFFH).
Inputs: DE = pointer to FCB

Outputs: A = Error Code

0 —> No Error

1 —> Read past end of file

2 —> Reading unwritten data in random access Registers Affected: PSW SYSLIB Routines Called: BDOS Special Error Conditions: None

Routine: F$WRITE

Function: Write next block (128 bytes) from TBUFF (buffer at 80H to OPFH) to the opened file whose FCB is pointed to by DE. Inputs; DE = pointer to FCB Outputs: A = Error Code

0 —> No Error
1 —> Error in extending file

2 —> End of disk data OFFH —> No more directory space

Registers Affected: PSW

SYSLIB Routines Called: BDOS

Special Error Conditions: None

6.1.8. Rename a Pile

Routine; FSRENAME
Function: P$RENAME may be used to rename a file. On entry, DE pts to the first twelve bytes of the file's FCB and HL pts to the first twelve bytes of the FCB for the new file (that is, only the FN and FT fields are significant, so the rest of an FCB need not be present for this function to work). F$RENAME contains an internal FCB which is structured from the two entries to properly rename the file.

Inputs: HL pts to 1st 12 bytes of new FCB DE pts to 1st 12 bytes of old FCB

Outputs: Zero Flag Set (Z) means error (file not found)

Registers Affected: PSW

SYSLIB Routines Called: BDOS, FILLB, MOVEB
Special Error Conditions: Z means File Not Found

6.1.9. Compute File Size

Routine; F$SIZE
Function: Compute the size of a file (in K) based on its record count. This routine gives the file size correct to the next 1K, but does not take into account the grouping factor.

Inputs: DE points to the 1st 12 bytes of an FCB

Outputs: HL contains file size

Registers Affected: HL

SYSLIB Routines Called: MOVEB, INITFCB, BDOS, SHFTRH
Special Error Conditions: None

6-5

ZCPR3: The Libraries
SYSLIB
File Manipulation
6.1.10. Get Random Record Number

Routine; GETRR, GETRR1
Function: Return the random record number of the last record sequentially read or written of the file whose FCB is pointed to by DE. The random record number is returned in HL, with A=0 and Zero Flag Set (Z) if no error. These routines are convenient in determining the current position in a file.

GETRR does not affect the random record number field of the PCB and is larger in size. GETRR1 is smaller and affects the random record number field of the FCB.

Inputs: DE = pointer to FCB

Outputs: A = Error Code

A = 0 --> No Error

A 0 0 —> Random Record Overflow

HL = Random Record Number

Registers Affected: PSW, HL

SYSLIB Routines Called: None

Special Error Conditions: None

6.1.11. Get File Size in Records

Routine; GETFS, GETFS1
Function: Return the file size (in terms of records) of the file whose FCB is pointed to by DE. The record count is returned in HL, with A^O and Zero Flag Set (Z) if no error. These routines are convenient in determining the number of records in a file.

GETFS does not affect the random record number field of the FCB and is larger in size. GETFS1 is smaller and affects the random record number field of the FCB.

Inputs: DE = pointer to FCB

Outputs: A = Error Code

A = 0 —> No Error

A 0 0 —> Random Record Overflow

HL = Number of Records in File (File Size)

Registers Affected: PSW, HL

SYSLIB Routines Called: None

Special Error Conditions: None

6.1.12. Get File Attributes

Routine: GEA
Function: Return the attributes of the file whose FCB is pointed to by DE. On return, A contains a code indicating the R/0 and SYS attributes, where the 8th bit of A <A7) is 1 if the file is a SYStem file and 0 if the file is a DIRectory (Non-SYStem) file and the 1st bit of A <AO) is 1 if the file is Read/Only and 0 if the file is Read/Write.

As a side effect, the MSBs (Most Significant Bits) of all bytes in the File Name and File Type fields of the original FCB (bytes 1-11, where byte 0 is first) are set equal to the MSBs of the corresponding directory entry.

6-6

ZCPR3: The Libraries
SYSLIB
File Manipulation

Inputs: DE = pointer to FCB Outputs: A = Attribute Code

AO = 1 —> File is R/0
AO = 0 —> File is R/W
A7 = 1 —> File is System

A7 = 0 --> File is Non-System Registers Affected: PSW SYSLIB Routines Called: INITFCB Special Error Conditions: None

6.1.13. Random Read and Write a Block Routine; RSREAD
Function: Read a block from the file whose FCB is pointed to by DE. The record number of the block is contained in HL, and the block is read into TBDFF (80H-OPFH). On exit, an Error Code is returned in A. It is assumed that the file has been opened by F$OPEN or equiv.
Inputs: DE = pointer to FCB

HL = record number Outputs: A = Error Code

0 —> No Error (Z Flag Set) 1 —> Attempt to Read Unwritten Record

3 —> CP/M could not Close Current Extent

4 —> Attempt to Read Unwritten Extent 6 —> Attempt to Read Beyond End of Disk

Registers Affected: PSW

SYSLIB Routines Called: None

Special Error Conditions: None

Routine: B$WRITE
Function: Write the block contained in TBUPF (80H-OFFH) to the disk file whose FCB is pted to by DE and whose record number is contained in HL. This FCB should have previously been opened by a call to F$OPEN or the like. Inputs: DE = pointer to FCB

HL = record number Outputs: A = Error Code

0 —> No Error (Z Flag Set) 1 —> Attempt to Read Unwritten Record

3 —> CP/M could not Close Current Extent

4 —> Attempt to Read Unwritten Extent

5 —> Directory Full

6 ~> Attempt to Read Beyond End of Disk Registers Affected: PSW SYSLIB Routines Called: None Special Error Conditions: None

6.1.14. Set and Clear File Attributes

Routine; SCFA
Function: Set and clear the attributes of the file whose FCB is pointed to by DE. On entry, A contains a code indicating the R/0 and SYS attributes, where the 8th bit of A (A7) is 1 if the file is to be a SYStem file and 0 if the file is to be a DIRectory (Non-SYStem) file and the 1st bit of A (AO) is 1 if the file is to be Read/Only and 0 if the file is to be Read/Write. All other file attributes are cleared to 0 (the MSBs of bytes 1-8 and 11 are set to 0).
6-7

ZCPR3: The Libraries
SYSLIB
File Manipulation

Inputs: DE = pointer to FCB A = Attribute Code

AO = 1 —> File is to be R/0
AO = 0 —> File is to be R/W
A7 = 1 —> File is to be System

A7 = 0 —> File is to be Non-System Outputs: None Registers Affected: None SYSLIB Routines Called: INITFCB Special Error Conditions: None

Routine: SEA

Function: Set the attributes of the file whose FCB is pointed to by DE. On entry, A contains a code indicating the R/0 and SYS attributes, where the 8th bit of A (A7) is 1 if the file is to be a SYStem file and 0 if the file is to be a DIRectory (Non-SYStem) file and the 1st bit of A <AO) is 1 if the file is to be Read/Only and 0 if the file is to be Read/Write.

As a side effect, the MSBs of all bytes in the File Name and File Type fields of the original FCB (bytes 1-11, where byte 0 is first) are copied to the MSBs of the corresponding directory entry.

Inputs: DE = pointer to FCB A = Attribute Code AO = 1 —> File is to be R/0 AO = 0 —> File is to be R/W A7 = 1 —> File is to be System A7 = 0 —> File is to be Non-System Registers Affected: None SYSLIB Routines Called: INITFCB Special Error Conditions: None

6.2. Byte-Oriented File Input/Output

The following covers the series of byte-oriented file input/output routines in SYSLIB. These routines allow the user to sequentially read from (GET) and write to (PUT) a file on a byte-for-byte basis. Hence, these routines provide a simple method for handling input from and output to a file.

A typical program which employs these routines must open the required files before doing any processing, roust then perform the processing on the opened files, and must then close the files when the processing is complete (closing the files is optional for input files and mandatory for output files).

SYSLIB provides four sets of routines for byte-oriented file input and output. These routines are —

Input Open FIO$OPEN FI1$OPEN FI2$OPEN FI3$OPEN
Output Open FOO$OPEN F01$OPEN F02$OPEN F03$OPEN
GET FO$GET F1$GET F2$GET F3$GET
PUT FO$PUT F1$PUT F2$PUT F3$PUT
Input Close FIO$CLOSE PI1$CLOSE FI2$CLOSE FI3$CLOSE
Output Close FOO$CLOSE F01$CLOSE F02$CLOSE F03$CLOSE
6-8
ZCPR3; The Libraries SYSLIB File Manipulation
This system allows the user to have up to 8 files open simultaneously — four are open for input using GET and four are open for output using PUT. For example, the following is a sample code section using these routines for two files:

EXT FIO$OPEN ; DECLARE LIBRARY REFERENCES
EXT FOO$OPEN
EXT FIO$CLOSE
EXT FOO$CLOSE
EXT FO$GET
EXT FO$PUT
LXI D,FCBI ; PT TO FCB OF INPUT FILE CALL FIO$OPEN
LXI D,FCBO ; PT TO FCB OF OUTPUT FILE CALL FOO$OPEN
[body containing CALL FO$GET and CALL FO$PUTl
CALL PIO$CLOSE ; CLOSE FILE CALL POO$CLOSE
Note that only the routines to be used are referenced in the EXT statements. If you do not need a particular routine, do not reference it. Not referencing an unneeded routine generally saves the overhead memory space of loading it from the library.

Each set of INPUT OPEN, INPUT CLOSE, OUTPUT OPEN, OUTPUT CLOSE, GET, and PUT routines is contained in one library module, so referencing any of these routines causes the entire module to be loaded, and all the routines are accessable to the user (provided they are mentioned in the external definitions) without any additional memory overhead. Specifically, FIO$OPEN, FIO$CLOSE, FOO$OPEN, FOO$CLOSE, FO$GET, and FO$PUT are contained in one module, and reference to any of these routines loads the entire module; the same is true for the other sets of routines.

The CLOSE routine for output (FOn$CLOSE) is ALWAYS required. It fills the rest of the current block with Ctrl-Z followed by <NULL> bytes and properly closes file. The CLOSE routine for input (FIn$CLOSE) is required ONLY IF you are going to later open another file for input using the corresponding OPEN routine <PIn$OPEN). FIn$CLOSE only serves to reset the OPEN flag (used to GET to ascertain that the file has been properly opened).
6.2.1. Open File

Routine; FIOSOPEN, FI1$OPEN, FI2SOPEN, FI3SOPEN
Function: Open the file whose FCB is pointed to by DE for input (use with F$GET). FIn$OPEN initializes the FCB fields, so further initialization is not necessary.

Inputs: DE = ptr to FCB of file to open

Outputs: Z Flag is Error Indicator, A is Error Code

Registers Affected: PSW
SYSLIB Routines Called: Internal

Special Error Conditions: See Section on Error Codes

Routine; FOO$OPEN, F01$OPEN, F02$OPEN, P03$OPEN
Function: Open the file whose FCB is pointed to by DE for

6-9
ZCPR3: The Libraries
SYSLIB
File Manipulation
output (use with F$PUT). FOn$OPEN initializes the FCB fields, so further initialization is not necessary. It also creates the indicated file if it does not already exist.

Inputs: DE = ptr to FCB of file to open

Outputs: Z Flag is Error Indicator, A is Error Code

Registers Affected: PSW
SYSLIB Routines Called: Internal
Special Error Conditions: See Section on Error Codes

6.2.2. Close File

Routine: PIO$CLOSE, FI1$CLOSE, FI2$CLOSE, FI3$CLOSE
Function: Close the file previously opened by the corresponding FI$OPEN routine. Use of these routines is optional if the another file will not be opened later in the program by the corresponding FI$OPEN routine.

Inputs: None

Outputs: Z Flag is Error Indicator, A is Error Code

Registers Affected: PSW

SYSLIB Routines Called: Internal

Special Error Conditions: See Section on Error Codes

Routine: POO$CLOSE, F01$CLOSE, F02$CLOSE, F03$CLOSE
Function: Close the file previously opened by the corresponding FO$OPEN routine. Use of these routines is MANDATORY after output to the file (using the corresponding F$PUT routine) is complete.

Inputs: None

Outputs; Z Flag is Error Indicator, A is Error Code

Registers Affected: None

SYSLIB Routines Called: Internal

Special Error Conditions: See Section on Error Codes

6.2.3. Byte Input and Output

Routine; FO$GET, F1$GET, F2$GET, P3$GET
Function: Get the next byte in sequence from the file previously opened by the corresponding FI$OPEN routine. Byte is returned in Register A.

Inputs: None

Outputs: A = Next byte from file if no error If Error, NZ and A = Error Code

Registers Affected: PSW

SYSLIB Routines Called: Internal

Special Error Conditions: See Section on Error Codes

Routine; FO$POT, P1$PDT, F2$POT, F3$PUT
Function: Put the byte in Register A onto the end of the file previously opened by the corresponding FO$OPEN routine. Inputs: A = Byte to PUT

Outputs: Z Flag is Error Indicator, A is Error Code Registers Affected: PSW SYSLIB Routines Called: Internal Special Error Conditions; See Section on Error Codes

6-10
ZCPR3: The Libraries
SYSLIB
File Manipulation
6.2.4. Error Return Codes

For each of the routines in this set of byte-oriented file I/O routines, the Zero Flag and the A Register play a key role in indicating the error conditions of the routines.

If the Zero Flag is Set (Z) after a routine has been executed, then this indicates that no error has occurred. The A Register is either unaffected (in most cases) or contains a returned value (if so indicated, as in Fn$GET routines).

If the Zero Flag is Clear (NZ) after a routine has been executed, then this indicates that an error has occurred. The A Register now contains the Error Code. The following table summarizes the Error Codes which may be returned in the A Register.

The following display summarizes the Error Codes.

Summary of Error Codes Returned by Byte-Oriented File I/O Routines

Code Meaning
1 GET or PUT attempted on an unopened file

2 Disk Full (Ran out of space)

3 Input File Not Found

4 Attempt to Read Past EOF

5 Directory Full

6 Error in Closing a File

7 Attempt to Open a File which is already Open

6.3. Byte-Oriented File I/O with Variable Buffers

In addition to the routines mentioned previously, a set of byte-oriented file I/O routines is available under SYSLIB which permits the user to define the size and location of the buffers to be used. The routines mentioned above all use 128-byte buffers, and, on larger capacity disk systems (and on any systems in general), it may be more efficient to buffer more than 128 bytes at a time. This will cut down on the disk activity and leave more memory-based processing overhead.

The routines described in this section are:
Routine Similar to Function
FXI$OPEN FIn$OPEN Open File for Input FXO$OPEN FOn$OPEN Open File for Output FXI$CLOSE FIn$CLOSE Close Input File FXO$CLOSE FOn$CLOSE Close Output File FX$GET Fn$GET Get Byte FX$PUT Fn$PUT Put Byte

All of the File Extended Byte I/O Routines (FX means File Extended) work with an I/O Control Block which is structured as follows:

6-11
ZCPR3: The Libraries
SYSLIB
File Manipulation

Block Length User-Offset. (Bytes) Set?* 0 1 Y
1

2 2 2 36

Function Number of 128-Byte Pages in

Working Buffer End of File Flag Byte Counter Next Byte Pointer Address of Working Buffer PCB of File (Only FN and FT

Fields Set by User)

* By "User-Set", the programmer before these routines are called.

has to initialize this value

The following DB/DS structure can be used in the calling program to implement the I/O Control Block:

IOCTL:

IOCFCB:
WORK:

DB
8 ; Use 8 128-Byte Pages (1K)

DS
1 ; Filled in by FXIO
DS
2 ; Filled in by FXIO

DS
2 ; Filled in by FXIO

DW
WORK ; Address of Working Buffer

DS
1 ; Filled in by FXIO to 0

DB
'MYFILE ' ; File Name

DB
'TXT* ; File Type

DS
24 ; Filled in by FXIO

DS

128'*8

; Working Buffer

<1K)
All of the FXIO routines are consistent in that DE always points to the I/O Control Block (IOCTL above) and A and the PSW are used to pass flags and values. A sample program body which illustrates the calling procedures:

< Init IOCTL1 and IOCTL2, where 1 is input, 2 is output >
LXI D,IOCTL1 CALL FXI$OPEN JZ FNF LXI D,IOCTL2 CALL FXO$OPEN JZ NODIR
LXI D,IOCTL1 CALL FX$GET JZ EOF
; Open 1 for Input ; File Not Found Error

; Open 2 for Output ; No Dir Space Error

Get Next Input Byte in A Process EOF

LXI D,IOCTL2 CALL FX$PUT JZ WERR
Put Byte in A to Output File Process Write Error
LXI D,IOCTL1 CALL FXI$CLOSE
Close Input File

6-12

ZCPR3: The Libraries
SYSLIB
File Manipulation

JZ FCERR ; File Close Error LXI D,IOCTL2
CALL FXO$CLOSE ; Close Output File JZ FCERR
This example illustrates the flexibility of the FXIO routines. As many files as desired may be open for input or output, each file having its own I/O Control Block and Working Buffer. The advantages in efficient disk accessing with this set of routines over the previous ones are notable.

The major disadvantage of using these routines is that the buffers are larger and the overhead of always ensuring that DE points to the proper I/O Control Block before each routine is called is present.

6.3.1. Open File

Routine; PXI$OPEN, FXOSOPEN
Function: Open the file whose I/O Control Block (IOCB) is pointed to by DE for Input (FXI$OPEN) or Output <FXO$OPEN). FXI$OPEN opens the file in the current directory after initializing the PCB and loads as much of the buffer space as possible with data from the file. If the file does not exist, FXI$OPEN returns an error code. FXO$OPEN deletes the file referenced by the FCB if it exists and opens the referenced file for output. If there is no directory space remaining in which to store the file's entry, FXO$OPEN returns an error code.

The FXIO standard error return codes are used. A=0 and Zero Flag Set (Z) if error.

Inputs: DE = ptr to I/O Control Block of file to open

Outputs: A=0 and Zero Flag Set <Z) if error;

A=OPFH and Zero Flag Reset (NZ) if OK

Registers Affected: PSW
SYSLIB Routines Called: INITFCB, F$OPEN, F$DELETE, F$MAKE, F$READ

Special Error Conditions: None

6.3.2. Close File

Routine: FXI$CLOSE, FXO$CLOSE
Function: Close the file whose I/O Control Block (IOCB) is Pointed to by DE. FXI$CLOSE simply closes the file. FXO$CLOSE flushes the working buffer to disk, filling the last 128-byte block with ^Z's if not completely filled already, and closes the file.

The FXIO standard error return codes are used. A=0 and Zero Flag Set (Z) if error.

Inputs: DE pts to I/O Control Block

Outputs; A=0 and Zero Flag Set <Z) if Close Error;

A=OFFH and Zero Flag Reset (NZ) if OK

Registers Affected: PSW

SYSLIB Routines Called: F$CLOSE, F$WRITE

Special Error Conditions: None

6-13

ZCPR3: The Libraries SYSLIB File Manipulation
6.3.3. Byte Input and Output Routines
Routine: FXSGET, FX$PDT
Function: PX$GET gets the next byte from the file whose I/O Control Block (IOCB) is pointed to by DE. FXI$OPEN must have been called before any call to FX$GET. FX$PUT puts the next byte into the file whose I/O Control Block is pointed to by DE. FXO$OPEN must have been called before any call to FX$PCT.

Register A is unaffected by these routines. The error code is returned with the Zero Flag ONLY, and Zero Flag Set (Z) means error while Zero Flag Reset (NZ) means OK.

Inputs: A = Byte to Output for FX$PUT
Outputs: A = Next byte if no error for FX$GET For FX$GET: Z Flag if past EOF For FX$PUT; Z Flag if Write Error

Registers Affected: PSW
SYSLIB Routines Called: F$READ, P$WRITE
Special Error Conditions: None

6.4. Byte-Oriented File I/O with UNGET
The byte-oriented file I/O routines with the FX prefix are quite useful in their own right. In addition to the FX routines, however, are the FY routines. For a slight additional cost in terms of space (for a few bytes more), the FY prefix routines provide the same functions as the FX routines and add the UNGET function.
FY$UNGET sets the next character to be returned by FY$GET. Only one character ahead can be set. This function is extremely useful in applications which read and parse an input file in a single pass. Often the end of a token is detected only when the character after the token is picked up and examined. FY$UNGET allows the programmer to put this character back, so that the next FY$GET picks it up and can process it in its own right as opposed to being a part of the token processing routine. See the test program STEST011 for a good example of this type of application.

Aside from the FY$UNGET function being made available, the FY prefix routines provide the same functions as the FX prefix routines. The I/O Control Block for the FY routines, however, is two bytes larger than the IOCB for the FX routines.
The routines described in this section are:
Routine Similar to Function FYI$OPEN FXI$OPEN Open File for Input FYO$OPEN FXO$OPEN Open File for Output FYI$CLOSE FXI$CLOSE Close Input File FYO$CLOSE FXO$CLOSE Close Output File FY$GET FX$GET Get Byte FY$UNGET Unget Byte FY$PUT FX$PUT Put Byte

6-14
ZCPR3; The Libraries
SYSLIB
File Manipulation

All of the File Extended Byte I/O Routines (FY means File Extended beyond FX) work with an I/O Control Block which is structured as follows:

Block Offset

1

2 4

6

7

8 10

Length
User-
(Bytes)
Set?*
1
Y
1
2 2 1
1
2 36
N N N N N Y Y
Function Number of 128-Byte Pages in

Working Buffer End of File Flag Byte Counter Next Byte Pointer Character Pending Flag Pending Character Address of Working Buffer FCB of File (Only FN and FT

Fields Set by User)

* By "User-Set", the programmer before these routines are called.

has to initialize this value

The following DB/DS structure can be used in the calling program to implement the I/O Control Block:

IOCTL:
DB
8 ;
Use 8 128-Byte Pages (1K)

DS
7 ;
Filled in by FYIO

DW
WORK ;
Address of Working Buffer

IOCFCB:
WORK:

DS DB DB

DS

DS

1 ; Filled in by FYIO to 0 •MYFILE ' ; File Name 'TXT' ; File Type 24 ; Filled in by FYIO

128*8
; Working Buffer (1K)

All of the FYIO routines are consistent points to the I/O Control Block <IOCTL above) are used to pass flags and values. A sample illustrates the calling procedures:

in that DE always and A and the PSW program body which

< Init IOCTL1 and IOCTL2, where 1 is input, 2 is output >
LXI D, IOCTL1 CALL FYI$OPEN JZ FNF LXI D,IOCTL2 CALL FYO$OPEN JZ NODIR
LXI D,IOCTL1 CALL FY$GET JZ EOF
Open 1 for Input File Not Found Error

Open 2 for Output No Dir Space Error

Get Next Input Byte in A Process EOF

Unget character CH
LXI D,IOCTL1 MVI A,CH CALL FY$UNGET
6-15
ZCPR3: The Libraries
SYSLIB
File Manipulation
LXI D,IOCTL2

CALL FY$PUT ; Put Byte in A to Output File

JZ WERR ; Process Write Error

LXI D,IOCTL1

CALL FYI$CLOSE ; Close Input File

JZ FCERR ; Pile Close Error

LXI D,IOCTL2

CALL FYO$CLOSE ; Close Output File

JZ FCERR

This simple example illustrates the flexibility of the FYIO routines. As many files as desired may be open for input or output, each file having its own I/O Control Block and Working Buffer. The advantages in efficient disk accessing with this set of routines over the previous ones are notable.

The major disadvantage of using these routines is that the buffers are larger and the overhead of always ensuring that DE points to the proper I/O Control Block before each routine is called is present.

6.4.1. Open File

Routine: FYISOPEN, FYO$OPEN
Function: Open the file whose I/O Control Block (IOCB) is pointed to by DE for Input (FYI$OPEN) or Output (FYO$OPEN). FYI$OPEN opens the file in the current directory after initializing the PCB and loads as much of the buffer space as possible with data from the file. If the file does not exist, FYI$OPEN returns an error code. FYO$OPEN deletes the file referenced by the FCB if it exists and opens the referenced file for output. If there is no directory space remaining in which to store the file's entry, FYO$OPEN returns an error code.

The FYIO standard error return codes are used. A=0 and Zero Flag Set (Z) if error.

Inputs: DE = ptr to I/O Control Block of file to open

Outputs: A=0 and Zero Flag Set (Z) if error;

A=OFFH and Zero Flag Reset (NZ) if OK

Registers Affected: PSW
SYSLIB Routines Called: INITPCB, F$OPEN, F$DELETE, F$MAKE, F$READ

Special Error Conditions: None

6.4.2. Close File

Routine: FYI$CLOSE, FYO$CLOSE
Function: Close the file whose I/O Control Block (IOCB) is Pointed to by DE. FYI$CLOSE simply closes the file. FYO$CLOSE flushes the working buffer to disk, filling the last 128-byte block with "Z's if not completely filled already, and closes the file.

The FYIO standard error return codes are used. A=0 and Zero Flag Set (Z) if error.

Inputs: DE pts to I/O Control Block

Outputs: A=0 and Zero Flag Set (Z) if Close Error;

A=OFPH and Zero Flag Reset <NZ) if OK

Registers Affected: PSW

SYSLIB Routines Called: F$CLOSE, P$WRITE

Special Error Conditions: None

6-16

2CPR3; The Libraries SYSLIB File Manipulation
6.4.3. Byte Input, Unget, and Output

Routine: PYGET, FYDNGET, FX$PDT
Function: FY$GET gets the next byte from the file whose I/O Control Block (IOCB) is pointed to by DE. FYI$OPEN must have been called before any call to PY$GET. FY$PUT puts the next byte into the file whose I/O Control Block is pointed to by DE. FYO$OPEN must have been called before any call to FY$PUT.

FY$UNGET sets the next byte to be returned by FY$GET. PYI$OPEN roust have been called before any call to FY$UNGET. FY$UNGET may only be called once before the next FY$GET. FY$UNGET works only one byte ahead. If a byte was already pending, FY$UNGET returns an error code (Z) and does not perform its UNGET function.

Register A is unaffected by these routines. The error code is returned with the Zero Flag ONLY, and Zero Flag Set (Z) means error while Zero Flag Reset <NZ) means OK.

Inputs: A = Byte to Output for FY$PUT A = Byte to Unget for FY$UNGET

Outputs: A = Next byte if no error for FY$GET For FY$GET: Z Flag if past EOF For FY$PUT: Z Flag if Write Error For FY$UNGET: Z Flag if Byte Pending Already

Registers Affected: PSW
SYSLIB Routines Called: F$READ, F$WRITE

Special Error Conditions: None

6.5. Library Files

The LU* routines in SYSLIB are useful in providing access to a library file and its contents. These routines are designed to extract information from an existing library, as opposed to adding information to it. Future extensions of this set of routines will probably include the ability to add elements to a library and extend the manipulation capabilities on the library (such as deletion, packing, etc).

The LU routines are:

LUINIT Initialize a library for access LUDIR Obtain a vector of selected entries in the

library
LUOPEN Open a file in a library for reading LUCLOSE Close a file in a library from reading LUREAD Read a block (128 bytes) from a file in a

library

The LU* routines use LUDs to perform their functions.

6-17

ZCPR3: The Libraries SYSLIB File Manipulation

The library routines are defined in terms of a data structure called a LUD (Library Utility Descriptor). The LUD is not unlike the FD (File Descriptor) in concept. The LUD is structured as follows:

LUD:

DS 6 ;Data used by LU* routines DS 11 ;Name of current file (set by LUOPEN) DS 36 ;FCB of Library File (name is filled in ; by programmer)

The data used by the LU* routines is:

DS 2 ;Length of Library File Directory

DS 2 ;Next Block of current file

DS 2 ;Number of Remaining Blocks in curr file

6.5.1. Library Pile Initialization

Routine; LDINIT
Function: Before a library file may be accessed, its LUD is initialized by calling LUINIT. LUINIT assumes that the library file is in the current directory, and it initializes the first 6 bytes of the LUD and the FCB of the LUD as required for further access.

The programmer passes the address of an LUD to LUINIT. The file name (bytes 1-11) in the FCB within the LUD must have been initialized by the programmer. All other bytes of the LUD are set by LUINIT.

Side Effect: The DMA address is set to TBUFF (80H).

Notes: The program must be logged into the directory containing the library file at the time of the call to LUINIT.

Inputs: DE=address of LUD

Outputs: A=Return Code (Zero Flag is Set Accordingly):

0 No Error

1 Library File Not Found

2 Library File Empty

3 Library File Format Error Registers Affected: PSW
SYSLIB Routines Called: P$OPEN, F$READ, INITFCB Special Error Conditions; None

6.5.2. Library File Directory Access Routine; LODIR Function: LUDIR stores selected library file directory
entries in a memory buffer. It accepts an ambiguous file name

reference and an LUD pointer, and it builds a listing of

directory entries in memory. This listing is structured as

follows:

DB 'FILENAME' Name of library file

DB 'TYP' Type of library file

DW START_INDEX Starting index of library file

DW LENGTH Length of library file in blocks

DW CRC CRC of library file

... More entries like this one

DB 0 Indicates end of list

Each entry is 17 bytes long (11 for FN.FT, 2 for starting index,

2 for length, and 2 for CRC).

6-18

ZCPR3: The Libraries SYSLIB File Manipulation

Side Effect: The DMA address is set to TBUFF (80H). Notes: More than one AFN may be scanned for by performing the first scan, setting the memory pointer to the byte the first scan terminated on, and then performing the next scan. Sorting and elimination of redundancies and a directory entry should be done afterwords.
A directory entry in a library file contains all spaces and will be pulled out if the AFN contains all question marks or all spaces.
The program must be logged into the directory containing the library file at the time of the call to LUDIR. Inputs:
BC = address of memory buffer in which to store data DE = address of LUD of library HL = address of 11-byte AFN to match Outputs: A=Return Code (Zero Flag Set Accordingly) 0 No Error

OFFH Memory Buffer Overflow (encountered top of TPA) Registers Affected: PSM SYSLIB Routines Called: P$OPEN, R$READ Special Error Conditions: None

6.5.3. File Extraction

Routine; LDOPEN
Function: LUOPEN opens a file within a library for reading by LUREAD. It locates the file and loads the appropriate buffers for the following reads.

The desired file reference may be ambiguous. The first file in the library file directory matching this file reference is selected. The programmer can determine the name of the selected file by examining the LUD after the call to LCOPEN:
LUD:

DS 6

DS 11 ;Selected file name is stored here

DS 36

Side Effect: The DMA address is set to TBUFF (80H). Notes: The program must be logged into the directory containing the library file at the time of the call to LUOPEN. Inputs:
DE = address of LUD

HL = address of FN.PT (11 bytes) to match Outputs; A=Return Code (Zero Flag Set Accordingly)

0 No Error

OFFH File Not Found Registers Affected: PSW SYSLIB Routines Called: P$OPEN, R$READ Special Error Conditions; None

6-19
ZCPR3: The Libraries
SYSLIB
File Manipulation
Routine; LDREAD
Function: LUREAD reads the next block from the file opened by LUOPEN within the current library. The next index and block remaining counts in the LUD are updated by LUREAD.

The block is read into the current DMA address, so LUREAD may be used like F$READ and R$READ for faster access and less copying of blocks within memory.

Notes; The program must be logged into the directory containing the library file at the time of the call to LUREAD.

Inputs: DE = address of LUD

Outputs: A=Return Code (Zero Flag Set Accordingly) 0 No Error OFFH End of File

Registers Affected: PSW
SYSLIB Routines Called: R$READ

Special Error Conditions: None

Routine; LUCLOSE
Function: LUCLOSE closes the file within a library which was opened by LUOPEN. It is not necessary to use the LUCLOSE routine, and its main function is to provide security against further accidental calls to LUREAD (any further calls to LUREAD result in the EOF flag being returned).
Inputs: DE = address of LUD

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

6.6. Miscellaneous

6.6.1. File Name String Parser (FNAME)
Routine: FNAME

Function: FNAME is a file name scanner. Pointing to the first character of a file name specification of the form:

du:filename.typ

where any part of the specification is optional, this routine fills in an FCB with zeroes (36 bytes), properly initializes the PK (File Name) field if 'filename' is present and FT (File Type) field if 'typ' is present, and returns the number of the selected disk (in the range from 1 for A to 16 for P) if 'd' is present and the number of the selected user (in the range from 0 to 31 and the question mark '?' character) if 'u' is present. If 'd' is not present, OFFH is returned for it to indicate current disk, and if 'u' is not present, OFFH is returned for it to indicate current user.

The string pointed to by HL is not a conventional string in the sense of the rest of the SYSLIB routines. This string is terminated by any of the following delims, as opposed by simply always being terminated by a binary zero. The delimiter list is:

<NULL or Binary 0> <SP or Space> ; . < >
6-20

ZCPR3: The Libraries
SYSLIB
File Manipulation

The following are valid examples:

test.txt a:t 5:t cl0:x.y

FN=TEXT FT=TXT, B reg = OFFH,

C reg = OFFH
FN=T FT=<SP>, B reg = 1,

C reg = OFFH

FN=T FT=<SP>, B reg = OFFH,

C reg = 5

FN=X FT=Y, B reg = 3,
C reg = 10

Inputs: HL points to the first byte of the target string

(which ends in a delimiter)

DE pts to the first byte of a 36-byte long FCB Outputs: B=Disk Number (1 for A to 16 for P, or OFFH if

no disk specified) C=User Number (0 to 31 or '?' for all users, or

OFFH if no user specified) HL points to the character which ended the scan A = 0 and Zero Flag Set (Z) if invalid Disk or User

Specified; A = OFFH and NZ if no error Registers Affected: PSW, BC, HL SYSLIB Routines Called: CAPS Special Error Conditions: None

6.6.2. FCB Initialization

Routine; INITFCB
Function: INITFCB simply clears all of the fields of a 36-byte FCB to zero except for the FN and FT (File Name and File Type) fields, which it leaves untouched.

Inputs: DE = pointer to FCB buffer

Outputs: None

Registers Affected: None

SYSLIB Routines Called: FILLB
Special Error Conditions: None

6.6.3. Set DMA Address

Routine; SETDMA
Function: SETDMA sets the DMA address to the 128-byte block whose address is contained in HL.

Inputs; HL = Address of 128-byte block

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

6-21

ZCPR3: The Libraries
SYSLIB
File Manipulation
NOTES:
6-22

ZCPR3: The Libraries
SYSLIB
Directory Manipulation

7. DIRECTORY MBNIPDIATION
CHAPTER OUTLINE
Memory Allocation
Allocate a Block of Memory
ALLOC
Initialize Memory Allocation Buffer IALLOC
Parsing Aids
Character Skip
SKNPUN, SKNSP, SKPUN, SKSP Character Test
ISALNUM, ISALPHA, ISCTRL, ISDIGIT, File Size Computation FSIZE
Free Space Computation DFREE
General-Purpose DIRF, DIRFS DIRQ, DIRQS
7-1
ZCPR3: The Libraries SYSLIB Directory Manipulation
This set of SYSUB routines concerns itself with the loading of and access of a disk directory for the general purposes of the user. Included in this set of routines are the functions of;

1. Pre-allocation of buffer space for the routines

2. Loading of all undeleted directory entries into a buffer, constantly checking for memory overflow as they go

3. Determining the amount of free space on the disk

4. Computing the size of a file in K-bytes
5. Sorting a loaded directory by file name and type or by file type and name

6. Selecting (by marking) a set of directory entries which match a given ambiguous file spec

7. Packing the loaded directory, leaving in it only those entries marked by the select routine

The majority of these routines is intended to be used to provide a flexible directory access system which can be tailored by the user to his specific needs. For instance, with the DIRLOAD routine separated from the rest, several different loads of the directory (from, for instance, different ambiguous file specs) can be performed, and then one selection and one sort on all file specs loaded can be done.

The DIRQ/DIRQS pair are intended for those applications which do not need this kind of flexibility. DIRQ (quick) and DIRQS (quick with sizing information) perform a load, select, and sort based on only one file specification. Using DIRQ/DIRQS instead of DIRF/DIRFS results in less code being generated and (generally) faster execution.

Directory Buffer Structure
DIRLOAD and DIRSLOAD are used to load a directory from disk into memory. The entries loaded are all non-deleted entries in either a particular user area or all user areas on the disk which is currently logged in.

Each file entry in this buffer is 16 bytes long, and it is structured as follows:

7-2

ZCPR3: The Libraries
SYSLIB
Directory Manipulation
DB DB DB DB DB DB

user
•FILENAME'
•TYP' ext 0,0 rec
user number of file name of file type of file extent of file*

uninteresting - leave alone record count in this extent

* ext is the file extent; for DIRLOAD, it is the first extent number of the file; for DIRSLOAD, it is the last extent number of the file

Bow To Use These Routines
The DIRF or DIRFS routines will probably be used to perform your directory access functions the vast majority of the time. Given a buffer, an ambiguous file spec, and a selection flag, DIRF and DIRFS load the desired files for you and then you can work with the 16-byte file entries from there. A typical calling sequence for DIRF or DIRFS is:

CALL CODEND
LXI D.FCB
MVI A,1100$OOOOB
CALL DIRF
JZ TPAOVFL
<continue>
point to buffer space point to FCB of file spec select all files in user 0 load entries error condition HL pts to first entry, BC= number of entries

If the user wishes to deviate from the "normal" use for DIRF and DIRFS, access to the routines used by DIRF and DIRFS is available. A case in which you may want to do this is when you are interested in files which match more than one file spec, such as *.ASM and *.TXT. A typical calling sequence for this type of access is:

Setup
CALL CODEND CALL DBUFFER CALL DIRLOAD JZ TPAOVFL
Select first set of files LXI D.FCB1 MVI A,1100$OOOOB CALL DIRSEL

point to buffer space get internal info and ptrs or DIRSLOAD to load entries error condition

;
pt to first FCB to match

;
select all files in user 0

;
select file entries from

;
buffer

Repeat the following 2 lines as necessary
LXI D.FCB2 ; pt to 2nd FCB to match CALL DIRSEL ; select again
7-3
ZCPR3: The Libraries
SYSLIB
Directory Manipulation

; Finish up

CALL DIRPACK ; pack the file entries,

; leaving only the valid ; entries in the buffer

MVI A,0 ; alphabetize

CALL DIRALPHA
; Done — HL pts to first file entry, BC=number of entries

7.1. Buffer Allocation

Routine; DBCFFER
Function: This routine allocates the buffer space necessary for use by the set of directory functions. In particular, it allocates the necessary space for the alphabetization function as well as the loaded directory itself. This routine must be used if the DIRALPHA routine is to be later used to sort the directory; this routine allocates all the space necessary by DIRALPHA to sort the routine (pointer space). If this routine is called, it is not necessary to call the DPARAMS routine. Inputs: HL points to the beginning address of a

buffer area which extends to under the CCP (usually set by a call to CODEND) Outputs: HL points to the first byte at which the

directory entries are to be loaded A=0 and Zero Flag is Set (Z) if the CCP is

already overrun; else, AOO and NZ Registers Affected: HL, PSW SYSLIB Routines Called: DPARAMS Special Error Conditions: As indicated

7.2. Directory Alphabetization

Routine: DIBALPHA
Function: To alphabetize the files in the directory pointed to by HL by either file name and type (STEST.ASM goes before TEST.AAA) or by file type and name (TEST.AAA goes before STEST.ASM).

Inputs: HL points to first directory entry

(usually set by DBUFFER) BC contains the number of files to sort

(usually set by DIRLOAD or DIRSLOAD) A is the sort flag; A=0 means sort by file name and then file type, AOO means by file type and name

Outputs: None (directory list is sorted) Registers Affected: PSW SYSLIB Routines Called: PRINT Special Error Conditions:

It is possible, altho highly unlikely from all tests given so far, that DIRALPHA may experience an internal error. If this happens, the message:

DIRALPHA — Pointer Error will be printed and the routine will abort to the operating system.

7-4

ZCPR3: The Libraries SYSLIB Directory Manipulation

•
7.3. Directory Entry Selection

Routine; DIRSEL
Function: DIRSEL selects all entries in the directory buffer which match the ambiguous file name specified in the FN and FT fields of the FCB pointed to by DE upon entry to DIRSEL. A selection flag is also passed to DIRSEL in the A register, and this flag tells DIRSEL whether or not to include Non-System files and System files in the selection and whether to select files in all user areas or in a particular user area.

DIRSEL identifies the selected file entries by setting the Most Significant Bit of the first byte of each of these entries to 1 if the entry is selected. DIRSEL makes no other changes to the file entries in the directory buffer. Inputs:
HL points to the directory buffer (usually set by DBUFFER)
DE points to the FCB containing the ambiguous FN and FT fields; only the first 12 bytes are needed

BC contains the number of files in the directory (usually set by DIRLOAD or DIRSLOAD)
A contains a selection flag, organized as follows;

Bit 7 - Select Non-System Files Bit 6 - Select System Piles Bit 5 - Select Files in All User Areas Bits 4-0 - If Bit 5 is 0, indicates number of

User Area to select files from Outputs: None (MSBs of selected entries are set) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions; None

7.4. Directory Load

Routine; DIRLQAD, DIRSLQAD
Function; DIRLOAD and DIRSLOAD load entries for all undeleted files on the currently logged in disk into the memory buffer pointed to by HL. All entries are 16 bytes long.

DIRLOAD is faster than DIRSLOAD. It loads just the first entry of each file on disk. DIRLOAD, however, should be used only if file sizing information is not required by the applications program.

DIRSLOAD loads just the LAST entry of each file on disk. This entry contains the necessary file sizing information which may be used by FSIZE to compute the size of the loaded file.

If the TPA is filled during DIRLOAD or DIRSLOAD and there are still more file entries to load, the load will be halted and an error return will be made to the caller. On return, if A=0 and the Zero Flag is Set (Z), then a load error occurred;

otherwise, the load was OK.

Inputs:
HL points to the first byte of the directory buffer area; this area extends from after the last buffer used by the applications program to the page before the CCP. If alphabetization is to be done, the value returned in HL by DBUFFER is a correct input for DIRLOAD or DIRSLOAD.

7-5
ZCPR3: The Libraries
SYSLIB
Directory Manipulation
Outputs:
BC is the number of files loaded into the buffer A=0 and Zero Flag is Set (Z) if TPA Overflow; AOO and NZ if load OK

Registers Affected: BC SYSLIB Routines Called: None

Special Error Conditions: If TPA is filled and load is incomplete, A=0 and Zero Flag is Set (Z) as error indie
7.5. Directory Pack

Routine; DIRPACK
Function: DIRPACK restructures the directory buffer to contain only those entries marked by DIRSEL. In this way, those entries NOT marked by DIRSEL are discarded from the buffer (actually, just taken out of consideration, but the contents of the buffer after the last selected entry is not guaranteed to contain anything significant).

The Most Significant Bit of the first byte of all entries remaining in the directory buffer is reset to 0 as a side effect of DIRPACK.

Inputs:
HL points to the directory buffer (usually set by DBUFFER)
BC contains the number of files in the buffer (usually set by DIRLOAD or DIRSLOAD)
Outputs:
BC contains the number of files (those selected by DIRSEL) remaining in the directory buffer

Registers Affected: BC

SYSLIB Routines Called: None

Special Error Conditions: None

Routine: DIRNPACK
Function: DIRNPACK restructures the directory buffer to contain only those entries NOT marked by DIRSEL. In this way, those entries marked by DIRSEL are discarded from the buffer (actually, just taken out of consideration, but the contents of the buffer after the last selected entry is not guaranteed to contain anything significant).
The Most Significant Bit of the first byte of all entries remaining in the directory buffer is reset to 0 as a side effect of DIRNPACK.

The routine DIRSEL MUST be called before DIRNPACK is used since DIRNPACK uses an internal flag set by DIRSEL < for SYSTEM and R/0 information).
Inputs:
HL points to the directory buffer (usually set by DBUFFER)

BC contains the number of files in the buffer (usually set by DIRLOAD or DIRSLOAD)

Outputs:
BC contains the number of files (those NOT selected by DIRSEL) remaining in the directory buffer

7-6
ZCPR3: The Libraries
SYSLIB
Directory Manipulation

Registers Affected: BC
SYSLIB Routines Called: DIRPACK
Special Error Conditions: None

7.6. Disk Parameter Information Extraction

Routine: DPARAMS
Function: This routine extracts necessary information from the Disk Parameter Block (DPB) and stores it away in some global buffers used by other Disk Directory Routines. The information extracted is not of general concern by the programmer. ALL THE PROGRAMMER NEEDS TO KNOW IS THAT THIS ROUTINE MUST BE CALLED AT LEAST ONCE BEFORE THE DIRLOAD OR DIRSLOAD ROUTINE IS CALLED. If the DBUFFER routine is called, then it is not necessary to call DPARAMS again.

For the information of the reader, the following information is extracted:

BLKSHF <— Block Shift Factor (1 Byte)

BLKMSK <-- Block Mask (1 Byte)

EXTENT <— Extent Mask (1 Byte)
BLKMAX <— Max Number of Blocks on Disk (2 Bytes)

DIRMAX <— Max Number of Dir Entries (2 Bytes)

This routine automatically adjusts for versions 1.4 and 2.2 of CP/M and is compatable with both versions of CP/M. Inputs: None

Outputs: None (Information Extracted into Buffers) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

7.7. File Size Computation

Routine: FSIZE
Function: This routine computes the size of a file whose entry (which MUST be loaded by DIRSLOAD) is pointed to by HL. This routine will work, but generally return incorrect results, if the entry pointed to was loaded by DIRLOAD instead.

The routine DPARAMS (or DBUFFER, DIRF, or DIRFS, since they also call DPARAMS) must be called before this routine is used so that the correct disk parameter information is loaded for it.

Inputs: HL points to first byte of file entry in vector loaded by DIRSLOAD or DIRFS (each file entry is 16 bytes long)

Outputs: DE contains the file size in K Bytes

Registers Affected: DE

SYSLIB Routines Called: None

Special Error Conditions: None

7.8. Free Space Computation

Routine: DFREE
Function: This routine computes the amount of free space (in K bytes) left on disk.

7-7

ZCPR3: The Libraries SYSLIB Directory Manipulation
The routine DPARAMS (or DBUFFER, DIRF, or DIRFS, since they also call DPARAMS) must be called before this routine is used so that the correct disk parameter information is loaded for it.

Inputs: None

Outputs: DE = Amount of Free Disk Space in K Bytes

Registers Affected: DE

SYSLIB Routines Called: None

Special Error Conditions: None

7.9. General-Purpose

Routine: DIRF, DIRFS
Function; This routine initializes the buffer area, loads a disk directory, selects a set of files from the loaded directory specified by the user's ambiguous file name and a passed flag (which indicates if System files are selected. Non-system files are selected, all user areas are to be covered, and what particular user area is to be covered if all user areas are not selected), packs the directory, and alphabetizes the directory by file name and file type.

If DIRF is used, the processing proceeds faster since only the first entry of each file is loaded into the memory buffer. Pile sizing information is not included in this load, however.

If DIRFS is used, the processing is somewhat slower, but the last entry for each file is loaded rather than the first. File sizing information is contained in this entry, and this information can be used by the FSIZE routine. Inputs:
HL points to a buffer area which extends from after the user's code and buffer areas to the end of the TPA (usually set by a call to CODEND)
DE points to the first byte of the FCB used to specify the ambiguous file name; only the chars in the FN and FT fields are significant, so this need not be a true FCB and may be as short as 12 bytes

A is the selection flag, structured as follows:

Bit 7 - If Set, Select Non-System Piles Bit 6 - If Set, Select System Files Bit 5 - If Set, Select All User Areas Bits 4-0 - If Bit 5 is Cleared, contains

number of User Area to Select Outputs:
HL points to the first file entry in the buffer; each file entry is 16 bytes long

BC contains the number of files selected A contains an error flag; A=0 and Zero Flag Set <Z) indicates TPA overflow error during load of directory entries;

AOO and NZ indicates load OK

Registers Affected: HL, BC, PSW SYSLIB Routines Called: DBUFPER, DIRLOAD, DIRSEL, DIRPACK,
DIRALPHA Special Error Conditions: As outlined above.

7-8

ZCPR3; The Libraries
SYSLIB
Directory Manipulation

Routine: DIRQ, DIRQS
Function: These routines load a disk directory, selecting a set of files from the loaded directory specified by the user's ambiguous file name and a passed flag (which indicates if System or Non-system files are selected) as it goes, and alphabetize the directory by file name and type or file type and name (depending on another passed flag).

If DIRQ is used, the processing proceeds faster since only the first entry of each file is loaded into the memory buffer. File sizing information is not included in this load, however.

If DIRQS is used, the processing is somewhat slower, but the last entry for each file is loaded rather than the first. File sizing information is contained in this entry, and this information can be used by the FSIZE routine.

**** IMPORTANT NOTE ****
DIRQ and DIRQS use no other SYSLIB routines, however, so if FSIZE or DFREE are to be later used, an explicit call to DPARAMS is required before either FSIZE or DFREE is called. Inputs:
HL points to a buffer area which extends from after the user's code and buffer areas to the end of the TPA (usually set by a call to CODEND)
DE points to the first byte of the FCB used to specify the ambiguous file name; only the chars in the FN and FT fields are significant, so this need not be a true FCB and may be as short as 12 bytes

A is the selection flag, structured as follows:

Bit 7 - If Set, Select Non-System Files Bit 6 - If Set, Select System Files Bit 5 - If Set(l), Sort by File Type and Name

If Reset(0), Sort by Name and Type Bits 4-0 - Unused Outputs:
HL points to the first file entry in the buffer; each file entry is 16 bytes long

BC contains the number of files selected A contains an error flag; A=0 and Zero Flag Set (Z) indicates TPA overflow error during load of directory entries;

AOO and NZ indicates load OK

Registers Affected: HL, BC, PSW SYSLIB Routines Called: None

Special Error Conditions: If there is an internal pointer error, DIRQ/DIRQS only rings the bell and aborts to the operating system.

7-9

ZCPR3: The Libraries SYSLIB Directory Manipulation NOTES:
7-10
ZCPR3: The Libraries
SYSLIB
User Areas and Disks

8. USER AREAS AND DISKS
CHAPTER OUTLINE
Save and Restore Disk/User Area GETUD, PUTUD
Get and Set Current User Area GUA, SUA
Log Into a Disk/User LOGUD
Return the Current Disk/User RETUD
8-1

ZCPR3: The Libraries
SYSLIB
User Areas and Disks

Disk/User Area Manipulation
This is a set of routines which allow the user to move around between disks and user areas. These routines are:

GETUD — to restore the disk/user saved by PUTUD
GUA — to return the current user

LOGCD — to log the user into a specified disk/user

PUTUD — to save away the current disk/user

RETUD — to return the current disk/user

SUA — to log the user into a specified user area

PUTUD and GETUD are designed to be used as a place marker and return combination. They are intended to be used in code sequences like the following:

CALL PUTUD ; Mark current location

< move around on disks/users >
CALL GETUD ; Return to marked location

RETUD and LOGUD are to be used to find out where the program is (RETUD) and to enter a specific disk/user area (LOGUD).
For example:

CALL RETUD ; Find out where we are PUSH B ; Save Disk/User < move around on disks/users > POP B ; Get Disk/User CALL LOGUD ; Log into Disk/User

GUA and SUA are to be used to find out what user area the program is in (GUA) and to enter a specific user area (SUA).

For example:

CALL GUA ; Find out current user PUSH PSW ; Save it < move around on other user areas> POP PSW ; Get current user CALL SUA ; Log into User

GUA and SUA are useful in conjunction with the automatic disk logging feature of CP/M, where the first byte of the FCB indicates a disk to autolog into (1=A, 2=B, etc., 0=default).
8-2

ZCPR3: The Libraries
SYSLIB
User Areas and Disks

8.1. Save and Restore Disk/User Area

Routine: GETUD
Function: GETUD restores the current user and disk which was saved by PUTUD. The value of the current user and disk saved by PUTUD is stored internally to the GETUD/PUTUD module and is not available to the user.

Inputs: None

Outputs: None

Registers Affected: None

SYSLIB Routines Called: BDOS
Special Error Conditions: None

Routine: PUTUU
Function: PUTUD saves the current user and disk numbers away for later retrieval by GETUD. PUTUD and GETUD are intended to be used to save and restore the current disk and user around some set of operations in another user/disk area. The values saved by PUTUD are stored in buffers internal to the GETUD/PUTUD module and are not available to the user.

Inputs: None

Outputs: None

Registers Affected: None

SYSLIB Routines Called: RETUD
Special Error Conditions: None

8.2. Get and Set Current User Area

Routine; GDA
Function: GUA returns the current user area in the A register. There are no error codes associated with this function.

Inputs: None

Outputs: A = User Area (0-31)

Registers Affected: PSW
SYSLIB Routines Called: None

Special Error Conditions: None

Routine: SOA
Function: SUA logs the program into the user area represented by the low-order 5 bits of the A register (value 0-31). There are no error codes associated with this function.

Inputs: A = User Area (0-31)

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

8.3. Log Into a Disk/User

Routine; LOGUD
Function: LOGUD logs in the disk specified by the B register (B=0 for Disk A) and the user specified by the C register.
Inputs: B=Disk (B=0 for Disk A), C=User

8-3
ZCPR3: The Libraries
SYSLIB
User Areas and Disks
Outputs: None Registers Affected: None SYSLIB Routines Called: BDOS Special Error Conditions: None

8.4. Return the Current Disk/User

Routine; RETUD
Function: RETUD returns the numbers of the current user in C and current disk in B <B=0 for disk A). Inputs: None

Outputs: B=Disk <B=0 for disk A), C=User Registers Affected: BC SYSLIB Routines Called: BDOS Special Error Conditions: None

8-4

ZCPR3; The Libraries
SYSLIB
Branching

9. BRANCHING
CHAPTER OUTLINE
Case with Register A
ACASE1, ACASE2, ACASE3
Case with Register Pair HL HCASE1, HCASE2, HCASE3
Computed Goto with Register A AGOT01, AGOT02 BGOT01, BGOT02
Computed Goto with Register Pair HL HGOT01, HGOT02 DGOT01, DGOT02
Arithmetic IF with Register A AIF1, AIF2
Arithmetic IF with Register Pair HL HIF1, HIP2
9-1
ZCPR3: The Libraries
SYSLIB
Branching

Branching
The routines in this chapter deal with conditional branching via CASE, Computed GOTO, and Arithmetic IF constructs. The following example illustrates the case concept:

< register A = key value > CALL ACASE1 DB SIZE DW ERROR DB VAL1 DW ADDR1 DB VAL2 DW ADDR2
NUMBER OF ENTRIES IN TABLE GO HERE IF NO MATCH FIRST VALUE TO TEST FOR GO HERE IF A = VAL1 2ND VALUE TO TEST FOR GO HERE IF A = VAL2
DB VAL$SIZE ; 'SIZE' VALUE TO TEST FOR DW ADDR$SIZE ; GO HERE IF A = VAL$SIZE
The following example illustrates the Computed GOTO;

< register A = index < zero-relative) > CALL AGOT01

DW ADDRO ; GO HERE IF A = 0 DW ADDR1 ; GO HERE IF A = 1

DW ADDRN
; GO HERE IF A = N
The following example illustrates the Computed GOTO with limits;

< register A = index (zero-relative) > < register B = limit > CALL AGOT01

DW ADDRO ; GO HERE IF A = 0 DW ADDR1 ; GO HERE IF A = 1

DW ADDRN < error code >
; GO HERE IF A = N ; RESUME AFTER DW ADDRN IF A > B
The following example illustrates the Arithmetic IF:

< register A = key value > < register B = test value >
CALL AIF1

DW ADDRLT ; GO HERE IF A < B
DW ADDREQ ; GO HERE IF A = B
DW ADDRGT ; GO HERE IF A > B
See the SYSLIB test program STEST014.MAC for examples of use of all of the branching routines.

9-2
ZCPR3: The Libraries
SYSLIB
Branching

The following routines are provided:

Routine ACASE1 ACASE2 ACASE3
HCASE1 HCASE2 HCASE3
AGOT01 AGOT02
HGOT01 HGOT02
BGOT01 BGOT02
DGOT01 DGOT02
AIF1 AIF2
HIF1 HIF2
Comments
Case statement with A = key value

Like ACASE1, but DE = address of case table

Like ACASE2, but return address is left on stack

Like ACASE1, but HL Like ACASE2, but HL Like ACASE3, but HL
key value key value key value

Computed GOTO with A = key value Like AGOT01, but JMPs rather than DW follow

Computed GOTO with HL = key value Like AGOT02, but HL = key value

Like AGOT01, but B --Like AGOT02, but B --
limit value limit value

; limit value : limit value

Like HGOT01, but DE Like HGOT02, but DE
Arithmetic IF with A, B = values Like AIF1, but JMPs rather than DW follow

Arithmetic IF with HL, Like AIF2, but HL, DE ••
DE = values : values

9.1. Case with Register A

Routine: ACASE1

Function: ACASE1 is a case statement processor. On input, register A contains a value to test against. This value is compared to the values in a case table, and, if a match is found, control is transferred to the address associated with the matching value. This case acts as a multiway JMP instruction (return address from the call to ACASE1 is not retained). Example:

MVI A,TEST CALL ACASE1 DB N
DW DEFAULT DB VAL1 DW ADDR1
DB DW
VALN ADDRN
;
number of entries in the table

;
go to this address if no match

;
test for TEST = VAL1

;
go here if TEST = VAL1

;
test for TEST = VALN

;
go here if TEST = VALN

Inputs: A = value to test for Outputs: None (branch is made) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9-3
ZCPR3: The Libraries
SYSLIB
Branching

Routine: ACASE2

Function: ACASE2 is a case statement processor. On input, register A contains a value to test against and DE contains the address of the case table. The value in register A is compared to the values in a case table, and, if a match is found, control is transferred to the address associated with the matching value. This case acts as a multiway JMP instruction (return address from the call to ACASE2 is not retained). Example:

MVI A,TEST LXI D,TABLE CALL ACASE2
value to test for address of table

	TABLE:

	

	DB

	N

	DW

	DEFAULT

	DB

	VAL1

	DW

	ADDR1

DB DW

VALN ADDRN
number of entries in the table go to this address if no match test for TEST = VAL1 go here if TEST = VAL1

test for TEST = VALN go here if TEST = VALN

Inputs: A = value to test for

DE = address of case table Outputs: None (branch is made) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

Routine; ACASE3

Function: ACASE3 is a case statement processor. On input, register A contains a value to test against and DE contains the address of the case table. The value in register A is compared to the values in a case table, and, if a match is found, control is transferred to the address associated with the matching value. This case acts as a multiway CALL instruction (return address from the call to ACASE3 is left on the stack). Example:

MVI A,TEST LXI D,TABLE CALL ACASE3 < resume execution here if routines execute an RET instr >
value to test for address of table

TABLE:
DB DW DB DW
• • «
DB DW
N
;
number of entries in the table

DEFAULT
;
go to this address if no match

VAL1
;
test for TEST = VAL1

ADDR1
;
go here if TEST = VAL1

VALN
;
test for TEST = VALN

ADDRN
;
go here if TEST = VALN

9-4
ZCPR3: The Libraries
SYSLIB
Branching

Inputs: A = value to test for

DE = address of case table Outputs: None (branch is made) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9.2. Case with Register Pair HL Routine: HCASE1
Function; HCASE1 is a case statement processor. On input, register pair HL contains a value to test against. This value is compared to the values in a case table, and, if a match is found, control is transferred to the address associated with the matching value. This case acts as a multiway JMP instruction (return address from the call to HCASE1 is not retained). Example:

LXI H,TEST

CALL HCASE1
DW N ; number of entries in the table
DW DEFAULT ; go to this address if no match
DW VAL1 ; test for TEST = VAL1
DW ADDR1 ; go here if TEST = VAL1
DW VALN ; test for TEST = VALN DW ADDRN ; go here if TEST = VALN

Inputs: HL = value to test for Outputs: None (branch is made) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

Routine; HCASE2
Function: HCASE2 is a case statement processor. On input, register pair HL contains a value to test against and DE contains the address of the case table. The value in register pair HL is compared to the values in a case table, and, if a match is found, control is transferred to the address associated with the value. This case acts as a multiway JMP instruction the call to HCASE2 is not retained).

matching

(return address from

Example:
LXI H.TEST LXI D,TABLE CALL HCASE2

value to test for address of table

	TABLE:

	

	DW

	N

	DW

	DEFAULT

	DW

	VAL1

	DW

	ADDR1

;
number of entries in the table

;
go to this address if no match

;
test for TEST = VAL1

;
go here if TEST = VAL1

DW VALN ; test for TEST = VALN DW ADDRN ; go here if TEST = VALN
9-5
2CPR3: The Libraries
SYSLIB
Branching
Inputs: HL = value to test for

DE = address of case table Outputs: None (branch is made) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

Routine: HCASE3
Function: HCASE3 is a case statement processor. On input, register pair HL contains a value to test against and DE contains the address of the case table. The value in register pair HL is compared to the values in a case table, and, if a match is found, control is transferred to the address associated with the matching value. This case acts as a multiway CALL instruction (return address from the call to HCASE3 is left on the stack). Example:

LXI H,TEST } value to test for LXI D,TABLE ; address of table CALL HCASE3 < resume execution here if routines execute an RET instr >
	TABLE;

	

	DW

	N

	DW

	DEFAULT

	DW

	VAL1

	DW

	ADDR1

DW DW

VALN ADDRN
number of entries in the table go to this address if no match test for TEST = VAL1 go here if TEST = VAL1

test for TEST = VALN go here if TEST = VALN

Inputs: HL = value to test for

DE = address of case table Outputs: None (branch is made) Registers Affected: None SYSLIB Routines Called: Itone Special Error Conditions: None

9.3. Computed Goto with Register A

Routine: AQOT01
Function: AGOTOl is a computed GOTO. When called, register A = index (zero-relative) of the following address to branch to. No information is available on the number of allowed values, so it is the programmer's responsibility to see that the range of the Computed GOTO is not exceeded. Example:

MVI A,INDEX CALL AGOTOl DW ADDRO DW ADDR1
DW
ADDRN
; Index value
; GO HERE IF A = 0 ; GO HERE IP A = 1
; GO HERE IP A = N
9-6
ZCPR3: The Libraries SYSLIB • Branching

Inputs: A = index value (zero-relative)

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; AGOT02
Function: AGOT02 is a computed GOTO. When called, register A = index (zero-relative) of the following address to branch to. No information is available on the number of allowed values, so it is the programmer' s responsibility to see that the range of the Computed GOTO is not exceeded. Example:

MVI A,INDEX ; Index value

CALL AGOT02

JMP ADDRO ; RETURN TO THIS JMP IF A = 0
JMP ADDR1 ; RETURN TO THIS JMP IF A = 1
• • •
JMP ADDRN ; RETURN TO THIS JMP IF A = N < next instr > ; RETURN TO THIS INSTR IF A = N+l
Inputs: A = index value (zero-relative)

Outputs: None

Registers Affected; None

SYSLIB Routines Called: None

Special Error Conditions; None

Routine: BGOT01

Function: BGOT01 is a computed GOTO. When called, register A = index (zero-relative) of the following address to branch to. Register B = maximum value allowed for the index (register A). If A > B, then control is transferred to after the last address in the table. Example:

MVI A,INDEX ; Index Value

MVI B,LIMIT ; Maximum Index Value

CALL BGOT01

DW ADDRO ; GO HERE IF A = 0

DW ADDR1 ; GO HERE IF A = 1
• • •
DW ADDR$LIMIT; GO HERE IF A = LIMIT < next instruction >; RETURN TO THIS INSTRUCTION IF A > LIMIT
Inputs: A = index value (zero-relative)

B = maximum index value allowed Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9-7
ZCPR3: The Libraries
SYSLIB
Branching
Routine; BGOT02
Function: BGOT02 is a computed GOTO. When called, register A = index (zero-relative) of the following address to branch to. Register B = maximum value allowed for the index (register A). If A > B, then control is transferred to after the last address in the table. Example:

MVI A,INDEX MVI B,LIMIT CALL BGOT02 JMP ADDRO JMP ADDR1
Index value Maximum Index Value
RETURN TO THIS JMP IF A RETURN TO THIS JMP IP A
JMP ADDR$LIMIT; RETURN TO THIS JMP IF A = LIMIT < next instr > ; RETURN TO THIS INSTR IF A > LIMIT

Inputs: A = index value (zero-relative)

B = maximum index value Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9.4. Computed Goto with Register Pair HL
Routine; HGOTOl
Function: HGOTOl is a computed GOTO. When called, register pair HL = index (zero-relative) of the following address to branch to. No information is available on the number of allowed values, so it is the programmer's responsibility to see that the range of the Computed GOTO is not exceeded. Example:

LXI H,INDEX CALL HGOTOl DW ADDRO DW ADDR1
Index value

GO HERE IF HL = 0 GO HERE IF HL = 1
DW ADDRN
GO HERE IF HL N
Inputs: HL = index value (zero-relative)

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; HGOTO2
Function: HGOTO2 is a computed GOTO. When called, register pair HL = index (zero-relative) of the following address to branch to. No information is available on the number of allowed values, so it is the programmer's responsibility to see that the range of the Computed GOTO is not exceeded. Example:

9-8

ZCPB3: The Libraries
SYSLIB
Branching
LXI H,INDEX CALL HGOT02 JMP ADDRO JMP ADDR1
• • •
JMP ADDRN < next instr >
Index value
; RETURN TO THIS JMP IF HL = 0 ; RETURN TO THIS JMP IF HL = 1
; RETURN TO THIS JMP IF HL = N ; RETURN TO THIS INSTR IF HL = N+l
Inputs: HL = index value (zero-relative)

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; DGOTO1
Function: DGOTO1 is a computed GOTO. When called, register pair HL = index (zero-relative) of the following address to branch to. Register pair DE = maximum value allowed for the index (register pair HL). If HL > DE, then control is transferred to after the last address in the table. Example:

LXI H,INDEX LXI D,LIMIT CALL DGOTO1 DW ADDRO DW ADDR1
; Index Value ; Maximum Index Value

GO HERE IF HL GO HERE IF HL
DW ADDR$LIMIT; GO HERE IF HL = LIMIT < next instruction >; RETURN TO THIS INSTRUCTION IF HL > LIMIT
Inputs; HL = index value (zero-relative)
DE = maximum index value allowed Outputs: None
Registers Affected: None SYSLIB Routines Called: None Special Error Conditions; None
Routine; DGOT02
Function; DGOT02 is a computed GOTO. When called, register pair HL = index (zero-relative) of the following address to branch to. Register pair DE = maximum value allowed for the index (register pair HL). If HL > DE, then control is transferred to after the last address in the table. Example:
LXI H,INDEX LXI D,LIMIT CALL DGOT02 JMP ADDRO JMP ADDR1
; Index value ; Maximum Index Value

; RETURN TO THIS JMP IF HL ; RETURN TO THIS JMP IF HL
JMP ADDR$LIMIT; RETURN TO THIS JMP IF HL = LIMIT < next instr > ; RETURN TO THIS INSTR IF HL > LIMIT
9-9
ZCPR3: The Libraries
SYSLIB
Branching
Inputs: HL = index value (zero-relative)

DE = maximum index value Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9.5. Arithmetic IF with Register A

Routine; AIF1
Function: AIF1 is an arithmetic IF facility. A key value is passed in the B register and a test value is passed in the A register. Branching is done depending on the following tests: A < B, A = B, and A > B. Example:

MVI A,TEST ; test value

MVI B,KEY ? key value

CALL AIF1
DW ALTB ; GO HERE IF A < B

DW AEQB ; GO HERE IF A = B

DW AGTB ; GO HERE IF A > B

Inputs: A = test value

B = key value Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

Routine: AIF2
Function: AIF2 is an arithmetic IF facility. A key value is passed in the B register and a test value is passed in the A register. Branching is done depending on the following tests: A < B, A = B, and A > B. Example:

MVI A, TEST ; test value

MVI B,KEY ; key value

CALL AIF2

JMP ALTB ; RESUME AT THIS JMP IF A < B

JMP AEQB ; RESUME AT THIS JMP IF A = B

JMP AGTB ; RESUME AT THIS JMP IF A > B

Inputs: A = test value

B = key value Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9.6. Arithmetic IF with Register Pair HL

Routine; HIF1
Function: HIF1 is an arithmetic IF facility. A key value is passed in the DE register pair and a test value is passed in the HL register pair. Branching is done depending on the following tests: HL < DE, HL = DE, and HL > DE. Example:

LXI H.TEST ; test value LXI D,KEY ; key value

9-10

ZCPR3: The Libraries
SYSLIB
Branching
CALL HIF1
DW HLTD ; GO HERE IF HL < DE DW HEQD ; GO HERE IF HL = DE DW HGTD ; GO HERE IF HL > DE
Inputs: HL = test value

DE = key value Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

Routine; HIF2
Function: HIF2 is an arithmetic IF facility. A key value is passed in the DE register pair and a test value is passed in the HL register pair. Branching is done depending on the following tests: HL < DE, HL = DE, and HL > DE. Example:

LXI H.TEST ; test value

LXI D,KEY ; key value

CALL HIF2

JMP HLTD ; RESUME AT THIS JMP IF HL < DE

JMP HEQD ; RESUME AT THIS JMP IF HL = DE

JMP HGTD ; RESUME AT THIS JMP IF HL > DE

Inputs: HL = test value

DE = key value Outputs: None

Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

9-11

ZCPR3; The Libraries
SYSLIB
Branching
NOTES:
9-12
ZCPR3: The Libraries
SYSLIB
Mathematical Functions

10. MATHEMATICAL FUNCTIONS
CHAPTER OUTLINE
Arithmetic Operations
ADDHD, SUBHD, MULHD, DIVHD
Complement Operations NEGH, CMPH
Logical Operations
ANDHD, ORHD, XORHD
Rotate and Shift Operations
ROTLH, ROTRH, SHFTLH, SHFTRH
Random Number Generator
RNDINIT, RNDSEED, RND
CRC Calculation
CRCCLR, CRC1CLR, CRC2CLR CRCUPD, CRC1UPD, CRC2UPD CRCDONE, CRC1DONE, CRC2DONE
10-1
ZCPR3: The Libraries
SYSLIB
Mathematical Functions

Mathematical Functions
This set of routines are 16-bit unsigned mathematical functions. All routines use HL as the accumulator or the result, and HL and DE contain the operands required (if only one operand is needed, HL contains it).
The available routines are:

ADDHD — HL = HL + DE SUBHD — HL = HL - DE MULHD — HL = HL * DE DIVHD — HL = HL / DE

NEGH — HL = 2's Complement of HL CMPH — HL = 1's Complement of HL

ROTLH — HL is rotated left one bit position ROTRH — HL is rotated right one bit position SHFTLH — HL is shifted left one bit position SHPTRH — HL is shifted right one bit position

ANDHD — HL = HL AND DE ORHD — HL = HL OR DE XORHD — HL = HL XOR DE

RNDINIT — initialize random number generator RNDSEED — set seed for random number generator RND — generate random number

CRCCLR, CRC1CLR, CRC2CLR — clear CRC accumulator CRCOPD, etc — update CRC value CRCDONE, etc — return accumulated CRC

10.1. Arithmetic Operations

All of these routines operate on HL and DE, placing the result in HL. The Carry Flag is affected, frequently used to indicate overflow. The functions provided are add, subtract, multiply, and divide.

Routine; ADOBD
Function; HL = HL + DE

Inputs: HL, DE are operands

Outputs: HL is result. Carry Flag Set (C) means overflow

Registers Affected: HL, PSW
SYSLIB Routines Called: None

Special Error Conditions: None

10-2

ZCPR3: The Libraries
SYSLIB
Mathematical Functions
Routine: SDBHD
Function: HL = HL - DE
Inputs; HL, DE are operands

Outputs: HL is result. Carry Flag Set (C) if HL<DE

Registers Affected: HL, PSW
SYSLIB Routines Called: None

Special Error Conditions: None

Routine; MDLHD
Function: HL = HL * DE

Inputs: HL, DE are operands

Outputs: HL is result. Carry Set means Overflow

Registers Affected: HL, PSW

SYSLIB Routines Called: SHFTRH, SHFTLH
Special Error Conditions: None

Notes: This routine is optimized for speed, with a minor sacrifice on size, and it always takes 16 loops to perform any multiplication.

Routine: DIVHD
Function: HL = HL / DE

Inputs; HL, DE are operands

Outputs: HL is result

Registers Affected: HL

SYSLIB Routines Called: SHFTLH

Special Error Conditions; None

Notes: This routine is optimized for speed, with a minor sacrifice on size, and it always takes 16 loops to perform any division.

10.2. Complement Operations

1's and 2's complement functions are provided. These routines operate on HL only.

Routine: NEGH
Function: HL = 2's Complement of HL

Inputs: HL is operand

Outputs: HL is result

Registers Affected: HL

SYSLIB Routines Called: CMPH
Special Error Conditions: None

Routine: CMPH

Function: HL = 1's Complement of HL

Inputs: HL is operand

Outputs: HL is result

Registers Affected: HL

SYSLIB Routines Called: None

Special Error Conditions: None

10-3

ZCPR3: The Libraries
SYSLIB
Mathematical Functions

10.3. Logical Operations

Logical AND, OR, and XOR functions are provided. These operate on HL and DE, placing the result into HL.
Routine: ANDHD Function: HL = HL AND DE Inputs: HL and DE are operands Outputs: HL is result Registers Affected: HL SYSLIB Routines Called: None Special Error Conditions: None

Routine: ORBD Function: HL = HL OR DE Inputs: HL and DE are operands Outputs: HL is result Registers Affected: HL SYSLIB Routines Called: None Special Error Conditions: None

Routine; XORHD Function: HL = HL XOR DE Inputs: HL and DE are operands Outputs: HL is result Registers Affected: HL SYSLIB Routines Called: None Special Error Conditions: None

10.4. Rotate and Shift Operations

Rotate and shift functions are provided. A rotate is a circular operation, where a shift moves 0's into the last position vacated. These routines operate on HL only.

Routine; ROTLH
Function: HL is rotated left one bit position. This is a circular operation, and the most significant bit of H is rotated into the least significant bit position of L.
Inputs: HL is operand

Outputs: HL is result

Registers Affected: HL

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; ROTRH
Function: HL is rotated right one bit position. This is a circular operation, and the least significant bit of L is rotated into the roost significant bit position of H.

Inputs: HL is operand

Outputs: HL is result

Registers Affected: HL

SYSLIB Routines Called: None

Special Error Conditions: None

10-4

ZCPR3: The Libraries
SYSLIB
Mathematical Functions

Routine: SHETLH
Function: HL is shifted left one bit position. The least significant bit of L is filled with a Zero. Inputs: HL is operand Outputs: HL is result Registers Affected: HL SYSLIB Routines Called: None Special Error Conditions: None

Routine: SHFTBH
Function: HL is shifted right one bit position. The most significant bit of H is filled with a Zero. Inputs: HL is operand Outputs: HL is result Registers Affected; HL SYSLIB Routines Called: None Special Error Conditions: None

10.5. Random Number Generator

The Random Number Generator Routines are:

RNDINIT - Initializes the Generator Seed on user keypress RNDSEED - Allows user to provide a seed RND - Returns a Pseudo-Random Number

Routine; RNDINIT
Function: RNDINIT enters a counting loop, waiting for the user to strike a key at his console. It then sets the seed value for the random number generator based upon its count value at the instant of keypress. The seed value is an 8-bit quantity maintained internal to the Random Number Generator module.

Inputs: None (User Keypress)

Outputs: None (Seed is set)

Registers Affected: None

SYSLIB Routines Called: CONDIN, RND

Special Error Conditions: None

Routine: RNDSEED

Function: This routine allows the user to provide a seed value for the random number generator. The seed is passed in the A register and stored internal to the Random Number Generator module for later use by the RND routine.

Inputs: A = Seed

Outputs: None (Seed is set)

Registers Affected: None

SYSLIB Routines Called: RND

Special Error Conditions: None

10-5

ZCPR3: The Libraries
SYSLIB
Mathematical Functions

Routine; BND
Function: This is the random number generator. It returns a pseudo-random number (8-bit) in the A register when called. Its seed value has been set by a previous call to RNDINIT or RNDSEED.
Inputs: None

Outputs: A = Random Number

Registers Affected: PSW
SYSLIB Routines Called; None

Special Error Conditions: None

10.6. CRC Calculation

The CRC Routines may be used to check the validity of an incoming serial byte stream of arbitrary length. These routines compute and check a true 16-bit Cyclic Redundancy Code (CRC).

The use of these routines will guarantee detection of:

1) all single- and double-bit errors

2) all errors with an odd number of error bits

3) all burst errors of length 16 or less

Additionally, the following statistics:

1) 99.9969% of all 17-bit error bursts

2) 99.9984% of all possible longer error bursts

The following display illustrates a typical way to use these routines:
CRC$MAKE:
CALL CRCCLR <loop CALL ing CALL CRCDONE SHLD CRCVAL
CRC$CHECK:
CALL CRCCLR
<loop CALLing
CALL CRCDONE
XCHG
LHLD CRCVAL
CALL COMPHD
JNZ ERROR
ROUTINE TO ESTABLISH OUTGOING CRC VALUE
CLEAR CRC CRCUPD> ; ACQUIRE VALUES
GET VALUE
SAVE VALUE
ROUTINE TO CHECK INCOMING CRC VALUE
CLEAR CRC CRCUPD> ; ACQUIRE VALUES
GET VALUE
VALUE IN DE
GET FIRST VALUE IN HL
COMPARE HL TO DE
CRC'S DON'T MATCH IF NOT EQUAL
The following describe the CRC routines. The CRC-routines approximate the X"16+X~12+X~5+1 polynomial, the CRCl-routines use the X"16+X''15+X"2+1 polynomial, and the CRC2-routines use the public-domain hash code (CRC2 is the public-domain standard of Keith Petersen).
10-6

ZCPR3: The Libraries
SYSLIB
Mathematical Functions

Routine: CRCCLR, CRC1CLR, CRC2CLR
Function: Clear the internal CRC Accumulator in preparation to CRC computation. CRC2 is the public domain standard originated by Keith Peter sen.

Inputs: None

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; CRCDPD, CRC1UPD, CRC2UPD
Function: Update the CRC Accumulator value.

Inputs: A=byte to be included in CRC

Outputs: None

Registers Affected: None

SYSLIB Routines Called: None

Special Error Conditions: None

Routine; CRCDONE, CRC1DONE, CRC2DONE
Function: Terminate CRC value accumulation and return the calculated 16-bit CRC value. Inputs: None

Outputs: HL = calculated CRC value Registers Affected: HL SYSLIB Routines Called: None Special Error Conditions: None

10-7

ZCPR3: The Libraries
SYSLIB
Mathematical Functions

NOTES:
10-8
ZCPR3: The Libraries
SYSLIB
Utilities 1

11. UTILITIES 1
CHAPTER OUTLINE
Memory Allocation
Allocate a Block of Memory
ALLOC
Initialize Memory Allocation Buffer IALLOC

Parsing Aids
Character Skip
SKNPCN, SKNSP,.SKPUN, SKSP Character Test
ISALNUM, ISALPHA, ISCTRL, ISDIGIT,
ISGRAPH, ISHEX, ISPRINT, ISPUN, ISSP UNIX-Style ARGC/ARGV String Parser ARGV
Sort
SSB Initializer
SSBINIT SSB Sort SORT
String and Value Comparison Substring Search
INSTR Value Comparison
COMPHD Vector Comparison
COMPB, COMPBC Vector Search
SCANNER
11-1
ZCPR3; The Libraries
SYSLIB
Utilities 1

11.1. Memory Allocation

The concept of memory allocation with these routines is relatively simple. Routines are provided to give the programmer memory allocation and deallocation capabilities, but the programmer is still in control.

The basic idea is to reserve a buffer in memory from which to take bits and pieces from at a time. The bounding addresses of this buffer are specified (or set by default) by the IALLOC routine, and the ALLOC routine is used to obtain subbuffers from this larger buffer from time to time. ALLOC constantly checks to see if the buffer has enough space left to grant the request for a subbuffer, and, if it does, the subbuffer is provided.

The largest buffer which may be reserved by the IALLOC routine is that buffer which extends from the end of the program to just below the CCP. This buffer is selected if IALLOC is called with A=0.

The following illustrates the application using the largest buffer possible:

XRA A ; Select Full Buffer CALL IALLOC

LXI D,1024 ; Request 1K
CALL ALLOC

JZ MEMOVFL ; Abort if Memory Overflow

SHLD BUF1 ; Set Pointer to First Subbuffer

LXI D,36 ; Request 36 bytes

CALL ALLOC

J2 MEMOVFL ; Abort if Memory Overflow

SHLD BCF2 ; Set Pointer to 2nd Subbuffer

This memory allocation scheme also permits the division of memory into a group of buffers. One buffer may be allocated, its address preserved, another buffer may be allocated, its address preserved, and then subsequent calls to IALLOC may be used to select one buffer or the other. Each call to IALLOC frees the entire buffer area, so care should be taken in doing this. For example:
11-2

ZCPR3: The Libraries
SYSLIB
Utilities 1

CALL CODEND ; Use Codend as First Buffer

SHLD BUF1

XCHG ; Address in DE
LXI H,1024 ; 1K for this buffer

DAD D ; HL pts to after this buffer

XCHG ; HL is start, DE is end

MVI A,3 ; Select Start and End

CALL IALLOC

CALL ALLOC ; Calls to ALLOC
LHLD BUF1 ; Pt to 1st Buffer

LXI D,1024 ; Set 2nd Buffer

DAD D ; Pt to 2nd Buffer

SHLD BUF2

XCHG

DAD D ; Pt to end of 2nd Buffer (1K also)

XCHG ; HL is start, DE is end

MVI A,3 ; Select Start and End

CALL IALLOC

CALL ALLOC ; Calls to ALLOC

11.1.1. Allocate a Block of Memory

Routine: ALLOC
Function: ALLOC allocates a block of memory, which may be as small as one byte, for the user from the buffer pool bounded by the values set by a proceeding call to IALLOC. IALLOC must be called before ALLOC is used.

The programmer indicates the number of bytes he wishes to use in the DE register pair. He then calls ALLOC, which, if enough space is available, returns the address of the first byte of that block of memory in HL. The PSW returns a flag saying if the allocation was done successfully.

Inputs: DE = number of bytes requested

Outputs: HL = Address of first byte allocated

A=0 and Zero Flag Set (Z) if not enough space;

A=OFFH and Zero Flag Reset (NZ) if request granted

Registers Affected: HL, PSW

SYSLIB Routines Called: None

Special Error Conditions: As indicated by return code

11.1.2. Initialize Memory Allocation Buffer

Routine: IALLOC

Function: IALLOC initializes the buffer from which memory allocation via calls to the ALLOC routine is to be done. The programmer may specify the bounds of this buffer, or default bounds will be set by IALLOC if none are specified.

Upon calling IALLOC, HL may contain the starting address of the buffer area. If it does not, then the end of the user' s program (returned by CODEND) is used. DE may contain the ending address of the buffer area. If it does not, then the byte below the CCP is used. The A register contains a coded flag saying which boundary values to use.

If Bit 0 of A is 1, HL is used to indicate the starting address of the buffer. If Bit 0 is 0, the value returned by

11-3

ZCPR3: The Libraries
SYSLIB
Utilities 1
CODEND is used. If Bit 1 of A is 1, DE is to be used to indicate the ending address of the buffer. If Bit 1 is 0, the byte below the CCP is used.

Inputs: HL = Possible Starting Address of Buffer DE = Possible Ending Address of Buffer A = Selection Code:

Bit 0 - Use HL as Starting Address if 1

Use CODEND Value if 0 Bit 1 - Use DE as Ending Address if 1

Use CCP-1 if 0 Outputs: None Registers Affected: None SYSLIB Routines Called; CODEND Special Error Conditions: None

11.2. Parsing Aids 11.2.1. Character Skip

These routines are used to skip over characters in the string pointed to by HL until either a character of the type they are not skipping is encountered or the end of the string (NULL character) is encountered.

The character skip routines are:

SKNPUN — Skip Over Non-Punctuation Chars SKNSP — Skip Over Non-Space Chars SKPUN — Skip Over Punctuation Chars SKSP — Skip Over Space Chars

A Punctuation Character is a character between SP and DEL which is not 0-9, A-Z, or a-z. A Space Character is any of HT, LF, VT, FF, CR, or SP.

All of these routines are characterized as follows:

Routine; SKx
Function: To skip over a certain class of characters in the string pointed to by HL until a character NOT in the skip group is encountered or the end of the string (NULL character) is encountered.
Inputs: HL pts to first character in string

Outputs: HL pts to character which terminated the skip

Registers Affected: HL

SYSLIB Routines Called: ISPUN or ISSP, as appropriate

Special Error Conditions: None

11-4

ZCPR3: The Libraries
SYSLIB
Utilities 1

11.2.2. Character Test
The Character Test routines check the character in the A register (after masking out its MSB) to see if it meets a condition. These conditions are:
ISALNUM
ISALPHA
ISCTRL
ISDIGIT
ISGRAPH
ISHEX
ISPRINT
I SPUN
ISSP
Is Alphanumeric Char? Is Alphabetic Char? Is Control Char? Is Digit Char? Is Graphic Char? Is Hexadecimal Char? Is Printable Char? Is Punctuation Char? Is Space Char?

In all cases, the routines conform to this description:

Routine; ISx
Function: To test to see if the character in A meets a certain condition < the MSB is masked off of A before the test). Inputs: A = Char Outputs: Zero Flag is Set (Z) if Condition is TRUE;

Zero Flag is Reset (NZ) if Cond is FALSE;

A is not affected, only PSW Registers Affected: PSW (NOT including A) SYSLIB Routines Called: None Special Error Conditions; None Notes: The characters tested for by these routines are:

ISALNUM
ISALPHA
ISCTRL
ISDIGIT
ISGRAPH
ISHEX
ISPRINT
I SPUN
ISSP
Is Alphanumeric Char? Is Alphabetic Char? Is Control Char? Is Digit Char? Is Graphic Char? Is Hexadecimal Char? Is Printable Char?

Is Punctuation Char?

Is Space Char?

A-Z, a-z, 0-9

A-Z, a-z

Less than SP or DEL

0-9

Between SP and DEL

0-9, A-F, a-f
Between SP and DEL,

inci SP Between SP and DEL,

DEL, NOT 0-9,

A-Z, or a-z HT, LP, VT, FF, CR,
and SP

11.2.3. UNIX-Style ARGC/ARGV String Parser

Routine: ARGV
Function: ARGV is a UNIX-style ARGC/ARGV string parser. It is passed a null-terminated string in HL and the address of a token pointer table which is structured as follows:

11-5
ZCPR3: The Libraries
SYSLIB
Utilities 1
number of token pointers number of tokens found by ARGV pointer to token 1 (in string) pointer to token 2 (in string)

	filled

	DB DS

	MAX$ENT 1

	in

	DS

	2

	by
ARGV

	DS
• * •

	2

	
	DS

	2

pointer to token MAX$ENT (in string) Tokens are delimited by spaces and tabs. For example:

" THIS IS FUN "
contains three tokens, and ARGV will return pointers to the T in THIS, the I in IS, and the F in FUN.

If A 0 0 on input, ARGV will store a binary 0 (null) into the string after each token for later ease in analysis. In the above example, a 0 would be stored over the first space following the S in THIS, the S in IS, and the N in FUN. If A=0, ARGV does not make any changes to the string. See the SYSLIB test program STEST016.MAC for examples of the use of ARGV.

On output, ARGV has loaded its pointers into the token table and returns with A=0 and the Zero Flag Set if no error. If there were more tokens in the string than allowed for in the token table, ARGV returns with A=OFFH and the Zero Flag Reset (NZ). In this case, the last token pointer points to the last token allowed, and this extends to the end of the string. The null is not placed after the last token, so the rest of the string appears as a token (and may be parsed by ARGV again). Inputs: HL = address of string

DE = address of token table
A = 0 if null is not to be placed after each token OFFH if null is placed after each token 0 and Zero Flag Set (Z) if no error OFFH and Zero Flag Reset (NZ) if more tokens than allowed for (last token pointer points to the rest of the string) Registers Affected: PSW SYSLIB Routines Called: -None-Special Error Conditions: None

A
Outputs: A A

11.3. Sort

Two routines are provided which give the SYSLIB programmer access to a very flexible sorting system. The main routine is called SORT, and it provides a utility which does an in-memory sort of a set of fixed-length records. The sorting technique used is a Shell Sort, adapted from the book "Software Tools" by Kernigan and Plaugher, published by Addison-Wesly, 1976, page 106. This sort is very fast, much more so than the simple bubble sort.

The Shell Sort can be done in two ways: with or without using pointers. Sorting without using pointers is typically slower than sorting with pointers, and the only advantage to not using pointers is the savings of space which is taken up by the pointers <2*nurober of entries bytes). If pointers are used for the sort, then whenever an exchange is done, the pointers are

11-6
ZCPR3: The Libraries
SYSLIB
Utilities 1

simply exchanged, rather than the full records, and this greatly decreases the sort time in most casts.

The SORT routine is controlled by passing to it a pointer to a Sort Specification Block (SSB) in DE. This Sort Specification Block is a series of 2-byte words -which contain the following information;
Bytes O&l: Starting Address of 1st Record

Bytes 2&3: Number of Records to Sort

Bytes 4&5: Size of Each Record (in Bytes)

Bytes 6&7: Address of Compare Routine Provided by User

This routine compares two records, one pointed to by HL and the other pointed to by DE. If the record pointed to by DE is less in sorting order than that pointed to by HL, this Compare Routine is to return with Carry Set (C). If the records are equal in sorting order, this Compare Routine is to return with Zero Set (Z). Only the PSW is to be affected by the Compare Routine.
Bytes 8&9; Address of Pointer Table

Byte 10: Flag; OFFH means to use pointers, 0 means not

Byte 11: Unused

Two routines are available in the sort module. The first routine, SSBINIT, looks at the beginning of a scratch area and the initial contents of an SSB and allocates space for the pointer table. It also checks to see if the buffer required will overflow the TPA (Transient Program Area).
The second routine, SORT, performs the sort, and controlled by the SSB pointer passed to it in DE.

11.3.1. SSB Initializer

Routine: SSBINIT
Function; This routine loads bytes O&l (address of first record) and 8&9 (address of pointer table) of an SSB, checking for TPA overflow. It is passed the start address of a scratch area, and sets the pointer table to start here, looks at the record size and record count entries of an SSB, and adds this product to the address of the pointer table. The resultant address is returned as the address of the first record.

This routine may be used as described above before any records are loaded into memory for the sort, or it may be used after the records have already been loaded. In the latter case, the user should save the start address of the first record and call SSBINIT with the address of the first byte after the last record. Once SSBINIT has loaded the buffers in the SSB and checked for a TPA overflow (note that this is done for the pointers only), it will return to the caller, at which time the caller should restore the first two bytes of the SSB to their proper values, the actual start address of the first record.

Inputs: HL pts to start of scratch area, DE pts to SSB

Outputs: Z Flag is Set <Z) if TPA overflow; NZ if OK

Registers Affected: PSW

SYSLIB Routines Called: MOVEB
Special Error Conditions: None

11-7

ZCPR3: The Libraries
SYSLIB
Utilities 1
11.3.2. SSB Sort
Routine; SORT
Function; SORT sorts the set of fixed length records according to the control information in the Sort Specification Block (SSB) pointed to by DE.
Inputs: DE pts to SSB

Outputs: None (Records are Sorted)

Registers Affected: None

SYSLIB Routines Called: MOVEB, PRINT

Special Error Conditions: The Error Message "SORT Pointer Error" may be printed, but is highly unlikely. This indicates a flaw has developed with the SORT routine for this particular case, and it could not SORT the set of records as desired. This error is fatal and will abort to CP/M.
11.4. String and Value Comparison

11.4.1. Substring Search

Routine: INSTR
Function; INSTRING Function. Scan the string pointed to by HL for the string pointed to by DE. A string is a vector of bytes terminated by a binary 0.

On return, if found. Zero Flag is Set and HL points to 1st byte of substring within scanned string; if not found. Zero Flag is not set and HL is not affected.

Inputs: HL = Pointer to string to be scanned DE = Pointer to string to scan for

Outputs: If found. Zero Set and HL pts to located substring If not found. Zero Reset and HL unaffected

Registers Affected: PSW, HL

SYSLIB Routines Called: None

Special Error Conditions: Automatic success if string searched for is null.

11.4.2. Value Comparision
Routine: COMPHD
Function: Compare HL to DE. On return. Zero Flag Set (Z) => HL=DE, Carry Flag Set <C) => HL<DE, Zero Flag Clear (NZ) and Carry Flag Clear (NO => HL>DE.

Inputs; HL, DE — Values to compare

Outputs: Zero and Carry Flags

Registers Affected: PSW

SYSLIB Routines Called: None

Special Error Conditions; None

11-8

ZCPR3: The Libraries
SYSLIB
Utilities 1
11.4.3. Vector Comparison

Routine; COMPB, OOMPBC
Function: Vector Compare Routines. Compare the vector pointed to by HL with that pointed to by DE (Vectors are of equal length) . Vectors are B bytes long for COMPB and BC bytes long for COMPBC. On return. Zero Flag Set (Z) => HL=DE, Carry Flag Set (C) => HL<DE, Zero Flag Clear (NZ) and Carry Flag Clear (NO => HL>DE.

Inputs: HL, DE — Pointers to vectors to compare

B (for COMPB), BC (for COMPBC) — number of bytes in vectors

Outputs: Zero and Carry Flags

Registers Affected: PSW
SYSLIB Routines Called: None

Special Error Conditions: None

11.4.4. Vector Search Routine; SCANNER
Function: SCANNER scans the vector of bytes pointed to by HL for the vector of bytes pointed to by DE. The HL-byte vector is B bytes long and the DE-byte vector is C bytes long. On return, if found, HL points to the beginning location within the original HL vector of the located vector and the Zero Flag is Set; if not found. Zero Flag is not set and HL is not affected (points to the beginning of the original HL-byte vector). Inputs: HL = Pointer to vector to be scanned DE = Pointer to vector to scan for B = Number of bytes in HL-vector C = Number of bytes in DE-vector Outputs: If found. Zero Set and HL pts to located vector

If not found. Zero Reset and HL unaffected Registers Affected: PSW, HL SYSLIB Routines Called: None

Special Error Conditions: Automatic success if vector searched for is null.

11-9

ZCPR3: The Libraries
SYSLIB
Utilities 1
NOTES:
11-10
ZCPR3: The Libraries
SYSLIB
Utilities 2

12. UTILITIES 2
CHAPTER OUTLINE
BDOS and BIOS Access BDOS BIOS
Capitalization CAPS CAPSTR
Command Line Tail Extraction CLINE
Convert ASCII to Hexadecimal CATH
End of Code CODEND $MEMRY
Exchange Nybbles EN
Memory Fill
FILLB, FILLBC HFILB, HFILBC
Memory Move
MOVEB, MOVEBC HMOVB, HMOVBC
Pause Execution PAUSE
Version Number of SYSLIB VERSION
12-1
ZCPR3: The Libraries
SYSLIB
Utilities 2

This chapter describes the following routines --
BOOS
For Direct BDOS Interface

BIOS
For Direct BIOS Interface

CAPS
For Character Capitalization

CAPSTR
For String Capitalization

CATH
Convert ASCII Character to Hexadecimal

CLINE
Command Line Extraction

CODEND
Provide End of Code/Data Area

EN
Exchange Nybbles in A

FILLB
Fill Memory (up to 255 bytes)

FILLBC
Fill Memory (up to 65,535 bytes)

HFILB
Fill Memory (up to 255 bytes)

HFILBC
Fill Memory (up to 65,535 bytes)
MOVEB
Move Memory (up to 255 bytes)

MOVEBC
Move Memory (up to 65,535 bytes)

HMOvB
Move Memory (up to 255 bytes)

HMOVBC
Move Memory (up to 65,535 bytes)

PAUSE
Delay N lOths of a Second

VERSION
Return Version Number of SYSLIB

12.1. BDOS and BIOS Access

Routine;
Function:
and BC.
Inputs:
Outputs:
BDOS
Call
Entry Point at location 5 and preserve DE
C and DE provide input parameters A and HL provide output parameters

Registers Affected; PSW, HL

SYSLIB Routines Called: None

Special Error Conditions; Determined by Routines Called

Routine; BIOS

Function: BIOS provides the user with a direct interface into the operating system BIOS. It is called with the Register A containing the index offset into the BIOS JMP table. No registers are preserved by this routine. The contents of HL, DE, and BC are passed to the BIOS unchanged.

The following table summarizes the BIOS JMP Table Entries — Offset Function 0 Cold Start

1 Warm Start

2 Console Status; Returns A=OFFH if char ready, A=0 if

not

Console Input; Returns char in A Console Output; Char passed in C List Output; Char passed in C Punch Output; Char passed in C Reader Input; Returns char in A

12-2

ZCPR3: The Libraries
SYSLIB
Utilities 2

Offs'et Function
8 Home Disk Head (Return Version Number); Returns Version Number in HL
9 Select Disk; Disk Number (A=0, etc) passed in C
10 Set Track Number; Track Number passed in C

11 Set Sector Number; Sector Number passed in C

12 Set DMA Address; DMA Address passed in BC
13 Read Block from Disk; Returns A=0 if OK, A=l if Error

14 Write Block to Disk; Returns A=0 if OK, A=l if Error

15 List Status; Returns A=OFFH if ready to output, A=0 if not

16 Sector Translation; Logical-to-Physical Sector

Translation; Logical Sector Number passed in BC and Translate Table Address passed in DE; Returns Physical Sector Number in HL

Inputs: A = Offset (as per Table Above)

BC = Input Parameters Outputs: A, HL = Output Parameters Registers Affected: All SYSLIB Routines Called: None Special Error Conditions: None

12.2. Capitalization

Routine: CAPS

Function: Capitalize ASCII character in Register A if it is lower-case alphabetic (a-z); otherwise, return A unaffected. Only the lower seven bits of the byte are considered, and the Most Significant Bit is masked out to zero.

Inputs: A = character to capitalize

Outputs: A = capitalized character

Registers Affected: PSW
SYSLIB Routines Called: None

Special Error Conditions: None

Routine; CAPSTR
Function: CAPSTR capitalizes the <NULL>-terminated (0-terminated) string pointed to by HL. No Registers are affected. Inputs: HL pts to first byte of string Outputs: None (String is Capitalized) Registers Affected: None SYSLIB Routines Called: CAPS Special Error Conditions: None

12.3. Command Line Tail Extraction

Routine; CLINE
Function: Save the command line whose character count is pointed to by HL away in an internal buffer as a string. The line may be up to 255 characters long and will be truncated if it is longer. The string will be terminated by a <NULL> as per the SYSLIB concept of strings.

12-3

ZCPR3: The Libraries
SYSLIB
Utilities 2

Inputs; HL = Address of Command Line Buffer (Char Count)

Outputs: HL = Address of Command Line String (1st Char) A = 0 and Zero Flag Set <Z) if Buffer Truncated A 0 0 and Zero Flag Clear <NZ) if Buffer OK

Registers Affected: HL

SYSLIB Routines Called: None

Special Error Conditions: None

12.4. Convert ASCII to Hexadecimal

Routine: CATH
Function: Convert the ASCII Hexadecimal character in the A Register to binary in the A Register. If invalid character (not 0-9, A-F), return <SP> (20 Hex) in A Register as error code.

Inputs: A = ASCII Hex Character (0-9, A-F)

Outputs: A = Binary value represented by char

Registers Affected: PSW
SYSLIB Routines Called; None

Special Error Conditions: If invalid hex char, <SP> (20 Hex) returned in A.

12.5. End of Code

Routine; CODEND
Function: Return the address of the next page following the last byte of code. This is useful in determining where the scratch area begins.

Inputs; None

Outputs: HL=Address of next page

Registers Affected: HL

SYSLIB Routines Called: None

Special Error Conditions: None

Buffer Name: SMOKY

Function: $MEMRY contains the address of the next available byte of memory after the last module loaded and resolved by the LINK-80 linker of Microsoft, ZLINK linker of MITEK, and others. This reserved global variable should be accessed as follows;

ext $MEMRY Ihid $MEMRY ; get value

Contents: Address of next available byte

12-4

ZCPR3: The Libraries
SYSLIB
Utilities 2

12.6. Exchange Nybbles
Routine; EN

Function: Exchange Nybbles in Register A. The High-order four bits are exchanged with Low-order four bits of Register A. Inputs: A = Byte input Outputs: A = Byte output Registers Affected: PSW SYSLIB Routines Called: None Special Error Conditions: None

12.7. Memory Fill

Routine; FILLB, FILLBC, HFILB, HFILBC
Function: These routines fill an area of memory with a constant byte value. FILLB can fill up to a 256-byte buffer, and FILLBC can fill up to a 65,536-byte (within reason) buffer.

FILLB and FILLBC have no effects on any registers. HFILB and HFILBC both affect the HL register pair, and they return with HL pointing to the byte after the last byte filled. HFILB and HFILBC are useful when further processing from the last point filled is desired.

Inputs: HL points to the first byte of the buffer to be filled B (for FILLB) or BC (for FILLBC) = number of bytes in

buffer

A = byte value to fill buffer with Outputs: None for FILLB and FILLBC (Buffer is filled)

HL points to next byte for HFILB and HFILBC Registers Affected: None for FILLB, FILLBC; HL for HFILB,

HFILBC SYSLIB Routines Called: None Special Error Conditions: None

12.8. Memory Move

Routine: MOVEB, MOVEBC, HMOVB, HMOVBC
Function: Move the block of memory pointed to by HL to the memory location pointed to by DE. MOVEB can move up to a 256-byte buffer, and MOVEBC can move up to a 65,536-byte buffer.

MOVEB and MOVEBC have no effects on any registers. HMOVB and HMOVBC both affect the HL register pair, and they return with HL and DE pointing to the byte after the last byte moved. HMOVB and HMOVBC are useful when further processing from the last point filled is desired.

Inputs: HL points to the first byte of the buffer to move

DE points to the first byte of the buffer to move to B (for MOVEB) or BC (for MOVEBC) = number of bytes

in buffer Outputs: None for MOVEB and MOVEBC (Buffer is moved)

HL and DE pt to byte after last byte moved for

HMOVB and HMOVBC Registers Affected: None for MOVEB, MOVBC; HL, DE for

HMOVB, HMOVBC SYSLIB Routines Called; None Special Error Conditions: None

12-5

ZCPR3: The Libraries
SYSLIB
Utilities 2

12.9. Pause Execution

Routine; PAUSE

Function: Delay N lOths of a Second.

Inputs: HL = N (Number of lOths of a Second Delay desired)

B = Processor Speed in MHz (1, 2, 3, 4, ...) Outputs: None (Routine returns N lOths of a Second later) Registers Affected: None SYSLIB Routines Called: None Special Error Conditions: None

12.10. Version Number of SYSLIB

Routine: VERSION
Function: Return Version Number of SYSLIB.

Inputs: None

Outputs: HL=Vers <H=Major, L=Minor; H=3,L=0 for 3.0)

Registers Affected: HL

SYSLIB Routines Called: None

Special Error Conditions: None

12-6

