[image: image1.png]
Section I INTRODUCTION
[image: image2.png]
ZCPR3: THE LIBRARIES
A Reference Manual and User's Guide for SYSLIB, Z3LIB, and VLIB
Written by Richard Conn
Copyright 1986 Richard Conn
[image: image3.png]
This Page Left Blank

[image: image4.png]
ZCPR3: The Libraries
Introduction
1. INTRODUCTION
1.1. What Are the Libraries of ZCPR3?
The libraries of ZCPR3 consist of SYSLIB (SYStem LIBrary), Z3LIB (ZCPR3-specific routines), and VLIB (screen-oriented routines for ZCPR3). These libraries are intended to relieve the programmer of the task of frequently "re-inventing the wheel" and to provide him with an environment of reliable tools which encourages structured programming at the assembly language level.
Each routine in the libraries can be viewed as a reliable "black box." The routines are completely documented within this manual and the help files (which can only be viewed under the HELP tool of ZCPR3), and the programmer is consistently provided with the following information:

1. Name of Subroutine

2. Function it performs

3. What its inputs are

4. What its outputs are

5. What registers are affected by it

6. What other library routines it calls upon

7. What errors can occur and how it handles them

The routines are designed to work together and complement each other. Parameter passing is consistent between the various subroutines. For instance, all routines which need to be passed a pointer to a File Control Block are passed that pointer in the DE register pair. As a general rule, if a register is not returned as an output from the routine, then its value is not affected (it has the same value when the routine is exited as it had when the routine was called).
The libraries are relocatable object modules created in the Microsoft M80 relocatable object format. The M80 or ZAS assemblers can be used to create and manipulate relocatable object modules. All routines are grouped within functionally-related modules. Once a routine is referenced (by the EXT statement in the M80 assembly language program), its module is loaded and it is available to the programmer by means of a simple subroutine call. All other subroutines within that particular module are also loaded, but they are not available to the programmer unless he has also referenced them by EXT statements. The module is loaded only once, regardless of how many routines within the module are referenced. For this reason, each module was designed to contain routines which are frequently used together or are called by each other (one routine within the module calls another routine within the module).
1-1

ZCPR3: The Libraries
Introduction
[image: image5.png]
1.2. What is Needed to Use the Libraries?

You need an 8080, Z80, NSC800, or HD64180-based microcomputer with at least 48K bytes of contiguous memory running ZCPR3 or Z-System <ZCPR3 and ZRDOS), the Microsoft M80 assembler tool set (specifically, the M80 assembler and the L80 linker) or the Echelon ZAS assembler tool set (specifically, the ZAS assembler and ZLINK linker), and the usual set of software development tools (an editor and, preferably, a debugger) to use the libraries.

[image: image6.png]
[image: image7.png]
1.3. What Do the Libraries Buy You?
To the experienced programmer, the libraries have the potential of being a significant tool which enables him to:
1. Solve his programming task quickly
— because he spends less time writing commonly-used subroutines and worrying about how his registers are affected by these subroutines and more time concentrating on the problem at hand.

2. Write space- and speed-efficient code

— because all of the routines have been gone over time and time again to reduce their size and make them more efficient in terms of speed. For example, the SORT routine is a Shell Sort that can be called to perform the sort using pointers (in which case it exchanges pointers rather than records when it needs to do a swap) or perform the sort without using pointers (when space is a factor and there may not be enough room for a pointer table).
3. Write more maintainable code

— because the libraries are designed with structured programming philosophy in mind. Each subroutine is equivalent to a process box, having (1) only one entrance and one exit, (2) a precisely-defined function, and (3) a precisely-defined set of input and output parameters. Having used the libraries for some time now, the author has noted that his programming thought processes and program designs have tended more and more toward end-in (top-down from the objective point of view and bottom-up from the library subroutine point of view), structured designs that he can go back to at a later date and readily decipher and modify.

4. Reduce the programming effort

— because the libraries provide a number of very involved routines which would, in themselves, take quite some time to code. For example, the DIRF routine will load the directory of a disk into memory, select a set of files from that loaded directory as specified by a File Control Block and a flag which indicates whether to include System or Non-System files and what user area is to be examined, packs the loaded directory (removing

1-2

ZCPR3: The Libraries Introduction

[image: image8.png]
entries not selected from the memory buffer), alphabetizes the directory entries by file name and type or by file type and name, and returns a pointer to the first entry and a count of the number of entries selected.

In many ways, the libraries bring advantages of programming in a High-Order Language, like C or Pascal, to the assembly language programmer. They allow him to maintain the smaller code size and greater efficiency which can be realized in assembly language programming and simultaneously realize a reduced life-cycle cost (from development to fielding to post-fielding maintenance and modification) over assembly language programming without a similar tool set.
1.4. How Do You Assemble with the Libraries?

Each example at the end of this manual shows an assembly of the sample program. Each program uses SYSLIB only, so the commands required to assemble and link the programs are straightforward :
ZAS filename
This command assembles the file named filename.Z80 and produces an output file named filename.REL. This output file must be linked with SYSLIB to create the absolute object code file.

ZLINK filename,A:SYSLIB/
This command links filename.REL with SYSLIB.REL (SYSLIB.REL is on drive A) and produces filename. COM. This COM file may now be executed.

If the program uses Z3LIB or VLIB, then these libraries must be specified in the ZLINK command in the proper order. VLIB uses routines in Z3LIB and SYSLIB, and Z3LIB uses routines in SYSLIB. If a program uses VLIB, then VLIB, Z3LIB, and SYSLIB must be linked (in that order):

ZLINK filename,A: VLIB/,A: Z3LIB/,A: SYSLIB/
If a program uses Z3LIB, then Z3LIB and SYSLIB must be linked (in that order):
ZLINK filename.A: Z3LIB/,A: SYSLIB/
The examples were done on a ZCPR3 system, and the user is always on Drive B; doing the development work, while the editors, assemblers, and libraries (SYSLIB.REL, Z3LIB.REL, and VLIB.RED are on Drive A: . (The files may be on drive A in a PUBLIC directory if using ZRDOS, Version 1.2, or later.)

1-3

ZCPR3: The Libraries
Introduction

[image: image9.png]
1.5. How to Learn-to Use the Libraries Effectively?

This is opinion, of course, but I feel that the best way to learn how to use the libraries would involve the following steps:

1. Study this manual in an overview fashion, familiarizing yourself with the functions of the subroutines available.

2. Study in some detail the sample source programs at the end, jumping back to the main body of the manual from time to time to see why the routines I selected in the programs were used in the way I used them.

3. Try coding a couple of the routines in this manual, copying them verbatim and assembling them.

4. Try making up a few simple problems of your own and use the libraries to code them.

5. Apply the libraries to a significant program you want to write.

[image: image10.png]
I am a strong advocate of writing programs in order how to program, and I feel that it is most important to as much familiarity with the routines as you can and (2) programs using these routines.

to learn (1) gain to write

1.6. Comments on Software Engineering

We are experiencing a SOFTWARE CRISIS today, the basis of which is simply that it is more difficult to build reliable software systems that we think it should be. All too often, the symptoms of the SOFTWARE CRISIS are seen:

o Cost - unpredictable and judged excessive o Efficiency - time and space utilitization are

not efficient

o Modiflability - software is difficult to change o Reliability - software often fails o Responsiveness - user needs are not met o Timeliness - software is not delivered on time o Transportability - software used on one system
may not be used on another

The bottom line in the design of a software system is that the software should meet its stated requirements. To achieve this end, the field of SOFTWARE ENGINEERING has arisen. The goals of SOFTWARE ENGINEERING are:

[image: image11.png]
1-4
ZCPR3: The Libraries Introduction

[image: image12.png]
1. Modif lability ~ Software should be easy to change, and software should be designed with later change in roind.
2. Efficiency - The software system should use its available resources in an optimal manner.

3. Reliability - The software should perform according to specification and recover safely from failure during use.

4. Understandability - Software should be easy to read and follow. Understandability is the tool used to pass from a particular problem space to a solution.

The libraries attempt to help the programmer achieve the goals of Software Engineering by applying the principles of Software Engineering. These principles are:

1. Abstraction and Information Hiding - Unnecessary detail is hidden from the user. For example, the DIRF routine loads the contents of a disk directory into a memory buffer. How this load is done is hidden from the programmer — all he needs to know is that the load was done and he now has a vector of directory entries to work with.

2. Modularity - the libraries is very modular in design. Each routine in the library performs one and only one function, and the documentation provides complete detail as to what that function is, what its input parameters are, what its output parameters are, what its side effects are, and other data.

3. Localization and Loose Coupling - library modules are loosely coupled — each module may be treated independently of the others. Additionally, the modules are strongly cohesive — the components of each module are intimately related to each other but not to components of other modules.

4. Uniformity - The calling conventions between the various modules are consistent with each other, and it is frequently the case that the output parameters from one module may be directly used as input parameters to another.

5. Completeness - Each module or group of related modules are functionally complete. No additional functions are required.

6. Confirmabiiity - A program written using library modules can be readily decomposed for incremental testing.

1-5

ZCPR3: The Libraries
Introduction
[image: image13.png]
[image: image14.png]
1.7. Definitions of Terms

Some frequently-used terms are defined below.

1. Buffer - A contiguous vector of bytes in memory. The buffer is known by its starting address and size (in bytes). Example:
buffer: DS 40 ; 40-byte buffer

2. Character - A one-byte (8-bit) value. A value range within the ASCII character set (a 7-bit value) is implied but not required, so a character could have a value of 81H.

3* Directory - An index to the files on the disk. An entry in a directory contains the name of a file, the user number it resides in, how large the file is, and where the file is located on the disk. The information loaded by the SYSLIB directory routines does not include file location information, but does include everything else. In another sense, the term directory is used to refer to a particular disk and user area (such as A4 or B31).

4. DMA (Direct Memory Access) - The address of the 128-byte block in memory through which disk file I/O is performed. 128-byte blocks are read and written from and to the disk through buffers identified by the DMA address.

5- File - Any CP/M file, which may be either text or binary. SYSLIB makes no distinction between these two types of files.

6. FCB (File Control Block) - A 36-byte buffer which corresponds to the full definition of a CP/M Pile Control Block. SYSLIB FCB's are ALWAYS 36 bytes long. In many cases, when a routine requires a user-supplied FCB, the user need only fill in the file name and type fields (bytes 1-11) and need not concern himself with the rest of the fields. The INITFCB routine stores zero in all bytes except bytes 1-11 of the FCB.

7. FD (File Descriptor) - Any data structure used to identify a file and contain pertinent data used to access the file via open, close, read, write, etc., routines. The term "FD" is encountered in UNIX terminology.

8. IOCB (Input/Output Control Block) - An extension to the FCB concept used by the byte-oriented file input/output routines. An IOCB, also known as IOCTL, contains an FCB and other data buffers.
9. LPD (Library Utility Descriptor) - An extension to the FCB concept used by the library utility routines for library file input/output. An LUD contains an FCB and other data buffers.

[image: image15.png]
1-6

ZCPR3: The Libraries Introduction

[image: image16.png]
[image: image17.png]
10. String - Any sequence of ASCII characters terminated by a <NULL> character, which is a byte of value 0. Examples of strings are:

DB 'This is a string',0 DB 1,2,3,'This is also',0
11. TBUFF (Temporary Buffer) - The default DMA buffer located a memory locations 80H to OFFH.
12. Vector - Any sequence of bytes which has an associated byte count. The first byte of a vector is addressed by the contents of a register pair (such as HL) and the length of the vector is contained in the B register or the BC register pair.

1.8. Parameter-Passing Conventions

The libraries are very consistent in their parameter-passing conventions. In all cases, parameters are passed to and from the routines in registers. If more values are required than there are available registers, the register values are pointers to specification blocks which contain the desired parameters (see the FXn$xxxxx and the SORT routines).
In roost cases, the following rules apply. There will always be exceptions to the rule, but the following statements are true in most cases.

Uses of the HL Register Pair
1. HL is used as a buffer pointer. For example, HL contains the address of the buffer used by DIRF.
2. HL is used as a string pointer. For example, HL contains the address of the first byte of a string for the EVAL routine.
3. HL is used to contain the first operand for math routines. For example, DIVHD divides HL by DE.
Uses of the DE Register Pair
1. DE is used to point to an FCB. For example, DE contains the address of the FCB used by DIRP.
2. DE is used to contain the second operand for math routines. For example, SUBHD subtracts DE from HL.

3. DE is used to point to special blocks (buffers) used by library routines. For example, DE points to the Sort Specification Block for the SORT routine.

1-7

ZCPR3: The Libraries
Introduction

[image: image18.png]
Uses of the BC Register Pair
1. BC is used to contain a DU form, where B contains a disk number (A=0) and C contains a user number.

2. BC is used to contain the number of bytes in a vector.

Uses of the A Register
1. A is used to contain an input flag. For example, A contains the selection flag used by DIRF.
2. A is used to contain an error return code. If the value of this code is 0, the Zero Flag (Z) is also set, and vice-versa. For example, A contains a TPA overflow error flag returned by the DIRF routine.

3. A is used to contain a character input or output from a library routine. For example, CIN returns a character in A and COUT outputs a character in A.

1.9. Programs and Files

The following programs and files are referenced in and were used to create this document:

Program or File Source SYSLIB.REL, Z3LIB.REL, VLIB.REL
Libraries ' Echelon, Inc. STESTxxx.ZSO Test Programs Echelon, Inc. ZCPR3 Echelon, Inc. ZAS.COM, ZLINK.COM Assembler/Linker Echelon, Inc. ZDM.COM Debugger Echelon, Inc. T3MASTER.COM, T3SERVER.COM
(Part of TERM III) Echelon, Inc. CATNOTE.COM (Part of DISCAT) Echelon, Inc. M80.COM, L80.COM, LIB80.COM Assembler,

Linker, and Librarian Microsoft, Inc. WM.COM (WbrdMaster Editor) Micropro, Inc. WS.COM (Wordstar Editor) Micropro, Inc. STARINDX.COM (Starlndex) Micropro, Inc.

This document was prepared in its entirety on a Z-System running ZCPR3 and ZRDOS Plus with a 48K TPA. FCPs, lOPs, RCPs, NDRs, and TERM III Redirectable I/O to an Aropro slave computer (made by Ampro Computers, Inc.) were implemented. The screen displays in the Sample Programs appendix were generated by redirecting console output into a file on the Acnpro. Some of the programs used included:

1-8

2CPR3: The Libraries Introduction

[image: image19.png]
Program Usage
WS.COM Editor

WM.COM Editor

STARINDX.COM Generated table of contents and index

CATNOTE.COM Generated Pile Listings appendix

T3MASTER.COM, T3SERVER.COM,
Redirectable IOP Recorded screen displays into file and transferred files between computers for Sample Programs appendix

[image: image20.png]
1-9

Introduction
ZCPR3: The Libraries
NOTES;
[image: image21.png]
[image: image22.png]
1-10

