2500 A.D. 64180 Macro Assembler - Version 4.02 Table of Contents

Table of 'Contents

Introduction e, 1-1
Operating Instructions 1-2
PromptMode 1-2
CommandlineMode 1-4
SystemDefaults 1-9
Assembler e 1-9
Linker 1-9
Librarian, 1-9
Assembler Error Processing L . 1-10
Assembler Run TimeCommands 1-11
Assembly Language Syntax 1-12
Number Base Designations 1-12
ProgramComments 1-12
Program Counter 1-13
Labels, 1-13
Locallabels 1-13
HighByte 1-14
LowByte 1-14
Upper/LowerCase i . 1-14
AddressingModes L 1-15
Immediate, 1-15
Register 1-15
Register Indirect 1-15
DirectAddressing 1-16
Indexed 1-16
Relative 1-16
Assembler Directives 1-17
Storage Control 1-17

ORG e e e e e e e 1-17

ORIGIN s, 1-17

END . . 1-17

ASCIl . e 1-17

D 1-18

FCB . . e 1-18

DEFB 1-18

BYTE 1-18

2500 A.D.

64180 Macro Assembler - Version 4.02 Table of Contents

STRING e 1-18
DW e 1-18
FOB . . . e 1-18
DEFW e 1-18
LWORD e 1-18
LONG . . . e 1-19
LONGW . . . e 1-19
LWORD e 1-19
FCC . . e 1-19
DC . 1-18
DS . . 1-19
RMB . . 1-19
DEFS 1-19
FLOAT . . e e 1-20
DOUBLE 1-20
BLKB . . 1-20
BLKW . e, 1-21
BLKL . . o 1-21
Definition Control 1-22
EQU . . . 1-22
EQUAL 1-22
VAR . . 1-22
DEFL . . . 1-22
LLCHAR 1-22
MACRO 1-22
ENDM . . ., 1-22
MACEND e 1-22
MACEXIT e, 1-23
MACDELIM 1-23
XDEF . e 1-23
GLOBAL 1-23
PUBLIC e, 1-23
GLOBALS ON 1-24
GLOBALS OFF 1-24
XREF 1-24
EXTERN 1-24
EXTERNAL 1-24
ASK 1-24
Assembly Mode 1-25

2500 A.D. 64180 Macro Assembler - Version 4.02 Table of Contents

SECTION e e Ve e e e e e e e e e 1-25
ENDS 1-25
ABSOLUTE e 1-26
RELATIVE 1-26
RADIX 1-26
INCLUDE 1-26
SPACESON 1-27
SPACESOFF 1-27
TWOCHARON 1-27
TWOCHAROFF . . . 1-27
MODULE 1-27
ENDMOD 1-29
COMMENT, 1-29
BIT7Z ON 1-29
BIT7 OFF 1-29
Conditional Assembly 1-30
IFZ 1-30
IFE . . 1-30
IF 1-30
IFN . 1-30
IENZ . 1-30
COND 1-30
IFTRUE o 1-30
IENFALSE 1-30
IENTRUE o 1-30
IFFALSE e 1-30
IFDEF 1- 31
IFNDEF 1-31
IFSAME 1-31
IENDIFF . . oo 1-31
IENSAME 1-32
IFDIFF . . o 1-32
IFEXT . 1-32
IENEXT . . e 1-32
IFABS . . . 1-33
IFNREL 1-33
IFREL . . . 1-33
IFNABS 1-33
IFMA 1-33

2500 A.D. 64180 Macro Assembler - Version 4.02 Table of Contents

IFNMA . . 1-33
ELSE 1-34
ENDC 1-34
ENDIF . . . 1-34
IFCLEAR e e e e e e e e e e 1-34
EXIT e, 1-35
Assembly Listing Control, 1-36
LISTON . . . e, 1-36
LIST . . o 1-36
LISTOFF . . e, i-36
NOLIST e, 1-36
NLIST . . o 1-36
MACLISTON 1-36
MLIST e, 1-36
MACLISTOFF 1-36
MNLIST . . . 1-36
CONDLISTON . . . s st 1-36
CONDLISTOFF o s s, 1-37
ASCLISTON . .o . 1-37
ASCLISTOFF s, 1-37
PW 1-37
PL 1-37
TOP 1-37
PASSTON 1-38
PASST1OFF e 1-38
PAG . . . 1-38
PAGE 1-38
BJECT . . . 1-38
NAM 1-38
TTL 1-38
TITLE . . 1-38
HEADING 1-38
STTL . 1-39
SUBTITLE 1-39
SUBHL 1-39
LinkerControl 1-40
FILLCHAR 1-40
RECSIZE 1-40
SYMBOLS 1-40

2500 A.D. 64180 Macro Assembler - Version 4.02 Table of Contents

OPTIONS v T 1-40

LINKLIST . . o o 1-40
COMREC e e e 1-41
Assembly Time Calculations 1-42
Assembly Time Comparisons 1-43
Absolute Versus Relative, 1-44
Macros, 1-46
Definition 1-46
ArgumentSeparators 1-46
LabelsinMacros L 1-47

String Concatenation 1-47

Value Concatenation 1-47
Mnemonic Definitions, 1-48
MacroExamples 1-49
Recursion L 1-52
Assembler ErrorMessages 1-53
2500 A.D. Linker Description 2-1
Linker Operating Instructions 2-3
PromptMode 2-3
DataFileMode 2-5
CommandlineMode 2-7
LinkerOptions 2-9
Address Relocation 2-10
Linker Examples e e e e e e e e 2-12

Single File Assembled At Desired Run Address 2-12

Single File With Multiple Sections 2-14
Multiple Files With Multiple Sections 2-16

Single File With One Section Used For Reference Only 2-18
Indirect Linking, 2-20

Linker Symbol Table Output Formats 2-24
Symbol Table Output Format 2-24
Abbreviated Global Symbol Table Output Format 2-25
Microtek Symbol Table Output Format 2-26

Zax Symbol Table Qutput Format 2-27
Linker Qutput Formats 2-28
Intel Hex Format 2-28
Mctorola S19 Format e 2-30
Motorola S28 Format 2-32
Motorola S37 Format 2-34

2500 A.D. 64180 Macro Assembler - Version 4.02 Table of Contents

2500 A.D. Librarian Description L. 3-1
Librarian Installation 3-3

Librarian Operating Instructions 3-5

Librarian ErrorMessages 3-16
2500AD Software System Requirements A-1
8080 To Z80 Source Code Converter B-1
ASCICHART C-1
Abbreviations for ControlCharacters C-4
Index D-1

Vi

ASSEMBLER

Introduction

Introduction

This section is an overview of the 2500 A.D. 64180 Cross Assembler. The
intent of this manual is to describe the operation of the Assembler. It is assumed
that the user is familiar with the 64180 operation and instruction set.

The 2500 A.D. 64180 Assembler enables the user to write programs which
can then be assembled into relocatable object code and linked to the desired
execution address using the 2500 A.D. Linker.

The Assembler will process any size file, as long as enough memory is
available. All the buffers used by the Assembler are requested and expanded as
needed, with the exception of the Source Code Input Buffer, the Object Code
Output Buffer and the Listing Buffer.

The Conditional Assembly section enables the user to direct the Assembler
to process different sections of the source file depending on the outcome of
assembly time operations. Conditionals may be nested to 248 levels, and the
Assembler aids the programmer in detecting conditional nesting errors by not only
checking for unbalanced conditional levels, but aiso by displaying the current active
conditional level in the object code field of the listing.

The Assembly Time Calculation section will perform calculations with up to
16 pending operands, using 80 bit arithmetic. The algebraic hierarchy may be
changed through the use of parenthesis.

The Listing Control section provides for listing all or just sections of the
program, with convenient Assembler error detection overrides, along with Assembly
Run Time Commands that may be used to dynamically change the listing mode.
Also, in this section is a description of the LINKLIST directive which allows the linker
to relocate listings

The 2500 A.D. Linker allows files to either be linked together or just used for
external reference resolution. As with the Assembler, all buffers used by the Linker
are requested as needed. The Linker is capable of outputting several different
formats. The format may be changed by using an Assembler Directive or selecting
the desired cutput from the Linker option field. Programs may specify up to 256
user defined section names, and the Linker is capable of processing up to 256
identical section names. See the Linker Description section of this manual for a
complete description.

Operating Instructions Prompt Mode

Operating Instructions

Prompt Mode

To run the Assembler type : x64180
The Assembler will respond with :

Listing Destination ? (N, T, P, D, E, L, <CR=N>):

with the abbreviations as follows:

= None

= Terminal

= Printer (Single User Systems Only)
= Disk

= Error Only

= List On/Off

rmoov-2

After this the Assembler prompts the operator for the source code filename
as shown below.

Input Filename :

When entering your source filename you may specify an extension or the
assembler will look for an extension of 'asm’. Once you have specified your input
filename the assembler will prompt you for the output filename.

Output Filename:

It the user repsonds to the input filename prompt with just a carriage return,
the output file will receive the same filename as the input file, with an extension of
‘obj’. If the repsonse is a filename with no extension, the output file will be under
that filename with an extension of 'obyj'.

If the listing is to be under List On/Off Assembler directive control the
additional prompt shown below is output:

Operating Instructions Prompt Mode

LIST ON/OFF Listing Destination (T, P, D, <CR> =T) :

The abbreviations are the same as shown above.

The List On/Off control allows the user to list only selected parts of the
source file. For more information see the Listing Control section of this manual.

If Error Only is chosen the Assembler will prompt the user for the destination
as follows:

Error Only Listing Destination (T, P, D, <CR>=T):

If the listing is being sent to the printer (available on single user systems
only) or the disk, the Assembler will prompt for a Cross Reference Listing.

NOTE for VMS users:

Assuming the assembler is located in a directory named $disk1:[x64180],
the following command must be entered for the examples shown above to work:

x64180 == "$disk1:[x64180]x64180.exe"

Operating Instructions Command Line Mode

Command Line Mode

The Assembler may also be invoked using a command line. In this case, the
input filename is specified first, then the output filename, and then a list of options.
Both the output filename and the listing destination are optional. The general form
of the command, with optional fields shown in brackets, is as follows:

x64180 [-q] input_filename [output_filename] [-t, -p, -d, -px, -dx]

The -q optional stands for Quiet mode. If this option is selected, the only
screen messages output from the Assembler will be error messages and the line on
which they occur. This option must be placed before the input filename.

Below are some examples of legal command lines.
Input Filename Only

x64180 input_filename

This command causes the Assembler to process the source file
'input_filename’. If no extension is specified, it is assumed to be ".asm’. Since no
options are specified, they will default to Error Only listing with the terminal as the
destination. The output filename will be the same as the input filename but with an
extension of ".obj'.

Input Filename and Output Filename

x64180 input_filename output_filename

This command is identical to the previous one except that the Assembler will
name the object file 'output_filename’.

Operating Instructions Command Line Mode

Listing to Terminal

x64180 input_filename output_filename -t I

This command will assemble the input file ’input_filename’ and send the
listing to the terminal. The optional output file name specification causes the
assembler to generate an object file named 'output_filename’.

Listing to Printer

x64180 input_filename -p

This command will assemble the input file input_filename’ and send the
listing to the printer. The optional output file name specification causes the
assembler to generate an object file named 'input_filename’ with an extenstion of
obj.

Listing to Printer with Cross Reference

x64180 input_filename output_filename -px

This command will assemble the input file 'input_filename’' and send the
listing and cross reference table to the printer. The optional output filename
specification causes the assembler to generate an object file named
‘output_filename’. The printer option is only available on single user systems.

Listing to Disk

x64180 input_filename output_filename -d

This command will assemble the input file ’input_filename’ and send the
listing to the disk. The disk listing file will have the same name as the output file,but
will have an extension of ’Ist’.The optional output filename specification causes the
assembler to generate an object file named 'output_filename’.

Operating Instructions Command Line Mode

) ~ Listing to Another Drive or Directory
MSDOS

x64180 input_filename output_filename -d,a:
x64180 input_filename output_filename -d, \new\

UNIX

x64180 input_filename output_filename -d, /new/

VMS

x64180 input_filename output_filename -d,$disk1:[a]
-~ x64180 input_filename output_filename -d, [new]

This format can be used in any listing mode to send the 'Ist’ file to a different
directory.

Listing to Disk with Cross Reference

x64180 input_filename output_filename -dx

This command will assemble the input file ‘input_filename’ and send the
listing and cross reference table to the disk. The disk listing file will have the same
name as the output file,but will have an extension of 'Ist. The optional output
filename specification causes the assembler to generate an object file named
‘'output_filename’.

Error Only Listing to the Terminal

x64180 input_filename output_filename -et

This command will assemble the input file "input_filename’ and send error
messages to the terminal. The optional output filename specification causes the
) assembler to generate an object file named 'output_filename’.

Operating Instructions Command Line Mode

Error Only Listing to the Printer

x64180 input_filename output_filename -ep

This command will assemble the input file "input_filename’ and send error
messages to the printer. The optional output filename specification causes the
assembler to generate an object file named 'output_filename’. The printer option
is available only on single user systems.

Error Only Listing to the Disk

x64180 input_filename output_filename -ed

This command will assemble the input file ’input_filename’ and send error
messages to the disk. The disk listing file will have the same name as the output
file, but will have an extension of ‘Ist. The optional output filename specification
causes the assembler to generate an object file named 'output_filename’.

List On/Off to Terminal

x64180 input_filename -It

This command will assemble the input file "input_filename’ and send LIST
ON/OFF blocks to the terminal.

List On/Off to Printer

x64180 input_filename -Ip

This command will assemble the input file ‘input_filename’ and send the
LIST ON/OFF blocks to the printer. This option is only available on single user
systems.

Operating Instructions Command Line Mode

List On/Off to Disk

x64180 input_filename -id

This command will assemble the input file ’input_filename’ and send the
LIST ON/OFF blocks to the disk. The disk listing file will have the same name as
the output file, but with an extension of 'Ist’.

NOTE for VMS users:

Assuming the assembler is located in a directory named $disk1 :[x64180], the
following command must be entered for the examples shown above to work.

x64130 == "$disk1:[x64180]x64180.exe"

1-8

Assembler Run Time Commands System Defaults

System Defaults

The following default filename extensions will be used by the 2500 A.D.
programs if no extension is specified by the user.

Assembler
asm - input to the Assembier
obj - Output from the Assembler
pak - Packed output from the Assembler
Ist - Listing file
Linker
obj - Input to the Linker
lib - Library file
tsk - Executable Object Code
hex - Intel Hex and Extended Intel Hex
tek - Tektronix Hex
s19 - Motoroia S19
s28 - Motorola S28
s37 - Motorola S37
Librarian
obj - Input to the Librarian
pak - Packed input to the Librarian
lib - Output from the Librarian

Note that because of the additional information included in the Assembler
output file, the Linker must always be run, even if the program is assembled at the
desired run address and there are no external references. This is so that all the
additional information can be removed and a file with the desired output format can
be generated.

Assembler Run Time Commands Assembler Error Processing

Assembler Error Processing

When an assembly error is encountered, the action taken by the Assembler
depends on the listing mode it is currently operating under.

If the No List option was specified, the statement causing the error and the
error message will be output to the terminal, the display will be turned on and the
Assembler will halt just as if the user had typed AS. The reason for this is to give the
user a chance to see exactly where the erroris. This will occur on pass 1 as well as
pass 2. Note that some errors are not detectable on pass 1, such as undefined
symbols. After the error has been displayed, the output can be turned off using *N.

If the listing is being sent to the printer or the disk, then errors encountered
on pass 1 are sent to the terminal but not the printer or disk, and the Assembler
does not halt. On pass 2, the error is output to the printer or disk as well as the
terminal and the assembly continues.

If the listing is being sent to the printer or disk under assembler directive
control, any errors encountered during pass 1 are output to the terminal but not the
printer or disk, and the assembly continues. Errors detected during pass 2 are
output to the printer or disk and the terminal, even if the error is not inside a block
that was specified to be listed.

Assembler Run Time Commands Assembiler Run Time Commands

Assembler Run Time Commands

The following commands are active during the assembly process. These
commands are active during pass 1 as well as pass 2, and override the listing mode
specified when the Assembler was first activated.

Unix Assembler Run Time Commands

CtriS - Stop terminal output

CtriQ - Start terminal output

Del C - Terminate the assembly

Del T - Display the output at the terminal

Del D - Send the output to the disk

Del M - Muitiple output (Terminal & Disk)

Del N - No output

Msdos Assemblier Run Time Commands
Ctri s - Stop terminal output
ctriQ - Start terminal output
Esc C - Terminate the assembly
Esc T - Display the output at the terminal
Esc P - Display the output at the printer
EscD - Send the output to the disk
Esc M - Muitiple output (Terminal & Disk)
Esc N - No output
VMS Assembler Run Time Commands

Ctri - Stop terminal output
CtriQ - Start terminal output
ctric,Cc - Terminate the assembly
CtriC, T - Display the output at the terminal
CtriC,D - Send the output to the disk
CtriC, M - Multiple output (Terminal & Disk)
CtriC,N - No output

Assembly Language Syntax ‘ Number Base Designations

Assembly Language Syntax

This section describes the syntax used by the 2500 A.D. Cross Assembler.

Number Base Designations

Number bases are specified by the following:

Binary - B

Octal - CorQ

Decimal - D or no base designation

Hex - H

Ascii - Single or double quotes - “X" or 'X’

The two character sequences between single or double quotes shown below
are predefined. However, the TWOCHAR ON directive must be used to enable
these.

"CR" or 'CR" - Carriage return
"LF" or 'LF’ - Line feed

"SP" or SPT - Space

"HT" or HT - Horizontal tab
"NL" or 'NL” - Null

Program Comments

Comment lines must start with a semi-colon or asterisk in column 1, unless
the COMMENT directive is used. Comments after an instruction do not need a
semi-colon if at least 1 space or tab precedes the start of the comment if the
assembler is running in Spaces Off mode. If the assembler is running in Spaces On
mode, all comments after an instruction must be preceded by a semi-colon. See the
SPACES directive for more information and for the default mode.

1412

Assembly Language Syntax Program Counter

Program Counter

The special character dollar sign ($) or asterisk (*) may be used in an
expression to specify the program counter. The value assigned to the dollar sign or
the asterisk is the program counter value at the start of the instruction.

Labels

Non-Local labels may be any number of characters long, but only 32
characters are significant. Labels may start in any column if the name is terminated
by a colon. If no colon is used, the label must start in column 1. All labels must
start with an alpha character. Upper and lower case characters are considered to
be different.

Local Labels

A Local Label is a label which can be used like any "non local" label. The
difference is that the definition of a Local Label is only valid between "non local®
labels. The adjective "local" refers to the area between labels which retain their
definition through the entire program. When a program passes from one local area
to the next, local label names can be reused. This feature is useful for labels
referenced only within a "local area”, as defined above, and original label names
are not necessary.

The assembler identifies a local label by the ($) prefix or suffix. This identifier
can be changed with the LLCHAR directive. Please see the section entitled
'Directive Definition Control’ for more information on this directive. Following are
some examples of the use of Local Labels.

1-13

Assembly Language Syntax High Byte

LABEL1: OR LABEL1:

$1: NOP 1$: NOP

$2: JMP $1 25: JMP 1%
JMP §2 JMP 2§

LABEL2: LABEL2:

$1: NOP 1$ NOP

$2: JMP $1 23 JMP 13
JMP §2 JMP 2%

LABEL3: LABEL3:

$1: NOP 18 NOP

$2: JMP 31 2% JMP 18
JMP $2 JMP 2%

In this example, there are three "non-local" labels, LABEL1, LABEL2, and
LABEL3. Local Labels, $1 and $2, or 1$ and 2$, have different definitions when
referenced in different local areas. Note that $1 is not considered to be the same as
1$. Any character may be used in a Local Label. Local Labels may be up to 32
characters long. Operators such as '+ should never be used in Local Labels. Local
labels will not be terminated if the directives VAR, DEFL, SECTION, ENDS and $
are used.

High Byte

To load the high byte of a 16 bit value the unary greater than sign,>, should
be used. This allows bits 8 through 15 to be used as a byte value which is
relocatable.

Low Byte

To load the low byte of a 16 bit value the unary less than sign,<, should be
used. This allows bits 0 through 7 to be used as a byte value which is relocatable.

Upper / Lower Case

Upper and lower case labels are recognized as .different labels. The labels
used for section names and macro names are also different if the label is in lower
case rather than upper case.

1-14

Addressing Modes Immediate

- Addressing Modes

Immediate

The data is contained in the instruction.

Examples:
LD HL,1234H ; Ld HL with the HEX number 1234.
LD HL,DATA ; Ld HL with the vaiue associated with the
Label 'DATA’,
Register
The data is contained in a CPU register.
Examples:
LD AB ; Ld the contents in register B into register A
SUB D ; Subtract the contents of register D from
register A.

Register Indirect

The operand address is pointed to by a register.

Examples:
LD A,(HL) ; Ld A with the contents of the location
pointed to by HL.
LD (HL),B ; Store the contents of B in the memory
address pointed to by HL.

Addressing Modes Direct Addressing

Direct Addressing

The address of the operand is contained in the instruction.

Examples:
LD HL.,(1234H) ; Ld HL with the contents of memory location
1234 HEX
LD (ADDRESS),HL ; Store HL in the memory location 'ADDRESS’
LD (ABCDH),HL ; Store HL in the memory location ABCD
hexadecimal
Indexed

The operand address is the sum of the 8 bit offset in the instruction and the
contents of either IX or IY.

Examples:

LD A, (1X+4) ; Ld A with contents of the memory location
pointed to by adding 4'to the contents of
register 1X

LD (IX+DATAS),B ; Store B in the memory location obtained
by adding the value associated with 'DATAS’
to the contents of register IX

Relative

The operand address is relative to the current instruction. |f the address is
given using a numerical value, the calculation is from the start of the next instruction.

Examples:
DJNZ LOOP ; The Assembler calculates the address
by subtracting the address of the label
'LOOP’ from the address of the next
instruction
JR 4 ; The destination is 4 BYTES past the start
of the next instruction

Assembler Directives Storage Control

Assembler Directives

This section describes the Assembler Directives. Directives may be preceded
by a decimal point if desired to help differentiate them from program instructions.

Storage Control

ORG
ORIGIN

Sets the‘ program assembly address. If this directive is not executed, the
assembly address defaults to 0000.

END VALUE

This directive defines the end of a program or an included file. The
expression following an END statement is optional and if it exists, specifies the
program starting address. This address is encoded in the output file if a program
starting address record type exists in the output format definition.

LABEL: ASCII STRING

Stores STRING in memory up to but not including either a carriage return or
a broken bar character ("|*, Hex 7C). A label is optional. Following are some
examples of ASCII.

ASCIl Hello ; Stores the Ascii representation of Hello in
consecutive memory locations. Incidentally,
this comment would be stored also.

ASCl Hello| ; Now the comment woulidn’t be stored. The next
example shows termination with just a carriage
return.

ASClI Hello

Assembier Directives Storage Control

"1' LABEL: : DB VALUE
" FCB
DEFB
BYTE
STRING

-The Assembler will store the value of the expression in consecutive memaory
locations. The BYTE expression may be any mixture of operand types with each
one separated by a comma. Ascii character strings must be bracketed by
apostrophes. If the string contains an apostrophe, this can be specified with two
apostrophes in a row. If no expression is given, one byte is reserved and zeroed. A
label is optional. Following are some examples of the use of the BYTE directive.

.BYTE ; Reserves 1 zeroed byte.
.BYTE 10 ; Reserves 1 byte = 10 decimal.
.BYTE 1,23 ; Reserves 3 bytes,=to 1,2 & 3 in that order.
) .BYTE SYMBOL-10 ; Searches the symbol table for SYMBOL, subtracts

10 decimal from it's value, and stores the resuit.

.BYTE 'Hello’ ; Stores the Ascii equivalent of the string Hello in
consecutive memory locations.

.BYTE 'Hello’,0DH = ; Same as above example, with the addition of a
carriage return at the end. Spaces are ignored before
operands, but the comma is required.

.BYTE 2500 A.D.”s’ ; Embedded apostrophe.

LABEL: DW VALUE
FDB
DEFW
LWORD

This directive will store the value of the expression in a 16 bit storage
location. Multiple words may be initialized by separating each expression with a
comma. If no expression is given, 1 word is reserved and zeroed. A label is

) optional.

Assembiler Directives Storage Control

LABEL: ' LONG VALUE
LONGW
LWORD

This directive will store the value of the expression in a 32 bit storage
location. Multiple long words may be initialized by separating each expression with
a comma. If no expressicn is given, 1 long word is reserved and zeroed. A label is
optional.

LABEL: FCC STRING

Stores STRING in memory until a character is reached that matches the first
character. The first character and the second matching character are not stored. A
label is optional. Typical usage is as follows:

FCC /This is a test string/

DC "String"
This directive sets the high bit on the last character of a string.

DS SIZE,VALUE
RMB
DEFS

This directive will reserve the number of bytes specified by SIZE. No value is
stored in the reserved area. This directive differs from the BLKB directive in that if
the storage locations are at the end of a program section, the output from the Linker

is executable, and the Linker is not required to stack another module on top of this

section, the reserved bytes are not included in the output file.

Assembler Directives

LABEL:

FLOAT

Storage Control

VALUE

Converts the value specified into single precision floating point format. The
value is not rounded but is truncated if the mantissa is larger than 24 bits. The
directive does not allow scientific notation.

FLOAT 178.125
FLOAT 100,.125,-178.125
LABEL: DOUBLE VALUE

Converts the value specified into double precision floating point format. The
value is not rounded but is truncated if the mantissa is larger than 52 bits. The
directive does not allow scientific notation.

DOUBLE 178.125
DOUBLE 100,.125,-178.125

LABEL:

BLKB

SIZE, VALUE

Reserves the number of bytes specified by SIZE. If the value field is present,
that value is stored in each byte. Otherwise, the reserved bytes are zeroed. A label

is optional.

Assembler Directives Storage Control:

20 ;Reserves 20 zeroed bytes

“ BLKB

’ BLKB 20,0 ;jReserves 20 zeroed bytes
BLKB 20,FFH ;Reserves 20 bytes and stores FF Hex in each one
LABEL: BLKW SIZE, VALUE

Reserves the number of 16 bit words specified by SIZE. If the value field is
present, that value is stored in each word. Otherwise, the reserved words are
zeroed. A label is optional.

BLKW 20 ;Reserves 20 zeroed words
BLKW 20,0 ;Reserves 20 zeroed words
BLKW 20,FFFFH ;Reserves 20 words and stores FFFF Hex in each one
)
LABEL:

BLKL SIZE, VALUE

Reserves the number of 32 bit long words specified by SIZE. If the value field
is present, that value is stored in each long word. Otherwise, the reserved long
words are zeroed. A label is optional.

BLKL
BLKL
BLKL

20 ;Reserves 20 zeroed long words

20,0 ;Reserves 20 zeroed long words

20,FFFFH ;Reserves 20 long words and stores FFFF Hex in each
one

Assembler Directives Definition Control

Definition Control

LABEL: EQU VALUE
EQUAL

Equates LABEL to VALUE. VALUE may be another symbol or any legal
arithmetic expression.

LABEL: VAR VALUE
DEFL

Equates LABEL to VALUE, but may be changed as often as desired

throughout the program. A label defined as a variable should not be redefined by
an EQUAL directive.

LLCHAR CHARACTER
The default character for designating a Local Label is the ($). This directive
changes the character which identifies a particular symbol as a Local Label.

Symbols that designate number bases should be avoided, unless they are used on
the trailing end of the label.

LABEL: MACRO ARGS

Specifies the start of a Macro Definition. .

ENDM
MACEND

Specifies the end of a Macro Definition.

Assembler Directives Definition Control

MACEXIT

This directive causes the immediate exit from a macro. The difference
between MACEXIT and MACEND is that during the macro definition process,
MACEXIT does not terminate the macro, and if MACEXIT is in the path of a false
conditional assembly block, it is not executed. All conditional assembly values are
restored to the same state as when the macro was invoked.

MACDELIM CHARACTER

This directive is used to pass an arguinent containing a comma into a macro.
The default mode is for commas to always be argument separators. The allowed
characters are '{’, '(" and '[’. All characters between matching delimiter pairs will be
passed through as one argument. Please refer to the Macro Examples section of
this manual for some examples of the use of this directive.

XDEF LABEL
GLOBAL
PUBLIC

Specifies the label as a global label that may be referenced by other
programs. Multiple labels may be specified as long as each one is separated by a
comma. Below are some examples of the correct use of GLOBAL.

GLOBAL SYM1 ; Declares the label SYM1 to be accessible to other pro-
grams. The Linker will resolve external references.

GLOBAL SYM1,SYM2 ; Multiple declarations on the same line are legal sep-
arated by a comma. The spaces are ignored.

Assembler Directives Definition Control

GLOBALS ON

This directive causes the Assembler to treat all labels after GLOBALS ON as
global labels which may be referenced by other programs. This directive will not
affect Local Labels. Below is an example of the use of GLOBALS.

GLOBALS ON
SYM1 NOP ;Declares the labels SYM1 and SYM2,
SYM2 NOP ;accessible to other programs. This directive is not

;reset by the module and endmod directives. The
;default is GLOBAL OFF.

GLOBALS OFF

This directive returns the Assembler to the default mode which requires
Global symbols to be specified with GLOBAL directives.

XREF LABEL
EXTERN
EXTERNAL

Specifies the label as being defined in another program. Multiple labels may
be specified as long as each one is separated by a comma.

LABEL: ASK PROMPT

Outputs 'PROMPT to the terminal and waits for a 1 character response, from
which 30 hex is subtracted. The purpose of this is usually to introduce a 0/1 flag into
the program. 'LABEL' is set equal to the result. A carriage return terminates
'PROMPT’. On pass 2, the line is output along with the response.

The following is an example of 'ASK’ :

DISK_SIZE: ASK ASSEMBLE FOR 8" (=1) OR 5 1/4" (=0) DRIVES ? :

Assembler Directives Assembly Mode

Assembly Mode
LABEL: SECTION

This directive allows user defined section names to be generated. The
Assembler has 2 predefined sections, CODE and DATA. The total number of
section names allowed per file is 256. Each name may be up to 32 characters long.
Lower and upper case are considered to be different. After the section has been
defined, the program may switch back and forth simply by using the name as a
mnemonic. The default section is CODE. Sections may be nested. As with all
directives, a section name may be preceded by a decimal point. See the Linker
Operating Instructions section of this manual for information on how the Linker
handles section names. Below are some examples of defining section names and
switching between different sections.

NOP ;This instruction goes into the CODE section
;by defauit

.DATA ;Switch to the predefined DATA section

.BYTE ;This byte goes into the DATA section

SECTIONT: .SECTION ;Define a new section. The definition makes

;this section active automatically

NOP ;This instruction goes into the SECTION1
;section

.CODE ;Switch back to the section named CODE

NOP ;This instruction goes into the CODE section

SECTION1 ;Switch to the user defined section SECTION1

NOP ;This instruction goes into the SECTION1
;section
.BYTE ;Any section may contain code or data or both.
ENDS

This directive is used in conjunction with the SECTION directive. ENDS
enables the termination of nested sections in a file.

1-25

Assembler Directives Assembly Mode

ABSOLUTE

This directive enables the assembler to use page 0 addresses when
possible. This directive is supported for compatibility with our series 3.0
assemblers. For a more detailed discussion, refer to the "Absolute versus
Relative” section of this manual. Executable instructions should always be
assemoled in Relative mode.

RELATIVE

This directive enables the assembler to return from Absolute mode to
Relative mode. Executable instructions should always be assembled in Relative
mode. This is the default mode.

RADIX VALUE

2 or B = Binary

8 or o} or Q = Octal

10 or D = Decimal

16 or H = Hexadecimal

No expression = return to default mode which is base 10, and assume all
others will be designated with B, Q, D or H after the constant. Note that when
base 16 is specified there is no way to define a decimal or binary number, since
both D and B are legal hexadecimal numbers.

INCLUDE filename

Directs the Assembler to include the named file in the assembly. Filenames
may include pathnames. Filename extensions must be completely specified.
Includes may not be nested.

Assembler Directives Assembly Mode

SPACES ON

This directive enables spaces in between operands. When spaces are
enabled, comments must begin with a semi-colon. The default mode is spaces off.

SPACES OFF

This directive disables spaces in between operands. When spaces are
disabled, comments do not need to start with a semi-colon. This is the default
mode. ‘

TWOCHAR ON

This directive enables the ascii two character ébbreviations shown below.
The default mode is TWOCHAR OFF.

"CR"or’'CR’ - Carriage return

"LF*or'LF* - Line feed

"SP" or’'SP’ - Space

"HT" or 'HT" - Horizontal tab

"NL"or’NL” - Null
TWOCHAR OFF

This directive disables the ascii two character abbreviations shown in the
previous directive. This is the default mode.

MODULE

This directive is meant to be used in conjunction with the ENDMOD directive
and the Library Manager. Normally, libraries are composed of many small routines.
When the Linker cannot find a Global Symbol in any of the files that are involved in
the link, it can search the libraries for the symbols it cannot find. This means that
each routine must be in a separate file and each file must be assembled separately.

1-27

Assembler Directives Assembly Mode

Instead of having separate files, each routine can be bracketed with the MODULE
and ENDMOD directive, which allows all the routines to be in one file. This
essentially causes the Assembler to treat each module as a totally separate
assembly, so references to External symbols must be declared External, and
symbols used by other modules must be declared Global. All modules must be
terminated with an ENDMOD. Modules may not be nested. Modules may have
include files within them, but they may not be inside an include file. There is no limit
on the number of modules that may be in a file. The Assembler will produce an
output file with an extension of pak. This file can only be processed by the
Librarian, but is simple to manipulate with the Librarian commands ADD ALL and
REPLACE ALL. Please see the section entitled Librarian Commands for
information on these commands. Following is an example of the use of MODULE
and ENDMOD.

.MODULE JUMP_TABLE ;Define library name

.GLOBAL JUMP_TABLE ;Make table availablie to other
smodules in file

.EXTERN ROUTINE1 ;Define externals

.EXTERN ROUTINE2

JUMP_TABLE: WORD ROUTINE1 ;Store Routine Addresses
WORD ROUTINE2
.ENDMOD ;Define end of module

.MODULE ROUTINE1 ;:Define library name
.GLOBAL ROUTINE1 ;Make routine available

ROUTINE1: NOP
.ENDMOQD ;Define end of module
.MODULE ROUTINE2 ;Define library name
.GLOBAL ROUTINE2 ;Make routine available

ROUTINE2: NOP
.ENDMOD ;Define end of module
.END ;Define end of file

If the above file was named test.asm, it would be assembled as usual but
the cutput filename would be test.pak. Note during the assembly how the
Assembler restarts at the beginning of each module.

Assembler Directives Assembly Mode

ENDMOD

This directive is used in conjunction with the MODULE directive and
terminates each module in a file. Please refer the MODULE directive for examples
of the use of ENDMOD.

COMMENT CHARACTER

This directive allows the user to write blocks of comments at time. A
comment block is executed as follows:

COMMENT X

Where X can be any character. The Assembler will treat everything from the
first X to the second X as a comment block. Since the terminating character is not
scanned for until the next line the comment field must be two lines long.

BIT7 ON

This directive will causes the Assembler to set the high bit of each character
in an Ascii String. This applies to the ASCII directive and the BYTE directive only,
and it only applies to the BYTE directive when the characters are enclosed in single
or double quotes. In otherwords, data values will not be affetected. The Assembler
defaults to BIT7 OFF.

BIT7 OFF

This directive returns the Assembler to it's default mode, which is to leave bit
7 cleared on Ascii characters.

Assembler Directives Conditional Assembly

) | Conditional Assembly

IFZ VALUE
IFE

The Assembler will assemble the statements following the directive up to an
ELSE or ENDIF directive if the VALUE is equal to zero. Conditional statements
may be nested up to 248 levels. VALUE can be an arithmetic expression, another
symbol or a string.

IF VALUE
IFN

IFNZ

COND

Assemble the statements following the directive up to an ELSE or ENDIF
directive if the value of VALUE is not equal to zero. Conditional statements may be
) nested up to 248 levels.

IFTRUE VALUE
IFNFALSE

This directive is actually the same as IFNZ, but is more logical when using
assembly time comparisons. If the specified condition is true, then the following
statements are assembled up to an ELSE or ENDIF directive. If the condition is not
true, the statements up to an ELSE or ENDIF directive are not assembled.

IFNTRUE VALUE
IFFALSE

This directive is the same as IFZ, and is the complement to IFTRUE. If the
specified condition is false, then the following statements are assembled up to an
ELSE or ENDIF directive. If the condition is true, then the statements up to an
ELSE or ENDIF directive are not assembled.

Assembler Directives Conditional Assembly

IFDEF LABEL

This directive will activate a symbol table search, and if LABEL is found, then
the statements following this one up to an ELSE or ENDIF directive will be
assembled. If LABEL is not found, then the statements following this statement up
to an ELSE or ENDIF directive will not be assembled.

IFNDEF LABEL

This directive is the complement of IFDEF. The symbol table is searched
and if LABEL is not found, the statements following this one up to an ELSE or
ENDIF directive are assembled. If LABEL is found, then the statements following
this one up to an ELSE or ENDIF directive are not assembled.

IFSAME STRING1,STRING2
IFNDIFF

This directive compares STRING1 to STRING2, and conditionally assembles
the statements following this statement depending on the result of the comparison.
If the two strings are identical then the statements up to an ELSE or ENDIF directive
are assembled. If the strings are not identical, then the statements up to an ELSE
or ENDIF directive are not assembled. The strings may be one of two different
types, namely with spaces or without spaces. However, both strings being
compared must be of the same type. If the strings contain spaces, then the
beginning and end of each string must be denoted with an apostrophe, with
embedded apostrophes denoted by the use of two apostrophes. If the strings do
not contain spaces, then the apostrophes are not required. This mode is very
useful when comparing macro parameter arguments. In both cases, the strings
must be separated with a comma. Following are some examples of the use of
IFSAME.

Assembler Directives Conditional Assembly

IFSAME 'test string’,’test string’
IFSAME 2500 A.D.”’s’,’2500 A.D.”s’
IFSAME X,Y

In the first example above, the strings contain spaces and therefore must be
bracketed by apostrophes. The second example shows embedded apostrophes,
which are represented by using two apostrophes. In the third example, a macro

H 1 H i H i dairn A
might be testing for a certain register, and since the strings do not contain C

they do not need to be enclosed in apostrophes.

IFNSAME ~ STRING1,STRING2
IFDIFF

This directive is the complement to IFSAME. If the two strings are not
identical, the statements after this statement are assembled up to an ELSE or
ENDIF directive. If the two strings are identical the statements up to an ELSE or
ENDIF directive are not assembled. The syntax rules governing the form of the

strings are the same as for IFSAME. See IFSAME for examples of the use of this
directive.

IFEXT LABEL

This directive will cause the Assembler to search the symbol table for the
label, and assemble the statements following this statement up to an ELSE or
ENDIF if the label has been declared external. An error message is generated if the
label is not found.

IFNEXT LABEL

This directive will cause the Assembler to search the symbol table for the
label, and assemble the statements following this statement up to an ELSE or
ENDIF if the label has not been declared external. An error message is generated if
the label is not found.

Assembler Directives Conditional Assembly

IFABS LABEL
IFNREL

This directive will cause the Assembler to search the symbol table for the
label, and assemble the statements following this statement up to an ELSE or
ENDIF if the label is absolute (i.e. not relocatable). External labels are considered to
be relocatable. An error message is generated if the label is not found.

IFREL LABEL
IFNABS

This directive will cause the Assembler to search the symbol table for the
label, and assemble the statements following this statement up to an ELSE or
ENDIF if the label is relocatable. External labels are considered to be relocatable.
An error message is output if the label is not found.

IFMA EXP

This directive is intended to be used inside a macro, and will scan the macro
call line for the existence of the argument number specified by the value of EXP. If
the argument exists, the statements following this one up to an ELSE or ENDIF will
be assembled. If the argument does not exist, the statements fol lowing this one up
to an ELSE or ENDIF will not be assembled. No arguments can be detected by
having EXP = 0. In this case, if no arguments are present in the macro call line, the
following statements are assembled, and if arguments are present in the macro call
line, the following statements are not assembled. See the Macro section of this
manual for examples of the use of this directive.

IFNMA EXP

This directive is the complement to IFMA, and checks the macro call line to
see if the argument number given by the value of EXP exists. If the argument is not
present, the statements following this one up to an ELSE or ENDIF are assembled.
If the argument is present, the statements following this up to an ELSE or ENDIF
are not assembled. The existence of any arguments at all can be detected by

Assembler Directives Conditional Assembly

having EXP = 0. In this case, if there is at least one argument in the macro call line,
the following statements will be assembled. If there are no arguments in the macro
call line, the following statements will not be assembled. See the Macro section of
this manual for examples of the use of this directive.

ELSE

Start of statements to be assembled if any of the above IF type of directives

ENDC
ENDIF

Specifies the end of a conditional assembly block. When the Assembler
detects unmatched IF - ENDIF pairs, an error message is output. Since recursive
macros will almost always be controlled by IF type directives, the IFCLEAR directive
may be needed. The difference between the two is that ENDIF is always executed,
while IFCLEAR is not executed when it is inside a false conditional assembly block.

IFCLEAR

This directive performs exactly the same function as ENDIF, except that it is
not executed when it is inside a false conditional assembly block. This directive can
be used in a recursive macro to maintain balanced IF - ENDIF pairs, allowing the
macro to eventually terminate, yet still taking advantage of the IF - ENDIF checking
performed by the Assembler. This directive can be used to perform the same
function when a macro contains a MACEXIT directive for early macro exits, since
these would almost always be controlled by an IF directive of some sort. See the
Macro section of this manual for examples of the use of this directive.

Assembler Directives Conditional Assembly

EXIT "MESSAGE"

This directive is meant to be used inside of a conditional and will terminate
the assembly if it is executed. MESSAGE is output by the assembler as an error
message. If the surrounding condition is true, then the EXIT directive is executed,
the user defined error message is output, and the assembly is terminated. If the
surrounding conditional is false, then the assembly coutinues without interruption.
The maximum length of the user defined error message is 79 characters. An
example of EXIT is as follows:

IFTRUE TABLE_SIZE.UGT.MAX_TABLE_SIZE
EXIT
ENDIF

NOTE: If the assembly is terminated, it will occur on the first pass and no
listing file will be created.

Assembler Directives Assembly Listing Control

J | Assembly Listing Control

LIST ON
LIST

Turns listing on if LIST ON/OFF was specified as the listing destination
when the Assembler was first entered. This directive must always be used before
LIST OFF. In other words, at the start of the program, LIST OFF is assumed.

LIST OFF
NOLIST
NLIST

Turns listing off if LIST ON/OFF was specified and LIST ON was executed.
This is the default mode and therefore should only be used following a LIST ON
directive.

MACLIST ON
MLIST

Turns listing of MACRO expansions on. This is the default mode.

MACLIST OFF
MNLIST

Turns listing of MACRQ expansions off. The default is on.

CONDLIST ON

Turns on listing of false conditional assembly blocks. This is the default mode.

Assembler Directives Assembly Listing Control

CONDLIST OFF

Turns off listing of false conditional assembly blocks. The default is on.

ASCLIST ON

Turns on the listing of ascii strings that require more than 1 line of object
code on the assembiler listing.

ASCLIST OFF

Turns off the listing of ascii strings that require more than 1 line of object
code on the assembiler listing. Only the first line of the object code will be listed.

PW EXP

Sets the printer page width. The default page width is 132 columns.

PL EXP

Sets the printer page length. The default page length is 61 lines. The
Assembler issues a form feed when this limit is reached or exceeded. If an error is
encountered, the Assembler will output the form feed after the error message.

TOP EXP

This directive controls the number of lines from the top of the page to the
page number. The default is zero.

Assembler Directives Assembly Listing Control

PASS1 ON

Turns on the listing of pass 1. This can be used to help find errors due to the
Assembler taking a different path on Pass 1 as compared to Pass 2. This condition
will usually generate a ’Symbol value changed between passes’ error. This
directive can also be useful for finding nested conditional assembly errors.

N PASS1 OFF

Turns off listing of pass 1 assuming PASS1 ON was executed.

PAG
PAGE
EJECT

Outputs a form feed to the listing device.

NAM STRING
TTL

TITLE

HEADING

Causes STRING to be printed at the top of every page. If STRING is not
specified the TITLE directive will be turned off. The title may be changed as often
as desired and may be turned off at any time. The maximum title length is 80
characters. Also, the first two tabs between the TITLE directive and the start of the
string, if they exist, will be ignored. All spaces and tabs after this will be included in
the title.

Assembler Directives Assembly Listing Control

) 4 STTL STRING
SUBTITLE
SUBHL

Causes STRING to be printed at the top of every page. lf TITLE was
executed, the subtitle will appear below it. If TITLE was not executed or was
turned off, the subtitle will still be output. If STRING is not specified, the directive will
be turned off. The subtitle may be changed as often as desired and may be turned
off at any time. The maximum subtitle length is 80 characters. As with the TITLE
directive, the first two tabs between the SUBTITLE directive and the start of

- STRING, if they exist, will be ignored and any spaces and tabs that appear after
that will be included in the subtitle.

Assembier Directives Linker Control

Lihker Control

FILLCHAR VALUE

The linker will fill in gaps which are created by the use of sections or origins
with the value specified. This directive is only applicable to the executable output
from the Linker. All other output formats will begin a new recored if an origin gap is
detected.

RECSIZE VALUE

The record length may be changed for Intel Hex and Motorola S record
outputs with this directive. By specifying a value standard 32 data bytes for Intel
and 131 data bytes for Motorola will be replaced with VALUE.

SYMBOLS

This enables the symbols to be sent to an output file for the linker. This
directive must be used to enable the Linker to output the Microtek symbol table
format.

OPTIONS OPTION LIST

This directive is used to select the options for the Linker. For a list of the
options see the Linker Options section of this manual. The default output filetype is
Intel Hex. The output from the Linker may still be changed by using the Linker
options field.

LINKLIST

This directive will cause the linker to relocate the assembler listings so that
the execution address, the addresses in the object code field and the values in the
cross reference table are the actual viaues at run-time. This directive works with the
listing to disk option only.

Assembler Directives

COMREC "String"

Linker Control

This directive allows the user to insert a comment record in the Motorola
outputs. The format of COMREC is as follows.

COMREC

"STRING"

Assembler Directives Assembly Time Calculations

| Assembly Time Calculations

The following list gives the allowed assembly time calculations. Also shown is
their priority level. Priority level 7 operations are the first to be performed.
Parenthesis may be used to force the calculations to proceed in a different order.
Calculations are performed using 80 bit integer arithmetic with the exception of
exponentiation which only uses an 8 bit exponent. The maximum number of
pending operations is 16.

OPERATION PRIORITY DESCRIPTION

Unary + 7 Optionally specifies a positive operand.

Unary - 7 Negates the following expression.

\or .NOT. 7 Complements the following expression.

Unary > 7 Keeps the high order byte of the follow-
ing address. This must be used to obtain
relocatable byte address values.

Unary< 7 Keeps the low order byte of the following
address. This must be used to obtain re-

. locatable byte address values.

* 6 Unsigned exponentiation

* 5 Unsigned multiplication

/ 5 Unsigned division

.MOD. 5 Remainder

.SHR. 5 Shift the preceding expression right
(with O fill) the number of times specified
in the following expression.

SHL. 5 Shift the preceding expression left
(with 0 fill) the number of times specified
in the following expression.

+ 4 Addition

- 4 Subtraction

& or .AND. 3 Logical AND

A or .OR. 2 Logical OR

XOR. 2 Logical exclusive OR

Assembler Directives Assembly Time Comparisons

) . Assembly Time Comparisons

The following list gives the assembly time comparisons which will return all
1's if the comparison is true and all 0's if the comparison is false:

= or .EQ. - Equal

> or .GT. - Greater than

< or LT. - Less than
UGT. - Unsigned greater than
ULT. - Unsigned less than

Assembler Directives Absolute Versus Relative

Absolute Versus Relative

The absolute directive enables the assembler to use page O addresses when
possible and should be used when a symbol is required to have an absolute value.
This directive is supported for compatibility with our series 3.0 assemblers. |f the
Absolute directive is used, the Relative directive must be used to return the
assembler to relocatable mode. The assembler should always be returned to
Relative mode before any executable instructions are assembled. The Absolute &
Relative attributes do not change when the section is changed.

Another valid use of this directive is in laying out assembly language
structures. This can be done in a user defined section as in the following example:

STRUCTURE_SECTION: .SECTION

.ABSOLUTE

.ORIGIN <initial offset>
NAME: .DS <expressions>
COMPANY: .DS <expression>
ADDRESS: .DS <expression>
CITY: .DS ‘ <expression>
STATE: .DS <expressions>
ZIP_CODE:. .DS <expression>
STRUCTURE_SIZE: .DS 0

where the Origin statement may be omitted if the "initial offset* for the
structure is zero and "expression" is equal to the size of the corresponding member
of the structure. Note that in this example, storage space for three different
structures of this type could be reserved by the following code:

STRA: .DS STRUCTURE_SIZE
STRB: .DS STRUCTURE_SIZE
TRC: _ .DS STRUCUTRE_SIZE

Forming structures in this way has the advantage of automatically computing
offsets and structure sizes while allowing the programmer to add or delete elements
of the structure without re-computing the offset for each individual member. If this
section is linked as a "reference only section" by preceding the "load offset" given at
link time with a hyphen, then the bytes reserved by the DS directives will not be
included in the output file. For more information regarding "reference only" refer to
the linker section of this manual.

Assembler Directives Absolute Versus Relative

Note that the correct procedure for generating executable code at absolute
addresses is:

(1) Assemble in relative mode.

(2) Supply the linker with a "load offset" of zero for these instructions at link
time.

If executable instructions are assembled in Absolute mode, relative
references will be calculated with absolute values. The result of this is that
displacements will be an absolute number, just as if the symbol was defined with

| =l ¥ |

the EQUAL directive. Consider the foilowing exampie:

.CODE

.ABSOLUTE

.ORG 20H
LABEL: NOP

BRA LABEL

.END

where LABEL has a value of 20H. This BRA instruction will use a +20H as its
displacement value. This is equivalent to the instruction:

BRA 20H

where the next instruction executed will always be +20H bytes away from this
BRA instruction. '

Macros Argument Separators

Macros

Definition

A macro is a sequence of source lines that will be substituted for a single
source line. A macro must be defined before it is used. The Assembler will store
the macro definition and, upon encountering the macro name, will substitute the
previously defined source lines. Arguments may be included in the macro
definition. Arguments may be substituted into any field except the comment field.

For macro definitions, dummy arguments may not contain spaces. However,
for actual macro calls, arguments may be any type; direct, indirect, character string
or register. Spaces are not allowed in arguments unless it is an Ascii string, in
which case the string must be bracketed in apostrophes. If the string contains an
apostrophe, this can be specified with two apostrophes in a row. Arguments will be
passed through to any nested macros if the dummy argument names are identical.
Macro nesting is limited only by the amount of memory space available.

To define a macro the .MACRO directive is used. A macro must have the
.MACEND or .ENDM directive following the macro definition. The name of the
macro is in the label field.

Argument Separators

In the macro call line arguments must be separated by commas, however
leading spaces and tabs are ignored. If no argument is present, a single comma
will serve as a place holder.

The * as an argument will not be used as the program counter but as the
multiplication sign. In a macro body, the following argument separators are allowed:

y =0/ & A =()[]]
.NOT. .AND. .OR. .XOR. .EQ. .GT. .LT.GT.
ULT. .SHR. .SHL.

Macros Value Concatenation

Labels In Macros

Labels are allowed in macro definitions. Labels may be defined in two ways:
explicit or implicit. Explicit labels in the macro definition will not be altered by the
Assembler. Implicit labels are followed by a #. The Assembler will substitute a 3
digit macro expansion number for the #. In this case, the label and the macro
expansion number must not exceed 32 characters. An argument may be used to
specify a label.

String Concatenation

The broken bar character (| = hex 7C) is used as the string concatenation
operator. Concatenation may only be performed inside of a macro.

Value Concatenation

Concatenation of a string and the value of an expression may be achieved by
using the broken bar character (| = hex 7c) followed by a left angled bracket, the
expression, and a right angled bracket. No spaces are allowed between the broken
bar and the left angled bracket. Following is an example of this operation:

CONCAT .MACRO - ARG

VALUE: VAR VALUE+1

ARG|<VALUE*2> .EQU 31
.ENDM

VALUE VAR 0
CONCAT LABEL

The invocation, CONCAT LABEL, will produce:

LABEL2 .EQU 31

It is important to initialize VALUE before the macro is invoked. Otherwise,
the label being generated will have a different value on pass 1 and pass 2.

Macros ‘ Mnemonic Definitions

Mnemonic Definitions

The Assembler tables are searched in the following order:

1st - Mnemonic Table

2nd - Macro Definition Table
3rd - Assembler Directive Table
4th - Section Name Table

To redefine a mnemonic the MACFIRST directive may be used. This will
switch the order of the search to Macro Definition Table first and Mnemonic Table
second.

Macros ‘ Macro Examples

Macro Examples

A macro could be written to do string comparisons.

demonstrates the use of this feature.

This macro

CMP_STRING: -MACRO ARG1

IFNMA 1

CMP_STRING NEEDS AN ARGUMENT

MACEXIT

ENDIF

IFSAME "JANUARY",ARG1
MONTH BYTE 1

MACEXIT

ENDIF

IFSAME "FEBRUARY",ARG1
MONTH BYTE 2

MACEXIT

ENDIF

IFSAME "MARCH",ARG1
MONTH BYTE 3

MACEXIT

ENDIF

‘ IFSAME "APRIL",ARG1

MONTH BYTE 4

MACEXIT

ENDIF

IFSAME "MAY",ARG1
MONTH BYTE 5

MACEXIT

ENDIF

IFSAME "JUNE",ARG1
MONTH BYTE 6

MACEXIT

ENDIF

ARGUMENT ERROR IN MACRO STRING

ENDM

CMP_STRING "APRIL"

END

Macros

Macro Examples

The following example demonstrates the use of argument substitution in the

operand field of a macro.

NAME:
DEPARTMENT:
DATE_HIRED:

EMPLOYEE_INFO:

.MACRO ARG1,ARG2,ARG3
.DB ARG1

ASCIl ARG2

.LONG ARG3

.ENDM

EMPLOYEE_INFO "JOHNDOE’,PERSONNEL,101085
.END

This example could be changed to pass the argument into the label field.
This enables the structure to be altered.

ARG1:
ARG2:
ARG3:

EMPLOYEE_INFO:

.MACRO ARG1,ARG2,ARG3
.DS 30H

.DS 10H

LONG

.ENDM

EMPLOYEE_INFO NAME,DEPARTMENT,DATE_HIRED
.END

The macro section also allows substitution into the mnemonic field. Also, a
label can be generated within the macro with the # sign.

INSTRUCTION:
LAB#:

MACRO ARG,VAL
ARG

DS VAL
.MACEND
INSTRUCTION NOP,7
.END

Macros

Macro Examples

To redefine a mnemonic the MACFIRST ON directive must precede the

macro.

NOP:

MACFIRST
.MACRO
DB

.ENDM
NOP

END

ON
ARG
ARG

'FFH

Another macro directive, MACDELIM, can be used to pass commas into a
macro. The following examples show the syntax for this directive.

DELIM_EX:

DELIM_EX:

DELIM_EX:

MACDELIM
MACRO
BYTE
ENDM
DELIM_EX

MACDELIM
MACRO
BYTE
ENDM
DELIM_EX

MACDELIM
MACRO
BYTE
ENDM
DELIM_EX

{
ARG1 ARG2
FFH,ARG1,ARG2

{,A4H},{,12H}
[

ARG

FFH ARGT
[LA4H]

(
ARG1

FFH ARG1
(,A4H)

Macros Recursion

Recursion

Below is an example of a recursive macro that reserves the number of data
bytes defined by dummy argument ARG1 and fills them with the value specified by
ARG2,ARG3,ARG4,ARG5,ARG6. This also demonstrates the use of MACEXIT
and IFCLEAR. Count is decremented each time the loop is executed successfully.
The macro is called again with the statement RESERVE the arguments following.

RESERVE:.MACRO ARG1,ARG2,ARG3,ARG4,ARG5,ARG6E
COUNT: .VAR ARG1
JFZ COUNT
JFCLEAR
MACEXIT
.ENDIF
COUNT: .VAR COUNT-1
.BYTE ARG2,ARG3,ARG4,ARG5,ARG6
RESERVE COUNT,ARG2,ARG3,ARG4,ARG5,ARG6
.MACEND

This macro would be called with a statement such as the following:

RESERVE 10,AH,BH,CH,DH,EH ; Fill 50 bytes with the sequence ABCDE.

It is perfectly legal for a recursive macro, such as the one in the above
example, to call another recursive macro and so forth out to whatever level is
desired. Also, note the use of the IFCLEAR directive, which maintains the
conditional IF - ENDIF pair balance. This can be used but is not required because
the MACEXIT directive will return all conditionals to their original state.

Assembler Error Messages

Assembler Error Messages

Error = CAN'T CREATE OUTPUT FILE - DISK MAY BE FULL

Meaning -The disk may actually be fuil or the operating system is not ailowing
enough tiles to be open at one time. See System Requirments to
correct this error.

Error - CAN'T OPEN INPUT FILE

Meaning - The operating system is not allowing enough files to be open at one
time. See System Requirements to correct this error.

Error -CAN'T FIND FILENAME.OBJ

Meaning - The .OBJ filename does not exist or the operating system is
not allowing enough files to be open at one time. See System
Requirements to correct this error.

Error -SYNTAX ERROR

Meaning - Usually a missing comma or parenthesis.

Error -CAN'T RESOLVE OPERAND

Meaning - Can’t tell what the programmer intended.

Error -ILLEGAL ADDRESSING MODE

Meaning - Can’t address the operand using this form.

Error -ILLEGAL ARGUMENT

Meaning - Operand can’t be used here.

Error - MULTIPLY DEFINED SYMBOL

Meaning - Symbol defined previously (not including '.VAR’)

Error -ILLEGAL MNEMONIC

Meaning -Mnemonic doesn’t exist and wasn’t defined as a Macro.

Error -#TOO LARGE

Meaning - The destination is too small for the operand.

Assembler Error Message

Error -ILLEGAL ASCII DESIGNATOR

Meaning - Bad punctuation on Ascii character.

Error -HEX # AND SYMBOL ARE IDENTICAL

Meaning - A label exists that is exactly identical to a hex number that is

being used as an operand. Even the hex number indicator must
be in the same place for this error to be generated.

Error - UNDEFINED SYMBOL

Meaning - Symbol wasn’t defined during pass 1.

Error - RELATIVE JUMP TOO LARGE

Meaning - Destination address in a different page.

Error - EXTRA CHARACTERS AT END OF OPERAND

Meaning - Usually a syntax or format error.

Note - This error is the last check on any instruction before the
Assembier proceeds to the next line and indicates that there are
extra characters after a legal operand terminator.

Error -LABEL VALUE CHANGED BETWEEN PASSES

Meaning - Symbol value decode during pass 1 not = pass 2.

Note - This error is usually caused by the Assembler taking different
paths on Pass 1 as compared to Pass 2 due to conditional direc-
tive arguments changing value. The directive PASS1 ON/OFF
can be useful in finding these types of errors.

Error -ATTEMPTED DIVISION BY ZERO

Meaning -Divisor operand evaluatedto 0.

Error -ILLEGAL EXTERNAL REFERENCE

Meaning -External reference can’t be used here.

Error -NESTED CONDITIONAL ASSEMBLY UNBALANCE DETECTED

Meaning -Any '.IF’ type instruction without a matching .ENDIF’

Assembler Error Message

Error . . -ILLEGALREGISTER

Meaning - The specfied register is not legal for the instruction

Error - CANT RECOGNIZE NUMBER BASE

Meaning - The number base specified is not one the assembler accepts.

Error -NOT ENOUGH PARAMETERS

Meaning - The were more arguments than parameters in a macro.

Error ~-ILLEGAL LABEL 1ST CHARACTER

Meaning - Labels must start with an alpha character.

Error - MAXIMUM EXTERNAL SYMBOL COUNT EXCEEDED

Meaning - There were too many externals in a module.

Note - There is a maximum of approximately 500 externals per module.

Error - MUST BE IN SAME SECTION

Meaning - The instructions operand is in a different section.

Error - NON-EXISTENT INCLUDE FILE

Meaning - The include file could not be found.

Error -ILLEGAL NESTED INCLUDE ’

Meaning - One included file contains an .INCLUDE directive. This error may
also indicate that an included file did not have an END statement.

Error -NESTED SECTION UNBALANCE

Meaning - A nested section definition without an ENDS

Error - MISSING DELIMETER ON MACRO CALL LINE

Meaning -Unmatched delimeters when a macro was invoked.

Error - MULTIPLE EXTERNAL IN THE SAME OPERAND

Meaning - More than one external exists in the same operand.

Assembler Error Message

Error -ALABELISILLEGAL ON THIS INSTRUCTION.

Meaning -This is used to flag labels that would not obtain a relocation
value. Such as ENDM or MACEND. Thus, the label is not
allowed for the instruction.

Error -MACRO STACK OVERFLOW

Meaning - Macros are nested too deeply.

Note - This error can be caused by too many recursive macro calls.
The stack has room for approximately 700 nested or recursive
macro calls.The number of calls is affected by the number of
arguments the macro uses.

Error - MISSING LABEL

Meaning - A label is required for this instruction.

Error - OPERAND MUST BE DEFINED AS AN 8 BIT RELOCATABLE VALUE.

Meaning - This occurs when a 16 bit address is used in an 8 bit instruction. The

< or > sigh must be used to make the value relocatable.

Error - MISSING RIGHT ANGEL BRACKET

Meaning - Right angle bracket is mandatory.

Error - MACRO NAME MUST APPEAR ON SAME LINE AS MACRO
DEFINITION

Error -ILLEGAL LOCAL LABELS

Meaning - Labels can’t be defined as local. For example .VAR.

Error - MISSING MODULE DIRECTIVE

Error - MISSING ENDMOD DIRECTIVE

Error - 'Module’ CAN'T BE IN 'Include’ FILE

Error - ’Endmod’ CAN'T BE IN ’Inciude’ FILE -

2500 A.D. Linker - Version 4.02

2500 A.D. Linker Description

The 2500 A.D. Linker enables the user to write assembly language
programs consisting of several modules. The Linker will resolve external references
and perform address relocation. The Linker is capable of generating ail of the most
used file formats, eliminating the need for an additional format conversion utility.

Except for when generating an executabie output file, the Linker runs
entirely in RAM. There is no limit on the size of file that can be linked, as long as
enough memory is available. In the case of an executable file, the Linker creates as
many scratchpad files as required to sort the different program sections in
ascending order.

Each object file may have up to 256 different user defined sections. The
Linker can search up to fifty separate library files for resolving external symbol
references. The Linker can process a combination of 256 input files and library
modules, and 256 different section names. There is no limit on the size of each
section.

Files may be linked at the address specified in the file or relocated at link
time. Specific sections of files may be used for reference only. That is, the
information from the section needed to link will be used but the section will not be
included in the output file. Sections of files may also be linked at different run-time
and load addresses. This feature can be used to generate romable code that must
be moved to read/write memory at run time. For more information see the sectlon
entitled Indirect Linking.

Listings with the Linker may be relocated using LINKLIST. This directive,
when listing to disk is specified, will relocate the listing with the actual addresses at
Run-Time. Please see the Linker Control section for more information.

2500 A.D. Linker - Version 4.02

The Linker may be invoked using Prompt mode, Command Line mode. or -
Data File mode. The output format is selectable from a directive in the source file or
from the Linker options list. The Load Map, an alphabetized global symbol list and
all link errors may be saved in a disk file.

The Linker may be directed to output several different types of symbol table
files. These formats are relocated 10 character global symbols, relocated 32
character global symbols, and the Microtek format which includes all symbols.

An environment variable may be defined to specify a search path for library
files. The environment variab'e name is LIB. If the variable LIB is already defined,
the path names represented by the variable should be redefined. Please refer to the
operating system manuals for information on defining the LIB environment variable.

2500 A.D. Linker - Version 4.02 Prompt Mode

Linker Operating Instructions
Prompt Mode

To run the Linker in prompt mode type Link. The Linker will respond with a
prompt requesting an input filename. The default extension for a Linker input file is
‘obj’. After opening the object file, the Linker will prompt for the offset address for
each program section that has a non-zero size. This offset value is added to the
value of any ORG statements in the file. A carriage retum only response will cause
the Linker to stack each program section on top of the preceding section. A minus
sign causes the Linker to relocate the section, but not include it in the output file. A
semi-colon after any offset address causes the Linker to automatically stack each
section on top of the previous section. Since the best way to explain all of this is
with examples, please refer to the Linker Examples section of this manual.

The input phase can be terminated by responding to the input filename
prompt with just a carriage return. The Linker will then prompt for an output
filename. A carriage return only response to the output filename prompt will cause
the Linker to generate an output file with the same name as the first input file and an
extension that is determined by the output file type.

After the output filename has been entered, the Linker will prompt for library
filenames. The Linker can search up to 50 libraries for external symbol references.
A carriage return only response to the library filename prompt will terminate library
filename input.

After any library filenames have been entered, the Linker will prompt for any
Linker options. The Linker options are described in the section entitled Linker
Options.

2500 A.D. Linker - Version 4.02 Prompt Mode

NOTE to VMS users:

Assuming the linker is located in a directory named $disk1:{link], the
following command must be entered for the examples shown above to work:

link == "$disk1:{link]link.exe"

if you use the VMS Link program, one of the linkers should be renamed.

)

2500 A.D. Linker - Version 4.02 Data File Mode

Data File Mode

Data File mode is included for large or complex linking. This mode can be
viewed as being identical to prompt mode, except that all of the responses to the
prompts are placed in a file and the file is submitted to the Linker. The command is -
as follows:

Link data_‘ile

This causes the Linker to read the file data_file.Ink and uses the responses
in the file, line by line. The Linker assumes an extensicn of Ink on the data file.
Since carriage retum only responses may be difficult to see in a data file, an
underbar character ('_’) may be placed on a carriage return only line. If Linker
options are specified, they are placed last in the file, just as they are in prompt
mode. The following sample Data File will link 2 files together with the section
named CODE starting at 2000H and the section named DATA starting at 4000H.
The default Linker output filename is to be used, and the D and 3 options are used
to generate a disk map file and a Motorola S37 output file.

file1 First input filename

2000 Put the CODE section at 20004
4000 _ Put the DATA section at 4000H
file2 Second input tilename

Stack CODE section on top of 1st CODE
Stack DATA section on top of 1st DATA
No more input filenames

Use default output filename

No library filenames

Creato disk file & Motoroia S37 file

al
(X}

2500 A.D. Linker - Version 4.02 Data File Mode

The easiest way to construct a Data File is to run through the link process in

- Prompt mode, and write down each response. Then, using a text editor, create a

file with each response on a line by itself. This file should have an extension of Ink.

Any line that has a semi-colon or an asterisk in column 1 will be considered
to be a comment line.

NOTE to VMS users:

Assuming the linker is located in a directory named S$disk1 :{link], the
following command must be entered for the examples shown above to work:

link == "$disk1:{link]link.exe"

It you use the VMS Link program, one of the linkers should be renamed.

2500 A.D. Linker - Version 4.02 Command Line Mode

Command Line Mode

The Linker may be invoked by using a command line. The form of this
command is shown below, with optional fields shown in brackets.

Link [-q] - file1 [-Inann] file2 [-Innnn] ...[-ofile] [-options]

The -q option puts the Linker in Quiet mode. In this case the only output to
the terminal from the Linker are link errors.

The -c option is required, and informs the Linker that it is running in
Command Line mode instead of Data File mode.

Following the -¢ is the list of input files, denoted in the above command line
by file1 and file2. Each input file may be followed by an offset address by using the
-l option. If the address offset is not included, each file is stacked on top of the
previous file according to matching section names.

The -0 option can be used to specify an output filename. This field is
optional. If no output filename is specified, the Linker will create an output file with

the same name as the first input file, with an extension determined by the output file
format.

The -L option can be used to specify library filenames. A maximum of 50
library filenames can be specified.

The options field allows any of the Linker options to be specified. A minus
sign is required in front of the list, and as many options as desired may be specified.
See the Linker Options section of this manual for a description of the options.

2500 A.D. Linker - Version 4.02

NOTE to VMS users:

Command Line Mode

Assuming the linker is located in a directory named $disk1[link], the
following command must be entered for the examples shown above 0 work:

link == "$disk1:{link]link.exe"

If you use the VMS Link program, one of the linkers should be renamed.

2500 A.D. Linker - Version 4.02 Linker Options

Linker Options

In prompt mode, the linker options prompt appears after the output filename
prompt. The options below are also available in Command Line and Data File
mode. When more than one option is specified the final option will override the
previous options.

Options (D, S,A,M,Z,X,H,E, T, 1, 2,3, <CR> = Default)

D-

S-

Create a disk file containing any link errors, an alphabetized global
symbol table, and the Load Map. The file created has the same name
as the Linker output file with an extension of 'map’.

Create a symbol file for debugging purposes. The file contains all the
global symbols and relocated values. Each symbol is 32 characters in
length. See the Symbol Table Qutput Format section of this manual
for exact details.

Create a symbol file for debugging purposes, but limit the symbois to
the first 10 characters. This is used for compatability with the 3.0
2500 A.D. series of Linkers. See the Symbol Table Output Format
section of this manual for exact details.

Create a symboil file for debugging purposes in the Microtek format.
This file includes all symbolis, both local and global. The SYMBOLS
ON directive must be included in the source file for this format to be
generated.

Create a symbol file for debugging purposes in the Zax format. This file
includes all symbols, both local and global. The SYMBOLS ON
directive must be included in the source file for this format to be
generated.

Generate an Executable output file.
Generate an Intel Hex output file.

Generate an Extended Intel Hex output file.
Generate a Tektronix Hex output file.
Generate a Motorola S19 output file.
Generate a Motorola S28 output file.
Generate a Motorola S37 output file.

2500 A.D. Linker - Version 4.02 ~ Address Relocation

Address Relocation

. Addresses are relocated by adding the offset address to the address
decoded by the 2500 A.D. Assembler. Normally the program would be assembled
starting at location 0000, but it doesn't have to be. The offset address will simply
be added to any address generated by the Assembler.

The Assembler maintains a table of attributes associated with each symbol
used in the program. If the label simply preceds an instruction, then it is tagged as
relocatable. If the label is defined in an .EQUAL directive, then the relocatability of
it depends on the operand field type. If the operand contains no relocatable tokens,
then the expression is not relocatable. If the operand contains only one relocatable
token, then the expression is relocatable. If the operand contains two or more
relocatable tokens, then the expression is not relocatable.

Byte values are only relocatable candidates if the unary greater than > sign is
used for the high byte and/or the unary less than < sign is used for the low byte.
These operands are subject to the same relocation rules as full 16 bit address
values.

Following are some examples illustrating these points.

LABEL1: NOP ; The label is defined to be equal
to the address of an instruction
and therefore is relocatable.

LABEL2: .EQUAL LABEL1 ; The labei is defined to equal a
value that was tagged as reloc-
atable. Therefore, LABEL2 is
aiso relocatabie.

LABEL3: EQUAL 10 ; The label is defined to equal a

constant. Therefore, LABEL3 is
not relocatable.

2-10

2500 A.D. Linker - Version 4.02

Address Relocation

LABEL4:

LABELS:

LABELS:

.EQUAL

.EQUAL

EQUAL

$+10 ; The label is defined to equal a relocatable

; value plus a non-relocatable value. Since
;only one value is relocatable, the symbol
; LABELA is relocatable.

10+3 ; The label is defined to equal a non-relocatable
; value pius a relocatable value. Since only one
; value is relocatable, LABELS is relocatable.

LABELS-LABEL2
; The label is defined to equal a relocatable value|
; minus another relocatabie value, producing a
; hon-relocatable resuit.

The last example is worth remembering when using the Assembler to do
things such as calculate data sizes. Consider the following example of a table of
data values, with the number of bytes being calculated automatically at assembly
time by the Assembler, allowing the programmer to add or delete from the table
without having to remember to change the data block size.

DATA: 0

10

20

5
DATA_SIZE: .EQUAL $-DATA

The Assembler will calculate the size of the data block, and because the
result is not relocatable, the Linker will not alter the data biock size.

2-11

2500 A.D. Linker Version 4.02 Linker Examples

Linker Examples

This section consists of examples intended to demonstrate the use of the
Linker. The <CR> symbol denotes a carriage return and is shown only when no
other response to a prompt is desired. Otherwise, all inputs are assumed to be
terminated with a carriage return. In all cases, a Data File can be constructed with
exactly the same responses as when running in Prompt mode.

Single File Assembled At Desired Run Address

The first example is the case of just one file which has been assembled at
the desired run address by the use of the ORIGIN directive. Also, assume the
default output file type is Executable, and no Linker options are desired. If no
additional sections were defined, and there was no switching between the
predefined sections, the Linker prompts would be as follows:

Input Filename : filename
Enter Offset for 'CODE’ :0
Input Filename : <CR>
Output Filename : <CR>
Library Filename: <CR>

Options (D, S, A,M, Z, X, H,E, T, 1,2, 3, <CR>= Default) : x

The above will cause the Linker to read the file filename.obj, add 0 to all
relocatable addresses, and output a file with the name filename.tsk.

2-12

2500 A.D. Linker Version 4.02 Linker Examples

The following example shows the case where everything is the same as in
the previous example except the desired output format is Intel Hex. Note that the
default Linker output format may be changed with the OPTIONS Assembler
directive.

Input Filename : filename

Enter Oftset for 'CODE’ :0
Input Filename : <CR>
Output Filename :<CR>

Library Filename:<CR>

Options (D, S,A,M,Z, X, H,E, T, 1, 2,3, <CR>= Default) : h

The last example for this type of file is the same as in the previous example
with the addition of a disk Load Map file, user specified output filename, and a
library to search for unresolved external references. The options may be specified
in any order.

Input Filename : filename

Enter Offset for 'CODE’ : 0
Input Filename :<CR>
Output Filename :user_filename

Library Filename: lib_filename

Options (D, S,A, M, Z, X, H, E, T, 1, 2, 3, <CR>= Default) : hd

2-13

2500 A.D. Linker Version 4.02 Linker Examples

Single File With Multiple Sections

This example demonstrates how the Linker handles multiple program
sections. If the predefined CODE and DATA sections were used, and the DATA
section is to be stacked on top of the CODE section, then the Linker prompts would
be as follows:

input Filename : filename
Enter Offset for 'CODE’ :0 '
Enter Offset for 'DATA’ :<CR>
Input Filename : <CR>
Output Filename :<CR>
Library Filename: <CR>

Options (D, S,A, M, Z, X, H,E, T, 1, 2, 3, <CR>= Default) :

If instead of using the predefined sections CODE and DATA, the user
defined sections Program_section1i and Program_section2 were used, and
Program_section2 is to be stacked on top of Program_section1, the prompts
would be as follows:

Input Filename : filename
Enter Offset for 'Program_section1’ :0
Enter Offset for 'Program_section2' :<CR>
Input Filename : <CR>
Output Filename : <CR>
Library Filename: <CR>

Options (D, S,A,M, Z, X, H,E, T, 1, 2, 3, <CR>= Default) :

One important item to keep in mind is that sections are stacked in the order
in which they are defined. Therefore, in this example there is no way to stack
Program_section2 on top of Program_section1. If the need arises to reverse the
order, then order of the SECTION directives in the source file must be changed.

2-14

2500 A.D. Linker Version 4.02 . Linker Examples

If in the above example, Program_section1 was to be relocated to run at
2000H and Program_section2 was to be relocated to run at 4000H, the following
responses would be used.

Input Filename : filename
Enter Offset for 'Program_section1’ : 2000
Enter Offset for 'Program_section2’ : 4000
Input Filename : <CR>
Output Filename : <CR>
Library Filename: <CR>

Options (D, S,A,M, Z, X, H,E, T, 1, 2, 3, <CR>= Default) :

Note that the addresses are always specified in Hexadecimal. If the output
file format was Executable, the gap from the end of Program_section1 to the start
of Program_section2 would be filled in with the default fill character, which is FF
Hex. This may be changed with the FILLCHAR Assembier directive.

2-15

2500 A.D. Linker Version 4.02 Linker Examples

Muitiple Files With Mulitiple Sections

This example illustrates how the Linker handles section names in multiple
fiies. Assume file1 and file2 use both CODE and DATA sections, and file1 is to be
linked starting at 0. The-prompts will appear as follows:

Input Filename : file1

Enter Offset for 'CODE’ :0

Enter Offset for 'DATA’ :<CR>
Input Filename : file2

Enter Offset for 'CODE’ :<CR>

Enter Offset for 'DATA’ :<CR>

Qutput Filename : <CR>
Library Filename: <CR>

Options (D, S, A, M, Z, X, H,E, T, 1, 2, 3, <CR>= Default) :

This will produce a file with both CODE sections stacked on top of each

) other, followed by both DATA sections being stacked on top of each cther, then

| stacked on top of both CODE sections. This shows the general rule of stacking:

sections. Sections are stacked according to name, and are stacked in the order in

which they are defined in the source file. All CODE sections will be grouped

together, then all DATA sections, etc. CODE sections will always be stacked

before DATA sections, since that is the order they are predefined in. If DATA must

be placed before CODE, then CODE should not be used and a user defined section

should be used. This is true for stacking only. If CODE and DATA are to be

stacked, but placed at specific addresses, this would be done as follows, assuming
CODE is to start at EOOOH and DATA is to start at 1000H.

2-16

2500 A.D. Linker Version 4.02 Linker Examples

Input Filename : filet

Enter Offset for 'CODE’ - :E000

Enter Offset for 'DATA’ :1000
Input Filename : file2

Enter Offset for 'CODE’ :<CR>

Enter Offset for 'DATA’ :<CR>

Output Filename : <CR>
Library Filename:<CR>
Options (D, S, A, M, Z, X, H,E, T, 1, 2, 3, <CR>= Defautt) :

The rules described in this example hold true regardless of how many input
files there are. Sections can be used to separate program sections according to
function, or to assist in complex linking, since any section may be placed at any
address.

2500 A.D. Linker Version 4.02 ~ Linker Examples

Single File With One Section Used For Reference Only

A reference only section is a section that is relocated so that any globals
defined in the section can be used for linking purposes, however the section is not
included in the output file. Reference only sections are useful in cases such as
where the program resides in ROM or EPROM and the data areas reside in RAM.
It is desirable to have the output file contain only that part of the program that is to
be stored in ROM. Using an example along the same lines as the previous
examples, assume that the program conly uses the predefined CODE and DATA
sections, that the CODE is to start at 1000H and the DATA is to be stacked on top
of the CODE, used for linking purposes, and then discarded. A minus sign before a
section address specifies that section as reference only. A minus sign before the
section name indicates a reference only section in the Load Map.

Input Filename : filename
Enter Offset for 'CODE’ 11000
Enter Offset for ' DATA’ :-<CR>
Input Filename : <CR> .
Output Filename : <CR>
Library Filename: <CR>

Options (D, S,A,M, Z X, H,E, T, 1, 2, 3, <CR>= Defautt) :

If the DATA section was to be placed at 4000H instead of stacked on top of
the CODE section, and was to be used for reference only, this could be
accomplished as follows:

Input Filename : filename
Enter Offset for ' CODE’ 1000
Enter Offset for 'DATA’ : ~4000
Input Filename : <CR>

Output Filename : <CR>

Library Filename: <CR>

Options (D, S, A, M, Z, X, H, E, T, 1, 2, 3, <CR>= Defaut) :

2-18

2500 A.D. Linker Version 4.02 Linker Examples

; on of il] | for ret v witt

| tlon. The first section in the first fil T | for ref

only, since it is used as the basis for all other Linker calculations. Therefore, it

is a good idea not to use the CODE section for reference only. Instead, define a
section with the SECTION Assembler directive, and make it reference only. If that
section was named Ref_only, this would appear as follows:

Input Filename : filename
Enter Offset for 'DATA’ 11000
Enter Offset for 'Ref_only’ : -4000
Input Filename : <CR>

Qutput Filename : <CR>

Library Filename: <CR>

Options (D, S,A,M, Z, X, H,E, T, 1, 2, 3, <CR>= Default) :

2-19

2500 A.D. Linker Version 4.02 Indirect Linking

Indirect Linking

Indirect Linking is the term 2500 A.D. uses to describe a section of a file that
is linked to run at an address other than the actual load address. This may be
called phase and dephase also, however there is one major difference, namely that
phase and dephase change the address at the assembly level, and indirect linking
changes the address at link time.

This concept can be fairly confusing, and it is extremely easy to generate an
output file that has the addresses so messed up it will never run. Despite this fact,
there are times when this linking method is required.

Assume a single board controller application of some sort, where the
program resides in ROM. If all of the data consists of lookup tables or constants,
then there is no reason to move the data out of ROM, since it will never be written
to. But if there is data that has been initialized to some value, but that value will
change as the program runs, then that data must be moved from ROM to RAM by
some sort of run time startup routine. If the address in RAM is the same as the
address in ROM, then there is no problem, since the addresses generated by the
Linker will be correct. However, in many cases the data that must be moved will
simply be stacked on top of the previous section and burned into the ROM at that
address. Now, it would be desirable to move this data to the same place every
time, regardless of how the size of the cther sections of the program change, and a
likely candidate for this location would be either low or high RAM. The problem is,
the Linker linked the data addresses to be where the data resides in the ROM, not
where it is going to be moved to run in RAM.

Indirect Linking solves this problem. Any section of a file can be linked to run
at an address other than where it resides in the load file (the ROM). The '@’ sign
before the load address is used to convey to the Linker that this is what is desired.
All indirect addresses are automatically stacked on top of the previous section, or a
section by the same name in a previous file.

Following is a list of rules that should be remembered when using the indirect
linking feature.

2500 A.D. Linker Version 4.02

Indirect Linking

1) Once a section name has been tagged as indirect, every

indentical section name in following files will automaticaily

be tagged as indirect aiso.

stacked in if they were not indirect.

2) Indirect sections are stacked in the order they would be

3) Indirect sections cannot be reference only, since the whole
point is to include the section in the load file.

Assume that there are three files, named file1.obj, file2.0bj and file3.obj,
each of which have three sections , called program, const_data and init_data. If
section program resides at 0, and the constant data section const_data is to be
stacked on top of program, and section init_data is supposed to run at 1000H in
RAM, but will be stored in ROM on power up, the following link procedure would be

Input Filename : file1
Enter Offset for 'program’
Enter Offset for ‘const_data’
Enter Offset for ’init_data’
Input Filename : file2
Enter Offset for 'program’
Enter Offset for ’const_data’
Enter Offset for ’init_data’
Input Filename : file3
Enter Offset for 'program’
Enter Offset for ‘const_data’
Enter Offset for 'init_data’
input Filename : <CR>

Output Filename : <CR>

Library Filename: <CR>

Options (D, S, A, M, Z, X, H,E, T, 1, 2, 3, <CR>= Default) : <cr>

: 0000
! <Cr>
: @1000

. <CIM>»
. <Cr>
. <CI'>»

. <Cr>»
. <Cr>
. <Cr>»

The resuiting output file will contain all the sections, with init_data stacked
on top of const_data, and both of these sections stacked on top of program. The
Load Map will show the actual load addresses, however a look at the global symbol
list will show that all global symbols defined in init_data are linked starting at
1000H. Therefore, the program will not run as is. The init_data section must be

%,
"~

)

2500 A.D. Linker Version 4.02 Indirect Linking

moved to location 1000H. In order to do this, the size of the init_data section must

‘be known. The easiest and most versatile way of finding the size of a section is to

bracket it with other sections, even if they are empty. The Linker will not prompt for
the load address of an empty section, but will if there is at least one equate in it.
Therefore, the first file can be used to set the section link order. The following lines
of code would be put in file1.asm to do this.

program: .section
program_addr: .equai $
const_data: .section
const_data_addr: .equal S
const_data_end: .section
const_data_end_addr: .equal $
init_data: .section
init_data_addr: .equal $
init_data_end: .section
init_data_end_addr: .equal $
program

There are two sections in the above example that have no purpose other
than address calculation. The section const_data_end provides the address in the
ROM where init_data starts. The init_data section cannot be used directly
because it has been linked at a different address, so all labels associated with
init_data have been relocated with respect to that address. The section
init_data_end provides the size of the init_data section. So, the following will
provide the necessary information:

Size of Initialized Data = init_data_end_addr-init_data_addr
Address in Rom of Initialized Data = const_data_end_addr

Since the labels used to calculate the size of the initialized data section
reside in different sections, the subtraction to calculate the size of the initialized data
section must be performed by the run time startup routine.

The procedure to link the files together would be to link the files as shown in
the previous example, with the addition of stacking const_data_end on top of

2-22

2500 A.D. Linker Version 4.02 Indirect Linking

const_data and stacking init_data_end on top of init_data. In order for the size of
init_data to come out comectly, the section init'_data_end must be linked as
indirect and stacked. This can be done by specifying @’ followed by a carriage
return, as shown in the following example.

Input Filename : file1

Enter Offset for 'program’ : 0000
Enter Offset for ‘const_data’ P <Cr>
Enter Offset for ‘const_data_end’ . <Cr>
Enter Offset for 'Init_data’ :1000
Enter Offset for ’init_data_end’ I @<cr>
Input Filename : file2
Enter Offset for ‘program’ P <Cr>
Enter Offset for 'const_data’ I <Cr>
Enter Offset for ‘const_data_end’ P <Ccr>»
Enter Offset for ’init_data’ ! <Cr>
Enter Offset for ’init_data_end’ ! <Cr>
Input Filename : file3
Enter Offset for 'program’ ! <Cr>
Enter Offset for ‘const_data’ I <Cr>
Enter Offset for 'const_data_end’ ! <Cr>
Enter Offset for 'init_data’ ! <Cr>»
Enter Offset for ’init_data_end’ P <Cr>

input Filename : <CR>

Output Filename : <CR>

Library Filename: <CR>

Options (D, S, A, M, Z, X, H,E, T, 1, 2, 3, <CR>= Defauit) : <cr>

Since a file that is linked using indirect sections will usually have all sections
stacked on top of the previous one, the linker can be put in auto-stack mode by
specifying a semi-colon (;) after any of the load addresses, or before any of the
carriage return only responses. After this, all sections will automatically be stacked.

In the example above, the runtime address specified were between 0000 and
FFFFH. The addresses may aiso be speified in a segment and offset format. A
runtime offset specified as a segment and offset are mainly used for the 8086,
28000 and the 65816 micrprocessors. The output format selected should aiso be
Extended Intel Hex. The example below shows program_section1 relocated at
1:0000H and program_section2 relocated to run at 1:2000H.

2500 A.D. Linker Version 4.02 Indirect Linking

T Input Filenme : filename
1‘ - Enter Otfset for ‘program_section1’ : 1:0000
Enter Offset for ‘program_section2’ : 2:0000
Input Filename: <cr>

Output Filename: <cr>

Library Filename: <cr>

Options (D, S, A, M, Z, X, E, T, 1, 2, 3, <CR> = Defauit): E

Note that the Extended Intel Hex option was chosen in the above example.

2500 A.D. Linker - Version 4.02

Linker Symbol Table Output Formats

The following sections describe the Symbol Table output formats from the
Linker when one of the Linker Symbol Table options are chosen.

Symbol Table Output Format

This section describes the format of the Global Symbol Table that is
produced when the S Linker option is selected. The Symbol Table always recsives
the same filename as the Linker output filename, with an extension of SYM. The
first byte of this file is the i.d. code, which is EOH. The following bytes, relative to
the start of each entry, are repeated for each entry.

Bytes 0-31 Global Symbol Name. The name is padded with
zeros to fill out the 32 character positions. The
end of the entries can be detected by an FFH in

byte 0.

Byte 32 Most significant byte of relocated Global Symbol
value.

Byte 33 Least significant byte of relocated Globol Symbol
value.

Byte 34 File number in which the Global was defined. This

is used by the linker to output the filename along
with the value. This byte may be deleted or used
for other purposes if desired.

Byte 35 Fiag byte. This byte is unused at the current time
but may be used in the future by 2500 A.D.

2500 A.D. Linker - Version 4.02

Abbreviated Globél Symbol Table Output Format

This section describes the format of the Global Symbol Table that is
produced when the A Linker option is selected. The Symbol Table always
receives the same filename as the Linker output filename, with an extension of
SYM. This is the same symbol table as produced by the 3.0 series of 2500 A.D.

Linkers.

Bytes

Byte

Byte

Byte

Byte

0-8

10

11

12

13

Gilobai Symboi Name. The name is padded
with zeros to fill out the 10 character positions.
The end of the entries can be detected by an
FFH in byte 0.

Most significant byte of relocated Global
Symbol value.

Least significant byte of relocated Global
Symbol value

File number in which the Global was defined.
This is used by the Linker to output the file-
name along with the value.This byte may
deleted or used for other purposes if desired.

Flag byte. This byte is unused at the current
time but may be used in the future by
2500 A.D. products.

2500 A.D. Linker - Version 4.02

Microtek Symbol Table Output Format

This' section describes the MicroTek Symbol Table format which is
selected by the M Linker option. The Symbol Table aiways receives the same
filename as the Linker output filename, with an extension of SYM.

FEH Start of Module
Size of Module Name
Moduie Name

Rest of Module Name 3 Bytes in Length
2 = 16 Bits
. 3 = 24 Bits
Size of Symbol Address 4 = 8086,80186,80286
5 = 32 bits
Size of Symboi 1 Byte in Length

Symbol Name
High Byte of Address
Low Byte of Address

Rest of Symbols & Values

FEH End of Module

Next Module Information

(Same as described above) _
“FFH End of File

2500 A.D. Linker - Version 4.02

Zax Symbol Table Output Format

This section describes the format of the Zax Symbol Table that is produced
when the Z.Linker option is selected. The Symbol Table always receives the same
filename as the Linker output filename with an extension of .SYM.

$$ Module_Name Start of Module
<CR> <LF>
Symbol_Name
Space
Symbol Value
<CR> <LF>

Rest of Symbois
And Values
End of Module

$$ Module_Name
<CH> <LF>
Next Module information
(Same as described above)

2500 A.D. Linker - Version 4.02

Linker Output Formats

The following sections describe the output formats from the Linker when one
of the Linker output formats are chosen

Intel Hex Format

The Intel Hex Format is described below.

Record Mark Field - This field signifies the start of a record, and con-
sists of an Ascii colon (:).

Record Length Field - This field consists of two Ascii characters which
indicate the number of data bytes in this record.
The characters are the result of converting the
number of data bytes in binary to two Ascii chara-
cters, high digit iirst. An end of file record contains
two Ascii zeros in this field. The maximim number
of data bytes in a record is 255. This can be chan-
ged by using the RECSIZE directive.

Load Address Field - This field consists of the four Ascii characters
which result from converting the binary value
of the address in which to begin loading this
record. The order is as follows:

High digit of high byte of address.
Low digit of high byte of address
High digit of low byte of address.
Low digit of low byte of address.

In an end of file record, this field consists of either
four Ascii zeros, or the program entry address.

2500 A.D. Linker - Version 4.02

Record Type Field -

Data Field -

Checksum Field -

This field identifies the record type, which is
either 00 for data records or 01 for an end of .
file record. It consists of two Ascii characters,
with the high digit of the record type first,
followed by the low digit of the record type.

This field consists of the actual data,
converted to two Ascii characters, high
digit first. There are no data bytes in the
end of file record.

The checksum field is the 8 bit binary sum of
the record length field, the load address field,
the record type field and the data field. This
sum is then negated (2's complement) and
converted to two Ascii characters, high digit
first.

2500 A.D. Linker - Version 4.02

Extended Intel Hex Format

The Extended Intel Hex Format is described below.

Record Mark Field - This field signifies the start of a record, and con-
sists of an Ascii colon (2).

Record Length Field - This field consists of two Ascii characters which

: indicate the number of data bytes in this recnrd.
The characters are the resuit of converting the
number of data bytes in binary to two Ascii chara-
cters, high digit first. An end of file record contains
two Ascii zeros in this field. The maximim number
of data bytes in a record is 255. This can be chan-
ged by using the RECSIZE directive.

Load Address Field - This field consists of the four Ascii characters
which result from converting the binary value
of the address in which to begin loading this
record. The order is as follows:

High digit of high byte of address.
Low digit of high byte of address
High digit of low byte of address.
Low digit of low byte of address.

In an end of file record, this field consists of either
four Ascii zeros, or the program entry address.

2500 A.D. Linker - Version 4.02

Record Type Field -

Data Field -

Checksum Field -

This field identifies the record type, which is
gither 00 for data records or 01 for an end of
file record and 02 for a segment addrass .

It consists of two Ascii characters,

with the high digit of the record type first,
followed by the low digit of the record type.

This field consists of the actual data,
converted to two Ascii characters, high
digit first. There are no data bytes in the
end of file record.

The checksum field is the 8 bit binary sum of
the record length field, the load address field,
the record type field and the data field. This
sum is then negated (2's complement) and
converted to two Ascii characters, high digit
first.

2500 A.D. Linker - Version 4.02

Motorola S19 Format

The Motorola S1 - S9 Format is described below.

Record Type Field - This field signifies the start of a record and
the record type as follows:

Ascii S1 - Data Record
Ascii S9 - End of File Record

Record Length Field - This field specifies the record length which
includes the Address, Data and Checksum
fields. The 8 bit Record Length value is
converted to two Ascii characters, high digit

. first. Since the smallest object file record

) size is 128 bytes, the Record Length field
always consists of 128 data bytes, 2 address
bytes and.1 checksum byte, resuiting in a
record length of 131 bytes. This can be
changed with the RECSIZE directive.

Load Address Field - This field consists of the four Ascii characters
which result from converting the binary value of
the address in which to begin loading this record.
The order is as follows: :

High digit of high byte of address
Low digit of high byte of address
High digit of low byte of address
Low digit of low byte of address

In an end of file record, this field consists of four Ascii zeros.

2500 A.D. Linker - Version 4.02

Data Fieid -

Checksum Field -

This field consists of the actual data, convert-
ed to two Ascii characters, high digit first.
There are no data bytes in an end of file record.

The checksum field is the 8 bit binary sum
of the record length field, the load address
field and the data field. This sum is then comp-
lemented (1°’s complement) and converted to
two Ascii characters, high digit first.

2500 A.D. Linker - Version 4.02

Motorola S28 Format

The Motorola S2 - S8 Format is described below.

Record Type Field - This field signifies the start of a record and
identifies the record type as foilows:

Ascii S2 - Data Record
Ascii S8 - End of File Record

Record Length Field - This field specifies the record length which
includes the Address, Data and Checksum
fields. The 8 bit Record Length value is con-
verted to two Ascii characters, high digit first.

Load Address Field- This field consists of the six Ascii characters
which result from converting the binary value
of the address in which to begin loading this
record. The order is as follows:

High digit of high byte of address
Low digit of high byte of address
High digit of mid byte of address
Low digit of mid byte of address
High digit of low byte of address
Low digit of low byte of address

In an end of file record, this field consists of six Ascii zeros.

2500 A.D. Linker - Version 4.02

Data Field -

Checksum Field -

This field consists of the actual data, convert-
ed to two Ascii characters, high digit first.
There are no data bytes in an ena of file record.

The checksum field is the 8 bit binary sum
of the record length field, the load address
field and the data field. This sum is comp-
lemented (1's complement) and converted to
two Ascii characters, high digit first.

2500 A.D. Linker - Version 4.02

Motorola S37 Format

The Motorola S3 - S7 Format is described below.

Record Type Field - This field signifies the start of a record and
identifies the record type as follows:

Ascii S3 - Data Record
Ascii S7 - End of File Record

Record Length Field - This field specifies the record length which
includes the Address, Data and Checksum
fields. The 8 bit Record Length value is con-
verted to two Ascii characters, high digit first.

Load Address Field- This field consists of the eight Ascii characters
which result from converting the binary value
of the address in which to begin loading this
record. The order is as follows:

High digit of high byte of high word
Low digit of high byte of high word
High digit of low byte of high word
Low digit of low byte of high word
High digit of high byte of low word
Low digit of high byte of low word
High digit of low byte of low word
Low digit of low byte of low word

In an end of file record, this field consists of eight Ascii zeros.

2500 A.D. Linker - Version 4.02

Data Field -

This field consists of the actual data, convert-

- ed to two Ascii characters, high digit first.

Checksum Field -

There are no data bytes in an end of file record.

The checksum field is the 8 bit binary sum of
the record length field, the load address field
and the data field. This sum is complemented
(1's complemsent) and converted to two Ascii
characters, high digit first.

2500 A.D. Librarian 2500 A.D. Librarian

2500 A.D. Librarian Description

The 2500 A.D. Librarian is used to create a library of user specified object
modules to be linked together with a program created by a 2500 A.D. assembler.
The linker will search the specified libraries and only include the referenced library
modules.

The Librarian will process any size file, as long as enough disk space is
available. A library is limited to 256 separate modules. The Librarian requires
enough disk space for an existing library and space for a temporary file the size
of the existing library plus any modules being added to the library. A temporary file
is used to create a library to minimize the possibility of damage to an existing
library. The Librarian also requires. enough memory to store all the global symbol
records of the library modules, and the module directory list. The global symbols are
checked for multiply defined symbols.

The Librarian command line parser only recognizes two operand separators
space and tab. The command descriptions show the full command name and the
allowed abbreviations. The operands allowed by each command are also shown.
The system defaults used by the Librarian are :

obj object filename extension

pak packed object filename extension
lib library filename extension

tmp temporary filename extension

The Librarian displays the modules contained in a library on the screen. The
current working module is displayed with highlighting. The current working module
can be changed by scrolling up or down the library directory list. To scroll up the
directory list type k or K and to scroll down the directory list type j or J. The
directory list can be displayed 16 modules at a time. If a module is added to the list
and is outside the currently displayed modules, the screen is adjusted to display.the
added module. The added module is always displayed as the current module. A

3-1

ey,

2500 A.D. Librarian 2500 A.D. Librarian

module may be a single object file or a medule in a packed object file. A packed
object file is several object files concatenated together. See the MODULE and
ENDMOD directive descriptions in the Assembly Mode section of this manual for
examples of creating a packed object file. A packed object file may be used for an
operation on a single module or all modules within the file. The operand all or ALL
may only be used with a packed object file, and will cause all the modules within the
file to be added to a library or replace the modules in the library.

Note to VMS users:

VMS users must type carriage return after using °j’ or 'J’ as well as 'k’ or
K.

2500 A.D. Librarian | 2500 A.D. Librarian

Librarian Installation

The 2500AD Librarian is included on the distribution media for the
Assembler. The filename for the librarian on the UNIX or ULTRIX operating system
is LIB. The filename for the librarian on the MSDOS or VMS operating system is
LIB.EXE. Installation of the librarian is dependent on the host operating system.
Users of the UNIX or ULTRIX operating systems must perform step 1 of the
installation directions. Users of the MSDOS or VMS operating systems must also
perform the appropriate section of step 2 of the installation directions.

STEP 1: Copy the file lib or lib.exe to the desired directory and disk drive.

NOTE: The file LIB.EXE will need to be renamed on the VMS operating
system so the 2500AD librarian will not conflict with the VMS librarian utility.

STEP 2: This only applies to users of the MSDOS or VMS operating systems.
. Please refer to the section appropriate to your host operating system.

MSDOS:

The librarian requires the use of the ANSI device driver. The systems
config.sys file must be modified to cause the MSDOS operating system to load the
device driver. The config.sys file is located in the root directory. if the config.sys file
does not exits one must be created. Please refer to your MSDOS manual for

information on creating a config.sys file. Add the following line to the config.sys
file.

DEVICE=ANSI.SYS

NOTE: The system will need to be rebooted for the MSDOS operating
system to load the ANSI device driver.

2500 A.D. Librarian 2500 A.D. Librarian

VMS:

The librarian will need to be defined as a command to the VMS operating
system, if you wish to execute the librarian without using the RUN command. The
following line must be added to the LOGIN.COM file.

librarian == "$$Disk1:librarian.exe"

The filename for the librarian shown in the previous line is dependent upon
the name the librarian was given when it was copied from the distribution media.

et
B :

2500 A.D. Librarian 2500 A.D. Librarian

Librarian Operating‘ Instructions

The Librarian will accept one command line argument, the fllename of an
existing library or a library to be created.

To run the Librarian and read an existing library type :

lib filename

Where the filename is an existing library.

To run the Librarian and create a new library type :

lib filename

Where the filename is the new library name.

The Librarian may also be invoked with no command line arguments and an
existing library or a new library specified from the Librarian command line.

To run the Librarian with no file specified type :

lib

The Librarian will respond with the prompt :

Enter Command :

The Librarian commands will be described in the next section. The Librarian

is designed to be used interactively and cannot be used with an Msdos batch file or
Unix shell file.

2500 A.D. Librarian _ 2500 A.D. Librarian

ADD filename
A

The ADD command adds a module to a library, or replaces an existing
medule in a library. The command accepts one operand, the filename of a module
to be added to a library or the operand all or ALL. The operand all or ALL is only
allowed with a packed object file. The ADD command will not allow a module to be
added unless a library has been open or created with the NEW command. The
Librarian will always prompt for the object filename containing the module to be
added. If the fils specified is a packed object file the file is searched for the module,
and it found the module is added to the library. If the maximum module limit is
reached the module will not be added. If the operand is not present the Librarian will
prompt for the module name.

Command Examples:

add printf

The Librarian will respond with the prompt :
Enter Name of Object File : -

Assume the name mylib was entered at the prompt. The Librarian will search

for the file mylib.obj, and if the file is not found the Librarian will search for the file
mylib.pak.

add all

The Librarian will respond with the prompt :

Enter Name of Object File :

2500 A.D. Librarian 2500 A.D. Librarian

Assume the filename is mylib.pak. The Librarian W|I| add all the modules
contained in the file mylib.pak to the library.

add

The Librarian will respond with the prompt :

Enter Name of Module :

After the module name is entered the Librarian will prompt for the name of
the file containing the module as in the previous examples.

P
£

2500 A.D. Librarian : 2500 A.D. Librarian

- DEL module
D E

The DEL command deletes the named module or the current working
module from the library. The current working module is the highlighted module on

. the screen. If the operand is not present the current working module is deleted. If

the operand is present the library directory list is searched for the named module. It

is an error to delete a module if no library has been opened, the library contains no

modules or the named module cannot be found in the directory list.

Command Examples:

del printf

The Librarian will search for the directory entry printf and delete the entry
from the list removing the module from the library. The next module in the directory
list becomes the current working module, and if the deleted module was the last
module in the list the previous module becomes the current working module.

del

The Librarian will delete the current working module from the directory list
removing the module from the library.

2500 A.D. Librarian 2500 A.D. Librarian

EXIT

The EXIT command will save a library, if a library is open and contains at
least one module, and return control to the operating system.

Command Examples:

exit

If a library is open and contains at least one module the Librarian will display
the message :

Saving Library : library name

2500 A.D. Librarian 2500 A.D. Librarian

FIND module

The FIND comimand may be used to locate a module in a large library. The
command accepts one operand and the name of the module to find. The module, if
found, will become the current or highlighted module. An error message will be
displayed if the medule cannot be found in the library.

Command Example:

find printt

HELP command name
H

The HELP command displays a summary of all the Librarian commands, or
a description of the command specified by the optional operand. The directory
display is cleared and the help text is displayed in place of the directory list. The
Librarian prompts for any character to be typed to continue. The directory list is
restored and the Librarian will wait for the next command.

Command Example:

HELP

The main help screen describing how to use the HELP command is
displayed. The Librarian will respond with the prompt :

Press Any Key To Continue :

3-10

2500 A.D. Librarian 2500 A.D. Librarian

heip ADD

The help screen describing how to use the ADD command is displayed and
the Librarian responds with the prompt :

Press Any Key To Continue :

LIST .module

The list command will list the global sym’bols of the specified module to the
screen or to a file. The global symbols are listed by name in sorted order. The
command may have two operands. The first operand the module name or the word
ALL or all. The operand ALL will list the global symbols for all modules in the library.

‘) The second operand is optional and must be the word disk or DISK. The second
operand specifies sending the global symbol listing to a disk file |

Command Exampiles:

LIST mod2
LIST ALL disk

2500 A.D. Librarian 2500 A.‘D. Librarian

NEW filename
N

The NEW command creates a new library or opens an existing library. If a
lirary was previously open and contained at least one module the previous library
will be saved before the new library is opened. The command requires one operand
the filename of the library to create or open; if the operand is not present the
Librarian will prompt for the filename. A library must be open before modules can be
added, deleted or replaced.

Command Example:

new mylib

The Librarian will search for an éxisting library with the filename mylib.lib. If
the library exists the library directory is displayed on the screen. If the library does
not-exist a library with the name mylib.lib will be created.

QUIT

The QUIT command causes the Librarian to terminate and return control to
the operating system. If a library is open and contains at least one module the
Librarian will ask whether the library is to be saved. Typing y or Y will cause the
library to be saved, any other character will result in the library being abandoned.

Command Example:

Quit

It a library is open and contains at least one module the Librarian will respond with
the prompt :

Do You Want to Save the Library (y/n) :

Any character other than y or Y will cause the library to abandoned.

3-12

2500 A.D. Librarian 2500 A.D. Librarian

REP module
R

The REP command is used to replace an existing module in a library with a
new version of the module. The command accepts one optional operand the
module to replace, or the operand all or ALL. The all operand may only be used
with packed object files. If the operand is present the library directory list is
searched for the named module, and if the module is found it is replaced. If the
module is not found an error message is displayed. If the operand is not present the
current working module is replaced. The current working module is defined as the
module highlighted on the screen. It is an error to replace a module if no library is
open or the library contains no modules. The Librarian will always prompt for the
object filename containing the updated version of the module to be replaced.

Command Examples:

rep printf

The Librarian will search the library directory list for the module printf, and if
the module is found displays the prompt :

Enter Name of Object File :

Assume the'ﬁlename mylib was entered. The Librarian will first search for the
file mylib.obj. If the file mylib.obj.is not found the Librarian will search for the file
mylib.pak, and if the file is found search for the module printf.

rep

The Librarian will use the module name of the current working module
(highlighted module) as the module to replace. The Librarian then displays the
prompt :

Enter Name of Object File :

EaiaN
{

2500 A.D. Librarian . 2500 A..D. Librarian

- STAT .

The STAT command displays the status of the current library. If no library is
open the command displays a message that no library is cpen. If a library is open
the total number of modules, externals, globals, and the library name is displayed.
The directory display is overwritten and the status message is displayed, the

Librarian then prompts for any key to be pressed to continue. The- directory display
is then restored.

Command Example:

stat

The library status is displayed, and the Librarian displays the prompt:

Press Any Key To Continue :

After a key is pressed the directory list display is restored and the Librarian
waits for the next command to be entered.

3-14

2500 A.D. Librarian

TOP

2500 A.D. Librarian

The TOP command moves the current working directory highlighting to the

first module in the directory list.

Command Example:

top

BOT

The BOT command moves the current working directory highlighting to the

last module in the directory list.

Command Example:

bot

3-15

2500 A.D. Librarian 2500 A.D. Librarian

Librarian Error Messages

This Section provides a list of the error messages output by the Librarian and
an explanation of the error message. The command line is output with the error
message unless otherwise specified.

Error - Input Line Too Long

Meaning - The input line exceeded 80 characters.

Error-- lllegal Command

Meaning - The command entered was not a valid command or the ADD,DEL or
REP command was used and a library was not open.

Error - Read Error

Meaning- An error occurred while a file was being read. The name of the file is
output with the error message.

Error- Write Error

Meaning- An error occurred while a file was being updated. The name of the file
is output with the error message.

Error- Cannot Open File

Meaning - The file specified could not be accessed or opened. The name of the
file is output with the error message.

Error- Multiple Defined Module

Meaning - The module name being added to a library already exists in the library.
Replace the module or rename the module to be added to the library.
The name of the file is output with the error message.

Error- Filename Too Long

Meaning - The filename specified was too long after the default extension was
appended.

3-16

TN

2500 A.D. Librarian

2500 A.D. Librarian

Error- Undefined Module,

Meaning - -The module being replaced or deleted from library does not exist in the|
library

Error - Not Enough memory

Meaning - There was not enough memory for the buffer or symbol table space
required

Error - Seek Error :

Meaning - An error occurred while the position within a file was being updated.

Error- Cannot Delete Old Library

Meaning - An old library file could not be deleted after the new library was
created or updated. The name of the file is output with the error
message.

Error - Cannot Create New Library

Meaning - The temporary library file could not be renamed. The name of the file
is output with the error message.

Error- Incompatibie Object Module ‘

Meaning - A library file was specified with the ADD command or an object

' module was specified with the NEW command.

Error - Too Many Command Line Arguments

Meaning - The Librarian was invoked with more than one argument from the
operating system command line.

Error - Muitiple Defined Global Symbol

Meaning - A global symbol in a module being added to a library contains a
symbol name that exists in another module.The symbol name and
the filename are output with the error message.

Error - Maximum Module Count Exceeded

Meaning - The maximum module count of 256 modules was exceeded.

Error - Must Be A Packed Object File

Meaning - The operand "all" or "ALL" was used for the ADD or REP
commands, and the file specified was not a packed object file.

3-17

System Requirements

' 2500AD Software System Requirements
System Requirements

- For MSDOS systems, the minimum éystem requirement is 512k of available
memory, minus the amount used by the operating system. Unix systems require at
least 1 megabyte of memory.

For MSDOS systems, up to 20,000 lines of source code have been
assembled with 512k of memory, and 30,000 line programs have been assembled
with 640k of memory without running out of space.

The Linker assumes 20 files may be open at once. On MSDOS systems
there is a file called CONFIG.SYS that is on the system disk. The default value is 5
files, therefore, this must be changed to at least 20. Since the Linker will open and
close files when the number exceeds 20, raising the number higher than 20 will
have no effect on the Linker. However, if any memory resident programs open files,
the number should be increased by the number of files used by the memory
resident programs.

A-1

2500 A.D. 8080 To 280 Source Code Converter instructions

8080 To Z80 Source Code Converter

The 2500 A.D. 8080 to Z80 Source Code Converter will convert standard
Intel 8080 source code to Zilog source code, which can be subsequently assembled
on the 2500 A.D. Z80 Cross Assembier. Since the 8080 source buffer, Z80 source
buffer and symbol table buffer overflow to disk, the size of any file that can be
converted is limited only by the available disk storage space.

Is should be noted that this only runs under Msdos and Zeus.
To run fhe Converter type : CONV
The Converter will respond with the following prompt.
' INPUT FILENAME 7 :

After the user enters the 8080 source code filename the Converter will
ask for the Z80 output filename as shown below.

OUTPUT FILENAME ? :

The Converter will display the 8080 source line, followed by the Z80
equivalent at the terminal. Any source lines which the Converter does not
recognize are assumed to be macros. Although only macros will normally fall into
this class, it may be possible to actually define macros in the Z80 file to handle
some of the non-standard Z80 instruction extensions added to existing 8080
assemblers.

2500 A.D. 8080 To Z80 Source Code Converter instructions

Part of the conversion process includes building a symbol table. This table is

deleted at the end of a normal converter run, but if for some reason the conversion

is aborted, a file of the name SYMBOL.CON may be left on the disk and should be
deleted by the operator.

The Converter recognizes two types of comment lines. The first is a single
line with a semi-colon in column 1. For large comment blocks, some assemblers
have a special assembler directive. The Converter will recognize a comment block
as follows:

.COMMENT X

where X can be any character. The Converter will treat everything'from the
first X to the second X as a comment block.

Ascii Chart

ASCII CHART

Character Binary

Ascii Chart

Qctal Decimal Hex

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101

00010110

00010111
00011000

- 00011001

00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001

000
001
002
003

005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030

032
033
034
035
036
037
040
041
042

044
045

047
050
051

000
001
002
003
004
005

006

007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039

040

041

C-1

Ascii Chart

Ascii Chart

Character Binary Octal Decimal Hex
* 00101010 052 042 2A
+ 00101011 053 043 28
. 00101100 054 044 2C
- 00101101 055 045 2D
. 00101110 056 046 2E
/ 00101111 057 047 2F
0 00110000 060 048 30
1 00110001 061 049 31
2 00110010 062 050 32
3 00110011 063 051 33
4 00110100 04 052 34
5 00110101 065 053 35
6 00110110 066 054 36
7 00110111 067 055 37
8 00111000 070 056 38
9 00111001 071 057 39
: 00111010 072 058 3A
: 00111011 073 059 38
< 00111100 074 060 3C
= 00111101 075 061 3D
> 00111110 076 062 3E
? 00111111 077 063 3F
@ 01000000 100 064 40
A 01000001 101 065 41
B 01000010 102 066 42
C 01000011 103 067 43
D 01000100 104 068 44
E 01000101 105 069 45
F 01000110 106 070 46
G 01000111 107 071 47
H 01001000 110 072 48
i 01001001 111 073 49
J 01001010 112 074 4A
K 01001011 113 075 4B
L 01001100 114 076 4C
M 01001101 115 077 4D
N 01001110 116 078 4E
0o 01001111 117 079 4F
P 01010000 120 080 50
Q 01010001 121 081 51
R 01010010 122 082 52
S 01010011 123 083 53
T 01010100 124 084 54

Ascii Chart ’ " Ascii Chart

Character Binary QOctal Decimal Hex
U " 01010101 125 085 85
v 01010110 126 086 56
w 01010111 127 087 57
X 01011000 130 088" 58
Y 01011001 131 089 59
4 01011010 132 090 5A
[01011011 133 091 58
\ 01011100 134 092 5C
] 01011101 135 093 sD
A 01011110 136 094 SE
- 01011111 137 095 5F
‘ 01100000 140 096 60
a 01100001 141 097 61
b 01100010 142 098 62
c 01100011 143 099 63
d 01100100 144 100 64
e 01100101 145 101 65
f 01100110 146 102 66
g 01100111 147 103 67
h 01101000 150 104 68
i 01101001 151 105 69
i 01101010 152 106 6A
k 01101011 153 107 68
| 01101100 154 108 6C
m 01101101 155 109 6D
n 01101110 156 110 6E
o 01101111 157 111 6F
p 01110000 160 112 70
q 01110001 161 113 7
r 01110010 - 162 114 72
] 01110011 163 115 73
t 01110100 164 116 . 74
u 01110101 165 117 75
v 01110110 166 118 76
w 01110111 167 119 7
X 01111000 170 120 78
y 01111001 17 121 79
z 01111010 172 122 7A
{ c1111011 173 123 7B
| 01111100 174 124 7C
} 01111101 175 125 70
~ 01111110 176 126 7E
DEL o1111111 177 127 7F

Paitaa ™

Ascii Chart

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
S|
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us
SP
DEL

. ‘Abbreviations for Control Characters

null, or all zeros
start of heading
stan of text

end of text

end of transmission
enquiry
acknowledge

bell

backspace
horizontal tabulation
line feed

vertical tabulation
form feed
carriage return
shift out

shift in

data link escape
device control 1
device control 2
device control 3
device control 4

negative acknowledge

synchronous idle

end of transmission block

cancel

end of medium
substitute
escape

file separator
group separator
record separator
unit separator
space

delete

Ascii Chart

A

Index

Index

A E
Abbreviated Global Symbol Table 2-25 ELSE 1-34
Abbreviations for Control Characters C-4 ENDM 1-22
Absolue Versus Relative 1-44, 1-45 ENDMOD 1-29
ABSOLUTE 1-26 ENDS 1-25
AddressingModes 1-15, 1-16 Equal 1-22
Argument Separators 1-46
ASCIl 1417 F
ASCLISTOFF 1-37 FILLCHAR 1-40, 1-41
ASCLISTON 1-37 FLOAT 1-20
ASK 1-24
Assembler Error Messages 1-53 G
Assembler Error Processing 1-10
Assembler Run Time Commands 1-11 Global Symbol Table ~ 2-24
Assembly Time Calculations 1-42
Assembly Time Comparisions 1-42 H
HighByte 1-14
B |
BLKB 1-20 I
BLKW 1-21 IF, IFNZ,COND 1-30
: IFABS, IFNREL 1-33
C ' - IFCLEAR 1-34
Command Line Mode 1-4,1-8 IFDEF 1-31
COMREC 1-41 IFEXT 1-32
Conditional Assembly IFMA, IFNMA 133
IFREL, IFNABS 1-33 IFNEXT 1-32
CONDLISTON/OFF 1-36 :E:?QIL\JMEE':EE;LZE 1323 .
Converter, 8080 To Z80 Source Code B-1 IFSAM.IFNDIFF 1-31
D IFTRUE,IFNFALSE . 1-30
IFZ 1-30
DC 1-19 INCLUDE 1-26

Definition 1-46

Intel Hex Format 2-28
Definition Control 1-22, 1-24

Introduction 1-1

DEFL 1-22

DEFS 1-19 L

DEFW 1-18

DOUBLE 1-20 Labels ~ 1-13

DS 1-19 Labels in Macros 1-46
DW 1-18 Librarian Description 3-1

Librarian Error Messages 3-16
Librarian Operating Instructions 3-5

- f{\\ .

Index

~ADD,A 3-6
DEL,D 3-8
EXIT 3-9
HELP,H 3-10
NEW,N 3-12
QUIT 3-12
REP,R 3-13
STAT,S 3-14
TOP,BOT 3-15
Linker Address Relocation 2-10, 2-11
Linker Description 2-1
Linker Examples 2-12, 2-19
Linker Operating Instructions
Command Line Mode 2-7, 2-8
Data File Mode 2-5, 2-6
Prompt Mode 2-3
Linker Options 2-9
LIST ON/OFF 1-36
LLCHAR 1-22
LocalLabels 1-13
LONG 1-19
LONGW 1-19
LowByte 1-14
LWORD 1-18,1-19

MACDELIM 1-23

MACEND 1-22

MACEXIT 1-23

MACLIST ON/OFF 1-36
MACRO 1-22

Macro Examples 1-49, 1-51
Macros 1-46, 1-52

Microtek Symbol Table 2-26
Mnemonic Definitions 1-48
MODULE 1-27

Motorola S19 Format 2-30
Motorola S28 Format 2-32
Motorola S37 Format 2-34

Number Base Designations 1-12

Operating Instructions
OPTIONS 1-40
ORIGIN 1-17

Packed Files 3-1

PAG, PAGE, EJECT 1-38
PASS1ON/OFF 1-38 -

Program Comments 1-12
Program Counter 1-13

Prompt Mode 1-2,1-3

PW,PL 1-37

RADIX 1-26
RECSIZE 1-40
Recursion 1-52
RELATIVE

See also Absolute Versus Relative

RMB 1-19

Run Time Commands - Unix,Msdos & VMS

1-11

SECTION 1-25
SPACES ON/OFF - 1-27
Storage Control 1-17, 1-21

String Concatenation 1-47
STTL,SUBTITLE 1-39
SYMBOLS 1-40

System Defaults 1-9

Assembler, Linker & Librarian

System Requirements A-1

TITLE,HEADING 1-38
TOP 1-37
TWOCHARON/QFF 1-27

Upper/lLowerCase 1-14

1-2,1-8

P

)

Index

v

Value Concatenation 1-47
Var 1-22

Z
Zax Symbol Table 2-27

