
c?m 2
INTERFACE GUIDE

N^CTtDR GRAPHICNC

CP/M 2 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

COPYRIGHT (c) 1979

VECTOR GRAPHIC, INC.

REVISION OF NOV. 15, 1979

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.

No part of this publication may be reproduced, transmitted,

transcribed, stored in a retrieval system, or translated into

any language or computer language, in any form or by anv
means, electronic, mechanical, magnetic, optical, chemical,

manual or otherwise, without the prior written permission of

Digital Research, Post Office Box 579 , Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with

respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-”

eular purpose. Further, Digital Research reserves the right

to revise this publication and to make changes from time to

time in the content hereof without obligation of Digital

Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

%

1. Introduction 1

2. Operating System Call Conventions 3

3. A Sample File-to-File Copy Program 29

4. A Sample File Dump Utility 34

5. A Sample Randan Access Program 37

6. System Function Summary 46

1 . INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS) , the Basic Disk Operating System (BDOS) , the Console
command processor (CCP) , and the Transient Program Area (TPA) . The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/O.
Digital Research, explicit instructions
reconfiguration of the BIOS to match nearly anv hardware
(see the Digital Research manual entitled juiae ;

.

The BIOS and BDOS are logically combined into a single module with a

common entry point, and referred to as the FDOS. The CCP is a

distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:

CBASE:

TBASE:

BOOT:

FDOS (BDOS+BIOS)

CCP

TPA

system parameters

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system “warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 0100H,

The principal entry point to the FDOS is at location BOOT+0005H
(normally 0005H) where a jump to FBASE is found. The address field at

BOOT+0 006H (normally 0006H) ' contains the value of FBASE and can be

used to determine the size of available memory, assuming the CCP is

being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as

follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command line takes one of the

forms?

command
command filel
command filel f ile2

where "command" is either a built-in function such as DIR or TYPE, or

the name of a transient command or program. If the command is a

built-in function of CP/M, it is executed immediately. Otherwise, the

CCP searches the currently addressed disk for a file by the name

command. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in

memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area. These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section.

The transient program receives control from the CCP and begins
execution, perhaps using the I/O. facilities of the FDOS, The
transient program is “called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to

pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up

through FBASE-1 is free.

The transient program may use the CP/M I/O facilities to

communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a

"function number" and an "information address" to CP/M through the
FDOS entry point at BOOT+0005H. In the case of a disk read, for

example, the transient program sends the number corresponding to a

disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in bela*.

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/O macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,

with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register .passing conventions of CP/M agree with those of Intel’s-

PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

0 System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/O
7 Get I/O Byte
8 . Set I/O Byte
9 Print String

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr (Alloc)
28 Write Protect Disk
29 Get R/O Vector
30 Set File Attributes
31 Get Addr (Disk Parms

)

32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application
maintain upward compatibility with MP/M.)

programs to

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H) , it
is sufficiently large to make CP/M system calls since the FDOS
switcnes to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = 0000H)

;

BDOS EQU 0005H
CONIN EQU 1

t

OPG 0 1 0 0H
NEXTC

:

MVI C, CONIN
CALL BDOS
CPI • * •

JNZ NEXTC
RET
END

STANDARD CP/M ENTRY
CONSOLE INPUT FUNCTION

BASE OF TPA
READ NEXT CHARACTER
RETURN CHARACTER IN <A>
END OF PROCESSING?
LOOP IF NOT
RETURN TO CCP

CP/M implements a named file structure on each disk, providing a

logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts; the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI
PRN Printer Listing REL
HEX Hex Machine Code TEX
BAS Basic Source File BAK
INT Intermediate Code SYM
COM CCP Command File $$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line” of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH) . Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is

denoted by a control-Z character (1AH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so

that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

%

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB) . Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a de'fault location for disk I/O is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26) . All directory operations take place in

a reserved area which does not affect write buffers as was the case in

release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of

33 bytes for sequential access and a series of 36 bytes in the case
that the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
the three bytes starting at BOOT+007DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research.)

5

|dr I £1 1 £2 I / / | £8 1 tl 1 12 1 13 I ex| si I s2 1 rc |d0
I / / I dn I cr I r 0 I rl ! r 2 I

00

01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (0 - 16)
0 -> use default drive for file
1 -> auto dis.k select drive A,
2 -> auto disk select drive B

,

• e o

1 6-> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit - 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0

tl 8

, t2', and t3' denote the
bit of these positions,
tl" - 1 -> Read/Only file,
t2 8 - 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0-31 during file I/O

si reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,'8

takes on values from 0 - 128

d0...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional randcm record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "filel" and '“file2'' in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 ... dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B :X. ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA , and the default FCB at
BOOT+005CH is initialized to drive code 2, file name "X" and file type
"ZOT". The second drive code takes the default value 0, which is
placed at BOOT+006CH, with the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All remaining fields through “cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOCT+005CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14

so is iegH IS 0 80 »a 00 M 88 M
2

•• ,e Q 00 06 99 49 •• 80 Y H 10 00 ,0

2
81 ** A M 89 P 69

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is

the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)

7

* *

* FUNCTION 0: System Reset *

* .
*

* Entry Parameters? *

* Register Cs 00H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-inifeializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

* FUNCTION 1: CONSOLE INPUT *

* *

* Entry Parameters: *

*

*
Register C: 0 1H *

*

* Returned Value: *

* Register A: ASCII Character *

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P)

.

The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

**
* *

* FUNCTION 2 : CONSOLE OUTPUT *

* *

* Entry Parameters: *

* Register C: 02H *

* Register E: ASCII Character *

* *

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

* *

* FUNCTION 3: READER INPUT *

* *

* Entry Parameters: *

* Register C: 03H *

* *

* Returned Value: *

* Register A: ASCII Character *

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

* *

* FUNCTION 4: PUNCH OUTPUT *

*

* Entry Parameters: *

* Register C: 04H *

* Register E: ASCII Character *

* *

The Punch Output function sends the character from register E to

the logical punch device.

* *

* FUNCTION 5: LIST OUTPUT *

* *

* Entry Parameters: *

* Register C: 05H *

* Register E: ASCII Character *

* *

a*******************#********'*****#**

The List Output function sends the ASCII character in register E

to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

* *

* FUNCTION 6: DIRECT CONSOLE I/O *

* *

* Entry Parameters; *

* Register C; 06H *

* Register E; 0FFH (input) or *

*

*
char, (output) *

*

* Returned Value; *

* Register A; char or status *

(no value) *

Direct console I/O is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M 8

s normal control character functions (e.g. , control-S and
control”?) . Programs which perform direct I/O through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/O under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF , denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

* FUNCTION 7: GET I/O BYTE *

*

* Entry Parameters: *

* Register C: 07H *

* *

* Returned Value: *

* Register A: I/O Byte Value *

The Get I/O Byte function returns the current value of IOBYTE in

register A. See the "CP/M Alteration Guide" for IOBYTE definition.

* FUNCTION 8: SET I/O BYTE *

* *

* Entry Parameters: *

* Register C: 08H *

* Register E: I/O Byte Value *

* *

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

* FUNCTION 9: PRINT STRING

* Entry Parameters: - *

* Register C: 09H *

* Registers DE: String Address *

* *

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a

is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is ' Propr ietary to Digital Research.)

11

*

*

*

*

*

*

*

*

*

*

*

*

*

FUNCTION 10: READ CONSOLE BUFFER *
*

****************3t£* *****************
Entry Parameters: *

Register Cs 0AH *

Registers DE: Buffer Address *
*

Returned Value: *

Console Characters in Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6+7+8 ... +n

Imx!nc|cl|c2|c3!c4!c5ic6|c7| . . . |??|

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255) , "nc“ is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< rax, then uninitialized positions follow the last character, denoted
by "??'• in the above figure. A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line
ctl-H backspaces one character position
ctl-J (line feed) terminates input line
ctl-M (return) terminates input line
etl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-x backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

extreme left margin). This convention makes operator data incut
and line correction more legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

* *

* FUNCTION 11: GET CONSOLE STATUS *

* *

* Entry Parameters: *

* Register C: 0BH *

* *

* Returned Value: *

* Register A: Console Status *

The Console Status function checks to see if a character has

been typed at the console. If a character is ready, the value 0FFH is

returned in register A. Otherwise a 00H value is returned.

* *

* FUNCTION 12: RETURN VERSION NUMBER *

* *

* Entry Parameters: *

* Register C: 0CH *

* *

* Returned Value: *

* Registers HL: Version Number *

Function 12 provides information which
^
allows version

independent programming. A two—byte value is returned, with H = 00

designating the CP/M release (H — 01 for MP/M) , and L = 00 for all

releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in

register L, with subsequent version 2 releases in the hexadecimal

range 21, 22, through 2F. Using function 12, for example, you can

write application programs which provide both sequential and random
access functions, with "random access disabled when operating under

early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

<

* *

* FUNCTION 13; RESET DISK SYSTEM *

* if***************************************
* Entry Parameters; *

* Register C; 0DH *
* *

***********************************^^*^

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29)

,

only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

I

i

* • *
* FUNCTION 14; SELECT DISK *
* *

* Entry Parameters; *
* Register C; 0EH *
*

*
Register E: Selected Disk *

*

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
38 0 for drive A, 1 for drive B, and so-£orth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
“on-line*” status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB*s which specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

14

* *

* FUNCTION 15: OPEN FILE *

* *

* Entry Parameters:
* Register C: 0FH
* Registers DE: FCB Address
*

*

*

*

* Returned Value: *

* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in

positions 1 through 14 of the FCB referenced by DE (byte si is

automatically zeroed) , where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a

sucessful open operation is completed. Upon return, the open function
returns a "directory code" with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record (“cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

* *

* FUNCTION 16s CLOSE FILE *

* *

* Entry Parameters:
* Register C: 10H
* Registers DE : FCB Address

*

*

*
*

* Returned Values *

* Register As Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22)

,

the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred,, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

* *

* FUNCTION 17: SEARCH FOR FIRST *
* *

* Entry Parameters: *

* Register C: 11H *

* Registers DE: FCB Address *
* *

* Returned Value: *

* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e. ,

rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from “fl" through “ex'* matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the “s2" byte is automatically zeroed.

**************************************&
* *

* FUNCTION 18: SEARCH FOR NEXT *

* is

a**************************************
Entry Parameters: it

* Register C: 12H is

is

it Returned Value:
* Register A: Directory Code *

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

* FUNCTION 19: DELETE FILE *

* *

* Entry Parameters: *

* Register C

:

13H *

*

*
Registers DE: FCB Address *

*

* Returned Values *

* Register A? Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value in the range 0 to 3 is

returned.

* *

* FUNCTION 20: READ SEQUENTIAL *

* *

* Entry Parameters: *

* Register C: 14H *

*

is

Registers DE: FCB Address *

*

* Returned Value: *

* Register As Directory Code *

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address, the record is read from position ,, cr“ of the
extent, and the "cr“ field is automatically incremented to the next
record position. If the "cr" field overflows then the next logical
extent is automatically opened and the “cr“ field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g. ,

end of file occurs)

.

(All Information Contained Herein is Proprietary to Digital Research.)

18

* *

* FUNCTION 21: WRITE SEQUENTIAL *

* *

* Entry Parameters: it

Register C: 15H it

*

*
Registers DE: FCB Address it

it

* Returned Value: it

* Register A: Directory Code *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22) , the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr“ of
the file, and the "cr“ field is automatically incremented to the next
record position. If the ”cr“ field overflows then the next logical
extent is automatically opened and the “cr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = 00H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* *

* FUNCTION 22: MAKE FILE *

* *

* Entry Parameters:
* Register C: 16H

it

Registers DE

:

FCB Address *

it

it Returned Value: *

it Register A: Directory Code *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does hot exist in the
currently referenced disk directory (i.e„, the one named explicitly by
a non-zero “dr" code, or the default disk if “dr“ is zero) . The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A * 0

,

1, 2, or 3 if the operation was successful and 0FFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

*************************************** •

* *

* FUNCTION 23; RENAME FILE *

is *

* Entry Parameters:
* Register C: 17H
* Registers DE: FCB Address

*

*

*

*

* Returned Value; *

* Register A; Directory Code *

********************* ******* ***********

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name could not be found in the
directory scan.

* *

* FUNCTION 24: RETURN LOGIN VECTOR *

* *

* Entry Parameters: *

* Register C: 18H *

* *

* Returned Value: *

* Registers HL: Login Vector *

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A '*0 ,c bit indicates that the drive is not on-line, while
a “I” bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

* *

* FUNCTION 25: RETURN CURRENT DISK *

* *

* Entry Parameters: *

* Register C: 19H *

* *

* Returned Value: *

* Register A: Current Disk *

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to drives A through P.

* *

* FUNCTION 26: SET DMA ADDRESS *

* *

* Entry Parameters: *

* Register C: 1AH *

* Registers DE: DMA Address *

* *

**DMA“ is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmed I/O operations) , the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0080H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

********************* ******************
* *
* FUNCTION 27: GET ADDR (ALLOC) *

*

*

*

*

Entry Parameters: *

Register C: 1BH *

*
* Returned Value: *

Registers HL: ALLOC Address *

on~l i n^
n vector" is maintained in main memory for each

provided by the fllScaMnn^
10^ P ro^ raiT,s “se the informationproviaea oy the allocation vector to determine the amount of remaining

of thl
<

f 1

e
fn

th®. STAT program) * Function 27 returns the base addresl
°J, * h *. avocation vector for the currently selected disk drive The
hii hlo°

n inf°™atlon maY • however, be invalid if the selected* disk
used bv aoolicaMn

rea<37on ly' Although this function is not normally
,

y application pr ograms , additional details the allorahinnvector are found in the "CP/M Alteration Guide. "
allocation

********************** *****************
* *
* FUNCTION 28: WRITE PROTECT DISK *
* *
********************** ***************^
* Entry Parameters: *
* Register C: 1CH *
*

*

**********************************^ a^
The disk write protect function

protection for the currently selected disk
the disk, before the next cold or warm
me s s ag e

provides temporary write
. Any attempt to write to
start operation produces the

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.

)

22

* *

* FUNCTION 29: GET READ/ONLY VECTOR *

* *

* Entry Parameters:
* Register C: 1DH
* *

* Returned Value: *
* Registers HL: R/O Vector Value*

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: 1EH *

* Registers DE: FCB Address *
* *

* Returned Value: *

* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl ' and t2 ‘

)

can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl‘ through f4‘ are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5‘ through f8‘ and t3 ' are reserved for future system
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

23

* *

* FUNCTION 31: GET ADDR (DISK PARMS) *

* *

* Entry Parameters: *

* Register C: 1FH *

* *

* Returned Value: *

* Registers HLs DPB Address *

The address of the BIOS resident disk parameter block is

returned in HL as a result of this function call. This address can be

used for either of two purposes. First, the disk parameter values can

be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* - *

*

*
FUNCTION 32: SET/GET USER CODE *

*

* * *************************************
* Entry Parameters: *

* Register C: 20H *

* Register E: 0FFH (get) or *

*

*
User Code (set) *

*

* Returned Value: *

* Register A: Current Code or *

* (no value) *

An application program can change or interrogate the currently
active user number by calling function 32. If register E - 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register E is

the current user number is changed to the value of E

not 0FFH

,

(modulo 32)

then

(All Information Contained Herein is Proprietary to Digital Research.)

24

* *

* FUNCTION 33: READ RANDOM *

* *

* Entry Parameters: *

* Register C: 21H *

* Registers DE

:

FCB Address *

* *

* Returned Value: *
* Register A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35) . Note that the sequence
of 24 bits is stored with least significant byte first (r0) , middle
byte next (rl) , and high byte last (r2) . CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course', simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a

data block which has not been previously written, or an extent which

has not been created, which are equivalent conditions*, Error 3 does

not normally occur under proper system operation, but can be cleared
by simply EQ—rsading # or re-opening extent zero as long as the disk is

not physically write protected. Error code 06 occurs whenever byte r2

is non-zero under the current 2.0 release. Normally, non—zero return
codes can be treated as missing data, with zero return codes

indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

*

* FUNCTION 34: WRITE RANDOM *

* *

a************************************
* Entry Parameters: *

* Register C: 22H *

* Registers DE: FCB Address *
* *

* Returned Value:
* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created due to directory
ove r f1 ow

.

(All Information Contained Herein is Proprietary to Digital Research.)

27

*&*******?************************&*#&*
* *

* FUNCTION 35: COMPUTE FILE SIZE *

* *

* Entry Parameters: *

* Register C: 23H *

* Registers DEs FCB Address *

* *

* Returned Values *

* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record foilwing the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a

16“bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

* *

* FUNCTION 36: SET RANDOM RECORD *

* *

* Entry Parameters: *

* Register C: 24H *

* Registers DE: FCB Address *

* *

* Returned Value: *

* Random Record Field Set *

The Set Randan Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets th6 record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of

file operations. The program source file is created as COPY. ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a HEX " file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the

second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB 8 s are ready for processing since the SFCB at 005CH is
properly set-up by the CCP upon entry to the COPY program. That^ is,
the first name is placed into the default fcb, with the proper fields
sseroed, including the current record field at 007CH. The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COPY until each record has
been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed
and the prog ran returns to the CCP command level by jumping to BOOT.

sample f ile-to-f ile copy program
6

e
9 at the ccp level. the command
9

o
9 copy a:x. j b:u.v
9

o
9 copies the file named x.y from drive
•
9 a to a file named u.v on drive b.

0 000 =
9

boot equ 0 0 0 0h system reboot
0005 = fades equ 00@5h bdos entry point
005c ~ fcbl equ 005ch ; first file name
0 05c 3 sfcb equ fcbl i source fcb
006c s fcb2 equ 006ch j second file name
0080 = dbuff equ 0080h default buffer
0100 = tpa equ 0100h beginning of tpa

0009 =
9

pr intf equ 9 print buffer func#
0 00f 3 openf equ 15 open file func#
0010 - closef equ 16 close file func#
0013 » deletef equ 19 delete file func#
0014 - readf equ 20 sequential read
0015 * wr i tef equ 21 sequential write
0016 = makef equ 22 ; make file func#

0100
9

oeg tpa ; beginning of tpa
0100 311b02

•

lxi sp, stack

;

local stack
9

•
9 move second file name to dfcb

0103 0el0 ravi c 9 1 6 / half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

0105 116c00 lxi d , fcb2 source of move
0108 21da01 lxi h , dfcb destination fcb
010b la mf cb: ldax d source fcb
010c 13 inx d ready next
0 10d 77 mov m,a dest fcb
0 10e 23 inx h ready next
0 10f 0d dcr c count 16. . .0
0110 c20b01

•

jnz mf cb loop 16 times
9

•
t name has been moved, zero cr

0113 af xra a a = 00h
0114 32fa01 sta dfcbcr current rec = 0

9

•
9

•

source and destination fcb's ready

0117 115C00
9

lxi d , sfcb source file
011a cd6 901 call open error if 255
0 lid 118701 lxi a, nofile ready message
0120 3c inr a 255 becomes 0
0121 cc6101

9

cz finis done if no file
9

•
9 source file open, prep destination

0124 llda01 lxi d,dfcb
i
destination

0127 cd7301 call delete
;
remove if present

012a llda01
9

lxi d ,dfcb destination
0 12d cd8201 call make create the file
0130 119601 lxi d,nodir

;
ready message

0133 3c inr a
; 255 becomes 0

0134 CC6101
•

cz finis
;
done if no dir space

9

«
9 source file open, dest file open
•
9 copy until end of file on source

0137 115C00
9

copy; lxi d ,sfcb source
013a cd7801 call read read next record
013d b7 ora a end of file?
0 13e C25101 jnz eof ile skip write if so

9

9
9 not end of file. write the record

0141 llda01 lxi d ,dfcb destination
0144 cd7d01 call write write record
0147 lla901 lxi d , space ready message
014a b7 ora a 00 if write ok
014b C46101 cnz finis end if so
0 14e C33701

9

jmp copy loop until eof
9

eof ile; ; end of file, close destination
0151 llda01 lxi d,dfcb destination
0154 cd6e01 call close 255 if error
0157 21bb01 lxi h,wrprot ready message
015a 3c inr a 255 becomes 00
015b CC6101

•

cz finis shouldn't happen
9

m
f copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

0 15e 11CC01 Ixi d, normal; ready message

finis; l write message given by de, reboot
0161 0e09 mvi c,pr intf
0163 cd0500 call bdos ; write message

0166 c3 0000 jmp boot ; reboot system

9

©
9 system interface subroutines
o
9 (all return directly from bdos)

0169 0e0f
9

opens mvi c„openf
016b C30500 jmp bdos

0 16e 0el0
9

close; mvi c,closef
0170 C30500 jmp bdos

0173 0el3
9

delete; mvi c,deletef
0175 C30500 jmp bdos

0178 0el4
9

read

;

mvi c^readf
017a C30500 jmp bdos

0 17d 0el5
9

wr ites mvi c„writef
0 17f C30500 jmp bdos

0182 0@16
9

make

;

mvi c„make£
0184 c3 0 500 jmp bdos

9
9
9 console messages

0187 6e6f20fnof ile; db ‘no source file?

0196 6e6f209nodir

;

db ‘no directory space?

'

01a9 6f7574f space; db ‘out of data space? 8

01bb 7772695wrprot; db ‘write protected?? 6

0 ICC 636f700normal

;

o

db ‘copy complete? 8

9

9 data areas
01da dfcb; ds 33 ,• destination fcb
01f a dfcbcr equ dfcb+32 ; current record

0 Ifb
9

ds 32 ; 16 level stack
stack

;

0 21b end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made

to ensure that the file names have, in fact, been included (check

locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case,

the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to

the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4 „ A SAMPLE FILE DUMP UTILITY

„

The file dump program shown below is slightly more complex than

the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and

displays the content of each record in hexadecimal format at the

console. Note that the dump program saves the CCP’s stack upon entry,

resets the stack to a local area, and restores the CCP's stack before

returning directly to the CCP. Thus, the dump program does not

perform and warm start at the end of processing.

f DUMP program reads input file and displays hex data

0100 org 10 0h

0 0 05 = bdos equ 0005h ,*do.s entry point
0001 - cons equ 1 jread console
0002 -= typef equ 2 type function
0009 - pr intf equ 9 ; buffer print entry
0 00b - brkf equ 11 jbreak key function (true if char
0 00f = openf equ 15 ;£ile open
0014 - r e ad f equ 20 ;read function

0 05c

o

- fcb equ 5ch ifile control block address

0080 * buff equ 80h j input disk buffer address

P

«
6 non graphic characters

0 00d - cr equ 0dh ^carnage return

0 00a = If equ 0ah ?line feed
e

•
9 file control block definitions

005c - fcbdn equ fcb+0 ;disk name
005d - fcbfn equ fcb+1 ;file name
0065 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 - fcbrl equ fcb+1

2

; file’s current reel number
0 06b = fcbrc equ fcb+1

5

;file's record count (0 to 128)

007c - fcbcr equ fcb+3 2 ; current (next) record number (0

007d - fcbln
•

equ fcb+33 ;fcb length

•
t set up stack

0100 210000 Ixi h, 0

0103 39 dad sp
•
9 entry stack pointer in hi from the ccp

0104 221502 shld oldsp
stack area (restored at finis)•

f set sp to local
0107 315702 lxi sp,s tktop

0
t read and print successive buffers

010a cdcl01 call setup ; set up input f ile

010d feff cpi 255 ; 255 if file not present
010f c21b01 jnz openok ; skip if open is ok

9

•
9 file not there. give error message and return

0112 Ilf301 lxi d ,opnmsg
0115 cd9c01 call err
0118 C35101 jmp finis ; to return

(All Information Contained Herein is Proprietary to Digital Research.)

34

openok: ; open operation ok, set buffer index to end
011b 3e80 mvi a, 8 0h
01 Id 321302 sta ibp ;set buffer pointer to 80h

•
9 hi contains next address to print

0120 210000 lxi h,0 ystart with 0000
/

gloop:
0123 e5 push h ;save line position
0124 cda201 call gnb
0127 el pop h ;recall line position
0128 da5101 jc finis ;carry set by gnb if end fil
012b 47 mov b,a

•
/ print hex values
•
9 check for line fold

012c 7d mov a,l
0 12d e60f ani 0fh ;check low 4 bits
0 12f c2 4401 jnz nonum

•
9 print line number

0132 cd7201 call crlf
9

•
9 check for break key

0135 cd5901 call break
•
9 accum lsb = 1 if character ready

0138 0f rrc ;into carry
0139 da5101 jc finis ;don’t print any more

013c 7c
9

mov a,h
013d cd8f 01 call phex
0140 7d mov a, 1
0141 cd8f01 call phex

nonum:
0144 23 inx h ?to next line number
0145 3e20 mvi a, ' •

0147 cd6501 call pchar
014a 78 mov a, b
014b cd3f 01 call phex
0 14e C32301 jmp gloop

9

finis:
•
9 end o i: dump, return to ccp
•
9 (note that a jmp to 0000h reboots)

0151 cd7201 call crlf
0154 2al502 Ihld oldsp
0157 f 9 sphl

«
9 stack pointer contains ccp ’ s stack location

0158 c9
•
9

ret ;to the ccp

•
9

e
9 subroutines
9

break: ? check; break key (actually any key will do)
0159 e5d5c5 push hil push d! push b; environment saved
015c 0e0b mvi c,brkf
0 15e cd0 500 call bdos
0161 cldlel pop bl pop a! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

0164 c9 ret
0

pchar: ; print a character i

0165 e5d5c5 push hi push dl push bs saved £ v.

0168 0e0 2 mvi c,typef ,J A

016a 5f mov e,a
1

016b cd0500 call bdos
|

016e cldlel pop b! pop d! pop hs restored
0171 c9 ret

fl

crlf :

0172 3e0d mvi a,cr
0174 cd6501 call pchar

|

0177 3e0a mvi a. If

0179 cd6501 call pchar
017c c9

C
9

ret
1

e
9

pn.ib

:

sprint nibble in reg a
1

0 17d e60f ani 0£h slow 4 bits
1

0 17f fe0a cpi 10
fl

0181 d28901 jnc pl0
9
9 less than or equal to 9

\

0184 c630 adi ’0'

0186 c38b01 jmp prn
0

®
t greater or equal to 10

0189 c637 pl0: adi •a' - 10
018b cd6 501 prn; call pchar
018e c9 ret

L...)
9

phex

:

sprint hex char in reg a

018f f 5 push psw
0190 0f r rc
0191 0 f rrc
0192 0 f rrc
0193 0£ rrc
0194 cd7d01 call pnib spcint nibble
0197 fl pop psw
0198 cd7d01 call pnib
019b c9

•

ret
9

errs sprint error message
«
9 d„e addresses message ending with

019c 0e09 mvi c,print£ sprint buffer function
0 19e cd0 500 call bdos
01al c9

c
9

ret

o
9

gnbs sget next byte
0 la 2 3al302 Ida ibp
01a5 fe80 cpi 80h
01a7 c2b301 jnz g0

e
9

•
9

read another buffer

(All Information Contained Herein is Proprietary to Digital Research.)

36

/

01aa cace01 call diskr
0 lad b7 ora a ;zero value if read ok
01ae cab301 jz g0 ;for another byte

•
/ end of data, return with carry set for eof

01bl 37 stc
01b2 c9 ret

g0

:

;read the byte at buff+reg a
01b3 5f mov e,a ;ls byte of buffer index
01b4 1600 mvi d,0 ;double precision index to de
01b6 3c inr a ; index=index+l
01b7 321302 sta ibp ;back to memory

•
9 pointer is incremented
•
9 save the current file address

0 lba 218000 lxi h,buf f
01bd 19 dad d

•
9 absolute character address is in hi

01be 7e mov a,m
•
9 byte is in the accumulator

01bf b7 ora a preset carry bit
01c0 c9 ret

9

setup: ;set up file
•
9 open the file for input

01cl af xra a ;zero to accum
0 lc2 327C00 sta feber ;clear current record

01c5 115C00
9

lxi d, feb
0 lc8 0e0f mvi c,openf
0 lea cd0500 call bdos

•
9 255 in accum if open error

01cd c9 ret
9

diskr

:

?read disk file record
01ce e5d5c5 push hi push d! push b
0 ldl 115c00 lxi d , feb
01d4 0el4 mvi c,, r.eadf
01d6 cd0500 call bdos
01d9 cldlel pop bi pop d! pop h
01dc c9 ret

/

o
9 fixed message area

0 Idd 46494c0signon: db "file dump version 2.0$
01f 3 0d0a4e0opnmsg % dfe cr,lf

,

'no input file present on disk$

o
9 variable area

0213 ibp: ds 2 ; input buffer pointer
0215 oldsp: ds 2 ; entry sp value from ccp

9

»
9 stack area

0217 ds 64 preserve 32 level stack
sfcktop:

0257 end

(All Information Contained Herein is Proprietary to Digital Research.)

37

5, A SAMPLE RANDOM ACCESS PROGRAM

.

This manual is concluded with a rather extensive, but complete
example of randan access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assanbled , and placed into a file labelled RANDOM.COM, the COP level
command s

RANDOM X .DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command

.
characters corresponding to random write, random

read, and quit processing, respectively. If the W command is issued,
the RANDCM program issues the prompt

type data;

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDCM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDCM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready'' where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called "readc."
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

0100

• * *

;* sample randan access program for cp/m 2.0 *
• * *

org 100h ;base of tpa
O

0 000
t

reboot equ 0 0 00h ;system reboot
0005 = bdos

•

equ 0 005h ;bdos entry point

0001 =
i

coninp equ 1 ;console input function
0002 3 conout equ 2 ; console output function
0009 = pstring equ 9 ;print string until ’$*

000a = rstring equ 10 ;read console buffer
0 00c = version equ 12 ; return version number
000f = openf equ 15 ;file open function
0010 = closef equ 16 ; close function
0016 = makef equ 22 ;make file function
0021 = readr equ 33 ;read random
0022 3 writer equ 34 ;write random

005c 3 fcb equ 0 05ch ;default file control block
0 07d = ranrec equ fcb+33 ;random record position
0 07f = ranovf equ fcb+35 ;high order (overflow) byte
0080 3 buff equ 0 080h ;buffer address

0 00d 3
9

cr equ 0dh ;carriage return
0 00a = if

Q
t

equ 0ah ;line feed

* *

* load SP, set-up file for random access *

* *

0100 31bc0
•

Ixi sp, stack
9

o
9 version 2.0?

0103 0e0c mvi c, version
0105 cd050 call bdos
0108 fe20 cpi 20h ;version 2.0 or better?
010a d2160 jnc versok

•
9 bad version, message and go back

010d 11150 Ixi d ,badver
0110 cdda0 call print
0113 c3000

•

jmp reboot
9

versok:
•
i correct version for random access

0116 0e0f mvi c, openf ;open default fcb
0118 115c0 Ixi d ,fcb
011b cd0 50 call bdos
011e 3c inr a ;err 255 becomes zero
011f C2370 jnz ready

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

39

0122 0eX6
0124 115c0
0127 cd0 50
012a 3c
012b C2370

0 X2e 113a0
0131 cdda0
0134 C3000

mvi c,make£
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

; cannot create file, directory full
lxi d, nospace
call print
jmp reboot ,*back to ccp

O

!***
9

^ *

*

*
• * loop back to "ready" after each command
i *
. **
9

o
9

ready:
; file is ready for processing

0137 cde5 0
9

call readcom iread next command
013a 227d0 shld ranree fstore input record#
013d 217f 0 lxi h, ranovf
0140 3600 mvi m , 0 iclear high byte if set
0142 f e5

1

cpi 'Q' iguit?
0144 C2560 jnz notq

9

•
9 quit processing. close file

0147 0el0 mvi c,clos@f
0149 115c0 lxi d , fcb
014c cd0 50 call bdos
0 14f 3c inr a jerr 255 becomes 0

0150 cab90 jz error ;errot message, retry
0153 c3 000 jmp reboot ;back to ccp

9

o is is is *
9

*** 5

© is
9

i
* end of quit command. process write

[**
a

notq:
o
/ not the quit command, random write?

0156 fe57 cpi •w
0158 C2890 jnz notw

9

•
9 this is a randomi write, fill buffer until

015b 114d0 lxi d ,datmsg
0 15e cdda0 call print ;data prompt
0161 0e7f mvi c,127 ; up to 127 characters
0163 21800 lxi h,buf

f

;destination
rloops ;read next character to buff

0166 c5 push b ;save counter
0167 e5 push h ;next destination
0168 cdc20 call getchr ;character to a

016b el pop h ; restore counter

*

is

is

(All Information Contained Herein is Proprietary to Digital Research.)

40

016c cl pop b ; restore next to fill
0 16d f e0d cpi cr ;end of line?
0 16f ca780 jz erloop

not end, store character
0172 77 mov m,a
0173 23 inx h ;next to fill
0174 0d dcr c ; counter goes down
0175 C2660 jnz rloop ?end of buffer?

erloop;
1

end of read loop , store 00
0178 3600

#

mvi m,0

write the record to selected record number
017a 0e22 mvi c, writer
017c 115C0 lxi d ,fcb
0 17f cd0 50 call bdos
0182 b7 ora a ;error code zero?
0183 c2b90 jnz error ; message if not
0186 C3370 jmp ready ;for another record

I***

* end
*

of write command. process read

.***
notw:
* not a write command, read record?

0189 fe52 cpi 'R*
018b c2b90

•

jnz error ;skip if not

read random record
018e 0e21 mvi c, readr
0190 115c0 lxi d,fcb
0193 cd050 call bdos
0196 b7 ora a ; return code 00?
0197 c2b90 jnz error

i
read was successful, write to console

019a cdcf 0 call crlf ; new line
019d 0e80 mvi c, 128 ;max 128 characters
0 19f 21800 lxi h,buf

f

;next to get
wloop:

01a2 7e mov a,m ;next character
01a3 23 inx h ;next to get
01a 4 e67f ani 7fh ;mask parity
01a6 ca370 jz ready ;for another command if 00
01a9 c5 push b ?save counter
01aa e5 push h ; save next to get
01ab fe20 cpi 1 8

; graphic?
01ad d4c80 cnc putchr ;skip output if not
01b0 el pop h
0 lbl cl pop b
01b2 0d dcr c ;count=count“l
01b3 c2a20 jnz wloop
01b6 C3370 jmp ready

(All Information Contained Herein is Proprietary to Digital Research,)

41

* *

*

*
?* end of read command, all errors end-up here
e *
9

errors
0 Xb9 11590 Ixi d„errmsg
0 Ibc cdda0 call print
0 Ibf C3370 jmp

C

ready
9

9

;
* utility subroutines for console i/o

• *
9

. **'
9

getchr

:

?read next console character to a
0 lc2 0e0

1

mvi c,coninp
0 lc4 cd050 call bdos
0 lc7 c9 ret

9

putchr:
jwrite character from a to console

0 lc8 0e0 2 mvi c,conout
01ca 5f mov e»a ^character to send
0 leb cd0 50 call bdos ; send character
0 Ice c9 ret

cr If ?

; send carriage return line feed
01cf 3@0d mvi a,cr ;carriage return
0 ldl cdc80 call putchr
01d4 3e0a mvi a, If ?line feed
01d6 cdc80 call putchr
01d9 c9 ret

e
/

print:
;print the buffer addressed by de until $

01da d5 push d
01db cdcf 0 call crlf
0 Ide dl pop d ;new line
01df 0e0 9 mvi c,pstring
01el cd050 call bdos ;print the string
01e4 c9 ret

Q
9

readcom:
; read the next command line to the conbuf

01e5 116b0 lxi d, prompt
01e8 cdda0 call print ; command?
01eb 0e0a mvi c,r string
0 led 117a0 lxi d , conbuf
0 If0 cd0 50 call bdos ;read command line

; command line is present, scan it

*

*

*

(All Information Contained Herein is Proprietary to Digital Research.)

42

0 If 3 21000 lxi h,0 ;start with 0000
0 If 6 117C0 lxi d , conlin; command line
0 If 9 la readc: ldax d ;next command character
01fa 13 inx d ; to next command position
0 lfb b7 ora a ; cannot be end of command
0 If c c8

•
f

rz
not zero, numeric?

0 lfd <3630 sui '0*

01ff f e0a cpi 10 ;carry if numeric
0201 <32130 jnc endrd

0204 29
’ add-

dad
in next digit

h ;
*2

0205 4d mov C,1
0206 44 mov b,h ;bc = value * 2

0207 29 dad h ;
*4

0208 29 dad h ;
*8

0209 09 dad b ;*2 + *8 » *10
0 20a 85 add 1 ;+digit
020b 6f mov 1 ,a
0 20c d2f 90 jnc readc ;for another char
0 20f 24 inr h ; overflow
0210 c3f 90 jmp readc ;for another char

endrd:
•
f end of read, restore value in a

0213 C630 adi '0' ; command
0215 fe61 cpi ’a’ ; translate case?
0217

0218

d8
0

e65f

rc
lower case, mask lower case bits
ani 101$llllb

0 21a

021b

c9

t

5 3 6f 7 9

ret

************** *********************** ***********
*

* string data area for console messages
*

**
Dadver

:

db 'sorry, you need cp/m version 2$'

0 23a
nospace

4e6f 29 db 'no directory space$*

0 24d
datmsg

:

547970 db 'type data: §'

0259
er rmsg %

457272 db 'error, try again. $
’

026b
prompts

4e6570 db 'next command? $

'

*

*

(All Information Contained Herein is Proprietary to Digital Research.)

43

9

. if
*

9 *
s* fixed and variable data area
.* *

.***
t

027a 21 conbuf

:

db conlen ; length of console buffer

0 27b consiz: ds 1 ; resulting size after read
0 27c conlins ds 32 ^length 32 buffer
0021 38 conlen equ $-consiz

0 29c

0 2bc

e
9

stacks
ds

end

32 s 16 level stack

Again, major improvements could be made to this particular

program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,

consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES. OAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the 16 LASTHAME " field from each record, starting at position 10 and

ending at character 20. GETKEY builds a table in memory consisting of

each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,

and writes a new file, called LASTNAME. KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an “inverted index" in information retrieval

parlance.)

Rename the program shown above as QUERY, and massage it a bit so

that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME. KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.

Since the LASTNAME. KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a

name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a little more
work, you can allcw a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6 „ SYSTEM FUNCTION SUMMARY

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

3 . Systen Reset none none

1 Console Input none A * char

2 Console Output E * char none

3 Reader Input none A * char

4 Punch Output E * char none

S List Output E » char none

6 Direct Console I/O see def see der

7 Get I/O Byte none A * IOBYTE
8 Set I/O Byte E * XGBYTE none

9 Print String DE * .Buffer none

1 9 Read Console Buffer DE * .Buffer see def

11 Get Console Status none A * 08/FF

12 Return Version Number none HL* version*

13 Reset Disk System none see def

14 Select Disk E * Disk Number see def

IS Open File DE * . FCB A » Dir Code

16 Close File DE * . FCB A * Dir Code

17 Search for First DE * . FCB A * Dir Code

13 Search for Next none A * Dir Code
19 Delete File DE * . FCB A * Dir Code

20 Read Sequential DE * . FCB A * Err Code

21 Write Sequential DE * .FCB A * Err Code
22 Make File DE * .FCB A * Dir Code

23 Rename File DE * .FCB A * Dir Code

24 Return Login Vector none HL* Login Vect*

25 Return Current Disk none A * Cur Disk-#

26 Set DMA Address DE * .DMA none

27 Get Adar (Alloc) none HL* .Alloc

28 Write Protect Disk none see def

29 Get R/O Vector none HL* R/O Vect*

30 Set File Attributes DE * .FCB see def
31 Get Addr(d-isk paras) none HL* .DFB

32 Set/Get User Code see def

'

see def
33 Read Randos DE * .FCB A * Err Code
34 Write Randan DE * .FCB A * Err Code

35 Compute File Size DE * .FCB r0, cl, r2

36 Set Randan Record DE » .FCB r0 , rl, r2

* Note that A * L, and 3*3 upon return

)

(All Information Contained Herein is Proprietary to Digital Research,)

46

MDOS TO CP/M

FILE CONVERSION PROGRAM

USER'S GUIDE
June 30, 1980

Copyright 1980 Vector Graphic Inc

Copyright 1980 by Vector Graphic Inc.
All rights reserved.

Disclaimer
Vector Graphic makes no representations or warranties with respect to the
contents of this manual itself, whether or not the product it describes is
covered by a warranty or repair agreement. Further, Vector Graphic reserves
the right to revise this publication and to make changes from time to time
in the content hereof without obligation of Vector Graphic to notify any
person of such revision or changes, except when an agreement to the contrary
exists.

Revisions
The date and revision of each page herein appears at the bottom of each
page. The revision letter such as A or B changes if the MANUAL has been
improved but the PRODUCT itself has not been significantly modified. The
date and revision on the Title Page corresponds to that of the page most
recently revised. When the product itself is modified significantly, the
product will get a new revision number, as shown on the manual's title page,
and the manual will revert to revision A, as if it were treating a brand new
product. EACH MANUAL SHOULD CNLY BE USED WITH THE PRODUCT IDENTIFIED ON THE
TITLE PAGE.

6/30/80

Vector Graphic MDOS To CP/M File Conversion Program

TABLE OF CONTENTS

Section Page

Table of Contents

I . Perspective

1.1 What the MDOS to CP/M File Conversion Program Does 1-1

II. User's Guide

2.1 Purpose of Program 2-1
2.2 How lb Transfer MDOS Files lb CP/M 2-1

2.3 Error Messages 2-4
2.4 File Type Explanation 2-4

6/30/80

I

Vector Graphic MDQS Tb CP/M File Conversion Program

I. PERSPECTIVE

1*1 What the MDQS To CP/M File Conversion Program Does

The MDOS to CP/M File Conversion Program is designed to transfer Assembly
Language and Basic files from MDOS diskettes to CP/M diskettes. It
transfers them without changing the inherent value of any program
statements. The user does, however, have the option of flagging
non-equivalent Basic command "verbs" so that they will appear in reverse
video when the file is edited with the SCOPE program editor.

The program will accept as input any MDOS file whose type is either 04, 06,
or 10. It will not accept file types 03, 0C or 14, and will bring that to
the user's attention by a wrong file type message.

It will then output the file correctly formatted to CP/M specifications.
The user has the responsibility of naming the new file and declaring its
type. Generally, it will fall into the .BAS or .ASM catagories.

6/30/80 1-1

Vector Graphic MDOS To CP/M File Conversion Program

II. USER'S GUIDE

2.1 Purpose of Program

1. The primary purpose of the Transfer Program is to transfer files from the
MDOS operating system to the CP/M operating system. The Basic file portion
of the program transfers files that are Basic program source code only. It
is intended to transfer from operating system to operating system and is not
intended to transfer from Micrcpolis Basic to Microsoft Basic. Only those
generalities and procedures associated with the minimal Basic functions and
attributes are identical and need not be edited. All special functions and
extensions peculiar to each Basic are definitely not compatible and need to
be edited. Some recommendations on transfering Basic source codes are:

a) Transfer the Basic file flagging the non-equivalent verbs using this
program.

b) Edit the file using SCOPE.

c) Attempt to run the edited program in order to find, discrepancies between
the two Basics.

d) Run test data to verify program.

There are some minor inconsistencies between Micrcpolis Basic and Microsoft
Basic. An example is in Micrcpolis Basic the statement:

IF A=10 PRINT "AOK"

In Microsoft Basic there must be a "then" after the conditional test:

IF A=10 THEN PRINT "AOK"

Another example is that Microsoft Version 5 must have spaces between verbs
and Micropolis doesn't. However, this has been taken care of in the
transfer program which automatically inserts spaces.

2.2 How To Transfer MDOS Files To CP/M

1. Connect all hardware.

2 . Make sure no disks are mounted.

3 . On the computer, turn the power key on or turn the power switch on,
whichever applies.

When the computer has been turned on, a banner will appear on the operator's
console saying "Vector Graphic Monitor, Version 4.X", and "Mon>" will appear
on the left edge of the screen. The "Mon>" is the "prompt" telling you the

2-1 6/30/80

Vector Graphic MDQS To CP/M File Conversion Program

computer's Monitor executive is waiting for a command. If the Monitor
executive prompt does not appear, depress the reset button on the computer
chassis.

5. Insert and mount the personalized Vector Graphic CP/M 2.X System Diskette in
drive A, label side leftward.

6. In response to the Monitor prompt "Mon>", depress B on the keyboard. Drive
A should activate as indicated by its small red lamp. In a moment you will
see a banner reading "Vector Graphic 56K CP/M - VERSION 2. XX", followed by
an "A>" in the left-hand edge of the screen. This prompt indicates that the
CP/M executive is waiting for a command. The CP/M executive is normally
called the CCP, which stands for Console Command Processor.

7. Place the diskette you received with the XFER program on it in drive B.
Transfer the XFER program to your personalized CP/M diskette by typing;
PIPAs - Bs XFER. COM (return) „ Check to make sure the program has been
transfered by typing DIR in response to the A> prompt. XFER.COM should be
listed with the other files on your personalized CP/M diskette. When you
are sure the program has been transfered, store the original diskette in a
safe place

.

8. In response to Monitor prompt "A>", type XFER (return) . Drive A should
activate as indicated by its small red lamp. In a moment you will see a
banner reading;

MDOS to CP/M TRANSFER VERSION 1.0

Insert MDGS diskette in drive B

MDQS source filename ;

9. Insert and mount the MDOS diskette in drive B as indicated in step 5. Type
in the file you wish transferred following "MDOS source filename" on the
screen. Press (return) . "CP/M destination filename" will now appear at
the bottom of the screen.

10. In response to "CP/M destination filename" type the name in the file you
wish transferred to the CP/M diskette followed by the file extent separated
by a period. Depress (return) . Immediately after depressing the (return)

key, you ‘will note that the small red lan?) indicating drive B will light,
followed by the red lamp on drive A lighting and going off.

NOTE

CP/M WILL CNLY ACCEPT FILENAMES WITH EIGHT LETTERS OR LESS. MDOS ACCEPTS
FILENAMES WITH UP TO TEN LETTERS. MAKE CERTAIN THAT THE DESTINATION
FILENAME HAS EIGHT LETTERS OR LESS AND IS FOLLOWED BY THE FILE TYPE.

11.

If you are transferring a Basic program, "Flag non-equivalent verbs (Y/N)"
will appear at the bottom of the screen. If you prefer to have

6/30/80 2-2

Vector Graphic MDOS To CP/M File Conversion Program

non-equivalent verbs flagged in the transferred file type Y, if not type N.
The small red lamps indicating drives A and B will now”alternately light
back and forth for a few moments. When the lamps stop lighting, the file is
transfered. You may now view this .BAS file with SCOPE. If you have
answered "Y" to the question, all non-equivalent "verbs" will stand out in
reverse video. Be aware that there may be other syntactical differences
between programs which will have to be changed.

Seme examples of the differences between Basic programs are shown below.

a) In Micropolis Basic to open a file:

OPEN File number 0-9 , String expression for filename ,

[end line number,] [error line number]
’

Equivalent statement in Microsoft Basic

OPEN <Mode>, File number 0-15 , String expression for filenames , [reclen]

IF EOF (File name) then line number

On error GOTO line number

b) Writing to a file sequentially

Given A=10 File 1 has been opened
B=20 D$=Address
C$="Name"

In MEOS:

Put 1 A; B; ", n +C$ + +D$

In Microsoft:

Write #1,A,B,C$,D$

c) Outputting to a port

Micropolis:

Out (Numeric expression for port) = data

Microsoft:

CXat Port, data

See the section on Micropolis Basic in the MDOS manual and the Microsoft
Basic-80 section in the CP/M manual for further details.

2-3 6/30/80

Vector Graphic MEGS Ito CP/M File Conversion Program

2. 3 ERROR MESSAGES

There are four possible error messages in the CP/M File Conversion Program.
They are:

****FILE MOT FOUND****
****DUPLICATE FILE NAME****

****DISK I/O ERROR****
****WRCNG FILE TYPE****

An explanation of the four error messages will follow:

1) File Not Found. File name specified in a disk command does not exist on
the specified diskette.

2) Explicate File Name. An attempt was made to OPEN a file that already
exists as a file.

3) Disk I/O Error. A disk I/O error occurred vfoich was not recoverable in
the disk I/O retry logic.

4) Wrong File Type. The attributes of the referenced file are inconsistent
with the requirements of the statement or command that referenced it.

2.4 FILE TYPE EXPIANATION

1. MDOS allows files to be classified as to unique information content by
assigning a type designation. A files' access codes and type designation
are combined in one byte of the files' directory entry. The first two least
significant bits of the file type byte are bit encoded and specify file
access restrictions. The access codes are as follows:

Bit
1 0

00 A normal read/write file
0 1 A normal read only file
10 A permanent read/write file
11 A permanent read only file

2. CP/M contains three file types that are part of the system, they are CCM
(Command) which can be directly executed from the keyboard; BAS (Basic),
which designates a Basic file; and ASM (Assembler) which designates an
assembly language file. Other file types can be created by the user to fit
a particular need.

6/30/80 2-4

.

